

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

FAST SHIPPING AND DELIVERY

- TENS OF THOUSANDS OF IN-STOCK ITEMS
- EQUIPMENT DEMOS
- HUNDREDS OF MANUFACTURERS SUPPORTED
- LEASING/MONTHLY RENTALS
- ITAR CERTIFIED
 SECURE ASSET SOLUTIONS

SERVICE CENTER REPAIRS

Experienced engineers and technicians on staff at our full-service, in-house repair center

WE BUY USED EQUIPMENT

Sell your excess, underutilized, and idle used equipment We also offer credit for buy-backs and trade-ins **www.artisantg.com/WeBuyEquipment** *>*

Instra View REMOTE INSPECTION

Remotely inspect equipment before purchasing with our interactive website at **www.instraview.com** *>*

LOOKING FOR MORE INFORMATION?

Visit us on the web at <u>www.artisantg.com</u> for more information on price quotations, drivers, technical specifications, manuals, and documentation

Trimble

Force 11

 ${f G}$ LOBAL POSITIONING SYSTEM (GPS)

 ${f V}$ ersa module europa (VME)

 $R \text{eceiver} \ C \text{ard}$

(GVRC)

Installation, Operation, and Maintenance Manual

April 1, 1997

Part Number 30300-00 Rev C.

TRIMBLE NAVIGATION, LTD. Sunnyvale, CA 94086

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Table of Contents

1.0	Introd	uction	1
1.1	Purpos	e	1
1.2	Capab	lities	1
	1.2.1	Overview	1
	1.2.2	Position, Velocity, and Time (PVT) GPS Solutions	1
	1.2.3	External Interfaces	2
	1.2.4	Dynamics	2
	1.2.5	Environment	2
1.3	Charac	teristics	2
	1.3.1	GPS Signals	2
	1.3.2	Accuracy	2
	1.3.3	Satellite Acquisition and Selection	
		1.3.3.1 Signal Acquisition Process	3
		1.3.3.2 Time-to-First-Fix (TTFF)	3
		1.3.3.3 Satellite Selection	4
	1.3.4	Anti-Spoofing (A-S)	4
		1.3.4.1 Anti-Spoofing ON and Anti-Spoofing OFF	
		1.3.4.2 Anti-Spoofing Operation	
		1.3.4.3 Anti-Spoofing OFF Operation	
		1.3.4.4 Summary of Primary Operating Modes	
	1.3.5	Selective Availability (SA)	
		1.3.5.1 General	
		1.3.5.2 GVRC SA	7
	1.3.6	GVRC Initialization Using PLGR	7
• •			
2.0		ation	
2.1		ation Configuration	
	2.1.1	Set VME Address	
	2.1.2	Select Controlling Interface	
	2.1.3	Configure Antenna Bias	
	2.1.4	Configure RF Input Attenuation	
	2.1.5	Pre-Set Jumper and Switch Configuration	
	2.1.6	Instrumentation Port (IP) Baud Rate Selection	
2.2		ls, Indicators and Connectors	
		Panel Control and Indicators	
		ce Connectors	
2.3	GVRC	Interface Cabling	15
3.0	Maint	enance and Service	16
3.1		eshooting	
	3.1.1	Power	16
	3.1.2	Signal	16
	3.1.3	Built-in Test Protocols	
		3.1.3.1 Initial Self-Test	
		3.1.3.2 Commanded BIT	
		3.1.3.3 Background BIT	
3.2	Softwa	re Upgrades	

4.0	Testing	19
4.1	RS-232 and RS-422 Interface	19
4.2	VMEbus Interface	19
Anno	ndix A Glossary	Λ 1
Appe	iuix A Giossary	A-1

Page No.

Tables

Table No.

Figure No.

1-1 1-2	GVRC Dynamic Limits	
1-3	FOM and Definition	
2-1	S100 Switches and VME Address Relationships	8
2-2	Configure Controlling Interface	12
2-3	Configure Antenna Bias Voltage	12
2-4	Pre-Set Jumper and Switch Configuration	13
2-5	LED Indications	14
2-6	GVRC Interface Connectors	15

Figures

Page No.

2-1	GVRC Connectors and Pin Arrangement	. 9
	GVRC Pin-to-Signal Assignments	
2-3	GVRC Jumper and DIP Switch Locations	. 11

1. INTRODUCTION

1.1 Purpose

The GPS Versa Module Europa (VME) Receiver Card (GVRC) is a Precise Positioning Service (PPS) receiver designed to collect and process the Global Positioning System (GPS) satellite signals to derive accurate 3-dimensional position, velocity, and time. The receiver can also be aided by an auxiliary sensor for increased performance in integrated applications.

1.2 Capabilities

1.2.1 Overview

The GVRC operates with signals broadcast from the NAVSTAR Global Positioning System satellites. As the satellites orbit the earth, the satellite availability changes continuously. The GVRC contains functions for determining the availability of satellites at any given time, and for determining the optimum times for usage. When the GVRC is operated with antenna line-of-sight visibility to the sky, the GVRC automatically searches for satellite signals and acquires the data necessary for a GPS solution. Using data derived from satellite signals, the GVRC calculates position, velocity, and time (PVT) solutions for output via the digital data ports.

The GVRC is capable of operating in a Precise Positioning Service (PPS) mode after an authorized operator has loaded the appropriate cryptovariables. Cryptovariables (CVs) can be entered through the key fill port by using a KOI-18, KYK-13, or AN/CYZ-10 data loader. CVs can also be manually entered via the digital data ports. Operation in the PPS mode mitigates the effects of Selective Availability (SA), and the Anti-Spoofing (A-S) feature allows access to the encrypted Y-code. The GVRC is capable of processing both the P(Y)-code and C/A-code on the L1/L2 GPS frequencies. When not authorized for PPS operation, the GVRC is capable of operating in the Standard Positioning Service (SPS) mode. Hardware and software zeroize functions allow cryptovariable information and all volatile memory data to be immediately and irreversibly deleted from GVRC memory components.

The remainder of this section briefly outlines the various capabilities of the GVRC.

1.2.2 Position, Velocity, and Time (PVT) GPS Solutions

The GVRC calculates position, velocity and time solutions at a maximum rate of one solution per second. The accuracy of the solution depends on the operating mode and other conditions as described in section 1.3.2. Each solution is time-tag referenced to GPS and/or Universal Coordinated Time (UTC).

