
An Event-driven Multi-threading Real-time Operating System dedicated to
Wireless Sensor Networks

Hai-ying Zhou, Feng Wu
School of Computer Science & Technology,

Harbin Institute of Technology,
Harbin, China

haiyingzhou@hit.edu.cn , wufeng@ftcl.hit.edu.cn

Kun-mean Hou
LIMOS Laboratory UMR 6158 CNRS,

University of Blaise Pascal,
Clermont-Ferrand, France

kun-mean.hou@isima.fr

Abstract

At present, the OSs (Operating system) employed

for WSN (wireless sensor networks) are either satisfied
with only one or two application classes or unsuitable
for strict-constrained resources. In view of a variety of
WSN applications, there is a need of developing a self-
adaptable and self-configurable embedded real-time
operating system (RTOS). This paper presents a
resource-aware and low-power RTOS termed LIMOS.
This kernel adopts a component-based three-level
system architecture: action (system operation), thread
(component) and event (container). In accordance, a
predictable and deterministic two-level scheduling
mechanism is proposed: ‘non pre-emption priority
based’ high level scheduling for events and
‘preemptive priority-based’ low level scheduling for
threads. Employing the concepts of LINDA language,
LIMOS provides a simplified tuple space and a light
IN/OUT system primitive-pair to achieve system
communication and synchronization. LIMOS is
capable of self-adapting to run on two operation
modes: event-driven and multi-threading, with respect
to the application diversity. The performance
evaluation and comparison shows LIMOS has tiny
resource consumption and is fit for the real-time
applications. Currently LIMOS has been ported on
several hardware platforms for different WSN
applications.

1. Introduction

The emergence and development of WSN (Wireless
Sensor Networks) technology explore new issues and
challenges in a variety of traditional fields such as
wireless communication, sensors and embedded
system, etc. How to design a dedicated EOS
(embedded operation system) for a WSN system is one
of the main challenges.

The huge potential of WSN applications needs the
EOS to be suitable for different operating
environments, from a simple single-task event to a
real-time multi-thread system. Moreover, due to the
resource constrains of WSN node, the EOS must
consume tiny resource, including CPU, and memory. It
means that the EOS must be resource- and context-
aware to minimize energy consumption.

Traditional EOSs, such as SDREAM[2], µC/OS-
II[4], VxWorks[4],QNX[5][9], pSOS[6], Lynxos[7],
RTLinux[8], WinCE.NET[10], RTX[11],
HyperKernel[12] etc, are generally not fit for WSN as
they cannot satisfy both of the above-mentioned
requirements. For example, TinyOS0, the known WSN
dedicated OS which adopts event-driven component-
based structure, has tiny resource consumption.
However, it is an essential single task system and not
fit for multi-threading application. On the other hand,
other multi-threading scheduling OSs are either
unsuitable for a variety of environments (partially
efficient) or consume overfull resources. For example,
SDREAM[2], a typical multi-threading OS, is suit for
real-time multi-task scheduling. But in view of the
multi-event single task applications, adopting multi-
threading scheduling mode has more resource
consumption and less efficiency comparing to the
event-driven mode. Our objective is to design a general
OS dedicated to various WSN applications.

LIMOS (LIghtweight Multi-threading Operating
System) is a native configurable hybrid operating
system that can thus operate in either event-driven
mode or multi-threading mode to minimize resource
requirement and improve system efficiency according
to practical application environments. The following
sections introduce LIMOS in details: section 2
describes system architecture; section 3 depicts a two-
level system scheduling policy and section 4 presents
the system communication and synchronization
mechanism; section 5 presents the performance

The 2008 International Conference on Embedded Software and Systems (ICESS2008)

978-0-7695-3287-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICESS.2008.58

3

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

evaluation and the last section concludes LIMOS and
gives perspectives.

2. System architecture

Combining the concepts of event-driven and multi-
threading systems, LIMOS adopts a component-based
multi-level system architecture: action, thread and
event. In LIMOS, the minimal system unit is termed
action that responds to the basic system operation,
including ‘read’, ‘write’, ‘schedule’, etc. A thread is a
component that consists of a set of actions, which
represents a specific task. An event, which is a super-
component (container) having a set of components , is
an independent job that consists of a set of tasks
(threads).

2.1. Component-based multi-level structure

2.1.1. Action. Action is the minimal system unit that is
classified into two classes: system action (device-
dependent) and function action (device-independent).
To illuminate by serving as an example of WSN, there
are generally four types of actions: ‘read’ operation
(reading data from devices), ‘analyse’ operation
(processing these acquisitions), ‘write’ operation
(transmitting the results) and ‘scheduler’ operation
(thread/event scheduler).

The basic actions have been implemented and
stored into the action library. Threads call an action
directly like calling a library function. Since actions
shield the differences of hardware devices and provide
a uniform calling interface for components, system
designers can thus focus on functions development
with no need of concerning about device-dependent
operations. This feature simplifies the system design
and also improves the system reusability and
compatibility.

