NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

VIRTUAL REALITY TRANSFER PROTOCOL (VRTP):
IMPLEMENTING A MONITOR APPLICATION FOR
THE REAL-TIME TRANSPORT PROTOCOL (RTP)

USING THE JAVA MEDIA FRAMEWORK (JMF)
by
Francisco Afonso
September 1999

Thesis Advisor: Don Brutzman
Second Reader: Don McGregor

Approved for publicrelease; distribution isunlimited.

REPORT DOCUMENTATION PAGE Form A pproved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instru@d@&earching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC
TP05AGENCY USE ONLY (Leaveblank) [2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1999 Master’'s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Virtual Reality Transfer Protocol (vrtp): Implementing a Monitor Application for
the Real-time Transport Protocol using the Java Media Framework (IMF)

6. AUTHOR
Francisco Afonso

8. PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
The Real-time Transport Protocol (RTP) supports the transmission of time-based media, such as

audio and video, over wide-area networks (WANS), by adding synchronization and quality-of-
service (QoS) feedback capabilities to the existing transport protocol. RTP has been widely used in
the Multicast Backbone (MBone), a virtual network that has become a shared worldwide medium for
Internet multicast communications.

Thiswork presents the design patterns, architecture and implementation of an RTP monitor
application using the Java Media Framework (JMF), a new Java Application Programming Interface
(API) for multimedia support. An RTP monitor is an application that receives packets from all
participants in amulticast session in order to estimate the quality of service for distribution monitoring,
fault diagnosis and both short and long-term statistics.

This new RTP monitor is available as a component of the Virtual Reality Transfer Protocol
(vrtp), a protocol being devel oped to support large-scale virtual environments (LSVES) over the
Internet. Initial test results are satisfactory for audio and video streams, as well as prototype RTP-
compliant Distributed Interactive Smulation (DIS) protocol streams. Future work includes
automated monitoring across WANSs and standardizing structured data formats to comply with
Management Information Base (MIB) requirements using Extensible Markup Language (XML)

target set definitions
14. SUBJECT TERMS

Multicasting, Real-time Transport Protocol, Virtual Reality, Java,
Multimedia, RTP, vrtp

15. NUMBER OF PAGES

232

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THISPAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18, 298-102

Approved for public release; distribution isunlimited.

VIRTUAL REALITY TRANSFER PROTOCOL (VRTP):
IMPLEMENTING A MONITOR APPLICATION FOR THE
REAL-TIME TRANSPORT PROTOCOL (RTP) USING THE
JAVA MEDIA FRAMEWORK (JMF)

Francisco Carlos Afonso
Lieutenant Commander, Brazilian Navy
B.S.E.E., University of Sao Paulo, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Author:

Francisco Carlos Afonso

Approved by:

Don Brutzman, Thesis Advisor

Don McGregor, Second Reader

Dan C. Boger, Chair
Department of Computer Science

ABSTRACT

The Real-time Transport Protocol (RTP) supports the transmission of time-based
media, such as audio and video, over wide-area networks (WANS), by adding
synchronization and quality-of- service (QoS) feedback capabilities to the existing
transport protocol. RTP has been widely used in the Multicast Backbone (MBone), a
virtual network that has become a shared worldwide medium for Internet multicast
communications.

This work presents the design patterns, architecture and implementation of an
RTP monitor application using the Java Media Framework (JMF), a new Java
Application Programming Interface (API) for multimedia support. An RTP monitor is an
application that receives packets from all participants in a multicast session in order to
estimate the quality of service for distribution monitoring, fault diagnosis and both short
and long-term statistics.

This new RTP monitor is available as a component of the Virtual Reality Transfer
Protocol (vrtp), a protocol being developed to support large-scale virtual environments
(LSVEsS) over the Internet. Initial test results are satisfactory for audio and video streams,
as well as prototype RTP-compliant Distributed Interactive Smulation (DIS) protocol
streams. Future work includes automated monitoring across WANSs and standardizing
structured data formats to comply with Management Information Base (MIB)

requirements using Extensible Markup Language (XML) target set definitions.

Vi

TABLE OF CONTENTS

[INTRODUGCTIONooiiiiiiiiiieeiiie et eee ettt e s stee e saae s sseeesssseessnseesanseeesnseasanseaens 1
A. BACKGROUND ..ottt e e snnee e 1

B. MOTIVATION ...ttt e e snae e e snreeeas 1

C. OBJIECTIVES.... .ottt sttt 2

D. THESIS ORGANIZATION ...ttt 3

[1. RELATED WORK ...ttt sttt e s e e ssse e e snseeesnneaesnneaens 5
A. INTRODUCTION ..ottt 5

B. RTP MONITORING IN MEDIA CONFERENCE APPLICATIONS...... 5

1 Video Conferencing TOOl (VIC) ...coouvviiiiiiiiie e 5

2. Robust AUdio TOOI (RAT) . 7

C. DEDICATED MONITORSottt saee e 8

1 U= o TP 8

2. Session Directory (SDR) MONItOr.........ceviiiiieiiiie e 8

3. REUDIMON ... 9

4 MUIIMON ... 11

5 MHEAITN ... 12

D. VRTP ettt e e et e e na e e e ente e e nnreeean 13

E. INTERNET 2 SURVEYOR.......ooiiiiieiiieeeeee e 15

F. DESIGN PATTERNS......coie et 15

[1l. REAL-TIME TRANSPORT PROTOCOL (RTP).....cciiiiiiiiieeiieenieeesiee e 17
A. INTRODUCTION ...ttt siree s e snnee e 17

B. OVERVIEW OF TRANSPORT RELATIONSHIPS.........cccoiiieeiee 17

C. e PRSP 18

1 RTP Units: Mixer, Trandator and Monitorccccccceeevieeennnen. 18

2. RTPHEAAEScoe oo 19

3. Profiles and RTP Header EXtension...........ccocceeeveeeicieeescieeenen, 20

D. RTP SESSION ADDRESSINGcooiiiiiieiiieiiiee e 21

Vii

E. RTP CONTROL PROTOCOL (RTCP)..ccciiiieiiiieeiieeeiiee e 22
1 Sender REPOI (SR) ..eooeeieiiiieeiiiee et 24

2. Receiver REPOIT (RR)cvviiiiiiiie e 27

3. Source Description (SDES)oeviiiieiiiieiiee e 29

4, (€70T0T0 o)X (= 4 =) PRSI 32

F. MULTIMEDIA IN RTP .ot 33
G. ANALY SISOF SR AND RR REPORTS.......cccoiiiiieeniee e 33
H. RTP PROFILES AND PAYLOAD FORMAT SPECIFICATIONS....... 34
1 Profile Specification DOCUMENLS..........coovuieerieeeniee e 34

2. Payload Format Specification Documents............ccceeeceeeeniveeennnen. 34

l. SUMMARY .ttt et e e saa e e nnne e e s nseeeenes 35
IV. JAVA MEDIA FRAMEWORK (IMF)....oiiiiiiiieiee e 37
A. INTRODUCTION ...ttt siree e sneee e 37
B OVERVIEW ...ttt sttt e e e 37
C. IME ARCHITECTUREooiiiieiee et 38
D RTP SESSION MANAGER AP ... 42
1 RTP SIr€AMS ..o 42

2. RTP PartiCIPaNtS.cuveeeiieeeiiie e esiee et 43

3. RTCP SoUrce DesCriptioN.........cccueeiiieeeniieesieeesiee s 43

4. RTCP REPOI ...t 44

5. EVENE LISENENS.....oiiiieie e 46

6. RTP Media Locator and RTP Session Address..........ccceeeceeeenen. 47

7. RTP Session MaNageSccooueeiiiereiieeesieeesiee e 49

8. Receiving and Presenting RTP Media Streams.........ccccoccveeenneee. 50

9. Transmitting RTP SIrEaMS.......ccveviiiieiiie e 51

10. RTP SELISHICS. ..ccveeeiieie e 53

D. SUMMARY .ttt sttt e e e nane e e s nseeeenes 54

V. DESIGN AND IMPLEMENTATION OF THE RTPMONITOR APPLICATION...55

A.

B.

INTRODUCTION ...ttt e s e snee e 55
RTPMONITOR FUNCTIONALITY AND INTERFACE..........ccccee...... 55
1 Graphical User Interface (GUI)ooeeeeiiieeiiiieiie e 55
2. AL SHCS DISPIAY ... 56
3. StatiStiCS RECOIINGveeiiiieeeiiee et 57
4, Media Presentationc.coooeeeeiieeeniee e 57
5. Command Line OPerationcceeeeeennieeenieeesiee s 57

viii

C. RTPMONITOR CLASSDESIGNccooiiiiiiiieeiieeseee e 58
1 RtpMonitorManager and RtpUL|occeeiiiiniiieeeeeee, 58

2 RecordTask and FileCatal0g..........cooiveeiiiieiiiie e 60

3. RIPPIaYErWINAOWceeiiiiiiiiieeie e 61

4, [T AV o] o (o USRS 63

5 RPMOoNitor APPLELooeieeeee e 63

6 RtpMonitorCommandLine............c.cooiueeiiieeenieeeniee e 63

D. SUMMARY .ottt ettt et et e s staesseeeseeaneeenneens 64
VI. RTPMANAGEMENT INFORMATION BASE (MIB) ...cccveeiieiiieiiieciie e, 65
A. INTRODUCTIONoiiiieiiiesiieeiee sttt ssae s e s aeenneeanes 65
B. NETWORK MANAGEMENT OVERVIEWcccccoiiiieiiieiieeiee s, 65
C. RTP MIB DESCRIPTION ...cccutiiiiiiiiesieesiee et 66
D. COMPATIBILITY WITH JMF STATISTICS......cooieieiieeeieeeeieee e 66
E. SUMMARY .ottt e et e ae e sstaesreeeneeanneenneens 67
VII. EXPERIMENTAL RESULTS.... oottt snee e 69
A. INTRODUCTIONooiiiiiiieciie et ae e sree e ssae e e ssneenseeanes 69
B. TEST RESULTS ...ttt 69
C. OBSERVED PROBLEMS.........oooiiiiiierie et 70
D. EXTENDING DIS-JAVA-VRML PDU HEADERcccccoveiieeiieeee, 70
E. SUMMARY .ottt e ettt e st et e s saaesreeeneesneeenneens 71
VIIl. CONCLUSIONS AND RECOMMENDATIONS........cooiiieiiieeniie e 73
A. RESEARCH CONCLUSIONS ...t 73
B. RECOMMENDATIONS FOR FUTURE WORKcccoiiiiiieeiieeeee. 73
1 Participants INfOrmationoooueeiieeinie e 73

2. Extensible Markup Language (XML) Recordingc.ccceeenneen. 74

3. Recorded Data Analysis and Presentation............ccccoeceeeiiieeennen. 74

4, Session Description Protocol (SDP) Reception.........ccoccveeeeieeeen. 74

5. RtpMonitor Activation from SDR.........cccccciiiiiniieeeeeeeee 74

6. JMF Extensibility for Other Media..........ccoooeeeviiiiniiienieeeine 75

7. Automated Network Monitoring of RTP Streams for VRTP........ 75

8. Design Patterns Course in Computer Science Curriculum........... 75

APPENDIX A. PREPARING UML DIAGRAMSUSING RATIONAL ROSE 77

APPENDIX B. RTPMONITOR USER MANUALooiiiiiiieieeee e 79
APPENDIX C. RTPMONITOR JAVADOCc.cooiiiiiiiiieiiiie e 91
APPENDIX D. RTPMONITOR SOURCE CODEccccociiiiiieiie e 137
APPENDIX E. COMPARISON RTP MIB VERSUS IMF STATISTICS.................. 191
APPENDIX F. RTPHEADER JAVADOC ...ttt 192
APPENDIX G. RTPHEADER SOURCE CODEcccciiiiiieiiicciee e 207
LIST OF REFERENCES.........co it 213
INITIAL DISTRIBUTION LIST ...t 217

ACKNOWLEDGEMENTS

| would like to thank my wife Helena for the continuous support and patience
regarding my academic work at NPS.
To Professor Brutzman, | offer my thanks for the friendship and enthusiasm |

have experienced during this time.

Xi

Xii

. INTRODUCTION

A. BACKGROUND

The Multicast Backbone (MBone) is avirtual network that has been in operation
since 1992. It was initially used to multicast audio and video from meetings of the
Internet Engineering Task Force, but nowadays it has become a shared worldwide
medium with many diverse channels for Internet multicast communications (Macedonia,
eta., 94).

The Real-time Transport Protocol (RTP) was developed to support time-based
media, such as audio and video, over multicast-capable networks (Schulzrinne, et al., 99).
RTP is the basic packet header format for MBone application streams. Using RTP, a
multicast session between several participants can be established, making possible the
correct synchronization of the exchanged media and the feedback of each participant
about the quality of reception. The RTP Control Protocol (RTCP) performs the feedback
and control mechanisms of RTP.

Java Media Framework (JMF) is a new Java Application Programming Interface
(API) developed by Sun and other companies to alow Java programmers use multimedia
features in applications and applets (Sun, 99). JMF supports RTP transmission and
reception of audio and video streams. This thesis examines network-monitoring issues

relevant to RTP through implementation and testing of a JIMF application.

B. MOTIVATION

Since its inception, RTP has been mostly used in audio and video conferences.

However, a diverse set of multicast applications can take benefit of RTP mechanisms for

synchronization, such as exchanging simulation data over a wide-area network (WAN).
RTP is particular important because it is used by backbone routers to support Quality of
Service (QoS) related performance optimization.

The Virtual Reality Transfer Protocol (vrtp) is developed to provide client, server,
multicast streaming and network-monitoring capabilities in support of internetworked 3D
graphics and large-scale virtual environments (LSVES) (Brutzman, 99). RTPisan
integral part of the vrtp architecture, used in both the streaming and monitoring
components.

JMF is apossible solution for the implementation of the RTP protocol in vrtp.

JMF is afree package and is an approved extension of the Java language application

programming interface (API).

C. OBJECTIVES

The goal of thisthesisis the implementation of a monitor application for the Real-
time Transport Protocol (RTP) using Java Media Framework (JMF). An RTP monitor is
an application that receives packets sent by al participantsin order to estimate the quality
of service for distribution monitoring, data recording, statistics analysis and fault
diagnosis (Schulzrinne, et d., 99). The emphasisisin both short-term and long-term
statistics by having recording capabilities for future analysis. As aresult of thiswork, an

example set of classes for monitoring RTP sessions can be provided to vrtp applications.

D. THESIS ORGANIZATION

The remaining chapters of this thesis are organized as follows. Chapter |1
describes work related to RTP monitoring. Chapter 111 presents the RTP protocol
functionality and packet formats. Chapter IV provides an overview of the IMF
architecture with emphasis on the RTP classes. Chapter V describes the design and
implementation of the RTP monitor application, and the interdependency between the
RTP Monitor and JMF classes. Chapter VI contains a study of compatibility between
JMF statistics and the proposed RTP Management Information Base (MIB) (Baugher, et
al., 99). Chapter VIl contains the experimental results achieved and problems observed.
Finally, Chapter VIl presents conclusions and provides recommendations for future

work.

THISPAGE LEFT INTENTIONALLY BLANK

II. RELATED WORK

A. INTRODUCTION

This chapter presents some related work in the area of RTP monitoring. RTP
monitoring is closely related to the RTCP protocol, but some applications discussed here
combine RTCP data with multicast route tracing, improving the monitoring quality.
Applications are considered in into two categories. media conference applications with
monitoring features, and dedicated monitors. This chapter also contains pertinent

information about the vrtp protocol and the Internet 2 Surveyor project.

B. RTP MONITORING IN MEDIA CONFERENCE APPLICATIONS

Most conference applications used in MBone can display some sort of RTP
monitoring data. As the emphasis of these applications is media presentation and stream
quality assessment, the statistical data is usually not enough for network administration or
diagnostic purposes. The RTP statistics features of some conference applications are

described here.

1. Video Conferencing Tool (VIC)

VIC is avideo conferencing application developed by the Network Research
Group at the Lawrence Berkeley National Laboratory (LBNL) in collaboration with the
University of California, Berkeley (UCB). The software was improved by University
College of London (UCL). The latest versionis 2.8ucl4. (UCL, 99)
The RTP statistics window of each VIC video stream consists of a grid with

three columns (Figure 2.1). The first column, EWA (Exponentially Weighted Average), is

the change since the last sampling period (i.e. change over the last second); the middle

column, Delta, is a smoothed version of the EWA; and the last column, Total, isthe

accumulated value since start-up. Clicking any of the buttons in the left column opens a

Plot Window displaying the statistics for that parameter graphically. (UCL, 99)

Figure 2.1 contains example RTP statistics for video VIC streams.

Capitol Connection - GMU TV [l[=] E3
| . Capitol Connection
Copyright (o] George Maszon Uni

14fis 148 kbes [14%0)

I_ mute IF color |ir|fu:u...J
WG w2 Bucld fenu Help Gluit

vic: Capitol Connection

Capital Connection

wic: plat window

Capitol Conmection

Mi=sing

ik

range 0to 20, 2idiv

Dismis=s

RTF Statistics
EhiniAy Dielt= Tat=l
Hilobit= 158.0 1766 206853
Frames 2.0 E0 1654
Fackets 240 58 33498
Mi=sing 2.4 1.0 5039
Mizordered 0.0 (aj] n]
Rurit= 0.0 0.0 (]
Oups= 0.0 0.0 u}
Ead-5-Len 0.0 0.0 (1]
Ead-5-Yer 0.0 0.0 (]
Ead-5-Opt 0.0 0.0 a
Ead-Sdes 0.0 0.0 (1]
Ead-Bye 0.0 0.0 (u]
Playout Oms

Dismis=s |

Figure 2.1 RTP Statisticsin VIC showing video stream,
available statistics (right side) and a 10-second trace of missing-
packet data (lower-left corner). Recorded July 1999.

2. Robust Audio Tool (RAT)

RAT isan audio conference application developed by UCL. The latest version is

4.0.3 (UCL, 99). Figure 2.2 shows an example of RTP statistics available in RAT. Each

set of statisticsis related to one receiving audio stream.

Participant Capitol Connection HEi=] E3

Category: Feception o |
Audio encoding: GEhl-EBk-Mono
Packet duration (ms): 20
Playout delay (ms): 52
Airrival jitter (ms): 22
Lass fram me (%) 1
Loss to me (%a): g
Packets received: 1653
Packets lost: 703
Packets misordered: 2072
Fackets duplicated: a
Uhits dropped (jitter): a

Dismiss

Figure 2.2 RTP Statisticsin RAT.

DEDICATED MONITORS

1. Mtrace

Mtrace allows the user trace a route from areceiver to a source working
backwards using a particular multicast address. It runs only on Unix systems. If
either the receiver or the source is not participating in a multicast on the specified
address then mtrace may not work. Vic and vat can automatically launch the
mtrace utility. Mtrace isincluded in the mrouted distribution and can be
downloaded at the following site:

http://www.cs.unc.edu/~wangx/M BONE/mbonetool archive.html#mtrace

2. Session Directory (SDR) Monitor

SDR Monitor, short for SDR Globa Session Monitoring Effort, isan
effort to track, manage, and present information about the availability of world-
wide multicast sessions using the SDR tool (Sarac, 99). SDR is a session directory
tool designed to allow the advertisement and joining of multicast conferences on
the MBone (UCL, 99).

The basic idea of the SDR Monitor is that the SDR application can
periodically send an an email to the project control containing all the session
announcements that are being received at the user site. All data collected is made
available in world-wide-web page, using a tabulated form that conveys

information about the session reachability.

3. Rtpmon

Rtpmon is a third-party RTP monitor written in C++ by the Plateau Multimedia
Research Group at Berkeley. Version 1.0 was the last release in 1996. It works only on
Unix systems. Both source code and binaries are available. It is possible to integrate
rtpmon with vic and/or vat by modifying the files .vic.tcl and/or .vat.tcl. Thiswill add a
monitor button to vic and vat that when pressed will launch rtpmon. (Agarwal, 97)

Rtpmon provides a number of useful capabilities for sorting, filtering and
displaying the statistics generated in an RTP session (David, 96). Figure 2.3 shows an
example of the rtpmon Graphical User Interface (GUI). It displays RTCP statisticsin a
table with senders listed along the top and listeners along the left. Each entry in the table
corresponds to the data obtained about a single sender-receiver pair. The program listens
to RTCP messages on a multicast address specified at startup time; there is no provision
for displaying data from multiple sessions. Information about each participant can be
obtained by clicking the participant's name in the table display; doing so brings up a
window with the session description items provided in the member's RTCP reports. The
information window also contains a button, which spawns mtrace for detailed single-
sender-receiver multicast routing data. Rtpmon can aso display abrief history of the
statistics from each sender-receiver pair. Clicking on a data el ement in the main table

brings up charts for each of the statistics values that rtpmon tracks.

gl ripmon x|
Two Steves | M. pichael Van Norman (UCLA)
Robert Elz {Melbourme) 32 % _\| Michael Van Norman {UCLA)
Don Brutzman 24 o myvn@164.67.162.253
Hlkan Lennestll (Erisoft AB, Lulel, Sweden}) 18 % sroid: 294851760
Chris Wiener (CR Labs) =l address: 164.67.182.253
jff—=s==scescesa o 23 % i it i
l_ [=] ripmon menu X email: mvn@library .ucla.edu
Ji - 18 % tool: wic-2.7a32
o Display parameter
jo 17 % Last control packet: 14:35:22
= # Loss Percentage
M) Threshold: |1 25 9 /
—_ wr Jitter Dismiss |
|: Sorting Menu | Help | Quit — i

Sort receivers by:
Maximum Loss
- Average Loss
~ IP address

- Sender: |TWo Steves

e

W Autosort interval: IE SECs

Session

Dest; 224.2.204.138 Port: 60856

o Key: |

Global Stats |
Dismiss |

:Dlipchart: Steve Deering {Xer X|

Receiver: Steve Deering (Xerox PARC)

100.0 Loz Percentage

0.0 HNREENEEEEN

20.0

Jitter

0.0

Dismiss |

Figure 2.3 Rtpmon graphical user interface (GUI).

10

4, MultiM ON

MultiMON is a client/server monitor that collects, organizes and displays al the
IP multicast traffic that is detected at the location of a server (Robinson, et al, 96). It was
developed by the Communications Research Center at Ottawa. Last release was version
2.0in July 1998. It can be downloaded at ftp://debra.dgbt.doc.ca/pub/mbone/multimon/.

MultiMON is a general-purpose multicast monitoring tool. It is intended to
monitor multicast traffic on local-area network (LAN) segments and assist a network
administrator in managing the traffic on an Intranet. The client main window displays the
total bandwidth occupied by the multicast traffic and gives a graphical breakdown of the

traffic by application type, as shown in Figure 2.4.

C] MultiMON Multicast Monitor

File Options Help

Multicast tupes on localhost

10
current: 416.1 khfs

28K
« B4K
128K
« 256 K
4 512K
s 2048 K

i

Audio Video
Text RTCP ~~ 10000 K
SAP Unknown

Figure 2.4 MultiMON client window (Robinson, et al, 96).

11

The software includes an RTCP monitoring and recording tool (MERClInari) that
allows an analysis of the RTCP data for QoS management. A session can be recorded for
later analysis. MultiMON is written in tk/tcl, but needs tcpdump, xplot, the distributed
processing additions and the object-oriented additions to tk/tcl. It runsin Sun

workstations, but it can be ported to other platforms including Windows 95/98 and NT.

5. MHealth

MHealth, the Multicast Health Monitor, is a graphical multicast monitoring tool
(Makofske, et ., 99). By using a combination of application-level protocol datafor
participant information and a multicast route-tracing tool for topology information,
MHealth is able to present a multicast tree's topology and information about the quality
of recelved data. Figure 2.5 contains a screenshot of MHealth.

MHealth also provides data-logging functionality for the purpose of isolating and
analyzing network faults. Logs can be analyzed to provide information such as receiver
lists over time, route histories and changes, as well as the location, duration, and
frequency of packet loss (Makofske, et al., 99). MHealth was written in Java but needs
mtrace for its operation. Version 1.0 can be downloaded at:

http://steamboat.cs.ucsb.edu/mhealth/downl oad-v1.0/.

12

Session Address: I 224.2.253.119/42418 Local Time: | Thu Aug 20 10:49:30 PODT 1338

Status: I Mtracing receiver lyceum.lbl.gov /131.2432.112.90..,

205147434

kachinajetcafenrg

—1/265 07236

engr-gw.ucsh.edu | 20470.2173 || 207125599 |
/209 |5,#255 |u,#23s
blackcomb | 1983213665 || 204.70,158.77 |
Mtrace: COMPLETE —1,/261 0/236
40,034
0/262 1637236
| 192.42.110.249 || 205.207.237.48 |

|u,#252 /73
mhbone.SunCOMm
Mtrace! COMPLETE

lyceum.lbl.gow

Mtracing.
] '
Menu | Help | Quit|
Figure 2.5 MHealth display showing participantsin a
multicast tree (Robinson, et a., 96).
D. VRTP

The Virtual Reality Transfer Protocol (vrtp) is aprotocol being developed to
provide client, server, multicast streaming and network-monitoring capabilities in support
of internetworked 3D graphics and large-scale virtual environments (LSVESs) (Brutzman,
99). vrtp is designed to support interlinked VRML worlds in the same manner as http

was designed to support interlinked HTML pages. The intent isto develop afree library

13

to provide any machine with client, server, peer-to-peer and network monitoring

capabilities to navigate and join large, interactive, fully internetworked 3D worlds.
RTPisanintegral part of the vrtp architecture, used in both the streaming and

monitoring components. Figure 2.6 shows the functional design of the vrtp streaming

behaviors component.

Ad

[Entity event dispatcher

Y

Dial-a-behavior protocol]

A

Y
Behavior stream buffer

[Area-of-interest manager]

(Universal client - Internet ()

Figure 2.6 vrtp streaming behaviors component (Brutzman,99).

