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AbstractÐA menu-driven PC program (SPECTRUM) is presented that allows the analysis of unevenly
spaced time series in the frequency domain. Hence, paleoclimatic data sets, which are usually irregularly
spaced in time, can be processed directly. The program is based on the Lomb±Scargle Fourier trans-
form for unevenly spaced data in combination with the Welch-Overlapped-Segment-Averaging pro-
cedure. SPECTRUM can perform: (1) harmonic analysis (detection of periodic signal components), (2)
spectral analysis of single time series, and (3) cross-spectral analysis (cross-amplitude-, coherency-, and
phase-spectrum). Cross-spectral analysis does not require a common time axis of the two processed
time series. (4) Analytical results are supplemented by statistical parameters that allow the evaluation of
the results. During the analysis, the user is guided by a variety of messages. (5) Results are displayed
graphically and can be saved as plain ASCII ®les. (6) Additional tools for visualizing time series data
and sampling intervals, integrating spectra and measuring phase angles facilitate the analysis. Com-
pared to the widely used Blackman±Tukey approach for spectral analysis of paleoclimatic data, the ad-
vantage of SPECTRUM is the avoidance of any interpolation of the time series. Generated time series
are used to demonstrate that interpolation leads to an underestimation of high-frequency components,
independent of the interpolation technique. # 1998 Elsevier Science Ltd. All rights reserved

Key Words: Spectral analysis, Harmonic analysis, Cross-spectral analysis, Irregular sampling intervals,
Interpolation, Lomb±Scargle Fourier transform.

INTRODUCTION

Spectral analysis is an important tool for decipher-

ing information from paleoclimatic time series in

the frequency domain. It is used to detect the pre-

sence of harmonic signal components in a time

series or to obtain phase relations between harmo-

nic signal components being present in two di�erent

time series (cross-spectral analysis).

A widely used method for spectral analysis is the

Blackman±Tukey method (BT; e.g. Jenkins and

Watts, 1968). See Figure 1. It is based on the stan-

dard Fourier transform of a truncated and tapered

(to suppress spectral leakage) autocovariance func-

tion. The major drawback of this approach is the

requirement of evenly spaced time series

�tn�1 ÿ tn � const 8n�. In general, paleoclimatic time

series are unevenly spaced in time, thus requiring

some kind of interpolation before BT spectral

analysis can be performed. As will be outlined

below, interpolation leads to an underestimation of

high frequency components in a spectrum (`redden-

ing' of a spectrum) independent of the employed in-

terpolation scheme.

Since cross-spectral analysis using the Blackman±

Tukey method requires identical sampling times for

both time series, that is t1�n� � t2�n�8n, the compu-

tational e�ort (interpolation) is considerable if sev-

eral time series with di�erent average sampling

intervals have to be analyzed. Furthermore, the in-

terpolation of unevenly spaced time series may sig-

ni®cantly bias statistical results because the

interpolated data points are no longer independent.

A menu-driven PC program (SPECTRUM) has

been developed in order to avoid these problems.

SPECTRUM is based on the Lomb±Scargle Fourier

transform (LSFT; Lomb, 1976; Scargle, 1982, 1989)

for unevenly spaced time series in combination with

a Welch-Overlapped-Segment-Averaging procedure

(WOSA; Welch, 1967; cf. Percival and Walden, 1993,

p. 289) for consistent spectral estimates (Fig. 1).

Hence, unevenly spaced time series can be directly

analyzed by SPECTRUM without preceding interp-

olation. The main features of SPECTRUM include:

(1) autospectral analysis; (2) harmonic analysis

(detection of periodic signal components); (3) cross-

spectral analysis (cross-amplitude-, coherency-, and

phase-spectrum; cross-spectral analysis does not

require a common time axis of the two processed

time series); (4) analytical results are supplemented

by statistical parameters that allow the evaluation of

the results; (5) results are displayed graphically and

can be saved as plain ASCII ®les; and (6) additional

tools for visualizing time series data and sampling
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intervals, integrating spectra and measuring phase

angles facilitate the analysis.

The paper is organized as follows: the next three

sections provide the mathematical background of

the methods implemented in SPECTRUM.

Subsequently, the e�ect of di�erent interpolation

schemes on spectral estimates is discussed, and

®nally, two examples will be given. A description of

Figure 1. Computational steps in univariate spectral analysis. Left column shows estimation of spec-
trum of SPECMAP oxygen isotope stack (top; Imbrie and others, 1984) by Welch-Overlapped-
Segment-Averaging (WOSA) method. Estimated spectrum results from averaging (in this example)
three raw spectra. Right column shows steps performed in Blackman±Tukey (BT) method. Estimated
autospectrum is Fourier transform of truncated autocovariance function (acvf). Master parameters that
control results are number of segments in WOSA and truncation point of acvf (M) in BT. Unevenly

spaced time series can be directly processed using WOSA method, but not by BT method.
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the installation and usage of SPECTRUM is pro-
vided in the Appendix. The paleoclimatic time series

used in this paper re¯ect late Pleistocene climate
variability as documented by marine sedimentary
records. The generated time series have properties

(length, sampling interval) similar to these data sets.
SPECTRUM can, of course, be applied to data
re¯ecting other time-scales, for example time series

documenting Holocene climate variability.

UNIVARIATE SPECTRAL ESTIMATION

Scargle (1982, 1989) developed a discrete Fourier
transformation (DFT) that can be applied to evenly
and unevenly spaced time series. Let xn � x�tn�,
n = 1, 2,..., N denotes a discrete, second-order

stationary time series with zero mean. The DFT is
then given by:

Xk � X�ok� � F0

X
n

Axn cos �o ktn
0�

� iBxn sin �oktn
0�, �1a�

with

o k � 2pfk > 0, k � 1, 2,:::, K , tn
0 � tn ÿ t�ok�

�1b�

F0�o k� � �1=
���
2
p
� exp fÿiok�tf ÿ t�o k��g �1c�

A�ok� �
�X

n

cos2 oktn
0
�ÿ1=2

,

B�ok� �
�X

n

sin2 oktn
0
�ÿ1=2

�1d�

and

t�ok� � 1

2ok
arctan

X
n

sin �2oktn�X
n

cos �2oktn�

264
375: �1e�

The constant t ensures time invariance of the

DFT, that is a constant shift of the sampling times
(tn4tn+T0), will not a�ect the result because such
a shift will produce an identical shift in
Equation (1e), that is t4 t + T0 and therefore

cancel in the arguments of Equations (1a) and (d)
(Scargle, 1982). Furthermore, Scargle (1982) showed
that this particular choice of t makes

Equations (1a)±(1e) equivalent to the ®t of sine-
and cosine functions to the time series by means of
least squares. The latter was already investigated by

Lomb (1976) in conjunction with spectral analysis,
and therefore, the method is referred to as Lomb±
Scargle Fourier transform (LSFT). The response of

a Fourier transformation to a time shift should be a
phase shift of the Fourier components. The factor
expfÿiok�tf ÿ t�ok��g in Equation (1c) produces
such a phase shift depending on the time tf. Note

that Equation (1c) di�ers from the phase factor

given by Scargle (1989; Eq. II.2 therein). It is, how-

ever, identical to the factor used in his algorithm.
For univariate spectral analysis, tf is set to zero.

Since tf allows a virtual shift of a time series along
the time axis, it can be used to align two time series

in cross-spectral analysis (see later).