2.1.2. Thread. Thread represents a task, and interacts
only with the components within the same container
(event). Threads share resources within the containers
and communicate with one another via shared space.
Threads run in concurrence or in parallel to realize a
job (event) by interacting with each other. Hence,
threads are pre-emptive and a thread thus needs a stack
space to store its private “contexts” information.
Sharing resources within the same event reduces the
overheads of thread switching and also decreases the
costs of system resources.
2.1.3. Event. Event represents an independent job that
interacts with peripheral devices or other events.
Events are signal-driven. An event is activated only
after receiving a trigger signal from an ISR (Interrupt
Service Routine). LIMOS defines that each event can

be associated with one and only one input interrupt
source and n output input sources (0<n≤Max). LIMOS
events run to completion without preemption.
Therefore events are non-preemptive. In terms of the
regularity of occurrences, events are divided into two
classes:

 Periodic events: typically suitable for regular data
sampling issued from sensors or for monitoring
actuators, which occur at a fixed rate. Periodic
events have certain execution time and
deterministic response time.

 Sporadic events: typically suitable for strict time-
constrained tasks, which occur sporadically.
Sporadic events can be used to deal with the
critical problems.

2.1.4. Architecture. A set of actions construct a
component (thread) and a set of components make up
of a container (event). An event can be viewed as an
automaton. Once being triggered by a signal, the event
is activated and its threads start to be executed. Events
receive/send a signal by calling IN/OUT system
primitives via their related tuple spaces. Providing an
inside view, an event is a set of threads which operate
concurrently and cooperatively. Threads adopt the
same mechanism for inter-thread communication and
synchronization.

Denoting ℜ is a LIMOS instance, ε is an event, τ is
a thread, α is an action and ς is a signal. The ‘ → ’
symbol denotes precedence sequential operation and
‘||’ represents the concurrent or parallel operation. The
LIMOS architecture can be expressed as follows:

{ }
{ }
{ }.;,2,1:

;;,2,1:
;;,,2,1:

21

21

21

ij

i

ijSijijijijkij

imiiiiji

ni

Sk

mj
ni

αααατ
ττττε

εεεε

→→==

==
→→==ℜ

(1)

LIMOS can be configured to run independently in
event driven, multi-thread and event driven with
multithreading (hybrid) modes. Considering two
extreme-case scenarios: if ℜ has only one event, i.e.
n=1, LIMOS works in the multi-threading mode as
SDREAM; while if each event has just one thread, i.e.
∀mi=1, i∈{1,…, j}, LIMOS works in the event-
driven mode as TinyOS.

2.2. Event-/thread-control Block

In order to simplify the management and scheduling,
LIMOS allocates two data table structures, named
event control block (ECB) and thread control block
(TCB), to store events and threads respectively. Each
data structure contains at least an identification flag

4

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

(string or number), a priority, a status, and a
corresponding tuple ID. Each structure has a specific
attribute to depict its affiliation relation: the sub-TCBs
linked list pointer of ECB and the super-Event ID of
TCB. ECBs and TCBs also contain two time
parameters to describe the absolute deadline and the
allowable time-slice. For events, when an event is
defined and activated, the initial value of time-slice,
which is decreasing with the time passing, is equal to
the maximum allowable response time.. These two
parameters are used to evaluate the event priority and
then to determine event scheduling. For threads, the
two parameters are used to avoid the thread deadlock.
TCBs contain two more attributes, i.e. start stack
pointer (SSP) and current stack pointer (CSP), to
indicate a thread’s stack resource space. The stack
space is used to store program counter (PC), status
register(s), general registers and various variables.

The essential information of ECB and TCB are
shown in Figure 1. To simplify its implementation,
LIMOS stores the ECBs and TCBs in two fixed-size
arrays rather than linked lists since the numbers of real-
time tasks (events, threads) in WSN applications are
generally known and limited.

Figure 1. Event-control block (left) and Thread-

control block (Right)

2.3. Event/thread states

LIMOS manages ECBs / TCBs by keeping track of
the states of each event / thread. System scheduling can
be achieved by manipulating the states status. In
LIMOS, events and threads have similar states except
that threads have one more state: ‘suspended’.

 Sleep: An event or thread was created and
initialized, but it is not yet ready and eligible to
execute. Since LIMOS is configured statically
and the numbers of events/threads are fixed, an
event changes state from ‘sleep’ to ‘terminated’,
where sub-threads are reinitialized
correspondingly.

 Ready: Events or threads belong to this state are
those that are released and eligible for execution,
but are not executing. An event or thread enters

the ‘ready’ state from ‘sleep’ state when its
trigger signal occurs. A thread can also enter
‘ready’ from ‘suspend’ if its waiting resource is
available.

 Execute: When an event/thread is being executed.
Due to its non-preemptive feature, an event runs
to completion with no change of its state.

 Suspend: Only threads can enter this state. If a
thread which is executing waits for an unavailable
resource, or it was preempted, then the thread is
suspended and ‘suspend’ state is assigned.

 Terminate: A thread has self-terminated or is
aborted. If all of its sub-threads are terminated,
the event enters the ‘terminated’ state.

