

M-Board
– The
Mind
Keyboard

June 8

2012
ICT Engineering program – VIA University College

Author: Claudiu Lucian Manea, 130935

 Michal Slavkovsky, 132630

 Thomas Rheder Christensen, 126589

Supervisor: Allan Henriksen

Project Report

2 | P a g e

Table of Content

Contents
Abbreviations ... 5

Abstract .. 6

1. Introduction .. 6

1.1. Background Description .. 6

1.2. Problem Formulation ... 7

1.2.1. Connection: .. 7

1.2.2. Structure of the events: .. 7

1.2.3. Selecting suite Commands: .. 7

1.2.4. Designing the Graphical User Interface: .. 8

1.2.5. Store Data:.. 8

2. The Mboard System ... 8

2.1. Architecture ... 8

2.1.1. Analysis and Design... 10

2.1.2. Domain Model ... 11

2.1.3. Define Object ... 11

2.1.4. Identified Objects ... 12

2.1.5. Use Case Model ... 13

2.2. Class Diagram ... 14

2.3. GUI Skeleton ... 14

2.3.1. Analysis and Design... 14

2.3.2. Implementation .. 15

2.3.3. Test ... 16

2.4. Writing Panel ... 17

2.4.1. Analysis and design ... 17

2.4.2. Implementation .. 20

2.4.3. Test ... 24

2.5. Engine .. 25

2.5.1. Version 1 .. 25

2.5.2. Analysis .. 25

2.5.3. Design .. 25

2.5.4. Implementation .. 25

2.5.5. Version 2 .. 26

3 | P a g e

2.5.6. The modules ... 28

2.5.7. Event processing .. 28

2.5.8. Data polling .. 30

2.5.9. Profile management ... 31

2.5.10. Profile Training .. 33

2.5.11. EmotivState .. 35

2.5.12. Updates ... 36

2.6. User Panel.. 36

2.7. Options .. 40

2.7.1. Analysis and design ... 40

2.8. Store Data to the XML file .. 42

2.8.1. Analysis and design ... 42

2.8.2. Implementation .. 42

2.9. Home Automation ... 43

2.9.1. The code ... 43

2.9.2. The board ... 45

2.10. News .. 49

2.10.1. Analysis .. 49

2.10.2. Design ... 49

2.10.3. Implementation ... 50

2.10.4. Test ... 54

3. Results .. 55

4. Discussion .. 55

5. Conclusion ... 56

6. References .. 57

7. Appendices ... 58

7.1. Appendix A Project Description ... 58

7.1.1. Background Description .. 58

Designing the Graphical User Interface .. 60

7.1.2. Delimitations .. 61

7.1.3. Choice of Model and Method Procedure ... 62

7.1.4. Time Schedule.. 63

7.1.5. SOURCES, REFERENCES AND LITERATURE ... 64

7.2. Appendix B.. 66

7.2.1. Class Diagram .. 66

7.3. Appendix C.. 67

4 | P a g e

7.3.1. Use Case ... 67

7.4. Appendix D ... 72

7.4.1. System Test Plan .. 72

7.5. Appendix E .. 78

7.5.1. Frequency of letters .. 78

7.6. Appendix F .. 79

7.6.1. User manual ... 79

7.6.2. Appendix G .. 84

List of Figures

Figure 1 Application Architecture ... 9
Figure 2 Domain Model ... 12

Figure 3 GUI Structure of the application ... 15
Figure 4 Keyboard layout English ... 18

Figure 5 Keyboard layout Danish .. 18
Figure 6 Detail of the keyboard ... 18

Figure 7 Sequence diagram, iterate through the buttons .. 19
Figure 8 EpocCtrl Class Diagram .. 25
Figure 9 Connection Sequence diagram .. 27

Figure 10 Sequence diagram for load user ... 31
Figure 11 Detail of training sequence diagram .. 33

Figure 12 EmotivState class diagram... 35
Figure 13 Class diagram of first controller .. 37
Figure 14 Sequence diagram headset data ... 39

Figure 15 Activity diagram of home automation ... 45

Figure 16 Diagram of the Mboard circuit .. 46
Figure 17 Mboard circuit layout .. 47
Figure 18 RSS example.. 49
Figure 19 Activity diagram RSS feeds .. 50
Figure 20 Detail of the class diagram .. 53

List of tables

file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900299
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900300
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900301
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900302
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900303
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900304
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900305
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900306
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900308
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900309
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900310
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900311
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900312
file:///C:/Users/Prebas/Documents/Mboard%20Project%20Report%202012%20-%20Final.docx%23_Toc326900316

5 | P a g e

Table 1 Actor List .. 13

Table 2 Test Cases - Loading the user panels .. 16
Table 3 Typing speed for the various versions layout ... 20
Table 4 Test Cases – keyboard functionality ... 24
Table 5 Event tests ... 30
Table 6 Data polling test case .. 31

Table 7 Manage user test cases .. 33
Table 8 Profile training .. 34
Table 9 EmotivState tests ... 36
Table 10 Test Cases – Testing Options .. 41
Table 11 Press button test cases ... 48

Abbreviations

MBoard – The name of the application

XML – Extensible Markup Language

RSS – Really Simple Syndication

GUI – Grafical User Interface

intPtr – Integer Pointer

STAthread – Standard WPF GUI thread

MVVM – Model – View - ViewModel

TDD – Test Driven Development

WPF – Windows Presentation Foundation

Dll – Dynamic link library

Tx – transmit pin

Rts – ready to send pin

Dtr – Data Terminal Equipment

6 | P a g e

Abstract

 We have made a system to help the disabled people, more accurately people that are

paralyzed from the neck down. The system is called Mboard but can do so much more than that.

The system consists of several different parts where the most important of course is the keyboard

part, but we have also made a home automation module that can be used to control the environment

around the user. When you’re caught in a bed you can get a bit bored so we also have a game

ready to play, even thou it’s a simple card game called High-Low. The last feature we decided on

was the news so that the user has the ability follow the events happening in the world. To get back

to the Writing part we made a keyboard that could be used only with your mind, this in itself seems

incredible but we did a bit more and implemented a text to speech function as well and to speed up

the writing we moved the keys around a bit so you would get to the often used keys faster.

1. Introduction

1.1. Background Description

Although nowadays some would say that we are surrounded by technology like smart phones,

TV’s, and computers, and that this allows the users to communicate easily. But there are still certain

people/groups that don’t have the opportunity to use and control them as we can. Physically

impaired people cannot move any body part at all, but there brain is fully functional. Therefore, we

would like to develop the “M-board” in cooperation with Horsens Kommune that will engage those

people with their environment more seamlessly and improve their lives, bring them closer to

society.

The primary focus of our project is to build a digital spelling table (M-board) with a cursor hovering

over the letters and along with the Emotiv EPOC device we will be able to detect specific impulses

when the subject would want to chose a letter. This way they will be able to formulate words and

even sentences, leading to their ability to communicate with others. The fact that the product

requested from us is quite basic that doesn’t mean we lack new ideas in which we would make it

even better.

We think this is an important area to work in since we today have the technology to make the

everyday life easier for a lot of people that are disabled in different ways. The reason for us to focus

on this specific group is that the technology is cutting edge and we think it has the potential to

become very big.

Even though today there already exists a lot of applications and instruments that help those people,

for example: controlling PC using the eye or iTongue control that is using a tongue for control

various devices around. We would like to go more forward and to create the application that allows

the user a control with only a thought. Just wonder, when the user will be able to control the house

or other environment with his mind.

Seeing that this is a new technology it has a lot of room to evolve and the possibilities are endless.

After we develop the basic components, we can build an endless number of software solutions.

The basic concept behind is to use the Emotive EPOC headset that can detect and process real time

brain waves. It measures a wide range of thoughts and emotions and allows using brain activity in

the application. The human brain is made up of billions of neurons. When we do various activates,

7 | P a g e

neurons transmit messages with each other, and we can measure those signals with electrodes and

amplify them and then later use them in our application, to the various actions we want to perform.

The Emotiv headset uses 16 sensors that measure the electric signals in our brain. They get readings

in pairs and the differences in readings are then treated as the signal. When the application will ask

the certain action, it will compare how the values from the electrodes change. When the change will

be similar, the application accomplishes the calling action. The Emotiv headset is able to recognize

expressions, actions which transmit over Bluetooth and the Bluetooth dongle to the application that

we can read. So, the Emotiv headset is kind of the interface between the user and computer to

handle the user’s actions.

Because the brain waves are relatively different for every user, we need to calibrate the application

before use. Then we can save these parameters for every user, and use them for controlling our “M-

board”. Every user will have his own account with his own record data, so it can be applicable for

many users.

As we mentioned at the beginning, we will mainly focus on physically impaired people, those who

can’t communicate or express their needs. Therefore, the Mboard will be the main part of the

program, which allows writing, reading news or doing a small work on the PC.

Although our software will not have been using all of our ideas, however it will help and make life

easier for many users. This is a great challenge for us to create the program for the people need to

depend on others. On the other hand working with the Emotiv Headset will give us the opportunity

to learn the latest technologies, that we think will be used more and more in the near future, in

normal everyday life and in the gaming industry.

1.2. Problem Formulation

As we went through the problem, we figured out, that we have basically two main parts of the

application which we have to handle. Firstly we need to use the Emotiv Software Developer’s Kit to

define a bridge between the Emotiv headset signals and our application to be able to control various

features in there. The second important part is to use suite sequences and implemented them with

required functions.

1.2.1. Connection:

How to connect our application to the Emotiv Engine? How to get the source of all the signals in

our application? Those questions are probably essential before we will be able to continue forward.

We need to connect and build our own bridge that will connect the Emotiv device and our

application. We also have to decide whether we are going to handle user profile in our application,

or we will use the Emotive Control Panel. Maybe it will be better to have our own profile and just

call user profiles from the Emotiv engine.

1.2.2. Structure of the events:

How to handle various events from the headset for more users? Because the headset generates

various events (four categories) we need to handle those events and it might be good to create the

data structure, where we can find out what event was generated according to the user’s ID.

1.2.3. Selecting suite Commands:

We need to ask ourselves, what kind of functions we want to control? Which means that we have to

consider how to control the navigation panel and the M-board? For example go down, up and enter

8 | P a g e

functions. So we need to decide what sequences (signals) from the users would trigger those

functions. The Emotiv software provides us with 4 main categories of data: Expressive, Affective,

Cognitive and Gyroscope data.

We need a control set that would work for people with a minimum amount of training. We made the

decision to use only one cognitive function from the headset. This allows user with much less

training to use the application on full capacity.

1.2.4. Designing the Graphical User Interface:

How to design the GUI (navigation panel)? How to make the design of the keyboard and organize

letters on the keyboard?

The GUI design must be as simple as possible to be easy to navigate through both when it comes to

the keyboard and also through the navigation panel. The user should have feeling that automatic

writing is done with the keyboard and computer. We also need to consider, how to design efficient

mapping of the keys on the keyboard. We shouldn’t use the common keyboard design, because the

writing will be too slow for our application. There should be done a new algorithm.

Other questions: What size of the font we should use? How to change the type of keyboard from

English to Danish and back?

Obviously, some of the people need to adjust size of the font when they are writing and also change

settings such as the keyboard language, therefore we should consider it in our design, the suite place

for the writing settings and easily manipulate with them.

1.2.5. Store Data:

How to save data? Should we store the data in xml files or a Database? Do we need to save any

data?

That is a good question. Maybe we don’t need to store any data, but we have to consider the best

solution. We can call the information about the user profile, configurations and signals from the

emotive control panel or build our own storage.

When we decided to build our own storage, then we have to consider the amount of data that we

will be storing. Probably, there will be very small amount of data, therefore we would store data in

an XML document and re-write the file any time any data changed. So it would be useful for

configuration files and also for the user’s profiles. We are expecting that the XML files never grew

larger than 100kb.

2. The Mboard System

2.1. Architecture

Like every good house, software must be built upon a solid foundation [4], otherwise we will be

face many challenges such as unstable application, difficult to support existing or future

requirements and at the end the difficulty to deploy and manage such system. Therefore we should

be able to design and implement the software, which is simple and powerful. The code should be

clearly written, which is easily to maintain and modify. The object-oriented design and clean

implementation with the consideration for the end-user and final goal are giving good reliability for

the project. We also have been focusing on these major elements that we had used in the

9 | P a g e

application. We split application to the three major parts so that EmoEngine tier, Domain Model tier

and Presentation tier. Our architecture can be seen in Figure 1.

The Emotiv EmoEngine refers to the logical abstraction of the functionality that Emotiv provides in

edk.dll [3]. The edk.dll is a collection of small programs, which can be called when we need to use

them in our application that is running in the computer. We can say that edk.dll is supporting

operations and communicate with the Emotiv headset as device driver.

We can see in figure 1 that EmoEngine is receiving brainwaves (EEG) and gyroscope data from the

headset, manage user specific settings, performs post processing and translates the Emotiv

Detection results into an EmotiveState. Then we can modify or retrieve these EmoState setting by

Emotiv API functions in our application. So An EmoState is current state of users’ cognitive state

that will be control functions in the application. More detail description about an EmoEngine, how

is implemented in our code will be presented in the next section.

As we explained at the beginning, the next tier we plan to add to the existing architecture is a

domain model. The Domain Model is entailed listing the entities and defining relationship between

them. Or we can say it has contained objects that include data and behaviors that describe basic

architecture application. We added components, objects to it and the classes responsible for

handling collections of entities. These classes define the structure and behavior of entities,

characterize the outputs of these domain; how the result from these domains are carried out by a set

of functions. Then these outputs provided by functions are retrieved for the presenter tier and

EmoEngine tier.

Figure 1 Application Architecture

10 | P a g e

A presentation tier is actually interfaced between the user and application. It will be responsible for

the communication with the user. As presentation system we decided to use Windows Presentation

Foundation (WPF) because it has strong ability to develop an application using both markup as

code-behind and this is a big advantage for us. Generally we have using Extensive Application

Markup Language (XAML) to implement the appearance of an application while managing its

behavior is done by code behind.[5]

So we can simultaneously working with the design and the code. Maintenance and development is

giving us more flexibility and options. With WPF the bindings makes it easier for updating data

from the EmoEngine. Each ViewModel parameter is set as the data Context of its pair view. When

the property value in the view model is changed, then this change automatically propagates to the

View. When the user make action on the view object, then a command execute on the View Model

to perform the action. The Model view performs all modifications made to the Domain Model.

Implementing a three-tiered architecture for our application will help to achieve the final result.

Also the architecture gives us excellent level of flexibility and extensibility in the long run. To

divide the parts of the application to smaller components encourages reusability. When we decide to

make changes in the design of the application or add new features then we don’t need to change

much of what already exists. Also smaller part of code is easier to analyze.

Also a good thing with our architecture is that, when the domain one of tier change, the other tiers

usually remain almost unaffected.

2.1.1. Analysis and Design

The first step in good analysis is figuring out potential problem. Sometimes the applications tend to

be much larger and have complex structure and therefore it can be more difficult to develop them.

But the importance of application is to understand end user’s needs, analysis the problem to the

detail and then we can design the architecture in the iteration (life cycle) process.