The least squares approach of the LSFT can be

considered as follows. Let

xfk �tn� � ak sin �oktn� � bk cos �o ktn� �2�

be a discrete model for a signal component of x(tn)
with frequency fk. The LSFT minimizes the sum of

squares J(fk) of the di�erences between the model

from Equation (2) and the data:

J� fk� �min!
XN
n�1

�
x�tn� ÿ xfk �tn�

� 2
, k � 1, 2,:::, K : �3�

An important aspect of the LSFT involves the
choice of K, that is the number of frequencies used

in Equation (2). Although there is no principal limit

for K, it can be anticipated that a ®nite-length time
series will only result in a ®nite amount of statisti-

cally independent Fourier components and, hence,

frequencies in Equation (2). Using Monte-Carlo ex-
periments, Horne and Baliunas (1986) showed that

in the situation of an evenly spaced time series of

length N, the number of independent frequencies in�ÿ fNyq, fNyq

�
is N � fNyq � 1=�2Dt� denotes the

Nyquist frequency according to the sampling theo-

rem (e.g. Bendat and Piersol, 1986, p. 337)) and is
thus identical to a standard Fourier transformation.

The same holds true for unevenly spaced time

series, where the samples are almost uniformly dis-
tributed along the time axis. The latter usually

applies to paleoclimatic time series obtained from

marine deep-sea sediments. A signi®cant clustering
of samples along the time axis may decrease the

number of statistically independent frequencies to

1/3 N (Horne and Baliunas, 1986). In practice, it is
generally useful to choose K>N, since the resulting

oversampling results in smoother spectral estimates

(Scargle, 1982). This is equivalent to zero-padding
in standard Fourier techniques.

For unevenly spaced time series, the Nyquist fre-

quency cannot be given, because the sampling theo-

rem applies only to evenly spaced time series. In
this situation, an average Nyquist frequency

hfNyqi � 1=�2hDti�, with hDti being the average

sampling interval, can be used as alternative.
Sections of a time series where Dtn<hDti contain

frequency information above hfNyqi. Choosing fre-

quencies in Equation (2) above hfNyqi allows the in-
vestigation of this frequency region. Since it is

almost impossible to assess the maximum frequency

up to which an unevenly spaced time series contains
signi®cant information, this option should be used
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with great care. Selecting K such that fK � hfNyqi
results in a conservative choice of the frequency

range.

A plot of jXkj2 versus frequency results in a raw-

spectrum, which is an inconsistent estimator of the

true spectrum (e.g. Bendat and Piersol, 1986, p. 285).

Welch (1967) proposed an estimation procedure that

results in consistent spectral estimates: a time series

of length N is split into n50 segments of length Nseg

that overlap each other by 50% (Welch-Overlapped-

Segment-Averaging, WOSA; Fig. 1), hence,

Nseg=2N/(n50+1). In order to avoid spectral leak-

age, each segment is multiplied by a taper (e.g.

Hanning-window; see Harris (1978) for an overview

of the spectral windows used in SPECTRUM) in the

time domain. The window weights wn are scaled such

that
P

w2
n � NSeg. Subsequently, the n50 windowed

segments are Fourier-transformed using

Equations (1a)±(1e). Averaging the n50 raw-spectra

yields a consistent estimate of an autospectrum

(Bendat and Piersol, 1986, p. 392):

Ĝxx� fk� � 2

n50Df NSeg

Xn50
i�1
jXi � fk�j2, k � 1, 2,:::, K :

�4�
The scaling of Ĝxx� fk� in Equation (4) is such that

Df
P

Ĝxx� fk� � ŝ2x, with Df / 1=�NSeghDti� being

the fundamental frequency and ŝ2x as the estimated

variance of a time series. Since the components of a

raw spectrum are w2-distributed random variables

with 2 degrees of freedom (Percival and Walden,

1993, p. 221), Ĝxx� fk� also follows a w2 distribution.
Each of the n50 spectra in Equation (4) increases the

degrees of freedom, thus reducing the standard error

of the spectral estimate. However, the 50% overlap

of the n50 segments introduces a correlation between

the segments and an e�ective number of segments

ne� results that is smaller than n50:

neff � n50 1 � 2c250 ÿ
2c250
n50

� �ÿ1
, �5�

where c50R0.5 is a constant that depends on the

applied spectral window (Welch, 1967). Harris

(1978) provides values for c50 for a variety of spectral

windows that are adopted in SPECTRUM. Finally,

(1ÿ a) con®dence intervals for Ĝxx� fk� can be calcu-

lated according to:�
nĜxx� fk�
w2n;a=2

R Gxx� fk�R nĜxx� fk�
w2n;1ÿa=2

�
n � 2neff

�6�
(Bendat and Piersol, 1986, p. 286). Note that the con-

®dence intervals in Equation (6) depend on fre-

quency. Using the logarithmic transformation

Ĝ�dB�xx � fk� � 10 log10Ĝxx� fk� results in con®dence

intervals that are independent of frequency (decibel

scale; Percival and Walden, 1993, p. 257).

In order to assess the resolution of Ĝxx� fk� along
the frequency axis, the 6-dB bandwidth Bw is

commonly utilized: Bw � bw � Df , where bw is the
normalized bandwidth that depends on the spectral
window being used (Harris, 1978). Details of

Ĝxx� fk� cannot be resolved within Bw.

BIVARIATE SPECTRAL ESTIMATION

Let xn � x�tx,n�, with n = 1, 2,..., Nx and

yn � y�ty,n�, with n = 1, 2,..., Ny, denote two dis-
crete, second-order stationary time series each with
zero mean. In addition to the direct applicability to

unevenly spaced time series, the LSFT after
Equations (1a)±(1e) does not require that
tx,n=ty,n8n in order to perform cross-spectral analy-
sis (Scargle, 1989). Therefore, two time series with

arbitrary spacing of the samples can be processed
directly without prior interpolation. We adopt the
following, conservative choices for the average

sampling interval and the fundamental frequency:

Dtxy � max
ÿhDtxi, hDtyi�, �7�

Dfxy � max
ÿ
Dfx, Dfy

�
: �8�

Whereas Equation (7) yields a conservative estimate
of the Nyquist frequency and therefore K,
Equation (8) ensures that the time series with the

lowest resolution in the frequency domain deter-
mines the characteristics of the cross-spectral esti-
mates. With X(fk) and Y(fk) being the Fourier

components of the two time series, calculated
according to Equations (1a)±(1e), a consistent esti-
mator for the complex cross-spectrum is:

Ĝxy� fk� � 2

n50Dfxy
��������������������
N
�x�
SegN

� y�
Seg

q
�
Xn50
i�1

�
Xi � fk� Y *

i � fk�
�
, k � 1, 2,:::, K , �9�

(cf. Bendat and Piersol, 1986, p. 407) where `*'
denotes the complex conjugate and N

�x�
Seg and N

� y�
Seg

are, respectively, the segment lengths that result
from splitting each of the two time series into n50
overlapping segments. Plotting jĜxy� fk�j versus fre-
quency, one obtains a cross-amplitude spectrum
(cross-spectrum for short). It is obvious from

Equation (9) that the values of jĜxy� fk�j depend on
the absolute values of yn and xn. This renders the
comparison of di�erent cross-spectra di�cult.