Figure 2. An event and thread state diagram

A state diagram corresponding to event and thread
states is depicted in Figure 2. The state transition
operations exclusively related to threads are traced in
red lines and explained by gray texts. The unique
broken line represents the state transition from
‘terminate’ to ‘sleep’. It should be noted that,
according to the features of the static pre-configuration
and the determinate numbers of events/threads,
LIMOS can combine the predefined ‘terminate’ and
‘sleep’ states into the ‘idle’ state. In this way, an event
or thread enters the ‘idle’ state after it has finished
execution, but the event resource is not released and
the event will be activated by next signal.

3. System Scheduling

Scheduling is a fundamental operation of an
operating system. In order to meet a program’s
temporal requirements of a real-time system, it is of the
utmost importance that the scheduling algorithm
should produce a predictable schedule, that is, at all
times it should be known that which task is going to be
executed. With event/thread system architecture,
LIMOS offers a two-level dynamic-priority scheduling

5

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

scheme: ‘non-preemptive-priority’ for events at high
level and ‘preemptive-priority’ for threads at low level.

3.1. Event-/thread-control Block

3.1.1. Event scheduling. Event scheduling adopts the
priority-based non-preemptive scheduling and I/O
devices are interrupt-driven. An event is elected to run
according to its priority and an active event runs to
completion without any pre-emption. At any instant
when finish an event, the event scheduling is activated
to elect the next event to be executed. This scheme is a
dynamic-priority scheduling, like earliest-deadline-first
(EDF) algorithm [13]: the event with earliest deadline
has the highest priority.

Note that events are interrupt-able. When an
interrupt occurs, its ISR stores the corresponding
message (msg) or signal and then sends it to the
corresponding tuple buffer by calling the OUT
primitive. The further processing is reacted only after
the active event has run to completion. Meanwhile, the
OUT primitive updates the attribute values of the event,
including the status, the time-slice, and also revaluates
the priorities of all ready events according to the
scheduling scheme.

For a periodic event, the relative deadline, Di, is
supposed to equal its period pi; while for a sporadic
event, the system designates a maximum allowable
response time, Di, when the event occurs. A sporadic
event generally can be regarded as the first instance of
a periodic event with the period of Di. Therefore, di,k,
the absolute deadline of the kth instance of the event εi
is as follows:

iiikiki pkprd *,, +=+= φ (2).

Hence, each time a signal is sent to the
corresponding tuple space, the status of the event
changes from ‘idle’ to ‘ready’, the absolute deadline is
di,k and the time-slice is pi. The time-slice value
decreasing with the time passing is used to evaluate the
event priority: the smaller the time-slice value is, the
higher the event priority is.

3.1.2. Thread scheduling. Thread scheduling adopts a
priority-based pre-emptive scheduling scheme. Threads
are elected to run in the order of priority and the
elected thread can pre-empt any other lower priority
threads at any execution point outside of system
critical section. When the threads of the active event
are running, the threads of other events are not eligible
to compete to obtain CPU resource. Thus it allows
events to run until completion.

The thread scheme is a static priority scheduling
and the thread priority is predefined at pre-run-time
and is fixed according to the relationships of threads.
The priorities of threads must be assigned carefully to

avoid deadlock situation. In the case of deadlock, two
or more threads cannot proceed due to circular wait.
For example, supposing that a high priority thread (τh)
is held on its corresponding tuple, while only a lower
priority thread (τl) is allowed to send data (message or
signal) to wake up τh. If at the same time, τl is held on
its tuple which only τh will send data to wake up. In
this condition, the two threads enter a dead-circular
situation. Hence, in order to produce a predictable
scheduling and to allow a determinative execution time,
the priorities of threads are assigned as below:

1. Considering a thread which is held-to-wait a signal
of an event εi, is the successor thread τi0 of εi. Then,
τi0, has the highest priority;

2. Supposing each thread will be held on one and only
one thread tuple.

3. Therefore, the thread τi,j that is waiting on the tuple
message (msg) from its previous thread τi,j-1, has the
lower priority than that of τi,j-1, and so on. For
example, the thread that is waiting an msg from the
successor thread has the second high priority.

Threads are interruptable and preemptive. A thread
interacts with other threads via tuple by calling the
IN/OUT primitive-pair. When a thread sends a message
or signal to a tuple, the OUT primitive is called to
change the state of the tuple-relative thread from ‘idle’
or ‘suspend’ to ‘ready’. Moreover, the time-slice value
of each item of TCB suspend list is recalculated in
view of the current timeslot and the deadline value.

3.1.3. Event-to-thread jump. The following theorem
gives the condition under which a feasible schedule
exists under the EDF scheme .

If a LIMOS instance consists of periodic events and

meets the formula(3), its event/thread scheduling
scheme can be predictable. If the execution time of
events is deterministic and transient, LIMOS can be
considered as a soft real time system. But for hard real-
time events, general being sporadic events, which need
to be reacted within a strict time-constrained deadline,
the above-defined scheduling scheme does not always
work well if the formula (4) cannot be satisfied.