14

E. INTERNET 2 SURVEYOR

The university community has joined together with government and industry
partners to accelerate the next stage of Internet development. The Internet2 project is
bringing focus, energy and resources to the development of a new family of advanced
applications to meet emerging academic reguirements in research, teaching and learning
(Advanced Networks, 97).

Surveyor is ameasurement infrastructure that is being currently deployed at
participating sites around the world. Based on standards work being done in the Internet
Engineering Task Force (IETF), Surveyor measures the performance of the Internet
paths among partcipating organizations. The project is also developing methodologies
and tools to analyze the performance data. The project aims to create the infrastructure
and tools that will improve the ability to understand and effectively engineer the Internet
infrastructure (Advanced Networks, 97). Surveyor monitoring workstations installed at
NPS are expected to provide a controlled network environment supporting RtpMonitor

work.

F. DESIGN PATTERNS

Design Patterns are reusable solutions to recurring problems that occur during
software development. In 1995, the book “ Design Patterns’ (Gamma, 95) has started
popularizing the idea of patterns. In recent years, new patterns have been proposed and
several books about patterns have been released. Frequently, books about Design Patterns
give examples of pattern implementations in some computer language. A good book for
studying patterns in Java was written by Mark Grand (Grand, 98). Sun Microsystems

Java Application Programming Interfaces (APIs) contain plenty of examples of pattern

15

use. Design patterns provided great benefit during the software analysis, design and

implementation work in this thesis.

16

I[Il. REAL-TIME TRANSPORT PROTOCOL (RTP)

A. INTRODUCTION

This chapter presents the Real-time Transport Protocol (RTP) functionality and
packet format. RTP isaheader format and control protocol designed to support
applications transmitting real-time data (such as audio, video, or simulation data), over
multicast or unicast network services. RTP was proposed by RFC1889 (Schulzrinne, et

al., 99) and has received wide acceptance.

B. OVERVIEW OF TRANSPORT RELATIONSHIPS

The transport layer provides a flow of data between hosts. 1n the TCP/IP protocol
suite there are two vastly different transport protocols. the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP). While TCP provides areliable flow of
data between two hosts, by using packet acknowledgements and retransmissions, UDP
just sends single packets with no guarantee that the packets will be received at the other
side.

RTP does not provide al the functionality required by atransport protocol. It is
intended to run over some transport protocol, such as UDP, primarily in multicast mode.
TCPis not suitable for rea-time audio/video transfers because packet loss impliesin
retransmissions that affect delay-sensitive data. Also TCP does not support multicasting.
Despite the implication of its name, RTP does not provide any means to ensure timely
delivery or to guarantee adesired quality of service. In fact, RTP was designed to satisfy
the needs of multi-participant multimedia conferences, where the loss of some packets or

some small delay will not affect the session significantly.

17

Basically, the RTP header provides a sequence number and a timestamp in each
packet, allowing the timing reconstruction of the receiving stream. Additionally, RTP
header specifies a payload type, alowing different data formats to originate from
different senders in a single session. Further parameters in the RTP packet header are
defined in a media-specific manner.

RTP is used together with the RTP Control Protocol (RTCP), which provides

mechanisms of synchronization, source identification and quality-of-service feedback.

C. RTP

This section summarizes RTP, which is formally described in RFC1889

(Schulzrinne, et al., 99).

1. RTP Units: Mixer, Trandator and Monitor

A Mixer is an intermediate system that receives streams of RTP data packets from
one or more sources, possibly changes the data format, combines the streams in some
manner and then forwards the combined stream. A mixer sends its data just asif it were a
Nnew source.

A Trandlator is an intermediate system that forwards packets without changing its
source description. Trandators can be used as devices to convert encodings, such as
replicators from multicast to unicast, and such as application filtersin firewalls.

A Monitor is an application that receives RTCP packets sent by all participants to

estimate the quality of service for distribution monitoring, fault diagnosis and long-term

18

statistics. The monitor is likely to be built into the applications participating in a session,
but it may also be a separate application that does not send or receive RTP data packets
such as third-party monitors.

RTP is designed to connect several end-systemsin single or multiple sessions. An
end-system sends and/or receives RTP data packets. In addition, RTP supports the notion
of Trandators and Mixers, which can be considered intermediate systems at the RTP
level. The need for these systems has been established by experiments with multicast and

video applications, especialy for dealing with low-bandwidth connections and firewalls.

2. RTP Header

A RTP header precedes each RTP packet. Figure 3.1 represents an RTP header.

0 4 8 9 16 31
V | PX CC|M PT | sequence nunber

ti mest anp

synchroni zation source(SSRC) identifier

contributing source (CSRC) identifiers

Figure 3.1 RTP Header Contents (Schulzrinne, et a., 99).

The following information is part of the header:

Version (V): 2 bits - Identifies the version of RTP. The current version
defined in RFC1889 istwo (2).

Padding (P): 1 bit - If the padding bit is set, the packet contains one or more
additional padding bytes. The last byte contains the number of padding bytes,
including itself. The RTP header has no packet length field.

19

Extension (X): 1 bit - If thisbit is set the header will be followed by a header
extension.

CSRC count (CC): 4 bits - Contains the number of contributing source
identifiersin the header.

Marker (M): 1 bit — Can be used by a profile.

Payload type (PT): 7 bits - Identifies the type of data (payload) carried by the
packet. The payload types for standard audio and video encodings are defined
in RFC1890 (Schulzrinne, 99).

Sequence number: 16 bits - It isincremented each time a packet is sent. The
initial value is randomly generated.

Timestamp: 32 bits - Thisfield reflects the sampling instant of the first byte of
data. The clock frequency depends of the data type. For example, if audio data
is being sampled at 8KHz, and each audio packet has 20 ms of samples (160
sample values), the timestamp should be increased by 160 each 20 ms. The
timestamp initial value should be random.

SSRC: 32 bits - Thisfield identifies the synchronization source. It is a number
chosen randomly. It must be unique among all participants in a session. There
is a mechanism to solve conflicts when two sources choose the same number,
described in Session 8 of RFC1889. A participant need not use the same
SSRC identifier in all sessions of a multimedia session.

CSRC list: 0to 15 items, 32 bits each - The CSRC list identifies the
contributing sources for the payload contained in this packet. It is used only

by mixers, which combine several streams from different sourcesin asingle
stream.

3. Profilesand RTP Header Extension

The RTP protocol is designed to be malleable and to alow modifications and
additions as defined by the corresponding media profile specification. Typically each
application only operates under one profile. For example, RFC1890 (Schulzrinne, et al.,

99) defines a profile for audio and video conferences.

20

In the RTP fixed header, the marker bit (M) and the payload type (PT) fields carry
profile-specific information. If the marker bit is set, a header extension will be added to
the RTP fixed header to provide the additional data functionality required for the profile.

The header extension has the following format seen in Figure 3.2.

0 16 31
defined by the profile Length (# of 32-bit words)

header extension data

Figure 3.2 RTP Header Extension (Schulzrinne, et al., 99).

The length field defines the number of 32-bit words of the header extension,
excluding the first one. Therefore, zero is a possible value. Only a single variable-length

header extension can be appended to the RTP header.

D. RTP SESSION ADDRESSING

A session is an association among participants. It is defined by two transport
parameter pairs (two network addresses plus corresponding port numbers). One transport
address is used for transmitting RTP packets and the other is used for RTCP packets. The
destination transport address pair may be the same for all participants when using
multicast, or may be different for each when using unicast. For multicast UDP, the
multicast address for RTP and RTCP in a session must be the same, the RTP port must be
even, and the RTCP port must be the next higher (odd) port number. Multiple RTP
sessions are distinguished by different port number pairs and/or different multicast

addresses.

21

Some applications like audio and videoconferences require the use of two
sessions: one for audio and the other for video. Distinct media types should not be carried
in asingle session, because of the different timing and bandwidth requirements.

Figure 3.3 shows three different multicast conferences configurations. Part a) isa
single media conference, represented by a single session. Part b) and c) represent two

possible configurations for a conference with two types of media, e.g. audio and video.

E. RTP CONTROL PROTOCOL (RTCP)

RTCP provides back-channel monitoring and synchronization for use with RTP
streams. RTCP provides a periodic transmission of control packets to al participantsin
the session. RTCP performs the following functions:

Feedback on the quality of the data distribution. Receivers must periodically
send RTCP packets containing a set of information related to the quality of
each sender transmission, such as the number of lost packets, fraction of lost
packets, delay times and jitter (variations in delay).

Provides information about the participants in the session. Each participant
must periodically send their canonical name (CNAME), e-mail address,
telephone number and so on. The canonical name must be unique among the
participants of a multimedia session (a group of sessions). The CNAME is
sent together with the SSRC identifier, allowing the detection of any collision
in choosing the SSRC identifier in a session.

Media synchronization. RTCP conveys information about the absolute time

(wallclock) for each participant. If the senders are synchronized, it will be
possible to synchronize the different mediain a session.

22

a)

port 1 - RTP

port 2 -RTCP

multicast
address

b)

port 1 — RTP audio

port 2— RTCP audio

port 3— RTP video

port 4 — RTCP video

multicast
address

port 1 — RTP audio

port 2— RTCP audio

port 3— RTPvideo

port 4 — RTCP videg

multicast
address
audio

multicast
address
video

port 1 -RTP

port 2 -RTCP

port 1 — RTP audio
port 2— RTCP audio
port 3— RTP video

port 4 — RTCP video

port 1 — RTP audio

port 2— RTCP audio

port 3— RTP video

port 4 — RTCP videg

Figure 3.3 RTP Addressing Configuration Examples.

23

As al participants must send RTCP packets, the rate must be controlled to avoid
excessive RTCP traffic as the number of participants scales up. This, each participant
must control his RTCP rate to guarantee that RTCP packets correspond to less than 5% of
the RTP session. Also, it is recommended that at least ¥4 of the RTCP bandwidth would
be dedicated to senders. When the proportion of sendersis greater than % of the
participants, the sender gets its proportion from the full RTCP bandwidth. It is further
recommended that the interval between RTCP transmissions by each participant should
always be greater than 5 seconds.

RFC1889 defines five types of RTCP packets:

SR: Sender Report, for transmission and reception of statistics from
participants that are active senders.

RR: Receiver Report, for reception statistics from participants that are not
active senders.

SDES: Source Description, for each participant transfer information about
himself.

BYE: to notify the end of participation.
APP: application specific functions.
Multiple RTCP packets need to be concatenated without any separator to form a
compound RTCP packet. Each participant must send RTCP compound packets with at

least one SR or RR and one SDES with his CNAME.

1. Sender Report (SR)

A Sender Report isissued if the participant has sent any RTP data packets since
the last report, otherwise a Receiver Report (RR) isissued. A sender report, besides

having statistical information about itself, may contain reception statistics of a maximum

24

of 31 other senders. If a sender has more than 31 receiver statistics to send then, it must
add a RR to the compound packet. The format of the Sender Report is shown in Figure
3.4.

The Sender Report packet consists of three sections. a header section, a sender
information section, and a receiver information section. A fourth profile-specific
extension section can be defined. The fields have the following meaning:

Version (V): 2 bits - Identifies the version of RTP. The version defined in
RFC1889 istwo (2).

0 3 8 16 31
V P |RC PT = 200 (SR | engt h

SSRC of sender

NTP ti mestanp, nost significant word

NTP ti mestanp, |east significant word

RTP ti mestanp

sender’ s packet count

sender’ s byte count

SSRR 1 (SSRC of the first source)

fraction cunul ati ve nunber of packets |oss
| oss

ext ended hi ghest sequence nunber received

interarrival jitter

last SR (LSR

del ay since |last SR (DLSR)

SSRR 2 (SSRC of the first source)

profil e-specific extensions

Figure 3.4 RTCP Sender Report (SR) Format (Schulzrinne, et al., 99).

25

Padding (P): 1 bit - If padding bit is set, the packet contains one or more
additional padding bytes. The last byte contains the number of padding bytes,
including itself. The padding bytes are included in the length field. Only the
last packet of a compound packet can use padding.

Reception report count (RC): 5 bits - The number of reception report blocks
contained in this packet.

Packet type (PT): 8 bits- It isset to 200 to identify a SR packet.

Length: 16 bits- The length of the SR packet in 32-bit words minus one,
including the header and any padding.

SSRC: 32 bits - The synchronization source identifier for this originator of
this SR packet.

NTP timestamp: 64 bits - Indicates the wallclock time when this report is
sent. The wallclock represents the absolute day and time using the timestamp
format of the Network Time Protocol (NTP), described in RFC1305. The full
resolution NTP timestamp is a 64 bit unsigned number with 32 bits for the
integer part and 32 bits for the fractional part. It represents the number of
seconds relative to Oh UTC on 1 January 1900.

RTP timestamp: 32 bits- Corresponds to the same time as the NTP timestamp
above, but in the same units and with the same random offset as the RTP
timestamp in data packets. This correspondence may be used for intra-media
and inter-media synchronization for sources whose NTP timestamps are
synchronized.

Sender’ s packet count: 32 bits - The total number of packets transmitted by
the sender since starting transmission until the time the SR packet was
generated. The count should be reset if the sender changes its SSRC identifier.

Sender’ s byte count: 32 bits - The total number of payload octets (i.e. not
including header or padding) transmitted in the RTP data by the sender since
starting the transmission until this SR packet was generated. The count should
be reset if the sender changes its SSRC identifier.

SSRC _n: 32 bits - The SSRC identifier of the source to which the information
in this block pertains.

Fraction lost: 8 bits - The fraction of RTP data packets from source SSRC _n

lost since the previous SR or RR packet. It is represented as a fixed-point
number with the binary point at the left edge of the field.

26

Cumulative number of packets lost: 24 bits - The total number of RTP data
packets from source SSRC_n that have being lost since the beginning of the
reception.

Extended highest sequence number received: 32 bits - The low 16 bits contain
the highest sequence number received in an RTP data packet from source
SSRC_n. The most significant 16 bits extend that sequence number with the
corresponding count of sequence number cycles.

Interarrival jitter: 32 bits - An estimate of the statistical variance of the RTP
data packet interarrival time, measured in timestamp units and expressed as an
unsigned integer.

Last SR timestamp (LSR): 32 bits - The middle 32 bits out of 64 bitsin the

NTP timestamp received as part of the most recent RTCP SR packet from the
source SSCR_n.

Delay since last SR (DLSR): 32 bits - The delay, expressed in units of
1/65536 seconds, between receiving the last SR packet from source SSRC_n
and sending this reception report block. Based on this information and the

L SR the sender can compute the round trip propagation delay to this receiver.
This can be done by the following formula: Round Trip = A- LSR- DLSR,

where A isthe time the receiver gets the RR message. Figure 3.5isatime
diagram that represents the DLSR.

2. Receiver Report (RR)

The format of the Receiver Report (RR) is the same of the Sender Report (SR)
except that the packet type field contains the value 201 and that there is no sender
information section.

An empty RR packet (RC=0) must be put at the head of a compound packet when
there is no data transmission or reception to report. Figure 3-6 shows the Receiver Report

packet format. Figure 3.6 represents a Receiver Report packet format.

27

time

LSR

sender

RR

receiver

DLSR

Figure 3.5 Delay Since Last SR (DLSR) Time Diagram.

28

0 3 8 16 31
V P |RC PT = 201 (RR | engt h

SSRC of sender

SSRR 1 (SSRC of the first source)

Fraction cunul ati ve nunmber of packets | oss
| oss

Ext ended hi ghest sequence nunber received

interarrival jitter

last SR (LSR

del ay since |last SR (DLSR)

SSRR 2 (SSRC of the first source)

profil e-specific extensions

Figure 3.6 Receiver Report (RR) Format (Schulzrinne, et a., 99).

3. Source Description (SDES)

The SDES packet consists of a header section and zero or more chunks of data.
Each chunk is composed of items describing the source identified in that chunk. The

SDES packet format is shown in Figure 3.7.

29

0 3 8 16 31

v sc PT = 202 (SDES) |length
P

SSRR 1 /CSRC_1

SDES itens

SSRR 2 / CSRC_2

SDES itens

Figure 3.7 Source Description (SDES) Packet Format (Schulzrinne, et a., 99).

The fields in the SDES packet are:
Version (V), Padding (P) and length - As described for SR and RR packets.
Packet type (PT): 8 bits - It is set to 202 to identify a SDES packet.

Source count (SC): 5 bits - The number of SSRC/CRCS chunks contained in
this packet.

The SDES item format is shown in Figure 3.8.

0 8 16 n

type | ength cont ent

Figure 3.8 SDES Item Format (Schulzrinne, et al., 99).

30

Thefieldsin each SDES item are:

Type: 8 bits - Contains a value to identify atype of description. The following
values are defined in RFC1889:

Canonical Name— 1

Name-— 2

Email =3

Phone— 4

Location—5

Tool — 6

Note— 7

Private Extensions— 8

Length: 8 bits - The length of the chunk content, in bytes.

Content - Consists of text encoded in UTF-8 encoding specified in RFC2279.
Thisfield is continuous and it is not limited to a 32-bit boundary. The field
must be terminated with a null octet, and followed by zero or more null octets
until the next 32-bit boundary. This kind of padding is separated from the one
specified with the Padding bit in the header.

Canonical name is the only mandatory SDES item. It must be sent on each RCTP
packet. As the canonical name will be used to identify a participant in single and multiple
RTP sessions, it must be unique. CNAME will be use to solve collisions with the SSRC
identifiers. A participant may have multiple SSCR identifiers, one for each related
session heisin, but he must have only one CNAME. As CNAME should provide

information in order to locate a source, its recommended formats are user@full hostname

or user@IPaddress.

31

4, Goodbye (BYE)

The BY E packet indicates that one or more participants are no longer active. The

packet has the format shown in Figure 3.9.

0 3 8 16 31

V P |SC PT = 203 (BYE) | engt h

SSRR 1 /CSRC_1

SSRR_2/ CSRC_2

| ength reason for | eaving

Figure 3.9 BY E Packet Format (Schulzrinne, et a., 99).

The header section has the same format of the previous RTCP packets. Following
the header thereislist of all participants that are leaving the section. The reason for
providing the capability for more than one source in the BY E packet is the Goodbye
packet sent by a mixer. If a mixer shuts down, it must send aBY E packet listing its SSRC
and the CSRC of all sourcesit handles.

The last section is optional. It gives areason by leaving a section, like “bad
reception” or “time for lunch.” The “length” and “reason for leaving” fields have the

same behavior as “length” and “context” fields of the SDES item.

32

F. MULTIMEDIA INRTP

Each media must be carried in a distinct RTP session. Interleaving packets with
different RTP media types but using the same session and SSRC is not permitted, in order
to avoid the following problems:

An SSRC has only one single timing and sequence number. Different payload

types would require distinct timing spaces. Also there would be no means to

identify which media suffered losses.

The RTCP sender and receiver reports can only describe one timing and sequence
number space per SSRC and do not carry a payload type field.

An RTP mixer would not be able to combine interleaved streams of incompatible
media onto one stream.

It would not be possible to use different network paths or resource alocations for
each media.

G. ANALYSIS OF SR AND RR REPORTS

It is expected that reception quality feedback data will be useful not only for the
senders but aso for receivers and third-part monitors. The senders can modify its
transmission based of the feedback; receivers can determine where the problems are
local, regional or global; network managers may use profile-independent monitors that
receive only the RTCP packets and not the corresponding RTP data streams to evaluate
the performance of their networks for multicast distribution. These mechanisms also
support protective and corrective mechanisms such as congestion avoidance and
congestion control.

The interarrival jitter field provides a short-term measure of network congestion.

The packet loss metric tracks persistent congestion, while the jitter measure tracks

33

transient congestion. The jitter measure may indicate congestion condition forming

before it leads to packet |oss.

H. RTP PROFILES AND PAYLOAD FORMAT SPECIFICATIONS

RTP isintended to be tailored through modifications and/or additions to the
headers as needed. Multiple profiles have been defined, each with different
characteristics. Therefore, for a given application, a complete specification will require

one or more companion documents, as follows.

1. Profile Specification Documents

A Profile Specification Document defines a set of payload type codes and their
mapping to payload types. A profile may aso define extensions or modifications to RTP
that are specific for that kind of applications. The only profile document issued as of this
writing is RFC 1890 - RTP Profile for Audio and Video Conferences with Minimal

Control.

2. Payload Format Specification Documents

A Payload Format Specification Document defines how a particular payload, such
an audio or video encoding, isto be carried in RTP. Thereis an Internet-Draft containing
guidelines to be followed by Payload Format Specification Documents (Handley, 99).
Several payload format specifications were proposed so far, most of them related to audio
and video encodings. Below isalist of payload format RFCs and Internet-Drafts:

RFC 2032 - RTP Payload Format for H.261 Video Streams.

RFC 2029 - RTP Payload Format of Sun's CellB Video Encoding.
RFC 2190 - RTP Payload Format for H.263 Video Streams.

RFC 2198 - RTP Payload for Redundant Audio Data.

RFC 2250 - RTP Payload Format for MPEGL/MPEG2 Video.
RFC 2343 - RTP Payload Format for Bundled MPEG.

RFC 2429 - RTP Payload Format for the 1998 Version of ITU-T Rec. H.263
Video.

RFC 2431 - RTP Payload Format for BT.656 Video Encoding.
RFC 2435 - RTP Payload Format for JPEG Compressed Video.
RTP Payload for Dial-Tone Multi-Frequency (DTMF) Digits.
RTP Payload Format for X Protocol Media Streams.

RTP Payload Format for MPEG-4 Streams.

RTP Payload Format for User Multiplexing.

RTP Payload Format for Reed-Solomon Codes.

RTP Payload Format for Interleaved Media

RTP Payload Format for Telephone Signal Events.

RTP Payload Format for DVD Format Video.

Other RTP rdated RFCs and Internet-Drafts include:

RFC 2354 - Options for Repair of Streaming Media.

RFC 2508 - Compressing IP/UDP/RTP Headers for Low-Speed Serial Links.
Real-Time Protocol Management Information Base.

Sampling the Group Membership in RTP.

Issues and Options for RTP Multiplexing.

Conformance Texts for RTP Scalability Algorithms.

RTP Testing Strategies.

SUMMARY

The Real-Time Transport Protocol (RTP) provides away to transmit time-based
media over wide-area networks (WAN), adding synchronization and feedback features
over the existing transport protocol. Although RTP was initially devised for application
in audio and video conferences, this protocol can be applied to convey other types of

streamed media across the network.

35

THISPAGE LEFT INTENTIONALLY BLANK

36

V. JAVA MEDIA FRAMEWORK (JMF)

A. INTRODUCTION

This chapter provides an overview of the Java Media Framework (JMF) basic
architecture and the specialized set of classes to manage RTP transmission, reception and
control. Several Unified Modeling Language (UML) (Booch, et a, 97).
diagrams are used to illustrate IMF classes interdependencies and behavior. The
software application Rational Rose 98i (Rational, 99) was used to import the class
components from the IMF API and to draw these diagrams. Appendix A contains a

description of how UML diagrams can be prepared using the software Rational Rose 98i.

B. OVERVIEW

Java Media Framework (JMF) is a Java Application Programming Interface (API)
developed by Sun Microsystems in partnership with other companies to allow Java
programs deal with time-based media, especially audio and video (Sun, 99). Time-based
media can be defined as any data that changes meaningfully with respect to time. It is
also referred to as streaming media, since it is delivered in a steady stream of packets that
must be received and processed within a particular timeframe to produce acceptable
results.

JMF 1.0, the 1998 version, supports playback of several mediatypes and RTP
stream reception. IMF 2.0 is being developed by Sun and IBM, and is currently in public
beta testing. IMF 2.0 provides media capture functionality, file saving and transmission
of RTP streams, together defining a plug-in API that isintended to enable developersto

customize and extend JMF functionality. JMF 2.0 early access version was released in

37

June 1999. The beta version was released in August 1999 and the final release is being
expected in Fall 99. This chapter was written based on IMF2.0 early access (Sun, 99),
and the software development was performed using IMF 1.0, 2.0 early access and 2.0

beta.
C. JMF ARCHITECTURE

The IMF API can be divided into two parts. A higher-level API, called the IMF
Presentation and Processing API, manages the capturing, processing and presentation of
time-based media. A low-level API, called the IMF Plug-in API, allows customization
and extension. Developers working on new capabilities are expected to add software
elements to the IMF Plug-in API, thereby extending IMF functionality and supporting
new media types.

JMF 2.0 uses the following basic classes/interfaces to model the high-level API:

Medialocator - describes the location of a media content. A Medialocator is
closely related to an URL, but identifies stream parameters.

DataSource — represents the media itself. A DataSource encapsulates the
media stream much like videotape does for avideo movie. Thisclassis
created based on a Media Locator.

Player — provides processing and control mechanisms over a DataSource just
like aVCR does for avideotape. A Player can also render the mediato the
appropriate output device (e.g. monitor or speakers).

Processor — is a specialized type of Player that provides control over what
processing is done on the input media stream. Processor supports a
programmeatic interface to control the processing of the media data, and also
provides access to the output data streams.

DataSink — represents an output device other than a monitor and speaker, the

most common destinations for media output. For example, a DataSink can be
used to save the mediato afile or to retransmit to a network.

38

Manager — handles the construction of Player, Processor, DataSource and
DataSink objects.

Figure 4.1 shows some possible connections between the above elements. Part a)
is the configuration used to play a media stream. In part b) we see a processor creating a
DataSource object from another DataSource. In part ¢) a DataSource is passed to a
DataSink that writes it to afile. Note that multiple DataSource objects can be connected
via Processors.

A Player or Processor generally provides two standard user interface components:
avisual component and a control-panel component. These components can be accessed
by calling the getVisual Component and getControl Panel Component methods.

A DataSource represents a media stream which can have multiple channel s of
data called tracks. For example, a Quicktime (Apple, 99) file might contain both audio
and video tracks. Demultiplexing is the process of separating out the individual tracks of
acomplex stream.

Inside a Player or Processor several operations can take place. For each operation
there is a dedicated piece of software called a“plug-in.” There are five types of plug-ins:

Demultiplexers - extract individual tracks of media from a multiplexed media
stream.

Multiplexers - join individual tracks into a single stream of data.

