

1

Abstract— The RoboCup Soccer Server is an excellent

framework where students can learn and understand more about

artificial intelligence (A.I.) application problems. However,

getting to work with the server is not a straightforward task, they

are required to know specific details about the server, which is

time consuming and complex. This paper describes the

development of a high level language based on rules for the

Soccer Server. This language provides a full set of conditions and

commands to create rules that will determine the behavior of a

player, in an easy and quick manner. Thus, students can focus on

problems such as player’s behaviors, strategies, coordination, etc.

Index Terms— A.I. Education, Multi-Agent Systems, Rule-

Based Systems, Soccer Simulation.

I. INTRODUCTION

OBOCUP is a research and educational initiative. Its

objective is to foster the A.I. and intelligent robotics

research by providing a standard problem [4]. There has been

a continuous effort to increase the motivation, participation

and interest of students in science and technology.

The RoboCup soccer server provides an excellent platform

for students to learn and apply A.I. techniques. It does not

require the use of real robots, so students or universities who

do not have the resources to participate in other leagues are not

exempt for participating actively in the RoboCup domain.

A. RoboCup Soccer Server

The soccer server is a powerful tool that simulates games of

soccer in the best possible way. The simulation is executed in

a client/server style via UDP/IP sockets. A soccer team will

normally consist on 11 players (10 players and 1 goalie), and a

coach. Each player and the coach are clients that would

connect to the server. Also, a monitor is needed to visualize

the simulation, which is another client too. Once all players are

connected to the server, the server will send sensory

information to every player. This information will help the

player to make a decision on what action to perform next. This

action (command) is then communicated to the server, which

will simulate it on behalf of the player.

Manuscript received August 28, 2007. This work was conducted at the

Computer Science Department, University of Pittsburgh.

J. Nunez-Varela was a M.S. student at the Computer Science Department,

University of Pittsburgh, Pittsburgh, PA 15260 USA. He is now with the

School of Engineering, Universidad Autonoma de San Luis Potosi, San Luis

Potosi, 62490 Mexico (e-mail: jnunez@uaslp.mx).

The soccer server sends three types of sensory information

at different intervals in time. Furthermore, the players should

send their commands at certain intervals also, so the server

could simulate them correctly. The consequence is that users

should be familiar with real-time systems, and also, they

should code routines to handle this synchronization problem.

The sensory information contains only local information for

every player. So in order to make good decisions, a player

must have a global perspective of what is going on inside the

soccer field. For instance, it is desirable to know our position

and the positions of our teammates, opponents, the ball, etc.

Therefore, users should build a software system capable of

creating a global representation of the game.

Players must send commands to the server in order to do

something. These commands are primitive and must contain

local information also. Good plays are coded with the

combination of these commands. However, users must

calculate the parameters needed to perform each command.

For example, the kick command uses two parameters: power

and (local) angle; then we must first calculate these two

parameters in order to perform that kick.

We can see that the soccer server is a robust and excellent

simulator system [3]. Unfortunately it might be complex and

difficult to understand and utilize for some people. Especially

if the simulator is intended to be used as an educational

project. For example during an A.I. course where students do

not have enough time to familiarize with its functionality.

Also, students might not be familiar with sockets programming

and real-time systems at all. Therefore, the development and

implementation of a full soccer team requires a lot of effort

and time that could sometimes be impossible to spend. This

might lead to the total loss of interest not only from the

students but also from the professor.

B. Objectives of Our Project

Based on the idea of using the soccer server as an

educational project we have developed and implemented a

high level language based on rules that could be easy to use

and understand. Trying to eliminate the aforementioned

problems and allowing the students to create a full team of

players in a straightforward manner with little knowledge

about the server and its complexities, thus saving time and

effort.

The language provides a complete set of directives, in the

form of conditions and commands. These are used to create

rules to specify the behavior of a player, and ultimately the

A High Level Language Based on Rules for the

RoboCup Soccer Simulator

Jose I. Nunez-Varela

R

2

behavior of a full team. This allows the students to quickly

explore the creation of strategies, team coordination and

planning, not worrying about such things as how to send a

message to the server.

Since the main objective was to create a language with a

large and functional set of conditions and commands, there

was no point in creating from scratch a working soccer system.

Therefore, we chose the UvA Trilearn robotic soccer

simulation team [1] as our platform to build on top of their

system our language. To this end, we modified certain parts of

their code and added some other functionalities that were not

available in the original code.

