SyncML

(Synchronization Markup Language)

and its Java Implementation sync4;

Diploma Thesis in Informatics
University of Fribourg, Switzerland

Author:
David Buchmann
david.buchmann@gmx.net

Supervisor:
Dr. Rudolf Scheurer
Telecom Research Group
Department of Informatics

September 2002

Abstract

This paper examines the data synchronization protocol SyncML. The Synchronization
Markup Language is an initiative of major mobile companies and other information tech-
nology firms to achieve a general standard for synchronization of any data between mobile
devices and computers.

Further, the Java implementation of SyncML sync4j is described. The main focus is
on the parts implemented by the author within the writing of this diploma thesis. A
prototype has been built and is used for synchronizing time reporting between a Palm
handheld computer and the industry standard system SAP R/3.

Acknowledgments

The author wants to thank Dr. Rudolf Scheurer from the University of Fribourg, Lars Erd-
mann and the ESPRIT Consulting Team, the sync4j developers and Nicola Fankhauser.

The writing of this diploma thesis was kindly supported by

ESPRT

CONSULTING

Contents

Contents
1 Introduction
1.1 Overview
1.2 Objectives L
1.3 Procedure
2 SyncML
2.1 Synchronization concepts
2.2 Introduction to SyncML
2.2.1 Alternatives to SyncML L.
2.2.2 SyncML concept
2.2.3 Data synchronization L
2.2.4 Device Management
2.2.5 Differences between version 1.0.1 and 1.1
2.3 SyncML market perspectives
2.3.1 Results of the enquiry
2.3.2 Conclusion
2.4 Implementations
2.4.1 Commercial offers
2.4.2 Open source implementations
3 Java implementation of SyncML: sync4j

3.1 The existing framework oL
3.1.1 Transport
3.1.2 Core
3.1.3 Protocol
3.1.4 Framework
3.2 Concept of the prototype
3.2.1 Synchronization Engine L.
3.2.2 Handlers for client and server,
3.2.3 Exception handling 0L
3.3 How to run the simple test
3.3. 1 Server
3.3.2 Client

10
10
11
14
15
17
18
18
19
19
20
20

4 CONTENTS

4 Practical example 28
4.1 Concepts 28
4.1.1 Data structures 28

4.2 Client application with Palm 35
4.2.1 Getting syncdj tousea Palm 35

4.3 Server application with SAP R/3 35
4.3.1 Server architecture L 36

4.3.2 The caching mechanism 36

4.3.3 Authenticationo 38

4.3.4 jCO: Java Connector 38

5 Conclusion 39
5.1 Criticisms of SyncML 39
5.1.1 The SyncML committee, 39

5.1.2 Flaws in the specificationo 39

5.2 Criticisms of the projecto 40
5.2.1 Achieved results 40

5.2.2 Known problems 41

5.2.3 Possible extensions for sync4jo 41

5.2.4 Development directions for the TiME application 42

5.25 Usedtools 42
Bibliography 43
A Directory organization on the CD 45
B Guide to the additional documents 48
B.1 Enquiry about SyncML oo 48
B.2 ESPRiT TiME: Time reporting on Palm 48
B.3 BetaTest 48

B.4 Development environments on Palm 48

Chapter 1

Introduction

Over the last years, small, mobile devices with data processing capabilities enjoy of in-
creasing popularity. Modern cellular phones don’t have just a memory for phone numbers,
but have become a personal information manager (PIM) with address book, agenda, email
client, browser and much more. Small computers in the size of calculators, so called hand-
helds, are getting commonly used.

Applications similar to those on such devices exist on personal computers and inside en-
terprise databases (address book, time planner, ...). Mobile devices are not permanently
connected to a network and therefore need an own copy of those databases. Modifications
will be made on mobile devices as well as on the network. Periodically, informations about
these modifications should be exchanged. This operation is called synchronization.

Currently, manufacturers use their proprietary synchronization protocols, the devices
lack interoperability. Flexibility and usability of the synchronization tools are often unsat-
isfactory and there is no standard way to synchronize devices from different manufacturers.

In 1999, a group of major companies founded the SyncML Initiative, with the aim
of developing and establishing a general standard for synchronization issues. They are
Ericsson, IBM, Lotus, Matsushita Communications Industrial Co., Motorola, Nokia, Palm
Inc., Psion and Starfish Software. One year later, the first step had been accomplished:
Version 1.0 of Synchronization Markup Language (SyncML) has been published. It is
formulated in the eXtended Markup Language (XML). If the Initiative succeeds, future
devices will support SyncML as standard synchronization protocol.

To achieve this, there is still a long way to go. Only if a majority of mobile device
manufacturers and also some backend system developers implement SyncML into their
products, SyncML will become an attractive standard. Microsoft, for example, is not
member of the Initiative. Success depends not only on the quality of the protocol and
its specifications, but also on economical factors and strategic decisions by the companies
managers.

ESPRIT Consulting AG supported this diploma thesis to examine interaction between
a Palm handheld computer and the industry standard system SAP R/3. As a concrete
application, the SAP R/3 application CATS for managing working times had been chosen.
During a stage in summer 2001, the author developed a prototype for time reporting on
the Palm and a simple synchronization with SAP, but without using SyncML.

The telecom group of the University of Fribourg is interested in the SyncML protocol
and offered a diploma thesis in this area. ESPRIiT Consulting is interested in this protocol
too, for improving the time reporting prototype.

6 CHAPTER 1. INTRODUCTION

1.1 Overview

Further down this chapter, the objectives of the diploma thesis are listed and the pro-
ceeding is explained.

The second chapter explains what SyncML is. An overview of the SyncML protocol
concept is given, followed by a summary of the enquiry about SyncML performed by
the author. The complete enquiry is available on the Internet! or on the accompanying
CD (see Appendix B). A short overview of the few existing SyncML implementations
concludes this chapter.

In the third chapter, the open source project sync4j is described. Sync4j is an effort to
implement the SyncML protocol in Java. The author has developed a running prototype
on base of this incomplete project.

The fourth chapter is dedicated to the practical application built with this prototype.
The SAP time reporting system was extended, using a Palm handheld to enter data and
SyncML to synchronize between the Palm and a SAP R/3 server.

The last chapter contains the conclusions from the project. Criticisms are made on
what has been developed and remarks on what could be improved. The experiences with
SyncML are discussed.

1.2 Objectives

This thesis will examine Synchronization and especially SyncML. Theoretical analysis will
be accompanied by the development of a concrete application. The program “TiME” will
allow to report working time on a Palm Handheld computer and SyncML will be used
to synchronize the time reports. With the practical example, we will find out whether
SyncML is usable. SyncML could be too simple to allow flexible synchronization - or too
complex to be implemented with reasonable effort.

The SyncML Initiative wants its protocol to become the universal synchronization
standard, but alternatives shall be searched and examined if existing.

Goals for the practical work

e A running SyncML prototype.

e Data synchronization based on the SyncML prototype, between SAP R/3 and the
Palm.

e An application for Palm handhelds allowing the user to report working time.

e Conduct a user test for the Palm application.

http://http://diuf .unifr.ch/telecom/projects/syncml/SyncML_Enquiry.pdf

http://http://diuf.unifr.ch/telecom/projects/syncml/SyncML_Enquiry.pdf

1.3. PROCEDURE 7

1.3 Procedure

Work on the diploma thesis began in November 2001 and had been finished by September
2002. Table 1 gives an idea of what was achieved when.

In a first phase, SyncML had been studied and other synchronization protocols had
been searched for. Part of the SyncML research was an online enquiry among the com-
panies that form the SyncML initiative and the companies from the regional contact
organization I'T Valley Fribourg. At the same time, the program for time reporting on
Palm was improved and submitted to a user test.

Depending on the results of the studies on SyncML and other protocols, SyncML was
selected as being suitable for implementing synchronization between a Palm and SAP. The
only existing base found was sync4j, so it was chosen although it was not yet finished.
A considerable part of work was done to get sycn4j running. The Palm application was
improved by implementing requests of the user feedback.

01. 11. 2001 | Proposal accepted, begin of work

31. 01. 2002 | First version of the time reporting tool running
01. 04. 2002 | Enquiry completed

20. 04. 2002 | User tests with first version finished and evaluated
15. 05. 2002 | Redesign of Palm application finished

10. 07. 2002 | Sync4j prototype working, including Palm conduit
10. 09. 2002 | Paper finished

Table 1: Time planning for the diploma thesis

Chapter 2

SyncML

This chapter is a introduction to synchronization concepts in general and SyncML specifi-
cally. Both parts of SyncML, data synchronization and device management, are explained.
A look on alternatives to SyncML is taken. Another Section gives a short overview of the
enquiry on SyncML held by the author in spring 2002. Finally, an overview of existing
SyncML implementations is given.

2.1 Synchronization concepts

As soon as data is replicated over different locations, synchronization is needed to ensure
all copies hold the same information (consistency). Different granularities exist: One
can compare files in two file systems and check modification dates and sizes. CVS, the
concurrent, version system, synchronizes on lines of text inside the files.

What we will examine is not synchronization in a file system, but between databases.
Mobile devices are used to store contact information, agenda entries, etc. Each address
entry has the same structure, name, street, city, phone number etc. They can be thought
of as being rows? in a table. After synchronization, both sides address books should have
all entries with the same content. Figure 1 shows the big picture.

The simplest method for synchronization is to send all entries to the other side. There
they are matched to the existing entries to avoid duplicates. This is called full sync or
slow sync. This type is not very efficient, as unmodified data existing on both side is
transmitted and compared. However, this long during process cannot be avoided if the
devices lost track of what has already been synchronized and what not.

It is more efficient to only send modified items. For this purpose, changes must
be detectable. On the server, this probably is a “last modified” timestamp. On the
client, a simpler scheme often is used, the dirty bit. If a record is edited, it is set
dirty. On synchronization, only dirty records are sent and after the termination of the
communication, all dirty bits are removed. This type is called fast sync, as it is much
more efficient. If both the server and the client record have been modified since last sync
session, a conflict occurs. Some conflicts can be resolved automatically by merging the
two items, others can’t be solved and the user must be asked which version is the correct
one.

2The words row, entry, item and record are used interchangeable in this thesis.