By the object-oriented analysis we have been tried to identify the type of objects that map into

elements of the domain application. This process has helped us to find the relationships between the

different types of objects considered as class instances. The class is describing the object behavior

that’s provided their constraints and relationship to other classes. We had identified all class

information that considers public or private access specified.

We have used the standard methods like Unified Modeling Language and Fundamental modeling

concepts during the analysis that defines all of these specifications up front. We started with the

domain analysis that gives us a conceptual framework of the objects in our architecture. Then we

11 | P a g e

defined functionality of the application with the use case and defined design of the application with

following techniques such as the activity diagrams, sequential diagrams and class diagrams. All this

process has been iterating and changing continually in the process development, therefore we are

showing mostly only final iteration of the development process.

2.1.2. Domain Model

The principle of the domain analysis is seeking to identify the classes, operations, relationships and

objects that are common with the given domain. This helps as to understand, to think and focus on

the basic concept of the architecture. It will help us to work with the use case and workflow

modeling.

In general there are steps to establishing Domain Model. First, we have defined object, then identify

objects and at last to establish a model from this objects.

2.1.3. Define Object

1. The M-board will be an application with WPF user interface, but it must have a sufficiently

architecture so alternative functions may be developed

2. The M-board will allow a user to write text, with the Emotiv headset

2.1 The user must be able to delete written letters.

3. The user must be able to change the size of font.

4. The user must be able to change the keyboard language.

5. The m-board must remember the changes in the setting by user.

5.1 The setting must be defined in XML

 6. The m-board shall be used to read the news

 7. An assistant user must be able to create a profile for the user, so that the system remembers

the user’s name

 7.1. The system shall maintain a list of profiles in XML files

 7.2. When a user log in, the system must load his or her recent settings

 7.3 The user doesn’t need to insert a password

8. The user must be able to control (home automation)

9. The user will be able to play the simple game

 9.1 It would be nice to remember the statistics

10. The user must be able to take a training to control movement by the Emotiv headset, with the

help of the assistant user

11. The system must remember the parameters from the last training

12. The system should show the status of the battery.

13. The system should show the connectivity with the headset

12 | P a g e

14. The system should show a progress bar of the signal

15. Each function must be controlled by the Emotiv headset in the application

16. The m-board will be capable of serving only one user in time.

2.1.4. Identified Objects

Now, we have marked the red nouns that could be key words for our domain diagram. We have

taken them and make a list of candidate domain classes. If we have found duplicates then we

eliminated them from the list. Also we eliminate keys that could be used as parameters in the

domain classes.

Headset Game statistics List of setting

Font Size Training User

Language Home automation Game

Settings List of users XML file

The next step is to draw these classes in a UML class diagram and identify any associations that

are necessary. In this iteration we will not identify attributes. The result domain diagram can be

seen in on below. When we compare the domain diagram with the final class diagram, we can see

that are many additional object that were needed to define later. Our domain diagram is not

including the presentation tier and its classes.

Figure 2 Domain Model

13 | P a g e

2.1.5. Use Case Model

Use case diagram better describes the possible sequences of interactions between its external

actors and the system. [1] We started building our use case diagram in the context of the domain

model. As we mentioned in the previous chapter, a domain model captures the most important types

of objects and events in the context our case but the use case to show all of its available

functionality. In general, a use case gathers requirements of a system from the customer, which is a

Horsens Kommune (or supervisor). We were discussing the functional requirements with our

supervisor; he was pretending to be our customer and we defined together the main purpose of the

system, than analyzed the functionalities in the use cases that had to be done before first release.

So we can say that the use cases are nothing but the system functionalities written in an organized

manner. [2] We can better distinguish the requirement of the system including internal and external

actors. In our case the actors are persons that will play a particular role when they will use our

system. We defined two main actors of a use case, a user and an assistant of the user. The main

different between them is that the an assistant user is a person that can be able to control profile for

the user on the system, booting an application, prepare headset for the user, generally speaking

assistant user will just help a user with the application.

A user is an actor that will be able to control application only with the headset. So he is not able

to pressing buttons by a keyboard or a mouse. The List of actor can be seen in the Table 1.

Name Characterization

Assistant User The person able to run an application,

prepare a headset for the user and create

an account for the user.

User The user working with this application

continuously. He will use only a headset

that will help to control the

functionalities of the application.

Table 1 Actor List

As we have already said, a use case diagram represents a task – use case performed by actors the

use case diagram can be seen in appendix C. We can also see all use cases for our application. In

addition to showing which actor perform which use case, use case diagram can show relationships

among use cases as well. The first relationship is included between logout and close application use

case. When the user assistant closes the application at which the use case generating logout is

included. This means that at this point the entire systems will logout the user and close.

The second relationship is extending. This means that one use case may be used to extend the

behavior of another. That can be seen between the create user profile use case and login use case or

training user and cancel training use case. Every use case is described on below, for this we used a

template, which is easy to read. The use case descriptions can be seen in the appendix C.

14 | P a g e

2.2. Class Diagram

The final design of the class diagram can be found in appendix D. the trip from the initial design

to the one we have now has been ever changing all the way through, we made research along the

way and as we were adding new objects and subsections then we got a design that showed all the

relationships between objects. This will be described in much more detail in the coming sections.

2.3. GUI Skeleton

2.3.1. Analysis and Design

The Graphical user interfaces (GUI) has high importance in our process design. We don’t mean a

visual design, but a functionality design of the interfaces. Especially when we have two types of the

same actors in our application. The assistant user will be able to control application with the mouse

or keyboard, but the end-user will be able to use only headset that should invoke the button events.

 For this reason we had to constitute a design that will be considering the end-user needs.

As we mentioned at the beginning, we would like to use the WPF that easily allows creating,

displaying and manipulating user-interfaces. We want to have simple design that will be only

contain one type of controls. We have to avoid the problems that might occur when we will mix the

various type controls such as combo boxes, radio buttons or others that we are hardly manipulate by

headset.

Therefore we decided that we will be only using buttons in the application.

The main problem that we was the most challenging is that how the user will be control buttons and

navigates between panels with the one cognitive state. The application should anticipate operations

between panels. We decided that timers should anticipate navigation through the controls (buttons)

on the panel and the user must make decision in a given time interval by the headset if he wants to

invoke buttons event or not. If not then we move focus on the next buttons and then again will have

some time to invoke the button.

This way it could work but we have still too many buttons on the panel so it will take a long time

when we will flow through all buttons. We need to improve this technique and reduce buttons.

Therefore, we changed our design again, and decided to split the functionalities between the six

panels and this way we reduced the amount of buttons on the one panel. This gives the user less

time waiting for the buttons. Furthermore, we split every panel between sections the header, body

and footer and we want to control header and body buttons separately. So when we load panel, body

timer we will start the flow through the button in the body section, when user will decide go to the

next page, then he must select the button Back to Menu, and the panel start flow through the header

buttons. This way we are able to control panels and also functionality in the application by the

headset.

The design is based on a multipage application in WPF. So we have one window but the multiple

pages. Technically we will switch between panels. As we set the panel will be split to the header,

body and footer section. The windows with the multipage are shown in figure on below. The main

idea this design is when you press Button1 then we will navigate to the page 1 and so on. The main

window will load a new page with the same header and footer section. The previous page is

disposed.

15 | P a g e

2.3.2. Implementation

First, we had implemented two navigate function in the core of main window class. The functions

are just navigated to the new page and takes parameter UserControl.

public void Navigate(UserControl nextPage)
 {
 this.Content = nextPage;
 }

Then we implement interface ISwitchable, that contain one method UtilizeState and passing

object.

interface ISwitchable
 {
 void UtilizeState(object state);
 }

We created a new class Switcher, which will contain two methods Switche from the main

window. But we are showing only one because we haven’t used the second one so far. The static

method Switche is passing a new instance of User Control and calls on the newly instantiated main

window. When we call navigate then we pass in a new instance of page and the content of the main

window class is filled with the user control.

public static class Switcher
 {
 public static MainWindow pageSwitch;

 public static void Switche(UserControl newPage)

 Figure 3 GUI Structure of the application

16 | P a g e

 {
 pageSwitch.Navigate(newPage);
 }

As we said we have six user control(Pages), then we need to switch pages between them. When

we click on the button from the menu, the vent handler for the button is called and then we call the

static method on the Switcher class, passing a new page. Example code on below is showing event

handler that is calling News page panel.

private void Button_Click_5(object sender, RoutedEventArgs e)
 {
 Switcher.Switche(new News());
 }

2.3.3. Test

For this test we did some basic interface testing to see if we could navigate the buttons between

panels.

Description

 This test is going to make sure that all the panels are loaded when the header button is

pressed.

Scenario

 Start the program

 Navigating through the menu buttons

Preconditions

The main windows is loaded and running without problems.

Element Description Expected Result Actual Result

User Panel button The user panel is loaded

when the button n is

pressed

The panel has been

loaded on the main

window.

The panel was loaded

Option Button The option panel is

loaded when the button

n is pressed

The panel has been

loaded on the main

window.

The panel was loaded

Writing Button The writing panel is

loaded when the button

n is pressed

The panel has been

loaded on the main

window.

The panel was loaded

Home Automation Button The automation panel is

loaded when the button

n is pressed

The panel has been

loaded on the main

window.

The panel was loaded

Game Button The game panel is

loaded when the button

n is pressed

The panel has been

loaded on the main

window.

The panel was loaded

News Button The news panel is

loaded when the button

n is pressed

The panel has been

loaded on the main

window.

The panel was loaded

Table 2 Test Cases - Loading the user panels

17 | P a g e

Comments

 All test in this part ran as predicted, this was to be expected since we have used this

function to see if other parts worked.

2.4. Writing Panel

2.4.1. Analysis and design

The typing functionality with the headset is essential a part of our application. The user should be

able to write a text to the text box in the panel and control the keys with the help of the headset. As

we described in the GUI section, the problem has occurred when we are using many buttons on the

panel, then typing is very slow or delayed. On the other hand do we need to consider the relative

position of the keys? Do we need to type all characters on the keyboards? Do we need to iterate all

of the keys or only any section at a time? We asked ourselves those questions that helped us to

better analysis and design the keyboard layout in order to increase typing speed.

Keyboard Layout

The main idea of the typing by headset is that the user will have certain time to invoke an click

event on the button when said button is focused. For example when the user decided to type letter

K, then he must wait while the button with the key K is focused and then he can invoke again the

event click. So we are changing the focused on the next button by the timer and loop through all of

the keys on the keyboard. There is also a button back to menu, so the user can exit from this the

panel. This is the basic idea how we will control typing with the headset. We were testing an

application and decided that the best length of time to leave button focused is 3s. It’s not long and

the user can easily work with that period. But after the first testing we figure out that typing is too

slow. Because the typing speed also depends on how far apart the keys on a keyboard are. For

example when we start loop through the keys and the user missed the letter K then we have to

waiting till we have got focus again on the letter K. And this time is depending on number of keys

(buttons) multiplied by how long a button is focused. Definitely we had to reduce this time.

First, we reduced the keys available on the keyboard. We have known that the user will not need

to use all of the keys on the keyboard. Buttons as Shift, Ctrl, Alt, and Operators can be removed

from the list (at least in this version, because later we can consider it again). Then we have sorted

them to the sections. This means that we sorted keys according to the frequency of the letters of the

in English text or the Danish text. This gives us the most frequently used letters and we split letters

to the two groups. Less and more frequently used. The list of frequency letters in both languages

can be seen in the Appendix E. According to Concise Oxford Dictionary the letters E, A, R are the

most frequently used letters in English Vocabulary and in Danish language letters E, R,N. When we

compared both of the list then we found out that both of the languages are using similar frequency

of letters in text. Of course except extra keys such as Æ, Å, Ø. But we didn’t have a problem to

integrate them to the keyboard; we just moved the less used keys to the last row, See Figure 5.

The next thing, we arrange the numeric keys to the third section and functions will be in fourth

section. We are not using too many functions, but we decided that we need the button clean text

box, go to the menu, text to speech. We assumed that the functions will not be used such often, so

it’s good to keep them to another section. The result can be seen in Figure 4 on below.

18 | P a g e

The Text to Speech function is creating a spoken sound version of the text in the text box. So the

computer transforms the text into speech in real time. We think that it can be very helpful for the

user when he is typing text. You can also see that we put to every row the same keys such as dot,

space and back. That is because we think that it will be easier for user reused these buttons in every

row than still go back to the different section. We have though that these three keys can also be

frequently used and specially Back (backspace). We assume that the user will decide, what a row he

wants to use for the typing. Since the keys in row 2 are the most frequently used, then maybe just

time-to-time he will go to the row 3. So now, we have 13 keys in a section instead 38 keys. We

have increased typing speed but still is not enough, therefore we continued to improvement typing

on a keyboard.

Now, the question is how the user will be selecting rows on a keyboard?

Figure 4 Keyboard layout English

Figure 5 Keyboard layout Danish

Figure 6 Detail of the keyboard

19 | P a g e

We implemented the select menu that is placed at the beginning of each row. Detail of the

keyboard buttons can be seen in Figure 6. This select menu contains four buttons, each button one

row. Basically we are iterating through buttons as we described at the beginning of this section and

when the user will invoke event click on the button the application will start iteration in the selected

row. And again when the user wants to go the next row then he must wait till the select menu button

is

focused again and invoke the click event. This way, he will return to the select menu and

application start loop through the select menu button again. An analysis is shown in the sequence.

We starting with the user when he invoked the click event in the header menu, and we overload

the Switche static method that create the instance of the writing panel. When we are loading a new

panel, first we need to initialize two timers, one timer for the header control and one timer for the

body. The header timer is set as enable to false, because we don’t want to go looping through the

header buttons. Writing panel initialize the list of the controls. We are calling the two functions

loadbuttons() and loadSelectMenu().

These methods are mapping all buttons control in the grid of the panel and adding to the list. The

first method is mapping the header buttons and the second is loading selectMenu buttons and

initializing to the list setList(). The ButtonEffect object is handling the focus on the button. When

the button is selected, then we call a method setButtonfocus(). This method just highlight the

focused button.

Because the timer of the body is enable true and the interval is set 3 second, then a timer delegate

a method timingbody() every 3 seconds. This method is responsibled for the focusing buttons and

checking a handset if the user changed cognitive state. So we are calling nextControl() and

Figure 7 Sequence diagram, iterate through the buttons

20 | P a g e

previousControl(). These methods return the buttons from the list of control than should be focused.

Then we set as next button highlight (focused) and previous button return to the default state. Those

functions are just making visual effect and the user can better see what button is focus right now.

But during interval the 3 second interval method is checking the status of the headset if the value of

the cognitive state was changed, if yes then a method eventRaising() is invoked that will trigger

click event of the focused button. And at the end this timigBody method is called function

setNext(),that will increase a index of the next button. Basically when the timer will delegate this

function in the next iteration, then the current button became as previous and the next button will

become current.

Same technique we are using for the all rows on a keyboard, except when the user selects the row

then we load the list of the buttons from the specific row.