Let εs and εp be the sporadic event and the active
periodic event, Ds and es be the relative deadline and
the execution time of εs, and ep be the expected time
from the interrupted instant to the completed instant of

Theorem [EDF Bound][13]: A set of n periodic events,
each of whose relative deadline equals its period, can
be feasibly scheduled by EDF if and only if

∑
=

≤
n

i
ii pe

1
1)/((3)

6

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

εp, where 0< ep ≤ei. Then the feasibly of the sporadic
event εs meets its deadline is that

sps eeD +< (4)
Note that since the execution time of ISR routine

related to the sporadic event εs is very short and
deterministic, it is thus ignored. If the formula (4) is
not met, therefore, the event εs miss its deadline and
the system then enters an unexpected exceptional
status. To ensure in this worst-case scenario the
sporadic event can be handled with short response time
to meet its deadline, a special event-to-thread jump
mechanism is proposed: the sporadic event εs is treated
as the highest priority thread τs of current periodic
event εp, so that τs can preempt any other active thread
of εp according to the thread scheduling scheme. The
event-to-thread jump mechanism breaks down the
obstacle between threads and events, allowing the
threads of an urgent event to preempt the CPU resource.

Let Ρ(ε) and Ρ(τ) be the priorities of events and
threads, then when an event-to-thread jump occurs, the
priorities of the threads of the events (εs and εp) is:

10/)()()(τεε ΡΡΡ += (5)

Note that LIMOS quantifies the priority of events
and threads between 0 and 10. Since the sporadic event
has higher priority than the active event, that is,
Ρεs>Ρεp, then the threads of εs have higher priority than
those of εp so that they can preempt the CPU resources.

3.2. Scheduling program

The LIMOS two-level scheduling program is
implemented by using C language and it has two main
parts: the scheduler function, which implements
event/thread dispatch, will be called regularly at a
fixed-rate by Timer ISR or when a thread is terminated;
the IN/OUT system primitive-pair ,which realizes the
priority computation (event only) and ECB/TCB list
sorting according to priority and event-to-thread
operation (optional), will be executed when calling
IN/OUT primitives. Two global variables are defined,
cur_event and cur_thread, to indicate current active
event and thread.

The pseudo-code programs show that this
scheduling scheme is smart and predictable, and has
deterministic execution time independent of the event
and thread numbers. Note that the top item of ECB
ready lists or TCB lists is the one with the highest
priority, which has been elected and sorted by the rules
of the scheduling scheme in the IN/OUT system
primitive-pair.

4.System communicaion & synchronization

The interactions between system components, i.e.
event and thread, are essential to provide system
communication and synchronization services.
According to the action/thread/event structure, LIMOS
system provides three system interactions: event-ISR,
inter-event and inter-thread.

LIMOS employs LINDA concept, i.e. tuple space,
IN/OUT primitive-pair, to facilitate the system
interactions. LINDA is a parallel programming
language [14]. The basic LINDA primitives of posting
and reading tuple are: IN & OUT [15]. Because a
message delivery in LINDA is based on its content
matching, the inter-object is thus not space couple.
Moreover, since the IPC (inter-process
communication) in LINDA is asynchronous, the inter-
object is also not time couple. The ‘tuple’ model may
be extended to support multi-CPU and multi-thread
parallel programming model. Therefore LINDA is
suitable for parallel distributed applications.

The original LINDA concept is not adequate for
distributed hard real-time parallel processing, because
the IPC time is not deterministic, which increases

void scheduler (void)
{ /* Determine the scheduling is for events or threads at this

instant? */
If (TCB list of cur_event==null or cur_event==daemon)
then { /* Event scheduling */

cur_event = the top one at the ECB ready list;
cur_thread = the top one at the TCB list of this event;
Set cur_event / cur_thread to ‘execution’ state;
Call cur_thread at cold mode.

} else { /* Thread scheduling*/
If (cur_thread == the top one at TCB list of this event)

Return;
Set cur_thread to ‘suspended’ state;
Save_Contect(cur_thread);
cur_thread = the top one at the TCB list of this event);
Set Cur_thread to ‘execution’ state;
If (the first time calling for current-thread)

 Call cur_thread at cold mode;
else { /*wake up from ‘suspend’ state*/

 Restore_context(cur_thread);
 Call cur_thread at warm mode;

}
}

}

void event-to-thread-jump (void)
{

/* Enable the possibility of event preemptive, being
suitable for hard real-time events*/

Insert TCBs of the hard real-time event at the top of
the TCB list of cur_event;
Update the thread’s priority basing upon the priority of
its super event and its original fixed-priority;

 Call Scheduler();
}

7

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

dramatically when the number of processes or
processors is huge (more than 100) [16]. To overcome
these problems, LIMOS provides a simplified tuple
space and a light system primitive-pair.

4.1. Tuple space

The tuple space consists of a set of tuples identified
by a key. Each tuple contains a critical resource, that is,
a special data structure called a circular queue or ring
buffer. In the ring buffer, simultaneous input and
output of the list are achieved by keeping head and tail
indices. Data are loaded at the head and read from the
tail. A tuple is encapsulated in a data structure:
Tuple_Table. The tuple_ID is the identifier: key of
tuple. A tuple has two states: ready and free. If the
message number, i.e. tuple_msgnum, is more than 0,
the tuple_state is set to ‘ready’, else is ‘free’. The
tuple_size, tuple_staadr and tuple_endadr are the size,
the start address and the end address of the ring buffer.
The tuple_head and tuple_tail are the writing and
reading pointers that have been initialized to the
tuple_staadr when a tuple is allocated.