8

2.1. SYNCHRONIZATION CONCEPTS

Mobi%e device

C o2

Server

Figure 1: Concept of record based synchronization.

HNotes ||||
a1 L=\
Contacts
LUTD|DirtyNans|Phone| Email GUID| Time|MName Phone| Email
1 b4 | 1111 | a(f 111 | 8:00| & | 2123 alf
2 B | 4546 | blf 222 | 8:00] B | 4546 | b@n
3 b4 C cilp 333 |9:00] C | 8478
1.z 22,333
LUID | GUID
Update 1 111
2 222 | Update
Conflict! 3 333 'Caonflict

10 CHAPTER 2. SYNCML

To reliably identify items, unique identifiers are used. As sometimes identifiers are
generated automatically (think of autoincrement fields in databases) client and server
may assign different ID’s to items. The client ID’s are called local unique identifier
(LUID), as other clients are not known and could assign the same ID to an other item.
The server has global unique identifiers (GUID). The server has to map between LUID
and GUID for each device.

The example in Figure 1 shows the synchronization of an address book with three
entries. On client side, they are numbered 1,2.3, on server side 111,222,333. The client
items 1 and 3 have the dirty bit and thus are sent to the server. The server items 222 and
333 have a timestamp that dates after the last sync, so they have been modified since.
The server maps 1 to 111 and updates the server item 111. 222 is mapped to 2 and sent
to the client. Because 3 maps to 333 and both sides are modified, a conflict occurs. As
the differing fields are empty on the other sides, they can be merged. The client gets the
phone number, the server the email address.

For further reading on synchronization concepts, [4] is recommended.

2.2 Introduction to SyncML

Mobile devices like handheld computers, mobile phones and laptops are commonly used.
They serve as personal information management (PIM) devices, are used for business
critical data and also just for fun. Omne important issue related to mobile devices is
synchronization. For private users, this could be just a backup, but business users need
to maintain consistency with backend systems and central administration of devices.

To replace the chaos of existing proprietary protocols, major companies founded the
SyncML Initiative in February 2000. The aim of this initiative is to establish SyncML as
the general standard for synchronization issues.

The first specification of SyncML was released in December 2000 on the SyncML web
site http://www.syncml.org. In February 2002, version 1.1 of the specification has been
published.

The focus of this XML protocol is on mobile devices that need to synchronize with
database servers, but other scenarios should be possible as well. SyncML can be used
over different connections like the Internet, WAP, infrared and others. SyncML provides a
framework adopted to the slow connections wireless devices offer nowadays. The hardware
limits of mobile devices like maximal record size of free storage capacity are taken into
account by the exchange of extra information inside Meta tags.

Version 1.1 added a new area to SyncML. A device management protocol allows central
administration of large numbers of devices (see Section 2.2.4).

2.2.1 Alternatives to SyncML

The enquiry® revealed no real alternative to SyncML. There are standards for network
communications, but SyncML is the only general standardized protocol with specific
capabilities for synchronization of records. For special cases, proprietary protocols exist.

One example is the HotSync application* for record oriented communication between

3See Section 2.3 and Appendix B
4See Section 4.2 and [16] for details about HotSync.

http://www.syncml.org

2.2. INTRODUCTION TO SYNCML 11

Palm and Desktop. It is used to read records from Palm over a serial line or infrared. The
protocol used by HotSync is not public and is not thought to be used over the Internet
or other networks. The traffic generated would be very inconvenient, as a separate read
command is issued for each record. Some concepts of HotSync can be seen in the SyncML
specification.

For synchronizing iCalendar entries, the IETF® defines the iCalendar Transport-
Independent Interoperability Protocol (iTIP). iCalendar is a format for agenda entries.
The iTIP protocol is specific for iCalendar and oriented towards different people using
automated scheduling of meetings. Users publish their free and busy time and automated
agenda planners use iTIP to find a time at which everybody can attend the meeting. It
can not be used to synchronize two calendars of the same person.

2.2.2 SyncML concept

As mentioned before, SyncML was designed with mobile devices in mind. The following
requirements where defined by the initiative in their whitepaper, page 5, available at [1]:

e Operate effectively over wireless and wireline networks
e Support a variety of transport protocols

e Support arbitrary networked data

e Enable data access from a variety of applications

e Address the resource limitations of the mobile device
e Build upon existing Internet and Web technologies

e The protocol’s minimal function needs to deliver the most commonly required syn-
chronization capability across the entire range of devices.

Application
iy
SynchL
/ Framework ipplication
Svnoc B B 0B B8 BB B 0 B - E
Engine : :
N SyncHL
: SyneML | SynceML XHL SyncML | SyncML
: Chiects
Syne | I/F Ldapter I/F Adapter A Py
server T ? - Client
Agent : Agent

Transport (e.g. HTTP/WSF/OBEX)

Figure 2: General concept of SyncML utilization. [1]

5Internet Engineering Task Force, a standardization organization

12 CHAPTER 2. SYNCML

SyncML organizes the synchronization process using the client-server approach, with
one exception: the server may also initiate communication. The typical architecture of a
SyncML application is shown in Figure 2.

The client always sends his data first. Then the server compares the data for conflicts
and sends back the result along with his own modifications to the client. Different sync
types exist.

Fast sync is the normal type: The client only sends the items modified since the last
synchronization session to the server. The server checks if items conflict with modifi-
cations on his data and tries to solve those conflicts. Then he sends his modification
commands back to the client.

Slow sync is used when the devices lost track of what modified had already been syn-
chronized, if the last synchronization was interrupted, or if they know by another
way that their databases are inconsistent. The client has to send all his data, for the
server to compare everything. The server tries to match the items with his items
and see if they differ. Afterwards he sends the resulting modifications back to the
client.

Other types are synchronization only from server to client or vice versa. They exist in
fast and slow versions. The server could completely replace the inconsistent client data,
for example.

SyncML Client SyncML Server

Package [Alert from Server

| Package 1: init with credentials -—
Package 2: Init cormpletion
T T
Repeat until <Fi lalf= Package 2 Client modificati !
d ackage 3: Client modifications -
I - Package 4: Server madifications
Repeat until <:Firia|f> :
| Package 5: Map update -
FPackage B: map aknowledgment
T T
b e

Figure 3: Message flow of SyncML data synchronization. [1]

SyncML uses XML messages to exchange information. Figure 3 illustrates the mes-
sage exchange of a synchronization: First, the client initializes synchronization by an

2.2. INTRODUCTION TO SYNCML 13

<Alert> command. This command tells the server with which database the client wants
to synchronize and what sync type is wanted. The server replies by confirming or refusing
the alert. In the next message, the client sends his modifications. After processing the
received data, the server sends all resulting modifications to the client. The last message
by the client is a map update (see Section 2.2.3). The server finishes synchronization (sync
for short) with a map acknowledgment.

Because in some environments every message causes high costs, some steps can be
merged into one. Status commands are included in the next message. The client may
send his modifications along with initialization. If the credentials are accepted, the server
already has the data and can send his modifications with the initialization completion.
The mapping can be sent in the first message of the next session. This way, all sync can be
done in one request-response cycle. To further improve the protocol for wireless devices,
a definition for WAP Binary XML (WBXML) is given. WBXML is a compressed form
of XML where the tags are no longer strings in angle brackets but a code. This reduces
the size of an XML message considerably.

SyncML can be used over any transport layer. Good options include HTTP or better
HTTPS, WSP (Wireless session protocol, part of WAP) or OBEX (IrDA, Bluetooth, .. .).
But also SNMP / POP3 could be used, a good example for high packet costs.

A typical example of a SyncML message is depicted in Listing 1. For the exact
document type definition (DTD) of SyncML, see [1].

Listing 1: Example of a SyncML message

1 <SyncML>

2 <SyncHdr>

3 <VerDTD>1.1</VerDTD>

1 <VerProto>SyncML/1.1</VerProto>

5 <SessionID>1029143392160</SessionID>

6 <MsgID>1</MsgID>

7 <Target><LocURI>http://localhost/sync</LocURI></Target>
8 <Source><LocURI>IMEI: 123445</LocURI></Source>

9 <Cred>

10 <Meta>

1 <Type xmlns=’syncml:metinf’>syncml:auth-basic</Type>
12 <Format>b64</Format>

13 </Meta>

14 <Data>dXNlcjpwYXNz</Data>

15 </Cred>

16 </SyncHdr>

17

18 <SyncBody>

19 <Alert>

20 <CmdID>1</CmdID>

21 <Data>200</Data>

22 <Item>

23 <Target><LocURI>server_db/</LocURI></Target>
24 <Source><LocURI>dev_db/</LocURI></Source>

14 CHAPTER 2. SYNCML

25 <Meta><Anchor xmlns=’syncml:metinf’>
26 <Last>1004589132042</Last>

o7 <Next>2029143393370</Next></Anchor>
28 </Meta>

29 </Item>

30 </Alert>

31

32 <Final/>

33 </SyncBody>

34 </SynCML>

This message is an initialization message. Lines 2 to 16 form the header and 18 to 33
the body. The header contains version information for the protocol, a unique session ID,
the source and target URI and possibly a Cred element (lines 9-15). If present, the cre-
dential is used for the authentication. Three possible authentication schemes are defined:
no authentication, basic and MD5 hash. Basic is the transmission of username:password
(base 64 encoded). More secure is MD5, as it uses a nonce issued by the server and cal-
culates a hash of username:password:nonce. This way, replay attacks can be prevented,
as the nonce will change the authentication hash in each message.

The Alert (lines 19-30) tells the server that the client wants to sync his database dev_db
with the server database server_db. If the client would like to sync different databases,
more alert commands can be placed into the SyncBody.

The Anchor (line 25-27) is used to check if the last sync terminated correctly. After
successful sync, the <Next> anchor is stored. On the next sync session, it is sent as
<Last>. Fast sync is only possible if the anchor saved at the server is the same as the
last anchor the client sent. If they differ, the last session did not terminate correctly and
a slow sync is started.

<Meta> tags can be used at many places to specify additional information. In our
example, line 10-13 specify the authentication type, the anchor is also a meta information.
Other meta information are maximal message and record sizes, content data type and
device information. The DevInf tag is used for device information. It contains details
about device specific properties like which content types can be understand, memory
limits or OS version.