Codecs — perform media data encoding and decoding.

Effect filters— modify the track data in some way, often creating some special
effect. They can be classified as post-processing or pre-processing effect
filters, depending on when they are applied in relation to the codec plug-in.
Renderers — delivers the media data in a track to presentation device. For

video, the presentation device is typically the computer screen. For audio, the
presentation device is typically an audio card.

39

Monitor

DataSource Player

Speakers

DataSource Processor

DataSource DataSink » File

Y

Figure 4.1 IMF High-level API Connection Examples.

Figure 4.2 shows an example of a Processor internal operation. In this example
the media has one audio and one video track that are demultiplexed and processed
individually. At the end they are multiplexed again and become available as another
DataSource.

Manager provides access to a protocol-independent and media-independent
mechanism for constructing and connecting DataSources, Players, Processors and

DataSinks. A DataSource can be created by the method createDataSouce, with a

40

parameter specifying either aMedialocator or URL. A Player or Processor can be
created by the method createPlayer or createProcessor. The argument may be a
DataSource, a Medialocator or a URL. In order to create a Player or Processor from a
Medial ocator or URL, the Manager first tries to create a DataSource. At last, for creating
a DataSink a Manager has to receive a DataSource and a Medial ocator as argument. The
DataSource represents the input to the DataSink and the Medialocator describe the

destination of the mediato be handled by the DataSink.

Track 1
Renderer

Plug-in

| Pre-Processing Codec %ﬁ-ﬁom
Effect Plug-in Plug-in Effect Plug-in

Demultiplexer Mutiplexer
Plug-in O Plug-in

Track 2

Renderer
Plug-in

Processor

Figure 4.2 Processor Decomposition (Sun, 99).

The IMF class hierarchy can be extended by implementing new plug-in interfaces
to perform custom processing on atrack, or by implementing new DataSources, Players,

Processors or DataSinks. New plug-ins must be registered with the class PluginManager.

41

New Players, Processors, DataSources and DataSinks must be registered with the class

PackageManager.

D. RTP SESSION MANAGER API

The RTP Session Manager API isthe part of IMF API that deals with RTP/RTCP
transmission and reception. It is contained in two packages: j avax. nedi a. rt p and
j avax. nedi a. rt p. sessi on.

The RTPSessionManager interface is responsible for entering mandatory
conventions for creating, maintaining and closing an RTP session. It detects incoming
RTP streams, maintains alist of RTP participants and transmits outgoing streams. It a'so
keeps track of global statistics about the session.

Sincej avax. medi a. rt p. sessi on. RTPSessi onManager isan interface, an
implementation is provided by Sun in the file jmf.jar. The class name is RTPSessionMgr.
Thereis currently no source code available for this package. The following line creates

an RTPSessionManager:

RTPSessi onManager ngr = new com sun. nedi a. RTP. RTPSessi onMyr () ;

1. RTP Streams

RTPStream is an interface that represents a series of data packets originated from
asingle host. There are two sub-interfaces of RTPStream: RTPRecvStream and
RTPSendStream. The first represents a stream that is being received from a remote
participant. RTPSessionManager creates RTPRecvStream objects automatically when

new receiving streams are detected. The second represents a stream being sent by alocal

42

participant. RTPSessionManager creates new RTPSendStream objects when the method

createSendStream is called, using a DataSource object as argument.

2. RTP Participants

RTPParticipant is an interface that represents one participant in an RTP session. A
participant may be the source of zero or more streams. The method getStreams returns a
vector containing all RTPStream objects owned by the participant.

RTPParticipant has two sub-interfaces: RTPRemoteParticipant and
RTPLocal Participant. These are only marker interfaces, with no extra functionality. The
RTPSessionManager creates a new RTPRemoteParticipant whenever a new RTCP packet
arrives that contains a CNAME that has not been seen before. The association between
the RTPParticipant object and a RTPRecvStream is done using the SSRC identifier. Itis
possible to have an unassociated RTPRecvStream as the source can start sending RTP
packets before a CNAME RTCP packet is sent.

A participant that sends no datais called a Passive Participant. Otherwiseiit is
called an Active Participant. The method getAllParticipants of RTPSessionM anager
returns a vector with al RTPParticipants. Similar methods exist to return vectors with

remote, local, active and passive participants.

3. RTCP Sour ce Description

RTCPSourceDescription is a class that contains one description information
related to a participant, as received by the RTCP SDES packets. So, associated with a
RTPParticipant object there may be several RTCPSourceDescription objects, each

representing one description information, as CNAME, name, e-mail, location, tool, etc.

43

The method getSourceDescription of RTPParticipant returns a vector with the

RTCPSourceDescription objects related to the participant.

4. RTCP Report

Passive participants send RTCP RR packets as a feedback about the reception of
incoming streams. Active participants send RTCP SR packets that give information about
the stream being sent and also include feedback about the reception of incoming streams.
S0, a SR packet includes the RR packet information. A RTCP SR or RR packet is
originated from each SSRC identifier. A participant may have more than one SSRC
identifier if it is source of more than one stream in the same session. Each SSRC is
related to one stream. In spite of it, each participant has only one CNAME. RTCP SDES
packets allow the correlation between SSRC and CNAME.

In IMF there is an interface called RTCPReport to represent both RTCP SR and
RTCP RR packets. RTCPReport has two sub-interfaces: RTCPSenderReport and
RTCPReceiverReport. RTCPReceiverReport is a marker interface. All of its functionality
is contained in RTCPReport. RTCPSenderReport extends RTPCReport to provide
methods for retrieve sender report information. The method getReports of
RTCPParticipant returns a vector containing the last SR or RR reports sent by the
participant. This method will usually return only one report: SR if the participant is active
and it sends only one stream, and RR if the participant is passive. If the participant sends
more than one stream this method will return the same number of SR reports, because
each SR report is associated to one stream/SSRC.

RTCPReport has a method called getFeedback that returns a vector of

RTCPFeedback objects. Each RTCPFeedback object conveys information about the

reception of one incoming stream. In other words, it represents a feedback from a SSRC
about other SSRC that originates a stream. Feedback information includes fraction lost,
cumulative number of packets lost, etc.

Figure 4.3 contains a class diagram describing the relationship between
RTPParticipant and other classes/interfaces discussed so far. This class diagram uses the

standard notation specified for the Unified Modeling Language (UML) (Booch, et al, 97).

<<Interface>>
RTPParticipant owns <<Interface>>

+ getStreams() : Vector RTPStream

+ getSourceDescription() : Vector 1 0.x

+ getReports() : Vector

1 1
has
g enerates ‘)
g <<Interface>> <<Interface>>
* RTPRecvStream RTPSendStream
RT CPSourceDescription
1“*
<<Interface>>
RTCPReport
+ getFeedbacks() : Vector___ contains
A ™ 1 T .
0"'* <<Interface>>
// o RTCPFeedback
/’/
/s \\
<<Interface>> <<Interface>>
RTCPReceiverReport RTCPSenderReport

Figure 4.3 RTPParticipant Class Diagram.

45

5. Event Listeners

The RTP API has four types of event listeners. RTPSessionListener,
RTPSendStreamListener, RTPReceiveStreamListener and RTPRemoteListener. These
listeners provide a mechanism of event notification on the state of the RTP session and its
streams.

The RTPSessionListener interface detects events related to the RTP session as a
whole rather than a particular stream or participant. Two types of events can be posted:
NewparticipantEvent, generated when a RTCP packet from an unknown participant was
received, and Local CollisionEvent, generated when a SSRC collision was detected
between the local participant and a remote one.

The RTPSendStreamL.istener interface detects state transitions that occur on a
RTPSendStream. Four types of events can be posted:

NewSendStreamEvent — generated when a new transmitting stream has been
created.

ActiveSendStreamEvent — generated when the transfer of data from the
DataSource object has started arriving after a previous stop.

I nactiveSendStreamEvent — generated when the transfer of data from the
DataSource object has stopped.

SendPayloadChangeEvent — generated when the payload type of the
DataSource object has changed.

The RTPRecvStreamListener interface detects state transitions that occur on a
RTPRecvStream. Seven types of events can be posted:
NewRecvStreamEvent — generated when a new incoming stream has been

detected. This means that RTP data packets has been received from a SSRC
that had not previously been sending data.

46

ActiveRecvStreamEvent — generated when the stream data packets have
started arriving after a previous stop.

I nactiveSendStreamEvent — generated when the stream data packets have
stopped arriving.

PayloadChangeEvent — generated when a remote sender has changed the
payload type of a data stream.

TimeOutEvent — generated when a remote sender has not sent packets for a

while and can be considered timed-out. A time-out has the same effect asif

the participant has sent the RTCP BY E packet.

RecvStreamM appedEvent — generated when a recently created stream has

been associated with a participant after the first RTCP packet has been

received.

AppEvent — generated when an RTCP APP packet has been received.

The RTPRemoteListener interface detects events related to RTCP control

messages received from remote participants. This interface can be used for monitoring
applications that do not need to receive each stream, but only RTCP reports. Three types

of events can be posted:

RecvRecel verReportEvent — generated when anew RTCP RR report has been
received.

RecvSenderReportEvent — generated when a new RTCP SR report has been
received.

RemoteCollisionEvent — generate when two remote participants are using the

same SSRC simultaneously. Upon detecting the collision, both remote
participants should start sending data with new SSRCs.

6. RTP Media Locator and RTP Session Address

RTPMedialocator is a class that stores information about the session address and
other settings used in asession like TTL and SSRC. The format is similar to an URL.
The RTP Medialocator string is of the form:

- rtp://address.port[: SSRC]/content-type/[TTL]

a7

Optional parameters are enclosed in brackets. Addressis the IP address of the
session. Port is the port number used for RTP packets. It must be an even number
according RFC1889. SSRC is optional. Content-type can be either “audio” or “video.”
TTL isthe time-to-live, aso optional. The string above is used to create a
RTPMedialocator object. If the medialocator isinvalid a MaformedRTPMRLEXxception
will be thrown.

The class RTPMedial ocator has several methods to retrieve the above
information about a session. For example, the method getSessionAddress returns a string
with the IP address and the method getSessionPort returns an integer with the RTP port
number. However, to create a session and instantiate a RTPSessionManager under IMF,
another object hasto be created first: an RTPSessionAddress.

RTPSessionAddress is a class that encapsulates a pair of multicast addresses, each
constituting of an IP address and a port number. One multicast addressis used by RTP
and the other by RTCP. (In fact, this definition of a RTPSessionAddressis too broad,
because RFC1889 says that the RTCP multicast address must have the same IP address
and aimmediately higher port with relation the RTP address.) Also, RTP port must be
even by RFC1889.

In order to create a RTPSessionAddress object for representing a session address,
two InetAddress objects are required as arguments, one for RTP and other for RTCP. The
InetAddress classis part of the java.net package and encapsulates an IP address. The
static method getByName can create a InetAddress object given a string with the IP
address. Figure 4.4 contains a sequence diagram that describes the creation of a

RTPSessionAddress object.

48

user program RTPMedia InetAdress RTPSession

Locator Address

J create(String medialLocator)
I

I address = getSessionAddress()

“1
I port = getSessionPort()

1]
I destaddr = getByName(address)

U

sessaddr = create(destaddr, port, destaddr, port + 1)

Figure 4.4 RTPSessionAddress Creation UML Sequence Diagram.

7. RTP Session Manager

After creating an empty RTPSessionManager object as described initem C), a
RTPSessionManager must be initialized by calling the method initSession. The required
parameters are:

Thelocal IP address as a RTPSessionAddress object. This object can be
created by calling the RTPSessionAddress constructor with no arguments.

An array of RTPSourceDescription objects containing information about the
local participant.

The fraction of the bandwidth to be allocated to RTCP. RFC1889
recommends 5% of the RTP bandwidth.

49

The fraction of the RTCP bandwidth to be allocated to Sender Reports.
RFC1889 recommends 25% of the RTCP bandwidth.

At this moment the RTPSessionManager is still not active. The method
startSession must be called in order to cause RTCP reports be generated and callbacks to
the several listeners to be made. This method must be called prior to the creation of any
streams on a session. The required parameters are:

The session address as a RTPSessionAddress object.
The time-to-live (TTL)

A RTPEncryptioninfo object if any encryption is desired.

8. Receiving and Presenting RTP Media Streams

After RTPSessionManager has been started, any receiving stream will
generate a RTPRecvStream object and a NewRecvStreamEvent event. In the update
method of the interface RTPRecvStreamListener, the RTPRecvStream object can be
obtained by the method getRecvStream of NewRecvStreamEvent. By retrieving the
DataSource from the RTPRecvStream object and passing it to the Manager we can create
a Player for the received stream. The class PlayerWindow, supplied by Sun, receives a
Player, plays back the media, audio or video, and creates a control window. Figure 4.5
contains a collaboration diagram describing the sequence above. This collaboration
diagram uses standard notation for showing logical relationship between instantiated

objects, as specified by UML (Booch, et a, 97).

50

event: NewRecvStreamEvent

——

//
//
1: update(event) ///
{?/7/2: stream = getRecvStream()
//
//
//
//
RTPRecvStreamListener e stream:RTPRecvStream

3: ds = getDataSource()

5: create(player)

\L 4: player = createPlayer(ds)

Manager PlayerWindow

Figure 4.5 RTP Media Presentation Collaboration Diagram. Numbered
arrows indicate the sequence of method calls occurring between objects.

9. Transmitting RTP Streams

RTP stream can be transmitted by passing a DataSource object to the Session
Manager using the method createSendStream. As a DataSource can contain multiple
streamg/tracks, an index of the stream must be specified. The DataSource is usually
obtained as an output of a Processor. In this case the Processor has to generate RTP-
encoded data because the Session Manager does not perform that function. So each track
to be transmitted has to be set to an RTP-specific format. The method setFormat of the
TrackControl interface allows a Processor to set the format of atrack. If the format can

not be applied to the track, an IncompatibleFormatException is thrown.

51

If the physical source of the stream is intended to be camera or microphone, a
CaptureDevicelnfo object must be created by using the method getDevice of
CaptureDeviceManager. The argument passed to the method getDevice is a Format
object, which describes a media format. The CaptureDeviceManager searches for a
device in the system that supports the desired format. The method getLocator of
CaptureDevicelnfo returns a Media Locator that can be used to create a Processor.

Figure 4.6 contains a UML collaboration diagram that describes a IMF procedure

to capture the media and transmit it in aRTP session.

CaptureDevice di:CaptureDevicelnfo
Manager

Manager

1: di = getDevice(format) //
/ _ //7/
2: loc = getLocator _—
/r g 0 _— 3: proc = createProcessor(loc)
/
/
/
/
/
/
- 4: tc = getTrackControls()
E— proc : Processor
\
~_ 6: ds = getDataOutput()
~
\
~
\
~
™~ 5: setFormat(RTP_format)
7: createSendStream(ds) ~_
~ ~
\
~
\
\\

tc:TrackControl

:RTPSessionManager

Figure 4.6 Media Capture and Transmission Collaboration Diagram.

52

10. RTP Statistics

JMF maintains several statistics about the RTP session and its streams. Statistics
about the session as a whole are obtained through the RTPSessionManager by the
methods getGlobal TransmissionStats and getGlobal ReceptionStats. These methods
retrieve Global ReceptionStats and Global TransmissionStats objects respectively, which
have methods to get each statistic. Individua stream statistics are maintained within
RTPSendStream and RTPRecvStream objects by the RTPTransmissionStats and
RTPReceptionStats interfaces. Figure 4.7 contains a UML class diagram showing the

classes mentioned above.

<<Interf ace>>
RTPSessionManager

mantains

<<Interf ace>>

+ getGlobalTransmissionStats() GlobalR tionStat
obalReceptionStats

+ getGlobalReceptionStats() 1 1
+ getSendStreams() : Vector
+ getRecv Streams() : Vector .

1 " mantains
manages h
1
0..*
<<Interface>> <<Interfa‘1cel>> !
RTPStream GlobalTransmissionStats

<<Interface>> <<Interf ace>>

RTPRecvStream RTPSendStream
+ getSourceTransmissionStats()| |+ getSourceReceptionStats()
1 1
has has
1 1
<<Interface>> <<Interf ace>>
RTPTransmissionStats RTPReceptionStats

Figure 4.7 RTP Statistics Class Diagram.

53

D. SUMMARY

The Java Media Framework (JMF) architecture is intended to support multimedia
in avariety of applications. It is based in a high level API, containing generic classes to
capture and present media, and alow-level API to allow customization and extension.
The RTP API supports RTP transmission and reception, as well as retrieval of RTP
statistics. Future work on JMF can include the transmission of time-based media other
than audio and video, such as the Distributed Interactive Smulation (DIS) protocol and

other behavior-based streams.

V. DESIGN AND IMPLEMENTATION OF THE

RTPMONITOR APPLICATION

A. INTRODUCTION

This chapter covers the functionality and class design of the program devel oped
as the main goal of this thesis, caled rtpMonitor. rtpMonitor is a Java application that
presents and records RTP statistics about a single RTP session. It can also present the
media being received, either audio or video, by launching audio/video playback windows.
All Unified Modeling Language (UML) diagrams in this chapter conform to the UML
Specification (Booch, 97) and were prepared using the Java to UML facilities of

Rational Rose 98i (Rational, 99).
B. RTPMONITOR FUNCTIONALITY AND INTERFACE

This section contains a summary of the rtpMonitor functionality. Additional

information can be found in the Appendix B, the rtpMonitor User Manual.

1. Graphical User Interface (GUI)

Figure 5.1 shows the rtpMonitor main window. In the “ Bookmark” menu, the user
can select, add or delete a bookmark related to the session name/address. In the
“Preferences’ menu the user can select whether the monitor will participate in the
session, play streams and/or record statistics. The user can also be selected the duration of
the monitoring session, the recording interval and the presentation interval. In the
“Output files” menu the user can launch an externa viewer to see the contents of the

statistic files generated by the program.

55

The upper part of the window contains the session address, according the
RtpMedial ocator format and the session name. The user enters the session name when a
new bookmark is inserted. This name does not necessarily have any relation with the
session name of the Session Description Protocol (SDP) announcements. The rest of the

window contains the current RTP statistics.

gﬁﬂlph’lunilnl _ [0 x]
File Bookmarks Preferences Help

Sessioh Address | mpcdf224 2 220 8564141 27 Session Mame | Dis-Java-Yrml (video)

Glohal Statistics

Tatal Bytes | Baif SDES Packets | Sirean
Total Packets | Bad BYE Packets |
n LostPDUs
RTCF Packets i Laocal Collisions I
i Frocessed PDUs |
SR Fackets I Remote Collisions |
MisCrderad F'DUsi
Bad KTF Packets i Looped Packets I
: : Irrealid PO I
Bad RTCF Packets i Failed Transmlssmn]
Duplicate PDUs i
Bad SR Fackets I Unknown Type I
Bad FR Packets I
Feedback Repars

Active Participants Passive Patticipants Username Fraction Lost Jitter Packets Lost

= [~ =

" il o o o

Figure 5.1 rtpMonitor Main Window.

2. Statistics Display

The program periodically displays the following information:
Global statistics: general reception information about the whole session.

Stream statistics: about the reception of a single stream.

56

Feedback: the RTCP Receiver Report information from all participants about
the stream being monitored.

3. Statistics Recording

rtpMonitor can record statistics in text files using a recording interval defined by
the user. Severd files are created and managed to simplify further retrieval. There are
files to hold data from the last five minutes, previous five minutes, last hour, previous
hour and different dates. Multiple file sizes and periodicities are employed to avoid
excessive file sizes when performing extended monitoring. File name conventions are

presented in Appendix A.

4, M edia Presentation

rtpMonitor can present the incoming video stream on the computer screen or the
incoming audio streams on the computer speakers. This option is selected in the
“Preferences’ menu. In case of video, each stream is presented in a separate window. In
case of audio, a toolbar window is opened to allow audio controls (such as the mute

function). The launched applications are part of the IMF API.

5. Command Line Operation

If the program is called with any argument in the command line the GUI will not
be launched. In this case the session address and preferences must be passed by the

command line.

57

The following command line is an example of invocation of the rtpMonitor to
record statistical data and present RTP session streams during a period of 24 hours:

java org.web3d.vrtp.rtp. RepMonitor rtp://224.120.67.46/ 64542/ 12
-play -record -e 24

Using the command line version of rtpMonitor no statistics are sent to the

console. A monitoring session can be stopped by pressing “ Crtl-C” .

C. RTPMONITOR CLASSDESIGN

The rtpMonitor class design goal was to create a set of basic classes that could
perform the RTP monitoring tasks with minimal access from user applications to the Java
Media Framework API. Figure 5.2 contains a data flow diagram showing the exchange of
data (statistics, settings and commands) between classes in rtpMonitor. Each bubblein
the diagram will be discussed in the remainder of this session. Appendix C contains the

rtpMonitor Javadoc, and Appendix D contains the rtpMonitor source code.

1. RtpMonitorManager and RtpUtil

The RtpMonitorManager class is the main interface between a user application
and JMF. It performs the following functions:

Creates and starts a session, represented by a RTPSessionManager object in
JMF.

Records session statistics in files.

Presents (i.e. plays) incoming media streams.

58

RtpMonitor DOS/UNIX
GUI prompt

RtpMonitorCL

RtpMonitor

RtpMonitor
Manager and
RtpUtil

RecordTask
and
FileCatalog

RtpPlayer
Window

Disk stats Audio or Video

Figure 5.2 RTPMonitor Data Flow Diagram.

RtpMonitorManager does not have methods to retrieve each single statistic in an
RTP session. If an application needs access to individual statistics, e.g. for display
purposes, it is necessary to retrieve the RTPSessionManager object and use its methods to

get the desired set of statistics.

59

The following parameters are necessary for instantiating a new
RtpMonitorManager object:
The session address string, e.g. rtp://224.2.134.67:50980/127
A Boolean variable indicating if the statistics are to be recorded on files.
A Boolean variable indicating if the incoming streams are to be played.

A Boolean variable indicating if the monitor will actively participate in the
session (i.e. send RTCP packets).

During instantiation, RtpMonitorManager creates a RTPSessionManager object in
JMF. Figure 5.3 shows a UML sequence diagram representing the steps taken by
RtpMonitorManager in creating and initializing the session manager. Figure 5.4 shows a
class diagram of the classes related to RtpMonitorManager.

RtpULtil is a class that has only static methods for performing some extra
functionality to JIMF. For example, there is a method to return the username given a

RTPParticipant object.

2. RecordTask and FileCatalog

RecordTask is aclass used by RtpMonitorManager objects to write the statistics
periodically to disk. It is created as a separate thread that waits for afixed period of time
after writing data to disk. This class writes data to the file called
"statisticsLastReport.txt” that containsthe last single report only. The
FileCatalog classis actually responsible for transferring data to other files aswell (last

five minutes, last hour, and so on).

60

: RtpMonitorManager : RtpMedial.ocator

InetAddress

: RtpSessionAddress

:RTPSessionMar

create(locatorString)

port = getSessionPort()

destaddr = getByNan

address = getSessionAddress()

he(address)

sessaddr = create]

(destaddr, port, destaddr,

port + 1)

create()

init(...)

start(sessaddr, tl, ...

-

Figure 5.3 RTPSessionManager Initialization UML Sequence Diagram.

3. RtpPlayerWindow

RtpPlayerWindow is a class used to create a window for playing an audio/video

stream. It is a subclass of PlayerWindow, adding the capacity of modifying the window

name. Both classes were developed by Sun. RtpPlayerWindow came with IMF1.1

sample code and PlayerWindow isin thefilej nf . j ar .

61

RtpSessionAddress

(from session)

<<Interface>>
RtpSessionManager

- | (from session)

RTPSessionMgr

From JMF
API.

Itis a new thread.
Records the last
report.

RtpMedialocator Erom JME
(fromrtp) API.
Ny -
N
creates N
1 =
RtpMonitorManager creates
(from rtp)
+ RTPMonitorManager()
+ update() creates -
+ close() 1
+ getMedialLocator()
+ getSessionManager()
+ getSessionAddress()
1
creates
R RecordTask 1
\l/ (from rtp)
RtpPlayerWindow + RecordTask()
(from rtp) + EXItO
: +run()
: Ezrl?qzl(z;lyeerdow() - recordGlobalStats()
! - recordStreamStats() .
| - recordFeedbacks() S
1 1
; creates
PlayerWindow
(from ui) v/ 1
FileCatalog
(from rtp)

From JMF 2
API.

+ FileCatalog()

+ update()

+ concatenate()

+ saveDateRef()

+ retrieveDateRef()

Manages the transfers
between the several
output files.

Figure 5.4 RTPMonitorManager UML Class Diagram.

62

4, RtpMonitor

The main RtpMonitor class extends a Frame and implements the rtpMonitor
Graphical User Interface (GUI). RtpMonitor and RtpMonitorCommandLine can be
considered classes in the application level. They use the services of RtpMonitorManager
to provide some user level functionality. RtpMonitor has the following functions:

Collects user preferences. It uses the ModifyPreference class as the dialog
box.

Selects, adds and del etes bookmarks. It uses the SelectBookmark,
AddBookmark and DeleteBookmark classes as dialog boxes.

Displays statistics periodically. It creates a DisplayTask object, whichisa

new thread that sleeps for a user-defined time, to call its methods for updating
the statistics on screen.

5. RtpMonitor Applet

A good idea might be to make an applet version in aweb page. To do this,
security problems must be addressed, as the monitor must write data to disk and open
network connections. The implementation of an RTP Monitor version running as an

applet was left as future work.

6. RtpMonitor CommandLine

RtpM onitorCommandLine objects are instantiated by the main method of
RtpMonitor when some parameter is passed. This class performs the creation of a
RTPSessionManager object but does not present statistics on screen.

Several options can be passed by the command line call to RtpMonitor. They are

basically the same available in RtpMonitor preferences dialog.

63

D. SUMMARY

The rtpMonitor application allows the monitoring of an RTP session by
presenting session and stream statistics on screen as well as recording statistics on files
for future analysis. The program also supports Media presentation of audio and video.