It has already been planned to use the language as part of an

undergraduate A.I. course. The intention is to use the soccer

simulator so that students can create their own soccer team and

then organize a tournament at the end of the term.

II. A HIGH LEVEL LANGUAGE

While the functionality of the soccer server is somehow easy

to comprehend, the construction of just one player is complex

and time consuming. There is a large number of considerations

that must be taken into account in order to build a software

system that could work with the soccer server. Hence, the

availability of a high level language easy to understand and

use, would result in an excellent way of allowing a large

number of users the possibility of creating their own teams in a

straightforward manner. Requiring a small amount of

knowledge about how the soccer server works.

A. UvA Trilearn Team

Since the establishment of the RoboCup competition several

universities and research teams have spent a lot of time and

effort in developing good software players. And in an effort to

expand the interest for this problem they have been releasing

their source code so that other people could use it and work on

top of it. Avoiding the overhead of developing a new software

system.

Since our interest was on the high level language, we

decided to work on top of an existing system. We found that

the UvA Trilearn simulation code [5] was our best choice. One

of their main objectives was to have a good base code that

could be used in the following years after its creation in 2001.

Thus, a lot of effort was put into solving certain low-level

aspects of the server, such as the synchronization problem and

the implementation to represent the player’s world model. It

follows an object-oriented approach, so it is easy to modify

and update with functionalities that were not planned

originally. Their code is also very well structured and

documented. And it was done considering the most recent

version of the soccer server (version 10).

It can be argued that students could just work on some free

source code such as the UvA Trilearn system. However, it still

requires time to understand and get familiar with the server

and their code. Also, it requires good programming knowledge

in order to make changes and create their own players.

B. Rules

Rules are a natural way to describe situations where

conditions must be satisfied in order to perform some action. A

rule is of the form:

If (conditions) then perform some action.

Rules can easily be used to code the behavior of a soccer

player. For example we could define the rule:

If I can score a goal then kick the ball to the goal.

Rules allow to create reactive players, in the sense that

given the current circumstances the player will decide which

action to perform. Rules are easy to read and understand,

especially if they can be written in natural language such as

English. And thus, rules are also easy to create and modify.

For these reasons we decided to develop a language based on

rules. The specific syntax for our language is the following:

if (condition(s))

then command(s);

end

We can combine conditions using logical operators: (&&)

for AND-operation, (||) for OR-operation and (!) for negation;

or relational operators: (<) is greater than, (>) is less than,

(<=) is greater-equal to, (>=) is less-equal to, (==) for is

equal, and (!=) for is different.

C. Player Modes

We have mentioned that the use of rules produces reactive

behaviors. But in certain circumstances that kind of behavior

might not be useful. Thus, a planned strategy could work

better. Therefore, we have incorporated the use of “player

modes”. Modes allow the user to group rules and to activate

them later in situations they may find appropriate. For

example, we could plan a certain strategy in the case of a

corner kick or free kick. We could also change the player’s

behavior if certain condition is satisfied. For example, if there

are no opponents a defense could change its mode to attacker

to try to score a goal even if it is not its primarily function.

Once it notices that it has been blocked by some opponent it

will return to its normal behavior. A mode is specified as

follows:

mode name_of_mode

 :

 rules

 :

endmode

When we change to some mode we could also specify the

frequency to which we would like to use that mode. This

means that a player may or may not change its mode, adding a

surprise factor to its behavior.

III. IMPLEMENTATION

Each condition and command that we defined for our

language has to be translated into C++ code and be added into

the UvA Trilearn system to create the executable file.

Therefore, modifications and additions to the UvA Trilearn

code were needed in order to allow a clean and organized

3

translation. Furthermore, modifications were also needed to

increase the functionalities of their code, to allow the

definition of more conditions and commands for our rules.

As mentioned before, the UvA Trilearn code follows an

object-oriented approach. One of our main additions was a

class containing all the methods needed in order to perform

every condition and command. We consider this class to be a

good addition to their code. Anyone familiar with their code

could create players easily using those methods.

Other classes were modified to add more functionality. For

instance, the class defining the formations of the players was

modified in order to have better formation stances among

players. A class defining areas and zones inside the soccer

field was added. This class is used to tell the players where to

go or to specify their position. We defined ten areas inside the

field and each area is divided into nine zones. Thus, a player

can easily be positioned in any part of the field.