2.2.3 Data synchronization

SyncML is oriented towards synchronization of small independent records, as the modified
records are transmitted entirely. This is adequate for address entries, short messages and
similar data. On the primary target of SyncML, mobile devices, most data is of this type.

The devices must be able to keep track which of their records have been changed.
Each record is identified by a unique ID, so conflicts can be detected quite simple. As the
record ID’s may not be arbitrarily chosen but automatically created, mapping between
server and client ID’s is defined in the protocol. Mapping is always managed by the server.
When the client receives a new item from the server, he can send a map update command
to tell the server what ID he assigned to the item. Now the server uses the client ID in
all his messages.

2.2. INTRODUCTION TO SYNCML 15

The specification does not restrict the format of payload data. A MIME type® can be
provided to avoid confusion. The specification of SyncML declares that some types like
vCard or vCalendar have to be supported mandatory. Hopefully, this will allow at least
the synchronization of standard databases between all SyncML implementations.

The root of data synchronization is the <Sync> element. Inside the Sync, different
commands to modify data can be used: <Add>, <Delete>, <Replace>, <Copy>. These
commands contain a list of the items to be modified. Listing 2 shows a typical Sync
command.

Listing 2: A Sync command issued by the server

1 <Sync>

2 <CmdID>5</CmdID>

3 <Target><LocURI>dev_db/</LocURI></Target>

4 <Source><LocURI>server_db/</LocURI></Source>

5 <Replace>

6 <CmdID>6</CmdID>

7 <Item>

8 <Target><LocURI>c1</LocURI></Target>

9 <Source><LocURI>1</LocURI></Source>

10 <Meta><Type xmlns=’syncml:devinf’>text/plain</Type></Meta>
1 <Data>arbitrary data that replaces client item c1</Data>
12 </Item>

13 </Replace>

14 <Delete>

15 <CmdID>6</CmdID>

16 <Item>

17 <Target><LocURI>c3</LocURI></Target>

18 <Source><LocURI>23ab3</LocURI></Source>

19 <l-- data not needed, only id, as item is deleted —->
20 </Item>

21 </Delete>

22 </Sync>

Additionally, <Atomic> and <Sequence> can be used inside <Sync> to ensure all-or-
nothing semantics respectively sequential processing of the contained commands.
Every sync command has to be confirmed with a <Status> command.

2.2.4 Device Management

With version 1.1 of SyncML, the device management (DM) protocol is introduced. In a
large company, the administration of dozens or even hundreds of machines can be quite
difficult. Automated administration tools exist for personal computers, but they are not
adequate for devices not permanently connected to the network.

SyncML provides a general way to exchange configuration data. The approach seems
heavily inspired by the Simple Network Management Protocol (SNMP), but in the official

6 “Multipurpose Internet Mail Extensions” is a definition of how to declare the encoding and type of
a document part. It was designed for e-mail but can be used for other protocols too.

16 CHAPTER 2. SYNCML

specifications, there is no explicit reference to it. Table 2 shows the SNMP components
and their corresponding SyncML names.

SNMP SyncML DM Explanation

Structure of Manage- | Device Description | Syntax rules for describing the

ment Information (SMI) | Framework (DDF)® MIB.

Managed Object (MO) | Management object Manageable entity inside a de-
vice. May have children.

Management Informa- | Management tree Hierarchically organized values

tion Base (MIB) that can be stored and read.

SNMP agent Management client Software on device that in-

terprets management commands
and operates on the MO’s.
SNMP manager Management server Controller for sending commands
to the clients and interpreting
their responses.

Message Authentication | Message Authentication | A hash value of the message body
Code (MAC, SNMPv3) | Code (MAC) and a shared secret to ensure
data integrity.

User Based Security | Access Control List and | Permission for specific operation
(SNMP version 3 only) | server identifier can be restricted to some users.

?Remark: DDF documents should enable a management server to understand the meaning of device
properties by himself. It is considered an interim solution until a more general standard arrives.

Table 2: Similarities between SNMP and SyncML DM

A DM session can be initiated either by client or by server. Because it’s always the
client who has to establish connection, the server can only send a notification to the client,
triggering him to begin a management session. Therefore the server can only initiate DM
if he is able to reach the client. Different protocols like WAP push, OBEX or TCP
are possible. The client can also initiate management without prior notification from
server. This can be caused by user interaction, when an internal timer is finished or if
configuration errors are detected.

The message flow is depicted in Figure 4. Initialization is virtually the same as in
a normal SyncML session, except that sending device information is not optional but
required for the client. With the completion of initialization, the server sends his first
management orders. The client processes the orders and sends status commands.

Packages 3 with management operations and 4 with confirmation are repeated until
the server sends a message containing only commands requiring no response (e.g. Status
commands).

An entire document of the specification tells how to bootstrap device management.
Two scenarios handle the cases where a device gets SyncML DM bootstrap information
installed by the manufacturer and where the server pushes the information onto the new
device. This bootstrap is very important, because no help desk would like to explain
hundreds of employees how to install and configure their device for SyncML usage. Its
just extensive support needs like explaining everybody how to configure his device that

2.2. INTRODUCTION TO SYNCML 17

Client Server

..Fackage [alert fom Seer o

Package 1: init with credential & dev. info

| | Package 2: init & management ops

| Fackage 3: status, management ops

Fackage 4: mare management

-

3+4 rdpeated until message with no commands fram server |
| |

Figure 4: Message flow in device management. [1]

SyncML DM should replace.

Another document describes the security mechanisms. SyncML DM only offers au-
thentication and integrity mechanisms. It can ensure no malicious configuration messages
are accepted, but confidentiality (e.g. encryption) is not provided. The document recom-
mends using encrypted protocols like HTTPS or TLS. Also, the configuration information
itself can be in an encrypted format, if both client and server support such a format. This
last option seems not very helpful as the whole structure of the management message
would be readable by an attacker.

The author did not make any programming with the DM part of SyncML. But it seems
astonishing that things like Access Control List (ACL) are defined in a non-XML format”
and transmitted as text inside the configuration messages. There is no explanation why
XML is not used in such cases.

2.2.5 Differences between version 1.0.1 and 1.1

Version 1.1 contains no fundamental changes to the data synchronization protocol, but it
adds the new area of device management (see earlier in this chapter).

Most of the changes to the existing documents are error corrections, clarifications
and adjustments for the device management protocol®. In version 1.0.1, some element
descriptions differed between text and DTD and several typing errors were made in the
examples.

An important addition to the data synchronization protocol is the introduction of large
object handling. There is still no way of sending only parts of an item, but it can be split
over several messages with help of the <MoreData> tag. This is especially needed if the

"See [1], syncml_dm_tnd_v11.20020215.pdf , page 17: ACL syntax
8For criticisms on those adjustments see Chapter 5.1

18 CHAPTER 2. SYNCML

message size is limited, e.g. by the underlying transport protocol or by device restrictions.

Further, a <NumberOfChanges> tag can help to make an estimation for the sync du-
ration or to show a progress bar. This is not really essential, but with lots of data to
synchronize, users could loose patience if they see no progress.

2.3 SyncML market perspectives

To learn about the perspectives of SyncML, an enquiry has been held in early 2002
among companies and institutions concerned with informatics. At this time, the SyncML
specification had been publicly available for one year. The goals were to see how much
interest there is for SyncML and what products exist. This section gives a short overview
of the enquiry results. The complete enquiry with in deep interpretation and diagrams of
the answers is in a separate document (see Appendix B).

About half of the companies were selected to participate because they are known to do
SyncML development. Their addresses were found on http://www.syncml.org. The oth-
ers are members of the I'T Valley Fribourg association (http://www.itvalleyfribourg.
ch). A total of 274 companies had been invited by e-mail to participate in the enquiry by
filling out a web form. About 50 of them gave a usable answer within the deadline. Un-
fortunately, the big companies who are part of the SyncML organization did not answer.
This could mean low interest - or just bad communications.

2.3.1 Results of the enquiry

It appeared that although some technical and organizational problems exist, the majority
of the companies gives SyncML a good chance - under the condition that it gets widely
used.

Will SyncML become Mobile companies to Database companies to
important? support SynchL support SyncML
no
5% Minority nDn‘;De All ngoc}T SN%L
1%, 5%

dinority
24%

Majarity

a1% i ajority

S8%

Wery
Ti%

a) k) c)

Figure 5: Assumed importance of SyncML

From the perspective of the answering companies, SyncML seems to be rather impor-
tant?. Figure 5 shows the answers on the questions about the importance of SyncML and
the expected support by mobile devices manufacturers and back end systems.

9The euphoric impression Figure 5 gives is not entirely representative, as companies not expecting
SyncML to be important probably did not answer to the enquiry.

http://www.syncml.org
http://www.itvalleyfribourg.ch
http://www.itvalleyfribourg.ch

2.4. IMPLEMENTATIONS 19

The question for the main benefits of SyncML revealed that one of the major advan-
tages of SyncML is its aim to become an open de-facto standard. The companies see it
as a good base for their sync software development.

The biggest problem of SyncML is to become widely accepted. The technology will
only be really interesting if most of the mobile devices contain a SyncML client and back-
end systems support it too. There have been some complaints about the implementation
also, especially about usability and access control.

The questions about product development revealed a number of devices with SyncML
support and some SyncML servers. Most of them were not tested for compliance, but the
companies planned to let the SyncML committee test them. The servers are stand alone
products. What seems to be missing are extensions to industry standard systems like
Oracle or SAP. For private users, a small stand alone server is exactly what they need,
but companies need to synchronize directly into their back end system.

The final part of the enquiry asked for the marketing interest in SyncML, revealing
a rather small interest from private customers, but a considerable interest for business
customers.

2.3.2 Conclusion

If everybody is using the same protocol, servers and clients can easily be replaced. This is
good for customers, but a challenge for the manufacturers. They can not sell the simple
fact that their system can synchronize, but the whole service must convince the customers.
This should improve the competition among manufacturers.

As SyncML might not completely replace proprietary protocols, interoperability with
such protocols could be an important field. But some enquiry answers indicate that
SyncML seems not prepared for this challenge. Perhaps this could be an extension for a
next version of SyncML.

There is no big hype about SyncML, not like, for example, WAP or SOAP. Most end
users never heard about it. The primary interest lies in business customers with many
employees using corporate date and address management.