Instead of matching the entire message content as

classic LINDA concept, only one numeric identifier
(KEY) is used to identify a tuple in LIMOS. The
numeric identifier and the type of tuple are statically
assigned to the local, shared or distributed buffer by
the user. The tuple ring buffer is mapped into a byte
array associated to a tuple table. The message content
may be accessed immediately when a tuple is
available. The runtime of tuple template matching is
thus deterministic in spite of the numbers of events and
threads.

In LIMOS, all kinds of data exchanges, no matter
interior interactions (between components, i.e. event
and thread) or exterior interactions (generally with
external peripherals, including sensors, actuator and a
variety of interface devices etc), have been
implemented via tuple space. Noted that a thread is a
component that is a basic system operation unit and an

event is the specific kind of component that regards as
the container of its sub-threads (multiple
components).There is thus no interaction between
threads and events.

4.2. IN/OUT operation

The IN/OUT primitive-pair in LIMOS contains two
main functions: data (msg, signal) exchange and
transmission via tuple; update the status and priority of
event/thread, illuminated in the below pseudo codes.

LIMOS is a tuple-based hybrid multi-level system.

Each event, no matter activated by a signal from
timers, actuators and sensors or from other events,
must be associated with a unique tuple. When a
message received from peripherals or events is arrived,
the OUT operation is performed to store data into a
relative tuple and then to update the status information
of the corresponding tuple. Consequently, the OUT
primitive updates the status information of the tuple-
relative event / thread and the time slice value of
system items in the ECB ready list / TCB suspended
list, and then resorts the ECB ready list at sort
descending according to their time slice values or sets
a thread into the ‘terminate’ state if the thread runs out
of allowable block time.

The reading tuple operation is allowed for events
only if data is available on tuple. When an event or
thread reads data from its relative tuple on which data
is available, the IN operation is: to copy data from the
tuple to an application, and then update the tuple
status. Whereas, if data is not available on tuple, the IN
operation is: to set the thread into ‘suspend’ state, and
initialize the two time attributes of TCB item, then
store the context into the thread stack and activate a
new scheduling.

void IN (int Key, char * msgPtr, int msgLen)
{

/*if no data is available, suspend this thread*/
If (tuple_state !== ‘ready’) {/*a new thread scheduling */
DIS_ALL_IRQ;
/*up to date the time attributes of threads */
thread_status = ‘suspended’;
thread_deadline = current timeslot + relative
deadline (lifetime);
thread_timeslice = relative deadline;
Save_Context();
Scheduler();

}
/* Step1: data (msg, signal) exchange and transmission */
Copy data from tuple(key) to received buffer (msgPtr);
/* Step2: up to date the status of tuple */
DIS_ALL_IRQ;
if (--tuple_msgnum ==0)

tuple_state =’free’;
ENA_ALL_IRQ;

}

typedef struct Tuple_Table
{

char tuple_ID; /* tuple identifier: key.*/

char tuple_state; /* tuple state: free 0; ready 1.
*/

char tuple_size; /* ring buffer size*/
unsigned
char*

tuple_head; /* writing msg buffer pointer
*/

unsigned
char*

tuple_tail; /* reading msg buffer pointer*/

unsigned
long

tuple_staadr; /* ring buffer start position*/

unsigned
long

tuple_endadr; /* ring buffer end position*/

char tuple_msgnum /* tuple message number */

8

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

Implementing a system updating within the system
primitives may ensure a predictable and determinate
system scheduling with no concerning about the
number of components, which is the typical feature of
hard real-time system. Moreover, when the calling
frequency of IN/OUT is lower than that of the system
scheduling, as in most of WSN applications which has
low sampling frequency, the above-mentioned
mechanism reduces the system workload efficiently.

5. Evaluation

LIMOS has been ported on ARM7TDMI-S
architecture[18] based processors, including NXP
LPC21xx[19] and Atmel At91SAM7S series[20] This
section estimates the memory and power consumption
of LIMOS, calculates the execution time of system
primitives, evaluates the system latencies and finally
compares the performances of LIMOS with those of
other RTOSs amd TinyOS.

5.1. Evaluation Platform

The hardware evaluation platform is an
ARM7TDMI-S based 32-bit RISC architecture
microcontroller: Atmel At917Sam256. This
microcontroller has 256Kbytes internal Flash and
64Kbytes internal SRAM, running at the main
operating frequency of 48MHz. It provides two UART
controllers, one 8-channel 10-bit ADC, one SSC
controller and one SPI interface. The software
development platform adopts the IAR system
EWARM embedded integrated development
environment and J-Link JTAG simulator [21]. The
LIMOS instance is configured with three events (two
work events and one daemon event). The first work
event contains three threads and the second one has
two threads.

5.2. Memory and Power Consumption

Since LIMOS is dedicated to strict resource-
constrained embedded applications, especially for
WSN nodes, it consumes tiny resources, i.e. memory,
energy and CPU. Table 1 presents the memory and
power consumption of LIMOS on the ARM7.

LIMOS can operate at different operation modes
(event-driven, multi-threading), having very little
memory requirement (<5Kbytes) comparing with most
of RTOSs. Both ARM7 microcontroller and Zigbee RF
transceiver support multi-level low-power operation
modes. When no component running or no data
transmitting, LIMOS can configure associated registers
to set MCU or RF transceiver to operate on different
low-power mode to reduce power consumption.