A. Constants and Parameters

Before we start describing the conditions and commands

available in our language, we will briefly describe some of the

constants and parameters that should be used within our

language. These will let us specify situations, objects,

positions, directions, values, etc. We have classified these

constants and parameters as follows.

1) Play modes: These constants are used to refer to some

specific mode of play during the game. The referee specifies

these modes. For example: BEFORE_KICK_OFF tells us that

the game has not started yet. Other examples include:

FREE_KICK_US, OFFSIDE_THEM, PENALTY_US,

CORNER_KICK_THEM, etc.

2) Objects: These constants refer to players and the ball. For

example: TEAMMATE_1 specifies the reference to our first

player. Other examples include: BALL, OPPONENTS,

OPPONENT_6, ATTACKER, GOALKEPPER, etc.

3) Directions: For example: EAST specifies the east

direction. Directions are relative to coordinates of the field

from the player’s perspective. This means that they do not

change, even if teams swap sides in the halftime of the game.

Constants for distance are also specified, such as FAR and

NEAR.

4) Positions: These constants refer to specific areas and

zones inside the field. For example: OPP_PENALTY

determines the opponent’s penalty area. Other examples

include: OWN_CENTER, ANY_ZONE, BOTTOM_ZONE,

OPP_TOP, etc.

5) Actions: These constants are used for actions such as:

Passing, kicking, dribbling, tackling and marking. For

example: A player may try to kick the ball into the goal at the

TOPCORNER, CENTER, BOTTOMCORNER or RANDOM.

6) Stamina: We use these constants to check the player’s

tiredness during the game. The stamina level may be GOOD,

AVERAGE, BAD, VERY_BAD, TERRIBLE.

7) Parameters: We can specify Boolean values and numeric

values directly to evaluate some condition. Boolean values are

TRUE and FALSE. And numeric values can be natural or real

numbers.

B. Conditions

Conditions allow the user to verify situations or events

during the game. The number of rules that can be created is

proportional to the number of conditions available. Therefore,

our intention was to create a full set of conditions. Trying to

cover every possible situation in a soccer game. We have

defined around one hundred conditions. Obviously, they can

be combined with relational or logical connectors to form

more conditions. We have classified the conditions as follows.

1) Formations: This set of conditions are used to determine

the information about the team formation. For example:

isInFormation determines whether a certain player is on its

defined position, as the current formation specifies.

2) Areas/Zones: These conditions are designed to work with

the areas and zones inside the field. For example:

isClearAtArea determines whether or not there are teammates

or opponents inside a certain area and/or zone.

3) Stamina: These conditions are defined to let the player

know its current and future condition. For example:

isMyCondition determines whether the condition of the player

is the same as the given parameter.

4) Communication: This set of conditions are used for

coordination and planning. For example: isHeardMessage

determines whether the player heard a particular message.

5) Player: We use this set of conditions to know certain

information about the player’s perspective. For example:

amICloseTo determines whether our player is close to some

object. Another example: isHeadingToMe determines whether

the ball, a teammate or an opponent is moving towards the

player’s position.

6) Game: This set of conditions have to do with the status

and some situations in the game, and about the status of the

ball. For example: isBallKickable determines whether the

player is capable of kicking the ball. Another example:

isInOffside determines whether some teammate is currently in

an offside position.

7) Direction: These conditions require the specification of

the direction in which they are to be verified. For example:

numPlayersAroundMe returns the number of teammates or

opponents inside a circle with center at the current player’s

position and with some radius.

8) Pass: These conditions help the player to decide whether

or not is good to pass the ball. For example:

canIPassToClosest determines whether or not it is possible to

pass the ball to the closest teammate, since it is probable we do

not know its exact position.

9) Tackle: These conditions allow the player to decide

whether is good to perform a tackle or to verify if somebody is

going to tackle us. For example: getProbToLoseBall returns

the numeric probability of being tackled by some opponent.

10) Server: In order to make our language more robust, it

allows the user to have access to the values the soccer server

handles directly. Although all the high level conditions provide

enough information to make decisions, in certain situations it

4

might be desirable to get detailed information in order to make

better decisions. For example: serverSpeed returns the current

speed of the player (value between 0 and 1.2). Of course, the

use of this set of conditions requires knowledge about the

soccer server.

C. Commands

Commands are the actions we want the player to perform

when some conditions are satisfied. As with the conditions, we

have defined what we think is a large number of commands. A

player might perform almost sixty commands during the game.

We provide the following classification.