With more and more gadgets and services being used, growing needs for a general
standard are to expect for private users too. Syncing one mobile phone with Microsoft
Outlook on a PC may work well. But with each family member having his personal phone
and computer plus some PDA’s plus a web-based PIM, there are too many combinations
for proprietary protocols. There is no other common standard for synchronization in
sight. If SyncML succeeds getting over a critical mass, it may become commonly used as
the standard for mobile synchronization.

2.4 Implementations

On page 12 of their whitepaper[1], the SyncML initiative promises to deliver ” An openly
available prototype implementation of the protocol”. For SyncML 1.0.1, the SyncML
initiative provided a reference toolkit written in C on their web site. It implements
something like the core layer of sync4j (see Section 3.1 and Figure 6). Programming with
it requires a good knowledge of SyncML.

20 CHAPTER 2. SYNCML

But with the publishing of version 1.1, no new toolkit appeared. Even the old 1.0.1
version was removed from the server and no longer available to the public.’

Until recently, the new toolkit was only available to paying members of SyncML. [4]
says only promoter members (20,000 $ per year) had access to it. Shortly before finishing
this thesis, on august, 20th 2002, the committee seems to have reconsidered its position
and announced to release the toolkit as open source.

2.4.1 Commercial offers

Starfish, a founding member of SyncML, offers its system TrueSync. The solution based
on a proprietary protocol and has been extended with SyncML support. But Starfish
does not sell its SyncML implementation, nor do they sell any tools directly to end users.

2.4.2 Open source implementations

Some open source implementations exist. libsyncml [4] is a C++ library for the lower
levels of the protocol, using a callback mechanism. It is available on [5]. The project is in
alpha phase, last updates were in April. The enhydra project has a Java implementation
of SyncML too. It is available as kSync at [6]. kSync doesn’t support the full SyncML
protocol and development seems to have stopped, last updates were in November 2001
and the CVS repository is empty.

Last but not least, the sync4j project exists. This is subject of the next chapter.

0The toolkit is on the CD in the Documents/SyncML/1.0.1/ directory. The license for the source
code states it may distributed freely. The copy information of the toolkit manual, however, says the
document may not be distributed and to obtain it, you would have to sign a non disclosure agreement.
(I downloaded it without any problems form www.syncml.org .)

Chapter 3

Java implementation of SyncML:
sync4j

The open source project sync4j wants to build a SyncML application framework for client
and server in Java. It is available at http://sync4j.sourceforge.net. Unfortunately it
is not yet complete. As part of this diploma thesis, the author worked on sync4j, achieving
a running prototype.

The first section of this chapter describes the concepts provided by Sean C. Sullivan
and the existing framework written by the sync4j developer group. The second section
describes the steps by the author to create a running prototype. How to run the prototype
is described in the last section.

3.1 The existing framework

Figure 6 gives an overview of sync4j. It is divided into four layers with different roles.
Details on the classes are found in the generated javadoc on CD (see Appendix A).

3.1.1 Transport

The whole message is encoded for network transmission in the transport layer. The only
implemented transport is HT'TP. The client uses a java.net .HttpURLConnection to issue
a POST command and the server side is a servlet!!.

3.1.2 Core

The core contains classes for all XML elements in SyncML. Hence it serves as a full
abstraction of the XML nature of the protocol. The classes can be constructed from XML
fragments and can generate their XML representation. The classes for error messages are
implemented as Exception, so they can be thrown.

Several corrections to the core were done by the author. Some classes did not generate
the correct XML, resulting in invalid messages that could not be parsed. The helper class
sync4j.core.Util contained errors regarding namespaces. Two exceptions had to be

Servlets are small Java programs running in a ” JavaServer” environment. See [7] for more information
about servlets.

21

http://sync4j.sourceforge.net

22 CHAPTER 3. JAVA IMPLEMENTATION OF SYNCML: SYNC4J

syncd]
Transport Binding to HTTP, WSP...
— A
Claszses for re-
Core
presenting 3yncHL
| |
Protocol 3ync p;ot?col logic,
Data binding
| 1
Framework | & o o o e e e e e e — - - - L -
m |
’ I
" |
I I
: | Y
hpplicari
pplleatlon Storage Facility

(Database, File, ...])

Servlet for Serwver
JFratme for client

Figure 6: Sync4j architecture

removed as they were double, UnauthorizedException (= ForbiddenException) and
VersionNotSupportedException (= DTDVersionNotSupportedException).

3.1.3 Protocol

On protocol layer, there were no classes existing at the time the author began his work on
syncdj. This layer is concerned with the elements of the synchronization (i.e. initialization,
modifications, ...) and the protocol work flow.

3.1.4 Framework

The framework consists of JavaServer classes for the server and a GUI for the client. The
client side consists only of empty classes, on server side a EJB (Enterprise Java Bean)
exists.

The author had to rewrite parts of the server because EJB are only supported by
application servers and not by the Apache Tomcat used.

3.2 Concept of the prototype

To get a running prototype, the protocol layer had to be implemented by the author.
Planning was done together with Nicola Fankhauser at the University of Fribourg, but
most implementation was made by the author of this diploma thesis. For details on who
wrote which class, see the author lines in the javadoc of sync4j.

One of the most important concerns for the prototype was the organization of data
access. Figure 7 shows the big picture. Interfaces are used for retrieving and storing data
and mapping as well for authentication and for the synchronization strategy.

3.2. CONCEPT OF THE PROTOTYPE 23

SyncML Client

Example:
Data Adapter (IStore) Read/Write B Falm vith HotSyne

SyncHL Messages
(for exsmple ower HTTER)

SyncML Server

Example:
Data Adapter (IStore) ReadM\Write SAP with JCO

Figure 7: General concept of syncdj

The protocol layer is split up into two parts. The lower part is called synchronization
engine, consisting mainly of different interfaces. The higher part is the handler, concerned
with generating the protocol flow and is using the interfaces of the sync engine.

3.2.1 Synchronization Engine

The interfaces for accessing data and mapping are instantiated using the design pattern
"Factory“ 2. This pattern allows data access to be implemented for whatever storage
system needed. The interfaces architecture is shown in Figure 8.

ISyncEngine F - - = = === == = — = - - -

i I 1
i ! v | ISyncStrategy |
1
IMapping | IUserl I IStorel create v
[o

IDataltem

create create create

| IMapFactory | | lAuthentication | | IStoreFactoryl

Figure 8: Architecture of the sync engine

Store factory Creates IStore objects for the database specified by an URL and the
optional mime type. The store objects contain methods to add update or remove
records from the database and to get all resp. all modified items. A store can be
implemented using an XML file or JDBC or whatever the application needs.

In the concrete example, a Palm handheld computer and SAP R/3 are used as data
source.

12See [9] for design patterns

24 CHAPTER 3. JAVA IMPLEMENTATION OF SYNCML: SYNC4J

Map factory Creates IMapping objects for a database. Mapping handles the conversion
of item ID’s between client and server.

Strategy Conflicting items are passed to the method solve() of the strategy. To solve

the conflict, the strategy can test if it can merge the items, always let win the client
item or using the input alerts of SyncML to ask the user for correct values.
There are two strategies implemented in the prototype: MergeOrFail and Ask-
TheUser. MergeOrFail tries to merge the conflicting items. If this is not possible, it
returns a conflict error status code. AskTheUser first tries to merge as well. If this
is not possible, it issues an input alert command, asking the client which one is the
correct data.

IDataltem Interface for easy interaction between sync engine, store and strategy. Con-
tains payload data, record ID and methods to check if two items are different and if
they can be merged. These last methods allow the sync strategy to be independent
of the concrete data types.'

Authentication Creates objects representing the user for permission checking from the
<Cred> element. Stores must always ask the user object whether the specific com-
mand is permitted. Different roles can be created by having the authentication
class selecting different IUser implementations. The authentication can ask for
a specific scheme (e.g. no auth, basic and md5 digest) and checks the supplied
username/password. Thus, sync4j can work with any existing user authentication
system that can be accessed from within Java.

The authentication interface even allows authentication per database, but this is
not implemented in the rest of the prototype.

3.2.2 Handlers for client and server

The handler has to control communication flow. Figure 9 shows the message exchange.
To reduce the number of messages, some can be combined. The thin arrows show which
messages are combined and which states receive a combined message. It is possible that
more than one message is sent in one state. In this case, state transition will wait and
messages are not combined.

From the message flow in Figure 9, the state diagram is deduced. Figure 10 shows the
states client and server have to pass.

It is interesting to notice that client and server have similar states. Sending and
receiving modifications is about the same for client and server. Using a special mapping
that creates map commands instead of storing the ID’s and a dummy strategy that does
nothing, the client uses the same code for sending and receiving modifications as the
server.

BThe store knows which implementation of IDataltem must be instantiated for this database. The
item implementation knows the data type and thus if and how items of this type can be merged.

3.2. CONCEPT OF THE PROTOTYPE

Client

Init |

SJend
Hods

D

Receiwve
Mods

I

Send
Hapring

=

Start Sync [
__-_—‘_\‘HJ_
_‘_lTLEEEEEHgL—ﬂﬂ’

Ok & Client Mod

Ok & Server

—_

Init

)

Receive
Mods

Send
Hods=

Receive
Mapping

Figure 9: Communication flow in a synchronization

create create

Client |

Slow Sync

Fast sync

Refresh regquired

Client Modifications
Server Modifications
Mapping

|&nd Init |

Y

Receive Init

Server |
Y

| Send Modsl

| Receive Mods |

| Receive Mods | | Send Mods |
| Send Map | | Receive Map |

Figure 10: Handler states

25

26 CHAPTER 3. JAVA IMPLEMENTATION OF SYNCML: SYNC4J

Handler

ServerHandler ClientHandler

SyncState

ReceiveModsState SendModsState

ReceivelnitState SendinitState

ReceiveMapState SendMapState

Server only | |_Cl:i.ent only

Figure 11: Handler architecture

Figure 11 shows the architecture of the handler. Server as well as client have a handler
class to control state transition and status of synchronization. The server and client han-
dlers have little differences, most code is in the common base class. The most important
difference is that the order of state transition is not the same.

Each state is implemented as separate class. As noticed before, sending and receiv-
ing modifications is the same for both client and server. Both use SendModsState and
ReceiveModsState. The other states are different, as the client sends init while the server
has to receive init, and the client sends mapping and the server has to store it. The states
have a common base class which does most of the work.