The design goal of the rtpMonitor was to provide a basic set of classesfor RTP

statistics recording with minimal interfacing with IMF.

VI. RTPMANAGEMENT INFORMATION BASE (MIB)

A. INTRODUCTION

The RTP Management Information Base (MIB) defines Simple Network
Management Protocol (SMNP) objects for managing RTP systems. Thiswork is
produced by the Audio Video Transport (AVT) Group of the Internet Engineering Task
Force (IETF) (Baugher, et al., 99) as broad guidance for all applications collecting RTP
statistics. This chapter describes some basic concepts of the RTP MIB and compares its
attributes with the existing set of Java Media Framework used by the rtpMonitor

application.

B. NETWORK MANAGEMENT OVERVIEW

A network management system is a collection of tools for networking monitoring
and control, including hardware and software (Stallings, 97). The key elements of a
network management system are:
Management station — the interface to the network manager.

Agent — responds to requests for information and for taking actions. Typically,
the agent software isinstaled in routers, bridges, hubs and hosts.

Management information base (MIB) — represents a collection of objects (data
variables) managed by agents.

Network management protocol — links the management station with the
agents.

The Smple Network Management Protocol (SNMP) is the most widely

management protocol in use for TCP/IP networks. SNMPV2 (version 2) is described in

65

RFC 1901 (Case, et al., 96). SMNP include mechanisms for retrieving data from agents,

set values of objects on agents, and notify the management station of significant events.

C. RTP MIB DESCRIPTION

RTP agents running this MIB can be either RTP hosts (end systems) or RTP
Monitors. The objective is to collect statistical data about RTP sessions and its streams,
for diagnostics and management purposes. Each agent maintains a MIB that can be
gueried by a Manager. Only the last updated statistic is stored in the MIB.

RTP MIB has three tables:

rtpSessionTable — contains objects that describe active sessions at the
host, intermediate system or monitor. There is an entry in this table for
each RTP session on which packets are being sent, received and/or
monitored.

rtpSender Table - contains information about senders of the RTP session.
RTP sender hosts must have an entry in this table for each stream being
sent, but RTP receiving hosts do not have to maintain this table. RTP
Monitors must create an entry for each observed stream.

rtpRcvrTable - contains information about receivers of the RTP session.
RTP receivers must create an entry in this table for each received stream.

RTP senders do not have to maintain this table. RTP monitors must have
an entry for each pair sender/receiver in the sessions being monitored.

D. COMPATIBILITY WITH JMF STATISTICS

Appendix E is atable that compares the fields in the RTP MIB tables with the
JMF statistics used by RTPMonitor. This comparison has two objectives:
Detect what MIB statistics are not supplied by JIMF. If IMF does not supply
all therequired MIB data, an RTP MIB agent can not be implemented using
JMF.

Detect what IMF statistics are not part of RTP MIB. Some of the IMF
statistics can be added to the RTP MIB.

66

The comparison was sent to the IMF and IEFT-AVT mailing lists. The comments
made by Bill Strahm, one of the authors of the RTP MIB Internet Draft are included in
the table of Appendix E. Sun Microsystems software engineers have not replied with any

comments.

E. SUMMARY

The Real-time Transport Protocol (RTP) Management Information Base (MIB)
consists of a new Internet-Draft proposed by the AVT group of the IETF to be applied in
RTP network management with SNMP.

A number of significant differences were found between JMF 2.0 (Sun, 99) and
the RTP MIB (Baugher, et a., 99). Further work will need to be performed by one or

both organizations to resolve these discrepancies.

67

THISPAGE LEFT INTENTIONALLY BLANK

68

VIlI. EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter presents the experimental results achieved with the rtpMonitor
application and describes problems faced during the testing phase. Furthermore, this
chapter presents the work on an RTP header for the Distributed Interactive Smulation

(DIS) protocol (IEEE, 95).

B. TEST RESULTS

The Java application rtpMonitor, described in Chapter V, was tested using the
versions 1.1.7, 1.2.1 and 1.2.2 of the Java Development Kit (JDK), in combination with
versions 1.0, 2.0 Early Access, and 2.0 Beta of the Java Media Framework. IMF Beta has
three subversions available:

Pure Java: includes binaries written entirely in the Java programming
:o?ggflcj)??n? that can be installed on any operating system supported by the Java

Solaris Performance Pack: an optimized version for the Solaris platform that
includes binaries for this operating environment.

Windows Performance Pack: an optimized version for the Windows platforms
that includes binaries for this operating environment.

rtpMonitor was tested only in Windows NT platforms using the Windows
Performance Pack. The program was tested in al its functionality, with specia emphasis
on the recording capabilities. It proved to be robust, running continuously for the
maximum allowed session duration (one week) several times. It has generated correct

output files of more than 40 Mbytes for a single session.

69

C. OBSERVED PROBLEMS

Severadl errors (i.e. software bugs) were detected in IMF 1.0 through the
development of rtpMonitor. The following errors were reported in the IMF mailing list
and were corrected in IMF2.0 Early Access:

The number of lost PDU in the stream data was usually wrong. It returned a
high number of lost PDU, even greater than the actual number of packets sent
by the source.

When a non-participating option had been selected the information about the
active and passive participants was inconsistent. Usually no participants were
presented even though they might have existed.

Individual video windows could not be closed.

After a session had been stopped and a new session had been initiated, the
global statistics about the previous session were still being considered.

In IMF 2.0 Early Access and IMF 2.0 Beta, the only observed error isrelated to
the Cumulative Number of Packets Lost (Packets Lost in the Feedback Area) which
returns wrong values after sometime. This problem has been reported to Sun's IMF-bugs

e-mail box (jmf-bugs@sun.com) and to Sun’s IMF-interest mailing list

(Jmf-interest@java.sun.com).

D. EXTENDING DIS-JAVA-VRML PDU HEADER

Protocol Data Units (PDU) currenty used by the vrtp protocol (Brutzman, 99) are
based on the Distributed Interactive Smulation (IEEE, 95) standard. Asthe vrtp
protocol intends to use the Real-Time Transport Protocol as the transport protocol, an
RTP Header should be added to the existing DIS PDU. Although such a modification is
no longer strictly compliant with DIS over-the-wire formats, it nevertheless provides and

interesting opportunity for research and testing.

70

As aproduct of thisthesis, a new Java class for extending the DIS PDU with RTP
header information was created. This classis specifically designed to be part of the DIS
package (m | . nps. navy. di s) used by the DIS-Java-VRML application, a component
of the vrtp protocol (Brutzman, 99). This class was named RtpHeader. Appendix F
contains the RtpHeader Javadoc and Appendix G contains the RtpHeader source code.

The RtpHeader class was briefly tested during the period of this thesis. Client
software automatically discriminates among DIS PDUs with and without RTP headers.

Thisis an excellent result. Further testing is required as a future work.

E. SUMMARY

The rtpMonitor application has successfully been tested with different versions of
the Java Devel opment Kit (JDK) and Java Media Framework (JMF). The program
proved to be robust in several long-term monitoring sessions. Despite most IMF
problems have been solved in version 2.0 Early Access, additional fix should be done.

A new header for the Protocol Data Units (PDU) of the DIS-Java-VRML

application was developed and initial test produced excellent results.

71

THISPAGE LEFT INTENTIONALLY BLANK

72

VIII. CONCLUSIONSAND RECOMMENDATIONS

A. RESEARCH CONCLUSIONS

The RTP monitor application has been successfully implemented using Java
Media Framework (JMF). The monitor can be applied to help detecting problemsin RTP
based multicast session by adding statistics recording capabilities, not available in the
existing individual conference applications. The presentation of RTP statistics and
feedback reportsin asingle screen is also a good feature for on-line monitoring. The
RtpMonitor class package can be used by future RTP applications, as a simple means to
record statistics with no direct access needed to JMF resources. Thisis an important new
capability, since core Java classes do not provide access to IGMP (Deering, 89) packets
on the network layer and would otherwise require additional programming of native code
(e.g. C source code) viathe Java Native Interface (JNI) (Sun, 99) to achieve RTCP

capabilities.

B. RECOMMENDATIONS FOR FUTURE WORK

A number of excellent opportunities for future work are now possible.

1. Participants I nformation

RTCP Session Description Reports convey several data about each participant, as
name, e-mail and tool being used. This information can be added to RTPMonitor for
presentation and recording purposes. JMF contains the necessary classes and methods to

set, send and retrieve this data.

73

2. Extensible Markup Language (XML) Recording

rtpMonitor records the RTP session data as text files. The use of Extensible
Markup Language (XML) (Word Wide Web Consortium, 99) for recording the data
would allow an easier dataretrieval. Java-based XML parsers are available and can
provide an efficient way to read and write Java data structures as XML documents and

vice-versa

3. Recorded Data Analysis and Presentation

A tool to retrieve remotely (or receive) the rtpMonitor output file statisticsis
needed. It should be able to present the each individual datain a graphical format,
covering a period of time defined by the user. Again XML provides browsing options for

automatic presentation of such data by any web browser.

4. Session Description Protocol (SDP) Reception

The Session Description Protocol (SDP) is intended for describing multimedia
sessions for the purposes of session announcement, session invitation, and other forms of
multimedia session (IETF, 98). In rtpMonitor the user has to enter the RTP session
address. Future work needs to add SDP reception capability to smplify starting a
monitoring session and allowing the detection of ongoing sessions, in addition to the

current approach.

5. RtpMonitor Activation from SDR

Session Directory (SDR) is a session directory tool designed to allow the

advertisement and joining of multicast conferences on the MBone (UCL, 99). It is

74

possible to launch external application from SDR by modifying some of the SDR
configuration files. Providing a plug-in file to SDR might result in an easier activation of

the rtpMonitor application.

6. JMF Extensibility for Other Media

Java Media Framework (JMF) distribution comes with a set of concrete classes to
implement the RTP transmission, reception and playback of audio and video. However,
the extension of JMF to support other types of mediais highly desirable. An important
area of future work is the implementation of simulation data transmission and reception
using the RTP API of Java Media Framework. Thiswork will have direct application in

the vrtp streaming behaviors stack.

7. Automated Network Monitoring of RTP Streamsfor VRTP.

The rtpMonitor class library can be integrated with the vrtp protocol to allow the
automatic monitoring capability in vrtp sessions. For this purpose the rtpMonitor library
must be updated to support transmission statistics and direct activation by vrtp
components. Thisis agood area of study for agent-based network monitoring, diagnosis

and problem correction.

8. Design Patterns Coursein Computer Science Curriculum

Design Patterns study helps to solve recurring design problems by using common
adopted solutions. Furthermore, the Design Patterns nomenclature provides a precise
way of communicating design ideas among software engineers. Theinclusion of a
Design Patterns course in the Computer Science and MOVES Curriculais highly

recommended.

75

THISPAGE LEFT INTENTIONALLY BLANK

76

APPENDIX A. PREPARING UML DIAGRAMSUSING RATIONAL ROSE

UML Diagrams Preparation

Rational Rose version 98i can represent the following types of UML diagrams:
Use Case Diagrams
Class Diagrams
Collaboration Diagrams
Seguence Diagrams
Component Diagrams
Deployment Diagrams

The program is capable of handling different models (projects), each model being a set of
basic components (classes, interfaces, actors and associations) and diagrams. For better
visualization the project is organized in atree-like structure having the following main
branches:
Use Case View — usually contains the Use Case Diagrams and actors
components.
Logica View — usualy contains the Class Diagrams, Collaboration Diagrams
Seguence Diagrams, Class Components and Interface Components.
Component View — contains the Component Diagrams.
Deployment View — contains a Deployment Diagram.

To create a new diagram, the user has to select the branch he wants the diagram in, click
with the mouse right button and select what type of diagram is to be created. A new blank
diagram is shown and the components can be created and placed on the diagram by
selecting the appropriate component in atool bar and clicking in the place the component
must be positioned in the diagram. Depending on the type of the component different
information should be provided. By right clicking on a component a pull-down menu is
shown and the user can invoke the component specification as long as the option-setting
feature.

Reverse Engineering of Java Source Code
Reverse engineering is the process of creating or updating a model by analyzing Java

source code. As Rational Rose reverse engineers each .java or .classfile, it finds the
classes and objectsin the file and includes them in the model.

77

To reverse engineer al or part of a Java application:

1 If you are updating an existing model, open the model, otherwise create a new
model.
2. On the Tools menu, point to Java, and then click Reverse Engineer.

3. From the directory structure , select the classpath setting and folder where the
files you're reverse engineering are located. (If the list is empty, check your classpath.
For details, see How Rose J Models the Classpath and Extending the Java Classpath .)

4, Set the Filter to display the type of the Java files whose code you want to reverse
engineer (.javaor .classfiles).

5. Do one of the following to place the Java files of the type you selected into the
Selected Files list:

In the Filelist box, select one or more individual files and click Add.
Click Add All
Click Add Recursive

6. Sdlect one or more files in the Selected Files box or click Select All to confirm the
list of filesto reverse engineer.

7. Click Reverse to create or update your model from the Java source you specified.
An error dialog displays, if any errors occur during reverse engineering.

8. Check the Rose Log for alisting of any errors that might have occurred.
The procedure above is described in the Rational Rose Help. An additional requirement
for reverse engineering of Java code is that the JDK API definitions must be available by

adding thefilec:\j dk1.2.2\jre\lib\rt.jar totheclasspath.

Using the reverse engineering feature, Rational Rose will import from Java code all
classes, interfaces and associations, but the diagrams are not automatically generated.

78

APPENDIX B. RTPMONITOR USER MANUAL

rtpMonitor User Manual
version 1.0

Contents:

1. Execution

2. Defining asession

3. Session Bookmarks

4. Preferences

5. Starting a session

6. Statistics

7. Stopping a session

8. Recording monitoring data

9. Using the monitor without GUI

10. Wrong behaviors and results (bugs)
11. Running the program in other directory
12. Reinstallation recommendations

79

1. Execution

a) In the command line type:

cd \vrtp\rtphonitor

java org.web3d. vrtp.rtp. Rt phonitor
b) or run the batch file rtpMonitor.bat in the c:\vrtp\rtpMonitor directory. Thereisa
Windows shortcut to thisfile in the same directory. This shortcut can be copied to the
Desktop to create an icon for the rtpMonitor program.
Using this call with no arguments the GUI version of the program will be executed. The
following window is presented:

2.
E%iﬂtphiunitul |_ (O] x|

File Bookmarks Preferences Help

Session Address |ﬂpiﬂ_-_-_-_i_f_ Session Mame | Start | St |

Glohal Statistics

Total Bytes | Bad SDES Packsts | e G [7|
Total Packets | Bad BYE Packets | r:hangel
. Lost PDUs I
RTCP Packets i Local Collisions i
g Frocessed PDUs |
SR Packets i Remate Collisions |
MizCrdered PDLUs i
Bad RTF Packets i Looped Packets I
: s Inwalid FDUs i
Bad RTCFP Packets I Failed Transmlssmn]
Duplicate PDUs i
Bad SR Packets ! Unknown Type I
Bad RR Packets I
Feedback Reports

Artive Participants Passive Participants Uszername Fraction Lost Jitter Packets Lost

- = =

" ol [ol ;i

80

Defining a session

In the session box enter the session address/port/ttl as in the example below:
rtp://224.2.125.60:55690/127
where:

Multicast IP address: 224.2.128.60
RTP port: 55690
TTL : 127

3. Session Bookmarks
As an option to writing the session address, it is possible to select a session bookmark.

The program already comes with some pre-defined session bookmarks. Bookmarks can
be added and deleted.

E%} RtpM onitor M= B3
File EsLiAGEl{sM Preferences Help
Select
Ses 3 e N S) O Session Mame | Gtart | it |
el
Dielete Glohal Statistics
Total Bytes I Bad SDES Packets | | Stream [
Total Packets [Bad BYE Packets [| f:-”:an.c§9|

. Lost PDUs I

RTCP Packets i Local Collisions i
g Frocessed PDUs |

SR Packets i Remate Collisions |
MizCrdered PDLUs i

Bad RTF Packets i Looped Packets I
: s Inwalid FDUs i

Bad RTCFP Packets I Failed Transmlssmn]
Duplicate PDUs i

Bad SR Packets ! Unknown Type I
Bad RR Packets I

Artive Participants Passive Participants Uszername Fraction Lost Jitter Packets Lost

- = =

Feedback Reports

" ol [ol ;i

81

The option "Select” displays a window with the pre-defined session bookmarks. Click
over the desised session to select it.

[;g Select Bookmark

[Die-Jawa-wrml tideo)
Dis-dava-vrml {audia)

DI5-Java-vEML (DIS PDLS)

Capitol GML (video)

Capitol GMLU (audio

Masa TV from HE (video)

Masa T from HE (audiod

Flaces all over woarld fvidea)

The option "Add" allows the insertion of a new session bookmark. This option is enabled
only when a session has been started. The session address is the session of the current
session. The session name will be the bookmark name.

f=3 Add Bookmark

Session Address; rpfi224 2 2205964140127

Session Mame |}t‘f}{test

Add zancel

82

The option "delete” allows the deletion of a bookmark. A window with the existing
bookmarks will be presented and the user can select the bookmark to be deleted and click
the "Delete" button.

E;g Delete Bookmark

Dis-Java-vrml fvideo)
Dis-dawa-vrml {audia)
DIS-Java-vREML (DIS PDLUs)
Capitol GMLU {videa)
Capital GMU (faudio

Masa T from HQ (video)
Masa T from H2 (audio
Places all overworld (videa)

[elete Cancel

4. Preferences

Before starting to monitor a session, the user should set up the program preferences. The
menu "Preferences” allows the verification and modification of the program preferences.
Selecting Preferences -> Modify the following window will be presented:

[=2 Modify Preferences
[¥ Send RTCF packets
F Flav incoming media

F Fecord statistics

Presentation Intervalisec) |2

Monitoring Period |1 haur 'I

External viewer:

"CAFrogram Files\PFE Programmers File Edito

83

The options are:

Send RTCP packets checkbox: definesif the monitor will participate in the
session, sending RTCP packets.

Play incoming media checkbox: defines if the monitor will play the received
streams (audio or video). For video, a new playing window will be created for
each active participant stream. For audio, only one playing window will be
created.

Record statistics checkbox: defines if the monitor will record the session statistics
in files.

Record Interval textbox: the user can enter the interval between recorded data, in
seconds (default = 30 sec).

Presentation Interval textbox: the user can enter the interval between data updates
on screen, in seconds (default = 5 sec).

Monitoring Period choicebox: allows the user to specify the duration of the
monitoring session. After the timeis over the program will exit automatically.
The maximum allowed duration is one week (default = 1 hour).

External viewer textbox: defines an external text editor that will be called to
present the output files generated by the monitor (default = MS Windows
Wordpad).

The selected preferences will be saved on file and will be available in the next time the
program is executed.

5. Starting a session

After entering the session address and the desired option, the user can click on the start
button to start a monitoring session. If the supplied session addressisinvalid or if any
other problem in establishing a session occurs an error message will be displayed in the
feedback text area.

6. Statistics
The program displays the following types of information about the session:

Global statistics: genera information about the whole session.

Active Participants: the username of the participants actually sending data
streams.

Passive Participants. the username of the participants that do not send any stream.
Stream: the stream that is currently being monitored. That stream can be changed
in a session with multiple incoming streams by clicking in the "change" button
and selecting another stream in the stream selection box.

Feedback: that display area presents the RTCP feedback data related to the
selected stream. Usually the participants in the session send feedback data about
al streams.

7. Stopping a session

Clicking the "stop" button can stop a session. After stopping a session, the user is allowed
to change the session address and preferences before starting monitoring again.

8. Recording monitoring data

A new subdirectory is created for each session address, with the following name:
session [IPaddress] port [port number]

Inside this subdirectory several files will be generated and updated during a recording
session. They are:

. statisticsHeader.txt: contains the description of the fields being stored.
statisticsLastFiveMinutes.txt: contains the last five minutes block of statistics.
stati sticsPreviousFiveMinutes.txt: contains the previous five minutes block of
statistics.
statisticsLastHour.txt: contains the last hour block of statistics.
statisticsPreviousHour.txt: contains the previous hour block of statistics.
statisticsDateMM-DD-Y YY'Y : contains statistics taken in described date.
statisticsLastReport.txt — contains the last single report.

Thereisaso afile called LastDateRef.txt, which contains the last monitoring date for
that session. It is possible to see some of these files using the menu "Fil€".

85

E%Hlphlnnilnr
I Bookmarks Preferences Help

Last five minutes

Previous five minutes
Last hour

Previous haur

Heacler

Exit

T oL et

I
SR Packets
Bad RTP Packets [
Bad RTCP Packets [|
Bad R Packets [|
BadRRPackets | |

2203376008801 27

Global Statistics

Bad SDES Packets [|
Bad BYE Packets [|
Local Collisions i—
Remote Collisions I—
Looped Packets I—
Failed Transmissinn[—

I—

Lnknown Type

Session Mame | Masa TV from HQ (video)

=] E3

Start | S |

Stream

Lost PDUS —
Processed PDUs |—.
MisOrdered POUs [|
maidPOUs [
Duplicate POUS [

Feedhack Reports

[~
f:hangel

Active Padicipants Fassive Padicipants Lsername Fraction Lost Jitter Fackets Lost
" ol | o -

The external viewer defined in the preferences will be called to present the output files.
These options can be executed during a monitoring session. Below is an example of the

Last five minutes file using MS Windows WordPad editor as an externa viewer. The
format of the data is stored in the file statisticsHeader.txt, also shown below.

86

Bl statisticsLastFiveMinutes txt - Notepad
File Edit Search Help

ib1 18:25:27 0 8 1 5651647 6334 358 27 0 O O A ABBBBAA (=
D2 elleryE131.182.108.258 1564181648 983 5976 0 8 @

D3 joelja@128.223.214.27 1569838982 1564181640 6.0 8 @

D3 brutzmanBaccelerate 4285865786 1564101640 0.03908625 863 3026
D3 elleryE131.182.10.250 1564101640 1564101648 6.0 1 @

D3 miyake@128.223_.83.29 1568747521 1564101640 8.0 48 8

D3 mmei@141.78.3.242 398571242 1564101648 A.0546875 17478 @

D1 18:25:57 0 8 1 6803062 7723 428 33 A O A A A OOOOAOA

D2 elleryE131.182.10.2508 1564181648 967 7206 B O @

D3 joelja@128.223.214.27 1569838982 1564181640 6.0 8 @

D3 brutzmanBaccelerate 4285865786 15641816408 0.09375 918 3047
D3 elleryE131.182.16.258 15648181648 156101648 6.0 1 @

D3 miyake@128.223.83.297 1568747521 1564101640 B.8 42 A

D3 mmei@141.78.3.242 398571242 1564101648 A.1815625 17614 @

D1 18:26:27 0 8 1 8225068 0184 407 3R A O A A O OOOOBA

D2 elleryE131.182.10.250 1564181640 1869 8688 O 0 8

D3 joelja@128.223.214.27 1569838982 1564181640 6.0 8 8

D3 brutzman@accelerate 4285865786 1564181640 B.0546875 1823 2953
D3 elleryE131.182.18.258 15648181648 1568101640 6.0 1 A

D3 miyake@128.223.83.29 1568747521 1564101640 A.A 44 A

D3 mmeiE141.78.3.242 398571242 1564101640 O. 08084375 17730 A

D1 18:26:57 0 8 1 O4005L37 16587 556 42 B A B A B BB BAA

D2 elleryE131.182.108.2508 1564181648 1214 106631 6 6 @

D3 joelja@128.223.214.27 1569838982 1564181640 6.8 8 8

D3 brutzman@accelerate 4285065786 1564101648 8.015625 1843 3332
D3 elleryE131.182.16.258 1564181648 15641816408 8.0 1 @

D3 miyake@128.223.83.29 1568747521 1564101640 8.0 44 @

D3 mmeiE141.78.3.242 398571242 1564101640 A.BB984375 17866 A

D1 18:27:27 9 8 1 10912865 12114 627 47 O A O B O OB B O OA

D2 elleryE131.182.108.2508 1564181648 1230 11488 B 8 @
D3 juEljaE128.223.21h.2? 1569838982 16101640 B.8 8 A =
4] 2

Bl statisticsHeader.tut - Notepad

File Edit Search Help
H1 Time TotalParticipants RemoteParticipants ActiveParticipants TutalBytE%fj

HZ CHAME SSRC LostPDU ProcessedPDU MisorderedPDU InvalidPDU DuplicatePDU
H3 CHAME FromSSRC AboutSSRC FractionLost PacketsLost Jitter

-

1| | o

Each line of datais preceded with a header indicator (D1, D2 or D3), which indicates the
line of the statisticsHeader file that contains the description of the data being stored (H1,
H2 or H3).

87

9. Using the monitor without GUI

The program can be executed without the GUI (no statistics are presented) by passing the
session address and options data via the command line. The format is:

java org.web3d.vrtp.rtp.RtpMonitor sessionAddress [options]
The options are:
-part : the monitor participates in the session (sends RTCP packets as areceiver in
the session)
-play : the monitor play streams
-record : the monitor records statistics
-i nnn : nnn defines the recording interval in seconds (default 30s)

-e ppp : ppp defines the monitoring duration in hours (default: 168 hours =1
week)

-help: displays the options on the console.

Example: j ava org.web3d. vrtp.rtp. R pMnitor
rtp://224.120. 67. 46/ 64542/ 127 -play -record -e 24

Action: runs the program for monitoring the session in the IP address 224.120.67.46,
port 64542, with TTL = 127. It does not participate in the session, but plays the incoming
streams and records statistics on files. The recording interval will be 30 seconds and the
monitoring duration will be 24 hours.

To stop the program press <Ctrl|-C->

10. Wrong behaviors and results (bugs)

Several early bugs were related to IMF1.1 and were corrected in IMF2.0 Early Access. A
new bug was observed in IMF 2.0 Early Access. the Cumulative Number of Packets Lost
(Packets Lost in the Feedback Area) is returning wrong values after some time. This
problem was reported to Sun's IMF-bugs list in 08-Jun-1999, but it is still present in
JMF2.0 Beta.

