
Final Year Project Report

Automatic Soundness and
Completeness Warnings in ESC/Java2

Barry Denby

A thesis submitted in part fulfilment of the degree of

BA/BSc (hons) in Computer Science

Supervisor: Dr. Joseph Kiniry

Moderator: Dr. Alexey Lastovetsky

UCD School of Computer Science and Informatics

College of Engineering Mathematical and Physical Sciences

University College Dublin
April 7, 2006

Table of Contents

Abstract . 2

1 Acknowledgments . 3

2 Project Specification . 4

3 Introduction . 5

4 Unsoundness and Incompleteness . 6

4.1 Unsoundness . 6

4.2 Incompleteness . 7

5 JML . 8

5.1 The Java Modeling Language . 8

6 DOT File Generation . 10

6.1 DOT File Format . 10

6.2 Generating DOT files of ASTs in ESC/Java2 11

7 Abstract Syntax Tree . 12

7.1 The AST . 12

7.2 Unsoundness, Incompleteness and the AST 13

8 Automatic Soundness and Completeness Warnings 14

8.1 System Design . 14

8.2 Implementation . 14

9 Conclusions & Future Work . 16

9.1 Conclusions . 16

9.2 Future Work . 16

Page 1 of 17

Abstract

ESC/Java2 is an extended static checker for Java. Checking is performed through formal
static analysis of a program. However, in some cases, this analysis is either unsound or
incomplete. We will discuss unsoundness and incompleteness in the context of ESC/Java2,
what problems unsoundness and incompleteness causes to static analysis of Java programs,
where these cases are found in ESC/Java2, and how to detect these cases and warn the user.

Page 2 of 17

Chapter 1: Acknowledgments

I would like to thank Dr. Joseph Kiniry for providing me with a lot of very helpful information
and feedback regarding my work on this project, without it the advances made would not
have been possible. I would also like to thank Alan Morkan one of Dr. Kiniry’s postgraduate
students for his help and advice on implementing code for generating graphs of trees created
by ESC/Java2. Finally I would like to thank the SRG reading group for feedback on a
presentation about this work I made to them.

Page 3 of 17

Chapter 2: Project Specification

ESC/Java2 is an extended static checker for Java: it automatically proves that a Java program
fulfills (parts of) its specification, written in the Java Modeling Language.

Concessions must be made to make ESC/Java2 automatic and easy to use, some of which are
formal and some of which are practical. In particular, ESC/Java2 is neither a sound nor a
complete verification system. In other words, it generates false positives, false negatives, and
it completely misses some errors. All of these problems are due to the fact that its built-in
semantics of Java and JML are intentionally incomplete (they do not cover the full language)
and that the modular reasoning framework used is intentionally unsound (by design and
because of the current theorem prover used).

Therefore, when ESC/Java2 detects a problem, it signals a warning, not and error, because
we just cannot be certain that what has been checked is actually true.

This situation is unsatisfactory, but an obvious solution exists to this dilemma . Because we
understand ESC/Java2’s logics and can characterize them precisely, and because we have a
rich context when reasoning about a given method, we know when the user is trying to verify
programs in ”dangerous waters”.

For example, if you use floating point arithmetic, all bets are off. If you try to reason about
specification with certain kinds of invariants that have universally quantified subexpressions,
Danger Will Robinson!.

The purpose of this project is to characterize these ”danger areas” and extend ESC/Java2’s
functionality to automatically warn the user when they are attempting to perform verifica-
tions about programs and/or specifications that are possibly confounded by the soundness
and completeness problems of the tool.

Mandatory

1. Learn the ESC/Java2 object logics and their soundness and completeness issues and
annotate the booklet ”The Logics and Calculi of ESC/Java2” for clarity. 2. Learn the
ESC/Java2 calculi and their soundness and completeness issues and annotate the above
booklet for clarity. 3. Write a short survey on the soundness and completeness issues with
modern object-oriented modular checking techniques. 4. Itemize full list of soundness and
completeness issues from the three above stages in a distilled document. 5. Design and
implement a contextually-aware soundness and completeness warning system for ESC/Java2.