Table 1. Memory and power consumption of
LIMOS

Memory
consumption

(bytes)

Power consumption
(Lithium-Ion battery,3.6V, 1800mAH)

CODE DATA Normal Low-Power
At91SAM7S

(48MHz)
<50mA < 60µA

Send mode
<25mA

Sleep mode
<0.9µA

Chipcon
CC2340
(Zigbee) Receive mode

<27mA
Standby mode

<0.6µA

3572 1272

Lifetime > 16 hours > 3 years

For most of WSN applications, such as
environmental data collection, security monitoring, and
mobile sensor node tracking, the sampling frequency is
low and LIMOS is idle at most of the time. Therefore,
LIMOS can operate in low-power mode most of the
time to reduce the power consumption. In the case of
the evaluation platform, the default power source is a
Lithium-Ion battery having a capacity of 1800mAH at
3.6V. A WSN system (a real-time continuous data
sampling and transmitting application) can run 16

void OUT(int Key, char * msgPtr, int msgLen)
{

/* Step1: data (msg, signal) exchange and transmission */
Copy data from sending buffer (msgPtr) to tuple(key);
/* Step2: update the status & priority of system

essences*/
DIS_ALL_IRQ;
this.tuple_msgnum++;
this.tuple_state =’used’;
if (Key represent an event tuple) {

this.event_status = ‘ready’;
this.event_deadline = current timeslot + relative
deadline (period);
this.event_timeslice = relative deadline;
ENA_ALL_IRQ;
/*Update timeslice of items of the ECB ready list;*/
while (ECB ready list is not NULL)

that.event_timeslice = that.event_deadline –
current timeslot;
Add this event into the ECB ready list at the sort
descending of timeslice;

} else if (Key represent a thread tuple) {
this.thread_status = ‘ready’;
Add this thread into the TCB ready list at the sort of
fixed priority;
ENA_ALL_IRQ;
/*Update timeslice of items of TCB suspended list;*/
while (TCB suspended list is not NULL) {

that.thread_timeslice = that.thread_deadline –
current timeslot;
/* timeout: force termination of thread*/
if (that.thread_timeslice <= 0)

 that.thread_status = ‘terminated’;
}

}

9

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

hours in normal mode, whereas in complete low-power
mode, the system run-time can be extended to more
than 3 years.

5.3. Performance of System primitives

The numbers of instruction cycles of the system
primitives, i.e. IN/OUT primitives, on At91SAM7S256
are evaluated. The runtime of each primitive is
evaluated by taking into account the running clock
frequencies of 48MHz. Table 2 presents the results of
performance evaluation of system primitives. In the
static configurable LIMOS system, the execution time
of system primitives is determined and bounded
between the minimal and maximal time. Moreover, the
size of a tuple message is limited and predefined, the
execution time of IN and OUT primitives are thus
predictable. The deterministic and predictable
behaviors of system primitives are the key features of a
real-time operating system.

Table 2. Performance evaluation of system
primitives

Cost (cycles) Time (µs)(48MHz) Operations
Max Min Max Min

In 149+46n 95 3.101+
0.957n 1.977

Operation: Read data from its associated tuple.
Max: data is available, reading n bytes from its associated tuple

and copying it into the user buffer.
Min: no data is available, calling the thread_scheduler function.
n: is the byte length of receiving data (n>0).

Out 104+32n+
Cycle_1

104+32n+
Cycle_2

2.164+
0.666n+
Cycle_1

2.164+
0.666n+
Cycle_2

Operation: Send data into its associated tuple, insert an item into
the event/thread queue and resort the queue.

Max: Send data into an event tuple, and insert the related event
into the event ready queue.

Min: Send data into a thread tuple, and insert the related thread
into the thread ready queue.

n: is the byte length of sending data (n>0).
Cycle_1: cycles of event enqueue.
Cycle_2: cycle of thread enqueue.

5.4. System latencies

For a real-time operating system, the system
scheduling scheme and the interrupt handling
mechanism are critical, which must be short and
deterministic. Several system latencies are used to rate
the performances of LIMOS system scheduling and
interrupt handling. Since LIMOS adopts
action/event/thread structure, therefore there are two
latencies that can be used to evaluate system
scheduling scheme.

 event-to-event switch latency: the time necessary
for the system to switch from one event to

another. This scheduling operation is performed
in the event_manager routine. The native thread
of next event is called in the ‘cold’ startup mode,
and thus there is no context-switch operation for
event-to-event switch.

 thread-to-thread switch latency: the time
necessary for the system to switch from current
thread to another thread of the same event. This
scheduling operation is performed in the
thread_scheduler routine. There is one time
context-switch between the system and current
thread. If the next thread runs at the first time, it
is called in the ‘cold’ startup mode; whereas, the
thread is called in the ‘warm’ startup mode and
there is one more time context switch operation
between system and next thread.