Spelling Checking

To increase the typing speed on a keyboard, we reuse the spelling-checking dictionary. When

user starts typing a word, then automatically spelling checking is enabling to the true and then we

just control spelling errors. We can see suggestion buttons in Figure 4. Spelling error generates the

suggestions from the dictionary and we reuse these suggestions for the faster typing. We are just

adding these suggestions to the buttons and a user can type all words instead one letter. Of course

there is also option ignore all that will ignore the current spelling checking. When we compare

speed of typing from the first version of the keyboard layout until the last one, we can see that we

improved the typing speed very well. There are still possibilities how it could be improved.

Table 3 Typing speed for the various versions layout

Version Number of keys Time

1. 38 keys 38 * 3 = 114s

2. 10 keys (include select key) 10 * 3 = 30 s

3. 10keys (include suggestions) 30< s

Table is showing approximate time in worst case scenario, For example when the user invokes

the key K on a keyboard then he must wait for the key K again this time.

2.4.2. Implementation

Adding letters to Text

We have two types of buttons. First group of the buttons are keyboard keys that are adding a

letter to the text box and second group of the buttons are functions such as clean text box, go back

to the menu.

Therefore we need to implement only two custom event methods that will be reused for every

button. We called them OnClickKey and OnCLikOp.

In the xaml view we defined them as

21 | P a g e

For keys:

<Button Click="OnClickKey" Grid.Column="1" Grid.Row="7" Margin="3 3 3 3" Name="buttonT"
Content="{DynamicResource bt_t}" Style="{DynamicResource FontStyle}" />

For function:

<Button Click="OnClickOp" Grid.Column="6" Grid.Row="6" Margin="0,6,30,3" Grid.ColumnSpan="4"
Name="btnBack" Content="{DynamicResource back_menu}" Style="{DynamicResource
FontStyle}"></Button>

OnClickKey() Event is very simple, we need to just handle how we will add letters to the string.

So we implement the handleLetter() method that will add letter to the text, as argument is passing

letter. Textdisplay is the name of the text box. When we add letter to the text then we keep focus on

the text box and displaying cursor at the end of text. It has just nice effect that we are writing

directly to the text box.See methods on bellow.

private void HandleLetter(string l)
 {
 string str = textdisplay.Text;
 string newValue = str + l;
 textdisplay.Text = newValue;
 textdisplay.Focus();
 textdisplay.SelectionStart = textdisplay.Text.Length;
 }

protected void OnClickKey(object sender, RoutedEventArgs e)
 {
 Button bt = sender as Button;
 HandleLetter(bt.Content.ToString());

 }

Another function is a little bit complicate. First we need to distingue what button was pressed. Very

button has tag property that can be use in our case. So we build an enum class Operator where we

define all function on the panel.

public enum Operator
 {
 None,
 Clean,
 Delete,
 Back,
 Space,
 Read
 }

When the page is loading, we assign to the button property tag .

private void page_loaded(object sender, RoutedEventArgs e)
 {

 btnClean.Tag = Operator.Clean;
 btnBack.Tag = Operator.Back;
 btnread.Tag = Operator.Read;

22 | P a g e

 btnBackspace3.Tag = Operator.Delete;
 btnSpace3.Tag = Operator.Space;

 }

So we need one more function that we execute function and use it in the custom vent function

OnClickOp()

private void OnClickOp(object sender, RoutedEventArgs e)
 {
 Button op = sender as Button;
 if (op.Tag != null)
 {
 Operator o = (Operator)Enum.Parse(typeof(Operator), op.Tag.ToString());
 ExecuteOperator(o);
 textdisplay.Focus();
 textdisplay.SelectionStart = textdisplay.Text.Length;
 }

 }

private void ExecuteOperator(Operator newOp)
 {
 string currentValue = textdisplay.Text;
 string newValue = currentValue;
 switch (newOp)
 {
 case Operator.Clean:
 newValue = "";
 break;
 case Operator.Space:
 newValue = newValue + " ";
 break;
 case Operator.Delete:
 newValue = manipulateString(newValue);
 break;
 case Operator.Read:
 reader.Dispose();
 if (textdisplay.Text != "")
 {
 reader = new SpeechSynthesizer();
 reader.SpeakAsync(textdisplay.Text);

 }
 break;
 case Operator.None:
 //
 break;

 }

 op = newOp;
 textdisplay.Text = newValue;
 }

This function is mapping buttons in the grid

23 | P a g e

private void loadButtons()
 {
 if (header.countList() == 0)
 {
 foreach (Control ctrl in head.Children)
 {
 if (ctrl is Button)
 {
 header.addControl(ctrl);
 }
 }
 }

 body.SetList(loadSelectPanel());
 }

When we are loading pages then we need to initialize Timers for the control buttons. We will

only show the code for the body timer and time Interval is variable equal to 3s.

private void startBodyTimer()
 {
 timerBody = new Timer(interval);
 timerBody.Elapsed += new ElapsedEventHandler(timingBody);
 timerBody.Enabled = true;
 }

 Timer delegate method timingBody when interval elapsed.

private void timingBody(object sender, ElapsedEventArgs e)
 {

 this.Dispatcher.Invoke((System.Action)(() =>
 {
 Control ct = (Control)body.nextControl();
 Control previous = (Control)body.previousControl();
 // when the timer starting, then previous and actual control cannot be same

 if (body.nextControl() != body.previousControl())
 {
 previous = body.previousControl();
 effect.SetButtonUnFocus(previous);
 }

 ct = body.nextControl();
 effect.SetButtonFocus(ct);

 if (EpocCtrl.getInst().getAction.Power >= 60)
 {
 int count = 0;
 while (EpocCtrl.getInst().getAction.Power >= 60)
 {
 count++;
 if (count >= 1000)
 {
 ct.RaiseEvent(new RoutedEventArgs(Button.ClickEvent, ct));
 count = 0;

24 | P a g e

 break;
 }
 }
 }

 body.setNext();
 }));
 }

From the code we can see that dispatcher maintains a prioritized queue of the work items for the

timers. Then we call buttons from the listContol. NextButton() is the current button that is focused

and use can see the button highlighted. Then we are checking from the Emotiv headset if the user

wants to invoke event or not, When exceed 60 then we invoke the event on the focused button

otherwise we are ignore it. As the last we need the set next iteration to the next button from the list

Controls, so when the timer elapsed next event, then we will focused on the next button from the list

controls.

2.4.3. Test

We wanted to do some unit testing for this part but because the output from the headset is

unpredictable it wouldn’t make sense to do this. Instead we ran some simple interface test just to see

if the interface was responding to our commands, and to see if the methods we had implemented

actually worked.

Description

 This test case is going to make sure that all the keys and functional keys on the

keyboard work properly.

Scenario

 Start the program

 Select the writing panel

 Navigating through the keys on the keyboard

Preconditions

The main window is loaded and running without problems.

Element Description Expected Result Actual Result

ALL keys on the keyboard The press keys on the

keyboard

The letter will be typed

on the text box.

passed

Clean button The press keys on the

keyboard

The text box will be

cleaned.

passed

Text to Speech button The press keys on the

keyboard

The text will be speech

from the text box.

passed

Backspace button The press keys on the

keyboard

The last letter from the

text will be deleted.

passed

Space button The press keys on the

keyboard

The space will be added

to the text.

passed

Suggestion buttons The press keys on the

keyboard

The suggestion text is

added to the text box.

passed

Table 4 Test Cases – keyboard functionality

25 | P a g e

Comments

 All test in this part ran as predicted, this was expected.

2.5. Engine

We did two different versions of the engine. The first one we did because we got stuck

and had to move forward if we wanted to finish the application in time. For this reason we made a

very basic version first and then got back to finishing the complete version.

2.5.1. Version 1

2.5.2. Analysis

Since we were spending a lot of time being stuck, and going nowhere with

implementing the Training possibility inside our own application, because for the Training to occur

first we need a Profile and a User. Unfortunately we couldn’t get either one of them because the

userID supplied on the emotive_onUserAddedEvent(this event was triggered as soon as the wireless

dongle would be connected, therefore adding the default user template) couldn’t be loaded to the

Profile. We were guessing that this might happen because we only had access to the Developers

Edition of the SDK. While going thru the material provided by with SDK and more specifically the

.netEmotivSDKtest. We discovered one of the methods that we’re essential initialize the buffer for

receiving the data from the headset (EE_DataCreate). Later on after doing some searches in the

community forum “why isn’t It working, yet?” we found out, that like its mention a bit before, that

the method was only in the Researcher Edition of the SDK.

2.5.3. Design

 The design we used on this part was to get an instance of

the EmoState from the Emotiv control panel and use it as part of our

engine, so that we could use all the settings provided this way. We

then used the events that where triggered to update a two global

variables.

2.5.4. Implementation

We needed to define the events we want to listen for. In our case the

only event we were interested in was the

engine_CognitiveStateUpdate. Inside the event arguments we have

the EmoState belonging to the Emotiv Control Panel so just a simple

call for the methods that return the current action and power. Which

then are stored in a global variable that would be used later. This a

practical fix which helped us finally start moving somewhere with the

project. We didn’t give up on the training but just postponed it until

we have something running and, we see if we have time.

As seen on the class diagram we only used the bare minimum to

maintain the connection. After creating the instance of the emoState

we connect to the headset. And then we start the thread to maintain

the events that are raised.

Figure 8 EpocCtrl

Class Diagram

26 | P a g e

while (true) {

 engine.ProcessEvents();
 System.Threading.Thread.Sleep(250);
 }

As you can see the event processing is very simple, we use the API to call the method for

processing the event. It can be use in two ways to do its job, one way is to process all events in the

buffer or if you are afraid that it will take too long you can set a timer that in millisecond, this

function is just an overloaded method so it’s very easy to implement.

As mentioned before the only event we used was the CognitivEmoStateUpdated, this event we used

to get the cognitive action and power from the headset and set them to two global variables like so

 public void engine_CognitivEmoStateUpdated(Object sender,
EmoStateUpdatedEventArgs e)
 {
 EmoState es = e.emoState;
 currentAction = es.CognitivGetCurrentAction();
 currActPower = es.CognitivGetCurrentActionPower();
 }

We used the EDKdll to get these data and then it was just a matter of writing two getters for these

variables.

2.5.5. Version 2

Analysis

 As we enter version 2 of the engine we wanted some key features that we didn’t have

in the first one, these can all be tied into one entity called a control panel, the point of having our

own control panel is that we want our program to be able to work alone without any help from the

Emotiv software that comes with the headset.

This part of the program really was a big challenge since the documentation was very

hard to understand since its made for C++ and no one bothered to update the documentation when

they created the C# wrapper for the API.

Design

 The engine consists of several different parts that all are needed to maintain the

control panel. It based on a singleton pattern so we are sure that we always get the right instance of

the engine. If we didn’t go with this strategy we would get a new engine every time we made a call

and all the information that we saved to the buffer would be unreachable.

27 | P a g e

Figure 9 Connection Sequence diagram

Implementation

 When implementing this part of the application we started to run some minor tests on

how it would be possible to connect to the headset. We still had some projects that we did in the

beginning and we used these to get started on the first draft. We found from the beginning that

things was much easier now because we had a lot of experience with the API now and most

importantly we had the understanding of how it works.

 First thing was to make the actual connection, the problem here was that you only

connect to the USB dongle and not the headset so you can actually get a connection without being

able to get any data. To make the connection we needed to get the engine from the API and add the

events that we wanted to handle so the instance can be created.

 The next step was to make the function to connect to the headset, it’s a simple method

that connects and then starts the thread that is set to process the events. The reason why we start this

thread here is that as soon as the connection is made we start getting events and this will tell us if

something went wrong or if there are some problems with the headset.

 When the above things are taken care of we needed to tell the system what data we

wanted from the headset. This is done with the profile that has to be loaded into the engine. Here we

can define what functions we want get from the headset and if it should be affective, expressive or

cognitive. We decided from the beginning that we wanted to use the cognitive functions because the

system is meant for people that can’t use their body. So we implemented the loading of user profiles

which is explained in further detail later in the report.

 After going through these three steps we started to get some results from the headset

so we decided to use another thread with a sleep timer to take care of the polling from the headset.

The reason for using a thread and not a timer for this part is that the timer is tied into the STAthread

and by experience it can make the GUI seem slow when we have to much running on the same

thread, so because of performance issues we decided to do it this way.

 When all was set with the communication we started on implementing our own

training, this was very important to us because as soon as this was done we could leave the Emotiv

control panel behind and not look back. Since we had a profile loaded into the system it was easy to

see if the training we did was successful because when we loaded a base profile we didn’t get any

data out until we after the training and we could see that the debug information started to update.

28 | P a g e

Test

 Since unit testing wasn’t possible on this part of the program we decided to run black

box tests instead. The problem is that all return values are unpredictable since it constantly changes

and we would never be able to get the same result twice.

We wanted to test all functionalities, and for that reason we made a test plan so that we

could keep track of what we expected to happen and what actually happened. It gave us a huge

advantage that we did it this way. As you will see later on, it gave us something concrete to use

during the testing period

2.5.6. The modules

 The new engine isn’t really a version 2 since its build on top of the old one but instead

of connecting to an instance of the Emotiv software engine we create an object of our own engine

and connect with the wireless dongle for the headset. The new engine can be divided into five

different categories which is Event processing, data polling, profile management, training and state.

To give a deeper understanding of these different parts we divided them and explained in the

following section.

2.5.7. Event processing

Analysis

 The event processing is the core of the engine. This is the part that makes us able to

check what is coming next, and to do something accordantly. An event can be something like

userAdded, which is triggered when the engine detects the dongle in the USB port. The way to use

these events is to load them to the engine and then wait for the engine to trigger them.

Design

 The way that the SDK for the Emotiv headset works is that everything is handled by

events that gets fired when something new happen, since that is the way it’s done we had to go with

that architecture. The connection to the headset is maintained by the engine where we load the

methods that should be triggered when an event is raised. Then the headset will tell the engine what

the next events are and as they get triggered the application will move forward.

Implementation

The events we used can be seen in the code snippet beneath.

this.engine.EmoEngineConnected += new
EmoEngine.EmoEngineConnectedEventHandler(engine_EmoEngineConnected);
 this.engine.InternalStateChanged += new
EmoEngine.InternalStateChangedEventHandler(engine_InternalStateChanged);
 this.engine.EmoStateUpdated += new
EmoEngine.EmoStateUpdatedEventHandler(engine_EmoStateUpdated);
 this.engine.UserAdded += new
EmoEngine.UserAddedEventHandler(emotivEngine_UserAdded);
 this.engine.CognitivTrainingStarted += new
EmoEngine.CognitivTrainingStartedEventEventHandler(engine_CognitivTrainingStarted);
 this.engine.CognitivTrainingSucceeded += new
EmoEngine.CognitivTrainingSucceededEventHandler(engine_CognitivTrainingSucceeded);
 this.engine.CognitivTrainingCompleted += new
EmoEngine.CognitivTrainingCompletedEventHandler(engine_CognitivTrainingCompleted);
 this.engine.CognitivTrainingFailed += new
EmoEngine.CognitivTrainingFailedEventHandler(engine_CognitivTrainingFailed);

29 | P a g e

 These events seem fairly easy to do but has given us a lot of problems to get running

because there really wasn’t much help to get when it comes to creating a new control panel. We

used a lot of time on it but we think that it is time well spend since it gave us a very good insight

into how the headset works. After the events where set up we had to implement the methods for

them. These methods range from setting a simple flag or setting the state to starting entire

processes.