Furthermore, the estimation of con®dence intervals
for jĜxy� fk�j is more arduous than for an autospec-
trum, since jĜxy� fk�j follows a complex Wishart dis-

tribution (Koopmans, 1974, p. 280). Consequently,
the cross-spectrum itself is of little practical use
and, therefore, no con®dence intervals are deter-
mined in SPECTRUM for this parameter.
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Of much greater importance is the coherency

c2xy� fk�, which is estimated according to:

ĉ2xy� fk� �
jĜxy� fk�j2

Ĝxx� fk� Ĝyy� fk�
, �10�

(e.g. Bendat and Piersol, 1986, p. 137) where the

autospectra in the denominator are estimated after

Equation (4) with Df set to Dfxy and NSeg set to

N
�x�
Seg, respectively N

� y�
Seg. The scaling of Equation (9)

ensures that the scaling factors cancel in

Equation (10). The coherency is a dimensionless

number with 0R ĉ2xy� fk�R1 for all fk. A plot of

ĉ2xy� fk� versus frequency is called the coherency

spectrum. Assuming a linear system, the coherency

can be interpreted as the fractional portion of the

mean square values of y(tn) that is due to x(tn) at

frequency fk or vice versa (Bendat and Piersol, 1986,

p. 172). This interpretation is, however, somewhat

delicate since it is not reversible. Hence, a high

coherency at frequency fk is not su�cient to postu-

late that a linear relation between y(tn) and x(tn)

exists at this frequency! The coherency is zero for all

frequencies if y(tn) and x(tn) are two uncorrelated

random processes. Then, a situation where

0 < ĉ2xy� fk�< 1 can be caused by one of the follow-

ing reasons or a combination thereof (cf. Bendat

and Piersol, 1986, p. 172): (1) noise is present in

the time series, (2) the relation between y(tn) and

x(tn) is non-linear, or (3) y(tn) is not entirely due to

x(tn), but also to other signals not taken into

account. The coherency estimator Equation (10)

is biased and leads to an overestimation of the

true coherency (Benignus, 1969). We adopt the

approximate bias correction given by Carter,

Knapp and Nuttall (1973) in SPECTRUM:

bias �ĉ2xy� fk��1�1ÿ ĉ2xy� fk��2=neff .
To assess the statistical signi®cance of ĉ2xy� fk�, we

use the algorithm developed by Scannell and Carter

(1978), which is based on the cumulative distri-

bution function for the coherency derived earlier by

Carter, Knapp and Nuttall (1973). This approach

is more accurate than the frequently employed

z-transformation: k̂xy� fk� � artanhjĉxy� fk�j (e.g.

Jenkins and Watts, 1968, p. 379). The disadvantage

of this transformation is that k̂xy� fk� follows only a

normal distribution if 0.4Rc2xyR0.95 and ne�r20

(Enochoson and Goodman, 1965). The latter con-

dition can rarely be achieved with paleoclimatic

time series because the 6-dB bandwidth that is

usually required, in combination with the relatively

short time series (N< 500), generally leads to

ne�<<20. In addition to the determination of con®-

dence intervals, it is also important to test whether

the coherency at some frequency can be regarded as

signi®cant. Under the null hypothesis ĉ2xy� fk� � 0,

the false alarm level for a given a risk is

z2xy � 1ÿ a1=�neffÿ1� (Carter, 1977). Measured coher-

encies less than this value should be considered

insigni®cant. Since the numerical evaluation of con-

®dence intervals for the coherency is time-consum-

ing, SPECTRUM performs the calculations only

for situations where ĉ2xy� fk� > z2xy (cf. Bloom®eld,

1976, p. 227). Close inspection of Equation (10) for

ne�=1 shows that ĉ2xy� fk� � 18fk independent of the

true coherency. One can expect, therefore, that for

ne� only slightly larger than 1 (say, ne�=2 or 3),

sporadic peaks may occur in a coherency-spectrum.

Their misinterpretation as real features is, however,

avoided by the fact that the one-sided limit of z2xy
(a, ne�) for ne� 41 equals 1 for reasonable choices

of a, say a = 0.05 or 0.01.

In the context of paleoclimatic time-series analy-

sis, the phase relation between two variables is of

particular importance. To determine the phase-spec-

trum the consistent estimator

f̂xy� fk� � arctan

�
Q̂xy� fk�
Ĉxy� fk�

�
�11�

is used, where Ĉxy� fk� and Q̂xy� fk� denote the real

and imaginary parts of Ĝxy� fk�, respectively (e.g.

Bendat and Piersol, 1986, p. 124). The phase angles

are normally distributed, and an approximation of

their standard deviation (in radians) is (Bendat and

Piersol, 1986, p. 300):

s
�
f̂xy� fk�

�
1
ÿ
1ÿ ĉ2xy� fk�

�1=2
jĉxy� fk�j

����������
2neff

p : �12�

It should be noted that Equation (12) implies that the

phase uncertainty approaches in®nity as the coher-

ency approaches zero (independent of ne�). One

arrives at con®dence intervals for f̂xy� fk� by multi-

plying the standard deviation from Equation (12)

with appropriate quantiles of the normal distribution.

The interpretation of phase-spectra is complicated

by the fact that the inverse tangent function, which

is used to estimate the phase angles, has a period-

icity of p. Estimated phase angles will always fall

within the interval [ÿp, p] or [ÿ1808, 1808] indepen-
dent of the true phase angle (Fig. 2; Chat®eld,

1984, p. 200). This introduces some ambiguity into

the results that must be taken into account when

analyzing paleoclimatic data. Consider, for

example, the following two true phase angles

fxy1=ÿ 2008 and fxy2=5208. Both angles lead to

an estimated phase angle of f̂xy � 1608 since they

are folded into [ÿ1808, 1808] (i.e.

ÿ2008 + 3608= 1608; 5208ÿ 3608 = 1608).
In order to obtain unbiased phase-angle estimates,

one has to choose identical origins of time (tf in Eq. 1c)

when processing two time series. If both time

series contain periodic components with frequency fp,

the phase-spectrum will, in general, be ¯at over a seg-

ment centered at the discrete Fourier frequency next

to fp. The width of the ¯at section is determined by the

6-dB bandwidth. However, if the sampling times di�er

between the data sets, a situation may arise where a

phase-spectrum around fp will be inclined. The reason

Spectral analysis of paleoclimatic time series 933



is that t in Eq. (1e) will no longer be identical for the
two series. Let tx,n and ty,n denote the sampling times
of two time series of length Nx and Ny, respectively. It

can be shown that an o�set t0 exists that is identical to
the di�erence in mean of the sampling times of the
two data sets:

t0 � 1

Nx

XNx

n�1
tx,n ÿ 1

Ny

XNy

n�1
ty,n: �13�

According to Equation (1c), this results in a linear
phase component proportional to t0. Hence, a pre-
viously ¯at phase-spectrum near fp will be inclined,

with a slope of t0 (saw-tooth shape). To avoid this
e�ect, one can shift one time series by t0 along the
time axis. This alignment can be easily achieved by
setting tf=t0 in Equation (1c) for the Fourier trans-

form of one time series. t0 can be estimated according
to Equation (13) or from the slopes of the saw-teeth in
a phase-spectrum. The latter might work better in the

presence of noise in the data. If alignment is used, one
has to be aware that estimated phase angles
f̂�align�xy � fk� are no longer direct estimates of the true

phase angles. Instead, they have to be transformed
(`unaligned') according to:

f̂xy� fk� � f̂�align�xy � fk� � t0 fk 36082n 3608, �14�
where n is an integer that ensures that f̂xy� fk� falls
into [ÿ1808, 1808]. Since Equation (14) depends on
frequency, a unique ordinate scale for a phase-spec-
trum does not exist if alignment is used. Finally, we

would like to remark that unexpected changes of the
sign of estimated phase angles can arise between
di�erent computer programs. This may simply be
due to di�erent assumptions regarding the time axis.

Compared to the physical time axis, the geological
age axis is reversed, that is the `past' appears on the
right-hand side of the `future'. Passing geological

ages to a computer program that assumes a physical
time axis will cause the mentioned sign change.

