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Abstract 

 
At present, the OSs (Operating system) employed 

for WSN (wireless sensor networks) are either satisfied 
with only one or two application classes or unsuitable 
for strict-constrained resources. In view of a variety of 
WSN applications, there is a need of developing a self-
adaptable and self-configurable embedded real-time 
operating system (RTOS). This paper presents a 
resource-aware and low-power RTOS termed LIMOS. 
This kernel adopts a component-based three-level 
system architecture: action (system operation), thread 
(component) and event (container). In accordance, a 
predictable and deterministic two-level scheduling 
mechanism is proposed: ‘non pre-emption priority 
based’ high level scheduling for events and 
‘preemptive priority-based’ low level scheduling for 
threads. Employing the concepts of LINDA language, 
LIMOS provides a simplified tuple space and a light 
IN/OUT system primitive-pair to achieve system 
communication and synchronization. LIMOS is 
capable of self-adapting to run on two operation 
modes: event-driven and multi-threading, with respect 
to the application diversity. The performance 
evaluation and comparison shows LIMOS has tiny 
resource consumption and is fit for the real-time 
applications. Currently LIMOS has been ported on 
several hardware platforms for different WSN 
applications. 
 
1. Introduction 
 

The emergence and development of WSN (Wireless 
Sensor Networks) technology explore new issues and 
challenges in a variety of traditional fields such as 
wireless communication, sensors and embedded 
system, etc. How to design a dedicated EOS 
(embedded operation system) for a WSN system is one 
of the main challenges.  

The huge potential of WSN applications needs the 
EOS to be suitable for different operating 
environments, from a simple single-task event to a 
real-time multi-thread system. Moreover, due to the 
resource constrains of WSN node, the EOS must 
consume tiny resource, including CPU, and memory. It 
means that the EOS must be resource- and context- 
aware to minimize energy consumption. 

Traditional EOSs, such as SDREAM[2], µC/OS-
II[4], VxWorks[4],QNX[5][9], pSOS[6], Lynxos[7], 
RTLinux[8], WinCE.NET[10], RTX[11], 
HyperKernel[12] etc, are generally not fit for WSN as 
they cannot satisfy both of the above-mentioned 
requirements. For example, TinyOS0, the known WSN 
dedicated OS which adopts event-driven component-
based structure, has tiny resource consumption. 
However, it is an essential single task system and not 
fit for multi-threading application. On the other hand, 
other multi-threading scheduling OSs are either 
unsuitable for a variety of environments (partially 
efficient) or consume overfull resources. For example, 
SDREAM[2], a typical multi-threading OS, is suit for 
real-time multi-task scheduling. But in view of the 
multi-event single task applications, adopting multi-
threading scheduling mode has more resource 
consumption and less efficiency comparing to the 
event-driven mode. Our objective is to design a general 
OS dedicated to various WSN applications. 

LIMOS (LIghtweight Multi-threading Operating 
System) is a native configurable hybrid operating 
system that can thus operate in either event-driven 
mode or multi-threading mode to minimize resource 
requirement and improve system efficiency according 
to practical application environments. The following 
sections introduce LIMOS in details: section 2 
describes system architecture; section 3 depicts a two-
level system scheduling policy and section 4 presents 
the system communication and synchronization 
mechanism; section 5 presents the performance 
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evaluation and the last section concludes LIMOS and 
gives perspectives. 

 
2. System architecture 
 

Combining the concepts of event-driven and multi-
threading systems, LIMOS adopts a component-based 
multi-level system architecture: action, thread and 
event. In LIMOS, the minimal system unit is termed 
action that responds to the basic system operation, 
including ‘read’, ‘write’, ‘schedule’, etc. A thread is a 
component that consists of a set of actions, which 
represents a specific task. An event, which is a super-
component (container) having a set of components , is 
an independent job that consists of a set of tasks 
(threads). 

 
2.1. Component-based multi-level structure 
 
2.1.1. Action. Action is the minimal system unit that is 
classified into two classes: system action (device-
dependent) and function action (device-independent). 
To illuminate by serving as an example of WSN, there 
are generally four types of actions: ‘read’ operation 
(reading data from devices), ‘analyse’ operation 
(processing these acquisitions), ‘write’ operation 
(transmitting the results) and ‘scheduler’ operation 
(thread/event scheduler).  

The basic actions have been implemented and 
stored into the action library. Threads call an action 
directly like calling a library function. Since actions 
shield the differences of hardware devices and provide 
a uniform calling interface for components, system 
designers can thus focus on functions development 
with no need of concerning about device-dependent 
operations. This feature simplifies the system design 
and also improves the system reusability and 
compatibility. 
 