The GVRC provides Precise Time and Time Interval (PTTI) data in several formats. Time rollover pulses are provided at each UTC second and minute. Binary Coded Decimal (BCD) time-of-day data is also provided in accordance with ICD-GPS-156 and ICD-GPS-060. HaveQuick-compliant time-of-day signals are provided in Manchester code.

1.2.3 External Interfaces

The GVRC is designed to be installed in a VMEbus system. The antenna interface is a SMA connector to support a coaxial cable connection to a remote antenna.

The GVRC incorporates three distinct input/output interfaces. The primary control, power, and data interface is the VMEbus which complies with the IEEE STD-1014-1987 VMEbus Specification and ICD-GPS-156. An Instrumentation Port (IP) which complies with ICD-GPS-150 is provided on the GVRC face plate (see figure 2-1). The IP is an RS-232 communications port incorporating a DB9 style connector. The third interface option is the Maintenance Port (MP) which is also implemented as an RS-232 port on the face plate, and is configured for the Precision Lightweight GPS Receiver (PLGR) interface standard mode (see section 1.3.6).

The KOI-18/KYK-13/CYZ-10 interface is a single function port for insertion of encryption keys. The key loading port complies with ICD-GPS-225 and CZE-93-105. Proper use of the key loading port is required for PPS operation. This interface also includes a discrete to zeroize CVs.

1.2.4 Dynamics

The GVRC is capable of providing outputs with the specified accuracy throughout the dynamic environment expected for naval vessels and water craft. The default velocity, acceleration, and jerk limits are summarized in Table 1-1.

Characteristic	Limit
Velocity	40 m/s
Acceleration	15 m/s/s
Jerk	7.5 m/s/s/s

Table 1-1. GVRC Dynamic Limits

1.2.5 Environment

The GVRC will operate to specified performance levels at temperatures from 0° C to $+60^{\circ}$ C. It can be stored at temperatures from -40° C to $+85^{\circ}$ C with no degradation.

The GVRC is designed to operate in conditions of relative humidity up to 98 percent including condensation in the form of water and frost.

The GVRC satisfies EMI/C requirements of MIL-STD-461C (Class A1a), and is resistant to jamming and spoofing when properly keyed.

1.3 Characteristics

1.3.1 GPS Signals

The GVRC operates on the L1/L2 GPS frequencies and has the capability to demodulate both the C/A-code and the P(Y)-code. When an authorized user has keyed the GVRC with the appropriate cryptovariables, the GVRC can remove SA accuracy degradation and operate with the encrypted Y-code.

1.3.2 Accuracy

Table 1-2 compares PPS enabled GVRC performance with SPS accuracy.

Table 1-2. Accuracy

Scenario	Accuracy
POSITION ACCURACY (Authorized User)	16 meters SEP (steady state) 18 meters SEP (maximum dynamics)
POSITION ACCURACY (Unauthorized User)	76 meters SEP
VELOCITY ACCURACY (Authorized User)	0.1 meter/sec RMS (no jerk, unaided) 0.03 meters/sec RMS (aided)
PULSE-PER-SECOND TIMING ACCURACY	100 nanoseconds (1 sigma)
HAVE QUICK TIMING ACCURACY	10 microseconds (1 sigma)

The listed position accuracies are in terms of meters, spherical error probable (SEP).

The listed accuracies apply assuming a user range error (URE) (Space/Control) of less than 4.0 meters under the following conditions:

- a. Position Dilution of Precision (PDOP) less than 2.57
- b. Horizontal Dilution of Precision (HDOP) less than 1.6
- c. Vertical Dilution of Precision (VDOP) of less than 2.0
- d. Unmodelled ionospheric error of less than 5 meters (one sigma)

SPS Mode (unauthorized user) values assume that Selective Availability is active.

The GVRC computes a Figure of Merit (FOM) value which equates to an Expected Position Error (EPE) as shown in Table 1-3.

1.3.3 Satellite Acquisition and Selection

1.3.3.1 Signal Acquisition Process

When power is applied, the GVRC enters the INITIALIZATION mode in which it does not attempt to acquire and track satellites. Upon being commanded to the NAVIGATION mode, the GVRC uses information stored in memory to determine which satellites are above the horizon and the approximate Doppler frequencies of the signals. Typically, this information would include the satellite constellation almanac, the last GVRC position fix, and an estimate of current time. If any of this information is not resident in GVRC memory when power is applied, the time to acquisition will be lengthened unless the user provides this initialization data to the unit. Position and time estimates, plus almanac information can be inputted through any one of the digital data ports.

1.3.3.2 Time-to-First-Fix (TTFF)

Time-to-first fix is the elapsed time from the user demand on the GVRC to the first display of accurate PVT data. The probability is 0.95 that the TTFF will be less than 90 seconds, provided the GVRC position uncertainty does not exceed 100 km, the GVRC has a time uncertainty of less than 2 minutes, current almanac is available, and the cryptovariables for that day are loaded and validated (if SA/A-S operation is required).

FOM	Expected Position Error (EPE) (in meters)	
1	less than or equal to 25	
2	greater than 25, less than or equal to 50	
3	greater than 50, less than or equal to 75	
4	greater than 75, less than or equal to 100	
5	greater than 100, less than or equal to 200	
6	greater than 200, less than or equal to 500	
7	greater than 500, less than or equal to 1000	
8	greater than 1000, less than or equal to 5000	
9	greater than 5000	

Table 1-3. FOM and Definition

1.3.3.3 Satellite Selection

The GVRC will consider all satellite vehicles (SVs) currently being tracked for use in calculating a GPS solution. The satellites must satisfy line-of-sight masking criteria (minimum signal level, minimum elevation angle, maximum GDOP, and the 4SV/3SV switch GDOP) to be used in calculating a solution.

The GVRC will track the eight highest satellites in view and calculate a PVT solution. The GVRC will automatically select fewer satellites if eight are not available. If four satellites are not available or there is no four-satellite combination which provides GDOP lower than the GDOP switch mask, the GVRC will augment available satellites with external sensor data when available. In this condition, the GVRC will use altitude hold (when enabled), employing the last known GPS altitude, or a value input from the host system.

As time passes and the satellite availability changes, the GVRC will automatically acquire rising satellites and adjust the selected constellation for the solution.