88

11. Running the program in other directory

To run the program in another directory copy the files "bookmarks.txt" and "Header.txt"
to the new directory. Then run rtpMonitor from this directory.
Example:

copy bookmarks.txt c:\Mdir

copy Header.txt c:\Mdir

cd \Mydir

java org.web3d. vrtp.rtp. Rt phonitor

12. Reinstallation recommendations

In order to continue using the previous bookmarks and preferences, the files
"bookmark.txt" and "preferences.txt” in the directory "\vrtp\rtpMonitor" should be saved
and restored after the new installation.

To reinstall the program it is recommended the deletion of the following directories:
- \vrtp\javadoc\rtpMonitor
- \vrtp\org\web3d\vrtp\rtp
- \vrtp\rtpMonitor

89

THISPAGE LEFT INTENTIONALLY BLANK

90

APPENDIX C. RTPMONITOR JAVADOC

The rtpMonitor Javadoc is available at:

http://www.web3D.org/WorkingGroups/vrtp/javadoc/rtpMonitor/index.html

91

APPENDIX D. RTPMONITOR SOURCE CODE

package org.web3d.vrtp.rtp;

i mport java.aw.*;
i mport java.aw.event.*;
i mport java.util.*;

~
*

E o T T S T R

~

A Dialog to display information about the program
e.g. version, date
<P>

@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

public class About extends Dial og {

/**
* Constructor.
* <pP>
* @aram parent the parent frame
*/
publ i c About (Frame parent){
super(parent, "About" , true);

set Size(270 , 200);
set Layout (nul |);
set Background(Col or. | i ght G ay);

addW ndowLi st ener (new C oseWndow));

Label versionLabel = new Label ("rtphonitor version 1.0");
ver si onLabel . set Bounds(20, 30, 150, 25);
add(ver si onLabel) ;

Label versionDatelLabel = new Label ("Version date: 30 August 1999");
ver si onDat eLabel . set Bounds(20, 60, 180, 25);
add(ver si onDat eLabel) ;

Label npsLabel = new Label ("Naval Postgraduate School ");
npsLabel . set Bounds(20, 90, 150, 25);
add(npsLabel) ;

Label vrtpLabel = new Label ("virtual reality transfer protocol (vrtp)");
vrt pLabel . set Bounds(20, 120, 200, 25);
add(vrtplLabel);

Label sitelLabel = new Label ("http://wwmv web3d. or g/ Wr ki ngG oups/vrtp/");

si teLabel . set Bounds(20, 150, 240, 25);
add(si teLabel);

}

} // end of class About

137

package org.web3d.vrtp.rtp;

i mport java.aw.*;

i mport java.aw.event.*;
i mport java.util.*;

i mport java.io.*;

*

The Dialog to add a sessi on bookmark.
<P>

/

@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

/

public class AddBookmark extends Di al og

i npl enents Acti onLi stener{

* % ok X X X X

Vect or sessi onAddr essVec, sessi onNanesVec;

Label sessionAddLabel, sessi onAddReal Label , sessi onNanmeLabel
Text Fi el d sessi onNanmeText ;

Butt on addButton, cancel Button

Rt pMoni t or theParent;

/**
* Constructor.
* <pP>
* @aram parent the parent frame
*/
publ i ¢ AddBookmar k(Frame parent){
super (parent, "Add Bookmark" , true);

set Size(350 , 170);
set Layout (nul |);
set Background(Col or. | i ght G ay);

addW ndowLi st ener (new C oseWndow));

theParent = (RtpMnitor) parent;

| oadBookmar ks() ;

sessi onAddLabel = new Label ("Session Address:");

sessi onAddLabel . set Bounds(10, 40, 100, 25);

add(sessi onAddLabel) ;

sessi onAddReal Label = new Label (theParent.sessi onText.getText());
sessi onAddReal Label . set Bounds(115, 40, 230, 25);

add(sessi onAddReal Label);

sessi onNaneLabel = new Label (" Session Nane");

sessi onNaneLabel . set Bounds(10, 80, 100, 25);

add(sessi onNanelLabel) ;

sessi onNanmeText = new Text Fi el d(t hePar ent . sessi onNameText . get Text ());

sessi onNaneText . set Bounds(110, 80, 230, 25);
add(sessi onNaneText) ;

138

addButton = new Button("Add");
addBut t on. set Bounds(100, 130, 60, 25);
addBut t on. addAct i onLi st ener (t hi s);
add(addBut t on);

cancel Button = new Button("Cancel ");
cancel But t on. set Bounds(200, 130, 60, 25) ;
cancel But t on. addAct i onLi stener (this);
add(cancel Button);

/**

* Takes action when buttons are sel ected.
*

*/
public void actionPerforned(ActionEvent e)
{
i f(e.getSource() == addButton){
String sessAdd = theParent.sessionText.getText().trim();
String sessName = sessi onNameText.get Text().trinm();
i f(!'sessNane.equal s("")){
sessi onNanmesVec. addEl enent (sessNane) ;
sessi onAddr essVec. addEl enent (sessAdd) ;
saveBookmar ks() ;
t hePar ent . sessi onNaneText . set Text (sessName);
set Vi si bl e(fal se);
}
}
if(e.getSource() == cancel Button){
set Vi si bl e(fal se);
}
}
/**
* Loads the session bookmarks fromfile "bookmarks.txt"
*/

private void | oadBookmar ks() {

sessi onAddr essVec = new Vector();
sessi onNamesVec = new Vector();

try{
Buf f er edReader input = new BufferedReader(new

Fi | eReader (" bookmarks. txt"));

String line;

while((line = input.readLine()) != null){
int pos = line.lastlndexOr("rtp://");
if (pos I'=-1){

sessi onAddr essVec. addEl enrent (|i ne. substring(pos).trin());
sessi onNanmesVec. addEl enent (line.substring(0, pos).trim));

139

i nput.cl ose();

}
catch (Fi | eNot FoundException e){

Systemout.println("Add Bookmarks: " + e.getMessage());

}
catch (1 CException e){

Systemerr.println("Exception readi ng bookmar k:
}

+ e. get Message());

}

/**
* Saves the session bookmarks to file "booknarks.txt"
*/
private voi d saveBookmarks(){
Print St r eam out put ;

try {
out put = new PrintStrean{new Fil eQut put Strean{"bookmarks.txt", false));
for(int ii=0; ii < sessionAddressVec.size(); ++ii){
output.print((String) sessionNanesVec.elementAt(ii));
output.print(" ");

output.println((String) sessionAddressVec.elenmentAt(ii));

}

out put . cl ose();

}

catch (Fil eNot FoundException e){
Systemout. println("Saving bookmarks :

}

catch (1 OException e){
Systemerr.println("Exception witing bookmark:
}

+ e. get Message());

+ e. get Message());

}
} // end of class AddBooknark

140

package org.web3d.vrtp.rtp;

i mport java.aw.event.*;

/**

* This class is used to set a frame/dial og as not visible
* when the close icon is clicked.

* @ut hor Francisco Afonso (af onso@s. nps. navy. ml)

* @ersion 1.0

*/

public class O oseW ndow ext ends W ndowAdapt er {

/**

* set frame/dialog as not visible. This nethod is activated when the w ndow

* is closed.
*

*/
public void wi ndowd osi ng(W ndowEvent e)
{
e.getWndow().setVisible(false);
}

} // end of class O oseW ndow

141

package org.web3d.vrtp.rtp;

i mport java.aw.*;

i mport java.aw.event.*;
i mport java.util.*;

i mport java.io.*;

*

A Dialog to delete a session bookmark.
<P>

/

@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

/

public cl ass Del et eBookmark extends D al og

i npl enents Acti onLi stener{

* % ok X X X X

java. awt . Li st sessi onNanesLi st ;
Vect or sessi onAddr essVec;
Butt on del et eButton, cancel Button

/**
* Constructor.
* <pP>
* @aram parent the parent frame
*/
publ i c Del et eBookmar k(Franme parent){
super(parent, "Del ete Bookmark" , true);
set Size(250 , 300);
set Layout (nul |);
set Background(Col or. i ght G ay);

addW ndowLi st ener (new C oseWndow));

sessi onNanesLi st = new java.awt.List(5, false);
sessi onNanesLi st . set Bounds(10, 30, 230, 210);

| oadBookmar ks() ;
add(sessi onNanesLi st);

del eteButton = new Button("Del ete");
del et eBut t on. set Bounds(50, 260, 60, 25);
del et eBut t on. addAct i onLi stener (this);
add(del et eButton);

cancel Button = new Button("Cancel");
cancel But t on. set Bounds(130, 260, 60, 25) ;
cancel But t on. addAct i onLi stener (this);
add(cancel Button);

142

/**

* Takes action when buttons are sel ected.
*

*/
public void actionPerformed(ActionEvent e)
{
i f(e.getSource() == del eteButton){
int index = sessionNamesLi st. get Sel ect edl ndex();
if(index >= 0){
sessi onNanesLi st . renove(i ndex);
sessi onAddr essVec. renmove(i ndex) ;
saveBookmar ks() ;
}
}
i f(e.getSource() == cancel Button){
set Vi si bl e(fal se);
}
}
/**
* Loads the session bookmarks fromfile "bookmarks.txt"
*/

private void | oadBookmar ks() {

sessi onAddr essVec = new Vector();

try{
Buf f er edReader input = new BufferedReader(new

Fi | eReader (" bookmarks.txt"));

String line;

while((line = input.readLine()) != null){
int pos = line.lastlndexOr("rtp://");
if (pos I'= -1){

sessi onAddr essVec. addEl enent (|i ne. substring(pos).trin());
sessi onNanesLi st. add(line.substring(0, pos).trim());

}

i nput.cl ose();

}
catch (Fi |l eNot FoundException e){

Systemout.println("Del ete Bookmarks: " + e.getMessage());

catch (1 CException e){
Systemerr.println("Exception readi ng bookmar k:
}

+ e. get Message());

143

/**
* Saves the session bookmarks to file "booknarks.txt"
*/
private voi d saveBookmarks(){
Pri nt St r eam out put ;

try {
out put = new PrintStrean{new Fil eQut put Strean{"bookmarks.txt", false));
for(int ii=0; ii < sessionAddressVec.size(); ++ii){
out put. print(sessionNanesList.getlten(ii));
output.print(" ");

output.println((String) sessionAddressVec.elenmentAt(ii));

}

out put . cl ose();

}
catch (Fil eNot FoundException e){
Systemout. println("Saving bookmarks :

+ e. get Message());

}
catch (1 OException e){

Systemerr.println("Exception witing bookmark:
}

+ e. get Message());

}

} // end of class Del et eBooknmark

144

package org.web3d.vrtp.rtp;

i mport javax.nedia.rtp.*;
i mport javax.nedia.rtp.event.*;
i mport javax.nedia.rtp.rtcp.*;

i mport java.aw.*;
i mport java.util.*;

*

~

E o T . R

A cl ass used by RtpMnitor objects to periodically launch their showStats
met hods (screen updates).
<P>

@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

~

public class DisplayTask inplenents Runnabl e {

Rt pMoni t or nmyMon;
Sessi onManager nyngr;
Thread t hread;

i nt interval Param

/**

* Constructor. It creates a new thread of execution and calls

* the nethod run().

*

* @aramnmon the RipMnitor object that will be called back for screen
* updat es.

* @araminterval the interval between screen data updates, in seconds.
*

~

public D spl ayTask(Rt pMoni tor non, double interval){

nyMon = non;
i nterval Param = (int) (interval*1000);

thread = new Thread(this, "D splayTask thread");

t hr ead. set Daenon(true);
thread. start();

145

/**

* This nethod runs continuously calling the showStats met hods of RtpMnitor
* in the proper presentation interval, until the Rt pMnitor stops the
* session.
*/
public void run(){
whi | e(nyMon. i shonitoring()){

nmyMon. showd obal Stat s();
nmyMon. showPar ti ci pants();

nmyMon. showSt r eantt at s() ;
nmyMon. showFeedbacks() ;

try{
Thr ead. sl eep(i nt erval Paranj;

}
catch (InterruptedException e){}

}
} // end of class D splayTask

146

package org.web3d.vrtp.rtp;

i mport java.io.*;
i mport java.util.*;

*

/
A cl ass used by RecordTask objects to organize statistics

in several files (five mnutes, hour, and day).

<P>

This class wites to the file following files:
statisticsLastFiveMnutes.txt, statisticsPreviousFiveM nutes.txt,
statisticsLastHour.txt, statisticsPreviousFiveMnutes.txt, and
statisti csDat eMV DD YYYY. t xt .

@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

E R R T . T T R

~

public class Fil eCatal og{

Cal endar ri ght Now,

String prefix;

String dateRef;

i nt m nut eRange, hour Range;

bool ean fl gFi r st Dat aM n;

File mn5, mnb5last, hour, hourlast, header;

@aram pref a string containing the directory where the data nmust be witten
/
public FileCatal og(String pref){

/**

* Constructor. It checks if there are previous data fromthe sanme session

* and transfers these data to the correct statisticsDateMi DD YYYY.txt file.
* Then it clears all "five mnutes"” and "hour" data files.

* <pP>

*

*

prefix = pref;

/] creates File objects

mn5 = new File(prefix + "LastFiveMnutes.txt");

m n5l ast = new File(prefix + "PreviousFiveMnutes.txt");
hour = new File(prefix + "LastHour.txt");

hourl ast = new File(prefix +"PreviousHour.txt");

header = new File(prefix + "Header.txt");

/Il retrieves the date of last record for this session
String |l astDateRef = retrieveDateRef();

/] copies the header file to the session directory if it does not exit

if(! header.exists()){
concatenate(prefix + "Header.txt" , "Header.txt");
}

147

i f(mn5. exists()){

I/ if there is alast five mnutes file, transfers its contents to the
// last hour file and deletes the last five mnutes file
if(lastDateRef !'= null){

concatenate(prefix + "LastHour.txt" , prefix + "LastFiveMnutes.txt");

m n5. del ete();

}

/1 deletes the previous five mnutes file if it exists
if(mn5last.exists()){

m n5l ast . del ete();
}

i f(hour.exists()){

I/ if there is a last hour, transfers its contents to the

/Il related date file file and deletes the |ast hour file

if(lastDateRef !'= null){
String dateFil eNane = new String(prefix +"Date" + |astDateRef+".txt");
concatenate(dateFileNane , prefix + "LastHour.txt");

hour . del ete();

}

/1 deletes the previous hour file if it exists
i f(hourlast.exists()){

hour | ast . del ete();
}

flgFirstDataM n = true;

/**

* Method that will update the files, transfering data from
* statisticsLastReport.txt to the appropriate files.

*

* @aramtime the current tine as a Cal endar object.

*/

public void update(Cal endar tinme){

ri ght Now = ti ne;

/1 displays the current tinme on the console
Systemout.println(rightNow getTinme().toString());

/1 m nut eRangeNow represents a bl ock of five m nutes

i nt m nut eRangeNow = ri ght Now. get (Cal endar. M NUTE) / 5;

i nt hour RangeNow = ri ght Now. get (Cal endar. HOUR_COF_DAY) ;

String dateNow = new String((rightNow get(Cal endar. MONTH) + 1) + "-" +
ri ght Now. get (Cal endar . DAY_OF MONTH) + "-" +
ri ght Now. get (Cal endar. YEAR));

148

[l if it is the first report of the session
i f(flgFirstDataM n){

m nut eRange = m nut eRangeNow;

hour Range = hour RangeNow;

dat eRef = dat eNow;

saveDat eRef (dat eRef) ;

flgFirstDataM n = fal se;

}
i f(m nuteRangeNow ! = m nut eRange){
// if it is new block of five mnutes

/1 appends data fromthe five mnutes file to the last hour file
concatenate(prefix + "LastHour.txt" , prefix + "LastFiveMnutes.txt");
i f(mn5last.exists()){

m n5l ast . del ete();
}

/1 rename last five mnutes file to previous five mnutes file
m n5. renameTo(m n5l ast) ;
m nut eRange = m nut eRangeNow;

i f(hour RangeNow ! = hour Range){
[/ if it is a new hour

/1 appends data fromthe last hour to the related date file
String dateFil eNane = new String(prefix + "Date"” + dateRef + ".txt");
concatenate(dateFileNane , prefix + "LastHour.txt");
i f(hourlast.exists()){
hour| ast . del ete();
}

/1 renames the last hour file as the previous hour file
hour . renameTo(hourl ast);
hour Range = hour RangeNow;

// if it is a new date save the actual date in the
|/ statisticsLastDateRef file
if(! dateRef.equal s(dateNow)){

dat eRef = dat eNow;

saveDat eRef (dat eRef) ;

}

/[l if there is not a new five mnutes block just append the |ast report
/1 to the existing last five mnutes file
concatenate(prefix + "LastFiveMnutes.txt", prefix + "LastReport.txt");

149

/**

* Uility to concatenate two files.

*

* @aramfilel the first file (filel <- filel + file2). If filel does not
* exits this nethod will copy file2 to filel.

* <pP>

* @aramfile2 the file to be appended to filel.

*/

public static void concatenate(String filel, String file2){

try{
Fi |l eQut put Stream out put = new FileQutputStrean(filel, true);

FilelnputStreaminput = new FilelnputStreanm(file2);
i nt nybyte;
while((nmybyte = input.read()) '= -1){
out put.wite(nybyte);
}

out put . cl ose();
i nput.cl ose();

}
cat ch(Fil eNot FoundException e){
Systemout.println("File not found " + e.getMessage());

}
catch(| Oexception e){

Systemout.println("l OException : " + e.getMessage());

}
}
/**
* This nethod saves in a file a date in a string format. It is
* used for save the date of the last report.
* The file name is statisticsLastDateRef.txt.
*
* @aramdater a string representing a date as DD MM YYYY
*

/
public void saveDateRef(String dater){

try{
Dat aQut put St ream out put = new Dat aQut put St r ean(

new Fil eQut put Stream(prefix + "LastDateRef.txt"));

output.witeUTF(dater);
out put . cl ose();

}
cat ch(Fil eNot FoundException e){
Systemout.println("File not found " + e.getMessage());

}
catch(| Oexception e){

Systemout.println("l OException : " + e.getMessage());
}

150

/**

* This nethod retrives a date in a string format fromthe file
* statisticsLastDateRef.txt.

*

* @eturn string representing a date as DD MM YYYY
*/
public String retrieveDat eRef (){

String result = null;

try{
Dat al nput St ream i nput = new Dat al nput St r ean(

new Fil el nput Stream(prefix + "LastDateRef.txt"));

result = input.readUTF();
i nput.cl ose();

}
cat ch(Fi | eNot FoundException e){}

catch(| Oexception e){
Systemout. println("l OException :
}

return result;

+ e. get Message());

} // end of class FileCatal og

151

package org.web3d.vrtp.rtp;

i mport java.aw.*;
i mport java.aw.event.*;
i mport java.io.*;

*

A Dialog to display and nodify the program preferences.
<P>

/

@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

/

public class MdifyPreferences extends D al og {

* %k X X X X F

prot ect ed Checkbox recordBox, partBox, playBox;
protected Label interval Label, interval PresLabel, endLabel, vi ewerLabel
protected TextField interval Text, interval PresText, viewerText;
prot ected Choi ce endChoi ce;
private String [] strEndsin ={ "1 hour", "2 hours", "4 hours",
"8 hours", "12 hours", "24 hours", "2 days", "1 week"};

/**
* Constructor.
* <pP>
* @aram parent the parent frame
*/
public ModifyPreferences(Franme parent){
super(parent, "Preferences"” , true);

set Size(260 , 280);
set Layout (nul |);
set Background(Col or. i ght G ay);

addW ndowLi st ener (new C oseWndow));

part Box = new Checkbox("Send RTCP packets", true);
part Box. set Bounds(10, 30, 140, 25);

part Box. set Backgr ound(Col or. | i ght G ay);

add(part Box) ;

pl ayBox = new Checkbox("Play incom ng nedia", true);
pl ayBox. set Bounds(10, 60, 160, 25);
add(pl ayBox) ;

recordBox = new Checkbox("Record statistics", true);
r ecor dBox. set Bounds(10, 90, 140, 25);
add(recor dBox);

i nterval Label = new Label ("Record Interval (sec)");
i nterval Label . set Bounds(10, 120, 120, 25);

add(i nt erval Label);

i nterval Text = new TextFi el d("30.0");

i nterval Text . set Bounds(130, 120, 40, 25);

add(i nterval Text);

i nterval PresLabel = new Label ("Presentation Interval (sec)");

152

i nterval PresLabel . set Bounds(10, 150, 140, 25);
add(i nterval PresLabel);

i nterval PresText = new TextField("5");
i nterval PresText. set Bounds(160, 150, 40, 25);
add(i nterval PresText);

endLabel = new Label ("Monitoring Period");
endLabel . set Bounds(10, 180, 100, 25);
add(endLabel) ;

endChoi ce = new Choi ce();

endChoi ce. set Bounds(120, 180, 80, 25);

add(endChoi ce);

for(int ii=0; ii < strEndsin.length; ++ii){
endChoi ce. add(strEndsin[ii]);

}

endChoi ce. sel ect (0) ;

vi ewer Label = new Label ("External viewer:"),
vi ewer Label . set Bounds(10, 210, 120, 25);
add(vi ewer Label) ;

vi ewer Text = new TextField("c:/Program Fil es/accessori es/wordpad. exe");
vi ewer Text . set Bounds(20, 240, 230, 20) ;

vi ewer Text . set Font (new Font(null , Font.PLAIN, 10));
add(vi ewer Text);

| oadPr ef erences();

}

/**

* Enables the GJ input elenents

*/

public void enabl el nput (){
recor dBox. set Enabl ed(true);
part Box. set Enabl ed(true);
pl ayBox. set Enabl ed(true);
i nterval Text. set Enabl ed(true);
i nterval PresText. set Enabl ed(true);
endChoi ce. set Enabl ed(true);
vi ewer Text . set Enabl ed(true);

}

/**

* Disables the GU input elenents
*/
public void disabl el nput(){

r ecor dBox. set Enabl ed(f al se);
part Box. set Enabl ed(f al se);
pl ayBox. set Enabl ed(f al se);
i nterval Text. set Enabl ed(f al se);
i nterval PresText. set Enabl ed(fal se);
endChoi ce. set Enabl ed(f al se);
vi ewer Text . set Enabl ed(f al se) ;

153

/**

* Saves the preferences in the file preferences.txt
*/
public void savePreferences(){
try{
Dat aQut put St ream out put = new Dat aQut put St r ean(
new Fi | eQut put St reanm("preferences.txt"));

out put . wi t eBool ean(partBox.getState());

out put . wi t eBool ean(pl ayBox. getState());

out put . wri t eBool ean(recordBox. getState());
out put . writeUTF(interval Text. get Text());

out put . witeUTF(interval PresText.get Text());
out put . wi tel nt (endChoi ce. get Sel ect edl ndex());
out put . witeUTF(vi ewer Text . get Text ());

out put . cl ose();

}
cat ch(Fil eNot FoundException e){
Systemout.println("File not found " + e.getMessage());

}
catch(| Oexception e){
Systemout.println("l OException : " + e.getMessage());
}
}
/**
* Loads the preferences fromthe file preferences.txt
*/

private void | oadPreferences()(

try{
Dat al nput St ream i nput = new Dat al nput St r ean(

new Fil el nput Strean{ "preferences.txt"));

part Box. set St at e(i nput . readBool ean());

pl ayBox. set St at e(i nput . readBool ean());
recor dBox. set St at e(i nput . r eadBool ean()) ;

i nterval Text . set Text (i nput.readUTF());

i nterval PresText. set Text (i nput.readUTF());
endChoi ce. sel ect (i nput.readlint());

vi ewer Text . set Text (i nput . readUTF());

i nput.cl ose();
}
cat ch(Fi | eNot FoundException e){}

catch(| Oexception e){
Systemout.println("l OException : " + e.getMessage());
}

}

} // end of class ModifyPreferences

154

package org.web3d.vrtp.rtp;

i mport javax.nedia.rtp.*;
i mport javax.nedia.rtp.event.*;
i mport javax.nedia.rtp.rtcp.*;

i mport java.io.*;
i mport java.sql.*;
i mport java.util.*;

/

E R S T I B B T N R
*

~

A cl ass used by RtpMbnitorManager objects to wite the statistics
periodically to disk. It is created as a separate thread that waits for

a fixed period of tine after witing data to disk.

<P>

This class wites data to the file called "statisticsLastReport.txt", that
contains only the last single report. The FileCatalog class is actually
responsible for transferring the data to the file
"statisticsLastFiveMnnutes.txt" and other files.

@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

public class RecordTask inplenments Runnable {

Sessi onManager ngr;
Rt pMoni t or Manager nyNbn;
Thread t hread,;

bool ean fl gRun;
Print St r eam out put ;
String dir;

String prefix;
String fil enane;
Cal endar ti meNow,

Fi | eCatal og cat;

i nt recordParam

*

Constructor. It creates the session directory where the stats files will be
witten. Also it creates a FileCatal og object that will organize the data in
several files (five mnutes, hour and day).

@ar am non the Rt pMonitorManager that manages the nonitoring session.
<pP>
@aramreclnterval the interval between statistic sanmples, in seconds.