HARMONIC ANALYSIS

The purpose of harmonic analysis is the detection
of periodic signal components (e.g. MilankovicÂ fre-

quencies) in a time series in the presence of noise. A
general overview on this topic can be found in
Percival and Walden (1993, ch. 10). The two

methods implemented in SPECTRUM are built on
the assumption that the noise is white noise, and
are based on a periodogram P̂� fk� which is identical

to Ĝxx� fk� from Equation (2) for n50=1 and a rec-
tangular window. Furthermore, it is implicitly
assumed that the frequency fp of any periodic signal

component in a time series coincides with a discrete
Fourier frequency, that is that fp=fk. With a su�-
cient oversampling in the LSFT, this requirement
can usually be ful®lled in practice.

The ®rst test was developed by Fisher (1929) and
tests whether a single periodicity exists in a time
series. The test statistic is

g � max1RkRK P̂� fk�XK
i�1

P̂� fi �
, �15�

where K is the number of Fourier components.
Critical values for Fisher's test, gf, can be approxi-

mated by gf 11ÿ �a=K �1=�Kÿ1� (Percival and
Walden, 1993, p. 491). If g>gf for some a, the null
hypothsis (signal is pure white noise) is rejected,

and it can be stated on a (1ÿ a) con®dence level
that a periodic signal is present at the frequency
where P̂� fk� has its maximum. The major disadvan-

tage of Fisher's test is that it tests only for the pre-
sence of a single periodic component. Siegel (1980)
extended Fisher's test for cases in which up to three

periodic components are present in a time series.
Starting from a normalized periodogram

~P� fk� � P̂� fk�XK
i�1

P̂� fi �
, �16�

the test is based on all values of ~P� fk� that exceed
some level gs instead of only their maximum as in
Fisher's test. gs is related to gf by a parameter l
with 0 < lR1. The test statistic for Siegel's test is

Tl �
XK
k�1

�
~P� fk� ÿ lgf

�
�, �17�

Figure 2. (A) True phase-spectrum, where phase angle fxy (f) is linear function of frequency f. (B) Due
to periodicity of arctan function in p, the estimated phase-spectrum f̂xy� f � has saw-tooth shape. Slope

ts is conserved in up-sloping segments of saw-teeth. Note di�erent ordinate scales.
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where (a)+=max (a, 0). For 20 < K< 2000 critical

values, tl;a for this test can be computed according
to tl;a=aKb (Percival and Walden, 1993, p. 493).
Empirical coe�cients a and b are given in Table 1

for di�erent values of a and l. Similar to Fisher's
test, the null hypothesis is rejected if Tl>tl;a. In
this situation, one or more periodic components are

present in the time series (at the frequencies where

the largest ~P� fk� values occur). Siegel (1980) carried
out Monte-Carlo experiments to examine the power

of his test as a function of l in the presence of 1±3

periodic components. He found that with l = 0.6

and a single periodic component, the test has

almost the same power as Fisher's test. In the pre-

sence of two periodicities, the null hypothesis is

rejected with l= 0.6 and l = 0.4, respectively.

Three periodic components lead to a rejection of

the null hypothesis with l = 0.4.

The assumption underlying both tests, that is a

white noise background, is rarely met by paleocli-

matic time series. Instead, one is more frequently

confronted with data that show a red noise back-

ground (e.g. Schwarzacher, 1993, p. 59). We will

examine how Siegel's test performs in the presence

of red noise in the ®rst example later.

Table 1. Coe�cients for computing critical values tl;a for
Siegel's test. Tabulated values extend those given by
Percival and Walden (1993, p. 493) for the situation
l= 0.4. Determination of critical values after Siegel

(1979); see also Percival and Walden (1993, p. 493)

l = 0.4 l = 0.6

a= 0.05 a= 0.9842 a= 1.033
b=ÿ 0.51697 b=ÿ 0.72356

a= 0.01 a= 1.3128 a= 1.4987
b=ÿ 0.59518 b=ÿ 0.79695

Figure 3. E�ect of interpolation on autospectrum estimation. (A) Autospectrum of unevenly spaced
time series. Estimated spectral amplitudes closely match theoretical level (dashed line). (B)
Autospectrum for linearly interpolated time series. Signi®cant drop of amplitudes towards higher fre-
quencies is in accordance with theoretical considerations (dashed line; Horowitz, 1974) and is equivalent
to variance loss (Ds2) of 54% compared to (A). (C) as (B) but for Akima-subspline interpolator.
(Theoretical spectrum not available for this situation.) (D) as (B) but for cubic-spline interpolator.
Independent of interpolator estimated spectra exhibit signi®cant bias that can be avoided by using
unevenly spaced data directly. (Settings: OFAC= 4; HIFAC= 1 [see Appendix B for description of

these parameters]; Nseg=4; Hanning-window for all analyses.).
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INTERPOLATION EFFECTS

The major disadvantage of the Blackman±Tukey

method is its inability to process unevenly spaced

data directly (cf. Fig. 1). Hence, the original data

need to be interpolated in order to obtain a regular

time axis. This section shows how frequently

employed interpolation schemes can alter the spec-

trum of a time series. We will consider linear,

cubic-spline, and Akima sub-spline interpolation.

The latter is a piecewise polynomial of order three

for which, in contrast to a cubic-spline function,

only the ®rst derivative must exist (Akima, 1970).

Hence, this interpolator can connect points by a

straight line. Since the LSFT allows the direct use

of unevenly and evenly spaced data, we will be able

to see the e�ect of the interpolators by comparing

the spectrum of the unevenly time series with those

for the interpolated data sets. We start by generat-

ing an unevenly spaced time series

x�tn� �
X8
i�1

sin

�
2pif0tn � �i ÿ 1� p

4

�
, �18�

with f0=0.02 kaÿ1, 0R tnR2100 ka and hDti � 3 ka.

The unevenly spaced time axis is generated by treat-

ing Dtn as random variable that follows a gamma

distribution with 3 degrees of freedom.

Interpolation was performed such that the number

of data points was kept constant, resulting in

Dtint � hDti.
Figure 3 shows the autospectra of the resulting

time series. Whereas the peak amplitudes of the

spectrum of the unevenly spaced time series

(Fig. 3A) closely match the true values, one can ob-

serve a dramatic amplitude drop at higher frequen-

cies for the interpolated time series (Fig. 3B±D).

This e�ect is most pronounced for the linear, and

least for the cubic-spline interpolator. A comparison

of the areas under the spectra (which are equivalent

to the variance of the data) shows that a variance

loss between 33 and 54%, compared to the

unevenly spaced data set, occurs. One can therefore

expect that spectral analyses based on interpolated

data will be strongly biased. In order to exclude a

systematic error due to the LSFT, we calculated the

expected spectral amplitudes for the linear and

cubic-spline interpolators (Fig. 3B,D). Since these

closely match the estimated peak amplitude, we

exclude a bias caused by our program. The slight

underestimation compared to the theoretical ampli-

tudes is due to ®nite length of the time series

(Horowitz, 1974).