3.2.3 Exception handling

The exception concept is extended. To the SyncML exceptions in the core layer, additional
exceptions for the sync engine and the handler have been added. Figure 12 shows the
new hierarchy.

The meaning of all core exceptions is described in the SyncML reference, as each
exception corresponds to an error code. But the sync engine and handler exceptions need
some explanation.

Syncengine exceptions tell in which part the problem occurred. Each part (data,
mapping, authentication and strategy) has his exception. Core exceptions can not be
thrown by the classes implementing the interfaces. If core exceptions occur, they must be
wrapped inside a SyncengineException.

The handler exceptions are not grouped by functional parts. Rather, they tell to
which level the synchronization must fail because of the exception. They can contain any
Sync4jException. If the contained exception is a SyncMLException, its error code is

3.3. HOW TO RUN THE SIMPLE TEST 27

| SyncdjException |
SyncMLExceptlon | SyncengineException | | HandlerException |
A

I StoreException | StopCommandException |
lex ZXX 3Xx 4xx 5xx|
| S —— MapException StopMessageException |

original syncdj

exceptions StrategyException | StopSessionException |

AuthException StopStoreException |

Figure 12: Exception hierarchy

used in the answer, otherwise an internal failure is reported. Some of the sync engine
exceptions can be used to give precise internal failure codes (i.e. store failure).

3.3 How to run the simple test

The CD contains the complete sync4j code. A simple test synchronization can be run us-
ing the test client sync4j.tests.protocol.handler.ClientHandlerTest and the server
running inside any servlet container.

For convenience, a ready to run Apache Tomcat is on the CD to. It is important to
copy the SyncML/Apache _Tomcat 4.0/ directory as well as the whole SyncML/sync4j/
directory to a writable disk, as server and client need to write files.

3.3.1 Server

The server is started with the batch file startup.bat on Windows, startup.sh under
Unix/Linux'. The scripts are located in Tomcat’s bin directory.

The resulting files are stored in webapps/syncml/WEB-INF/stores/ . To view the
messages exchanged in this session, take a look at the log files in the subdirectory logs
of the stores folder.

3.3.2 Client

When the server is running, the client can be run using testClient.bat respectively
testClient.sh in the src/tests/ directory. The store files are in the same directory.
The other batch files call JUnit test cases running without the server.

141f the shell script is not executable after copying from CD, use chmod u+x startup.sh.

Chapter 4

Practical example

As a concrete example, syncdj is used to synchronize time reports between a Palm hand-
held computer and a SAP R/3 backend. As mentioned in Section 1.2, the project will
consist of two parts. The “TiME” application will run on the Palm computer, providing
means reporting time. The sync4j client will be used to synchronize the reports from a
PC connected to the Palm with a Java server running the sync4j server.

This system will be used by the company ESPRIT Consulting AG.

4.1 Concepts

The concept for the TIME application is deduced from the SAP time reporting system
(CATS), as the information must be compatible with this system. Figure 13 shows the
SAP dialog for entering working time. Basically, time is reported by working duration.
Every entry must be associated with either a costcenter (KS, internal costs payed by the
enterprise) or a project element (PSP, payed by the project’s budget).

What is needed on the Palm are the lists of projects, costcenters and time reports.

4.1.1 Data structures

For the interface, the notion of a period is used. Working time is entered, confirmed and
controlled per period. The methods for manipulating time entries work on single days,
not on periods. The periods are only a user interface construct with no impact on the
underlying time reporting data and its synchronization. We will use one item per day
and KS/PSP.

Time entries contain a reference to a KS or PSP as foreign key. All other fields than
the name of KS / PSP are used only as information for the user to select the correct
target to charge on.

SAP communication

To communicate with SAP from within an external application, the Business Application
Programmers Interface (BAPI) is used. The BAPI methods are defined by SAP and
guaranteed to stay unchanged in their functionality over several versions. Table 3 lists
the BAPI methods used in the TiME application.

28

4.1. CONCEPTS 29

Arbeitszeithlatt Bearbeiten Springen Zusatze Umfeld System Hilfe

BAH CE BRE Do 8
Arbeitszeithialt: Erfassungssicht
BRAFS oD FZxFal| B B2 EED:S

Erfassungszeitraum 16.06.2002 - 31.08.2002 Waoche 33,2002
r EmpfStelle |Empfanger-PEP-Element |Bezeichnung W
20300 . CH TE General H
B B
L[] [[«][»]
=17t [EmpfStelle |[Empfanger-PSP-Element|Bezeichnung Summe |[16.08 {17.08 (18.08 |19.08 |20.08 21
(X aa £] a g
16,50 [l 4, 50 2]
20300 . CH TE General 16,50 7 & 4 60 [=]
0 [~]
[l [«

||_'| Erfassungssicht |||ﬁ Freigabesicht ||® Wariable Sicht |E1ntr‘ag 1 wan 3

| U JiD1 ¢13 (500 P2 Bienne | INS

Figure 13: SAP dialog for time reporting (Application CAT2).

Reading costcenters

BAPI_COSTCENTER_GETLIST1 ‘ Read the list of costcenters

Reading Projects

BAPI_PROJECTDEF_GETLIST Read the list of projects

BAPI_PROJECT_GETINFO Get details of a project (i.e. project elements)

Reading and manipulating time entries

BAPI_CATIMESHEETRECORD_GETLIST | Get list of entries

BAPI_CATIMESHEETMGR_INSERT Insert a new entry
BAPI_CATIMESHEETMGR_CHANGE Modify an existing entry
BAPI_CATIMESHEETMGR_DELETE Remove an entry

Table 3: BAPI’s used for synchronizing.

30 CHAPTER 4. PRACTICAL EXAMPLE

Projects and costcenters are only read and never written, because the Palm application
is for time reporting only and not for managing projects. Time records are read, inserted,
changed and deleted, each operation with a different BAPI.

The BAPTI’s listed in Table 3 have input and output parameters. Table 4 lists the
important fields found in the time report manipulation system.

BAPI.CATIMESHEETRECORD_GETLIST allows to select any employee. In the
TiME application, only the currently synchronizing employee will be selected in each
request.

In BAPI.CATIMESHEETMGR_INSERT the employee number is specified, and here
too, only the current employee is chosen.

‘ Description ‘ Field name ‘ Remark ‘

BAPI_.CATIMESHEETRECORD_GETLIST
From date FROMDATE
To date TODATE
Employee selection | SEL_EMPLOYEE Table to define search criteria.
Results are in a CATSRECORDS table.

BAPI_.CATIMESHEETMGR_INSERT and - CHANGE

Reporting profile PROFILE Always ”Consult” for Esprit
Testrun TESTRUN Whether changes should be made
Release data RELEASE_DATA Whether to confirm time data
Time entries CATSRECORDS_IN | Table of working times

(see tab. 5)

BAPI.CATIMESHEETMGR_DELETE

Reporting profile PROFILE Always ”Consult” for Esprit
Testrun TESTRUN Whether changes should be made
Time entries CATSRECORDS Table of entry numbers to delete

Table 4: Fields of the BAPI’s for time report manipulation.

Table 5 lists the fields of the Catsrecords table used wherever time reports are read or
written.

Table 6 contains two BAPI’s for reading costcenters and projects. Costcenters can
be read directly, while reading projects requires two steps. Each project contains a list
of project elements. GETLIST returns the list of projects. GETINFO is called for each
project to get its elements. Work can not be charged on projects directly but on a project
element.

4.1. CONCEPTS

ter

Description Field name Remark

Unique 1D COUNTER Not available in INSERT
Work date WORKDATE Date the work was done
Employee number | EMPLOYEE The employee this entry is for
Receiving costcen- | REC_CCTR Only if charging on costcenter

Project element

WBS_ELEMENT

Only if charging on project

Working time

CATSHOURS

Duration of work

Table 5: Fields of CATSRECORDS

‘ Description ‘

Field name

‘ Remark

BAPI_.COSTCENTER_GETLIST1

Controlling area ‘ CONTROLLINGAREA ‘ From value

Returns a list of costcenters with name, description and CO_AREA

BAPI_ PROJECTDEF_GETLIST

Maximal rows to be
returned

MAX_ROWS

Not used

BAPI_.PROJECT_GETINFO

Project key

PROJECT_DEFINITION

Returns all elements of specified
project

area, profit center etc

Returned is a list of project elements with their description, cost area, business

Table 6: Fields of BAPT’s for getting KS and PSP.

31

32 CHAPTER 4. PRACTICAL EXAMPLE

DTD for content data

SyncML defines everything except the payload data. It seems a good choice to define a
XML representation of this data as the rest of the protocol is XML too. (But any custom
format would do.) The document type definitions (DTD) of the Listings 3-5 describe the
items. These DTD’s are not used inside the code, as the elements never occur in an own

document, but are always included inside a SyncML message.

<!ELEMENT
<!ELEMENT
<IATTLIST

Listing 3: DID for time entries

Entry (DateInfo, refType, refID, minutes)>
DateInfo EMPTY>
DateInfo year CDATA #REQUIRED

month CDATA #REQUIRED

day CDATA #REQUIRED>

6 | <!ELEMENT refType #PCDATA> <!-- only 1 (KS) or 2 (PSP) -->
7 | <!ELEMENT refID #PCDATA> <!-- integer -->
8 <IELEMENT minutes #PCDATA> <!-- integer between 0 and 1440 -->

10

11

<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

Listing 4: DTD for costcenter

KS (ID, COSTCENTER, NAME, DESCRIPT,
CO_AREA, BOOKABLE?)>
ID #PCDATA> <!-- integer, unique for all KS -->
COSTCENTER #PCDATA>
NAME #PCDATA>
DESCRIPT #PCDATA>
CO_AREA #PCDATA>
BOOKABLE EMPTY>

<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

Listing 5: DTD for projects

PSP (ID, WBS_ELEMENT, DESCRIPTION, PROJECT_DEFINITION,
CO_AREA, COMP_CODE, BUS_AREA?, PROFIT_CTR?, BOOKABLE?)>
ID #PCDATA> <!-- integer, unique for all PSP -->
WBS_ELEMENT #PCDATA>

DESCRIPTION #PCDATA>

PROJECT_DEFINITION #PCDATA>

CO_AREA #PCDATA>

COMP_CODE #PCDATA>

BUS_AREA #PCDATA>

PROFIT_CTR #PCDATA>

BOOKABLE #PCDATA>

KS stands for ”Kostenstelle”, the German translation of costcenter. The key of a
project element is called WBS_ELEMENT in the important BAPI, so this name is used
here too.