1) Formations/Areas: These commands are designed to

work with the player’s formation and its position. For

example: moveToArea makes the player to move to a certain

area and/or zone. Once the player reaches the area it will stop

moving.

2) Ball: These commands are related with the use of the ball

during the game. For example: kickToGoal makes the player to

kick the ball to some desired position and speed, to the

opponent’s goal. interceptBall makes the player to move

toward the ball as fast as possible in order to intercept the ball.

passToClosest allows the player to pass the ball to the closest

teammate.

3) Player: This set of commands control the player’s body.

For example: turnBodyTo makes the player to turn its body

toward some object.

4) Goalie: This set of commands are used exclusively by the

goalie. For example: catchBall allows the goalie to catch the

ball if it is within the “catchable” area.

5) Communication: These commands are used to

communicate with other teammates for coordination and

planning. For example: sayMessage makes the player to say

some message.

6) Game: This set of commands are used for defending,

searching and moving. For example: searchFor makes the

player to search for some object in the field. Another example:

markTo allows the player to mark some specific opponent.

7) Server: As with conditions, we decided to provide

commands that the server understands directly. We may want

in some situations to have direct control of what the player

should do. For example: serverDash makes the player to dash

in the direction of its body with the supplied power (0 -100).

Users should know what kind of parameters and ranges the

server accepts in order to use these commands.

IV. FUNCTIONALITY

Basically, the user should write the rules for the players into

a text file. Then that file is compiled and a C++ file is

generated, which will be linked together with the UvA Trilearn

code.

A. Compiling the Rules

Rules should be written into a predefined text file. In fact,

we have eight available files, each one with the name of a

different type of player, according to those found on the UvA

Trilearn team. We could expect for example that rules

specifying the behavior for the goalie should be written into

the goalie.rules file, and so on. However, it is important to

point out that these files are only intended to provide an

organized manner for describing the players. It does not mean

that the goalie.rules file must have the rules for the goalie.

After all, rules define the behavior of the player, not the name

of the file. Furthermore, it is not necessary for the user to use

all the available files. The user could choose to write rules for

all the players in just one file. This is possible if we use the

changing of modes explained earlier.

The compiler used to parse the rules was programmed in

C++ for Unix. Fig. 1 illustrates a schematic view of the

compilation process. The compiler analyzes the rules specified

in the files for each player, if everything was correct it will

generate a file named PlayerTeams.cpp which will contain the

C++ code which will be linked along with the UvA Trilearn

system.

B. Examples

It is important to know that the order of the rules determines

their priority. We can think of rules as being inside an infinite

loop. The program will check from the beginning of the loop

for the satisfaction of some rule. Once a rule is satisfied the

command(s) will be executed and the loop will start all over

again from the beginning. This kind of logic is similar to the

form humans play. If we are running to some position but

suddenly we can be able to kick the ball, we are expected to do

so, and not to keep running. Thus, we set priorities in our

actions. To demonstrate how to create rules and how easy is to

define players, let’s review some examples.

1) Kiddie Soccer: This is a common term used to refer to

the way small kids play soccer. At that age they do not have a

good sense of coordination and teamwork, and thus everybody

try to kick the ball and to follow the ball through all the field.

We can build such kind of player with the following rules:

if (isBallKickable)

then kickToGoal (POS_RANDOM, MAX_SPEED);

end

if (!isKnownPosition (BALL))

then searchFor (BALL);

end

if (isKnownPosition (OBJECT_BALL) &&

 (isMyCondition (GOOD) || isMyCondition (AVERAGE)))

then moveToObject (BALL);

Fig. 1. Schematic view of the compilation process.

5

end

This example is also good to show that the ordering of the

rules is important. If we write the first rule at the end, the

player will never kick the ball, it will only chase the ball.

Unless it gets tired and the ball is in a kickable distance.