Figure 4. Performance of Siegel's test under di�erent noise conditions. (A) Two sinusoidal waves with
periodicities of 100 and 41 ka embedded in white noise. (C) Harmonic analysis of unevenly spaced sig-
nal shown in (A): null hypothesis is rejected since test statistic (Tl=0.31) exceeds critical value
(tl;a=0.03; dashed line) and periodic components are clearly identi®ed (numbers above peaks denote re-
spective periods). (B) as (A) but for red noise. (D) Harmonic analysis of unevenly sampled signal
shown in (B): null hypothesis is rejected (Tl=0.19; tl;a=0.03; dashed line). Periodic components can
still be recognized but additional spurious peak at f= 1/74 kaÿ1 occurs. (Settings for both tests:
OFAC= 4; HIFAC= 1; a= 0.05; l= 0.6. Note di�erent ordinate scale). See text for further details.
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EXAMPLE 1: HARMONIC ANALYSIS

In this section, we will investigate how Siegel's
test performs in the presence of di�erent types of

noise and show that it is a useful tool for data in-
terpretation even if the underlying assumptions are
not strictly obeyed. The ®rst test signal consists of
two sinusoidal waves (frequencies: f1=1/100 kaÿ1,
f2=1/41 kaÿ1; amplitudes: A1=A2=1) embedded in
Gaussian noise (variance s2=1). An unevenly
spaced time axis (hDti � 3 ka, N = 300) was gener-

ated after Equation (18). The second time series
consists of the same sinusoidal components plus red
noise. It should therefore mimic the noise back-

ground that is typical for paleoclimatic time series
(e.g. Schwarzacher, 1993, p. 59). These data were
generated by the ®rst-order autoregressive process

(e.g. Jenkins and Watts, 1968, p. 162)

xn � xnÿ1exp�ÿDtn=tAR� � Et, �19�
with a characteristic time constant of tAR=20 ka,
Dtn being a random variable following a gamma

distribution with 3 degrees of freedom, and Et being
Gaussian noise (s2=1). The resulting data set has
equivalent noise amplitude, average time step and

length as prescribed for the ®rst data set (signal
plus white noise).
The time series and the results of Siegel's test are

shown in Figure 4. In both situations, Tl>tl;a, and
the null hypothesis is rejected. For the white noise
case (Fig. 4C), the harmonic signal components can

be easily identi®ed. In the situation of red noise
(Fig. 4D), spurious peaks occur next to the peaks
caused by the periodic components. Taking this
result at face value, one would probably conclude

that harmonic components with periodicities of 97,
74, and 41 ka are present. At the same time, the
overall shape of the noise-induced periodogram

parts, that is those between the major peaks (cf.
Figure 4C with 4D) suggests that a red noise com-
ponent is present. This should alert a user that the

assumption underlying Siegel's test might be vio-
lated. Keeping in mind that the signal-to-noise ratio
in the example was set to a low value (0.5), we still

think that Siegel' test is useful, even if the data con-
tain a red noise background. As with any statistical
method, careful interpretation of the results is, how-
ever, required.

EXAMPLE 2: BIVARIATE SPECTRAL ANALYSIS

We will use the evenly spaced (Dt = 2 ka)

SPECMAP stack (oxygen isotope data, d18O;
Imbrie and others, 1984), which is mainly a global-
ice-volume signal, and an unevenly spaced

�hDti � 2 ka� proxy record of North-Atlantic sum-
mer sea-surface temperatures (SST; Ruddiman and
others, 1989) to demonstrate SPECTRUM's bivari-
ate module. We truncated the d18O time series such

that its maximum age corresponds to that of the

SST record (T = 650 ka). The time series are
plotted in Figure 5A and 5B. Prior to cross-spectral
analysis, we conducted harmonic analyses to ensure

that phase-angles between periodic signal com-
ponents are only interpreted if corresponding har-
monic signals are present in both data sets.

Otherwise, one might look at a phase angle between
a periodic signal in one time series and noise, at

that frequency, in the other data set.
We set l = 0.4 for Siegel's test (Fig. 5C, D),

since we expect more than two MilankovicÂ period-

icities in the data. In both situations, the null hy-
pothesis is rejected, and therefore, we conclude that
harmonic signals are present (this is no surprise

because the age models of the time series were con-
structed by tuning the data to periodic variations of

the Earth's orbit). In the case of the SST data
(Fig. 5B), peaks at the MilankovicÂ frequencies of
1/100 and 1/23 kaÿ1 can be clearly recognized

(Fig. 5D). With the previous example in mind, the
peaks at 1/144 and 1/41 kaÿ1 are likely to be due to
a red-noise background in the time series (the drop

in amplitude towards f= 0 kaÿ1 is caused by the
®nite length of the time series). Hence, the only per-

iodic components present in both series are those
with frequencies 1/100 and 1/23 kaÿ1. The autospec-
tra (Fig. 5E, F) are plotted on a decibel scale,

resulting in con®dence intervals that are indepen-
dent of frequency.
Since minimum values in the SPECMAP stack,

that is ice volume minima, are expected to corre-
late with maxima of the SST time series, the

sign of the d18O data was changed prior to
cross-spectral analysis in order to prevent an arti-
®cial phase o�set by 21808. The coherency-spec-

trum (Fig. 5G) exhibits signi®cant coherencies at
the frequencies for which the harmonic analyses
suggested the presence of periodic components.

The phase-spectrum (Fig. 5H) indicates that ice-
minima lead SST maxima by 112188 (fk=
1/99.26 kaÿ1) and 952168 (fk=1/23.04 kaÿ1). The

sawtooth shape of the phase-spectrum in
Figure 5H is due to a linear phase component,

which is caused by the fact that the mean of the
SST sampling times di�ers from that of the
SPECMAP stack by 87 ka (the variance of the

SST sampling intervals increases signi®cantly with
time; Fig. 6A). As a ®rst guess, the alignment
parameter was set to this value (t0=87 ka), how-

ever, this choice did not produce a `¯at' phase-
spectrum around fk=1/23.04 kaÿ1. We therefore

increased t0 to 90 ka, resulting in the aligned
phase-spectrum shown in Figure 6B. The linear
trend has been successfully removed, making it

easier to measure phase angles. The aligned
phase angles are 452188 (fk=1/99.26 kaÿ1) and
1292168 (fk=1/23.04 kaÿ1), respectively, and the

unaligned angles are calculated from these using
Equation (14):
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Figure 5. Cross-spectral analysis of SPECMAP oxygen isotope (d18O; A) data and North Atlantic sea-
surface temperatures (SST; B). Harmonic analyses (Settings: OFAC= 5; HIFAC= 1; a= 0.05;
l = 0.4) of d18O data (C; Tl=0.64; tl;a=0.07; dashed line) and SST data (D; Tl=0.25; tl;a=0.07;
dashed line). Horizontal bar marks 6-dB bandwidth. Numbers above peaks denote respective periods.
(E) Autospectrum of the d18O time series (Settings: OFAC= 5; HIFAC= 1; Nseg=4; Welch-window).
Cross in lower-left corner marks 6-dB bandwidth (horizontal); 90% con®dence interval (vertical). (F) as
(E) but for SST data. (G) Coherency between two time series. Dashed horizontal line indicates false
alarm level (a = 0.1); 90% con®dence intervals are plotted only for coherencies exceeding this level. (H)
Phase-spectrum between d18O (inverted) and SST data. Positive angles indicate that ice minima lead
SST and vice versa. Con®dence intervals are only shown if error is less than 508 (larger errors are
marked by dots). Saw-tooth shape of phase-spectrum is caused by distribution of SST sampling times
(see text). All frequency axes were truncated below hfNyqi � 0:247 kaÿ1 in order to show MilankovicÂ

range more clearly.
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f̂�align�xy � fk� � t0 � fk � 3608ÿ n � 3608 � f̂xy� fk�

4582188� 90 ka � 1=99:26 kaÿ1 � 3608ÿ 1 � 3608
� 1182188

12982168� 90 ka � 1=23:04 kaÿ1 � 3608ÿ 4 � 3608
� 9582168:

The corrected aligned phase angles are, of

course, identical to the unaligned angles.

CONCLUSIONS

A user-friendly computer program

(SPECTRUM) is presented that allows direct pro-
cessing of unevenly spaced time series in the context

of spectral analysis. Hence, the usual prerequisite of

data interpolation is not required. SPECTRUM

should, therefore, be of interest for users analyzing

unevenly spaced geological time series. Since the in-

terpolation of an unevenly spaced time series is

equivalent to a low-pass ®ltering, a reddening of an

estimated spectrum is the consequence. The result-

Figure 6. Aligned phase-spectrum. (A) Sampling intervals Dtn of SST data as function of time. Due to
variance increase of Dtn along time axis, mean time of the SST data htSST i is 87 ka less than that of
SPECMAP stack htSPCi. This di�erence is responsible for saw-tooth shape of phase-spectrum in
Figure 5H. (B) Aligned phase-spectrum for data in Figure 5 after aligning two series (t0=90 ka; intial
guess = 87 ka did not produce su�cient ¯attening of spectrum around f= 1/23 kaÿ1). Phase angles can
be measured more easily, but must be `unaligned' prior to interpretation (90% con®dence intervals;

dots mark errors >508).