L T T

*/

publ i c RecordTask(Rt pMoni t or Manager non, double reclnterval) {
/| saves paraneters as internal variables
nyMon = non;
recordParam = (int) (reclnterval * 1000);

/1 gets the session manager associated with the nonitoring session
mgr = myMon. get Sessi onManager () ;

155

/1 gets session address and port
String session = nyMon. get Medi aLocat or (). get Sessi onAddr ess() ;
String port =
(new I nt eger (myMon. get Medi aLocat or () . get SessionPort())).toString();

/1 creates a new subdirectory for saving session statistics

dir = new String("./session" + session.replace('.','-") + "port" +port);
File newdir = new File(dir);

newdi r. nkdir();

/1 creates file statisticslLastReport.txt
prefix = new String(dir + "/statistics")
filename = new String (prefix + "LastReport.txt");

/1 creates a FileCatal og object
cat = new FileCatal og(prefix);

/| executes as a thread

thread = new Thread(this, "Record thread");
t hr ead. set Daenon(true);

thread. start();

/**

* Resets a flag that is checked each tinme the thread associated with this

* object is awaken after the wait command, causing the thread to end.
*

*/

public void exit(){
flgRun = fal se;

}

/**

* Starts executing the recording and waiting until the recording interva

* is over, in a loop, until the "exit" method is called
*

*/
public void run(){
flgRun = true

/1 runs continuously until stopped
whi | e(f1 gRun){

try {

/1 opens the last report file
output = new PrintStrean{ new FileCQutputStream fil ename, false));

/1 gets actual tine
ti meNow = Cal endar . get | nst ance();

/] records statistics on file

recordd obal Stats();
recordStreantst at s();

156

recor dFeedbacks();

/1 calls the FileCatal og object to manage the data between the
/1 several files
cat . updat e(ti meNow) ;

}
catch (Fil eNot FoundException e){

Systemout.println("lIn RecordTask : " + e.getMessage());
}

finally {
out put . cl ose();

}

try{
Thr ead. sl eep(recordParanj;

}
catch (InterruptedException e){}

/**

* Records global statistics (lines starting with D1)
*

*/

private void recordd obal Stats(){

d obal ReceptionStats stats = ngr.getd obal Recepti onStats();

output.print("D1 ");
output.print((new Tine(ti meNow getTine().getTime()).toString()));

output.print(' ');

output.print(ngr.getAll Participants().size());
output.print(' ');

out put. print (ngr.get RenoteParticipants().size());
output.print(' ');

out put. print (ngr.getActiveParticipants().size());
output.print(' ');

out put. print(stats. getBytesRecd());
output.print(' ');

out put. print (stats. get Packet sRecd());
output.print(' ');

out put. print(stats. get RTCPRecd());
output.print(' ');

out put. print(stats. get SRRecd());
output.print(' ');

out put. print(stats. get BadRTPkts());
output.print(' ');

out put. print(stats. get BadRTCPPkts());
output.print(' ');

out put. print(stats. get Ml fornedSR());
output.print(' ');

out put. print(stats. get Ml fornedRR());
output.print(' ');

out put. print(stats. get Mal f ormedSDES());

157

output.print(' ');

out put. print(stats. get Mal f ornedBye());
output.print(' ');

out put. print(stats. getLocal Colls());
output.print(' ');

out put. print(stats. getRenoteColls());
output.print(' ');

out put. print (stats. get Packet sLooped());
output.print(' ');
output.print(stats.getTransmitFailed());
output.print(' ');

out put. println(stats. get UnknownTypes());

}
/**

* Records streamstatistics (lines starting with D2)
*

*/

private void recordStreanttats(){

Recei veStream stream
ReceptionStats stats;
Partici pant part;

| ong SSRC,

String CNAME

Vect or aux ngr . get Recei veSt reans() ;

for(int ii 0; ii< aux.size(); ++ii){
stream = (ReceiveStrean) aux.elementAt(ii);
part = stream getParticipant();
SSRC = RtpUtil.correct SSRC(stream get SSRC()) ;

if(part !'= null){

CNAME = stream getPartici pant (). get CNAME() ;
el se {

CNAME = new String("Unknown Participant™);

}

stats = stream get Sour ceReceptionStats();

output.print("D2 ");

out put. print(CNAMVE);

output.print(' ");

out put . pri nt (SSRCO) ;

output.print(' ");
output.print(stats.getPDU ost());
output.print(' ");

out put. print(stats. get PDUProcessed());
output.print(' ");

out put.print(stats.getPDUMsOrd());
output.print(' ");

out put.print(stats.getPDU nvalid());
output.print(' ");

out put.println(stats.getPDUDuplicate());

158

/**

* Records feedback statistics (lines starting with D3)
*

*/

private void recordFeedbacks() {

Parti ci pant part;

Vector reports, feedbacks;
Report rep;

Feedback feedbk;

String CNAME;

| ong fronSSRC, about SSRC,
doubl e fraction;

| ong packetslLost, jitter;

Vector aux = ngr.getAllParticipants();

for(int ii = 0; ii< aux.size(); ++ii){
part = (Participant)aux.elementAt(ii);
CNAME = part. get CNAME() ;
reports = part.getReports();
for(int jj=0; jj< reports.size(); ++j){
rep = (Report) reports.elenentAt(jj);
fronSSRC = RtpUtil.correct SSRC(rep.get SSRC());
f eedbacks = rep. get FeedbackReports();
for(int kk=0; kk < feedbacks.size(); ++kk){
feedbk = (Feedback) feedbacks. el ement At (kk);
about SSRC = RtpUtil.correct SSRC(feedbk. get SSRC());
fraction = (feedbk. getFractionLost())/256.0;
packet sLost = feedbk. get Nuniost();
jitter = feedbk.getJitter();

output.print("D3 ");

out put. print(CNAMVE);
output.print(' ");
output.print(fronSSRC);
output.print(' ");

out put . print (about SSRC);
output.print(' ");
output.print(fraction);
output.print(' ");

out put. print(packetsLost);
output.print(' ");
output.println(jitter);

}

return;

}

} // end of class RecordTask

159

package org.web3d.vrtp.rtp;

i mport javax.nedia.*;

i mport javax.nedia.rtp.*;
i nport java.lang. *;

i mport java.net.*;

*

~

E o T T T R

~

A class that represents necessary information to define
an RTP session, as address, port and TTL.

<P>
@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

public class Rt pMedi aLocat or extends Medi aLocat or {

/**

* Defines the value of TTL if not provided.
*/

public static final int TTL_UNDEFI NED = 1;

private String address = ;

private int port;
private int ttl = TTL_UNDEFI NED,

/**
* Constructor.
* @aramlocatorString Describes the session. It should have the
* followi ng format:
rtp://address:port[/ttl] , where:

* <pP>

* address -> nulticast address of the rtp session
* <pP>

* port -> port nunber

* <pP>

* ttl (optional) -> time-to-live

*/

public Rt pMedi aLocator(String locatorString) throws MalfornmedURLException
{

super(locatorString);

par seLocator(|l ocatorString);

}

/1 this method parses the |ocator string to get the various session data
// as address, port and ttl
private void parseLocator(String |ocatorString)

throws Mal f or medURLExcepti on{

String remai nder = get Remai nder () ;

i nt col onl ndex
i nt sl ashl ndex

remai nder . i ndexCF (":");
remai nder . i ndextr ("/", 2);

160

/1 gets the address

if (colonlndex !'=-1)
address = remmi nder. substring(2, colonlndex);
el se {

t hr ow new Mal f or nedURLExcept i on(
"RTP Medi aLocator is Invalid. Must be of formrtp://addr:port/ttl");

}

/|l tests if the address is valid

try{
I net Address | addr = | net Addr ess. get ByNane(addr ess) ;

cat ch (UnknownHost Exception e){throw new Ml f or redURLExcept i on(
"Valid RTP Session Address mnust be given");
}

/1 gets the port
String portstr ="";
if (slashlndex == -1)
portstr = remainder. substring(col onl ndex +1
remai nder. |l ength());
el se
portstr = remai nder. substring(col onl ndex +1
sl ashl ndex) ;

/1 tests if the port is an integer
try{
Integer Iport = Integer.valueO (portstr);
port = lport.intValue();
}catch (Nunber For mat Exception e){
t hr ow new Mal f or nedURLExcept i on(
"RTP Medi aLocator Port nust be a valid integer");

}
/1 gets the ttl
if (slashlndex !'=-1){
String ttlstr = remai nder. substring(sl ashl ndex+1,
remai nder.l ength());
try{
Integer Ittl = Integer.valueO(ttlstr);
ttl = 1ttl.intValue();
}catch (Nunber For mat Exception e){}
}

/** Returns the RTP Session address
*@eturn String formof the RTPSession address
*/
public String get Sessi onAddress(){
return address;
}

161

/**

* Returns the RTP session port.

* @eturn RTP session port

*/

public int getSessionPort(){
return port;

}

/**
* Returns the session Tine-to-1live.
* @eturn time-to-1live(TTL)
*/
public int getTTL(){
return ttl;
}

} // end of class Rt pMedi aLocat or

162

package org.web3d.vrtp.rtp;

i mport javax.nedia.rtp.*;
i mport javax.nedia.rtp.event.*;
i mport javax.nedia.rtp.rtcp.*;

i mport java.aw.*;

i mport java.aw.event.*;
i mport java. net.*;

i mport java.io.*;

i mport java.util.*;

*

/
The Rt pMonitor Application.

<P>

This class is a frane that inplements the RipMnitor GJ. <P>

If any conmmand |ine argunent is passed the RtpMnitorConmandLi ne cl ass
is called instead.

@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

E R T T . T T R

~

public class R pMnitor extends Frane
i npl enents ActionLi stener, ltenlistener {

Text Fi el d sessi onText, sessi onNameText;

Text Area acti veArea, passi veAr ea, f eedbkAr ea;

Choi ce st reantChoi ce;

Button start, stop, changeSt r eam

Label sessionLabel, sessionNaneLabel, streaniabel, feedbkLabel;

Label endLabel ;

Label gl obal St atLabel, activelLabel, passivelLabel, feedbkFi el dsLabel;

Label [] glLab;

TextField [] gText;

String [] gField = {"Total Bytes", "Total Packets", "RTCP Packets",
"SR Packets", "Bad RTP Packets", "Bad RTCP Packets",

"Bad SR Packets","Bad RR Packets", "Bad SDES Packets",

"Bad BYE Packets", "Local Collisions",
"Renote Col lisions", "Looped Packets",
"Fail ed Transm ssion", "Unknown Type" };
Label [] rlLab;
TextField [] rText;
String [] rField = {"Lost PDUs", "Processed PDUs", "M sOrdered PDUs",
"Invalid PDUs", "Duplicate PDUs" };

int [] endslnHours = { 1, 2, 4, 8, 12, 24, 48, 168 },;
String | ocator;

bool ean flgPart, flgPlay, flgRecord;
bool ean fl gActive = fal se;

int presinterval;

doubl e recl nterval ;

Rt pMoni t or Manager nonMr ;

Sessi onManager nyngr;

D spl ayTask di spTask;

| ong SSRCt oShow;

Hasht abl e streantabl e;

bool ean fl gUpdat eSt r eans;

163

Dat e endDat e;

MenuBar bar;

Menu preferences, bookmarkMenu, filesMenu, hel pMenu;

Menul tem vi ewPref, nodi fyPref, selectBm addBm del eteBm aboutltem

Menultem | ast51tem previousSltem |astHourltem previousHourltem headerltem
Menultemexitltem

Modi f yPr ef erences nodPref D al og;

Sel ect Bookmar k sel BnDi al og;

Del et eBookmar k del BnDi al og;

AddBookmar k addBnDi al og;
About about D al og;
/**

* Constructor. It is called by main() if no command |ine argunment is passed.
* <pP>
* The constructor initializes the GUJ conponents.
*/
public Rt pMnitor()
{
super ("RtpMonitor");
set Si ze(780, 530) ;
set Layout (null);

pref erences = new Menu("Preferences");

vi ewPref = new Menultenm("View');

vi ewPr ef . addAct i onLi stener (this);
nodi fyPref = new Menulten{"Mdify");
nodi f yPref . addActi onLi stener (this);

pref erences. add(viewPref);
pr ef erences. addSepar at or () ;
pref erences. add(nodi fyPref);

bookmar kMenu = new Menu(" Booknmar ks");

addBm = new Menul t en(" Add") ;
addBm set Enabl ed(f al se) ;

del eteBm = new Menulten("Del ete");
sel ect Bm = new Menulten(" Sel ect");
sel ect Bm addAct i onLi st ener (this);
del et eBm addAct i onLi st ener (this);
addBm addActi onLi st ener (t his);

bookmar kMenu. add(sel ectBm);
bookmar kMenu. addSepar at or () ;
bookmar kMenu. add(addBm) ;
bookmar kMenu. addSepar at or () ;
bookmar kMenu. add(del eteBm);

filesMenu = new Menu("File");
| ast 51tem = new Menul ten("Last five m nutes");
| ast 51t em addAct i onLi st ener (this);

previ ous5ltem = new Menulten("Previous five mnutes");
previ ous5l t em addAct i onLi stener (this);

164

| ast Hour It em = new Menul t en("Last hour");

| ast Hour I t em addAct i onLi st ener (this);

previ ousHour I tem = new Menul ten(" Previ ous hour");
previ ousHour I t em addAct i onLi stener (this);
headerltem = new Menul t en{" Header");

header |t em addActi onLi stener (this);

exitltem = new Menulten{"Exit");

exi tltem addActi onLi stener (this);

filesMenu. add(last5ltem);
filesMenu. add(previous5litem);
filesMenu.add(|astHourltem);
filesMenu. add(previousHourltem);
filesMenu. addSeparator();
filesMenu. add(headerltem);
filesMenu. addSeparator();
filesMenu. add(exitltem);

hel pMenu = new Menu(" Hel p");

aboutltem = new Menul t en{" About ") ;
about I t em addAct i onLi st ener (this);
hel pMenu. add(aboutltem;

bar = new MenuBar () ;
bar.add(fil esMenu);
bar . add(bookmar kMenu) ;
bar . add(pr ef erences) ;
bar . add(hel pMenu) ;

set MenuBar (bar);
nodPr ef Di al og = new Modi f yPref er ences(this);

sessi onLabel = new Label ("Session Address");
sessi onLabel . set Bounds(10, 60, 100, 25);
add(sessi onLabel) ;

sessionText = new TextField("rtp://___ . . . I ")

sessi onText . set Bounds(110, 60, 230, 25);
add(sessi onText);

sessi onNanelLabel = new Label (" Sessi on Name");
sessi onNanelLabel . set Bounds(360, 60, 90, 25);
add(sessi onNanelLabel) ;

sessi onNanmeText = new TextField("");
sessi onNaneText . set Bounds(450, 60, 180, 25);
add(sessi onNaneText) ;

start = new Button("Start");
start.set Bounds(660, 60, 40, 25);
start.addActionLi stener(this);
start.set Enabl ed(true);

add(start);

165

stop = new Button("Stop");

st op. set Bounds(720, 60, 40, 25);
st op. addActi onLi stener(this);

st op. set Enabl ed(f al se);

add(stop);

gl obal Stat Label = new Label ("Qd obal Statistics");
gl obal St at Label . set Bounds(160, 100, 100, 20);
add(gl obal St at Label) ;

gLab = new Label [15];
gText = new Text Fi el d[15] ;
int offsetx 0;
int offsety = O;
for(int 1i=0; ii< 15; ii++){
if(ii==8){
of f set x= 220;
of fsety=-(ii*25);

}

gLab[ii] = new Label (gField[ii]);

gLab[ii].setBounds(10+offsetx, 130+(ii*25)+offsety, 115, 20);
add(gLab[ii]);

gText[ii] = new TextField("");

gText[ii].setBounds(125+of fsetx, 130+(ii*25)+offsety, 90, 20);
gText[ii].setEditabl e(false);

add(gText[ii]);

}

activelLabel = new Label ("Active Participants");
activelLabel . set Bounds(50, 340, 140, 20);
add(activelLabel);

activeArea = new TextArea("", 0, 0, TextArea. SCROLLBARS BOTH);
activeArea. set Bounds(10, 360, 175, 180);
activeArea. set Font (new Font("Courier"” , Font.PLAIN, 12));

activeArea. set Edi tabl e(fal se);
add(acti veArea);

passi veLabel = new Label ("Passive Participants");
passi velLabel . set Bounds(230, 340, 140, 20);
add(passi velLabel) ;

passi veArea = new TextArea("", 0, 0, TextArea. SCROLLBARS BOTH);
passi veAr ea. set Bounds(195, 360, 175, 180);
passi veArea. set Font (new Font("Courier"™ , Font.PLAIN, 12));

passi veAr ea. set Edi t abl e(f al se);
add(passi veArea);

streamLabel = new Label ("Streant);
streamlLabel . set Bounds(470, 120, 50, 25);
add(streamnlLabel);

st reanthoi ce = new Choi ce();

st reanChoi ce. set Bounds(520, 120, 250, 25);
st r eanChoi ce. set Enabl ed(f al se);

st reantChoi ce. addl t enli stener(this);

166

add(st r eanthoi ce) ;

changeStream = new Button(" Change");
changeSt r eam set Bounds(720, 150, 50, 25);
changeSt r eam addActi onLi stener(this);
changeSt r eam set Enabl ed(f al se);
add(changeStrean;

rLab = new Label [5];

rText = new TextField[5];

for(int ii=0; ii<5; ii++){
rLabl[ii] = new Label (rField[ii]);
rLab[ii].setBounds(500, 170+(ii*25), 100, 20);
add(rlLab[ii]);
rText[ii] = new TextField("");
rText[ii].setBounds(605, 170+(ii*25), 90, 20);
rText[ii].setEditabl e(false);
add(rText[ii]);

}

f eedbkLabel = new Label ("Feedback Reports");
f eedbkLabel . set Bounds(510, 315, 100, 20);
add(f eedbkLabel);

f eedbkFi el dsLabel = new Label (

"User nane Fraction Lost Jitter Packets Lost");
f eedbkFi el dsLabel . set Bounds(420, 340, 350, 20);
add(f eedbkFi el dsLabel);

f eedbkArea = new Text Area("", 0, 0, TextArea. SCROLLBARS VERTI CAL_QONLY);
f eedbkAr ea. set Bounds (410, 360, 360, 180);

f eedbkAr ea. set Font (new Font("Courier"™ , Font.PLAIN, 12));

f eedbkAr ea. set Edi t abl e(f al se);

add(f eedbkArea);

set Vi si bl e(true);
streanifabl e = new Hashtabl e();
thi s. addW ndowLi st ener (new W ndowAdapt er () {
public void wi ndowCd osi ng(W ndowEvent e){
System exi t (0);

1)

167

/**

* Takes action when buttons are sel ected.

*

*/

public void actionPerformed(ActionEvent e)

{

if(e.getSource() == start){

}

start. set Enabl ed(f al se);
di sabl el nputs();
| ocat or = sessionText. get Text();

reclnterval = Doubl e. parseDoubl e(
nodPr ef Di al og. i nt erval Text. get Text());
preslnterval = Integer. parselnt(

nodPr ef Di al og. i nterval PresText. get Text());
flgPart nodPr ef Di al og. part Box. get State();
flgPl ay nodPr ef Di al og. pl ayBox. get Stat e() ;
fl gRecord = nodPrefDi al og. recordBox. get State();
SSRCt oShow = 0;
endDate = new Date((new Date()).getTine()
+ endsl nHour s[nodPr ef Di al og. endChoi ce. get Sel ect edl ndex()] *3600000L) ;

if(startSession()){
st op. set Enabl ed(true);
addBm set Enabl ed(true);
changeSt r eam set Enabl ed(true);
fl gUpdat eStreans = true;

}

el se{
start.set Enabl ed(true);
enabl el nputs();

}

if(e.getSource() == stop){

}

flgActive = fal se;

st op. set Enabl ed(f al se);

addBm set Enabl ed(f al se);

nmonMyr . ¢l ose() ;

monMgr = nul | ;

nyngr = nul | ;

clearAll Data();

changeSt r eam set Enabl ed(f al se);
start.set Enabl ed(true);

enabl el nputs();

i f(e.getSource() == changeStream {

changeSt r eam set Enabl ed(f al se);
fl gUpdat eStreans = fal se;

cl ear StreanmDat a() ;

st r eanChoi ce. set Enabl ed(true);

168

i f(e.getSource() == nodifyPref){
modPref Di al og. set Titl e("Mdify Preferences");
nmodPr ef Di al og. enabl el nput () ;
nmodPr ef Di al og. set Vi si bl e(true);
nmodPr ef Di al og. savePr ef erences();

if(e.getSource() == viewPref){
nmodPref Di al og. set Titl e("Vi ew Preferences");
nmodPr ef Di al og. di sabl el nput () ;
nmodPr ef Di al og. set Vi si bl e(true);

i f(e.getSource()== sel ectBm{
sel BnDi al og = new Sel ect Bookmar k(t hi s);
sel BnDi al og. set Vi si bl e(true);
sel BnDi al og = nul | ;

i f(e.getSource()== del eteBm{
del BnDi al og = new Del et eBookmar k(t hi s);
del BnDi al og. set Vi si bl e(true);
del BnDi al og = nul | ;

i f(e.getSource()== addBm {
addBnDi al og = new AddBookmar k(t hi s);
addBnDi al og. set Vi si bl e(true);
addBnDi al og = nul | ;

if(e.getSource()== last5ltem{
runVi ewer (sessionText.get Text() , "LastFiveMnutes.txt");

i f(e.getSource()== previous5Sltem{
runVi ewer (sessi onText.get Text() , "PreviousFiveMnnutes.txt");

i f(e.getSource()== lastHourltem {
runVi ewer (sessi onText.get Text() , "LastHour.txt");

i f(e.getSource()== previousHourlten{
runVi ewer (sessi onText.get Text() , "PreviousHour.txt");

}
i f(e.getSource()== headerlten){
runVi ewer (sessionText.get Text() , "Header.txt");

}

i f(e.getSource()== aboutltem{
about Di al og = new About (t his);
about Di al og. set Vi si bl e(true);
about Di al og = nul | ;

}

if(e.getSource()== exitltem{

Systemexit(0);
}

169

/**

* starts the nonitoring session by creating a Rt pMnitorManager object.
*/

private bool ean start Session(){

/] tries to create the R pMnitorManager object
try{
monMgr = new Rt pMoni t or Manager (1 ocator, flgPart, flgPlay,
fl gRecord, reclnterval);
myngr = nonMjr. get Sessi onManager () ;

catch(Mal f or mredURLException e){
f eedbkAr ea. set Text (
"Ml f or mredURLException creating RtphnitorManager:" + '"\n");
f eedbkAr ea. append(e. get Message());
return fal se;

}
cat ch(UnknownHost Exception e){
f eedbkAr ea. set Text (
" UnknownHost Excepti on creating Rt phonitorManager:" + '\n');
f eedbkAr ea. append(e. get Message());
return fal se;

cat ch(Sessi onManager Exception e){
f eedbkAr ea. set Text (
" Sessi onManager Exception creating Rt pMnitorManager:" + "\n');
f eedbkAr ea. append(e. get Message());
return fal se;
}
catch(| Oexception e){
f eedbkAr ea. set Text ("1 OExcepti on creating Rt pMonitorManager:" + '\n');
f eedbkAr ea. append(e. get Message());
return fal se;

}
flgActive = true;

/1 creates a DisplayTask object to update the statistics on screen
di spTask = new Di spl ayTask(this, preslinterval);

return true;

}
/**

* Updates the global statistics.
*/
public void showd obal Stats(){

A obal ReceptionStats stats = nyngr. get d obal Recepti onStats();
gText[0] .set Text (new Integer(stats.getBytesRecd()).toString());
gText[1].set Text(new I nteger(stats. getPacketsRecd()).toString());

gText[2].set Text(new Integer(stats.get RTCPRecd()).toString());
gText[3].set Text(new I nteger(stats.get SRRecd()).toString());

170

gText[4].set Text(new I nteger(stats.getBadRTPkts()).toString())
gText[5].set Text(new I nteger(stats.get BadRTCPPkts()).toString());
gText[6].set Text (new Integer(stats.getMalformedSR()).toString());
gText[7].set Text(new Integer(stats.getMalformedRR()).toString());
gText[8].set Text(new I nteger(stats.getMalformedSDES()).toString(
gText[9].set Text (new I nteger(stats.getMalformedBye()).toString())
gText[10] . set Text (new I nteger(stats.getLocal Colls()).toString());
gText[11].set Text(new I nteger(stats.getRempteColls()).toString());
gText[12] . set Text (new I nteger (stats. get Packet sLooped()).toString());
gText[13].set Text(new Integer(stats.getTransmtFailed()).toString());

gText[14] . set Text (new | nt eger (st ats. get UnknownTypes()).toString());

)
);
)
))

}

/**

* Updates the lists of active and passive partici pants.
*/

public void showPartici pants(){

activeArea.setText("");
Vect or aux = nyngr.getActiveParti cipants();

Parti ci pant part;
for(int ii = 0; ii< aux.size(); ++ii){
part = (Participant)aux.elenentAt(ii);
activeArea. append(RtpUtil.getUsernameO CNAME(part) + "\n');
}
passi veArea. set Text ("");
aux = nyngr. get Passi veParti ci pants();

for(int ii = 0; ii< aux.size(); ++ii){
part = (Participant)aux.elenentAt(ii);
passi veAr ea. append(RtpUtil.get User nameQr CNAME(part) + '\n');

}
}
/**
* Updates the stream statistics.
*/

public void showStreanttats(){

if(!'flgUpdateStreans){
return;
}

Recei veStream di spStream = nul | ;
Recei veStream stream
ReceptionStats stats;

Parti ci pant part;

String displ ay;

streanthoi ce. renmoveAl | ();
streanTabl e. cl ear () ;

Vect or aux
for(int ii

myngr . get Recei veStreans() ;
0; 1i< aux.size(); ++ii){

171

stream = (ReceiveStrean) aux.elenmentAt(ii);
part = stream getParticipant();

if(part !'= null

M

display = new String(RpUtil.getUsernameOQ CNAME(part) + " /

}

el se{

Rt pUtil.correct SSRC(stream get SSRC()));

di splay = new String("unknown_participant / " +

}

Rt pUtil.correct SSRC(stream get SSRC()));

st reanChoi ce. add(di spl ay) ;
streanirabl e. put (di splay, new Long(stream get SSRC()));

i f(stream get SSRC() == SSRCt oShow) {
di spStream = stream
st reantChoi ce. sel ect(ii);

i f(SSRCt oShow ==
i f(aux.size()

di spStream

SSRCt oShow

}

i f(dispStream ==

for(int jj=0; jj<5;

0) {

> 0){
(Recei veStream) aux. el enent At (0);
di spSt ream get SSRC() ;

nul 1) {

++)4

rText[jj].setText("");

}
SSRCt oShow = 0;
return;

}

stats = di spStream get Sour ceReceptionStats();

r Text[0] . set Text (
rText[1] . set Text (
rText[2] . set Text (
rText[3] . set Text (
r Text[4] . set Text (

new
new
new
new
new

I nteger(stats.getPDU ost()).toString());

I nt eger (stats. get PDUProcessed()).toString());
I nteger(stats.getPDUM sOrd()).toString());

I nteger(stats.getPDU nvalid()).toString());

I nt eger (stats. get PDUDuplicate()).toString());

172

/**
* Updates the stream feedbacks.
*/

public void showrFeedbacks() {

if(!'flgUpdateStreans){
return;
}

Parti ci pant part;

Vector reports, feedbacks;
Report rep;

Feedback feedbk;

f eedbkAr ea. set Text ("");

Vect or aux myngr. get Al l Partici pants();

for(int ii 0; 1i< aux.size(); ++ii){
part = (Participant)aux.elementAt(ii);
reports = part.getReports();

for(int jj=0; jj< reports.size(); ++j){
rep = (Report) reports.elenentAt(jj);
f eedbacks = rep. get FeedbackReports();
for(int kk=0; kk < feedbacks.size(); ++kk){
feedbk = (Feedback) feedbacks. el ement At (kk);
i f(feedbk.get SSRC() == SSRCt oShow) {
f eedbkAr ea. append(fill Bl anks(
Rt pUtil.getUsernameO CNAVE(part) , 19) + " ");
doubl e fraction = (feedbk.getFractionLost())/256.0;
f eedbkAr ea. append(
fillBlanks(String.valueO(fraction), 6) + " ")
f eedbkAr ea. append(

fillBlanks(String.val ued (feedbk.getJditter()),8) + " "

f eedbkAr ea. append(
fillBlanks(String.val ue (feedbk. get NumLost()), 10)
+'\n");

173

/**

* Take action when sel ecti on boxes are used.
*

*/
public void itenttateChanged(ItenEvent ie)
{
if(ie.getSource() == streanthoice){
SSRCt oShow = ((Long) streanTable.get(ie.getlten())).longVal ue();
fl gUpdat eStreans = true;
changeSt r eam set Enabl ed(true);
st r eanChoi ce. set Enabl ed(f al se);
}
}
/**
* Cears all stats info on screen.
*/

private void clearAllData()({

for(int jj=0; jj<15; ++jj){
gText[jj].setText("");

for(int jj=0; jj<5; ++j){
rText[jj].setText("");

activeArea.set Text("");
passi veArea. set Text ("");
f eedbkArea. set Text ("");

st reanthoi ce. renmoveAl | ();
streanirabl e. cl ear () ;

}

/**
* Clears all streamrelated stats.
*/
private void cl earStreanData()
for(int jj=0; jj<5; ++j){
rText[jj].setText("");

f eedbkArea. set Text ("");

174

/**

* Di sabl e user input components(used after a session is started)
*/
private void disabl el nputs(){

sessi onText . set Enabl ed(f al se);

nodi f yPr ef . set Enabl ed(f al se);

sel ect Bm set Enabl ed(f al se);

}
/**
* Enabl e user input conponents(used after a session is stoped)
*/
private void enabl el nputs(){
sessi onText . set Enabl ed(true);

modi f yPr ef . set Enabl ed(true);
sel ect Bm set Enabl ed(true);

/**

* Returns the state of RipMonitor. Also exits the programif the duration
* is over.
* @eturn true if the nonitor is active
*/
publ i c bool ean ishnitoring(){
i f(endDate. conmpareTo(new Date()) < 0){
System exi t (0);
}

return flgActive

*

Creates a string with a fixed size, starting by a given string and endi ng
wi th bl ank spaces.

