
 

 

 

Operator Editor 

User manual 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contact: Dorian Gorgan, dorian.gorgan@cs.utcluj.ro  

 

 

Cluj-Napoca, 2012  

mailto:dorian.gorgan@cs.utcluj.ro


 

 

 

 

Contents 

 

1. Introduction .......................................................................................................................................... 3 

2. Interface ................................................................................................................................................ 3 

3. Programming Interface ......................................................................................................................... 5 

1. Downloading the API ........................................................................................................................ 5 

2. Running program locally ................................................................................................................... 6 

3. API Description ................................................................................................................................ 11 

4. GRASS Description .......................................................................................................................... 12 

4. Examples ............................................................................................................................................. 13 

1. Adding two numbers ....................................................................................................................... 13 

2. Grass NDVI ...................................................................................................................................... 14 

5. Conclusion ........................................................................................................................................... 15 

 

  



1. Introduction 

This platform has been created with the idea that individual users of the GreenLand platform 

may be able to customize their programs running on the Grid up to their smallest elements, 

which are the operators. 

This document is an introduction into operator creation, and updating. It also highlights the 

rules for these operations. It presents in great detail the Graphical User Interface and 

Programming Interface used in this application. 

2. Interface 

The Operator Editor is part of the GreenLand application which may find at 

http://cgis2ui.mediogrid.utcluj.ro/GreenLandv2/. Once signed in, the user will select “Add 

Workflows” from the top menu bar, and then from the newly opened section select the 

“OperatorMng.” button. At this moment a new modal widow will be displayed (Figure 1). 

The user is able to create a new operator by using the “New operator” menu option. There is an 

approximately 1-2 days delay for releasing the operator for production usage (this time is 

required for the GreenLand team to validate it and to assure that it function correctly both on 

standalone machines and Grid infrastructure). If the operator is not valid, it will be not made 

accessible throughout the GreenLand application, not even for its owner. 

Before using this option, there is the need to download an example (using the “Download 

operator API”) that highlights how to extend basic functionalities in order to create your own 

operator. Within this page some mandatory fields are displayed to the users: 

 Name: represents the operator’s name throughout the GreenLand application; 

 Description: it is useful to know what is the functionality provided by this operator, 

Figure 1) Operator creation module 

http://cgis2ui.mediogrid.utcluj.ro/GreenLandv2/


especially for users that do not own the module; 

 Category: the best solution is to group operators that share the same functionality. Choose 

the best one for your operator; 

 Privacy: public or private attributes will influence the operator’s visibility throughout the 

GreenLand application. Private use means that the module could be used only by its own 

creator, while the public property allows its usage for the entire community; 

 Java class name: this input should contain exactly the same name as the java class that was 

used to extend the API functionality; 

 Browse: when creating a new operator, there is the need to extend the functionality 

provided by the existing API archive. This is a java example that needs to be further changed 

in order to implement your own type of actions. When inserting the operator into the 

GreenLand system, you should provide an archive with all the java classes, including external 

libraries and dependencies. The archive could have .rar, .zip, and .tar.gz formats; 

 Inputs/outputs types:  this section allows the users to specify the inputs and the outputs 

types, based on the java internal implementation. 

When changing the module’s properties, the “Update operator” menu option should be used (Figure 

2). On the top of the page there is a table of operators, belonging to the current signed in user. 

Selecting one of them, will enable its properties to be displayed in the lower section of the page that 

has similar functionalities with the one presented in the operator creation paragraph. 

There are three states available for an operator: 

 Pending: set just after its creation. This means that the operator will be first analyzed by the 

GreenLand team, to verify if it adopts the principles expressed earlier. Name, description, 

category, and privacy are the only fields that could be update within this period; 

 Updated_requested: the functionality provided by the operator contains syntactic error, or 

Figure 2) Update operator module 



it does not perform correctly. At this stage, it is recommended to update the operator’s 

implementation, by rewriting the java classes. Operators that share this status are not made 

accessible throughout the GreenLand application; 

 Valid: the operator functions correctly and it is released to the users community. 

3. Programming Interface 

To the user interface there is also attached a programming interface, which allows the user to 

create the operators and to download a gProcess compatible framework for executing operators 

on the Grid. 

Why is there the need for this programming interface? It is because gProcess has a unique way 

of passing parameters to its operators. This mode of passing constrains the operator to be 

implemented in Java and to have its arguments passed in a specific, predefined manner. 