2) Attacker: This example shows a basic behavior expected

for an attacker. The first rule makes the player to kick the ball

whenever it is possible inside the opponent penalty area. It will

kick the ball to the goal randomly. The second rule applies

when there are no opponents in the direction of the penalty

area. The third rule will try to approach to some area where the

ball can be kicked to the goal. The fourth rule makes the

player to try to get control of the ball if the player is closest to

the ball with respect to its teammates. The fifth rule makes the

player to go to its position if it is idle. And finally, the sixth

rule allows the player to know the position of the ball.

if (isBallKickable &&

 amIInArea (OPP_PENALTY,ANY_ZONE))

then kickToGoal (RANDOM, MAX);

end

if (isBallKickable &&

 isRectClearAtDir (OPPONENTS, EAST, FAR))

then kickToGoal (RANDOM, MAX);

end

if (isBallKickable)

then dribbleToDir (EAST, SLOW);

end

if (isKnownPosition (BALL) &&

 amIClosestTo (BALL, TEAMMATES))

then interceptBall;

end

if (!amIInArea (OPP_CENTERTOP, CENTER_ZONE))

then moveToArea (OPP_CENTERTOP, CENTER_ZONE);

end

if (!isKnownPosition (BALL))

then searchFor (BALL);

end

V. CONCLUSIONS AND FUTURE WORK

This paper described the development and implementation

of a high level language based on rules for the RoboCup

soccer server. Its main objective is to eliminate the inherent

complexities found on the soccer server. Thus, allowing the

users to create soccer players in a straightforward manner with

little knowledge of the soccer server. This is desirable for

certain situations. Here we talked about the possibility of using

the soccer server as an educational project. Students could

work on the server to learn about multi-agent systems,

coordination, planning, decision making, among other things.

We believe that RoboCup competitions are attractive for a

large number of students. However, if they find that using the

soccer server requires too much effort, they could lost interest

very quickly. Hence, by using a language that allows them to

create players easy and fast, it will help them to maintain their

interest. Furthermore, involving the students faster into the real

problem might motivate them to want to know more about the

server, learn how it really works and how a player can be

enhanced.

There are some upgrades we are planning to implement in

our language. First of all, increase the set of conditions and

commands to comprise more situations and to make the rules

more flexible. Also, the whole compilation process could be

done in more user-friendly manner. And the most important

thing is to release our code so that it can be downloaded and

used by anyone who might be interested. We have not done it

because there is no user manual that can be attached to the

code yet. So we have planned to complete the manual and set

up a website to upload the project.

Further work might also include implementing a high level

language for the 3D simulation server. And also, implementing

a high level language for coaches.

As we mentioned before, we are planning to use the soccer

server as part of an undergraduate A.I. course. We hope that

the students will take advantage of our implementation. And

also, we expect that the interest in A.I. and robotics research

can grow with this kind of projects. Since it is also our goal to

form a group of students with the desire to participate in some

RoboCup competition in the future.

ACKNOWLEDGMENT

The author wish to thank Dr. Milos Hauskrecht for his

helpful advice and assistance throughout this project.

REFERENCES

[1] R. de Boer, J. R. Kok, “The incremental development of a synthetic

multi-agent system: the UvA Trilearn 2001 robotic soccer simulation

team”, M.S. thesis, University of Amsterdam, The Netherlands, 2002.

[2] R. de Boer, J. R. Kok, F. Groen, “UvA Trilearn 2001 team description”,

RoboCup 2001: Robot Soccer World Cup V. Lecture Notes in

Computer Science, vol. 2377, Springer-Verlag, pp. 551–554, 2002.

[3] E. Foroughi, F. Heintz, S. Kapetanakis, K. Kostiadis, J. Kummeneje, I.

Noda, O. Obst, P. Riley, T. Steffens. (2001). RoboCup soccer server

user manual: for soccer server version 7.06 and later. Available:

http://sourceforge.net/projects/sserver

[4] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, “RoboCup: the

robot world cup initiative”. Proc. of The First International Conference

on Autonomous Agent, Marina del Rey, California, United States, 1997,

pp. 340-347.

[5] J. Kok, R. de Boer. (2003). The Official UvA Trilearn Source Code.

University of Amsterdam. Available:

http://www.science.uva.nl/~jellekok/robocup

[6] I. Noda, H. Matsubara, K. Hiraiki, I. Frank, “Soccer server: a tool for

research on multiagent systems”. Applied Artificial Intelligence, vol. 12

(2–3) pp. 233–250, 1998.

[7] The RoboCup Federation: the official RoboCup website. Available:

http://www.robocup.org/

http://sourceforge.net/projects/sserver

	I. INTRODUCTION
	A. RoboCup Soccer Server
	B. Objectives of Our Project

	II. A High Level Language
	A. UvA Trilearn Team
	B. Rules
	C. Player Modes

	III. Implementation
	A. Constants and Parameters
	B. Conditions
	C. Commands

	IV. Functionality
	A. Compiling the Rules
	B. Examples

	V. Conclusions and Future Work