@aramstrin the original string

@aramsize the final size of the returning string

@eturn a string
/
private String fillBlanks(String strin, int size)

L

{
StringBuffer spaces = new StringBuffer();
for(int ii =0; ii <= size; ++ii){
spaces. append(" ");
}
String newString = new String(strin + spaces);
return newString. substring(0, size);
}

175

/**

* Runs an external programspecified in the preference nenu
* to display output files.

* @aram | ocator the session R pMedi aLocat or

* @aramfileName the name of the file to be displayed

*/

private void runViewer(String locator, String fil eNane){

String prefix;

Runtime r = Runtinme. getRuntime();

try{
Rt pMedi aLocator rtpm = new Rt pMedi aLocator (| ocator);

String session = rtpm . get Sessi onAddress();
String port = (new Integer(rtpm.getSessionPort())).toString();
String dir = new String("./session"
+ session.replace('.','-") + "port" + port);
prefix = new String(dir + "/statistics");

}
catch (Ml f or nedURLException e) ({
Systemout.println(e.getMessage());

return;
}
try{
String prog = new String(nodPrefDi al og. vi ewer Text.getText() + " " +

prefix + fil eNanme);
Process p = r.exec(prog);

}

catch (1 CException e){
Systemerr.println(e.getMessage());

}

/**

* Method cal l ed upon executing class RtpMnitor. If there is no
* argument an object of class RipMnitor will be instantiated

* and executed, otherw se the same will happen with an
* Rt pMoni t or CommrandLi ne obj ect.
*/

public static void main(String [] args)

{

int nArgs = args. |l ength;

if(args.length == 0){
Rt pMonitor nyProg = new Rt pMonitor();

el se{
Rt pMoni t or ConmandLi ne nyProg = new Rt pMoni t or CommandLi ne(args);
myProg. run();
}
}

} // end of class Rtphbnitor

176

package org.web3d.vrtp.rtp;

i mport javax.nedia.rtp.*;
i mport javax.nedia.rtp.event.*;
i mport javax.nedia.rtp.rtcp.*;

i mport java.io.*;
i mport java.net.*;
i mport java.util.*;

~
*

* %k X X X X X F

~

A class used to start a RTP nonitor from conmmand |ine inputs.
<P>
Thi s noni tor does not have the option of playing streans.

@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

public class Rt pMnitorComandLi ne {

bool ean wi |l part fal se;
bool ean wi I | pl ay fal se;
bool ean willrecord = fal se
String locator = null;
doubl e i nterval 30. 0;

i nt endsl nHours 168;
Dat e endDat e

Rt pMoni t or Manager nonMr ;

/**

* Met hod cal | ed upon executing class Rt pMnitor ConmandLi ne
*/

public static void main(String [] args){

Rt pMoni t or ConmandLi ne nyProg = new Rt pMoni t or CommandLi ne(args)
nyProg. run();

*

Constructor. It reads the command |ine argunments and sets
vari abl es and fl ags.
The command |ine argunents have the follow ng format:
<P>
j ava Rt pMonit or ConmandLi ne rtpLocator [options] <P>
rt pLocat or exanple: rtp://224.2.125.50: 50328/ 127 <P>
-part : nonitor sends RTCP packets <P>
-play : nonitor play streans <P>
-record : nonitor records statistics <P>
-i nnn : nnn defines the recording interval in seconds (default 30s) <P>
-e ppp : ppp defines the nonitoring duration in hours (default: 168
hs) <P>
-help : displays conmand |ine format and aborts

EE T S T T R T N N

177

* <pP>
* @aramargs an array of strings

*/

public Rt pMonitorComrandLi ne(String [] args){

int nArgs = args. |l ength;

if(nArgs == 0){

}

System out . printl n(
"Format: java RtpMnitorConmandLi ne rtplLocat or <options>");
System out . printl n(
" rtpLocator exanple: rtp://224.2.125.50: 50328/ 127");
System out . printl n(
" options: -part : nonitor sends RTCP packets");
System out . printl n(
" -play : nonitor play streans");
System out . printl n(
" -record : nonitor records statistics");
System out . printl n(
" -i nnn : nnn defines the recording interval in seconds
(default 30s)");
System out . printl n(
" -e ppp : ppp defines the nmonitoring duration in hours
(default: 168 hs)");
System out . printl n(
" -help : displays conmand |ine format and aborts ");
System exi t (0);

if(args[0].indexOF("-help") == 0) {

}

System out . printl n(
"Format: java Rt pMnitorConmmandLi ne rtplLocat or <options>");
System out . printl n(
" rtpLocator exanple: rtp://224.2.125.50: 50328/ 127");
System out . printl n(
" options: -part : nonitor sends RTCP packets");
System out . printl n(
" -play : nonitor play streans");
System out . printl n(
" -record : nonitor records statistics");
System out . printl n(
" -i nnn : nnn defines the recording interval in seconds
(default 30s)");
System out . printl n(
" -e ppp : ppp defines the nmonitoring duration in hours
(default: 168 hs)");
System out . printl n(
" -help : displays conmand |ine format and aborts ");
System exi t (0);

/] parses the command |ine argunents to extract the options
| ocator = args[O0];

i nt

o= 1;

while(ii < nArgs){

if(args[ii].indexOr("-part") == 0) {
willpart = true;

178

}
else if(args[ii].indexO("-play") == 0) {
willplay = true;

else if(args[ii].indexOr("-record") == 0) {
willrecord = true;

}
else if((args[ii].indexOr("-i") ==0) & (ii < nArgs -1)) {
i nterval = Doubl e. parseDoubl e(args[ii+1]);

}

else if((args[ii].indexO("-e") ==0) & (ii < nArgs -1)) {
endsl nHours = Integer.parselnt(args[ii+1]);

}

il ++;

}

endDate = new Date((new Date()).getTinme() + endslnHours*3600000L) ;

/1 displays the selected options on the console
Systemout.println("locator =" + locator);

Systemout.printin("play =" + willplay);
+

Systemout.println("part =" wllpart);
Systemout.printin("record =" + willrecord);
Systemout.println("recording interval =" + interval + " seconds.");
Systemout.println("nonitoring duration =" + endslnHours + " hours.”);
}
/**

* Method that will create the R pMonitorManager object and will exit the
* program when the user defined duration is el apsed.

*/

public void run(){

/1 tries to create the Rt pMnitorManager object
try{
monMgr = new Rt pMoni t or Manager (1 ocator, willpart, wllplay,
willrecord, interval);

}

catch(Mal f or mredURLException e){
Systemerr.println(
"Mal f or mredRTPMRLEXxcepti on creati ng RTPMonitor Manager: ");
Systemerr.println(e.getMssage());
System exi t (0);

cat ch(UnknownHost Exception e){
Systemerr.println(
"UnknownHost Excepti on creating RTPNonit or Manager: ");
Systemerr.println(e.getMessage());
System exi t (0);

cat ch(Sessi onManager Exception e){
Systemerr.println(
" RTPSessi onManager Excepti on creati ng RTPMoni t or Manager: ");
Systemerr.println(e.getMessage());

179

System exi t (0);

}
catch(| Oexception e){

Systemerr.println("l OException creating RTPMonit or Manager
Systemerr.println(e.getMessage());
System exi t (0);

}

/1 runs until the user aborts the program (ctrl-C) or the
/1 nonitoring period is over
whi |l e(true){

/1 tests if the monitoring period is over

i f(endDate.conpareTo(new Date()) < 0){
System exi t (0)
}

try{
Thr ead. sl eep(50000) ;

}
catch (InterruptedException e){}

}

} // end of class RtphonitorComandLi ne

180

")

package org.web3d.vrtp.rtp;

i mport javax.nedia.rtp.*;
i mport javax.nedia.rtp.event.*;
i mport javax.nedia.rtp.rtcp.*;

/1l RTPSessi onMgr cl ass

i mport com sun. nedia.rtp.*;

i mport java.io.*;

i mport java.net.*;

i mport java.util.*;

i mport javax.nedia.*;

i mport javax. nmedi a. protocol . *;

*

/
A class that encapsul ates all operations necessary to start a new
moni toring session, play its streans, and record statistical data.
<P>

This class does not display statistics on screen. That nust be done
by anot her class, usually a frame, using data froma Sessi onManager
obj ect (see nethod get Sessi onManager).

@ut hor Franci sco Afonso (afonso@s. nps. navy.nil)
@ersion 1.0

EE R T S T T T S B B

~

public class Rt pMnitorMinager inplenents ReceiveStreaniistener {

private Rt pMedi aLocator rtpm = null;
private SessionManager ngr = null;
private SessionAddress sessaddr = null;
private bool ean flgPart;

private bool ean fl gPl ay;

private bool ean fl gRecord;

private Hashtabl e wi ndowl i st;

private RecordTask recTask;

*

/
@aram | ocatorString the session description string
format, e.g. rtp://224.2.134.67:50980/ 127
<pP>
@aramw | | Participate
true if the Monitor will participate in the session,
sendi ng RTCP packets, fal se otherw se.
<pP>
@aramw | | PlayStreans true if the Monitor will play the
recei ving streans, false otherw se.

<pP>
@aramw | | Record true if the Monitor will record statistical

data about the session, false otherw se.
<pP>
@aramrecordlnterval the time between data recordi ngs in seconds
@xception Ml formedURLException

<pP>
@xcepti on UnknownHost Excepti on
i f I net Address. get ByNane(sessi on address) fails

L T R R T I B R I T I

<p>

181

if the locatorString argument does not conformto the syntax.

@xcepti on Sessi onManager Excepti on
Exception thrown when there is an error starting an
RTPSessi onManager

*

*

*

* <pP>

* @xception | OException

* Exception thrown when there is an error in RTPSessi onManager

*/

public Rt pMonitorManager(String locatorString, boolean wllParticipate,
bool ean wi Il Pl ayStreans, boolean w |l Record ,
doubl e recordl nterval)

t hrows Mal f or redURLExcept i on, UnknownHost Excepti on,

Sessi onManager Excepti on, | OException

flgPart willParticipate;
flgPl ay willPlayStreans;
fl gRecord = will Record;

/1 creates the Rt pMedi aLocator object
rtpm = new Rt pMedi aLocat or (|l ocator String);

/] creates an enpty Rt pSessi onManager object
ngr = new RTPSessi onMyr () ;

/1 if the user select to play the streans, registers as a
/1 listener for received streans
i f(flgPlay){

ngr . addRecei veSt r eanLi stener (thi s);

wi ndowl i st = new Hasht abl e();

}

/1 gets the InetAddress of the session
| net Addr ess destaddr = | net Address. get ByNanme(rtpmi . get Sessi onAddress());

/1 gets the session port
int port = rtpm.getSessionPort();

/] creates a SessionAddress objet to represent the session
sessaddr = new Sessi onAddress (destaddr, port, destaddr, port+1);

/1 call the nethod to generate a CNAME for the user
String cname = ngr. generat eCNAVE() ;

/1 gets the usernane fromthe systemand adds it to

/1 the string "/rtpMnitor”. That will be the user name sent in
/1l RTCP packets

String usernanme = null;

try{
usernanme = System get Property("user.nanme")+ "/rtpMnitor";
cat ch(SecurityException e) {
user name = "RTPMoni tor-user";
}
/1 creates the source description fields

Sour ceDescription [] userdesclist = new SourceDescription[3];

userdesclist[0] = new

182

Sour ceDescri ption(SourceDescri pti on. SOJRCE _DESC_NAME,
usernanme, 1, false);
userdesclist[1] = new
Sour ceDescri ption(SourceDescri pti on. SOURCE _DESC_CNANE,
cnanme, 1, false);
userdesclist[2] = new
Sour ceDescri ption(SourceDescri ption. SOJRCE DESC TOOL,
"RTPMonitor v1.0" , 1, false);

/1 generates a | ocal address
Sessi onAddr ess | ocal addr = new Sessi onAddress();

/1 that is the fraction of RTCP bandwith conpared to RTP
doubl e rtcpFraction = 0. 05;

/1 if the user has selected for no participation in the session,
/1 sets the fraction above to zero (no RTCP packets)
if(! flgPart)

rtcpFraction = 0.0;

/1 initiates the SessionManager object
ngr.initSession(|ocal addr, userdesclist, rtcpFraction , 0.25);

int ttl = rtpm.getTTL();

/] starts the SessionManager object
ngr. start Sessi on(sessaddr, ttl, null);

/1 if the user has selected for recording statistics, creates a
/1l RecordTask objet to generate the reports periodically
i f(flgRecord)({
recTask = new RecordTask(this, recordlnterval);
}

/**
* Method of classes that inplenment the ReceiveStreanLi stener
* interface
*
*/
public void update(ReceiveStreanEvent event)
Pl ayer newPl ayer = null;
Rt pPl ayer W ndow pl ayer Wndow = nul | ;
String cname = nul | ;

Sessi onManager source = (Sessi onManager) event. get Source();

/[l if a new streamis received
i f(event instanceof NewReceiveStreantvent)

/1 gets the ReceiveStream object

try{
Recei veStream stream =

((NewRecei veStreantvent) event) . get Recei veSt rean() ;

183

}
/1

/1 gets the Participant object associated with the stream
Participant part = streamgetParticipant();

/1 gets the participant canonical nane
if(part !'= null){

chame = part.get CNAVE();
}

/1 gets the stream Dat aSource associated with the stream
Dat aSour ce dsource = stream get Dat aSource();

/] creates a player to play the DataSource
newPl ayer = Manager . creat ePl ayer (dsour ce);

/1 if a player was created generates a player w ndow

i f(newPlayer !'= null){
pl ayer W ndow = new Rt pPl ayer W ndow(newPl ayer, cnane);
wi ndowl i st. put(stream player W ndow);

catch (Exception e){

Systemerr.println(
"NewRecvSt reanEvent exception " + e.get Message());
return;

if the sender of a streamwas identified

i f(event instanceof StreamvappedEvent){

/1 gets the ReceiveStream obj ect
Recei veStream stream =
((StreamvappedEvent) event). get Recei veStrean();

/1 gets the Participant associated with the stream
Participant part = streamgetParticipant();

/1 retrieves the correct player wi ndow fromthe
/1 hash table
if(stream!= null){
pl ayer W ndow = (Rt pPl ayer Wndow) w ndow i st. get(stream;
}

/1 change the title of the player wi ndow to include the
/1 nane of the sender
if((playerWndow !'= null) && (part '= null)){
pl ayer W ndow. Nanme(part. get CNAVE()) ;
}

184

/**

* Closes a nmonitor session, stops recording and cl oses player w ndows
*

*/
public void close(){

i f(flgRecord)({
recTask.exit();

}
i f(flgPlay){
Enuneration wi ndows = wi ndowl i st. el enents();
whi | e(wi ndows. hasMor eEl enent s()){
Rt pPl ayer W ndow cur rw ndow =
(Rt pPl ayer Wndow) w ndows. next El ement () ;
if(currwindow != null){
currwi ndow. ki | | ThePl ayer () ;
}
}
}
ngr . cl oseSessi on(nul 1);
mgr = nul | ;
}
/**

* Returns the Rt pMedi aLocator associated with the RTP session
*

* @eturn the session nedia | ocator
*/
publ i c Rt pMedi aLocat or get Medi aLocator (){ return rtpm ;}

/**

* Returns the Sessi onManager object created by the nonitor
*

* @eturn the SessionManager (RTPSessi onMr)
*/
publ i c Sessi onManager get Sessi onManager(){ return ngr;}

/**

* Returns the SessionAddress object associated with the RTP session
*

* @eturn the SessionAddress
*/
publ i c Sessi onAddress get Sessi onAddress(){ return sessaddr;}

} // end of class Rt pMonitorManager

185

package org.web3d.vrtp.rtp;

/

E o R T T T T R B B

@ #) RTPPI ayer W ndow. j ava 1.7 98/03/28

Copyright 1996-1998 by Sun M crosystens, Inc.,
901 San Antonio Road, Palo Alto, California, 94303, U S A
Al'l rights reserved.

This software is the confidential and proprietary information
of Sun Mcrosystens, Inc. ("Confidential Information"). You
shall not disclose such Confidential Information and shall use
it only in accordance with the terns of the |icense agreenent
you entered into with Sun.
/

i mport javax. nedi a. Pl ayer;
i mport java.aw.*;
i mport com sun. nedi a. ui . *;

/

E I R I

*

This class is used to create a wi ndow for playing an audi o/ vi deo
stream It is a subclass of PlayerWndow, that added the
capacity of nodifying the w ndow nane.
Bot h cl asses were devel oped by SUN. RTPPI ayer W ndow cane with
JMF1. 1 sanpl e code and PlayerWndowis in the file JMF. jar.

/

public class R pPl ayer Wndow ext ends Pl ayer W ndow {

}

public Rt pPl ayer Wndow Pl ayer player, String title) {
super (pl ayer);
setTitle(title);

}

public void Nane(String title)({
setTitle(title);

}

/1 end of class Player W ndow

186

package org.web3d.vrtp.rtp;

i mport javax.nedia.rtp.*;
i mport javax.nedia.rtp.event.*;
i mport javax.nedia.rtp.rtcp.*;

i mport java.util.*;

/**

* Aclass with some RTP utilities (static methods)
*

* @ut hor Francisco Afonso (af onso@s. nps. navy. ml)
* @ersion 1.0

*/
public class RipUil
{
/**
* Returns the participant username
*
* @aram part the Participant object
*
* @eturn a string with the participant's usernane
*

/
public static String getUsername(Participant part){

Vect or sdeslist = part.get SourceDescription();

i f(sdeslist == null){
return null;
}
Sour ceDescri pti on des;
for(int ii=0; ii < sdeslist.size(); ++ii){

des = (SourceDescription) sdeslist.elenentAt(ii);

i f(des.getType() == SourceDescription. SOURCE_DESC NAME) {
return des. getDescription();

}

return null;

187

~
*

L I R

~

Returns the participant's username or his CNAVE
if no usernanme is known.

@aram part the Participant object

@eturn a string with the participant's username or CNAME
public static String getUsernameOr CNAME(Parti ci pant part){
String username = getUsername(part);

i f(usernanme == nul I){
return part.get CNAVE();

}
el se{
return usernane;
}
}
/**
* Converts an nunber represented as a signed integer(32 bits)
* to a long integer (64 bits). JM-F methods return the SSRC as an
* integer. As the SSRCis a 32 bits nunber, sone are represented
* in JMF as negative integers.
* This convertion is necessary to present SSRCs as a positive integer
*

/
public static long correct SSRC(|ong ssrc){
if(ssrc < 0){
return (4294967296L + ssrc);
}

return ssrc;

} // end of class RipUil

188

package org.web3d.vrtp.rtp;

i mport java.aw.*;

i mport java.aw.event.*;
i mport java.util.*;

i mport java.io.*;

/**

* A Dalog to select a session bookmark. 1t displays a list choice
* of session nanes.

* <p>

*

* @ut hor Francisco Afonso (af onso@s. nps. navy. ml)

* @ersion 1.0

*/

public class Sel ect Bookmark extends Dial og i npl enents Itenlistener {

java. awt . Li st sessi onNanesLi st ;
Vect or sessi onAddr essVec;
Rt pMoni t or theParent;

/**
* Constructor.
* <pP>
* @aram parent the parent frame
*/
publ i c Sel ect Bookmar k(Franme parent){
super(parent, "Select Bookmark" , true);
set Size(250 , 200);
theParent = (RtpMnitor) parent;
addW ndowLi st ener (new C oseWndow));
sessi onNanesLi st = new java.awt.List(5, false);
| oadBookmar ks() ;
sessi onNanesLi st . set Background(Col or. | i ght Gray) ;
sessi onNanesLi st . addl t enli st ener (this);
add(sessi onNanesLi st);
}

189

/**
* Activated when a bookmark choice is made
* <pP>
* @aram parent the parent frame
*/
public void itenttateChanged(ItenEvent e){

int index = sessionNanesLi st. get Sel ect edl ndex() ;
t hePar ent . sessi onText . set Text (
(String) sessionAddressVec. el ement At (i ndex));
t hePar ent . sessi onNaneText . set Text (
sessi onNanesLi st. getlten(index));
set Vi si bl e(fal se);

/**

* Loads the session bookmarks fromfile "bookmarks.txt"
*/

private void | oadBookmar ks() {

sessi onAddr essVec = new Vector();

try{
Buf f er edReader input =

new Buf f er edReader (new Fi | eReader (" bookmarks.txt"));

String line;

while((line = input.readLine()) != null){
int pos = line.lastlndexOr("rtp://");
if (pos I'= -1){

sessi onAddr essVec. addEl erent (| i ne. substri ng(pos));
sessi onNanesLi st. add(|ine.substring(0, pos));

}

i nput.cl ose();

}
catch (Fi |l eNot FoundException e){
Systemout.println("Sel ect Bookmark: " + e.getMessage());

}
catch (1 CException e){
Systemerr.println(
"Exception readi ng bookmark: " + e.getMessage());

}

} // end of class Sel ect Bookmark

190

APPENDIX E. COMPARISON RTPMIB VERSUSJMF STATISTICS

191

SessionTable

RTPMIB

JMF-based RTP Monitor Application

Comments

Sessionindex (Integer32) — an index of the
conceptual row which isfor SNMP purposes
only and has no relation with any protocol
value.

Not applicable.

SessionDomain (TDomain) — the transport
layer protocol used for sending or receiving
the stream of RTP packets in this session.

Not implemented.

It can be added.

JMF uses UDP as the transport protocol.
Extensibility to other protocolsis possible, but not
provided.

SessionRemAddr (Taddress) — the remote
destination transport address on which the
RTP data packet is sent and/or received.

Not implemented.

It can be added.

In RTP Monitor the session transport
address names the directory where the files
are created and updated.

€.g. session224.2.2.2port88888

SessionLocAddr (Taddress) — the local
destination transport address on which the
stream of data packet is being sent and/or
received.

Not implemented.

It can be added.

Sessionlfindex (Interfacelndex) — this value
IS set to the corresponding value from the
Internet Standard MIB. Thisisthe interface
that the RTPStream is being sent to or
received from.

Not applicable.

SessionSenderJoins (Counter32) — the number
of senders that have been observed joined the
session since SessionStartTime (see below).

Not implemented.

Not part of native IMF statistics. It can be
derived in an IMF application by
monitoring NewRecvStreamEvents.

SessionRecei verJoins(Counter32) - the
number of receivers that have been observed
joined the session since SessionStartTime (
see below).

Not implemented.

Not part of native IMF statistics. It can be
derived in an IMF application by searching
for new participantsin the list of
participants managed by
RTPSessionManager.