During the course of this chapter we will present the steps and requirements in order to build 

your own gProcess operator. We will show some tricks in order to embed already existing 

programs within the newly created operator. These may be implemented in any programming 

language as long as these programs can run within the Linux operating system. This constraint is 

imposed by the underlying Grid platform. 

Finally we will present the GRASS framework for Grid execution and how by simply extending a 

class and overriding one methods, the user can have his or her own operator. The IDE’s of 

choice for presenting this task will be Eclipse and Netbeans. 

1. Downloading the API 

Before the user can start implementing his or her operator it is advised to download the API 

(http://cgis2ui.mediogrid.utcluj.ro:8195/GreenLandv2/OperatorAPI.rar) for gProcess 

execution and start exploring it, in order to get a better grip of what is allowed and how 

parameters are passed to the program. Please see (Figure 2) for an example as to from 

where to download the file. 

The content of the downloaded API is as follows: 

a. JAR containing the API for gProcess execution and GRASS deployment: 

Operators.jar 

b. JAR containing the dependencies for Grid execution: apmon.jar  

c. GRASS application distributable archive: grass.tar.gz 

d. GRASS dependency package: dummy_location.tar.gz 

e. Main class of Operators.jar: OperationExec.class 

 

In order to be able to use the framework all the files specified above must be included 

within the archive submitted as the operator files. Please see Sect. 2 . 

Before continuing to the implementation phase of this tutorial it is advised for the user to 

have a general overview of the limitations this framework imposes: 

http://cgis2ui.mediogrid.utcluj.ro:8195/GreenLandv2/OperatorAPI.rar


a. Testing of any operators to be inserted within the gProcess platform will be done 

within the confines of a Linux operating system 

b. All Operators which will be submitted to gProcess will be compiled using the JDK 1.5 

or any previous version of the Java SE platform  

c. When creating the operators, be it that the programmer uses the framework 

provided or starts from scratch. Either way the strict mode of passing parameters 

must be respected. More will be detailed in the next Section. 

2. Running program locally  

Before uploading your operators to gPorcess it is best that the user tests them locally. In 

order to be able to do this you should follow these steps: 

a. Install Java SE 1.5 on your Linux machine 

b. Install the development kit  on your IDE 

c. Select the default development kit for your project 

d. Determine your working directory, and program arguments of your project 

After completing these steps you will be able to run your application locally. The IDE’s for 

which each of these steps will been discussed and detailed are Eclipse and Netbeans. 

2.1. Install Java SE 1.5 on your Linux machine 

First step is to download the Java Development Kit version SE 1.5 for Linux from 

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-

downloads-javase5-419410.html  or any other source the user may wish.   

It is required that you compile your program using this version due to the fact that certain 

nodes of the Grid have not been updated to use the latest version of the running 

environment. 

2.2. Install the development kit on your IDE 

In order to be able to make your IDE use the desired version of Java development kit you 

must first make it aware of it. 

Eclipse: 

Select from the menu bar Run-> Run Configurations  

Select Java Application as the type you want to configure. If there are no configurations 

available please create one by right clicking on it and selecting New. 

Go to the JRE Tab and select Installed JREs: 

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase5-419410.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase5-419410.html


 

Press Add to add a new Development Kit and specify the path toward your new JRE folder: 

 

Netbeans:  

Select from Project Explorer any project and select Properties. 

Select Libraries category and choose Manage Platforms 

 

Figure 4) Add Reference to JRE in Eclipse 

 

 

Figure 3) Browse Installed JREs in Eclipse 

 



 

Specify the path towards the Java SE 1.5 development kit. 

 

2.3. Select the default development kit for your project 

In order to compile your project using the Java SE 1.5 Development Kit, you will have to tell 

your IDE which platform to specifically use.  

At this moment we start from the premise that the user has already created a project.  

Eclipse: 

When working with Eclipse it is important to note that the Run Configurations are not 

attached to a given project in a one to one fashion as in Netbeans.  

Create new Run Configurations for your Project: 

Run->Run Configurations-> Java Application-> New 

 

Figure 6) Add reference to JRE in Netbeans 

 

 

Figure 5) Select JRE in Netbeans 

 



JRE->Alternate JRE->JSE 1.5 

 

Set Java Running Environment Libraries for your Project: 

Classpath->Bootstrap entries-> Add JRE System Library [J2SE-1.5] 

       -> Remove JRE System Library [J2SE-1.6] or [J2SE-1.7] 

 

Netbeans: 

Each Netbeans project has exactly one running configuration attached to it.  