Discretionary

1. Design and implement a system for outputting graphs of the Abstract Syntax Trees
generated by ESC/Java2.

Exceptional

Page 4 of 17

Chapter 3: Introduction

ESC/Java2 is an extended static checker for Java source code. It is a static checker because
the analysis is performed without running the Java code. It is an extended checker because
ESC/Java2 catches more errors than conventional static checkers such as type checkers.

The user is able to control how this checking is performed. This is done through the use of
specially formatted comments called pragmas. Pragmas are written in the Java Modeling
Language (JML) which will be discussed later.

As explained in the ESC/Java2 manual [5], ESC/Java2 does not provide formally rigorous
program verification. The purpose of the tool is to catch some errors earlier than conventional
methods such as testing. Such errors include null deference’s and attempted access of array
elements that do not exist. As a consequence of automation some trade-offs were made in the
design of this tool. Trade-offs include, but are not limited to, how often errors are missed,
how much time is required to perform the analysis and how often false alarms occur. The
result of these trade-offs is a tool that is both incomplete and unsound in its static analysis.

The purpose of this project is to implement a warning system that generates a warning when
a case of unsoundness or incompleteness occurs. It is then left to the user to take action
regarding these cases. For example a user may choose to ignore these warnings or introduce
testing on the code associated with those warnings. Before we can implement such a system we
must first understand what unsoundness and incompleteness mean in ESC/Java2. However,
these terms have more than one meaning within ESC/Java2 .

Page 5 of 17

Chapter 4: Unsoundness and Incompleteness

In this section we will describe what the terms unsoundness and incompleteness mean in
ESC/Java2 and provide and example of each.

4.1 Unsoundness

The ESC/Java2 manual [5] defines unsoundness as:

An unsoundness is a circumstance that causes ESC/Java to miss an error that is
actually present in the program it is analyzing.

As an example, consider the following fragment of Java source:

int[] array = new int[10];
for(int i = 0; i < 20; i++)

array[i] = i;

This for loop will cause an ArrayIndexOutOfBoundsException when i is equal to 10 as we
have an array of ten elements indexed 0 through 9. The exception occurs when we try to
access array element 10 as elements 10 through 19 do not exist. By the definition above this
is a case of unsoundness as ESC/Java2 did not notice that this error would occur. The reason
why this happens is because, by default, ESC/Java2 does not consider all possible iterations
of the loop. The ESC/Java2 manual [5] explains this behavior:

In ESC/Java, loop invariants are optional. The checker considers only execution
paths in which the loop body is executed at most once (and the test for being
finished is executed most twice), rather than the potentially infinite number of
paths that are really possible. Because of this simplification the checker doesn’t
need an invariant to analyze the loop.

This simplification makes ESC/Java2 unsound when analyzing loops. If this simplification
was not made then ESC/Java2 could potentially analyze a loop forever. However, the user
has the option of telling ESC/Java2 on the command line how many iterations of a loop
should be considered. In this example, if the user specified more than ten iterations, then
this error is identified correctly.

Page 6 of 17

4.2 Incompleteness

The ESC/Java2 manual [5] defines incompleteness as:

An incompleteness is a circumstance that causes ESC/Java to warn of a potential
error, when it is in fact impossible for that error to occur in any run of the program
it is analyzing.

For example, consider this fragment of JML-annotated Java source:

int i = 2;
i = i >> 1;
//@ assert i == 1;

In this example the bits of i are shifted to the right by 1 bit. Another interpretation of this
example is that i is being divided by 2. The expected result of this operation is that i is
assigned the value 1. The line “//@ assert i == 1;” is a JML pragma. It states that at
this point of execution the variable i must have the value 1. When ESC/Java2 is run on this
code however, it complains of a possible failure of this assertion. This is an incompleteness
because, the assertion that i is equal to 1 will never fail.