1.3.4 Anti-Spoofing (A-S)

The GVRC can provide the navigation accuracy presented in section 1.3.2 in a spoofing environment. A spoofing environment is considered to be present when at least one deceptive pseudolite signal is being received which has the same C/A- and P-codes associated with a valid Pseudo Random Noise (PRN) code number. Deceptive signals are typically broadcast at signal levels of up to 10 dB greater than received satellite signal levels. The deceptive signal attempts to force the GPS receiver to calculate erroneous PVT data by shifting to the higher power pseudolite carrier and code Doppler rates away from the actual satellite carrier and code Doppler rates.

The GVRC can protect against deception and denial of GPS service. Protection is provided during initial satellite signal acquisition, satellite signal re-acquisition during normal operation, and while incorporating a new satellite into the PVT solution set. Rejection of the deception signals is based on use of the encrypted Y-code.

1.3.4.1 Anti-Spoofing ON and Anti-Spoofing OFF

The GVRC operates in either an ANTI-SPOOFING ON or an ANTI-SPOOFING OFF condition. In the ON condition, it is optimized for use against spoofers. While in the OFF condition, it is optimized for ease of use and improved TTFF.

When powered on, the GVRC defaults to the ANTI-SPOOFING ON condition. If the database is complete and the GVRC is keyed, the GVRC will proceed to acquire and track satellites in this mode when commanded to NAVIGATE by the user.

1.3.4.2 Anti-Spoofing Operation

The GVRC must be correctly initialized to enable ANTI-SPOOFING ON operation. If not resident within the GVRC memory, user insertion of initialization data via any of the available data ports must include the following data:

- a. Current SV almanac
- b. Current position; accurate within 100 km
- c. Current time; accurate within two (2) minutes
- d. Valid cryptovariables

If the initialization data is not available, the GVRC will remain in the WAITING FOR INITIALIZATION state when commanded to the NAVIGATION mode. Otherwise it will commence search and acquisition of satellites.

1.3.4.3 Anti-Spoofing OFF Operation

If operational conditions permit, or if initialization data insertion cannot be completed, the GVRC can be operated in the ANTI-SPOOF OFF (mixed mode) condition. The following types of operation are possible with ANTI-SPOOFING OFF:

- a. PPS receiver operation (tracking P-code corrected for SA),
- b. C/A-code differential GPS operation (keyed or unkeyed) and connected via any of the digital data ports to a source of differential corrections,
- c. SPS receiver operation using C/A-code,
- d. Blind search (no knowledge of initial position, time, or satellite visibility),
- e. "Anywhere" searches (poor or unreliable knowledge of position, but having

approximate time and almanac).

In the ANTI-SPOOFING OFF mode, the GVRC will, upon being commanded to NAVIGATION, search for and acquire satellites regardless of the initial status of its database. To prevent inadvertent corruption of a database in a spoofing environment, GVRC always powers on in the ANTI-SPOOFING ON condition (unless exiting from a power-interrupt condition of less than 30 seconds). The GVRC must be deliberately switched to ANTI-SPOOFING OFF before it will attempt to acquire satellites when not fully initialized.

The GVRC database may be initialized from an external source while in INITIALIZE mode.

1.3.4.4 Summary of Primary Operating Modes

<u>INITIALIZE</u>. The GVRC does not attempt to search, acquire or track satellites. The GVRC defaults to this mode following power-up or reset. An exception is following a short (less than 30

second) power interruption, in which case the GVRC returns to the mode present prior to interruption. The GVRC must be in this mode to accept the following initialization data:

- a. Time of day
- b. Initial position
- c. Almanac
- d. Ephemeris
- e. Lever arms
- f. L1/L2 equipment delay

The GVRC will accept aiding data in the INITIALIZE mode.

<u>NAVIGATE</u>. In this mode the GVRC searches for, acquires, and tracks satellites to calculate a navigation solution. It accepts aiding data and utilizes a blending filter to calibrate system accuracy. In the Y-CODE ONLY mode, the GVRC will remain in the INITIALIZE mode after being commanded to NAVIGATE, unless it has initial position, time, almanac, and cryptovariables, as discussed in section 1.3.4.3. Once this data is supplied, the GVRC will transition to NAVIGATE mode if it was formerly commanded to do so.

TEST Mode. The GVRC enters this mode to perform commanded or initial built-in-test.

<u>STANDBY Mode</u>. This is similar to INITIALIZE mode with the exception that the GVRC will attempt Y-code re-acquisition after having been in this mode for a period of up to 20 minutes, upon being commanded back to NAVIGATE.

1.3.5 Selective Availability (SA)

1.3.5.1 General

In the early days of GPS, the DoD directed that GPS include the capability to deny military utility to unauthorized users. Selective Availability and Anti-Spoofing (SA and A-S) are the results of that directive.

SA is the deliberate introduction of errors into the GPS measurements. This denial of accuracy is implemented in two ways. First, predetermined errors are introduced into the navigation data transmitted by the satellites. The result is that unauthorized users (users without receivers that can neutralize the error) compute erroneous positions and clock offsets. Second, the satellite clock itself is altered. Whereas errors in the navigation data create slowly varying errors in the position solutions, the clock dither produces a much faster error behavior. Clock dither is quite obvious in velocity computations.

SA results in errors in position, velocity, and time. With SA off, and without differentially correcting the data, horizontal accuracy using single-frequency code-phase receivers has been demonstrated to be about 12 meters Circular Error Probable (CEP) (30 meters 95% of the time). With SA in effect, the U.S. government promised 40 meters horizontally CPE, and less than 173 meters 95% of the time.

1.3.5.2 GVRC Selective Availability and Key Loading

When operating with current cryptovariables loaded, GVRC automatically removes SA error. Cryptovariables are loaded into the GVRC using the front panel J10 connector. While the keyloading device is attached and operated, the GVRC front panel ORANGE LED blinks at a rate of 2.5 Hz. When the keyloader is removed or inactivated, the ORANGE LED blinks at 1 Hz until keys are validated, whereupon the ORANGE LED is continuously illuminated.

Once CVs have been loaded, the user has the option to specify a mission duration to the GVRC. This is a period, in days, after which the GVRC security module will automatically zeroize the CVs. Once CVs are loaded, the mission duration defaults to one (1) day. The user may modify the value once, and only once, as follows:

- Step 1: Enter a mission duration via one of the digital interfaces within one (1) hour of the loading of the CVs. Maximum value is 244 days.
- Step 2: Operate the GVRC through or during a period of greater than one (1) hour, but less than one (1) day, following loading of the CVs. In this case the GVRC will set a default mission duration of 240 days.