Select Project -> Project Properties -> Libraries -> Java Platform 

Please see (Figure 5). 

2.4. Determine your working directory and program arguments of your project 

The last thing the user has to do before he can start developing his own code is establish the 

working directory which must contain all the needed files. If the user decides to use GRASS 

he will have to include both GRASS program archive and GRASS dependency package. 

This section will also present how to test his program using defined input parameters.  

Eclipse: 

Run-> Run Configurations->Arguments 

a) Program Arguments 

b) Working Directory 

 

Figure 8) Add Eclipse Classpath Entries 

 

 

Figure 7) Eclipse Project Java Running Environment  

 



 

Netbeans: 

Select Project->Project Properties->Run 

a) Arguments 

b) Working Directory 

 

The Grid program takes a series of 5 arguments, from which it extracts information about 

how to execute it.   

0 0 NULL Grass [GrassNDVI-input1.tif,input2.tif,output.tif] 

The first represents whether the operator should be monitored or not on the Grid.  

 0-  not monitored 

 1-  monitored 

This information is handled by gProcess and the user must not concern himself with it 

anymore. The default value of 0 should be passed when executing locally. 

The second parameter represents the identifier of the iPDG sent to the platform. Again the 

user must not be concerned with it, the value 0 will do. 

 

Figure 10) Passing Arguments and Working Directory in Netbeans 

 

 

 

 

 

Figure 9) Passing Arguments and Working Directory in Eclipse 

 



The third parameter represents an execution name given to the operator. The value of NULL 

will suffice for a local execution. 

Forth is the name of the operator being executed and has no real meaning when it is 

executed locally.  Any value not containing a space will suffice. 

The fifth argument is the only one with importance when the operator is not on the Grid. It 

is surrounded by right brackets ‘*’ ‘+’ and it contains the name of the class implementing the 

required functionality and the arguments which that class takes.   

[GrassNDVI-input1.tif,input2.tif,output.tif] : name of class 

Note: The name of the executing class is separated from the rest of the parameters by a ‘-’ 

minus sign.  

[GrassNDVI-input1.tif,input2.tif,output.tif]: arguments   

Note: Each argument is separated by a ‘,’ comma from its neighbors. 

Note: Every argument except for the last is considered to be input for the operator.  

Note: The last operator must be a file, because if it is not it cannot be communicated over 

the Grid platform. 

3. API Description 

In order to create a class, which can be executed using the provided API, the user must 

extend the class Operator and override the method Execute().  In order to work this class 

must be part of the gPOperators package.  

 

To be able to access the parameters sent to a operator the user must access them by calling 

the method getParams().get(X); where X  is the number of the parameter. This function is 

defined in class Operator and is available to all subclasses extending it. 

package gPOperators; 

 

import java.util.Vector; 

 

public class GrassGeneric extends Operator{     

    @Override 

    public void Execute(){ 

 int i=0; 

String inputArg1=this.getParams().get(i);//First Input Argument 

i++; 

String inputArg2=this.getParams().get(i);//Second Input Argument 

…  

String outputArg2=this.getParams().get(i);//Last Output Argument 

    }  

} 



In order to create a class, which uses GRASS to solve the satellite image processing problems 

the user must extend the class GrassGeneric, which in its turn extends the class Operator, 

thus satisfying the before mentioned requirement. The same constraints as before apply. 

 

The only method which has to be overridden in order to be able to write GRASS scripts is 

grassExecute() . The script needs to be written within the StringBuilder object passed as 

input. Each GRASS or BASH command must be followed by a “\n”, in order to signal next line 

of the command code. 

The user is not obliged to extend Execute() method as previously stated, only if there are 

additional operations to be performed outside what GRASS and Linux BASH scripts can offer. 

Most often would be the case when the user wants to execute two or more scripts 

sequentially or in parallel. 

4. GRASS Description 

In the previous subsection there was a section on how to integrate your operator with 

GRASS scripts, but there was no mention of how to create an operator using this type of 

program. 

Note: Previous Grass knowledge is required. 