Figure 7. Menu structure of SPECTRUM (V. 2.0).
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ing bias is not only important with regard to spec-
tral analysis but can also a�ect time-domain

methods (e.g. ®t of autoregressive models; esti-
mation of correlation dimension).
Spectral analysis results are supplemented by stat-

istical tests allowing an evaluation of the results. A
combination of harmonic and cross-spectral analy-
sis should be used if phase relationships between

harmonic signal components are of primary inter-
est. SPECTRUM should not be used as a pure
black-box tool without checking the structure of a

time series prior to its analysis. The program may
generate meaningless results if the underlying
assumptions (weak stationarity of the processed
time series; white-noise background for harmonic

analysis) are severely violated.
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APPENDIX A

Setting up SPECTRUM

The hardware requirements for using SPECTRUM are:
(1) MS-DOS compatible PC with r80386 CPU and
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numeric coprocessor, (2) VGA (or above) graphics
adapter, (3) r580 kBytes of available conventional mem-
ory/about 1 Mbytes EMS memory, and (4) MS-DOS 5.0
or higher. SPECTRUM can be obtained via anonymous
FTP from infosrv.rz.uni-kiel.de (directory: /pub/sfb313/
mschulz). Binaries are in the ®le SPEC20B.ZIP whereas
the Borland Pascal 7.0 source code can be found in
SPEC20S.ZIP. (In order to unpack the ZIP-archives
one needs either UNZIP.EXE or PKUNZIP.EXE.)
Installation of the program proceeds by copying the
archives to an appropriate directory and unzipping them
using the `-d' option. Running SPC.BAT will start the
program. If SPECTRUM refuses to work, there is usually
not enough conventional memory available; hints for trou-
bleshooting are provided in the README.1ST ®le.

APPENDIX B

Working with SPECTRUM

After starting SPECTRUM, a title screen is displayed for
5 sec. Its display can be interrupted by pressing any key.
SPECTRUM is largely menu-driven (Fig. 7). In addition,
the input of certain parameters is simpli®ed by default
values. In the following sections, the use of the program
will be explained using data ®les located in .\DEMO. The
following acronyms and conventions will be used:

1. ENT Enter-key

2. ESC Escape-key

3. CSL Cursor left

4. CSR Cursor right

5. CSUP Cursor up

6. CSDN Cursor down

7. HOME Home

8. END End

9. F1 F1-key

. CSUP and CSDN keys move within a menu; ENT
selects an item. ESC brings you one menu level higher.

. ESC interrupts graphic displays.

. Square brackets show either default parameters that
may be accepted by pressing ENT or options ([1], [2],...)
that are selected by pressing the appropriate number.

File Formats

Time series data are input into SPECTRUM as column
delimited ASCII ®les using the following format:

# Up to 20 comment lines at

# the beginning of a ®le

t1 x1
t2 x2

. .

. .

tN xN,

with t1<t2<... <tN and NR2500 (maximum number of
data points). The ®rst column contains the sampling times,
and the second contains the time-dependent data.
Columns are delimited by one or more SPACES or TABs.
No particular data format (e.g. exponential) is required. It
should be noted that tn is the highest geological age. Data
®les may contain up to twenty comment lines at the begin-
ning of a ®le. These are denoted by a `#' in the ®rst col-
umn position.
Spectral analysis results are saved as plain ASCII ®les.

SPECTRUM recognizes the di�erent output ®les by their
extensions, and therefore, these should not be modi®ed.
Three types of output ®les can be distinguished (a detailed
description of the output ®les is given in Appendix C and
D): (1) ®les with a text header showing all parameters of
the analysis (data ®les), (2) script ®les for GNUPLOT V.
3.6 (Dendholm, 1996) to plot the generated data ®les on a
variety of output devices, and (3) ®les containing data in a
format that can be easily imported into spreadsheet based
plotting programs like GRAPHER (plot ®les).

Univariate Spectral Analysis

The module is started by selecting `Univariate' from the
main menu. Choosing `Read Data File' opens a window
for ®le selection. Use the cursor keys to move the marker
to an appropriate ®le or directory and select it by pressing
ENT. To change the current drive press the drive letter
while holding the `CONTROL'-key, for example CTRL-A
to change to ¯oppy drive A. Load the ®le
.\DEMO\XTEST.DAT for the following example. After
the ®le has been loaded, you are prompted for a label for
that time series. This label will be used on graphic screens.
If you press ENT, the ®lename will be used as default
label.
Back in the `Univariate' menu, select `Parameters/Calc'. to

de®ne the parameters for the analysis. The oversampling
factor (OFAC) determines how many frequencies are
investigated in the LSFT. It should be noted that for
OFAC>1.0, the statistical tests performed by
SPECTRUM are una�ected. In practice, OFAC= 4.0 is a
good compromise between computing time (proportional
to OFAC) and smoothness of a spectrum. This value is
default and selected by pressing ENT in this example.
Subsequently, a factor (HIFAC) must be set that deter-
mines the highest frequency fmax for the LSFT:
fmax=HIFAC � hfNyqi. The resulting number of frequencies
K (cf. Eq. (2)) is then K= (OFAC � HIFAC�Nseg)/2.
Select the default value by pressing ENT. Depending on
the size of your data ®le, SPECTRUM may run out of
memory if you select too high values for OFAC and
HIFAC at the same time. In this situation, you will be
prompted to choose smaller values. The remaining par-
ameters should be self-explanatory:

Parameter Input Comment

Number of segments 3 50% overlapping
windows in WOSA

Window type 3 Hanning-Window
Level of signi®cance 2 a= 0.1 for statistical

tests
Subtract linear trend ENT yes (each segment is

detrended)
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Logarithmic scale ENT yes (this yields
constant con®dence
intervals)

Mark MilankovicÂ
frequencies

ENT yes

Time unit ENT unit of time in the
input ®le [ka]

Max. frequency to plot ENT display to fmax

Note that the `Time unit' does not a�ect the calculation; it
is only used to produce a properly labeled frequency axis.
After SPECTRUM has performed the analysis, some stat-
istical parameters are displayed. Probably the most im-
portant is the `Reliable frequency range', that is, the
interval [flow, hfNyqi], where flow is determined in such a
way that at least two full cycles are observed within each
WOSA-segment. Parts of an autospectrum outside of this
interval should be interpreted with great care! Pressing any
key returns you to the `Univariate' menu, where you
should select `Display Results' to view the autospectrum
graphically. The graphic screen shows the following fea-
tures: (1) the vertical dashed lines mark the MilankovicÂ
frequencies; (2) the cross in the upper-right corner of the
screen shows the resulting 6-dB bandwidth (horizontal
line) and the con®dence interval (vertical line); and (3) the
status line at the bottom of the screen shows the label of
the data set, the 6-dB bandwidth and the level of signi®-
cance. A frequency marker can be activated by pressing
the `f'-key. Move the marker with the CSL, CSR, HOME
and END keys (F1 displays a help screen). The period
where the marker is located is displayed in the lower right
corner of the screen. To determine relative variance contri-
butions of harmonic signal components in an autospec-
trum, an integration tool has been implemented into
SPECTRUM. To activate this tool, press the `i'-key while
the graphic screen is displayed. The area below a spectrum
in [0, fmax] is a measure of the variance of the data and is
set to 100%. The horizontal line denotes the average value
of the spectrum and is a rough estimate for a white-noise
component in a time series. Considering only those parts
of harmonic signal components, that is spectral peaks,
above this level gives an estimation of their corresponding
variance contribution. Although the assumption of harmo-
nic signals embedded in white noise is rather strong for
paleoclimatic time series, the outlined procedure yields
results that are accurate enough for many practical situ-
ations. The selection of the integration interval is guided
by vertical lines that can be moved in the same way as the
frequency-marker. For the example at hand: (1) choose
left integration-margin: move marker to the frequency
0.0069 kaÿ1 (T= 145 ka) and press ENT; (2) choose right
integration-margin: move marker to the frequency
0.0138 kaÿ1 (T = 72.7 ka) and press ENT; (3) the result is
displayed in the lower right corner of the screen: 20.8% of
the data variance in [0, fmax] is associated with frequencies
in the selected interval. Pressing `n' or ESC gets you back
to the `Univariate' menu (you may also activate the fre-
quency-marker again by pressing the `f'-key). Select
`Graphic Options' from the menu, and change the graphic
parameters as follows:

Parameter Input Comment

Logarithmic scale n no
Display only lower error
bars

ENT yes

Mark MilankovicÂ
frequencies

ENT yes

Max. frequency to plot 2 display MilankovicÂ
frequency range

Change level of
signi®cance

ENT no

After returning to the graphic screen (`Display Results'),
the autospectrum is displayed using a linear ordinate. In
this case, con®dence intervals are a function of frequency
and are only displayed at local maxima of an autospec-
trum. The horizontal line in the upper left corner of the
screen shows the 6-dB bandwidth. Press ESC to return to
the `Univariate' menu. In order to save the results of the
analysis, select `Save Results' and choose the following
options:

Parameter Input Comment

File type 1 data ®le (with text
header) and
GNUPLOT script

Use previous labels ENT yes
Enter additional
information

ENT no (you may enter
additional text that
will be written to the
output ®le)

Filename XTEST do not enter a ®le
extension!

Finally, the option `Show Settings' allows you to review
the main settings of the current analysis. This concludes
the ®rst example; results were saved to the ®le XTEST.PX,
which can be plotted via GNUPLOT using the script ®le
XTEST.PLT. Pressing ESC again, returns you to the main
menu.

Harmonic Analysis

Usage of the harmonic analysis module is analogous to
that of the autospectral analysis module described in the
previous subsection. The module is started by selecting
`Harmonic Analysis' from the main menu. Load the ®le
XTEST.DAT as in the previous example. After the ®le has
been loaded, you must set the parameters for the analysis
(`Parameters/Calc.'):

Parameter Input Comment

OFAC ENT OFAC= 4.0
HIFAC ENT HIFAC= 1.0

(NB Selection of number of segments and window type
are inapplicable here, because harmonic analysis is based
on a periodogram, i.e. a single segment and a rectangular
window.)

l for Siegel's Test 1 (l= 0.6, Test for 1±
2 harmonic
components)

Level of signi®cance 1 a= 0.05 for
statistical tests

Subtract linear trend ENT yes
Mark MilankovicÂ
frequencies

ENT yes

Time unit ENT unit of time in the
input ®le [ka]

Max. frequency to plot ENT display to fmax
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The graphic screen (`Display Results') is very similar to
that of the univariate spectral analysis. The vertical lines
mark the MilankovicÂ frequencies, and the horizontal bar
in the upper left corner of the screen denotes the 6-dB
bandwidth. The upper and lower horizontal lines show the
critical levels for Fisher's gf) and Siegel's test (gs), respect-
ively. Test statistic (T / Tl) and critical value (tc / tl;a) for
Siegel's test are displayed in the status line at the bottom
of the screen. Note that the statistical tests are based on
the number of independent frequencies and are therefore
independent of OFAC. In the example, the null hypothesis
(white noise) is rejected since Tl>tl;a. Periodogram values
exceeding gs (at f= 1/100 kaÿ1 and f= 1/41 kaÿ1) indicate
the presence of periodic signal components with these fre-
quencies in the time series. Pressing F1 brings up a help
screen that provides a brief summary of the test evalu-
ation. In addition to the frequency-marker (`f'-key), an
option to subtract harmonic signal components has been
implemented, based on a ®lter algorithm developed by
Ferraz-Mello (1981). This option may be useful if an
extreme peak in a periodogram masks minor (but signi®-
cant) peaks at other frequencies. For example, late
Pleistocene paleoclimatic time series frequently show a
dominant peak at f= 1/100 kaÿ1 that often covers statisti-
cally signi®cant harmonic signal components at higher fre-
quencies. In such a case, you can subtract the 100 ka
signal component from the time series. You may also use
this option to subtract strong signal components if you
suspect them of leaking into higher frequencies. For the
present example, the option will be demonstrated for the
peak at f= 1/100 kaÿ1: (1) Pressing the `r'-key brings up a
marker line that can be moved in the same manner as the
frequency-marker; (2) move the marker to the peak at
f= 1/100 kaÿ1, and press ENT to start the subtraction of
this signal component. After the signal component has
been subtracted, the harmonic analysis is repeated (keep-
ing the selected parameters unchanged), and the result is
automatically displayed. It may be necessary to repeat the
subtraction if a peak is not removed in a single step. This
e�ect can be due to the presence of di�erent harmonic
components with closely spaced frequencies or a quasi-per-
iodic signal. After returning to the `Harmonic' menu, you
can modify the graphic parameters (`Graphic Options') or
review the current settings (`Show Settings'). Saving the
results is again analogous to the autospectral analysis. If
you have used the subtraction tool, you can also save the
®ltered time series.

Bivariate Spectral Analysis

To perform a cross-spectral analysis, you have to select
the option `Bivariate Analysis' from the main menu. The
usage of this module is largely identical to the univariate
module described above. The major di�erence is that two
data ®les have to be loaded. You may change the sign of
the data, which is equivalent to a phase shift of 1808. In
this situation a `ÿ ' will be prepended to the time series
label. The subsequent parameter input allows you to
specify a virtual shift in time between the two series (align-
ment, t0 in Eq. (14)). Subsequent to the computations of
the spectra, you are prompted to specify the mode for the
determination of the squared coherency con®dence inter-
vals. If you press ENT, con®dence intervals are only com-
puted for signi®cant coherency values, that is values that
exceed the critical level.

Selecting `Display Results' after returning to the
`Bivariate' menu brings up the `Graphics' menu. From
here, you can select the appropriate graphics. You can
also modify the graphic setting from this submenu. The
display of the autospectra is identical to that described
above. Cross-spectra are presented similarly, with the
di�erence that con®dence intervals are not computed. The
horizontal line in the coherency-spectrum marks the false
alarm level. The statistical evaluation of the coherency is

independent of the oversampling factor OFAC. To obtain
a better readability of the phase spectrum, con®dence
intervals are only shown for absolute errors less than 508
(phase angles with errors of this magnitude exclude a
meaningful paleoclimatic interpretation). Larger con®-
dence intervals are marked by small circles. Pressing the
`p'-key activates a tool for measuring phase angles. The
horizontal line that appears at the center of the screen
can be moved with the CSUP, CSDN and HOME keys
(press F1 for help). The phase angle at which the marker
is located is displayed in the lower right corner of the
screen. An additional tool for the determination of the
alignment parameter is activated by the `a'-key (F1 for
help). Analogous to the integration of an autospectrum,
the vertical marker line is moved to the beginning of a
linear section of the phase-spectrum, and ENT is pressed.
After selecting the right margin of the linear section, the
corresponding alignment parameter is displayed in the
lower left corner of the screen (tau). This parameter can
be entered as `Alignment-Parameter' after selecting
`Parameters/Calc.' from the `Bivariate' menu. If align-
ment is used, you should never interpret phase angles
directly (see above; Eq. (14))! An `unalignment' tool that
performs the correction after Equation (14) can be acti-
vated by pressing the `u'-key while a phase-spectrum is
displayed. The marker cross can be moved as described
for the frequency/phase angle markers. The corrected
angles appear in the lower right corner of the screen.
The frequency-marker (`f'-key) and a help screen (F1) are
also available within all bivariate graphics. Saving the
results is achieved in the same way as outlined in the
univariate subsection.