2.1.2. Thread. Thread represents a task, and interacts 
only with the components within the same container 
(event). Threads share resources within the containers 
and communicate with one another via shared space. 
Threads run in concurrence or in parallel to realize a 
job (event) by interacting with each other. Hence, 
threads are pre-emptive and a thread thus needs a stack 
space to store its private “contexts” information. 
Sharing resources within the same event reduces the 
overheads of thread switching and also decreases the 
costs of system resources. 
2.1.3. Event. Event represents an independent job that 
interacts with peripheral devices or other events. 
Events are signal-driven. An event is activated only 
after receiving a trigger signal from an ISR (Interrupt 
Service Routine). LIMOS defines that each event can 

be associated with one and only one input interrupt 
source and n output input sources (0<n≤Max). LIMOS 
events run to completion without preemption. 
Therefore events are non-preemptive. In terms of the 
regularity of occurrences, events are divided into two 
classes: 

 Periodic events: typically suitable for regular data 
sampling issued from sensors or for monitoring 
actuators, which occur at a fixed rate. Periodic 
events have certain execution time and 
deterministic response time.  

 Sporadic events: typically suitable for strict time-
constrained tasks, which occur sporadically. 
Sporadic events can be used to deal with the 
critical problems.  

 

2.1.4. Architecture. A set of actions construct a 
component (thread) and a set of components make up 
of a container (event). An event can be viewed as an 
automaton. Once being triggered by a signal, the event 
is activated and its threads start to be executed. Events 
receive/send a signal by calling IN/OUT system 
primitives via their related tuple spaces. Providing an 
inside view, an event is a set of threads which operate 
concurrently and cooperatively. Threads adopt the 
same mechanism for inter-thread communication and 
synchronization.  

Denoting ℜ  is a LIMOS instance, ε is an event, τ is 
a thread, α is an action and ς is a signal. The ‘ → ’ 
symbol denotes precedence sequential operation and 
‘||’ represents the concurrent or parallel operation. The 
LIMOS architecture can be expressed as follows: 
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LIMOS can be configured to run independently in 
event driven, multi-thread and event driven with 
multithreading (hybrid) modes. Considering two 
extreme-case scenarios: if ℜ  has only one event, i.e. 
n=1, LIMOS works in the multi-threading mode as 
SDREAM; while if each event has just one thread, i.e. 
∀mi=1, i∈{1,…, j}, LIMOS works in the event-
driven mode as TinyOS.  

2.2. Event-/thread-control Block 
 

In order to simplify the management and scheduling, 
LIMOS allocates two data table structures, named 
event control block (ECB) and thread control block 
(TCB), to store events and threads respectively. Each 
data structure contains at least an identification flag 
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(string or number), a priority, a status, and a 
corresponding tuple ID. Each structure has a specific 
attribute to depict its affiliation relation: the sub-TCBs 
linked list pointer of ECB and the super-Event ID of 
TCB. ECBs and TCBs also contain two time 
parameters to describe the absolute deadline and the 
allowable time-slice. For events, when an event is 
defined and activated, the initial value of time-slice, 
which is decreasing with the time passing, is equal to 
the maximum allowable response time.. These two 
parameters are used to evaluate the event priority and 
then to determine event scheduling. For threads, the 
two parameters are used to avoid the thread deadlock. 
TCBs contain two more attributes, i.e. start stack 
pointer (SSP) and current stack pointer (CSP), to 
indicate a thread’s stack resource space. The stack 
space is used to store program counter (PC), status 
register(s), general registers and various variables.  

The essential information of ECB and TCB are 
shown in Figure 1. To simplify its implementation, 
LIMOS stores the ECBs and TCBs in two fixed-size 
arrays rather than linked lists since the numbers of real-
time tasks (events, threads) in WSN applications are 
generally known and limited. 

  
Figure 1. Event-control block (left) and Thread-

control block (Right) 

2.3. Event/thread states 
 

LIMOS manages ECBs / TCBs by keeping track of 
the states of each event / thread. System scheduling can 
be achieved by manipulating the states status. In 
LIMOS, events and threads have similar states except 
that threads have one more state: ‘suspended’. 

 Sleep: An event or thread was created and 
initialized, but it is not yet ready and eligible to 
execute. Since LIMOS is configured statically 
and the numbers of events/threads are fixed, an 
event changes state from ‘sleep’ to ‘terminated’, 
where sub-threads are reinitialized 
correspondingly.  

 Ready: Events or threads belong to this state are 
those that are released and eligible for execution, 
but are not executing. An event or thread enters 

the ‘ready’ state from ‘sleep’ state when its 
trigger signal occurs. A thread can also enter 
‘ready’ from ‘suspend’ if its waiting resource is 
available.  

 Execute: When an event/thread is being executed. 
Due to its non-preemptive feature, an event runs 
to completion with no change of its state. 

 Suspend: Only threads can enter this state. If a 
thread which is executing waits for an unavailable 
resource, or it was preempted, then the thread is 
suspended and ‘suspend’ state is assigned.  

 Terminate: A thread has self-terminated or is 
aborted. If all of its sub-threads are terminated, 
the event enters the ‘terminated’ state.  