Table 3. Performance evaluation of system latencies

Cost (cycles) Time (µs)(48Mhz)
Latencies

Min Avg Max Min Avg Max

90 1.873
event-to-event
switch latency

Call event_manager routine to run next ready event.
The native thread of next event is called in the ‘cold’
start-up mode

891(992) 1.8521 (2.062)

thread-to-
thread switch

latency

Call thread_scheduler routine to run next ready
thread of current event
1: Next running thread of this event is called in the
‘cold’ start-up mode
2: Next running thread of this event is called in the
‘warm’ start-up mode

Interrupt
Response
Latency

29 107 247 0.604 2.227 5.140

32 68 176 0.666 1.415 3.662

Interrupt
Dispatch
Latency

There are three possibilities for the interrupt dispatch
operations after the ISR has exited:
1. Return back to the interrupted function.
2. Call event_manager to start event scheduling
3. Call thread_scheduler to start thread scheduling

On the other hand, the interrupt latencies are
expected to be finite and will never exceed a
predefined maximum time. Two latencies are used to
rate the performance of the interrupt handling
mechanism:

 Interrupt Response Latency: the time elapsed
between the execution of the last instruction of
the interrupted component and the first instruction
in the interrupt service routine. This is an
indication of the rapidity of the system reaction to
an external interrupts.

 Interrupt Dispatch Latency: the time interval to
go from the last instruction in the interrupt service
routine to the next thread scheduled to run. This
indicates the time needed to switch from interrupt

10

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

mode to user mode

The evaluation results of system switch latencies

and interrupt latencies are presented in Table 3. The
results exposes LIMOS has deterministic and short
system switch / interrupt latencies that can satisfy the
requirements of most of real-time applications. It’s
noted that the latencies of system switch are fixed with
no concern of the numbers of event/thread.

5.5. Performance comparison

This paper compares LIMOS with other real-time
operating systems and TinyOS.

5.5.1. Comparison with other RTOSs. The
performance data of some popular RTOSs are obtained
from the evaluation reports of Dedicated System
Experts. The evaluation reports for the following
commercial operating systems are currently available:

− RTX 4.2 from VenturCom, Inc [11].
− Hyperkernel 4.3 from Imagination Systems,

Inc[12].
− VxWorks/x86 5.3.1 from WindRiver Systems [4].
− pSOSystem/x86 2.2.6 from Integrated Systems [6].
− QNX 4.25 from QNX Software Ltd[5].
− QNX/Neutrino1.0 from QNX Software Ltd[9].

The evaluation platform adopted by Dedicated
Systems Experts is a 200MHz Intel Pentium MMX
based PC with a Chaintech motherboard. Time
intervals are measured by using external equipment:
the PCI bus analyzer; and system peripherals are
simulated by means of another external device: PCI
bus exerciser. The RTOSs are evaluated with ten
different priority-level tasks. The evaluation data of
SDREAM is obtained at [2]: SDREAM is evaluated
with five periodic tasks, five priority tasks with
different priority levels, running on TI TMS320C5410
DSP.

In order to compare the evaluation results with the
LIMOS running on At91SAM7S256, we consider that
the P200MMX has at least 300MIPS (millions
instructions per second) and the At91SAM7S256 has
nearly 42MIPS[18]. Hence, the intrinsic execution time
of P200MMX is 7 times faster than the
At91SAM7S256. The comparisons of two interrupt
latencies between other RTOSs and LIMOS are shown
in Figure 3. The two histograms show that LIMOS has
the smallest average interrupt response latency and the
smallest average interrupts dispatch latency.

Figure 3. Comparisons of system latencies between

LIMOS and other RTOSs

5.5.2. Comparison with other TinyOS. TinyOS is a
naturally multitask event-driven system dedicated to
wireless sensor applications. It has been tested on
ATmega128 (4MHz clock frequency). The evaluation
results are currently available 0. Since LIMOS is tested
on different platform with TinyOS, this paper only
compares three system operations: scheduling a task,
context switch and hardware interrupt. The cost of task
scheduling indicates the overhead of the thread
scheduler function. The operation of context switching
happens between the two threads of the same event
(‘warm mode’).

Table 4. Performance evaluation between LIMOS
and TinyOS

LIMOS(At91S
AM7S256)

TinyOS(ATmega
128) Operations

Cost
(cycle)

Time
(µs)

Cost
(cycle)

Time
(µs)

Scheduling task 43 0.895 46 11.5
Context Switch 56 1.165 51 12.75
Hardware
Interrupt(hw)

5 0.104 9 2.25

Hardware
Interrupt(sw)

61 1.269 71 17.75

OS CODE size (bytes) Data size (bytes)

LIMOS 3572 1272
TinyOS 432 48

A hardware interrupt includes the hardware (hw)
part and the software (sw) part. Table 4 presents the
overheads of three system operations and the memory
consumption between LIMOS and TinyOS kernel.
Noted that in order to support real-time multitask
operations, LIMOS has more system overheads than
TinyOS but has similar system cycles for the basic
system operations.