When all this is set up we are ready to start our thread that makes sure these events get

fired. The way it works is that the engine holds a buffer where the different events get stored until

the processEvent() method gets called, this method we call from a backgroundworker, which like

the name suggests is a thread that runs asynchronic in the background. This is a good choice since

we don’t need it to be in sync with anything. The backgroundworker only has two jobs. The first

job is to process the events to make sure that we have the most recent events fired. The second thing

is to wait and give time for the polling to happen, this is very important because if this isn’t done we

would never get any output when we try to poll from the headset.

Test

Description

 This test is going to make sure that all the events get triggered and they are called in

the right sequence.

Scenario

 Start the program

 Connect the headset

 Read the returned results

Preconditions

 All events should have a message box with debug information

Element Description Expected Result Actual Result

EmoEngineConnected The event that occurs

when the engine is

connected

Triggers when engine is

connected

Triggered as it should

InternalStateChanged The event that occurs

when an error happens

Should output a stack

trace

Could not create

conditions to provoke

error

EmoStateUpdated The event that occurs

when the EmoState

changes

Should update the

emotivState

Emostate got updated

UserAdded The event that occurs

when the dongle is

detected

Should load a user The user loaded as it

should

CognitivTrainingStarted The event that occurs

when the Cog_Start

action has been send

Should show a message Got training start

message

CognitivTrainingCompleted The event that occurs

when the training has

completed

Should show a message Got training completed

message

30 | P a g e

CognitivTrainingSucceeded The event that occurs

when the training has

been accepted

Should show a message Got training completed

message

Table 5 Event tests

Comments

 All test in this part ran as predicted, this was to be expected since we have used this

function to see if other parts worked.

2.5.8. Data polling

Analysis

 In the first version of the engine we used an event to get the data from the headset, this

was very unreliable because it took a lot of recourses to constantly take care of all the events that

happened and wait for the special event that tells us that there is new output from the headset.

Instead we decided that we would have a separate thread to get the information from the headset.

Design

 The design of this part, is a simple thread that has a sleep timer, and then updates an

object that holds the information from the headset.

Implementation

The data polling gave us a bit of problems the first time we tried to implement it

because we wanted to handle it through the cognitive event that is given in the API. This we found

to be very troublesome and in no way functional for use in the application. Instead we have started a

thread in form of a backgroundworker. The way this thread works is that it first fetches an instance

of itself so it can check if it has been canceled, then it goes to sleep for a fixed number of

milliseconds, this is done so that the thread won’t keep the entire system busy with this one task and

lets other parts of the system work as well. After this wait the next step is to actually check if there

is anything to get from the headset, this is done by a simple call to the headset and see if something

is returned. After we have done these parts it’s time to do the actual polling of data, this happens 4

times pr. second and updates into an object called Action, that can be read from any place in the

program. In future versions we will implement bindings with the controls in the GUI part so that

everything will happen much more smooth. With this new way to get the data from the headset we

really made a great leap forward in the project because it’s such an essential part of the control

panel.

Test

Description

 This test should check if there is anything returned from the method.

Scenario

 Start the program

 Load a profile

 Read the returned results

Preconditions

31 | P a g e

 Headset should be connected and engine should be running.

Element Description Expected Result Actual Result

Data polling Check if data is polled Activity bar should

update

Activity bar updated as it

should

Table 6 Data polling test case

Comments

2.5.9. Profile management

Analysis

Profile management is a tricky size to work on, especially because you have no idea

what you are working with. Even though you know what is suppose to happen you have no idea if

what you want actually happens. The reason for this uncertainty is that the profiles are written in

binary files so you can’t just open one and check what’s in it. The only thing you can check is to see

if the *.emu file is actually increasing in size.

One of the big problems that we found with the profile management is that during

development it’s a lot easier to run with the composer instead of the headset, and even though the

composer simulates the headset pretty well it still does not do what its suppose to do, so the files

that you save is always just 1 kb. In comparison a brand new base profile with no training data at all

is 17 kb and a profile with very basic training is around 170 kb.

Design

The way we decided to design the profile management is to use the build in events from the engine,

so when you connect the engine to the headset an event is raised if the dongle for the headset is

connected. This event then handles the loading or creation of the profile with a filename that is

provided by the user.

In the diagram below you can see how the application communicates with the API.

Figure 10 Sequence diagram for load user

32 | P a g e

When we load the profile we send a command to the dll file telling it what profile to load into

memory, when this is done we send another message to get the profile bytes, which then returns us

the profile. The last step is then to set the user profile as active.

Implementation

 When the headset is connected the userAdded event will be raised and the method

assigned to it will be called. This method will then call the correct method for either create or load

profile depending on a variable that is either true or false. The reason for this way to implement the

code is that because we use the event to trigger the action we can be 100% sure that everything

happens in the correct order.

To get the profile you need three commands as shown beneath

EdkDll.EE_LoadUserProfile((uint)UserID, profilePath);
 profile = engine.GetUserProfile((uint)UserID);
 engine.SetUserProfile((uint)UserID, profile);

 The first line loads the profile into memory and assigns it an id number that can be

used later for manipulation. The second line gets the profile bytes and loads them into an object of

type profile which is just an intPtr with some extra methods. The last method call sets the profile

that we just loaded and sets it as active in memory. This is the way to go if you want to have a fully

working profile on your system, but that’s not always the case. If the profile you are loading is just

a base profile you also need to tell it what you are interested in using, you do this with the

setActiveActions() method. This method is very tricky to figure you, again because you can’t just

open the profile and check what you are changing. These active actions are being calculated by

inputting an integer value that is extracted by the number of placement in the action has in the

enumerator. The engine can handle a max of 4 active actions at a time so you have to decide what

actions you want to focus on.

 When you want to create a user it’s almost the same as loading a base profile because

here we also want to set the active actions. The only difference is that instead of getting the profile

bytes we create a new object that the API automatically set as a base profile. As you can see below

the code look almost the same

profile = new Profile();
 engine.SetUserProfile((uint)UserID, (Profile)profile);
 engine.EE_SaveUserProfile((uint)UserID, profilePath);

Test

Description

 This test is going to test the overall functionality of the engine.

Scenario

 Start the program

 Press the buttons

 Read the returned results

33 | P a g e

Preconditions

 Dongle for the headset should be plugged in.

Element Description Expected Result Actual Result

Load User Profile Load a user profile Activity bar should

begin to update

User loaded and data

was translated

Create User Profile Create a new profile File should be created File got created and held

data

Save User Profile Save a user profile Profile size should rise Profile got saved to the

file

Table 7 Manage user test cases

Comments

 All test ran as expected

2.5.10. Profile

Training

Analysis

 To be able to use a profile

it is necessary to train the actions you

want to use, because a base profile

doesn’t contain any information on

what the brain patterns look like and

therefore can recognize them. The

actions we want to work with are

neutral which is the relaxed pattern and

the push pattern. The pattern is

different in everybody so the headset

needs this data to be able to trigger

when you want something to happen.

Design

 The way we decided to

implement the training is to call a

method that sets the necessary

parameters and then starts the training

process that basically is three steps. The

first is started, the second is completed

and the last is succeeded.

The diagram shows a

snippet of what is going on then the

training is started. The entire diagram

can be seen in the appendix G. This

part of the diagram shows the

Figure 11 Detail of training sequence diagram

34 | P a g e

interaction between our application and the dll file edkdll that holds the methods for communicating

with the headset. It shows how the communication is and how it should be handled.

Implementation

After the profile has been loaded you can choose the option to train the different

actions, this is necessary for the engine to better map the brainwaves that will appear when you do

the different movements. When you train the actions it is important that you relax and let your

brain do the work, this means no clenching your face or biting your teeth together [3]. The reason

for this is that it will send muscle signals that will be recorded, and if you do the same for every

signal the training will end up to much alike no matter what you do.

 The way we chose to set it up is to have two basic functions which are neutral and

push. The way to go about the training is to first make sure that the action is active, this is easiest

done by just setting them again. After it’s done you select what function you want to train and after

that, you start the training session as follows.

 engine.CognitivSetTrainingAction(userId, trainingSession[session]);
 engine.CognitivSetTrainingControl(userId,

EdkDll.EE_CognitivTrainingControl_t.COG_START);

 When the training has been started three events will be triggered, the first one is

training started. As soon as that has been started there will be a eight second window where the

recoding of the brainwaves will take place, after this timeframe the user will be asked if they

managed to focus on the function that is in training, if yes it will be saved if no it will be discarded.

If the training fails an event will be triggered and we had to make a decision on what to do with it.

We decided that the best thing was to let the user restart the training instead of letting the

application take care of it by itself. We made this decision because there might be some things that

needs to be adjusted and then it would just be a waste of time to run the training again.

Test

Description

 This test is going to check if the training will actually add some information to the

profile.

Scenario

 Start the program

 Try the functions

 Check the file sizes

Preconditions

 Headset should be on and probably connected to the engine

Element Description Expected Result Actual Result

Train Neutral

Action

Start and complete

Neutral training

File size should rise File size incremented

Train Push Action Start and complete

Push training

File size should rise File size incremented

Table 8 Profile training

35 | P a g e

Comments

 All tests ran as expected

2.5.11. EmotivState

Analysis

One of the key elements in the core of the program is the state. The state holds the

important maintenance information about the system, information like how the connection to the

headset is or the battery level. It’s also the state that holds the electrode connection status or the

actual information from the headset.

Design

 Because the emostate is a pretty big class with a lot of

methods we have decided to make our own that only holds the things that

we need. The things that we implemented are the methods for calling the

cognitive action and the cognitive action power from the headset, and the

methods for getting the variables for the headset information. The class

acts like a normal object and interact with the API directly. As the class

diagram to the right shows the EmotivState class has been designed to tie

all the headset communication methods together in one class.

Implementation

The way that we implemented the emotivstate class, that we

called our own version of the emostate is to take a clone of the actual

instance of emostate. This way we are sure to get all the correct

information transferred while we have the information in the format that

we want. When the first event for the emostate updated is triggered we

have all the information for creating our state and we do that as follows.

 emoState = new EmoState(e.emoState);
 emotivState = new EmotivState(emoState);

as you can see we first create the actual state and then clone that one into

our state by taking it as a parameter, its then set to a global variable so it

can be accessed from anywhere in the class. The good thing about this

way to do it is that if there are any changes to the state we will right away

get it updated.

 The main reason for us to make our own state is to know what is actually going on

inside it, the version in the API is written in unmanaged code that we can’t use in our WPF so it’s

set in a c# wrapper and it’s impossible to find heads or tails in it. Therefore we found that the

optimal solution would be to do it this way instead of having to work with integer pointers and

trying to get them wrapped in the right way.

Test

 Description

Figure 12 EmotivState

class diagram

36 | P a g e

 This test is going to check if we get some input from back from the headset.

Scenario

 Start the program

 Read the returned results

Preconditions

 Headset and engine should be on and connected.

Element Description Expected Result Actual Result

Get Wireless signal

strength

check if there is a signal

from the headset

Full signal from the

headset

Full battery status

Get battery level Check the battery level Get value indicating

battery level

Got integer value 3

indicating battery level

Get Electrode

Connection State

Check is all electrodes

get input

Get list of values

indicating electrode

status

Got full list of electrode

connection status

Get Cognitiv Action Check output from

headset

Get cognitive action

enum

Action updating as it

should

Get Conitiv Power Check output from

headset

Get cognitive power

value

Power updating as it

should

Table 9 EmotivState tests

Comments

 Everything passed as expected

2.5.12. Updates

 For future updates we want to implement the INotifyPropertyChange interface

because that will give us the possibility to bind the WPF controls directly to the headset, but we hit

a problem since we are using a singleton for the engine and that can’t be loaded in a proper way.

 We also want to improve the training in future versions of the application, it works

fine now but we want give the user an opportunity to use more different functions. The problem at

this point is that it’s hard to handle more than one function and until we cover that part we don’t

want to add to many cognitive functions. We also want to add some animation to help training but

since none of us are strong in animation we have decided to leave it for now.

2.6. User Panel

Analysis

Now that we had our own Engine and we had to build an interface similar to the Emotiv control

panel. The elements we considered key were: the ability to create and load a profile on which you

could then train. Also the training, the connectivity of the pins, so you can see when you positioned

the headset correctly, the wireless and battery signals and last but not least the current action and

level registered by the engine.

37 | P a g e

We decided to make the following classes for an easier control of the system. The Pin class

represents a Headset Node. The check value holds the type of signal in string(“No Signal”, “Good

Signal”, “Fair Signal”, “Poor Signal”, “Very Bad”), the status value holds the color corresponding

to the signal (White, Green, Yellow, Orange, Red). When this class is instantiated with

EE_SignalQuality_t it will automatically set the check and status to the appropriate values. In the

battery the status again represents the color depending on the level.

Figure 13 Class diagram of first controller

38 | P a g e

Design

The profiles manipulation consists of 2 buttons (Create and Open) on either click of them it will

start looking for the headset and establish a connection and handle the profiles. As soon as a

connection is made the UI comes to life.

In the training department we have one button which will notify our controller (EpocCtrl) to start

the training with the action selected in the comboBox. In the same time it will set the visibility of

the timerBar to Visible and start a timer on the controller which will be active for 8 seconds with an

interval of 1 second and inside the the tick event it will count++ a value which is bound to the

timerBar.Value. This way the user can keep track of how much time is left of the current training

session.

Available on all pages are the 2 progress bars indicating the current action power and the battery

life plus the 2 rectangular allGood and WirelessSignal, because of their obvious importance. The

purpose of the allGood rectangular is to keep you notified with the connectivity of the Pins when

you navigate away from the UserPanel.

Implementation

The initial idea for showing the connectivity of the pins was to have a list with the pin number and a

rectangle next to it with the respective color. But we decided to take it overboard and we drew over

an image of a head, 16 ellipses (circles) where each node should be. The idea was good but each

ellipse was a field (therefore we had 16 fields and on each specifying the pin position inside the

canvas) and for each field we had to make a property to bind to (resulting in 16 properties). This is

just bad programming so we researched it a bit more and came up with a solution. Inside WPF the

ListBox acts like a generic List. The way we use it is that we make a List of Ellipses and then we

can easily bind it to our ObservableCollection.

<ListBox Style="{DynamicResource objectList}" ItemsSource="{Binding pins}">
 <ListBox.Background>
 <ImageBrush ImageSource="../img/emotivCMSDRL.png" />
 </ListBox.Background>
 </ListBox>

So since we are not defining each ellipse for each electrode individually anymore, and therefore not

setting the position for each electrode, we had to make a “template”. So we made the Pin class

work for us by adding 2 fields top and left (representing the distance from the canvasTop and Left)

so we can bind them to our Ellipse and in the constructor we also added a parameter as an integer

(index). Since we refresh all of the pins at once and not individually (the data from headset is of

type EE_ContactQuality_t[] <-list) it’s not hard, for each time we instantiate the pin to also add the

index. Next we have the PinCanvas class which is a static class in which we hardcoded the position

values for each pin. There are 2 lists of type integer with the corresponding locations on the canvas

for the pins and get methods in which you supply the index you need. Than on the initialization of

each pin we query the PinCanvas with the index so that we easily can bind or Pin-s to our view.