If the user does not perform either of Step 1 or Step 2 above, the GVRC will zeroize CVs upon subsequent power-up (default of one day exceeded). Note in the above that the period of one (1) day commences at midnight (UTC) on the day in which CVs were loaded. Once set, mission duration cannot be reset prior to expiration without first zeroizing the keys and re-keying.

1.3.6 GVRC Initialization Using PLGR

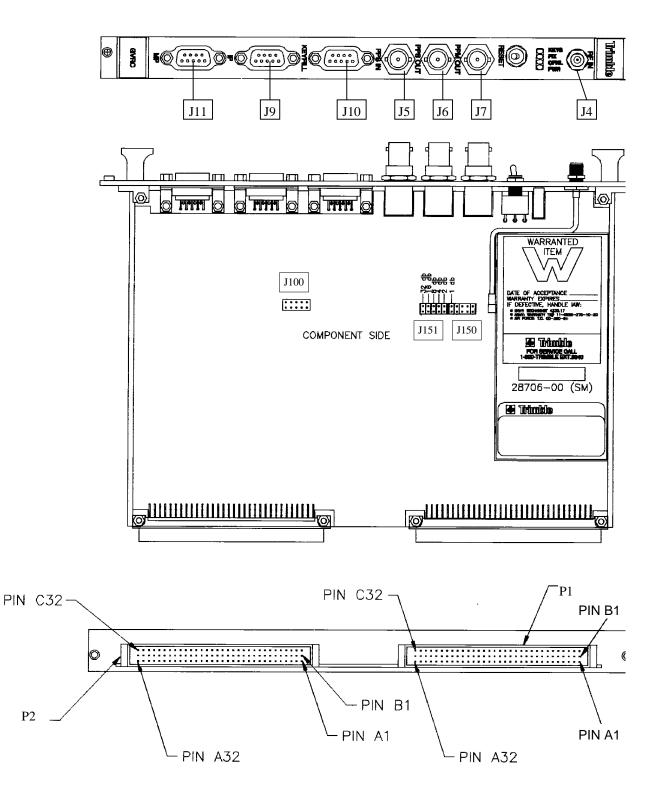
The maintenance port defaults to the PLGR interface standard mode (9600 baud, 8 data bits, no parity and 1 stop bit) regardless of jumper settings. This port can be connected to a PLGR which can be commanded to transfer initialization data to the GVRC. Refer to the PLGR operating manual for details. Once a transfer is commenced, GVRC will enter the INITIALIZATION mode. Following successful transfer, the GVRC will enter the STANDBY mode.

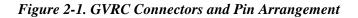
2. INSTALLATION

2.1 Installation Configuration

Figure 2-1 illustrates the GVRC board connectors and general configuration. Figure 2-2 presents the pin-to-signal assignments (pin-outs) for the VME connectors and the face-plate connectors. Figure 2-3 identifies the locations of the various DIP switches and jumpers that can be set to provide the desired configuration for the GVRC. The pre-set configuration installed at the factory prior to delivery is defined in section 2.1.5.

The GVRC requires the following operator settings before installation into a double-height, single-width slot of a VMEbus rack:


- Set the VME address (refer to section 2.1.1)
- Select the controlling interface (refer to section 2.1.2)
- If required, select the 5-VDC bias for the GPS antenna and low-noise amplifier (LNA) (refer to section 2.1.3)
- Configure proper RF input attenuation (refer to section 2.1.4)


2.1.1 Set VME Address

The GVRC must be configured to interface on the VME bus. Setting the individual DIP switches of S100 establishes the address of the GVRC. Figure 2-3 depicts the location of switch S100. Data or instructions passed over the VME bus to or from the GVRC are coded with a unique device address. The device address determined by the settings of S100 must match the address used by the VME bus controller. At initial installation the GVRC S100 switches should be set to the values required by the bus-controller software. Table 2-1 identifies the VME address bit for each of the 10 switches of S100. Turn a switch on to assert its address line, and turn the switch off to negate the address line.

Switch #	VME Address Bit #	Switch #	VME Address Bit #
10	23	5	18
9	22	4	17
8	21	3	16
7	20	2	15
6	19	1	Not used

Table 2-1. S100 Switches and VME Address Relationships

Pin # Signal Name	Pin # Signal Name	Pin # Signal Name		
VME P1 CONNECTOR				
A1 D00 A2 D01 A3 D02 A4 D03 A5 D04 A6 D05 A7 D06 A8 D07 A9 GND A10 SYSCLK A11 GND A12 DS1 A13 DS0 A14 WRITE A15 GND A16 DTACK A17 GND A18 AS A19 GND A20 ACK A21 ACKIN A22 ACKOUT A23 AM4 A24 A07 A25 A06 A26 A05 A27 A04 A28 A03	B1 BBSY B2 BCLR B3 ACFAIL B4 BGO IN B5 BGO OUT B6 BG1 IN B7 BG1 OUT B8 BG2 IN B9 BG2 OUT B10 BG3 IN B11 BG3 OUT B12 BR0 B13 BR1 B14 BR2 B15 BR3 B16 AM0 B17 AM1 B18 AM2 B19 AM3 B20 GND B21 SERCLK B22 SERDAT B23 GND B24 IRQ7 B25 IRQ6 B26 IRQ5 B27 IRQ4 B28 IRQ3	C1 D08 C2 D09 C3 D10 C4 D11 C5 D12 C6 D13 C7 D14 C8 D15 C9 GND C10 SYSFAIL C11 BERR C12 SYSRESET C13 LWORD C14 AM5 C15 A23 C16 A22 C17 A21 C18 A20 C19 A19 C20 A16 C23 A15 C24 A14 C25 A13 C26 A12 C27 A11 C28 A10		
A29 A02 A30 A01 A31 -12V	B29 IRQ2 B30 IRQ1 B31 +5VSTDBY	C29 A09 C30 A08 C31 +12V		
A32 +5V	B32 +5V VME P2 CONNECTO	C32 +5V R		
A1 TM CODE IN + A2 TM FAULT IN (ACTIVE LOW) A3 TM FAULT IN A A4 TM CODE OUT A A5 TM FAULT OUT (ACTIVE LOW) A6 TM FAULT OUT A A7 HAVEOUICK OUT A8 RS-422 OUT A A9 RS-422 OUT A A9 A10 TIME MARK PULSE A11 BAUD RATE SELECT A12 D RESET A13 GVRC RDY A14 NC A15 NC A16 NC A17 NC A18 NC A20 NC A21 NC A22 NC A23 NC A24 NC A25 NC A26 NC A27 NC A28 NC A29 NC A30 NC A31 NC A32 NC	B1 +5V B2 GND B3 RESERVED B4 A24 B5 A25 B6 A26 B7 A27 B8 A28 B9 A29 B10 A30 B11 A31 B12 GND B13 +5V B14 D16 B15 D17 B16 D18 B17 D19 B18 D20 B21 D23 B22 GND B23 D24 B24 D25 B25 D26 B26 D27 B27 D28 B28 D29 B29 D30 B30 D31 B31 GND B32 +5V	C1 TM CODE IN - C2 TBD C3 TM FAULT IN B C4 TM CODE OUT B C5 TBD C6 TM FAULT OUT B C7 HAVEQUICK OUT RTN C8 RS-422 OUT B C10 NC C11 NC C12 NC C13 NC C14 NC C15 NC C16 NC C17 NC C18 NC C19 NC C20 NC C21 NC C22 NC C23 NC C24 NC C25 NC C26 NC C27 NC C28 NC C29 NC C30 NC C31 NC C32 NC		
J9 CONNECTOR (IP) 1 N/C 2 R5-232 TX	J11 CONNECTOR (MP) 1 N/C 2 RS-232 TX	J10 CONNECTOR (KEYFILL) 1 SA/AS RETURN 2 N/C		
2 RS-232 TX 3 RS-232 RX 4 N/C 5 GND 6 PPS IN 7 N/C 8 N/C 9 N/C	2 RS-232 TX 3 RS-232 RX 4 N/C 5 GND 6 PPS IN 7 N/C 8 N/C 9 N/C	2 N/C 3 KYK E 4 KYK C 5 KYK A 6 ZEROIZE ALL 7 LOAD STATUS 8 KYK D 9 KYK B		