Interrupt Dispatch Latency

0

5

10

15

20

Min

uS

Avg Max0

5

10

15

20

Min Avg Max

uS

SDREAM
pSOSystem2.2.6
QNX4.25

RTX4.2
 Hyperkernel4.3
QNX/Neutrino1.0
VxWorks5.3.1

LIMOS

Interrupt Response Latency

11

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

6. Conclusion and Perspective

LIMOS is a smart, resource-aware, low-energy and

distributed real-time micro-kernel. It adopts the
action/event/thread component-based multi-level
system architecture. As the result of multi-level
structure, LIMOS adopts a two-level scheduling
policy: ‘non pre-emption priority’ high level
scheduling for events and ‘preemptive priority’ low
level scheduling for threads. The scheduling scheme is
predictable and deterministic with respect to the real-
time applications. A unique system interface and a
system primitive-pair, i.e. tuple and IN & OUT, are
proposed for system synchronization and
communication. LIMOS integrates the advantages of
TinyOS and SDREAM. It can be running at different
modes: event-driven, multi-tasking. The combination
of two kernels greatly extends the application range of
LIMOS from simple single-task to multi-task
applications.

At present, LIMOS has been ported on the
LiveNode hardware platform [22] developed by the
University of Blaise Pascal, France. The LivenNode is
a specific WSN node that is applied to a variety of
WSN applications, including environmental data
collection, object tracking and health care, etc.

Figure 4. Livenode hardware platform

For the future work, we plan to further improve the
performance of LIMOS system at the following
aspects:

− Fault-tolerant system: A fault-tolerant system has
the ability to continue normal operation despite the
presence of hardware or software faults (except for
physical destruction). In order to improve the
robustness of LIMOS, the ability of fault-tolerant
should be taken into consideration carefully.

− Low-energy system: Improving the system energy
efficiency is the first essential factor of the WSN
system designing. More optimization mechanisms
should be adopted to reduce energy consumption.

− Distributed system: A distributed system has the
ability of parallel operations on a set of processors
or multi-cores of one chip (NoC). The introduction

of the tuple concept makes LIMOS suitable for
parallel communication and task synchronization
on a distributed system.

7. References

[1] W. Maurer. The Scientist and Engineer’s Guide to TinyOS

Programming, Technical Document, http://ttdp.org/tpg/html/,
2004.

[2] H.Y.Zhou, K.M.Hou and C. de Vaulx, SDREAM: A Super-
small Distributed REAl-time Microkernel dedicated to
wireless sensors, Journal of PERVASIVE COMPUT. & COMM.
2006 issue 4 Vol(2), pp398-410.

[3] J.J. Labrosse, MicroC/OS-II, The Real-time Kernel, R & D
Books, Technical Document; Oct. 1998.

[4] Dedicated Systems Magazine, VxWorks/x86 5.3.1 evaluation,
http://www.dedicated-systems.com, 2000.

[5] Dedicated Systems Magazine, QNX4.25 Evaluation Executive
Summary, http://www.dedicated-systems.com, 2000.

[6] Dedicated Systems Magazine, PSOS 2.2.6 Evaluation
Executive Summary, http://www.dedicated-systems.com,
2000.

[7] LynuxWorks Inc., Lynxos 4.0: the world’s most powerful,
open-standards rtos, http://www.lynuxworks.com/rtos, 2002.

[8] Victor Yodaiken, An Introduction to RTLinux, Technical
Document, New Mexico Institute of Technology, Oct. 1997.

[9] QNX Software System Ltd., Qnx neutrion rots microkernel
operating system, Technical Report; MCL-DS-VXW-0208,
Feb. 2003.

[10] Microsoft Corporation, Which to choose: Evaluating
Microsoft windows CE.NET and windows XP embedded,
Technical Report, Microsoft Corporation, 2001.

[11] Dedicated Systems Magazine, RTX4.2 evaluation execute
Summary, http://www.dedicated-systems.com, 2000.

[12] Dedicated Systems Magazine, Hyperkernel4.3 evaluation
execute Summary, http://www.dedicated-systems.com, 2000.

[13] C.L Liu and J.W.Layland, Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment, Journal
of the ACM, 1973. 20(1): p. 46-61.

[14] A.D.Gelernter, Generative communication in LINDA. ACM
Transactions on Programming Languages and Systems, 1985.
7(1): p. 80–112.

[15] A.I. Taylor Rowstron, Bulk Primitives in LINDA run-time
systems, Ph.D thesis; University of York, Oct. 1996.

[16] E. Yao, Real-time Multiprocess Kernel: Hierarchical LINDA,
Proceedings of ICSPAT. 1993.

[17] P.A.Laplante, Real-time systems design and analysis : an
engineer's handbook, Wiley & IEEE Press, 3rd ed. 2004.

[18] ARM Ltd., ARMTDMI-S technical reference manual (v4),
Technical Document, 2001.

[19] Atmel Ltd., AT91SAM7S-EK Evaluation Board User Guide,
Technical Document, 2006.

[20] NXP Ltd., LPC214x User Manual, Technical Document,
2005.

[21] IAR Ltd., ARM IAR Embedded Workbench IDE User Guide.
Technical Document, 2006.

[22] K.M.Hou et al. LiveNode: LIMOS versatile embedded wireless
sensor node, Journal of Harbin Institute of technology,
Vol(32), p139-144, Oct. 2007.

GP

Zigbee Antenna

Arm

Battery

GPS
Antenna

12

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore. Restrictions apply.