<UserControl.Resources>
 <Style x:Key="objectList" TargetType="ListBox">
 <Setter Property="ItemTemplate">
 <Setter.Value>
 <DataTemplate>
 <Canvas>

39 | P a g e

 <Ellipse Width="25" Height="25" Stroke="DarkGray"
StrokeThickness="2" Fill="{Binding check}" Canvas.Left="{Binding left}" Canvas.Top="{Binding
top}"/>
 </Canvas>
 </DataTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </UserControl.Resources>

We have 5 types of Pin signals so to each pin we assign a value from 0 to 5, depending on how

good the signal is. Then we add it together and next calculate the average. Depending on the result

we set the color of allPinStatus to (3<=Red<24<=Orange<40<=Yellow<56<=Green<=64)

All of the above are bound to properties inside the EpocCtrl. Here is the reason why we chose to

add the EpocCtrl instance as an application resource. This way when we add the “EpocCtr” in the

MainWindow DataContext we will have the model available for all the Pages(User

Controls/Views).

 public partial class App : Application
 {
 protected override void OnStartup(StartupEventArgs e)
 {
 base.OnStartup(e);
 Resources.Add("EpocCtrl", EpocCtrl.Instance);
 Resources.Add("NewsViewModel", NewsViewModel.Instance);
 }
 }

The EpocCtrl handles all the events from the Engine and notifies the UI accordingly. In the case of

the Battery, WirelessSignal, allPinStatus, currAction and Pins everything happens pretty much the

same. Each time there is an event we query the headset for all the data and update the properties

inside the EpocCtrl to their new values. As soon as each property updates it notifies the UI to also

update. For the Battery we made a counter and each time it can be divided by 20 it updates the

battery (1 time after others were update 20 times). We do this because the battery won’t change its

status very often.

Figure 14 Sequence diagram headset data

40 | P a g e

Test

We didn’t run any tests in this part since this already has been tested in the engine.

2.7. Options

2.7.1. Analysis and design

When we started analyzing an application, we figured out that it would be better when we

separate all settings to the option panel. First, it is more common for the user, second maybe the

user will not need to change setting such often. Although we have only two settings language and

style of the buttons now, we expecting that size of the parameters in the option panel will be

increasing.

Language and Style

The Multilanguage application is becoming more competitive, more convenient for the end user

and every organization. Design and development such an application doesn’t have to be difficult.

WPF support many techniques that can be used for this challenge. Each control has a property

named Content that can be dynamically bound from the resource file. Similar principle is with the

style of the controls. If we want to set different a setting for the button, then we need to create a

recourse file and define style that we want to use. The recourse file is a xaml file that will keep all

information that are dynamically loading to the controls.

We designed three different styles that will be used for the buttons and every language will be

having its own resource file. So when we want to change language, then we need just add resource

file the ResourceDistionary and Language or style will be changed. Each new user that is created

has default settings that are stored to the xml file when we close the application. When the user

changes these settings, then the application will update them dynamically and save to the xml file.

Implementation

Examle of DK.xaml resource file, where we used the name of key back_menu, so a control with

this key will be binding the text between brakets.

<system:String x:Key="back_menu">Tilbage til Menuen</system:String>
<system:String x:Key="lb_language">SPROG:</system:String>

Then in the view model we can call content dynamically from the resource file.

<Label Content="{DynamicResource lb_language}" Name="labelLangue" />

Resource file is added to the ResourceDictinary when we are loading the panel. We need just to

call the language or style of the logged in person.

41 | P a g e

public void actualStyle()
 {
 ResourceDictionary dictionary = new ResourceDictionary();
 dictionary.Source = new Uri("pack://application:,,,/MBoard;Component/Style/" +
person[index].StyleNum);
 Application.Current.Resources.MergedDictionaries.Add(dictionary);

 }

Similar way we can add the style to the resource directory.

public void actualLanguage()
 {
 ResourceDictionary dictionary = new ResourceDictionary();
 dictionary.Source = new Uri("pack://application:,,,/MBoard;Component/Style/" +
person[index].Language);
 Application.Current.Resources.MergedDictionaries.Add(dictionary);

 }

Test

Description

 These test cases are going to test if we changed language and style on all controls.

Scenario

 Start the program

 Go to the Option Panel

 Select language and select font size

Preconditions

 The application is running and we have default settings on the panel.

Element Description Expected Result Actual Result

Danish Language button the button is pressed all controls must change

a language to update

Passed

Font Size 16 the button is pressed all buttons change the

font size to 16

Passed

Font size 18 the button is pressed all buttons change the

font size to 18

Passed

Table 10 Test Cases – Testing Options

Comments

 All tests ran as we expected.

42 | P a g e

2.8. Store Data to the XML file

2.8.1. Analysis and design

Storing the data in an application can be done various ways. One of the techniques is

storing the data to the XML file. XML (text-base markup language) is simple language

that is human readable and machine-readable. It does easy identify the data that are

stored in the file. We decided that XML file fit for our application. We have a list of the

persons that we want to store with their settings and statistics. When we are loading or

closing the application, the data should be read or write from the xml file.

2.8.2. Implementation

 In the main window we call event Window_closing, where we writing all persons from the list to

the xml file.

private void Window_Closing(object sender, System.ComponentModel.CancelEventArgs e)
 {
 service.setDefaultPerson();
 xml.writeXMLPersons(service.getListPersons());

 }

The method is passing the list of the person as argument. First we are calling XML writer and

initialize directory to the xml file. Then create start element and foreach loop start writing every

person to the file.

public void writeXMLPersons(List<Person> list)
 {
 try
 {
 XmlWriter writer = XmlWriter.Create("../../App_Data/Person.xml");
 writer.WriteStartDocument();
 writer.WriteStartElement("Person");
 foreach (Person p in list)
 {
 writer.WriteStartElement("Person");
 writer.WriteElementString("Name", p.Name.ToString());
 writer.WriteElementString("Language", p.Language.ToString());
 writer.WriteElementString("Style", p.StyleNum.ToString());
 writer.WriteStartElement("Statistics");
 writer.WriteElementString("Wins", p.Statis.Wins.ToString());
 writer.WriteElementString("Lost", p.Statis.Lost.ToString());
 writer.WriteEndElement();
 writer.WriteEndElement();
 }

 writer.WriteEndElement();
 writer.WriteEndDocument();
 writer.Close();
 }
 catch (XmlException e)
 {
 Console.WriteLine(e.Message + " Writting XML");

43 | P a g e

 }
 }

When we want to read the person from the list, we need to do reverse way. First, we load XML

document from the directory and then load inner text from every node to the Person object, each

person is added to the list of the persons.

public List<Person> readXMLPersons()
 {
 List<Person> temp = new List<Person>();
 try
 {
 XmlDocument doc = new XmlDocument();
 doc.Load("../../App_Data/Person.xml");

 XmlNodeList nameNodes = doc.GetElementsByTagName("Name");
 XmlNodeList langNodes = doc.GetElementsByTagName("Language");
 XmlNodeList styleNodes = doc.GetElementsByTagName("Style");
 XmlNodeList winsNodes = doc.GetElementsByTagName("Wins");
 XmlNodeList lostNodes = doc.GetElementsByTagName("Lost");

 for (int i = 0; i < nameNodes.Count; i++)
 {
 temp.Add(new Person(nameNodes[i].InnerText,
 langNodes[i].InnerText,
 styleNodes[i].InnerText, new
Statistics(Convert.ToInt32(winsNodes[i].InnerText),
Convert.ToInt32(lostNodes[i].InnerText))));

 }
 }
 catch (XmlException e)
 {
 Console.WriteLine(e.Message + " Reading XML");
 }

 return temp;
 }

2.9. Home Automation

2.9.1. The code

Analysis

The home automation that we wanted to implement was to give the user of the system

the ability to control bed and lights in the room where the user is positioned. The function of this

module has been made as simple as possible and involves two buttons that are picked automatically

so that the user can press the button when it’s selected by the system.

Design

The home automation GUI consists of two buttons to emulate the conditions that we

need, so we can either adjust a bed up and down or turn light on and off. Behind the scenes it’s a

little more elegant. When the page is loaded a backgroundworker and 3 timers is started. The reason

for using a background worker here is that it’s good for running asynchronous callback functions so

that it won’t interfere with the STAthread and the GUI won’t get unresponsive.

44 | P a g e

The backgroundworker is used to do the actual clicking of the buttons. It does this by

raising the event of the button being clicked and in that way bypasses the actual need to click a

button. We then use three timers where two of them cycles through the buttons. One is for the top

panel and one is for the buttons needed to navigate the controls for the automation, in this part we

are only going to focus on the automation controls. The last timer is used to handle how long the

output should be on when you press a button.

Implementation

 The timers are the key to moving to the next button, and keep track of where the

previous is. We run this in 3 second intervals because after testing we found that this interval gives

good time for even beginners with the headset, to focus and get the button pressed. We tried to use

threads for this part but we found that they very hard to control. If we ran it in the foreground we

had problems that it interfered with the STAthread, and if we ran it in the background we couldn’t

really be sure when it ran. So after testing the first version we went with timers.

The backgroundworker runs the entire time the page is loaded, it runs with an interval

of 500 ms and simply checks to see if the user has activated the headset to a value above the

threshold we have decided to go with. The way we did this is to check the value for a fixed number

of iterations to be sure that it’s not just a spike in the system and then press the buttons. We tried in

a previous version to do this in the timer that iterates the buttons but this failed in tests because it

required the user to have the headset high when the button first got focused and that resulted in a lot

of presses on the button after the intended.

After intensive testing with different combinations of threads and timers we came to

the conclusion that if we wanted the most accurate system with the least delay we has to go with the

backgroundworker and the three timers.

The last timer is only used to control the time that the RS232 port sends out a signal.

The reason why this is necessary is that we are using the RTS and DTR signals as output and the

length of the signal is very different so instead of using iterations to try and get them to be about the

same length we have decided to implement a timer that runs for 3 seconds and the raises a flag that

closes the port.

When we want to press a button we wait for the correct button to be highlighted and

then imagine that we press it. If it is done correct the backgroundworker will trigger the event that

then presses the button. In the following code snippet you can see how it’s done.

private void pressButton(Button button)
 {
 if (button.Dispatcher.CheckAccess())
 {
 button.RaiseEvent(new RoutedEventArgs(Button.ClickEvent, button));
 }
 else
 {
 PressButtonCallback p = new PressButtonCallback(pressButton);
 button.Dispatcher.Invoke(p, new object[] { button });
 }
 }

As seen in the snippet we use the dispatcher to check the access to the control that we

want to interact with and then raises the event accordantly with the dispatcher if necessary. The

reason that we need to do this is that the controls are owned by the STAthread and that makes it

45 | P a g e

impossible to interact with it in a normal fashion. This was why we wanted to use the timer for this

function since its part of STAthread and therefore can access it directly.

In the activity diagram beneath we have a visualization of how the module works.

Figure 15 Activity diagram of home automation

2.9.2. The board

Analysis

The board is made as a proof of concept since the people from Invacare didn’t live up

to the agreement that we made with them and didn’t send the control unit for a hospital bed. The

circuit is build on the Max232 line driver

After some initial testing for what could work and what couldn’t we turned our

attention to how we could manipulate the signal, and after some time we decided to go with the

Maxim 232 IC.

 Maxim 232 IC is a line driver that can convert the signals that come from a RS232

serial port and turn them into TTL signals that can actually be used. The board takes input from the

port and a 5 volt supply voltage to turn the minus voltage into positive voltage that can actually be

used.

46 | P a g e

Design

 The design of this circuit is very basic. It consists of the Max232 IC the four

capacitors as described in the Maxim 232 user manual, two diodes to protect the rs232 port from

feedback and tow simple gates created out of two resistors and one NPN transistor.

Figure 16 Diagram of the Mboard circuit

As seen in the diagram above it’s a simple circuit that uses the output from the RS232

port to control the two gates that will let the supply voltage through to the output pins. The reason

for the pins to be in pairs is that it will be easy to attach them to an H-bridge if we want motor

control.

The two diodes are placed in front of the Rts and Dtr pins on the rs232 port for the

simple reason of protecting the port in the computer from feedback. The chance of feedback

happening is really small if there at all we decided to have it anyway.

The finished design of the board can be seen beneath.

47 | P a g e

Figure 17 Mboard circuit layout

Implementation

When we started this part we hoped that it would possible to connect the port directly

to a motor without too much work in electronics, but since the output of an rs232 port is -15V –

+15V we had to add a line driver in between the port and the motor.

After the testing and prototyping was done it was time to actually make the board. For

this task we used eagle since it’s easy to go from drawing to board with this software. After the

board was made and the soldering had been done it was time to test it, we were fairly confident that

it would work since we made the board after the prototype but it didn’t go that easy this time.

Because eagle doesn’t add vcc and gnd in the schematic we had to add it in the board file and of

cause someone forgot to add vcc. This was fixed with a small connection from the voltage supply to

vcc on the IC.

First way the code was implemented was to use the Trx pin on the rs232 pin running

on one port on the max232 IC. This gave us 2,5V and 5V on the output pin, and then the plan was

to spilt this to two different inputs and control a motor this way. After a couple of trial runs on the

breadboard we decided that having two different outputs would be better and give us more control

of how it can be used. The next problem was that we had to find two pins that we can use for this

input. We decided to use the Rts and the Dtr pins because even though the time for them to run is

different, they act in almost the same way, so it’s just a matter of adding some timers with the same

duration so they will seem to be acting the same way.

48 | P a g e

The way it works is that as soon as the IC is on and if either Rts or Dtr pin changes the

current will rise and the gate will open. This will then result in the supply voltage to be let out and

the output of the board will be 5 volts. We are sure that there are other and better ways to make a

board that works as good as this one but since our project is about creating an application we don’t

want to spend too much time on this part. Since the board is meant as a part of a bigger system we

didn’t worry about supply voltage. This would probably come from a large battery, but since we

only use this part as proof of concept, it seemed as a good solution to just use a 5 volt external

power supply and not spend time on building something our selves.

Test

 The testing started very early in this part of the project since we didn’t have any

experience in using a rs232 port in this way, we knew that we had to get some kind of signal out

and a serial port seemed as good as any.

 The first test was to check what we could actually get out from the port and by reading

the specifications on the rs232 standard it was clear that we had to use Tx, Rts or Dtr and the test

was very successful and we found out that we had to use either a line driver to get the correct result

or connect it to a microprocessor. At this point in the project we decided that it would be a bad idea

to start adding an embedded system to the project, since that would be a huge extra workload that

we weren’t sure we would have time for, and then the decision was easy. We went with the line

driver.

 After getting the Maxim 232 port we started to build a prototype on a breadboard, we

started to test the output of the Tx port but the TTL signal we got was between 2,5 and 5 volts and it

made it more complicated to use than it had to, so after discussing it in the group we decided that it

would be better to use two signals so that we could have either 0 or 5 volts. This would be easier to

control and easier to construct.