As it turns out there are a few limitations inherent within the GRASS executables. The first 

limitation is the fact that when the user tries to output a georeferenced image using 

r.out.gdal an error occurs (Segmentation Fault). The only supported output is GeoTiff. 

package gPOperators; 

 

import java.util.Vector; 

 

public class GrassNDVI extends GrassGeneric{ 

 

    @Override 

    public void grassExecute(StringBuilder builder){ 

  builder.append(…); 

 builder.append(…); 

… 

    } 

     

    @Override 

    public void Execute(){ 

 try{ 

generic("grassExecute"); 

}catch(Exception e){…}  

    }  

} 



In order to circumvent this the user may change the Grass distributable, but it is advised not 

to do so since testing locally differs from executing on the Grid. This facility is for Grass 

experts only, which are familiar with Grass development and internal workings of it.  

To solve the segmentation fault problem it is required to export the file using r.out.tiff first 

and that the extension of the outputted file be .tif. Only afterwards is it possible to export 

using r.out.gdal by using the same name. 

 

4. Examples 

The following section will detail two examples, one of creating a simple operator and one which 

deals with using GRASS as in order to achieve satellite image processing. 

1. Adding two numbers 
This operator deals with the simple function of adding two numbers. 

Inputs: Constant Integer, Constant Integer 

Output: File containing the result of the addition.  

r.in.gdal input=input.tif output=internal_repr1 location=intermediary 

 #import Tiff image into location intermediary 

g.gisenv set=LOCATION_NAME=intermediary 

 #change current location to the one where the input image has been 

created 

#your code here 

r.out.tiff input=internal_repr1 output=file.tif  

#export Tiff without geographic reference 

r.out.gdal input=internal_repr1 output=file.tif  

#overwrite existing Tiff file in order to obtain a georeferenced file 



 

2. Grass NDVI 
This operator deals with creating a NDVI cover of the area of a Red and Near Infrared Image 

Inputs: Red Image Band, Near Infrared Image Band 

Output: NDVI Image  

Note: This operator uses the Grass API provided in the distributable. 

package gPOperators; 

 

import java.util.Vector; 

 

public class GrassNDVI extends Operator{ 

     

    @Override 

    public void Execute(){ 

int i1=Integer.parseInt(this.getParams().get(0)); 

 int i2=Integer.parseInt(this.getParams().get(1)); 

 Integer i3=i1+i2; 

 Writer output=null; 

 //Integers cannot be passed as output, only files. 

 File f=new File(this.getParams().get(2)); 

 try { 

  f.createNewFile(); 

  output=new BufferedWriter(new FileWriter(f)); 

  output.write(i3.toString()); 

 } catch (IOException ex) { 

  Logger.getLogger(Add2Ints.class.getName()).log(…); 

 } finally { 

  if(output!=null){ 

   try { 

    output.close(); 

   } catch (IOException ex) { 

    …; 

   } 

  } 

 } 

    } 

} 



 
 

5. Conclusion 

The advantage of using this platform for operator submission is much faster than the traditional 

way of development where the user asks the administrators to integrate the developed program 

into the ESIP platform. 

If a certain operator is not satisfactory, the user may choose to replace it with his/her own 

version, thus creating a solution which much better copes with his/her everyday needs rather 

than relying on a general solution offered by the system. 

 

package gPOperators; 

 

public class GrassNDVI extends GrassGeneric{ 

 

 @Override 

 public void grassExecute(StringBuilder builder){ 

    builder.append("\n"); 

    //GRASS Import begin 

   builder.append("r.in.gdal input=").append(this.getParams().get(0)); 

   builder.append(" output=image"+0); 

   builder.append(" location=intermediary \n"); 

    builder.append("g.gisenv set=LOCATION_NAME=intermediary \n"); 

    //GRASS Import end 

    builder.append("r.in.gdal input=").append(this.getParams().get(1)); 

   builder.append(" output=image"+1).append("\n"); 

   //Calculation of NDVI Image. 

   builder.append("r.mapcalc \"output\"=\"(float(image1-image0)”   

   +”/float(image1+image0))\"\n"); 

    builder.append("r.colors map=output rules=ndvi\n"); 

    String output=this.getParams().get(2); 

    //GRASS Export. Please note the order and limitations.  

    builder.append("r.out.tiff input=output output="+output+"\n"); 

    builder.append("r.out.gdal input=output output="+output+"\n"); 

 } 

} 