 
Figure 2. An event and thread state diagram  

A state diagram corresponding to event and thread 
states is depicted in Figure 2. The state transition 
operations exclusively related to threads are traced in 
red lines and explained by gray texts. The unique 
broken line represents the state transition from 
‘terminate’ to ‘sleep’. It should be noted that, 
according to the features of the static pre-configuration 
and the determinate numbers of events/threads, 
LIMOS can combine the predefined ‘terminate’ and 
‘sleep’ states into the ‘idle’ state. In this way, an event 
or thread enters the ‘idle’ state after it has finished 
execution, but the event resource is not released and 
the event will be activated by next signal. 
 
3. System Scheduling 
 

Scheduling is a fundamental operation of an 
operating system. In order to meet a program’s 
temporal requirements of a real-time system, it is of the 
utmost importance that the scheduling algorithm 
should produce a predictable schedule, that is, at all 
times it should be known that which task is going to be 
executed. With event/thread system architecture, 
LIMOS offers a two-level dynamic-priority scheduling 
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scheme: ‘non-preemptive-priority’ for events at high 
level and ‘preemptive-priority’ for threads at low level. 
 
3.1. Event-/thread-control Block 
 
3.1.1. Event scheduling. Event scheduling adopts the 
priority-based non-preemptive scheduling and I/O 
devices are interrupt-driven. An event is elected to run 
according to its priority and an active event runs to 
completion without any pre-emption. At any instant 
when finish an event, the event scheduling is activated 
to elect the next event to be executed. This scheme is a 
dynamic-priority scheduling, like earliest-deadline-first 
(EDF) algorithm [13]: the event with earliest deadline 
has the highest priority.  

Note that events are interrupt-able. When an 
interrupt occurs, its ISR stores the corresponding 
message (msg) or signal and then sends it to the 
corresponding tuple buffer by calling the OUT 
primitive. The further processing is reacted only after 
the active event has run to completion. Meanwhile, the 
OUT primitive updates the attribute values of the event, 
including the status, the time-slice, and also revaluates 
the priorities of all ready events according to the 
scheduling scheme.  

For a periodic event, the relative deadline, Di, is 
supposed to equal its period pi; while for a sporadic 
event, the system designates a maximum allowable 
response time, Di, when the event occurs. A sporadic 
event generally can be regarded as the first instance of 
a periodic event with the period of Di. Therefore, di,k, 
the absolute deadline of the kth instance of the event εi 
is as follows: 

iiikiki pkprd *,, +=+= φ           (2). 

Hence, each time a signal is sent to the 
corresponding tuple space, the status of the event 
changes from ‘idle’ to ‘ready’, the absolute deadline is 
di,k and the time-slice is pi. The time-slice value 
decreasing with the time passing is used to evaluate the 
event priority: the smaller the time-slice value is, the 
higher the event priority is.  

3.1.2. Thread scheduling. Thread scheduling adopts a 
priority-based pre-emptive scheduling scheme. Threads 
are elected to run in the order of priority and the 
elected thread can pre-empt any other lower priority 
threads at any execution point outside of system 
critical section. When the threads of the active event 
are running, the threads of other events are not eligible 
to compete to obtain CPU resource. Thus it allows 
events to run until completion. 

The thread scheme is a static priority scheduling 
and the thread priority is predefined at pre-run-time 
and is fixed according to the relationships of threads. 
The priorities of threads must be assigned carefully to 

avoid deadlock situation. In the case of deadlock, two 
or more threads cannot proceed due to circular wait. 
For example, supposing that a high priority thread (τh) 
is held on its corresponding tuple, while only a lower 
priority thread (τl) is allowed to send data (message or 
signal) to wake up τh. If at the same time, τl is held on 
its tuple which only τh will send data to wake up. In 
this condition, the two threads enter a dead-circular 
situation. Hence, in order to produce a predictable 
scheduling and to allow a determinative execution time, 
the priorities of threads are assigned as below:  

1. Considering a thread which is held-to-wait a signal 
of an event εi, is the successor thread τi0 of εi. Then, 
τi0, has the highest priority; 

2. Supposing each thread will be held on one and only 
one thread tuple. 

3. Therefore, the thread τi,j that is waiting on the tuple 
message (msg) from its previous thread τi,j-1, has the 
lower priority than that of τi,j-1, and so on. For 
example, the thread that is waiting an msg from the 
successor thread has the second high priority.  

Threads are interruptable and preemptive. A thread 
interacts with other threads via tuple by calling the 
IN/OUT primitive-pair. When a thread sends a message 
or signal to a tuple, the OUT primitive is called to 
change the state of the tuple-relative thread from ‘idle’ 
or ‘suspend’ to ‘ready’. Moreover, the time-slice value 
of each item of TCB suspend list is recalculated in 
view of the current timeslot and the deadline value.  

3.1.3.  Event-to-thread jump. The following theorem 
gives the condition under which a feasible schedule 
exists under the EDF scheme . 