 When it was all done it was time to do the black box testing. Since we don’t get any

return value on a print board we connected the output to a voltmeter and recorded the output.

Description

 We test to see what the output from the circuit is.

Scenario

 Start the program

 Connect the board

 Read the output

Preconditions: A RS232 port should be available

Element Description Expected Result Actual Result

Press up button Get output on the output

terminal up

5v output 5v output

Press down button Get output on the output

terminal down

5v output 5v output

Table 11 Press button test cases

49 | P a g e

Comments

 Everything went as expected

2.10. News

2.10.1. Analysis

 Our goal was to create an interface where the user would easily read different news from the

internet. The way we decided to approach this was by using RSS feeds. RSS stands for Really

Simple Syndication and is a family of web feed formats used to publish frequently updated works—

such as in our case News Feeds.

Version 1

2.10.2. Design

 After “google-ing” we found a small tool provided by the friendly people at FeedZila that was

generating a widget (Java Script + Html code[8]). This code we saved in an html file and we were

passing the path of the file to the frame in our WPF User

Control. This was the first version for the news (Vers.1) an

easy solution but it wasn’t providing us with a lot of control

over the widget.

 Therefore we figured we could use the XmlDataProvider to

load and parse the XML feed, back from the given RSS link.

This way we were binding the UI elements to the static

resources provided by the XmlDataProvider. In order to

display the items we were using a DataTemplate. The

binding does not have to be done at the grid level. We could

bind the ListItem and other controls to the data within the

XmlDataProvider individually. However, there is a

synchronization issue when multiple controls bind directly to

the XmlDataProvider and use the XPath statement, therefore

the use of IsSynchronizedWithCurrentItem property. All lists

and arrays in .net implement the IEnumerable which makes

data access to a specific position way easier. Since both

Figure 18 RSS example

50 | P a g e

XmlDataProvider and ListBox are IEnumerable we don’t have to worry about telling the compiler

which RSS item to put on which list position. And as soon as the ListBox changes the SelectedItem

the rest of the elements bound to the rssFeed will be notify automatically.

Version 2

But this was not enough because we wanted to have more RSS links available for the user to select

from. And since the XmlDataProvider isn’t giving us a dependency property we could change the

RSS link given to the XmlDataProvider since it was hardcoded inside XAML. Thus we decided to

make our own classes to hold the RSS feed. One of them is the RssFeedItem which is our base

template for all the feeds. It contains 4 fields (Properties) Author, Title, Description and Link.

These are the standard attributes in RSS 1.0. We wanted to also use the pubDate so the user would

know when the respective news was released. Here came the problem because not all of the feeds

had the pubDate element therefore we were getting exceptions. We did this in order to have a

common base with all the RSS Feeds out there (since later on we would like to also enable the user

to add his own RSS links)

Figure 19 Activity diagram RSS feeds

2.10.3. Implementation

 RssHandler parses thru the xml provided as an URL to the readFeed() method and returns a list of

RssFeedItem. This is done simply by creating a WebRequest to the specific URL and then use a

DataSet to parse thru the stream returned from the URL like so.

51 | P a g e

Since we were going to have more RSS links available for the user (we ended up with 5) we made

the RssNewsFeeds class which holds a list of RssFeedItem and the RSS URL (link). When this

class is instantiated with a correct RSS URL (link) it calls the RssHandler to parse the given link

and stores it inside the rssFeed the list returned by the handler. This way for each link we have an

object of RssNewsFeeds with the corresponding list of feed items. Now that we had our data objects

we needed to set them in a model and bind it to our view.

In the beginning of the project we decided we would use the MVC pattern (Model-View-Controller)

because we were already familiar with it from earlier projects but after researching we found out

that the MVC pattern is obsolete in WPF and that the way to go is MVVM (Model-View-

ViewModel). The MVVM pattern works in such a way that it makes everything easy for the user.

So we have the View (News.xaml) which represents our User Interface and it keeps in sync with the

data from the model by binding it. The binding is done by adding the instance of our Model (in our

case NewsViewModel) to the Application (App) Resources and then use it in our DataContext. The

reason we add it at startup is that we want to load the rssFeeds(getting the feeds from the net takes a

bit of time).

 Resources.Add("NewsViewModel", NewsViewModel.Instance);

 <Grid x:Name="main" DataContext="{StaticResource NewsViewModel}">

 Another key element here is inside the ViewModel and that is the implementation of the

NotifyPropertyChanged event handler. Whenever a property inside the Model class we notify by

issuing an event to the ViewModel with the specific property name and the viewModel in turn will

notify the View to display the current value.

 public abstract class ViewModel : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;
 protected void NotifyPropertyChanged(string propertyName)
 {
 if (this.PropertyChanged != null) this.PropertyChanged(this,new
PropertyChangedEventArgs(propertyName));
 }
 }

 The model part consists of NewsViewModel which holds one List (rssFeeds) and one

ObservableCollections (rssTitles). The ObservableCollections class exists in the .net API and is

specially made for binding to UI Elements which can hold more items such as ListBoxes and

ComboBoxes. As soon as any changes are made on the list the UI will be notified and will display

the corresponding items.

52 | P a g e

 Initially we were holding the RSS Links inside a comboBox(binding the comboBox.ItemSource

to our rssFeeds) and when the selectedItem(object of type RssNewsFeeds) inside the comboBox

would change the property SelectedRssFeed on the model would be notify() clearing the rssTitles

and adding the new list of RssFeedItems from the sent value(selectedItem inside the comboBox)

also sets the SelectedRssTitle to the first index of the list. Same idea with the ListBox when the

selectedItem changes the SelectedRssTitle gets notified and sets the new selectedRssTitle and

notifies in turn the properties bound to the TextBlock and the Frame. A thing to mention here when

the above happens is the UI calls the set{} of SelectedRssTitle.

 In the TextBlock and Frame cases they only have get{} fields because we don’t expect the UI to

change them just to show when they get changed from behind. Later on when we got to playing

with the switching focus between the controls (buttons mostly) and creating click events, the

comboBox was hard to manipulate so we simplified it by adding 5 buttons. On each button click we

switch to the respective list index by setting the SelectedRssFeed property and the feed is changed.

So we have Arts(0),Computers(1),Consumer(2),Defense(3),Politics(4).

 Since we are avoiding using event handlers behind the code, we can use the RoutedEvents

provided by the DataContext binding. This way we can bind a Command to a Property that

implements the ICommand. After researching the topic we found out that there are many stages in

the execution of a command such as (save before execution, load after execution) also the ones we

care about CanExecute and Execute. CanExecute checks to see if the command should be executed

and if so than sets the flag to true. CanExecute is a Boolean function which takes no parameters

(Predicate) and Execute is just a normal function (no return or parameters)(Action). Therefore we

decided to make a “generic” class for our commands. _canExecute is defined as a Predicate and

_execute is defined as an Action. This way we can define custom commands for each object of

DelegateCommand. When this class is initialized the SelectedRssFeed is initialized to the first index

of the rssFeeds.

53 | P a g e

Figure 20 Detail of the class diagram

UI Binding: <Button Command="ConsumerButton" />

Handler Implementation:
 public DelegateCommand ConsumerButton
 { get
 { return new DelegateCommand((p) =>
 { if (isConn)
 SelectedRssFeed = rssFeeds.ElementAt(2);
 });
 } }

But again the pressing of buttons with the headset controls came in the way so we reverted back to

Click events inside of which we get the command from the bound Model inside the DataContext

and lastly execute it.

model = (NewsViewModel)Resources["NewsViewModel"];

private void btn5_Click(object sender, RoutedEventArgs e)
 {

 ICommand myComm = model.ConsumerButton;
 myComm.Execute("ConsumerButton");
 }

Scrolling through the list of tittles is done by 2 buttons which increase or decrease the index and

focuses the new selected item and automatically notify the model. In the code behind the UI,

besides the timers also present in the rest of our user controls,(more detailed explained in the UI

section) there is an additional one designed to simulate a Key Down event on the frame each 5

seconds so the user can read the webpage. This proved more difficult to implement than initially

54 | P a g e

anticipated because none of the approaches we took seemed to pay off. We tried a few things that in

theory should’ve worked but with no results. The most one common around different forums was

this one which would raise an event in which we define (the type, on what element to raise it on, at

what time, what event) on the current user control.

this.RaiseEvent(new KeyEventArgs(Keyboard.PrimaryDevice,
PresentationSource.FromVisual(browser), 0, Key.Down)
 { RoutedEvent = UIElement.KeyDownEvent });

Eventually we decided to use a small project we found on the internet called InputSimulator [9].

What this class does is that it raises Global Windows key events. What we mean by Global is that

the event will happen on the selected UI inside Windows. So since the user won’t use a mouse and

won’t go out of the application borders the event will also maintain only inside of the application

(since from start it would never lose focus). It’s not the best way to do things and we would want to

improve on this particular feature.

2.10.4. Test

Since for the news we chose to use the MVVM pattern for implementing and updating the News tab

it was easier to test the functionality thru Unit Testing. This was because we just had to test the

functionality of the NewsViewModel class. In order to Unit Test we used Visual Studio to generate

all the test methods for the selected classes. The implementation for each method was similar. We

knew what each method was supposed to do/return so after calling the method we were checking if

what we got was what we expected. This test method actually tests to see when the class is

initialized it actual sets the SelectedRssTitle to rssTitles[0].

[TestMethod]
 public void testRssTitle()
 {
 actual = NewsViewModel.Instance;
 RssFeedItem expected= actual.rssTitles.ElementAt(0);
 Assert.AreEqual(expected, actual.SelectedRssTitle, "SelectedRssTitle
Property failed");
 }

Also for the button clicks we made separate function inside the NewsViewModel(can be seen in the

final class diagram) to execute the commands and we check to see if the data changed accordingly.

For example for ConsumerButton when we press it the selectedRssFeed needs to be rssFeeds[2].

[TestMethod]
 public void testConsumerButton()
 {
 actual.testConsumerButton();
 RssNewsFeeds expected = actual.rssFeeds.ElementAt(2);
 Assert.AreEqual(expected, actual.SelectedRssFeed, "ConsumerButton Failed");
 }

55 | P a g e

3. Results

Going through this project has been a journey for all of us. There have been ups and

downs both in the development phases and the group dynamics. But we have learned a lot during

the last five months and feel that we have grown but personally and professionally.

 We set out to create a program to help the mobility disabled, and exactly that we have

done. The main focus of our system was to create a system that could help the focus group

communicate with the world and in that way give them some of their life back. We have done this

to a very high level with the implementation of the mind keyboard or just Mboard which we have

decided to call it.

 Since the writing was the primary function our system we have had the greatest focus

on this part and we have created a module that not only lives up to our original expectations but also

that goes beyond. We haven’t implemented an intelligent dictionary but we have word prediction

and we have set the keyboard up so the most common letters comes first, and as a bonus we have

added a text to speech function.

 The second thing on our list of requirements was the home automation, this part

would give the user the ability to control his or hers surroundings like adjusting the bed or turning

the lights on or off. This part we have completed to a satisfactory level as well. We have a simple

interface and we can control simple hardware, this of cause can be build to a bigger scale in future

upgrades and there basically aren’t any restrictions to what you can connect.

 As an extra feature we decided to add some entertainment to the system, this wasn’t in

our original plan but we found out that adding a small game to the application wasn’t a huge deal

compared to what pleasure it could be to the user. The fact that we got this part done as well just

proves to us, even more than before, that we truly have succeeded in this project.

 The last feature that we added is the news section, this part was very important to us

because we all enjoy keeping up with the world around us, and knows how important it is to keep

up with the world. This again was successful simply because we managed to add that feature as

well.

 By looking through what we have done we must say that we have a pretty good result.

And when you compare that with the fact that we have implemented a fully integrated control panel

with no confusing extra features we can all only be proud of what we have managed to do here. We

set out to make something that could really help people and even though there still are things that

can be better we call it a huge success.

4. Discussion

Like we mentioned a bit before we mostly accomplished the things we set up to do and in some

parts even more. But in some other parts there are still loads of room for improvement. One of the

things which we still desperately want to improve is the writing. It was the main focus of our

project and all the way thru we were thinking how we can make it even better. Using the .net

Language Dictionary to give the user some suggestions while he’s writing is only half of what we

would want to do. The idea is to make the keyboard layout change depending on what is written

(for example: text written so far “be” keyboard layout would show: “a, c, f, l, n, r, s, t, y”). The

56 | P a g e

letters would be all the possibilities (in the dictionary) for the current text. This would increase

writing speed a lot since we wouldn’t have to iterate thru the entire alphabet letters every time but

only the brief selection.

For the automation it would depend from user to user what they would like to hook up to our

interface. The only thing we could do is to maybe have a pack of small software for some of the

customers’ requests. Things we can get out of the top of our heads would be light control or bed

automation.

In the entertainment category we can definitely find more games to add for the user. Keep him

entertained and happy. For the news it’s planed out for the next update to implement a way for the

user to add his or her own RSS links not only the one hardcoded in the code. Furthermore we want

to implement our custom browser that can be controlled by the headset. This helps the user get

integrated into the community.

Overall, as like we said so many times already, we are quite satisfied with the product we

assembled in the time we had. Like said a bit earlier there are lots of things we could add for the

user to control with the headset. And bring even more dignity back to the users of the headset.

5. Conclusion

Connection & Event Handling

We managed to build our own “control panel” which connects to the headset and gets the data.

After we understood their SDK it was easy to interpret and handle the events sent by the headset.

The events we focused on were user added (Profiles), cognitive detection and training,

Designing the Graphical User Interface:

We think we ended up with an easy to use interface. For navigation purposes the use of timers

seemed the best solution. For the layout of the keyboard we would say we made a practical by

arranging the most used letters to be on the left most side. We also implemented different styles the

user can choose from. Besides the style the user can also chose between English and Danish. At

application closing time the settings will be exported to an xml.

Data Storage

We didn’t have after all that much data to deal with. Besides the user settings (language, style, game

data) which we decided to store locally in a xml file. We had the profile data which we decided to

store in the same directory as the control panel under binary files (the edk.dll takes care of writing

the binary file).

57 | P a g e

6. References

[1] A. Cockburn, “Writing Effective Use Cases”, Addison-Wesley Longman, London, 2000, pp.

15-16.

[2] Use Case Diagram,http://www.tutorialspoint.com/uml/uml_use_case_diagram.htm, March 2012.

[3] Manual, “Emotiv Software Development Kit”, EmotivLtd, 2011, pp. 45 -55.

[4] Software architecture, http://msdn.microsoft.com/en-us/library/ee658098.aspx, Jun 2012.

[5] Introduction to WPF, http://msdn.microsoft.com/en-us/library/aa970268.aspx, Jun 2012.

[6] Frequency of the letters EN, http://oxforddictionaries.com/words/what-is-the-frequency-of-the-letters-of-the-alphabet-

in-english , June 2012.

[7] Frequency of the letters DK, http://www.sttmedia.com/characterfrequency-danish, June 2012.

[8] Feedzila gadget generator http://widgets.feedzilla.com/news/builder/index.html June 2012.