4.1. CONCEPTS 33

As can be seen in Listing 3, costcenter and projects are not referenced the same way
SAP does. SAP has fields for both, selecting is done by filling in the right field (see Table
5). TiME uses a different scheme, as the string references would not work well on Palm.
A reference ID and a type telling if it references a KS or a PSP are used. Figure 14 shows
an entity relationship view of this data. The field names are taken from the BAPTI’s.

The ID’s are not the SyncML ID’s, as the later may be changed by the client. It
would be very complicated and error-prone if the references in a time entry would have
to be changed on a map update for a KS/PSP. The SyncML server must create unique
reference codes for all KS and PSP. He actually uses a hash code on the PSP/KS name,
thus the references can be recreated even if the server lost his data.

Palm structures

The records on Palm are created with fields in the same order as shown in the entity-
relationship diagram of Figure 14. All fields of the working time entries are of fixed length,
making it simple to access them with a C struct. Datelnfo is written as integer with 32
bits. The first 16 bit are used for the year, then eight bit for month and eight for day.
This way records can be sorted on the resulting 32 bit - integer.

The fields of KS are semantically the same as the first six of PSP, allowing a common
base class. All fields except for ID and BOOKABLE are character strings of variable
length. This means the fields can not be found at a fixed position but the record must be
read sequentially. As the fields must have the possibility to be long but often are short
or even empty, lots of memory is saved.

At the time of this writing, ESPRIT has about 400 costcenters and 100 projects. As
they can not be deleted in SAP, their number will increase. The synchronization should
take care only to transmit costcenters and projects that make sense for the user.

Work entry] Costcenter] Project
Datelnfo P 1P
reflD n BOOKABLE BOOKABLE
refType COSTCENTER WBS_ELEMENT
minutes NAME DESCRIPTION
DESCRIPT PROJECT _DEF
CO_AREA CC_AREA
BUS_AREA
COMP_CODE
PROFIT_CTR

Figure 14: Entity-relationship diagram of time data.

Connection information for synchronization is configured on Palm. This way, it will
be easier to implement the SyncML client directly on the Palm one day. Each line is a
record by itself. The conduit reads it and stores it as a properties file. No XML format is
needed as the connection information is not transmitted in the sync but used to establish
sync.

34 CHAPTER 4. PRACTICAL EXAMPLE

401.07-15.07. 2002

(MeuKS] w myTiME [MeuPSP]

Mochentag: M: Do M Do F: 5 5 M
............... Tag:1 2 3 45 6 7 8

Surme: @ 6 0 0 0O O 0O O
..... 20102DE:0 2 0 0 0 0 0 O
GEVOCHT 0 4 0 0 0 0 O O

Figure 15: Main screen of the Palm application

The Palm application main screen (Figure 15) has similarities with the SAP dialog,
but also some extra features like the favorites.

Figure 16 shows the communication network for synchronization of a Palm with SAP
R/3 using the SyncML conduit and the SyncML servlet. If we write a SyncML application
for the Palm, the HotSync and conduit can be removed without any problems, as the
protocol to the server is standardized. We could even synchronize the Palm to other
systems than SAP without modifying the client, or write a Java application for time
reporting that runs on a computer without touching the server.

s

SyncML
Hot3vnc jCco

EI:ID

SyncML Client: SyncHML Server
Conduit Servlet in Tomoat

Figure 16: Synchronization flow of ESPRiT TiME.

4.2. CLIENT APPLICATION WITH PALM 35

4.2 Client application with Palm

Palm computers were developed for being as small and inexpensive as possible. Compared
to the Windows CE devices and, of course, desktop PC’s, Palm computers have a slow
processor and little memory. They are suited as mobile agenda and notepad, and from
the first devices on, interaction with personal computers was possible. Everything needed
for data exchange is included in the price of a Palm. The 'Cradle’ is recharging station
and synchronization adapter. Synchronization is also possible via infrared port (IrDA),
which is present in newer devices.

The program HotSync is used on the PC side. It waits on the serial, USB or IrDA
port for the Palm to start synchronization. Each Palm program has its corresponding
Conduit. All synchronization logic lies within the conduit, the Palm is only used to read
data. Those small software parts registered in the HotSync Manager get called one after
another during synchronization. HotSync gives the conduits access to the Palm data.

Custom conduits can be added to change the synchronization for an existing applica-
tion or to add synchronization for a new application. The standard language for HotSync
conduits is C++, but they can be written in Java too. In this case, the JSync extension
to HotSync must be installed.

4.2.1 Getting sync4j to use a Palm

It was rather simple to enable sync4j using a Palm. The only thing to be done was writing
a store that reads from and writes to the Palm. The main client application is a conduit.
It acts as a SyncML client, using the sync4j library with a PalmStoreFactory that creates
stores which can access the Palm.

To install the conduit and the Palm application, Conduit Installer 1.6.1 by handX[18]
is used .

For information on the time reporting application, see the documents mentioned in
the Appendix A. Resources for Palm programming from the manufacturer himself are
available at [16], a good book about Palm and Conduit programming is [17].

4.3 Server application with SAP R/3

The server is running as a web application inside a java webserver. To understand the
following chapter, you need basic knowledge of java servlets [10].
The sync4j server framework is slightly extended. The most important features are:

e The factory for Mapping/Stores is a servlet instantiated at webserver startup.

e Costcenters and Projects are not directly read from SAP. A cache instantiated at
startup and controlled by the factory servlet holds the SAP data. The KS/PSP
Stores query the cache.

e Time reports are directly read from and written to SAP, without caching.

e Dirty items are identified using timestamps. Every item has a last modified times-
tamp. The stores have a timestamp of the last successful synchronization. Every-
thing modified since the last sync is dirty.

36 CHAPTER 4. PRACTICAL EXAMPLE

4.3.1 Server architecture

| iStoreFaciory
Created by wehserver et from context
iMapFactory | _ _ _ at system startup |
SAPStoreF actory Serdet TiMEServlet
create +
TiME Server
] Y
Syncd] Framework
Framework using
factory servlet
TO Create STOres
IStore KS/PSP Store EntryStore
A

1 I FPer user, updated
1 1 I on instantiation

destroyed after syne
Figure 17: Architecture of the server.

Figure 17 shows the TiME SyncML server. In the web.xml configuration file, the
servlet container is told to instantiate the SAPStoreFactoryServlet on startup. This
servlet is factory for both stores and mappings. On instantiation, it creates the caches
and updates them for the first time. Caching is explained more detailed further down this
chapter. The factory servlet finally places itself into the servlet context.

The servlet TiMEServlet receives the synchronization messages. It does session man-
agement and retrieves the factory from its context. To continue a session, it looks up the
TiMEServer instance, if none is found, a TiMEServer is instantiated and a new session cre-

ated. The TiMEServer passes the factory servlet and an authentication implementation
for SAP (described below) to the framework.

4.3.2 The caching mechanism

Reading costcenters and projects from SAP takes a long time'®. But it is an other

reason that makes it really mandatory to cache the data. We only want to synchronize
the modified items with the client. The author found no way to get the time of last
modification from SAP. As a work around, a copy of the data is stored locally on the
server in XML files, containing a last modification timestamp. Updating the cache is
done by reading everything from SAP and comparing it to the local data. If an item
changed, it is replaced with the SAP data and the timestamp set to the current time.'6
Figure 18 shows the caching concept. The caches for costcenters and projects have
only one instance, as their data is the same for all clients. To avoid unintended multiple

5For ESPRIT Consulting, there are about 100 projects and 400 costcenters, taking about 30 seconds.
Other enterprises may have many more.

I6For getting the current time, the java.util. Date class is used. This class depends on the system clock.
If the system clock runs false more than a day, synchronization will work on past or future periods instead
of the current.

4.3. SERVER APPLICATION WITH SAP R/3 37

=AFP RS

*

TiME SyncML Server

Common for the Serwver, created at st.art.up,‘\
updated perio}di}allg by the waker thread.

4

KSCache PSPCache Yakar

.f f *updateo

; ; EntryStare
KEStore PSP stare Per client =session,

created at syne init

Figure 18: Cache concept of the server.

instantiation of them, they are implemented as Singleton'”. To learn about new or mod-
ified projects and costcenters, a separate thread is started. It sleeps for a configurable
amount of time, typically a day. Then it wakes and calls update on the caches and sleeps
again. This is repeated as long as the web server is running.

The actual stores get a reference to the caches. The stores only save the last synchro-
nization time for the actual client, so they can ask the cache what has been modified since.
Writing of projects and costcenters to SAP is forbidden, as it should never be needed.

No cache for time reports

For time reports, no caches are used. They are client specific, only a small number exists
per user and they change often. Upon connection with the client, the EntryStore is
created and reads all time reports for the client from SAP. A local copy of the data is used
nevertheless, in order to find what was modified on SAP since the last synchronization.
Modifications received from the client are passed directly to SAP, to be sure nothing gets
lost in case of a server crash.

Updating the caches only once every couple of hours sounds a little dangerous. If
a new project is defined, a user immediately charges work on it inside SAP and then
synchronizes, the new time report is found, but the new project not, as the cache has
not been updated since. The Palm application can not work with reports for inexistent
projects and would crash.

To avoid this problem, the EntryStore checks for every new report read from SAP if
the referenced project or costcenter exists in the cache. If it is not found, cache update is
triggered. Because reports are read at sync initialization, the caches are updated before
anything is sent to the client. Either the new costcenter / project will be sent, or the
connection times out from client side and synchronization has to be restarted. But sending
inconsistent data would be worse than risking a timeout.

17See [9] for more information about the design pattern “Singleton”.

38 CHAPTER 4. PRACTICAL EXAMPLE

4.3.3 Authentication

For authentication, SAPAuthentication is used. This extension of the basic authenti-
cation checks the correctness of the credentials by trying to connect to SAP with the
specified username and password. Authentication is delegated to SAP by only accepting
credentials that result in successfully connecting.