Figure 2-2. GVRC Pin-to-Signal Assignments (Pin-outs)

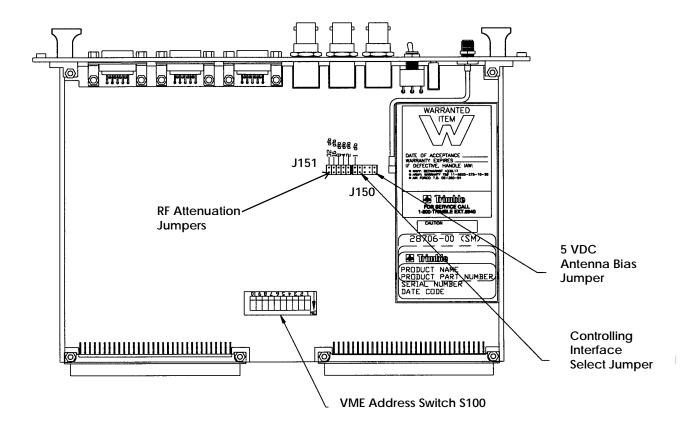


Figure 2-3. GVRC Jumper and DIP Switch Locations

2.1.2 Select Controlling Interface

The GVRC can be configured to have either the VME interface or the Instrument Port as the controlling interface, as specified in ICD-GPS-156. Select the desired controlling interface as indicated in Table 2-2. Note that only commands described in ICD-GPS-156 are influenced by this setting. The Interface Control jumper is located on the jumper block labeled J150 as shown in Figure 2-3.

 Table 2-2.
 Configure Controlling Interface

Controlling Interface	Jumper
Instrument port	Inserted
VME interface	Removed

2.1.3 Configure Antenna Bias Voltage

The GVRC can be configured to have a 5-VDC bias voltage on the center pin of the RF input connector by inserting a jumper where indicated in Figure 2-3. The antenna bias voltage jumper is located on jumper block J150.

Table 2-3. Configure Antenna Bias Voltage

Bias Voltage Status	Jumper
+5 VDC Present	Inserted
No Bias Voltage	Removed

2.1.4 Configure RF Input Attenuation

The GVRC can be configured with jumpers to attenuate the RF input. Proper installation of the jumper(s) is required for optimal performance. Too much attenuation of the RF input can cause low or inconsistent SNR readings when tracking satellites. Too little attenuation of the RF input can cause degraded anti-jamming performance.

The GVRC has six jumper settings ranging from 1 dB to 32 dB which will allow the RF input to be attenuated from 1 dB up to 63 dB. See Figure 2-3 for the location of the six jumpers on the GVRC. The attenuation jumpers are located on jumper block J151 (2, 4, 8, 16, and 32 dB) and block J150 (1 dB).

The jumpers provide a range of attenuation to account for installation-dependent variations in the antenna LNA and signal losses in the RF cable connecting the LNA to the GVRC.

The configuration of the jumper(s) is dependent on the LNA that provides amplification to the satellite signals received at the antenna and the signal loss due to the RF cable connecting the LNA to the GVRC. The initial attenuation setting is calculated by taking the base value of -21 dB, adding the gain of the LNA, and then subtracting the loss of the RF cable. (The base value of -21 dB is the difference between the P(Y)-code signal level of -163 dB at the antenna (as specified in ICD-GPS-200), and the minimum required signal level of -142 dB at the RF input of the GVRC (as specified in CI-GVRC-300).)

Examples:

Pre-amplifier Gain minus Cable Loss	Recommended Attenuation Setting
21 dB	0 dB
35 dB	14 dB
	(8 + 4 + 2)
50 dB	29 dB
	(16 + 8 + 4 + 1)

2.1.5 Pre-Set Jumper and Switch Configuration

The pre-set configuration of the GVRC upon delivery from the manufacturer is presented in Table 2-4.

VME Address Bits	S100	All Switches OFF (All Bits Negated)
Controlling Interface	J150	Jumper Not Installed (VME Interface Controls)
Antenna Bias Voltage	J150	Jumper Not Installed (No Bias Voltage)
RF Attenuation	J151 and J150	Jumper Installed on J151 at the 8 dB position. Other positions have no jumpers installed
Factory Testing Options	J100	The Jumpers on block J100 are not for user-selectable options. No jumpers installed for operational service.

Table 2-4. Pre-Set Jumper and Switch Configuration

2.1.6 Instrumentation Port (IP) Baud Rate Selection

The GVRC can be commanded into either of two instrumentation port (IP) baud rates. The standard rate is 9600 baud which is compatible with the PLGR standard. The high data rate is 19,200 baud for receive and 76,800 baud for transmit. The IP baud rate is selectable by the user via the A11 pin on connector P2. If the A11 pin is connected to chassis ground, the IP operates in

the high data rate mode. If the A11 pin is not connected (open circuit), the IP operates in the PLGR standard data rate.