[9] Input Simulator http://inputsimulator.codeplex.com/ Jan 2012

http://www.tutorialspoint.com/uml/uml_use_case_diagram.htm
http://msdn.microsoft.com/en-us/library/ee658098.aspx
http://msdn.microsoft.com/en-us/library/aa970268.aspx
http://oxforddictionaries.com/words/what-is-the-frequency-of-the-letters-of-the-alphabet-in-english
http://oxforddictionaries.com/words/what-is-the-frequency-of-the-letters-of-the-alphabet-in-english
http://www.sttmedia.com/characterfrequency-danish
http://widgets.feedzilla.com/news/builder/index.html
http://inputsimulator.codeplex.com/

58 | P a g e

7. Appendices

7.1. Appendix A Project Description

7.1.1. Background Description

Although nowadays some would say that we are surrounded by technology like smart phones,

TV’s, and computers, and that this allows the users communicate easily. But there are still certain

people/groups that don’t have the opportunity to use and control them as we can. Physically

impaired people cannot move any body part at all, but there brain is fully functional. Therefore, we

would like to develop the “M-board” in cooperation with Horsens kommune that will engage those

people with their environment more seamlessly and improve their lives, bring them closer to

society.

The primary focus of our project is to build a digital spelling table (M-board) with a cursor hovering

over the letters and along with the Emotiv EPOC device we will be able to detect specific impulses

when the subject would want to chose a letter. This way they will be able to formulate words and

even sentences, leading to their ability to communicate with others. The fact that the product

requested from us is quite basic that doesn’t mean we lack new ideas in which we would make it

even better.

We think this is an important area to work in since we today have the technology to make the

everyday life easier for a lot of people that are disabled in different ways. The reason for us to focus

on this specific group is that the technology is cutting edge and we think it has the potential to

become very big.

Even though today there already exists a lot of applications and instruments that help those people,

for example: controlling PC using the eye or various intelligent devices. We would like to go more

forward and to create the application that allows the user a control with only a thought. Just wonder,

when the user will be able to control the house or other environment with his mind.

Seeing that this is a new technology it has a lot of room to evolve and the possibilities are endless.

After we develop the basic components, we can build an endless number of software solutions.

The basic concept behind is to use the Emotive EPOC headset that can detect and process real time

brain waves. It measures a wide range of thoughts and emotions and allows using brain activity in

the application. The human brain is made up of billions of neurons. When we do various activates,

neurons transmit messages with each other, and we can measure those signals with electrodes and

amplify them and then later use them in our application, to the various actions we want to perform.

The Emotiv headset uses 14 sensors that measure the electric signals in our brain. They get readings

in pairs and the difference in reading are the n treated as the signal. When the application will ask

the certain action, it will compare how the values from the electrodes change. When the change will

be similar, the application accomplishes the calling action. The Emotiv headset is able to recognize

expressions, actions which transmit over Bluetooth and the Bluetooth dongle to the application that

we can read. So, the Emotiv headset is kind of the interface between the user and computer to

handle the user’s actions.

59 | P a g e

Because the brain waves are relatively different for every user, we need to calibrate the application

before use. The headset will read the users emotions, gestures, and the build in gyro and train

actions for controlling movement in different directions. Then we can save these parameters for

every user, and use them for controlling our “M-board”. Every user will have his own account with

his own record data, so it can be applicable for many users.

As we mentioned at the beginning, we will mainly focus on physically impaired people, those who

can’t communicate or express their needs. Therefore, the mind keyboard will be the main part of the

program, which allows writing an email, communicating on the social networks or doing a small

work on the PC. Not only that the application will handle many functionality such as the gaming,

browsing on the internet, listening to music, watching the movies or browsing pictures. It could be

kind of library, with the simple interface going through the favorite folders.

Although our software will not have using all of our ideas, however it will help and make life easier

for many users. This is a great challenge for us to create the program for the people need to depend

on others. On the other hand working with the Emotiv Headset will give us the opportunity to learn

the latest technologies, that we think will be used more and more in the near future, in normal

everyday life and in the gaming industry.

Specification of Purpose

The purpose of the project is to develop a mind – keyboard application (M-Board) for Horsens

Kommune to help a person who has some condition that restricts their ability physically.

The basic idea is using emotive EPOC headset that feeds off the electroencephalograph (EEG)

signals from the user’s brain and sent them to the mind-keyboard application that is able to translate

them into commands. Physically impaired people will be engaged with their environment more

seamlessly.

The basic part of our application allows its users to spell out the words that they want to use giving

them the ability to talk not only to the persons around them but also across the internet. Also it will

offer the user an entertaining system that he will be able to control. We will do this by hooking the

headset up with a wireless connection to a laptop and then have a piece of software translate the

signals into commands in our application.

Problem Formulation

As we went through the problem, we figured out, that we have basically two main parts of the application

which we have to handle. Firstly we need to use the Emotiv Software Developer’s Kit to define a bridge

between the Emotiv headset signals and our application to be able control various features in there. The

second important part is to use suite sequences and implemented them with required functions.

60 | P a g e

Connection:

How to connect our application to the Emotiv Engine? How to get the source of all the signals in our

application? Those questions are probably essential before we will be able to continue forward. We need to

connect and build our own bridge that will connect the Emotiv device and our application. We also have to

decide whether we are going to handle user profile in our application, or we will use the Emotive Control

Panel. Maybe it will be better to have our own profile and just call user profiles from the Emotiv engine.

Structure of the events:

How to handle various events from the headset for more users? Because the headset generates various

events (four categories) we need to handle those events and it might be good to create the data structure,

where we can find out what event was generated according to the user’s ID.

Selecting suite Commands:

We need to ask ourselves, what kind of functions we want to control? Which means that we have to

consider how to control the navigation panel and the M-board? For example go down, up and enter

functions. So we need to decide what sequences (signals) from the users would trigger those functions. The

Emotiv software provides us with 4 main categories of data: Expressive, Affective, Cognitive and Gyroscope

data.

We need a control set that would work for people with a minimum amount of training. Although we

haven’t made a decision on what the commands to use, but we suggest that we need mental commands

(affective) or facial gestures (Expressive) that will be fast to perform and easy to detected. But what if the

user responds to certain feelings or mood, then he will not be able to write because of the smiling.

Therefore we have to find out a suite of facial expression for the commands which can be used to perform

actions and ignore all the other electric signals generated by muscle movement and still, easily use the

small signals generated by the user. Maybe we should conside the gyroscope for some movements in the

navigation panel.

Designing the Graphical User Interface:

How to design the GUI (navigation panel)? How to make the design of the keyboard and organize letters on

the keyboard?

The GUI design must be as simple as possible to be easy to navigate through both when it comes to the

keyboard and also through the navigation panel. The user should have feeling that automatic writing is

61 | P a g e

done with the keyboard and computer. We also need to consider, how to design efficient mapping of the

keys on the keyboard. We shouldn’t use the common keyboard design, because the writing will be too slow

for our application. There should be done a new algorithm.

Other questions: What size of the font we should use? How to change the type of keyboard from English to

Danish and back?

Obviously, some of the people need to adjust size of the font when they are writing and also change

settings such as the keyboard language, therefore we should consider it in our design, the suite place for

the writing settings and easily manipulate with them.

Store Data:

How to save data? Should we store the data in xml files or a Database? Do we need to save any data?

That is a good question. Maybe we don’t need to store any data, but we have to consider the best solution.

We can call the information about the user profile, configurations and signals from the emotive control

panel or build our own storage.

When we decided to build our own storage, then we have to consider the amount of data that we will be

storing. Probably, there will be very small amount of data, therefore we would store data in an XML

document and re-write the file any time any data changed. So it would be useful for configuration files and

also for the user’s profiles. We are expecting that the XML files never grew larger than 100kb.

7.1.2. Delimitations

Because the primary focus of our project is to help mobility disabled people be able to communicate

with the people around, therefore the spelling words and writing the messages is mandatory part of

the project and should be implemented. Although, we would like to implement more functionality

to the application, probably we will not have enough time to do it. So, some of the features we will

implement only if remains the time for it. Some will be quite easy to do because we will have the

core of the system done so adding just a bit more functionality won’t prove to be difficult such as:

o Browsing the internet

o Supporting keyboard languages

(Mandatory support is EN and DK language)

o Watching movies

o Listening the music

o Browsing the pictures

But we also have other ideas that would make this software better for the customer such as:

62 | P a g e

o Gaming

o Supporting sound control

o

7.1.3. Choice of Model and Method Procedure

One of the most important aspects of developing any system is the methodology used, because
they impose a disciplined process upon development more predictable and more efficient. There
were many different models developed and debated, but only a fraction of them stood the test of
time and proved useful. Motivated by the most popular trends in this field we choose to work with
Agile Unified Process.
Agile Unified Process is a simplified version of Rational Unified Process, which takes the best
practices of RUP and Agile Methodology. We redefine the phases of RUP to fit into Agile Unified
Process [2].

 Inception
o Project scope for our application

 Elaboration
o Analyze our project in detail level. This phase is very important and at this level we should

go through three kinds of models: Use Case Model, Domain Model, Interface Model

 Construction
o Test and development are the major part of this phase

 Transition
o On e of the major activities of this phase is to sign off the artifacts and deployment

In AUP an important perspective is that the Agile Unified Process is in small iterations. Every
iteration will define the activity and then we can perform to build, validate and deliver working
software.

As part of the AUP process we will use pair programming. We’ve already had experiences with
that technique. Basically two programmers work together, one types code while the other is
observer. Of course the roles can be switched. The main advantages of this methodology are that
everyone knows what everyone is doing and they can be familiar with the whole system. This way,
pair programming will enhance our team communication.

Next very well practices we have with refactoring methodology. Refactoring is a technique to
restructure code in a disciplined way, a technique that is a fundamental practice of XP. The basic
idea is that you make small changes to your code, called refactoring, to support new requirements
and/or to keep your design as simple as possible. The advantage of refactoring is that it enables
programmers to safely and easily evolve their code to fulfill new requirements or to improve its
quality [1].

Another approach will be used what we call concurrent development. The principal of the
methodology is that the some of the problems can be solve independently. So some of us will try
to solve problem for a couple of hours independently and then discuss which came with the best
and easier solution. This implements the most fitted solution in the project and will assure the
best quality of the software.

63 | P a g e

At last for the testing process we would like to use the principles of Test Driven Development. This
development combines to write unit tests first, before we write production code. We cannot write
production code until you have written a failing unit test. The tests and code are written together,
with the tests just a few seconds ahead of the code. The basic goal of TDD is to write clean code
that works [3].

7.1.4. Time Schedule

Description

Finished week

Plan
Forecast

Week +/-

Delivering project description 51 51 0

 Making project plan – start project 3 2-3 -1

 Making design architecture 4 4 0

 Class definition complete, basic model

between Emotiv API and application

5 5 0

GUI basic design complete , settings 6 5-6 -1

Basic core coding completed, recording

signals

7 7-8 +1

Testing and debugging of everything

completed and deployment

8 8 0

Basic model mind -keyboard , GUI design ,

algorithm

9 9 0

Basic core coding completed, 10 -11 11 +1

Testing and debugging of everything

completed and deployment

12 12 0

Class definition complete, for more

functionality

13 12-13 -1

Design GUI for other functionalities complete 13 14 +1

Application Build 14-16 16 1

Additional coding and testing completed and

deployment

17-18 18 0

Documentation completed 22 22 -1

64 | P a g e

Activity Plan

Activity W3 W4 W5 W6 W7 W8 W9

W10-

W11

W12 W13 W14-

W17

W18 W19-

W22

Project plan

System Design

Program Design

Implementation, signal
pattern

Test and Debugging,
signal pattern

GUI design, Keyboard
design

Implementation keyboard

Test and Debugging

Additional program design,
GUI

Additional implementation

Testing

Documenting

7.1.5. SOURCES, REFERENCES AND LITERATURE

Final project report 23 23 0

Final deliveries 24 24 0

65 | P a g e

Books:

[1] – Martin, Robert C, Clean Code, Apprentice Hall , ISBN 0-13-235088-2 , 2008

Articales:

http://www.nia.nih.gov/Alzheimers/Publications/Unraveling/Part1/neurons.htm , Neuroms and their

Job

http://emotiv.com/ , homepage EMOTIV headset

http://en.wikipedia.org/wiki/Emotiv_Systems , Wikipedia about Emotiv

[2] - http://www.ambysoft.com/unifiedprocess/agileUP.html , Agile Unified Process

[3] - http://www.agiledata.org/essays/tdd.html - TDD Test Driven Development.

http://www.nia.nih.gov/Alzheimers/Publications/Unraveling/Part1/neurons.htm
http://emotiv.com/
http://en.wikipedia.org/wiki/Emotiv_Systems
http://www.ambysoft.com/unifiedprocess/agileUP.html
http://www.agiledata.org/essays/tdd.html

66 | P a g e

7.2. Appendix B

7.2.1. Class Diagram

67 | P a g e

7.3. Appendix C

7.3.1. Use Case

USE CASE 1 Login to the Application

Brief Description: This use case describes how the use assistant login the user to the

application.

Actor: An assister user

Flow of Events:

3. Assistant user selects the name of the user by clicking on the list box of the users and he will

click on the button (Open profile)

4. The system logs in the user to the system, and actives his headset.

Pre-Conditions: The user has already created an account in the system and the headset is

connected to the computer.

Post Condition:

Success Post-Condition: the user profile exists in the system and was activated his

headset.

Failure Post-Condition: the system has a problem loading the user profile and after while

will notice the assistant user to try again step 1.

USE CASE 2 Logout from the Application

Brief Description: This use case describes how the use assistant logout the user from the

application.

Actor: An assister user

Flow of Events:

1. Assistant user clicks on the button on the button (Logout)

2. The system logs out the user from the system and will save actual setting to the binary

file and xml file.

Pre-Conditions: The user has already been login in the system and the headset has still

connected to the computer.

Post Condition:

Success Post-Condition: the user profile was logout from the system and saved to the

external files.

Failure Post-Condition: the system has a problem to logout the user and will notice the

problem.

USE CASE 3 Create a user profile

Brief Description: This use case describes how the use assistant creates the profile for the user.

Actor: An assister user

Flow of Events:

1. Assistant user inserts the name of the new user to the text box.

2. Then the assistant user clicks on the button create profile.

3. The system shows the confirmation window that the profile has been created.

68 | P a g e

4. The system logs in the new user.

Pre-Conditions: The headset is connected to the computer.

Post Condition:

Success Post-Condition: the user profile was created and the name is visible in the list of

the users.

Failure Post-Condition: the system couldn’t create a new profile and will reject the

message screen and notice the assistant user try it again.

USE CASE 4 Training user

Brief Description: This use case describes how the use assistant creates the profile for the user.

Actor: An assister user and user

Flow of Events:

1. Assistant user clicks on the list box and select the type of the action for the training.

2. Then the assistant user clicks on the button (training).

3. The system starts to read the signal from the users’ headset in 8 seconds..

4. Then system displays the confirmation screen and notices the user that training was

completed.

5. The assistant user will select button (OK) on the confirmation screen or can process

repeat from the point 2.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system.

Post Condition:

Success Post-Condition: the user is able to control application with the headset.