The connection is stored in a special [User type called SAPUser. The entry store
requires the IUser to be of type SAPUser, in order to connect with SAP.

For updating the caches, some username and password are needed. They must be in
the configuration at startup, as no client specified username and password are available
at this moment.

4.3.4 jCO: Java Connector

Using SAP from external programs is usually done calling BAPI’s (see Section 4.1). SAP
provides a library to their customers called Java Connector (jCO, [19]) for calling BAPI’s
from within a Java program. The BAPI parameters can be filled in by method calls or
with XML strings and results can be retrieved as XML too. EntryStore and the caches
use the BAPT’s listed in Section 4.1.

To connect, lots of parameters are needed. They are passed as a Properties object to
jCO. Table 7 lists the parameters with old examples from ESPRiT. SAPAuthentication
uses those parameters to create connections. Everything except username and password
is specified at startup.

The user ID for the connection must not necessarily be the ID of the employee reporting
time. A user with rights to modify time reports of any employee could be used for this
application, but then, user authentication had to be done entirely by the SyncML server.

Parameter name | Explanation Example value

client SAP client 200

user User ID 1125

passwd User password test123

lang Language for messages | DE

ashost Host name /H/195.179.4.138 /H/genf
sysnr System number 00

gwhost Gateway Host 195.179.4.138

gWServ Gateway service sapgw(0

Table 7: Connection parameters for jCO.

Chapter 5

Conclusion

5.1 Criticisms of SyncML

The implementation of sync4j revealed smaller problems in the SyncML specification. The
politics of the SyncML committee are diverging. Having the reputation of being closed
and not very flexible, it announced recently to move towards Open Source.

5.1.1 The SyncML committee

The aim of the committee is to make SyncML an industry wide standard, but their
structure is rather closed. Even some of their (smaller) members complained about it in
the enquiry held for this diploma thesis. Only one of the 10 main sponsors with direct
contact addresses on the syncml.org web site answered to the enquiry email at all.

To have a device tested for SyncML compliance, companies must attend a meeting of
SyncML called SyncFest. With the membership fees, SyncML development gets rather
expensive. Until recently, the committee began to sell the SyncML Conformance Test
Suite used at the SyncFest. The parts synchronization and device management cost each
$ 5000. For promoter members, it is free, normal members get a $ 1000 discount on the
first part they purchase.

As discussed in Section 2.4, the reference implementation of SyncML was not made
available for some time. But a press release dated from 8-20-2002 announces that the
SyncML committee released the toolkit under Open Source License. '8

A publicly available reference implementation had been the key for the well known
Internet protocols to succeed and become a wide used standard, for example HTTP,
SMTP or FTP.

SyncML has it’s potential. Perhaps this more "Open Source oriented” attitude will
help it to conquer the synchronization world.

5.1.2 Flaws in the specification

The SyncML specification tries to be as clear as possible, using the keywords "MUST”,
"MUST NOT”, "MAY”, etc. as defined by the IETF for RFC’s. But the specification is
sometimes unclear and some operations can be done in different ways.

18The press release is at http://www.syncml.org/press_release.asp?id=36, the toolkit is available
at http://sourceforge.net/projects/syncml-ctoolkit.

39

http://www.syncml.org/press_release.asp?id=36
http://sourceforge.net/projects/syncml-ctoolkit

40 CHAPTER 5. CONCLUSION

- REPLACE must be interpreted as ADD if the item does not exist. This is not very
intuitive, I would prefer to use PUT if the application does not know if the item
already exists. The ADD operation is rather useless if REPLACE adds items too.

- It is not clear if GET and PUT can only be used in device information or if they
are used to transmit data also.

- In the status codes for operations, two status exist to tell something is forbidden.
403 "forbidden” and 405 "not allowed”. The descriptions are worded different, but
it is not explained why two codes exist and when to use which.

- Addressing using URIs is very flexible, but also rather complicated. Because each
item inside a command can be addressed with an absolute URI'Y, the database in
the Sync command could be overwritten. I think it would be sufficient if the item
just would have an identifier consisting of #PCDATA.

Thus, SyncML is a rather complex protocol, mostly because there are too many places
to specify meta information, targets etc. This makes it difficult to implement. The author
had to spend more time coding than planned.

Confusion caused by device management requirements

Since version 1.1, the commands Add, Replace, Delete etc. may be placed directly in the
SyncBody instead of the Sync element. This changes were made for the device manage-
ment part of the protocol, but the specification does not restrict it to this part. It would
be better to have this restriction, as with the current situation, both versions must be
supported. The tag <Sync> looses its sense and the code gets more complex.

The same problem is with commands allowed inside Atomic and Sequence. Because of
the device management protocol, it is allowed to put Get, Exec and Alert commands into
them. But this is not restricted to device management, confusing the structure proposed
in 1.0.1 .

5.2 Criticisms of the project

This section leads along the analyzing loop of ”achieved results” - "known problems” -
"possible extensions”. At the end, the tools used for the diploma thesis are listed.

5.2.1 Achieved results

The sync4j prototype is runnable and synchronization between Palm and server working.
A fast and easy to use Palm application for time reporting has been developed. The user
test revealed lots of possible improvements, of which a majority has been implemented.

The author learned a lot for different areas: SAP, Palm C++ programming, Java
programming using existing libraries and holding an online enquiry. Because the work for
completing the Palm application and also the difficulties for getting the sync4j prototype
running were underestimated, the project duration was longer than planned.

9The spec indicates, " The Target and Source specified within the Item element type SHOULD be a
relative URI, as relative to the corresponding Target and Source specified in the parent Atomic, Sequence
or Sync command”. I would prefer a MUST.

5.2. CRITICISMS OF THE PROJECT 41

The design is not always compatible with the envisioned sync4j design by S. Sullivan.
But the writing of the Palm store proved that this design is very attractive for quickly
adding a resource to the syncdj system. Using the knowledge on HotSync conduits gath-
ered with the first version, the client had been written within 3 working days.

As no real alternatives to SyncML were found, the comparison between different syn-
chronization standards could not be done.

It would have been interesting to test interoperability with the SyncML toolkit, or
even try to use it on the Palm. As it was released only a few days before the end of the
diploma work, this was no more possible.

5.2.2 Known problems

Sync4j is not complete. The whole part of device management is not implemented in the
prototype. Also, no meta information about maximal record size, maximal record number
etc. is processed.

The code is not very stable and error case behavior sometimes confusing. For a really
reliable application, restructuring of the code and much more debugging will be needed.

The compatibility with other SyncML applications has not been tested. As the proto-
col is not always easy to understand, some wrong interpretations of the specification will
have found their way into the code.

The Palm program has been thoroughly tested. The only major bug is that the
application crashes with an error message if a KS / PSP referenced by a time report does
not exist. The other bug is that it is possible to add the same item more than one times
in the favorites. But this is less severe, as the program is able to run correctly anyway.

5.2.3 Possible extensions for sync4j

- Add support for the mandatory data types vCard, vCalendar etc .
- Implement MD5 support. Possible source for the MD5 code could be [11].
- Implement CGI scripting. Possible source for CGI parser could be [11].

- If the payload is no XML, it could contain the reserved characters “< > & 2’7, If
for example “<” is not matched by “>”, the whole message is invalid and can’t be
parsed.

- Client mapping should be able to save mapping commands for using them on next
sync. Handler should be able to send the update at the beginning of a new sync
session if it has not been sent at the end of the last session.

- Improve the structure of the handler. Perhaps it would be cleaner to use one instance
per data store.

- SyncEngine classes should be integrated into the handler, as the division is arbitrary.
The handler should be restructured to be more modular, possibly with interfaces.

- Improve the server. Currently, sessions are never removed from the environment,
even if they terminate correctly.?’

20The TiME server however, does remove them, but not through the standard interfaces. He knows
the specific implementations.

42 CHAPTER 5. CONCLUSION

5.2.4 Development directions for the TiME application

The ESPRIT TiME synchronization should be improved by enabling the server to detect
if a costcenter is still bookable (for projects, it is already implemented). Further, only
projects and costcenters valid for the current user should be transmitted. The problem is
that SAP seems not to provide this information. For some cases, CGI filters could do the
job. ESPRIT for example has all names twice, one ending with .CH for Swiss employees
and one with .DE for Germans.

Old time reports should be soft deleted for properly restricting what is synchronized
and what not.

Extension possibilities for the Palm application

To enable the Palm to synchronize directly with the server, for example via a cellular
phone with infrared port, the SyncML toolkit could be integrated into the application.

It is currently not possible to confirm the time report from Palm, the user has to log
into the SAP GUI for this task. The confirmation is needed at the end of a booking period
for the bookkeepers. Implementation would consist of setting the RELEASE_DATA flag
in BAPI_CATIMESHEETMGR_CHANGE.

Additional functions for the application are possible. Very important would be report-
ing of expenses. They are also charged on costcenters and projects. Another task could
be annotations to the work done, in case a project needs more detailed proof for how the
time was used. Also very nice would be a recorder function to just click when work starts
and again when it ends and automatically create the report entry.

5.2.5 Used tools

Java programming was first done using UltraEdit32 on Windows and "make” in cygwin
environment, a shell with lots of GNU tools for Windows. For SyncML, Together Control
Center 6.0 was used.

Primary developing system for the Palm application was Linux, with XEmacs as editor.
For compiling, the PRC toolchain 2.0, including a GCC modified for PalmOS, was used.
Resources where designed with pilrcedit, edited in XEmacs and compiled with pilrc version
2.8 beta 7. Debugging was done running m68k-palmos-gdb on Linux, connecting to Pose
on Windows.

Earlier documentations where written with Microsoft Word, but the thesis is written
in latex, the PDF created with pdflatex. For the diagrams, dia 0.86 was used?!.

The installation program for the Conduit and Palm application is the Conduit Installer
1.6.1 by handX software, distributed under the Lesser Gnu Public License (LGPL).

2For Windows users, a Windows port of dia is included on CD.

Bibliography

1]

[10]
[11]

[12]

[13]

[14]
[15]

http://www.syncml.org??, official SyncML web site. (Specifications and toolkit also
on accompanying CD)

http://syncdj.sourceforge.net, project home of syncdj.