 
If a LIMOS instance consists of periodic events and 

meets the formula(3), its event/thread scheduling 
scheme can be predictable. If the execution time of 
events is deterministic and transient, LIMOS can be 
considered as a soft real time system. But for hard real-
time events, general being sporadic events, which need 
to be reacted within a strict time-constrained deadline, 
the above-defined scheduling scheme does not always 
work well if the formula (4) cannot be satisfied. 

Let εs and εp be the sporadic event and the active 
periodic event, Ds and es be the relative deadline and 
the execution time of εs, and ep be the expected time 
from the interrupted instant to the completed instant of 

Theorem [EDF Bound][13]:  A set of n periodic events, 
each of whose relative deadline equals its period, can 
be feasibly scheduled by EDF if and only if 

∑
=

≤
n

i
ii pe

1
1)/(  (3) 
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εp, where 0< ep ≤ei. Then the feasibly of the sporadic 
event εs meets its deadline is that  

sps eeD +<  (4) 
Note that since the execution time of ISR routine 

related to the sporadic event εs is very short and 
deterministic, it is thus ignored. If the formula (4) is 
not met, therefore, the event εs miss its deadline and 
the system then enters an unexpected exceptional 
status. To ensure in this worst-case scenario the 
sporadic event can be handled with short response time 
to meet its deadline, a special event-to-thread jump 
mechanism is proposed: the sporadic event εs is treated 
as the highest priority thread τs of current periodic 
event εp, so that τs can preempt any other active thread 
of εp according to the thread scheduling scheme. The 
event-to-thread jump mechanism breaks down the 
obstacle between threads and events, allowing the 
threads of an urgent event to preempt the CPU resource. 

Let Ρ(ε) and Ρ(τ) be the priorities of events and 
threads, then when an event-to-thread jump occurs, the 
priorities of the threads of the events (εs and εp) is: 

10/)()()( τεε ΡΡΡ +=       (5) 

Note that LIMOS quantifies the priority of events 
and threads between 0 and 10. Since the sporadic event 
has higher priority than the active event, that is, 
Ρεs>Ρεp, then the threads of εs have higher priority than 
those of εp so that they can preempt the CPU resources. 
 
3.2. Scheduling program 
 

The LIMOS two-level scheduling program is 
implemented by using C language and it has two main 
parts: the scheduler function, which implements 
event/thread dispatch, will be called regularly at a 
fixed-rate by Timer ISR or when a thread is terminated; 
the IN/OUT system primitive-pair ,which realizes the 
priority computation (event only) and ECB/TCB list 
sorting according to priority and event-to-thread 
operation (optional), will be executed when calling 
IN/OUT primitives. Two global variables are defined, 
cur_event and cur_thread, to indicate current active 
event and thread. 

The pseudo-code programs show that this 
scheduling scheme is smart and predictable, and has 
deterministic execution time independent of the event 
and thread numbers. Note that the top item of ECB 
ready lists or TCB lists is the one with the highest 
priority, which has been elected and sorted by the rules 
of the scheduling scheme in the IN/OUT system 
primitive-pair. 

 

 
 
4.System communicaion & synchronization 
 

The interactions between system components, i.e. 
event and thread, are essential to provide system 
communication and synchronization services. 
According to the action/thread/event structure, LIMOS 
system provides three system interactions: event-ISR, 
inter-event and inter-thread. 

LIMOS employs LINDA concept, i.e. tuple space, 
IN/OUT primitive-pair, to facilitate the system 
interactions. LINDA is a parallel programming 
language [14]. The basic LINDA primitives of posting 
and reading tuple are: IN & OUT [15]. Because a 
message delivery in LINDA is based on its content 
matching, the inter-object is thus not space couple. 
Moreover, since the IPC (inter-process 
communication) in LINDA is asynchronous, the inter-
object is also not time couple. The ‘tuple’ model may 
be extended to support multi-CPU and multi-thread 
parallel programming model. Therefore LINDA is 
suitable for parallel distributed applications.  

The original LINDA concept is not adequate for 
distributed hard real-time parallel processing, because 
the IPC time is not deterministic, which increases 

void scheduler (void)
{  /* Determine the scheduling is for events or threads at this  

instant? */ 
If (TCB list of cur_event==null or cur_event==daemon)  
then {   /* Event scheduling */ 

cur_event = the top one at the ECB ready list; 
cur_thread = the top one at the TCB list of this event; 
Set cur_event / cur_thread to ‘execution’ state;  
Call cur_thread at cold mode. 

} else {  /* Thread scheduling*/ 
If (cur_thread  == the top one at TCB list of this event) 

Return; 
Set cur_thread to ‘suspended’ state;  
Save_Contect(cur_thread); 
cur_thread = the top one at the TCB list of this event); 
Set Cur_thread to ‘execution’ state; 
If (the first time calling for current-thread) 

 Call cur_thread at cold mode; 
else {  /*wake up from ‘suspend’ state*/ 

 Restore_context(cur_thread); 
 Call cur_thread at warm mode; 

}   
} 

} 

void event-to-thread-jump (void) 
{ 

/* Enable the possibility of event preemptive, being 
suitable for hard real-time events*/ 

Insert TCBs of the hard real-time event at the top of  
the TCB list of cur_event; 
Update the thread’s priority basing upon the priority of  
its super event and its original fixed-priority; 

      Call Scheduler(); 
} 

7

Authorized licensed use limited to: SHANGDONG UNIVERSITY. Downloaded on October 27, 2008 at 06:52 from IEEE Xplore.  Restrictions apply.



dramatically when the number of processes or 
processors is huge (more than 100) [16]. To overcome 
these problems, LIMOS provides a simplified tuple 
space and a light system primitive-pair. 
 