2.2 Controls, Indicators and Connectors

In addition to the configuration switches and jumpers, the GVRC provides controls and indicators on its front panel that can be used during operation. Six connectors (four on the front panel, two on the plug-in edge) provide convenient interface with various system functions.

2.2.1 Front-Panel Control and Indicators

The RESET switch on the front panel causes a reset when operated, and the receiver is reset to the INITIALIZE mode. Host equipment will need to re-initialize the VME interface and re-establish IP/MP connectivity following activation of this reset. Refer to ICD-GPS-156 for further details.

There are four LED indicators on the front panel of the GVRC. Collectively, they indicate the current status of the GVRC, as shown in Table 2-5.

LED	Condition	Indicates
PWR (red)	Constantly lit	Power is applied to GVRC
OPNL (yellow)	Constantly lit	GVRC is operational
	Blinking	Fatal error detected by boot program (e.g., corrupted/invalid main program)
FIX (green)	Constantly lit	Position fix in process
KEYS (orange)	Constantly lit	Keys are valid
	Rapidly blinking	Key loader is detected
	Slowly blinking	Keys accepted but not yet verified
Yellow, green, and orange	Blinking in unison	Built-in test (BIT) in process

Table 2-5. LED Indications

2.2.2 Interface Connectors

The GVRC interface connectors are listed in Table 2-6.

Interface	Connector	Location
VMEbus	VME P1	Back edge
ICD-GPS-150/156 (using RS-422)	VME P2	Back edge
PTTI timing signals (per ICD-GPS-060)	VME P2	Back edge
L1/L2 RF signals	J4 SMA (RF IN) and 50-ohm cable	Front panel
ICD-GPS-150/156 (using RS-232)	DB9 J9 IP (Instrument Port) J11 MP (Maintenance Port)	Front panel
KOI-18/KYK-13/AN- CYZ-10 keyfill	DB9 J10 (KEYFILL)	Front panel
Pulse-Per-Second Out	BNC J6 (PPS OUT)	Front panel
Pulse Per Minute Out	BNC J7 (PPM OUT)	Front panel
Pulse Per Second In	BNC J5 (PPS IN)	Front panel

Table 2-6. GVRC Interface Connectors

2.3 GVRC Interface Cabling

•

Standard off-the-shelf commercial cables can be used to interface the RS-232 digital data ports to an IBM-compatible PC.

3. MAINTENANCE AND SERVICE

The GVRC is designed to require very little operator maintenance or service. It has a built-in test (BIT) capability for self-diagnostic check of operations.

3.1 Troubleshooting

The GVRC is designed with a BIT feature that performs a power-up self test. The self test can detect 95% of all failures. If a significant failure has occurred, which is indicated by the orange LED on the front panel, status can by obtained via any one of the digital data ports.

None of the BIT failures can be repaired by the operator. Repair of the GVRC is completed above the organizational level. Refer to approved maintenance instructions for disposition of retrograde units.

3.1.1 Power

The GVRC indicates power is present by a lighted red LED on the front panel.

- If the GVRC fails to power-up, verify that proper external input power is supplied to the GVRC.
- If it is determined that proper power is supplied to the GVRC, the unit must be returned for repair.

3.1.2 Signal

If the GVRC will not track satellites, be sure that the antenna is free from obstruction and has an unrestricted view of the sky.

If tracking does not begin within a reasonable time, zeroizing the GVRC will clear all memory and return the unit to default settings.

CAUTION

EMERGENCY ZEROIZE is to be used with caution. All GVRC random access memory, including position, cryptovariables, almanac, time, and ephemeris data will be erased if this method of zeroize is used.

Memory data lost during EMERGENCY ZEROIZE may be manually restored through one of the digital data ports.

3.1.3 Built-In Test Protocols

The GVRC performs three types of built-in test (BIT). On initial application of power, the GVRC completes a self-test and reports a GO or NO GO status to the NAVSSI host. The GVRC will respond to a host command to complete a self-test at any time during normal operation. The

GVRC also performs a background BIT during normal operation as a method of performance monitoring. The GO and NO GO status discrete is a dedicated pin on the VME P2 connector. The commanded and background BIT results are provided via shared memory in the O-GVRC21 output message which is defined in ICD-GPS-156. As a means of maintenance support, or whenever implemented by the NAVSSI host, the GVRC provides extended status and health communications over the IP or MP via the serial communications ports on the front panel or VME P2 connector. The IP/MP status and health communications are defined in the TIPY protocol ICD (P/N 27028-01).

3.1.3.1 Initial Self-Test

The POWER ON SELF-TEST is initiated on first application of power to the GVRC or in response to a system reset command. The reset can be implemented in any of three ways. The reset toggle switch on the front panel may be placed momentarily to RESET. The Discrete Reset (DRESET) signal may be asserted on pin A12 of VME connector P2. The reset may also be commanded by software from the NAVSSI host. When the self-test is in progress, the GVRC stops all processing and indicates "not ready" or NO GO by outputting a logic 0 (less than 0.6 VDC) on pin A13 of VME connector P2. Upon successful completion of the self-test (less than 8 seconds), the GVRC enters the INITIALIZATION mode and asserts "ready" or GO on pin A13 of VME connector P2.

3.1.3.2 Commanded BIT

The results of the commanded BIT are reported in shared memory output message 0-GVRC21 Word 9, Initial/Commanded BIT Log. The Word 9 log provides status on 8 receiver functions as follows:

EEPROM/RAM/A-D Converter/DPRAM Auxiliary Power Low or Absent Security Module Reference Clock Low Power Time Source A-D Converter BIT Channel BIT Task Status

Further definition of the faults identified in Word 9 is provided in Words 11 through 19 of message 0-GVRC21.

3.1.3.3 Background BIT

The results of the performance monitoring tests (background BIT) are reported to the NAVSSI host in message 0-GVRC21 Word 8. The faults which can be reported in Word 8 are as follows:

AGC Level Low Security Module Fault Auxiliary Power Low ICD-225 CV Erase Fault L2 Tracking Fault Software Zeroize Failed Hardware Zeroize Failed Shorted Antenna Fault Open Antenna Fault High Antenna Current Clock Reference Fault Task/OS Fault

Further definition of the faults identified in Word 8 is provided in Words 11 through 19 of message 0-GVRC21.