192

SessionByes (Counter32) — a count of RTCP
BYE.

Not implemented.

Not part of native IMF statistics. It can be
derived in an IMF application by
monitoring ByeEvents.

SessionStartTime (TimeStamp) — the value of
SysUpTime at the time that thisrow is
created.

Not implemented.

That is the time when the Session
Monitoring starts. It can be added to
RTPMonitor.

SessionMonitor (ThuthValue) — set to true if
sender or receiversin addition to the local
RTP System are to be monitored.

Not applicable.

In RTP Monitor it is always true.

SessionRowStatus (RowStatus) — active when
RTP/RTCP Messages are being sent or
received by an RTPSystem. If thisrow is
"notInService" it may be removed after 5
minutes.

Not implemented.

It can be implemented in RTP Monitor, but
without removals.

Not provided by MIB.

Time (hh:mm:ss) — time of the report

Needed. Implicit in SNMP?

Bill Strahm comments: “Times of the
reports are in the sender/receiver report
tables.”

Not provided by MIB.

Total Participants (int) — the total number
of participants attending the session.

Needed. Equals active + passive participants and
also remote + local.

Bill Strahm comments: “ We argued about whether
we should track Sender/Receiver Joing/Byes as a
high watermark, atotal count, or a current count.
We decided on the counter. Depending on how you
want to track “TotalParticipants’ it very well may
be rtpSessionSenderJoins +
rtpSessionReceiverJoins’.

Not provided by MIB.

RemoteParti cipants(int) — the number of
remote participants attending the session

Desirable.
Bill Strahm comments:. “Can simply be
the count of receiversin the receiver table”.

193

Not provided by MIB.

ActiveParticipants (int) — the number of
active participants (senders) attending the
Session.

Needed.
Bill Strahm comments: “See above”’.

Not provided by MIB.

TotalBytesRecd (int) — the number of
bytes received in the session, before any
validation.

Needed for bandwidth calculations.
Bill Strahm comments: “rtpRcvOctetsin
the receiver table”.

Not provided by MIB.

Total PacketsRecd (int) — the total number
of RTP and RTCP packets received in the
session before any packet validation.

Needed for comparison of bandwidth
versus packets per second performance.
Bill Strahm comments:. “rtpRcvPackets in
the recelver table’.

Not provided by MIB.

RTCPPacketsRecd (int) — the total
number of RTCP packets received in the
session before any header validation.

Desirable.

Bill Strahm comments: “Combination of
SR/RR counts out of the sender/receiver
table”.

Not provided by MIB.

SRPacketsRecd (int) — the total number
of sender reports received in the session.

Desirable.
Bill Strahm comments:. “rtpSenderSR
from the sender table.

Not provided by MIB.

BadRT PPackets (int) — the total number
of RTP data packets that failed the RTP
header validation check.

Desirable.

Not provided by MIB.

BadRTCPPackets (int) — the total number
of RTCP packets that failed the RTCP
header validation check.

Desirable.

Not provided by MIB.

MalformedSR (int) — the total number of
invalid sender reports due to length
inconsistency.

Desirable.

Not provided by MIB.

MalformedRR (int) — the total number of
invalid receiver reports due to length
inconsistency.

Desirable.

Not provided by MIB.

MalformedSDES (int) — the total number
of invalid SDES packets due to length

Desirable.

194

inconsistency.

Not provided by MIB. MalformedBY E (int) — the total number | Desirable.
of invalid BY E packets due to length
inconsistency.

Not provided by MIB. LocalCoallisions (int) — the total number | Desirable.
of local collisions (SSRC collisions).

Not provided by MIB. RemoteCaollisions (int) — the total number | Desirable.
of remote collisions (SSRC collisions).

Not provided by MIB. PacketsLooped (int) — the total number of | Desirable.
packets looped.

Not provided by MIB. FailledTransmission (int) — the number of | Desirable.
packets that failed to get transmitted.

Not provided by MIB. UnknownRTCPType (int) — the number | Desirable.

of individual RTCP packets types that
were not implemented or not recognized.

195

SenderTable

RTPMIB

JMF-based RTP Monitor Application

Comments

SenderSSRC (Unsigned32) — the sender
synchronization source identifier

SenderSSRC (long)

Slight type mismatch, but workable.

SenderCNAME (DisplayString) — the
canonica name of the sender

SenderCNAME (String)

SenderAddress (Taddress) — the unicast
transport source address of the sender.

Not provide by IMF.

SenderPackets (Counter64) — count of RTP
packets sent by this sender, or observed by an
RTP Monitor, since SenderStartTime.

SenderPackets (int)

Called ProcessedPDU by JMF — number of
valid packets received from the selected
source. Possible type issue. It can
overflow.

SenderOctets (Counter64) — count of RTP
octets sent by this sender or observed by an
RTP Monitor, since SenderStartTime.

Not provided by JMF.

JMF only has a corresponding session count.

SenderTool (DisplayString) — Name of the
application program source of the stream.

Not implemented.

It can be read from IMF
RTPSourceDescription object.

SRs (Counter32) — a counter of the number of
RTCP Sender Reports that have been sent
from this sender or observed if the RTP entity
isamonitor, since SenderStartTime.

Not implemented.

Not part of native IMF statistics. It can be
derived in an IMF application by
monitoring RecvSenderReportEvents.

SenderSRTime (TimeStamp) — the value of
SysUpTime at the time that the last SR was
received from this sender, in the case of a
monitor or receiving host, or sent by this
sender, in case of a sending host.

Not implemented.

It can be read from IMF RTPSenderReport
object.

SenderPT (integer 0..127) — static or dynamic
payload type from the RTP Header.

Not provided by JMF.

SenderStartTime (TimeStamp) — the value of
SysUpTime at the time this row was created.

Not implemented.

It is the time when the Monitor detected
this source. It can be derived by the IMF
application.

196

Not provided by MIB.

LostPDU (int) — the difference between
the number of packets expected as
determined by the RTP sequence number
range and the count of packets actually
received and validated.

Desirable.
Bill Strahm comments: “ RevrLostPackets in the
Receiver Table".

Not provided by MIB.

MisorderedPDU (int) — the total number
of data packets that came in out of order
as per the RTP sequence number.

Desirable.

Bill Strahm comments:. “ Not available in
the MIB. It would have to be in the
RevrTable.

Not provided by MIB.

InvalidPDU (int) — the total number of
RTP data packets that have failed to be
within an acceptable sequence number
range for an established SSRC id.

Desirable.

Bill Strahm comments:. “ Not available in
the MIB. It would have to be in the
RevrTable.

Not provided by MIB.

DuplicatePDU (int) — the total number of
RTP data packets that match the
sequence number of another aready in
the input queue.

Desirable.

Bill Strahm comments:. “ Not available in
the MIB. It would have to be in the
RevrTable.

RcvrTable
RTPMIB JMF-based RTP Monitor Application Comments
RcvrSRCSSRC (Unsigned32) — the SSRC of | RevrSRCSSRC (long) Type issue.
the sender
RcvrSSRC (Unsigned32) — the SSRC of the RcvrSSRC (long) Type issue.
receiver
RcvrCNAME (DisplayString) — the canonical | RevrCNAME (String) -
name of the receiver.
RcvrAddr (Taddress) — the unicast transport Not implemented. It can be added.

address of the receiver.

197

RcvrRTT (Gauge32) — the round trip time
measurement taken by the source of the RTP
stream.

Not provided by JMF.

This value can only be calculated by
senders after receiving RTP feedback about
their streams. JIMF does not provide this
statistic. This capability was requested was
requested in the jmf-interest mailing list.

RcvrL ostPackets (Counter64) — a count of
RTP packets lost as observed by this receiver.

RcvrLostPackets (long)

Revrditter (Gauge32) — an estimate of delay Revrditter (long) Type issue.
variation as observed by this receiver.
RcvrTool (DisplayString) — the name of the Not implemented. It can be read from IMF

application program source of the stream.

RTPSourceDescription object.

RRs (Counter32) — a count of the number of
RTCP Recelver Reports that have been sent
from this receiver since RevrStartTime.

Not implemented.

Not part of native IMF statistics. It can be
derived in an IMF application by
monitoring RecvSenderReportEvents.

RcvrRRTime (TimeStamp) — the value of Not provided by JMF. JMF does not provide the time a feedback

SysUpTime at the last RTCP Receiver Report isreceived or sent. This capability was

was received or sent (in case of the sender). requested was requested in the jmf-interest
mailing list.

RcvrPT (Integer) — static or dynamic payload Not provided by IMF. -

type from the RTP header.

RevrPackets (Counter64) — count of RTP packets
received by this RTP host since RevrStartTime.

Not implemented.

Called ProcessedPDU by JMF — number of
valid packets received from the selected
source. Same as SenderPackets in the
SenderTable.

RcvOctets (Counter64) — count of RTP octets
received since RevrStartTime.

Not implemented.

Not provided by JIMF. . Same as
SenderOctets in the SenderTable.

RevStartTime (TimeStamp) — the value of
SysUpTime at the time that thisrow is
created.

Not implemented.

It can be added.

198

APPENDIX F. RTPHEADER JAVADOC

The RtpHeader Javadoc is available at:

http://www.web3d.org/WorkingGroups/vrtp/javadoc/dis-java-vrml
/mil/navy/nps/dis/RtpHeader.html

199

APPENDIX G. RTPHEADER SOURCE CODE

package m | . navy. nps.dis;

i mport ml.navy.nps.util.*;
i mport java.io.*;

/

E R R T T T T R R T S

~

*

Thi s cl ass encapsul ates the header of the Real-tine Transport Protocol (RTP)
when used to transfer DI S packets as a payl oad.

@ersion 1.0
@ut hor Franci sco Afonso (afonso@s. nps. navy. ml)

<dt >Ref er ences: </ b>

<dd>RTP: (RFC1889) <a href="http://ww.ietf.org/internet-drafts/draft-ietf-
avt-rtp-new 04.txt">

http://ww. ietf.org/internet-drafts/draft-ietf-avt-rtp-new 04.txt

public class Rt pHeader extends PduEl ement

{

/1 this SSRCwll be used for all transmitted packets
private static | ong nySSRC;

/1 this variable contains the next sequence nunber of a transmtted packet
private static int nextSequenceNunber;

static

{

/1 assigns a randominteger to the SSRC
nySSRC = (long)(Math.random() * Unsi gnedlnt. MAX | NT_VALUE);

/] assign a randominteger to the first sequence nunber
next SequenceNunber = (i nt)(Math. randon() *Unsi gnedShort. MAX_SHORT_VALUE);

/**

* ldentifies the version of RTP (2 bits). RFC1889 defines the actual

* version as two(2).
*

*/
public static final int RTP_VERSION = 2;

207

/**

* Padding is being perforned at the DI'S protocol |evel
* Therefore the padding bit is set to zero.

*

*/

public static final int RTP_PADDI NG = O;

/**

* The extension bit defines if the normal header will be followed
* by an extension header.

* Not needed in this application, and so set to zero.

*

*/

public static final int RTP_EXTENSI ON = O;

/**

* Contains the nunber of contributing source identifiers in this header
* This is used only by mxers. Set to zero.

*

*/

public static final int RTP_CSRC COUNT = O;

/**

* This bit is used as a marker by a specific profile or
* application.

* Not used so far. Set to zero.

*

*/

public static final int RTP_MARKER = O;

*

The payl oad type nunber was set to 111

It belongs to the dynam c assi gnment range (96-127).

Nunmbers in this range do not need to be registered. <p>

See: <a href="http://ww.ietf.org/internet-drafts/draft-ietf-avt-profile-
new 06. t xt">

http://ww. ietf.org/internet-drafts/draft-ietf-avt-profile-new 06.txt
- Session 3.

L T I T R

~

public static final int RTP_PAYLOAD TYPE FOR DI S = 111;

208

/**

* Contains the size of the header in bytes (= 12).
*/

public static final int sizeO = 12;

/1 the packet sequence nunber
private Unsi gnedShort sequenceNunber;

/1 the packet tinestanp
private Unsignedl nt ti mest anp;

/1 the packet Sincronization Source Identifier (SSRC)
private Unsignedl nt SSRC;

/**

* Constructor. An enpty header is created.
*/

publ i c Rt pHeader ()

{

sequenceNunber = new Unsi gnedShort();

ti mestanp = new Unsignedlint();
SSRC = new Unsi gnedint();
return;

}

/**

* Returns the packet sequence numnber.

* @eturn the sequence number as an unsigned short (16 bits)
*/

publ i ¢ Unsi gnedShort get SequenceNunber ()

{

return (Unsi gnedShort)sequenceNunber. cl one();

}

/**

* Returns the packet tinestanp.

* @eturn the tinmestanp as an unsigned int (32 bits)
*/

publ i c Unsi gnedl nt get Ti nest anp()

{

return (Unsignedlnt)tinmestanp.clone();

}

/**

* Returns the packet Syncronization Source ldentifier.
* @eturn the SSRC as an unsigned int (32 bits)

*/

publ i c Unsi gnedl nt get SSRC()

{

}

return (Unsignedl nt) SSRC. cl one();

209

/**

* Sets the packet sequence numnber.

* @aram pSequenceNunber the sequence number as an unsigned short
* (16 bits)

*/

public void set SequenceNunber (Unsi gnedShort pSequenceNumnber)

{

}

sequenceNunber = pSequenceNunber;

/**

* Sets the packet timestanp.

* @aram pTinestanp the tinmestanp as an unsigned int (32 bits)
*/

public void setTi nestanp(Unsi gnedl nt pTi mest anp)

{
ti mestanp = pTi nest anp;

/**

* Sets the Syncronization Source ldentifier
* @aram pSSRC the SSRC as a unsigned int (32 bits)

*/
public void set SSRC(Unsi gnedl nt pSSRC)
{
SSRC = pSSRC,
}
/**

* Increments the sequence nunber. The Rt pHeader class nmantains a static
* variable with the next sequence nunber to be assigned to a packet.

* This function increnents this variable. If the sequence nunber will

* exceed the 32 bits boundaries it is set to zero.

*/
private void increnent SequenceNunber ()
{
/1 if after the increnent the sequence nunber gets |onger than 16
bits
/1 than it should be set to zero
++next SequenceNunber ;
i f(next SequenceNunber > Unsi gnedShort. MAX SHORT_VALUE){
next SequenceNunber = O0;
}
return;
}

210

/**
*
*
*

*/

Prepares the header for sending. Assigns the sequencial nunber from
a static variable, takes the tinmestanp fromthe DS pdu and sets the SSRC

@aram pdu the DS pdu that will be transmtted

public void prepareToSend(Protocol DataUnit pdu)

{

/**
*
*

*/

/] assigns a sequence nunber (the next sequence number kept by a
static

/1 variable)

sequenceNunber = new Unsi gnedShort(next SequenceNunber);

/1 increments the next sequence nunber variable
i ncrement SequenceNunber () ;

/] assigns as a tinestanp the Dis-Java-Vrml tinestanp
ti mestanp = pdu. get Ti mestanp();

/1 assigns the common SSRC
SSRC = new Unsi gnedl nt (nmySSRC) ;

return;

Returns the size of the header.
@eturn the header size

public int |ength()

{
}

/**
*

*

*/

return Rt pHeader. sizeO;

Serializes the header into a DataQutput Stream

@aramout put Streamthe streamthat will receive the serialized header.

public void serialize(DataQutputStream output Strean)

{

/1 creates the first and second byte fromthe header

Unsi gnedByte firstByte = new UnsignedByte((RTP_VERSION * 64) +
(RTP_PADDI NG * 32) + (RTP_EXTENSI ON * 16) + RTP_CSRC COUNT);

Unsi gnedByte secondByte = new Unsi gnedByte((RTP_MARKER * 128)
+ RTP_PAYLQAD TYPE FOR DI S);

/] serializes
firstByte.serialize(outputStreanj;
secondByt e. seri al i ze(out put Streanj;
sequenceNunber . seri al i ze(out put St ream ;
ti mestanp. serialize(output Streanj;
SSRC. seri al i ze(out put Strean);

return;

211

/**
* Fills the header contents with data from a Datal nput Stream
* @araminput Streamthe stream whi ch contains the header.
*/
public void deSerialize(Datal nputStreaminputStrean)
{
Unsi gnedByte firstByte = new Unsi gnedByte(0);
Unsi gnedByt e secondByte = new Unsi gnedByt e(0);

/] deserializes
firstByte.deSerialize(inputStream;
secondByt e. deSeri al i ze(i nput St ream ;
sequenceNunber . deSeri al i ze(i nput Stream ;
ti mestanp. deSerialize(inputStream;
SSRC. deSeri al i ze(i nput Strean;

return;

/**

* ©Makes deep copies of all the instance vari abl es.
*

*/

public Object clone()

{
Rt pHeader newHeader = (Rt pHeader)super.clone();

newHeader . set SequenceNunber (t hi s. get SequenceNunber ());
newHeader . set Ti nest anp(t hi s. get Ti nestanp()) ;
newHeader . set SSRC(t hi s. get SSRC()) ;

return newHeader;

}

/**
* Prints internal values for debuggi ng.
*
*/
public void printValues(int indentLevel, PrintStream printStrean)
{

StringBuffer buf =

Pr ot ocol Dat aUni t . get Paddi ngOf Lengt h(i ndent Level) ;

printStreamprintln(buf + "sequenceNunber: " +
sequenceNunber . i nt Val ue());
printStreamprintln(buf + "tinestanp: " + tinestanp.|ongVal ue());

printStreamprintln(buf + "SSRC. " + SSRC.|ongVal ue());

return;

}

} // end of class R pHeader

212

LIST OF REFERENCES

Advanced Neworks and Services, “Internet2 - Building the Next Generation Internet,”
[http://www.advanced.org/surveyor/]. August 1997.

Agarwal, Deb, “Rtpmon Information,”
[http://www-itg.Ibl.gov/mbone/rtpmon.tips.html]. June 1997.

Apple Computer, Inc., Quicktime 4, [http://www.apple.com/quicktime/]. August 1999.

Baugher, Mark and others, “Real-Time Transport Protocol Management Information
Base”, Internet-Draft draft-ietf-avt-rtp-mib-05.txt, Internet Engineering Task Force, 12
April 1999. Available at: http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-mib-05.txt.

Booch, G., Jacobson, I., and Rumbaugh, J., “ UML Specification version 1.1.”
1 September 1997. Available at: http://www.rational .com/uml/index.jtmpl

Brutzman, D. P., “Virtual Reality Transfer Protocol (vrtp),”
[http://www.web3d.org/WorkingGroups/vrtp/]. June 1999.

Case, J., McCloghrie, K., and others, “Introduction to Community-based SNMPv2,”
RFC 1901, SNMP Research, Inc, Cisco Systems, Inc., Dover Beach Consulting, Inc.,
International Network Services. January 1996.

David, B., “rtpmon: A Third-Party RTCP Monitor,”
[http://bmrc.berkel ey.edu/~drbacher/projects'mm96-demo/index.htm]. September 1996.

Deering, SE., “ Host Extensions for IP Multicasting,” RFC 1112, August 1989.

Gamma, E., and others, Design Patterns. Elements of Reusable Object-Oriented
Software, Addison-Wesley Pub Co, 1995.

Grand, M., Patternsin Java, John Willey & Sons, Inc., 1998.

Handley, M. and Perkins, C., “ Guidelines for Writers of RTP Payload Format
Specifications,” Internet-Draft draft-ietf-avt-rtp-format-guidelines-03.txt, Internet
Engineering Task Force, 24 June 1999. Available at:
http://lwww.ietf.org/internet-drafts/draft-ietf-avt-rtp-format-guidelines-03.txt.

Internet Engineering Task Force, Request for Comments (RFC) 2327, DP: Session

Description Protocol, April 1998.
Available at http://ietf.cnri.va.us/rfc/rfc2327.txt

213

Institute of Electrical Electronic Engineers (IEEE), Sandard for Distributed Interactive
Smulation IEEE Sd 1278.1, 1995.

Macedonia, M. R. and Brutzman, D. P., “ MBone Provides Audio and Video Across the
Internet,” IEEE Computer, vol. 27, no. 4, pp. 30-36, April 1994. Available at:
ftp://taurus.cs.nps.navy.mil/pub/i3la/mbone.html

Makofske, D. and Almeroth, K., “MHealth: A Real-Time Multicast Tree Visualization
and Monitoring Tool,”
[http://imj.ucsb.edu/mhealth/]. June 1999.

Rational Software Corp., “Rational Rose,”
[http://www.rational .com/products/rose/index.jtmpl]. August 1999.

Robinson, J. L. and Stewart, J.A., “ MultiMON - an IPmulticast Monitor.”
[http://www.merci.crc.doc.ca/mbone/MultiMON]. June 1998.

Sarac, K. and Almeroth, K., “SDR Session Monitoring Effort - Global Sessions,”
[http://imj.ucsb.edu/sdr-monitor/global/index.html]. September 99.

Schulzrinne, Casner and others, “RTP: A Transport Protocol for Real-Time
Applications,” Internet-Draft draft-ietf-avt-rtp-new-04.txt (RFC 1889), Internet
Engineering Task Force, 25 June 1999. Available at:
http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-new-04.txt.

Schulzrinne, “RTP Profile for Audio and Video Conferences with Minimal Control,”
Internet-Draft draft-ietf-avt-profile-new-06.txt (RFC 1890), Internet Engineering Task
Force, 25 June 1999. Available at:
http://lwww.ietf.org/internet-drafts/draft-ietf-avt-profile-new-06.txt

Stallings, W., Data and Computer Communications, Fifth Edition, pp. 685-697, Prendice
Hall, 1997.

Sun Microsystems, Inc., “Java Media Framework API,”
[http://www.javasoft.com/products/java-media/jmf/index.html]. July 1999.

Sun Microsystems, Inc., Java Media Framework APl Programmer’s Guide v. 0.7, 21
May 1999. Available at:
http://www.javasoft.com/products/java-medial/jmf/2.0/jmf20-07-guide.pdf

Sun Microsystems, Inc, Java Media Framework Early Access Specification v. 0.7
(Javadoc). May 1999. Available at:
http://www.javasoft.com/products/java-media/jmf/2.0/jmf20-07-apidocs/index.html

Sun Microsystems, Inc., “Java Native Interface,”
[http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html]. August 1999.

UCL Networked Multimedia Research Group, “Videoconferencing Tool,”

214

[http://www-mice.cs.ucl.ac.uk/multimedia/software/vic/]. June 1999.

UCL Networked Multimedia Research Group, User Guide for VIC v2.8 Verson 1
(DRAFT), 29 September 1998.Available at:
http://www-mice.cs.ucl.ac.uk/multimedia/software/.

UCL Networked Multimedia Research Group, “Robust-Audio Tool,”
[http://www-mice.cs.ucl.ac.uk/multimedia/software/rat/]. June 1999.

UCL Networked Multimedia Research Group, “Session Directory,” [UCL Networked
Multimedia Research Group]. August 1999.

Word Wide Web Consortium, “Extensible Markup Language,”
[http:/mww.w3.org/XML/]. August 1999.

215

THISPAGE LEFT INTENTIONALLY BLANK

216

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

No. Copies

8725 John J. Kingman Rd., STE 0944

Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library
Naval Postgraduate School.

411 Dyer Rd.

Monterey, California, 93943-5101

Chair, Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, California, 93943-5121

Dr. Michael J. Zyda, Code CS/Zk
Naval Postgraduate School
Monterey, California, 93943-5121

Dr. James Eagle, Code UW
Naval Postgraduate School
Monterey, California, 93943-5121

Dr. Don Brutzman, Code UW/Br
Naval Postgraduate School
Monterey, California, 93943-5121

Rex Buddenberg, Code SM/Bu
Naval Postgraduate School
Monterey, California, 93943-5121

Don McGregor, Code C3
Naval Postgraduate School
Monterey, California, 93943-5121

Dr. Michadl R. Macedmia

Chief Scientist and Technical Director

USArmy STRICOM
12350 Research Parkway
Orlando, FL 32826-3276

217

Dr. I Mark PUIEN ...t
Department of Computer Science and C3I Center

George Mason University

Fairfax, VA 22030

N) 1 1= T RO
Chief Scientist

Advanced Network & Services, Inc.

200 Business Park Drive

Armonk, NY 10504 USA

[ST0] o] 7= (0] o KR
Fraunhofer CRCG

321 South Main St.

Providence, Rl 02903

MiIChael D. MYJAK ...oooiieiciecee e
Vice President R&D

The Virtual Workshop, Inc.

P.O. Box 98

Titusville, Florida 32781

Dr. ChristOPNE DIOLcooveiiiiiiieieeie sttt
Sprint ATL

1 Adrian Court

Burlingame, CA 94010

(DTN o g I @ £ 1LY o) 1 (S
Department of Computer Science

University College London

Gower Street

London WCI1E 6BT

United Kingdom

Kevin C. AIMEIOthoeeeeeeece e
Computer Science Department

University of California

Santa Barbara, CA 93106

VAN WONQ .o s
Java Media Framework Techical Lead

Sun Microsystems

901 San Antonio Road

Palo Alto, CA 94303

218

18.

19.

20.

21.

22.

23.

Bill SIrANM .. e
Intel Corporation

2111 N.E.25th Avenue

Hillsboro, Oregon 97124

LaWrenCe A. ROWEoooiiii ettt
Computer Science Division - EECS

University of California, Berkeley

Berkeley, CA 94720-1776

Instituto de Pesquisas daMarinhaccoooeeieeninnn e
Rualpiru, 2

Ilha do Governador

Rio de Janeiro — RJ — Brazil

Diretoriade Sistemas de Armas daMarinhaooccevvvveeeeeecciecccciviiieeeee,
Rua Primeiro deMarcgo, 118

Rio de Janeiro — RJ — Brazil

CEP 20010

Centro de Instrucdo Almirante WandenkolKccoooeiiiiiiieiienicncnees
Ilha das Enxadas

Rio de Janeiro — RJ — Brazil

CEP 20000

LCDR Francisco Carlos Afonso
Rua Marqgues de Valenca 40/201
Tijuca

Rio de Janeiro — RJ — Brazil
CEP 20010

219