4.1. Tuple space 
 

The tuple space consists of a set of tuples identified 
by a key. Each tuple contains a critical resource, that is, 
a special data structure called a circular queue or ring 
buffer. In the ring buffer, simultaneous input and 
output of the list are achieved by keeping head and tail 
indices. Data are loaded at the head and read from the 
tail. A tuple is encapsulated in a data structure: 
Tuple_Table. The tuple_ID is the identifier: key of 
tuple. A tuple has two states: ready and free. If the 
message number, i.e. tuple_msgnum, is more than 0, 
the tuple_state is set to ‘ready’, else is ‘free’. The 
tuple_size, tuple_staadr and tuple_endadr are the size, 
the start address and the end address of the ring buffer. 
The tuple_head and tuple_tail are the writing and 
reading pointers that have been initialized to the 
tuple_staadr when a tuple is allocated. 

 
Instead of matching the entire message content as 

classic LINDA concept, only one numeric identifier 
(KEY) is used to identify a tuple in LIMOS. The 
numeric identifier and the type of tuple are statically 
assigned to the local, shared or distributed buffer by 
the user. The tuple ring buffer is mapped into a byte 
array associated to a tuple table. The message content 
may be accessed immediately when a tuple is 
available. The runtime of tuple template matching is 
thus deterministic in spite of the numbers of events and 
threads.  

In LIMOS, all kinds of data exchanges, no matter 
interior interactions (between components, i.e. event 
and thread) or exterior interactions (generally with 
external peripherals, including sensors, actuator and a 
variety of interface devices etc), have been 
implemented via tuple space. Noted that a thread is a 
component that is a basic system operation unit and an 

event is the specific kind of component that regards as 
the container of its sub-threads (multiple 
components).There is thus no interaction between 
threads and events. 
 
4.2. IN/OUT operation 
 

The IN/OUT primitive-pair in LIMOS contains two 
main functions: data (msg, signal) exchange and 
transmission via tuple; update the status and priority of 
event/thread, illuminated in the below pseudo codes.  

 
LIMOS is a tuple-based hybrid multi-level system. 

Each event, no matter activated by a signal from 
timers, actuators and sensors or from other events, 
must be associated with a unique tuple. When a 
message received from peripherals or events is arrived, 
the OUT operation is performed to store data into a 
relative tuple and then to update the status information 
of the corresponding tuple. Consequently, the OUT 
primitive updates the status information of the tuple-
relative event / thread and the time slice value of 
system items in the ECB ready list / TCB suspended 
list, and then resorts the ECB ready list at sort 
descending according to their time slice values or sets 
a thread into the ‘terminate’ state if the thread runs out 
of allowable block time.  

The reading tuple operation is allowed for events 
only if data is available on tuple. When an event or 
thread reads data from its relative tuple on which data 
is available, the IN operation is: to copy data from the 
tuple to an application, and then update the tuple 
status. Whereas, if data is not available on tuple, the IN 
operation is: to set the thread into ‘suspend’ state, and 
initialize the two time attributes of TCB item, then 
store the context into the thread stack and activate a 
new scheduling. 

void IN (int  Key,  char * msgPtr, int msgLen) 
{ 

/*if no data is available, suspend this thread*/ 
If (tuple_state !== ‘ready’)  {/*a new thread scheduling */ 
DIS_ALL_IRQ; 
/*up to date the time attributes of threads */ 
thread_status = ‘suspended’;    
thread_deadline = current timeslot + relative 
deadline (lifetime); 
thread_timeslice = relative deadline; 
Save_Context(); 
Scheduler();     

}  
/* Step1: data (msg, signal) exchange and transmission */ 
Copy data from tuple(key) to received buffer (msgPtr); 
/* Step2: up to date the status of tuple */ 
DIS_ALL_IRQ; 
if (--tuple_msgnum ==0) 

tuple_state =’free’; 
ENA_ALL_IRQ; 

} 

typedef struct Tuple_Table  
{ 

char tuple_ID; /* tuple identifier: key.*/ 

char tuple_state;  /* tuple state: free 0; ready 1. 
*/ 

char tuple_size; /* ring buffer size*/ 
unsigned 
char* 

tuple_head; /* writing msg buffer pointer 
*/ 

unsigned 
char* 

tuple_tail; /* reading msg buffer pointer*/

unsigned 
long 

tuple_staadr; /* ring buffer start position*/ 

unsigned 
long 

tuple_endadr; /* ring buffer end position*/ 

char tuple_msgnum /* tuple message number */
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Implementing a system updating within the system 
primitives may ensure a predictable and determinate 
system scheduling with no concerning about the 
number of components, which is the typical feature of 
hard real-time system. Moreover, when the calling 
frequency of IN/OUT is lower than that of the system 
scheduling, as in most of WSN applications which has 
low sampling frequency, the above-mentioned 
mechanism reduces the system workload efficiently. 