3.2 Software Upgrades

Software upgrades will be made available, as necessary, to update the operational program, the MAGVAR table, and the Datum tables in the GVRC. These upgrades will be IBM PC compatible and can be downloaded via the RS-232 or RS-422 data ports.

MAGVAR and Datum Tables which are stored in read-only memory (ROM) are individually field upgradeable. PC-based software is used to re-program the ROM. Refer to approved maintenance instructions. The GVRC employs dual sets of MAGVAR and datum information. One set is part of the main program, and the second is the field loaded file. The GVRC will test for a field-loaded file and will then select for use either its internal or the down-loaded data depending on which has the later date code. Software version numbers and date code information for the active MAGVAR and Datum information is stored within the Card ID area of the GVRC shared memory. Refer to ICD-GPS-156 for details.

4. TESTING

4.1 RS-232 and RS-422 Interface

Application software is provided to run on an IBM-compatible personal computer to allow a PC operator to fully test the GVRC.

The program includes:

FLASH.EXE	Reads the current software image file and downloads into the GVRC. Also used for MAGVAR and Datum upgrades.
TPMON.EXE	Monitor program to exercise the GVRC via the TIPY digital data port.
DATAMON.EXE	Monitor program to exercise the GVRC via the ICD-GPS- 153 digital data port. Note that if the PC operator has the GVRC transmitting data at 76.8K Baud, the PC must have a special serial I/O board.

4.2 VMEbus Interface

Testing of the VMEbus interface requires a special diagnostic analyzer installed in the VMEbus rack which is interfaced to an IBM-compatible personal computer.

Appendix A GLOSSARY

Acronyms and Abbreviations

2D	Two Dimensional	ELA	Elevation Angle
2D 2dRMS	RMS error	ELA ELD	Elevation Angle Elevation Distance
3D	Three Dimensional	ELD EMC	
30	Three Dimensional		Electromagnetic Compatibility
	41	EMI	Electromagnetic Interference
ALM	Almanac	EMP	Electromagnetic Pulse
A-S	Anti-Spoofing	EPE	Estimated Position Error
AVG	Average	EPLRS	Enhanced Position Location Reporting
AZ	Azimuth		System
		ETA	Estimated Time of Arrival
BCD	Binary Coded Decimal	EVE	Estimated Verticle Error
BIT	Built-In Test		
		F	Fahrenheit
С	Celsius	fix	Position Fix
CA	Climb Angle	FOM	Figure of Merit
CEP	Circular Error Probable	FRZ	Freeze
CMD	Command	ft	Foot
CR	Climb Rate	ft/sec	Foot Per Second
CRS	Course		
CV	Cryptovariable	GDOP	Geometric Dilution of Precision
CVW	Crypto Variable Weekly	G	Grid
		GPA	Glide Path Angle
DA	Department of the Army	GPE	Glide Path Error
DAE	Departure Angle Error	GPS	Global Positioning System
dB/Hz	Decibels per Hertz	GPU	General Purpose User
dBW	Decibels referenced to 1 Watt	GS	Ground Speed
deg	Degrees	GUV	Group Unique Variable
desel	Deselect	GVAR	Grid Variation
dm	Degrees, Decimal Minutes	GVRC	Global Positioning System (GPS)
DMA	Defense Mapping Agency		Versa Module Europa (VME) Receiver
dms	Degrees, Minutes, Seconds		Card
DoD	Department of Defense	HA	Helmet Antenna
DOP	Dilution of Precision	HAE	Height Above Ellipsoid
DPORT	Data Port	НАНО	High Altitude, High Opening
DTM	Datum	HDG	Heading
DIM	Datum	HDOP	Horizontal Dilution of Precision
Е	East	HMMWV	High Mobility Muti-purpose Wheeled
EAE	Entry Angle Error		Vehicle
ECEF	Earth-Centered Earth-Fixed	HPA	
ECEF ECM	Electronic Counter Measures	пгА	Horizontal Position Accuracy
		TAX/	In Asserdance With
ECCM	Electronic Counter-Counter Measures	IAW	In Accordance With
EFM	Ephemeris	ICD	Interface Control Document
EHE	Estimated Horizontal Error	IM	Installation Mount
EIA	Electronic Industries Association	INIT	Initialize
EIR	Equipment Improvement Report	I/O	Input/Output
EL	Elevation		

JTIDS	Joint Tactical Information Distribution	PVT	Position, Velocity & Time
	System	RA	Remote Antenna
km	Kilometer	RAM	Random Access Memory
km/h	Kilometers Per Hour	REAC	Reaction Time
kts	Knots	RNG	Range
L	Local Time	ROM	Read Only Memory
lat	Latitude		
LCD	Liquid Crystal Display	S	South
lcl	Local	SA	Selective Availability
L/L	Latitude/Longitude	SA/A-S	Selective Availability/
LLA	Latitude/Longitude/Altitude		Anti-Spoofing
lon	Longitude	SAIP	Spares Acquisition Integrated with
LRU	Line Replaceable Unit		Production
	I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SEP	Spherical Error Probable
М	Magnetic North	SM	Security Module
m	Meter	sq	Square
MK	Mark	SR	Slant Range
m/s	Meters per second	SS	System Specification
m/s/s	Meters per second per second	SSI	Systems Security Instruction
MAG	Magnetic	STBY	Standby
MAGVAR	Magnetic Variation	STR	Steering Angle
MCSP	Mission Complete Success Probability	STR-3D	Up/Down Steering Angle
MGRS	Military Grid Reference System	STS	Status
MI	Statute Miles	SV(s)	Satellite Vehicles(s)
MIL	Angualr Measure for 1/6400th of a	2 (2)	
	Circle	Т	True
MMD	Minimum Miss Distance	TFOM	Time Figure of Merit
MPH	Miles Per Hour	TGT	Target
MSL	Mean Sea Level	TM	Technical Manual
mvar	Magnetic Variation	TNG	Training
M/V	Manpack/Vehicle	TR	Technical Report
	-	TRK	Track
Ν	North	TTFF	Time To First Fix
N/A	Not Applicable	TTG	Time To Go
NAV	Navigation	TTSF	Time To Subsequent Fix
NBC	Nuclear, Biological & Chemical		-
NM	Nautical Mile	UPS	Universal Polar Stereo-graphic
NTISSI	National Telecommunications &	URA	User Range Accuracy
	Information	URE	User Range Error
O&M	Operations & Maintenance	USRA	User-Supplied Remote Antenna
OPA	Overall Position Accuracy	UTC	Universal Time, Coordinated
OPS	Operations	UTM	Universal Transverse Mercator
Р	Page	VA	Vehicle Antenna
PDOP	Position Dilution of Precision	VDOP	Vertical Dilution of Precision
POS	Position	VEL	Velocity
posfix	Position Fix	VEP	Vertical Error Probable
PP	Present Position		
pps	Pulse Per Second		
PPS	Precise Positioning Service		
PPS-SM	Precise Positioning Service-Security		
	Module		
PRN	PseudoRandom Noise		
DTTI	Duration Times & Times Internel		