Failure Post-Condition: the user is not able control application.

USE CASE 5 Cancel Training

Brief Description: This use case describes how the use assistant can cancel training process.

Actor: An assister user and user

Flow of Events:

1. Assistant user clicks on the list box and select the type of the action for the training.

2. Then the assistant user clicks on the button (training).

3. The system starts to read the signal from the users’ headset in 8 seconds.

4. Then system displays the confirmation screen and notices the user to cancel the training

process or save it.

5. The assistant user will select button (Cancel) on the confirmation screen.

6. The system will interrupt the training process and not save the last data from the

training.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system.

Post Condition:

69 | P a g e

Success Post-Condition: the user will have previous training or none when training has

been done for first time.

Failure Post-Condition: the user has loaded a new signal data from the last training.

USE CASE 6 Play Game

Brief Description: This use case describes how the use assistant and user can play a game.

Actor: An assister user and user

Flow of Events:

1. Assistant user clicks on the button (Game). The user will wait on focus button (Game)

and in 3 seconds, will invoke event click button by the headset.

2. The system will load the game panel.

3. The assistant user can interrupt game anytime by clicking the other button from the

main menu. The user must wait till the button (back to main) is focused and then invoke

action by headset click.

4. The system will save the statistics from the game and return to the menu.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system.

Post Condition:

Success Post-Condition: the user and assistant user will load game panel and play game.

Failure Post-Condition: the game panel was not loaded and the message box is displayed.

USE CASE 7 Control Home Automation

Brief Description: This use case describes how the use assistant and user can control home

automation.

Actor: An assister user and user

Flow of Events:

1. Assistant user clicks on the button (Home Automation). The user will wait on focus

button (Home Automation) and in 3 seconds will invoke event click button by the

headset.

2. The system will load the home automation panel.

3. The assistant user can click on the button up or down. The user must wait till the button

(up or down) is focused and then invoke action by headset click.

4. The system will sent a signal out from the application and will control the home

automation.

5. The assistant user can return back to the menu anytime by clicking the other button

from the main menu. The user must wait till the button (back to main) is focused and

then invoke action by headset click.

6. The system will return to the main menu.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system.

70 | P a g e

Post Condition:

Success Post-Condition: the user and assistant user can control home automation.

Failure Post-Condition: the home automation is not available and the message box is

displayed.

USE CASE 8 Writing Text

Brief Description: This use case describes how the use assistant and user can write text in the

writing panel.

Actor: An assister user and user

Flow of Events:

1. Assistant user clicks on the button (Writing). The user will wait on focus button

(Writing) and in 3 seconds will invoke event click button by the headset.

2. The system will load the Writing panel.

3. The assistant user can click on the buttons (keys). The user must wait till the buttons

(keys) are focused and then invoke action by headset click.

4. The system will write selected letter to the text field in the panel.

5. The assistant user can return back to the menu anytime by clicking the other button

from the main menu. The user must wait till the button (back to main) is focused and

then invoke action by headset click.

6. The system will return to the main menu.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system.

Post Condition:

Success Post-Condition: the user and assistant user were able to write text to the text

field.

Failure Post-Condition: the writing panel was not available and the message box is

displayed.

USE CASE 9 Reading News

Brief Description: This use case describes how the use assistant and user can read news in the

application.

Actor: An assister user and user

Flow of Events:

1. Assistant user clicks on the button (News). The user will wait on focus button (News)

and in 3 seconds will invoke event click button by the headset.

2. The system will load the News panel with the RSS frame.

3. The assistant user can click on the buttons (up and down). The user must wait till the

buttons (up and downs) are focused and then invoke action by headset click.

4. The system will load selected news from the list box to the frame.

71 | P a g e

5. The assistant user can return back to the menu anytime by clicking the other button

from the main menu. The user must wait till the button (back to main) is focused and

then invoke action by headset click.

6. The system will return to the main menu.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system. The computer is connected to the Internet network.

Post Condition:

Success Post-Condition: the user and assistant user can read the news in the frame.

Failure Post-Condition: the news is not loaded to the frame or the computer doesn’t have

connection to the Internet network and message box is displayed.

USE CASE 10 Close Application

Brief Description: This use case describes how an assister user can close the application.

Actor: An assister user

Flow of Events:

1. Assistant user clicks on the button (Close).

2. The system will save the user setting to the xml file and logs out the user from the

application.

3. The system is closed.

Alternative flow of Events:

1. Assistant user clicks on the button (Close).

2. The system will save settings and close the application.

Pre-Conditions: The headset is connected to the computer and the user is a log in to the system.

Post Condition:

Success Post-Condition: the user’s setting are saved and application is closed.

Failure Post-Condition: the message error is displayed.

72 | P a g e

7.4. Appendix D

7.4.1. System Test Plan

Use Case Diagram

73 | P a g e

Test CASE 1 Login to the Application

Brief Description: This test case checks how the use assistant login the user to the application.

Scenario:

5. Assistant user selects the name of the user by clicking on the list box of the users and he will

click on the button (Open profile)

6. The system logs in the user to the system, and actives his headset.

Pre-Conditions: The user has already created an account in the system and the headset is

connected to the computer.

Post Condition:

Success Post-Condition: the user profile exists in the system and was activated his

headset.

Failure Post-Condition: the system has a problem loading the user profile and after while

will notice the assistant user to try again step 1.

Expected Result:

 The user can log in to the system and load a profile

Actual Result:
 User logged in and profile loaded

Test CASE 2 Logout from the Application

Brief Description: This test case checks how the use assistant logout the user from the

application.

Scenario:

3. Assistant user clicks on the button on the button (Logout)

4. The system logs out the user from the system and will save actual setting to the binary

file and xml file.

Pre-Conditions: The user has already been login in the system and the headset has still

connected to the computer.

Post Condition:

Success Post-Condition: the user profile was logout from the system and saved to the

external files.

Failure Post-Condition: the system has a problem to logout the user and will notice the

problem.

Expected Result:

 User will be logged out of the system

Actual Result:

Test CASE 3 Create a user profile

Brief Description: This test case checks how the use assistant creates the profile for the user.

Scenario:

5. Assistant user inserts the name of the new user to the text box.

6. Then the assistant user clicks on the button create profile.

7. The system shows the confirmation window that the profile has been created.

8. The system logs in the new user.

74 | P a g e

Pre-Conditions: The headset is connected to the computer.

Post Condition:

Success Post-Condition: the user profile was created and the name is visible in the list of

the users.

Failure Post-Condition: the system couldn’t create a new profile and will reject the

message screen and notice the assistant user try it again.

Expected Result:

 User profile will be created

Actual Result:
 Profile created and saved to hdd.

Test CASE 4 Training user

Brief Description: This test case describes checks the use assistant creates the profile for the

user.

Scenario:

6. Assistant user clicks on the list box and select the type of the action for the training.

7. Then the assistant user clicks on the button (training).

8. The system starts to read the signal from the users’ headset in 8 seconds..

9. Then system displays the confirmation screen and notices the user that training was

completed.

10. The assistant user will select button (OK) on the confirmation screen or can process

repeat from the point 2.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system.

Post Condition:

Success Post-Condition: the user is able to control application with the headset.

Failure Post-Condition: the user is not able control application.

Expected Result:

 User trains and profile get updated

Actual Result:
 Training successful for both neutral and push

Test CASE 5 Cancel Training

Brief Description: This test case checks how the use assistant can cancel training process.

Scenario:

7. Assistant user clicks on the list box and select the type of the action for the training.

8. Then the assistant user clicks on the button (training).

9. The system starts to read the signal from the users’ headset in 8 seconds.

10. Then system displays the confirmation screen and notices the user to cancel the training

process or save it.

11. The assistant user will select button (Cancel) on the confirmation screen.

12. The system will interrupt the training process and not save the last data from the

training.

75 | P a g e

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system.

Post Condition:

Success Post-Condition: the user will have previous training or none when training has

been done for first time.

Failure Post-Condition: the user has loaded a new signal data from the last training.

Expected Result:

 Training gets canceled

Actual Result:
 Training data is discarded

Test CASE 6 Play Game

Brief Description: This test case checks how the use assistant and user can play a game.

Scenario:

5. Assistant user clicks on the button (Game). The user will wait on focus button (Game)

and in 3 seconds, will invoke event click button by the headset.

6. The system will load the game panel.

7. The assistant user can interrupt game anytime by clicking the other button from the

main menu. The user must wait till the button (back to main) is focused and then invoke

action by headset click.

8. The system will save the statistics from the game and return to the menu.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system.

Post Condition:

Success Post-Condition: the user and assistant user will load game panel and play game.

Failure Post-Condition: the game panel was not loaded and the message box is displayed.

Expected Result:

 User can play a game and a user will be found

Actual Result:
 Game played and score updated

Test CASE 7 Control Home Automation

Brief Description: This test case checks how the user assistant and user can control home

automation.

Scenario:

7. Assistant user clicks on the button (Home Automation). The user will wait on focus

button (Home Automation) and in 3 seconds will invoke event click button by the

headset.

8. The system will load the home automation panel.

9. The assistant user can click on the button up or down. The user must wait till the button

(up or down) is focused and then invoke action by headset click.

10. The system will sent a signal out from the application and will control the home

automation.

76 | P a g e

11. The assistant user can return back to the menu anytime by clicking the other button

from the main menu. The user must wait till the button (back to main) is focused and

then invoke action by headset click.

12. The system will return to the main menu.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system.

Post Condition:

Success Post-Condition: the user and assistant user can control home automation.

Failure Post-Condition: the home automation is not available and the message box is

displayed.

Expected Result:

 Output will come from the ports on the rs232 board

Actual Result:
 Output raises to 5 V just as predicted.

Test CASE 8 Writing Text

Brief Description: This test case checks how the user assistant and user can write text in the

writing panel.

Scenario:

7. Assistant user clicks on the button (Writing). The user will wait on focus button

(Writing) and in 3 seconds will invoke event click button by the headset.

8. The system will load the Writing panel.

9. The assistant user can click on the buttons (keys). The user must wait till the buttons

(keys) are focused and then invoke action by headset click.

10. The system will write selected letter to the text field in the panel.

11. The assistant user can return back to the menu anytime by clicking the other button

from the main menu. The user must wait till the button (back to main) is focused and

then invoke action by headset click.

12. The system will return to the main menu.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system.

Post Condition:

Success Post-Condition: the user and assistant user were able to write text to the text

field.

Failure Post-Condition: the writing panel was not available and the message box is

displayed.

Expected Result:

 The user can write text

Actual Result:
Writing works fine as expected and even more the system can read what you just wrote

Test CASE 9 Reading News

77 | P a g e

Brief Description: This test case checks how the user assistant and user can read news in the

application.

Scenario:

7. Assistant user clicks on the button (News). The user will wait on focus button (News)

and in 3 seconds will invoke event click button by the headset.

8. The system will load the News panel with the RSS frame.

9. The assistant user can click on the buttons (up and down). The user must wait till the

buttons (up and downs) are focused and then invoke action by headset click.

10. The system will load selected news from the list box to the frame.

11. The assistant user can return back to the menu anytime by clicking the other button

from the main menu. The user must wait till the button (back to main) is focused and

then invoke action by headset click.

12. The system will return to the main menu.

Pre-Conditions: The headset is connected to the computer and has good signal with the all

sensors.

The user is a log in to the system. The computer is connected to the Internet network.

Post Condition:

Success Post-Condition: the user and assistant user can read the news in the frame.

Failure Post-Condition: the news is not loaded to the frame or the computer doesn’t have

connection to the Internet network and message box is displayed.

Expected Result:

 The user gets the news showed on the screen

Actual Result:
 The news came up as it should

Test CASE 10 Close Application

Brief Description: This test case checks how an assistant user can close the application.

Scenario:

4. Assistant user clicks on the button (Close).

5. The system will save the user setting to the xml file and logs out the user from the

application.

6. The system is closed.

Pre-Conditions: The headset is connected to the computer and the user is a log in to the system.

Post Condition:

Success Post-Condition: the user’s settings are saved and application is closed.

Failure Post-Condition: the message error is displayed.

Expected Result: The System closes down and the profile is saved

Actual Result: Profile is saved and the application is terminated.

78 | P a g e

7.5. Appendix E

7.5.1. Frequency of letters

The frequency of the letters in English Text .[6]

 The frequency of the letters in Danish Text .[7]

79 | P a g e

7.6. Appendix F

7.6.1. User manual

User Panel

To create a Profile insert the User name into the Name field and press the Create Profile Button.
To open an existing profile, first select an Username from the Users Box and then click the Open Profile
Button

Whenever one of these buttons is clicked the application will go idle and start looking for the

headset. In case it won’t find the headset it will return an error message after 30 sec and you can

retry reconnecting the Headset wireless dongle and try again. If the connection was successful the

UI will update.

To start a training first chose the action to train after which press the Start Training button. After

you press the button u will be notified with a pop-up message announcing you to get ready for the

training. The training lasts for 8 seconds so concentrate.

80 | P a g e

As soon as you press OK the training will start and a progress bar showing the time will appear.

When the training will finish you will be asked if you want to accept the training. If you feel like

you didn’t concentrate long enough don’t accept it.

When you are done training you can patiently for your selected button choice.

The control inside the application is done with the use of 3 small “helpers”. As u can see in the

picture above the User Panel is bluer than the rest of the buttons. We will call this from now on

focus. This focus is one of the helpers. We’ll call this the “Panel Focus”. The second helper is

another focus which resides in each page and it switches between the buttons inside the respective

page. The third helper is the signal registered by the Application. If the signal is higher than 60 the

focus will press the selected button. We will call this a “Click Event”.

Each 3 seconds the button focus will move. When a “Click Event” is registered on one of the Panel

Buttons the application will switch to the selected page. Once it’s on the selected page the “Panel

Focus” will stop moving and the “Page Focus” will start.

81 | P a g e

The Pages

Each of the pages has a “Back To Menu” button which will stop the ”Page Focus” inside the current

page and will restart the “Panel Focus” so you can chose another page.

The Option page

The Writing page

82 | P a g e

When you arrive on the writing page the first button in the Selector column will gain focus and each

3 seconds it will move down. When a “Click Event” will be registered the focus will start moving

left on the selected Menu Bar (2, 3, 4, 5). In case you want another Menu bar you patiently wait till

the focus moves until the last button (Back) and resets on the Selector. If the Engine will register a

“Click Event” while the focus is on the Selector, the focus will start moving again between the

Selector columns.

Menu Bar1

Suggestions: The application will be check the spelling and as soon as one of the typed words will

be wrong, the focus will start moving between the Suggestions buttons.

Menu Bar 2

Clean Board: Clears the text in the Writing Area

Text to Speech: The application will read out loud the text inside the Writing Area (EN only)

Back to Menu: The first button in the Panel will regain focus and you will be able to choice another

Panel Button in order to switch to another page

Menu Bar 3, 4, 5

The Automation page

83 | P a g e

The Game Page

The News Page

” is register while the “Page Focus” is on Up button the application will select the previous

article(when you first arrive the page The selected Topic will be Arts and the first article will be the

selected one in consequence you can’t go up till you go down).

84 | P a g e

7.6.2. Appendix G

Training sequence diagram