 

 
 

5.  Evaluation 
 

LIMOS has been ported on ARM7TDMI-S 
architecture[18] based processors, including NXP 
LPC21xx[19] and Atmel At91SAM7S series[20] This 
section estimates the memory and power consumption 
of LIMOS, calculates the execution time of system 
primitives, evaluates the system latencies and finally 
compares the performances of LIMOS with those of 
other RTOSs amd TinyOS. 
 
5.1. Evaluation Platform 
 

The hardware evaluation platform is an 
ARM7TDMI-S based 32-bit RISC architecture 
microcontroller: Atmel At917Sam256. This 
microcontroller has 256Kbytes internal Flash and 
64Kbytes internal SRAM, running at the main 
operating frequency of 48MHz. It provides two UART 
controllers, one 8-channel 10-bit ADC, one SSC 
controller and one SPI interface. The software 
development platform adopts the IAR system 
EWARM embedded integrated development 
environment and J-Link JTAG simulator [21]. The 
LIMOS instance is configured with three events (two 
work events and one daemon event). The first work 
event contains three threads and the second one has 
two threads. 
 
5.2. Memory and Power Consumption 
 

Since LIMOS is dedicated to strict resource-
constrained embedded applications, especially for 
WSN nodes, it consumes tiny resources, i.e. memory, 
energy and CPU. Table 1 presents the memory and 
power consumption of LIMOS on the ARM7. 

LIMOS can operate at different operation modes 
(event-driven, multi-threading), having very little 
memory requirement (<5Kbytes) comparing with most 
of RTOSs. Both ARM7 microcontroller and Zigbee RF 
transceiver support multi-level low-power operation 
modes. When no component running or no data 
transmitting, LIMOS can configure associated registers 
to set MCU or RF transceiver to operate on different 
low-power mode to reduce power consumption. 

Table 1. Memory and power consumption of 
LIMOS 

Memory 
consumption 

(bytes) 

Power consumption 
(Lithium-Ion battery,3.6V, 1800mAH)

CODE DATA  Normal  Low-Power 
At91SAM7S 

(48MHz) 
<50mA < 60µA 

Send mode 
<25mA 

Sleep mode 
<0.9µA 

Chipcon 
CC2340 
(Zigbee) Receive mode 

<27mA 
Standby mode

<0.6µA 

3572 1272 

Lifetime > 16 hours > 3 years 

For most of WSN applications, such as 
environmental data collection, security monitoring, and 
mobile sensor node tracking, the sampling frequency is 
low and LIMOS is idle at most of the time. Therefore, 
LIMOS can operate in low-power mode most of the 
time to reduce the power consumption. In the case of 
the evaluation platform, the default power source is a 
Lithium-Ion battery having a capacity of 1800mAH at 
3.6V. A WSN system (a real-time continuous data 
sampling and transmitting application) can run 16 

void OUT(int  Key,  char * msgPtr, int msgLen) 
{ 

/* Step1: data (msg, signal) exchange and transmission */ 
Copy data from sending buffer (msgPtr) to tuple(key); 
/* Step2: update the status & priority of system 

essences*/ 
DIS_ALL_IRQ; 
this.tuple_msgnum++; 
this.tuple_state =’used’; 
if (Key represent an event tuple) { 

this.event_status = ‘ready’; 
this.event_deadline = current timeslot + relative 
deadline (period); 
this.event_timeslice = relative deadline;  
ENA_ALL_IRQ; 
/*Update timeslice of items of the ECB ready list;*/ 
while (ECB ready list is not NULL) 

that.event_timeslice = that.event_deadline –  
current timeslot; 
Add this event into the ECB ready list at the sort  
descending of timeslice;   

} else if (Key represent a thread tuple) { 
this.thread_status = ‘ready’; 
Add this thread into the TCB ready list at the sort of  
fixed priority;  
ENA_ALL_IRQ; 
/*Update timeslice of items of TCB suspended list;*/ 
while (TCB suspended list is not NULL) { 

that.thread_timeslice = that.thread_deadline –  
current timeslot; 
/* timeout: force termination of thread*/ 
if (that.thread_timeslice <= 0) 

 that.thread_status = ‘terminated’; 
} 

} 
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hours in normal mode, whereas in complete low-power 
mode, the system run-time can be extended to more 
than 3 years. 
 