PTTI

Precise Time & Time Interval

W WGS	West World Grid System	YD	Yards
WMM WP	World Magnetic Model Waypoint	Z	Zulu Time
XTE	Crosstrack Error		

Glossary Of Terms

2dRMS	Twice the distance root mean squared. As used by the operators of the GPS when specifying SA levels, it is the error distance within which 95% of the position solutions will fall.
2D	Two-dimensional positions. A 2D position fix provides latitude and longitude. Elevation is assumed to be fixed. Only three satellites are required to provide a 2D position with a user-supplied elevation.
3D	3D position provides the elevation in addition to Lat/Lon and requires four satellites.
Almanac	A reduced-precision subset of the ephemeris parameters. Used by the GVRC to compute the elevation and azimuth angles of the satellites. Each satellite broadcasts the almanac for all the satellites.
C/A-code	Coarse/Acquisition code. This is the "civilian" code made available by the Department of Defense (DoD). It is subject to SA. The authorized user can correct the degradation effects of SA.
Channel	Refers to the GVRC hardware that is required to lock to a satellite, make the range measurements and collect data from the satellite.
Cryptovariable	The coded information transferred to the GVRC manually or via key loaders which allow the GVRC to begin SA correction and/or $P(Y)$ -code demodulation.
Differential Navigation	A technique similar to relative positioning except that one or both of the points may be moving. The pilot of a ship or aircraft may need to know his position relative to a harbor or runway. A data link is used to relay the error terms to the moving vessel to allow real- time navigation.
ENU	A topocentric spherical coordinate system, "East-North-Up".
Elevation Difference	Vertical distance from current position to waypoint.
Elevation Angle	The angle between the line of sight vector and the horizontal plane.
Elevation Mask	Refers to the elevation angle below which a satellite is considered unusable. It is used to prevent the GVRC from searching for satellites which are obscured by buildings or mountains.
Ephemeris	A set of parameters that describe a satellite's orbit very accurately. It is used by the GVRC to compute the position of the satellite. This information is broadcast by the satellites.
GDOP	Geometric Dilution of Precision describes how much an uncertainty in range affects the uncertainty in position. It depends on where the satellites are relative to the user.
Ground Speed	Velocity over the ground.
Geoid	Actual physical shape of the earth which is difficult to describe mathematically because of the local surface irregularities and sea-land variations.
GPD	Global positioning with differential corrections applied.

GPS Time	The length of the second is fixed and is determined by primary atomic frequency standards. Leap-seconds are not used as they are in Universal Time Coordinated.
HDOP	Horizontal Dilution of Precision describes how an uncertainty in range affects the horizontal position (latitude and longitude).
IODE	Issue Of Data, Ephemeris. Part of the navigation data. It is the issue number of the ephemeris information. A new ephemeris is available usually on the hour.
L1	The primary L-band signal radiated by each NAVSTAR satellite at 1575.42 Mhz. The L1 beacon is modulated with the NAV message. L2 is centered at 1227.60 MHz.
L2	The secondary L-band signal radiated by each NAVSTAR satellite at 1227.6 MHz.
Key Loader	Cryptokey loading device KYK-13, KOI-18, or AN/CYZ-10.
Mapping Datum	Refers to a mathematical model of the earth. Many local datums model the earth for a small region: e.g., Tokyo datum, Alaska, NAD-27 (North American). Others, WGS-84, for example, model the whole earth.
NAV Data	The 1500 bit navigation message broadcast by each satellite at 50 bps on both L1 and L2 beacons. This message contains system time, clock correction parameters, ionospheric delay model parameters, and the vehicle's ephemeris and health. This information is used to process GPS signals to obtain user position and velocity.
P-code	The "Precise" code sent on both L1 and L2 GPS beacons. When encrypted, it is resistant to SA and spoofing.
Pseudo-random noise (PRN)	Each GPS satellite generates its own distinctive PRN code which serves as identification of the satellite, as a timing signal, and as a subcarrier for the navigation data.
Pseudorange	A measure of the range from the GVRC's antenna to the satellite. Pseudo-range is obtained by multiplying the speed of light by the apparent transit time of the signal from the satellite.
PDOP	Position Dilution of Precision is the determination of position uncertainty in range affecting both the horizontal position (latitude and longitude) and the vertical position (elevation).
Range	Horizontal distance from current position to waypoint.
Relative Positioning	The process of determining the vector distance between two points and the coordinates of one spot relative to another. This technique yields GPS positions with greater precision than the single-point positioning mode.
Rise/Set Time	The period during which a satellite is visible; i.e., has an elevation angle that is above the elevation mask. A satellite is said to "Rise" when its elevation angle exceeds the mask and "Set" when the elevation drops below the mask.
TDOP	Time Dilution of Precision, the uncertainty of clock bias, affects the horizontal position (latitude and longitude).
Time To Go	Estimated time to go until arrival at a waypoint.
VDOP	Vertical Dilution of Precision describes how an uncertainty in range affects the vertical position (elevation).
Velocity	Three-dimensional velocity.

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

FAST SHIPPING AND DELIVERY

- TENS OF THOUSANDS OF IN-STOCK ITEMS
- EQUIPMENT DEMOS
- HUNDREDS OF MANUFACTURERS SUPPORTED
- LEASING/MONTHLY RENTALS
- ITAR CERTIFIED
 SECURE ASSET SOLUTIONS

SERVICE CENTER REPAIRS

Experienced engineers and technicians on staff at our full-service, in-house repair center

WE BUY USED EQUIPMENT

Sell your excess, underutilized, and idle used equipment We also offer credit for buy-backs and trade-ins **www.artisantg.com/WeBuyEquipment** *>*

Instra View REMOTE INSPECTION

Remotely inspect equipment before purchasing with our interactive website at **www.instraview.com** *>*

LOOKING FOR MORE INFORMATION?

Visit us on the web at <u>www.artisantg.com</u> for more information on price quotations, drivers, technical specifications, manuals, and documentation