Sullivan S., Presentation of sync4j at JavaOne, 2002. http://sync4j.sourceforge.
net/presentations/sync4j-JavaOne2002.ppt (Also on accompanying CD, syncd;j-
JavaOne2002.ppt)

Berger M., Integrated PIM data management with SyncML, Technische Univer-
sitat Miinchen, 2002. http://wwwbrauer.informatik.tu-muenchen.de/ bergerm/
syncml/ (Also on accompanying CD, bergerm.pdf)

libsyncml, Open Source SyncML implementation in C++, http://libsyncml.
sourceforge.net

kSync, Open Source SyncML implementation in Java, http://ksync.enhydra.org
Bergsten H., JavaServer Pages, O’Reilly, Sebastopol, 2001.
Flanagan D., Java in a Nutshell, O’Reilly, Sebastopol, 1999.

Gamma, Erich (et al.), Design patterns: Elements of reusable object-oriented soft-
ware, Addison-Wesley, 1995

Java 2 Enterprise Edition, http://java.sun.com/j2ee/

Java utilities, Ostermiller S., http://ostermiller.org/utils/
http://ostermiller.org/utils/MD5.html
http://ostermiller.org/utils/CGIParser.html

http://www.zvon.org/HTMLonly/XSLTutorial/Books/Bookl, Zvon XSLT Tuto-
rial, Nic Miloslav
http://wuw.zvon.org/xx1l/XSLTreference/Output/, Zvon XSLT Reference

http://www.ibiblio.org/xml/books/bible2/chapters/chl17.html, Kapitel 17 of
XML Bible, Second Edition, Harold, Elliotte R., June 2001

http://www. jdom.org JDom, simplyfied XML wrapper for Java.

http://xml.apache.org/xerces-j/ Xerces XML processor for Java.

22 A1l web links where last checked 13.9.2002 if not mentioned otherwise.

43

http://www.syncml.org
http://sync4j.sourceforge.net
http://sync4j.sourceforge.net/presentations/sync4j-JavaOne2002.ppt
http://sync4j.sourceforge.net/presentations/sync4j-JavaOne2002.ppt
http://wwwbrauer.informatik.tu-muenchen.de/~bergerm/syncml/
http://wwwbrauer.informatik.tu-muenchen.de/~bergerm/syncml/
http://libsyncml.sourceforge.net
http://libsyncml.sourceforge.net
http://ksync.enhydra.org
http://java.sun.com/j2ee/
http://ostermiller.org/utils/
http://ostermiller.org/utils/MD5.html
http://ostermiller.org/utils/CGIParser.html
http://www.zvon.org/HTMLonly/XSLTutorial/Books/Book1
http://www.zvon.org/xxl/XSLTreference/Output/
http://www.ibiblio.org/xml/books/bible2/chapters/ch17.html
http://www.jdom.org
http://xml.apache.org/xerces-j/

44 BIBLIOGRAPHY

[16] Official Palm OS web page, http://www.palmsource.com/developers/
Palm: Palm OS Companion.pdf, Palm OS Reference.pdf (On CD: palmos40-docs.zip)
Conduits: JSyncCompanion.pdf, JSyncTutorial.pdf (On CD: cdk402-docs-win-
pdf.zip)

[17] Palm Programming, The Developers Guide, Rhodes, Neil und McKeehan, Julie,
O’Reilly, Sebastopol 1999

[18] Conduit Installer, http://www.handx.net (Also on accompanying CD, ConduitIn-
staller_v1_6_1.zip)

[19] http://service.sap.com/connector/ Libraries, reference and tutorial for Java
Connector jCO. (Password protected page for SAP customers)

http://www.palmsource.com/developers/
http://www.handx.net
http://service.sap.com/connector/

Appendix A

Directory organization on the CD

Contents of readme.txt in CD root directory:

/

|

|

+-readme.txt : Informations about the data on the CD

I

I

+-Documents/ : Diploma thesis and additional documents

|

+-paper.pdf : Main document of the diploma thesis

I

+-summary.pdf : One page summary of the thesis

|

+-plakat.pdf : Eight pages short overview of the thesis
|

+-Extra/

| Additional documents written by the author.

(Folders for enquiry, Palm program documents, and beta test)

I

I

+-Sources/

| | Source of the diploma thesis paper and summary (latex files)
|

| +-img/

| Image files for the thesis and installer to edit dia diagrams.
I

+-SyncML/

Specifications from syncml.org for versions 1.0.1 and 1.1,

along with the 1.0.1 toolkit and the most recent toolkit from
sourceforge.

Presentation of sync4j by Sean C. Sullivan (MS powerpoint file).

|
|
I
I
|
|
|
I
I
|
|
|
I
I
I
|
|
|
I
I
|
|
| Thesis about SyncML by Maximillian Berger.
I

I

|

45

46 APPENDIX A. DIRECTORY ORGANIZATION ON THE CD

-ESPRiT_TiME/ : Installer for Palm application & source.
|
I
+-Build2.0/
| Compiled Palm program TiME, version 2.0.
|
+-DemoVersion/
A version of the application which does not require to be
synchronized before running, for the Palm simulator.

Evaluation_Environments/

Documentation of environment evaluation for Palm programming.
Installation packages for the evaluated environments.

Test applications for the environments.

Installs/
| Installation packages for editors, compilers and documentation
| used. (Open Source and public domain programs)
| => To install the application, use the installer in Setup2.0
I
+Pose/
Palm simulator (0S may not be distributed, must be downloaded
from a Palm computer or from palmos.com web page after signing
a non disclosure agreement.)

01d/
0ld versions of the time reporting application and a test
application to crash the Palm with heap overflow.

|

|

|

I

I

I
4-
|

|

I

I
4—
|

|

I

I

|

|

|

I

I
-
|

|

I
+-Setup2.0/

| The setup for installing Palm program and conduit.

| Run ConduitInstaller.exe to start installation.

| After the installation, start TiME on Palm once.

| Then start HotSync to load projects and costcenters onto the Palm.
| For synchronization, the tomcat server provided on this CD must be
| running. (Copy it on a writable drive!)

| The results of the synchronization are in the file

| [Tomcat]\webapps\syncml\WEB-INF\stores\Entry.xml

|
+-Source2.0/

| The source code of version 2.0 with makefile for m68k-palmos-gcc
| To compile the code, use the compilers from the Installs dir.

|

+resources/

Resource files for pilrc.

+
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
|
I
I
I
I
|
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
|
I
I
I
I
|
I
I
I
I

47

+-SyncML/

|

|

+-Apache_Tomcat_4.0/
A JavaServer configured to run the sync4j servlet. Before running
it, copy the folder to a writeable drive. On the CD, tomcat can
not create files and will not work correctly!
It can be started and stopped with help of the batch files in bin\
The application data is in [Tomcat]\webapps\syncml\WEB-INF\stores\

|
|
|
|
|
|
+-Installs/

| | Installation packages for developping conduits.

I

| +-Library_Distributions/

| Original library distributions used by sync4j.

I (The necessary jar files are already in the right directories)
|

-

|

|

|

-

01d_Conduit/
01d versions of the conduit.
(Without SyncML and only poor conflict resolution.)

sync4j/

Source code, compiled java classes and documentation.

For running the tests, use the batch files in src\tests\

Copy the whole sync4j directory to a writable disk as the tests
need to write files.

prepareStore.bat can be used to reset the stores.

For sucessfully running testClient.bat, Tomcat must be running.

Appendix B

Guide to the additional documents

Additional documents written by the author are found on CD in subfolders of folder
Documents/Extra. Below is a description of those files. Some of the earlier documents
are written in German.

B.1 Enquiry about SyncML

The file SyncML_Enquiry.pdf contains the evaluation of the enquiry on 25 pages. The
additional document Enquiry_Questions.pdf lists the exact questions.

The enquiry is also available through the Internet under the address http://diuf.
unifr.ch/telecom/projects/syncml/.

B.2 ESPRIT TiME: Time reporting on Palm

The file TIME_Palm.pdf contains information about the Palm application for time report-
ing and some comments on Palm programming in general.
The installation guide and user manual is in the file Anleitung.pdf (also in German).

B.3 Beta Test

To test the Palm application, a user test was conducted with three employees of ESPRIT.
The evaluation of their feedback on version 1.0 of the Palm application and synchroniza-
tion without SyncML are in the folder Documents/Extra/BetaTest/

B.4 Development environments on Palm

To choose the right environment for programming the Palm handheld, an evaluation of
different developing environments was done. Tests were made with the open source C++
compiler GCC for Palm, IBM’s Java environment Visual Age Micro Edition (VAME),
a small virtual machine implementing a subset of Java called Waba, and the high level
design tool satellite forms. GCC was finally selected for programming the application.
The file palmos_developtools_evaluation.pdf holds the results of the evaluation
(in German). Installs for the evaluated environments along with the evaluation programs
are on CD too. All files are in the directory ESPRiT_TiME/Evaluation Environments/ .

48

http://diuf.unifr.ch/telecom/projects/syncml/
http://diuf.unifr.ch/telecom/projects/syncml/

	Contents
	Introduction
	Overview
	Objectives
	Procedure

	SyncML
	Synchronization concepts
	Introduction to SyncML
	Alternatives to SyncML
	SyncML concept
	Data synchronization
	Device Management
	Differences between version 1.0.1 and 1.1

	SyncML market perspectives
	Results of the enquiry
	Conclusion

	Implementations
	Commercial offers
	Open source implementations

	Java implementation of SyncML: sync4j
	The existing framework
	Transport
	Core
	Protocol
	Framework

	Concept of the prototype
	Synchronization Engine
	Handlers for client and server
	Exception handling

	How to run the simple test
	Server
	Client

	Practical example
	Concepts
	Data structures

	Client application with Palm
	Getting sync4j to use a Palm

	Server application with SAP R/3
	Server architecture
	The caching mechanism
	Authentication
	jCO: Java Connector

	Conclusion
	Criticisms of SyncML
	The SyncML committee
	Flaws in the specification

	Criticisms of the project
	Achieved results
	Known problems
	Possible extensions for sync4j
	Development directions for the TiME application
	Used tools

	Bibliography
	Directory organization on the CD
	Guide to the additional documents
	Enquiry about SyncML
	ESPRiT TiME: Time reporting on Palm
	Beta Test
	Development environments on Palm