5.3. Performance of System primitives 
 

The numbers of instruction cycles of the system 
primitives, i.e. IN/OUT primitives, on At91SAM7S256 
are evaluated. The runtime of each primitive is 
evaluated by taking into account the running clock 
frequencies of 48MHz. Table 2 presents the results of 
performance evaluation of system primitives. In the 
static configurable LIMOS system, the execution time 
of system primitives is determined and bounded 
between the minimal and maximal time. Moreover, the 
size of a tuple message is limited and predefined, the 
execution time of IN and OUT primitives are thus 
predictable. The deterministic and predictable 
behaviors of system primitives are the key features of a 
real-time operating system. 

Table 2. Performance evaluation of system 
primitives 

Cost (cycles) Time (µs)(48MHz) Operations 
Max Min Max Min 

In 149+46n 95 3.101+ 
0.957n 1.977 

Operation: Read data from its associated tuple. 
Max: data is available, reading n bytes from its associated tuple 

and copying it into the user buffer. 
Min:  no data is available, calling the thread_scheduler function. 
n:       is the byte length of receiving data (n>0). 

Out 104+32n+ 
Cycle_1 

104+32n+ 
Cycle_2 

2.164+ 
0.666n+ 
Cycle_1 

2.164+ 
0.666n+ 
Cycle_2 

Operation: Send data into its associated tuple, insert an item into
the event/thread queue and resort the queue. 

Max: Send data into an event tuple, and insert the related event 
into the event ready queue. 

Min:  Send data into a thread tuple, and insert the related thread 
into the thread ready queue. 

n:       is the byte length of sending data (n>0). 
Cycle_1: cycles of  event enqueue.  
Cycle_2:  cycle of thread enqueue. 
 
5.4. System latencies 
  

For a real-time operating system, the system 
scheduling scheme and the interrupt handling 
mechanism are critical, which must be short and 
deterministic. Several system latencies are used to rate 
the performances of LIMOS system scheduling and 
interrupt handling. Since LIMOS adopts 
action/event/thread structure, therefore there are two 
latencies that can be used to evaluate system 
scheduling scheme. 

 event-to-event switch latency: the time necessary 
for the system to switch from one event to 

another. This scheduling operation is performed 
in the event_manager routine. The native thread 
of next event is called in the ‘cold’ startup mode, 
and thus there is no context-switch operation for 
event-to-event switch. 

 thread-to-thread switch latency: the time 
necessary for the system to switch from current 
thread to another thread of the same event. This 
scheduling operation is performed in the 
thread_scheduler routine. There is one time 
context-switch between the system and current 
thread. If the next thread runs at the first time, it 
is called in the ‘cold’ startup mode; whereas, the 
thread is called in the ‘warm’ startup mode and 
there is one more time context switch operation 
between system and next thread. 

Table 3. Performance evaluation of system latencies 

Cost    (cycles) Time (µs)(48Mhz) 
Latencies 

Min Avg Max Min Avg Max 

90 1.873 
event-to-event 
switch latency 

Call event_manager routine to run next ready event.  
The native thread of next event is called in the ‘cold’ 
start-up mode 

891(992) 1.8521 (2.062) 

thread-to-
thread switch 

latency 

Call thread_scheduler routine to run next ready 
thread of current event  
1: Next running thread of this event is called in the 
‘cold’ start-up mode  
2: Next running thread of this event is called in the 
‘warm’ start-up mode 

Interrupt 
Response 
Latency 

29 107 247 0.604 2.227 5.140 

32 68 176 0.666 1.415 3.662 

Interrupt 
Dispatch 
Latency 

There are three possibilities for the interrupt dispatch 
operations after the ISR has exited:  
1. Return back to the interrupted function. 
2. Call event_manager to start event scheduling 
3. Call thread_scheduler to start thread scheduling 

On the other hand, the interrupt latencies are 
expected to be finite and will never exceed a 
predefined maximum time. Two latencies are used to 
rate the performance of the interrupt handling 
mechanism: 

 Interrupt Response Latency: the time elapsed 
between the execution of the last instruction of 
the interrupted component and the first instruction 
in the interrupt service routine. This is an 
indication of the rapidity of the system reaction to 
an external interrupts. 

 Interrupt Dispatch Latency: the time interval to 
go from the last instruction in the interrupt service 
routine to the next thread scheduled to run. This 
indicates the time needed to switch from interrupt 
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mode to user mode 
 
The evaluation results of system switch latencies 

and interrupt latencies are presented in Table 3. The 
results exposes LIMOS has deterministic and short 
system switch / interrupt latencies that can satisfy the 
requirements of most of real-time applications. It’s 
noted that the latencies of system switch are fixed with 
no concern of the numbers of event/thread.  
 
5.5. Performance comparison 
  

This paper compares LIMOS with other real-time 
operating systems and TinyOS.  