Utilities

Selecting `Data File Utilities' from the main menu o�ers
the following tools:

Display Spectral Results: Option for displaying pre-
viously saved data ®les with spectral analysis results.
SPECTRUM recognizes the ®les by their extension
(PX, PY, PXY, CXY, PHI, and HFS) and by the ®rst
line of the ®le. In order to avoid errors, you should
keep the extensions and ®le headers unchanged. Plot
®les cannot be loaded with this option.

Display Time Series File: Tool to display a time series
data ®le. The sign of the data can be inverted (e.g. for
d18O data).

Average Sampling Interval: After loading a time series
data ®le, the sampling intervals Dtn are displayed as
function of time. The average sampling interval hDti
and its standard deviation are shown at the bottom of
the screen. Note that in case of evenly spaced data, a
horizontal line will appear.

Check Time Series File: SPECTRUM assumes a
monotonically increasing time vector. This tool can be
used to check data ®les prior to spectral analysis. If
duplicate sampling times are found, the corresponding
data can be replaced by their mean. A correction of a
decreasing time vector (tn + 1<tn) was intentionally not
implemented. In such cases, one should carefully look
at the data ®le.

DOS-Shell: This function allows you to leave
SPECTRUM temporarily and to access the operating
system. By typing EXIT at the command line and press-
ing ENT one returns to SPECTRUM.
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APPENDIX C

OUTPUT FILE FORMATS

UNIVARIATE SPECTRAL ANALYSIS

Autospectrum

File Extension: PX

Structure of a Data File:

Line 1±14: Self-explanatory header showing all par-
ameters of the analysis

15: Empty

16: Column titles with:

Freq.: Frequency

Gxx: Values of the autospec-
trum (linear scale)

ÿd[Gxx]: Negative con®dence inter-
val of Ĝxx

+d[Gxx]: Positive con®dence inter-
val of Ĝxx

Gxx [dB]: Values of the autospec-
trum (dB scale)

Period: 1/frequency

from 17: Results of the analysis

Structure of a Plot File:

Line 1: Column titles with:

Freq.: Frequency

Gxx: Values of the autospec-
trum (linear space)

ÿDelta: Negative con®dence inter-
val of Ĝxx

Gxx [dB]: Values of the autospec-
trum (dB scale)

from 2: Results of the analysis

BIVARIATE SPECTRAL ANALYSIS

Autospectra

In addition to the univariate ®le (PX), a second ®le with
the same structure is created. The latter has the extension
PY and contains the autospectral results for the second
time series.

Cross-Spectrum

File Extension: PXY

Structure of a Data-File:

Line 1±14: Self-explanatory header showing all par-
ameters of the analysis

15: Empty

16: Column titles with:

Freq.: Frequency

Gxy: Values of the cross-spec-
trum (linear scale)

Gxy [dB]: Values of the cross-spec-
trum (dB scale)

Period: 1/frequency

from 17: Results of the analysis

Structure of a Plot-File:

Line 1: Column titles with:

Freq.: Frequency

Gxy: Values of the cross-spec-
trum (linear scale)

Gxy [dB]: Values of the cross-spec-
trum (dB scale)

from 2: Results of the analysis

Coherency-spectrum

File Extension: CXY

Structure of a Data-File:

Line 1±14: Self-explanatory header showing all par-
ameters of the analysis

15: Empty

Line 16: Column titles with:

Freq.: Frequency

Cxy2: Squared coherency values

ÿd[Cxy2]: negative con®dence inter-
val (ÿ9.9994 not deter-
mined if ĉ2

xy<False-Alarm
Value)

+d[Cxy2]: positive con®dence inter-
val (ÿ9.9994 not deter-
mined if ĉ2

xy<False-Alarm
Value)

False-Alarm: Level of non-signi®cant
coherency values

Period: 1/frequency

from 17: Results of the analysis

Structure of a Plot-File:

Line 1: Column titles with:

Freq.: Frequency

Cxy**2: Squared coherency values

ÿDelta: negative con®dence inter-
val (`` ''4 not determined
if ĉ2

xy < False-Alarm
Value)

False-Alarm: Level of non-signi®cant
coherency values

from 2: Results of the analysis

Phase-spectrum

File Extension: PHI

Structure of a Data-File:

Line 1±14: Self-explanatory header showing all par-
ameters of the analysis

15: Empty

16: Column titles with:

Freq.: Frequency

Phi: Phase angle

2d[Phi]: con®dence interval

Period: 1/frequency

17: Information about the sign of phase
angles

from 18: Results of the analysis

Structure of a Plot-File:

Line 1: Column titles with:

Freq.: Frequency

Phi: Phase angle

Delta: con®dence interval (`` '' if
abs (Delta)>508)
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>Maxphi: Marks Phi where
abs(Delta) > 508

from 2: Results of the analysis

Harmonic Analysis

File Extension: HFS

Structure of a Data-File:

Line 1±11: Self-explanatory header showing all par-
ameters of the analysis

12: Empty

13: Column titles with:

Freq.: Frequency

Pxx: Normalized periodogram

gf: critical level for Fisher's
test

gs: critical level for Siegel's
test

Period: 1/frequency

from 14: Results of the analysis

Structure of a Plot-File:

Line 1: Column titles being identical to the data-
®le

from 2: Results of the analysis

APPENDIX D

GNUPLOT Script File Format

SPECTRUM produces script®les for GNUPLOT 3.6
(Dendholm, 1996) by replacing placeholders in templates
by their appropriate values. Three templates exist
(UNIVAR.PLT, BIVAR.PLT and HARMONIC.PLT),
one for each main module of SPECTRUM. The ®les must
be located in the same directory as SPECTRUM. In order

to produce a script ®le, SPECTRUM reads the appropri-
ate template line by line and replaces the placeholders
listed below by their proper values. The resulting ®le has
the same name as the data ®le but with the extension
PLT.

Placeholder Meaning
%datdir% path to the data ®les
%®lenam% ®lename (without extension) of the

data ®les
%xinfo% label of the 1st data set
%yinfo% label of the 2nd data set (bivariate

only)
%xyinfo% combination of the two previous labels
%timeunit% selected unit of time
%hifreq% max. frequency in the data ®le

(GNUPLOT's x-range is set to this
value by default)

%bw% 6-dB bandwidth
%gxxmax% max. value of the 1st

autospectrum + error (linear scale)
%gxxdbmax% max. value of the 1st autospectrum

(dB scale)
%gyymax% as before for 2nd autospectrum
%gyydbmax%
%gxymax% as before for cross-spectrum
%gxydbmax%
%confdblo% lower con®dence interval for dB-scale
%confdbhi% upper con®dence interval for dB-scale

The templates can be changed according to a user's
requirement (e.g. by choosing a di�erent printer as
default; see the GNUPLOT manual for further details).
The above placeholders can appear anywhere in a tem-
plate (multiple occurrences are allowed). The only restric-
tion is that only one placeholder per line is possible. The
script ®les will not work with GNUPLOT 3.5, since it
does not o�er column-based computations.
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