5.5.1. Comparison with other RTOSs. The 
performance data of some popular RTOSs are obtained 
from the evaluation reports of Dedicated System 
Experts. The evaluation reports for the following 
commercial operating systems are currently available: 

− RTX 4.2 from VenturCom, Inc [11]. 
− Hyperkernel 4.3 from Imagination Systems, 

Inc[12]. 
− VxWorks/x86 5.3.1 from WindRiver Systems [4]. 
− pSOSystem/x86 2.2.6 from Integrated Systems [6]. 
− QNX 4.25 from QNX Software Ltd[5]. 
− QNX/Neutrino1.0 from QNX Software Ltd[9]. 

The evaluation platform adopted by Dedicated 
Systems Experts is a 200MHz Intel Pentium MMX 
based PC with a Chaintech motherboard. Time 
intervals are measured by using external equipment: 
the PCI bus analyzer; and system peripherals are 
simulated by means of another external device: PCI 
bus exerciser. The RTOSs are evaluated with ten 
different priority-level tasks. The evaluation data of 
SDREAM is obtained at [2]:  SDREAM is evaluated 
with five periodic tasks, five priority tasks with 
different priority levels, running on TI TMS320C5410 
DSP. 

In order to compare the evaluation results with the 
LIMOS running on At91SAM7S256, we consider that 
the P200MMX has at least 300MIPS (millions 
instructions per second) and the At91SAM7S256 has 
nearly 42MIPS[18]. Hence, the intrinsic execution time 
of P200MMX is 7 times faster than the 
At91SAM7S256. The comparisons of two interrupt 
latencies between other RTOSs and LIMOS are shown 
in Figure 3. The two histograms show that LIMOS has 
the smallest average interrupt response latency and the 
smallest average interrupts dispatch latency. 

 
 

 
Figure 3. Comparisons of system latencies between 

LIMOS and other RTOSs 

5.5.2. Comparison with other TinyOS. TinyOS is a 
naturally multitask event-driven system dedicated to 
wireless sensor applications. It has been tested on 
ATmega128 (4MHz clock frequency). The evaluation 
results are currently available 0. Since LIMOS is tested 
on different platform with TinyOS, this paper only 
compares three system operations: scheduling a task, 
context switch and hardware interrupt. The cost of task 
scheduling indicates the overhead of the thread 
scheduler function. The operation of context switching 
happens between the two threads of the same event 
(‘warm mode’). 

Table 4. Performance evaluation between LIMOS 
and TinyOS 

LIMOS(At91S
AM7S256) 

TinyOS(ATmega
128) Operations 

Cost 
(cycle) 

Time 
(µs) 

Cost 
(cycle) 

Time 
(µs) 

Scheduling task 43 0.895 46 11.5 
Context Switch 56 1.165 51 12.75 
Hardware 
Interrupt(hw) 

5 0.104 9 2.25 

Hardware 
Interrupt(sw)   

61 1.269 71 17.75 

OS CODE size (bytes) Data size (bytes) 

LIMOS 3572 1272 
TinyOS 432 48 

A hardware interrupt includes the hardware (hw) 
part and the software (sw) part. Table 4 presents the 
overheads of three system operations and the memory 
consumption between LIMOS and TinyOS kernel. 
Noted that in order to support real-time multitask 
operations, LIMOS has more system overheads than 
TinyOS but has similar system cycles for the basic 
system operations. 
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6. Conclusion and Perspective 
 
LIMOS is a smart, resource-aware, low-energy and 

distributed real-time micro-kernel. It adopts the 
action/event/thread component-based multi-level 
system architecture. As the result of multi-level 
structure, LIMOS adopts a two-level scheduling 
policy: ‘non pre-emption priority’ high level 
scheduling for events and ‘preemptive priority’ low 
level scheduling for threads. The scheduling scheme is 
predictable and deterministic with respect to the real-
time applications. A unique system interface and a 
system primitive-pair, i.e. tuple and IN & OUT, are 
proposed for system synchronization and 
communication. LIMOS integrates the advantages of 
TinyOS and SDREAM. It can be running at different 
modes: event-driven, multi-tasking. The combination 
of two kernels greatly extends the application range of 
LIMOS from simple single-task to multi-task 
applications. 

At present, LIMOS has been ported on the 
LiveNode hardware platform [22] developed by the 
University of Blaise Pascal, France. The LivenNode is 
a specific WSN node that is applied to a variety of 
WSN applications, including environmental data 
collection, object tracking and health care, etc.  

 
Figure 4. Livenode hardware platform 

For the future work, we plan to further improve the 
performance of LIMOS system at the following 
aspects: 

− Fault-tolerant system: A fault-tolerant system has 
the ability to continue normal operation despite the 
presence of hardware or software faults (except for 
physical destruction). In order to improve the 
robustness of LIMOS, the ability of fault-tolerant 
should be taken into consideration carefully. 

− Low-energy system: Improving the system energy 
efficiency is the first essential factor of the WSN 
system designing. More optimization mechanisms 
should be adopted to reduce energy consumption.  

− Distributed system: A distributed system has the 
ability of parallel operations on a set of processors 
or multi-cores of one chip (NoC). The introduction 

of the tuple concept makes LIMOS suitable for 
parallel communication and task synchronization 
on a distributed system. 
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