Not all cases of unsoundness and incompleteness occur in Java code without pragmas. Taking
the fragment of code above if the pragma “//@ assert i == 1;” was not in place that case
of incompleteness would not be found, for this reason we will now discuss JML as the pragmas
used in ESC/Java2 are the pragmas of JML.

Page 7 of 17

Chapter 5: JML

In this section we will describe the Java Modeling Language and how it is used for the
specification of Java programs.

5.1 The Java Modeling Language

Leavens and Cheon describe JML as a formal behavioral interface specification language for
Java. One use for JML is the Design By Contract (DBC for short) methodology of developing
software[4].

In DBC, whenever a class A calls methods of a class B, A is said to be a client of supplier
class B. Clients agree to fulfill certain conditions before calling a method of the supplier class,
while the supplier class will guarantee that some properties will hold after the method has
executed. One could say that the client enters into a contract with the supplier class and the
supplier class enters into another separate contract with the client.

JML uses annotation comments to specify contracts. JML annotation comments start with
the @ symbol and are embedded in standard Java comments. Every contract in an annotation
comment must end with a semi-colon. For single line annotations we write

//@ contract ;

where contract is a JML contract. For multi-line contracts we write something that looks
like this.

/*@
@ contract 1;
@ contract 2;
@*/

As an example of a contract in JML, suppose we have a method called foo that takes in an
integer bar as its argument.

//@ requires bar > 0
public static void foo(int bar)

The contract above states that, in order for one to call this method correctly, one must
provide an integer argument that has a positive value. According to Leavens and Cheon if a

Page 8 of 17

contract is violated an exception is thrown [4]. It is possible to combine many of these small
contracts together in order to create very expressive contracts.

At this point we now understand what unsoundness and incompleteness are in the context of
ESC/Java2 . Now we look inside of ESC/Java2 to find out how Java programs are represented
internally and where in this representation these cases of unsoundness and incompleteness
occur. The internal representation is the Abstract Syntax Tree, however before discussion of
the AST it is necessary to visualize them. As ASTs can be drawn as graphs we first describe
a means of graphing an AST.

Page 9 of 17

Chapter 6: DOT File Generation

This section describes the DOT file format for drawing graphs and how it was applied to
ESC/Java2 to generate graphs of the AST.

6.1 DOT File Format

The DOT file format as described by Gansner, Koutsofios, and North [1] is a file format for
describing directed or undirected graphs through plain text. These files are processed by
programs which take this text representation and convert it to an image of the graph. For
the purposes of graphing an AST we concentrate on a small subset of all available operations
the DOT file format provides. Figure 6.1 is an example of a DOT file using the commands
we need. The digraph keyword indicates that this is a directed graph called simple and

digraph s imple {
root −> branch0
root −> branch1
branch0 −> l e a f 0
branch0 −> l e a f 1
branch1 −> l e a f 2
branch1 −> l e a f 3

}

Figure 6.1: A simple DOT file

all nodes and edges relating to this graph are placed between a pair of braces. The other
command we need to draw a graph is a command to draw an edge. Take the line
root -> branch0. The -> operator states that we are drawing a directed edge starting from
the node called root and is directed towards and ends at the node labeled branch0. Nodes
are implicitly declared via their use in edge definitions. When we convert the graph to an
image seen in Figure 6.2.

Figure 6.2: A simple graph generated from the DOT format

Page 10 of 17

6.2 Generating DOT files of ASTs in ESC/Java2

To get ESC/Java2 to generate these graphs it was first necessary to add another command
line switch to ESC/Java2 specifically for this functionality. ESC/Java2 ’s escjava.Options
class was modified to include the switch for this option (–printJavaAstTree) and a boolean
variable indicating if this functionality is enabled, as well as including a test to determine if
this switch was passed to ESC/Java2 . The escjava.Main class of ESC/Java2 was modified
to check the boolean indicating if this functionality was enabled. If the functionality was
enabled, then code is run which gets the AST for each class that is passed to ESC/Java2 and
passes it to a visitor for the AST that produces files in the format described above.

The visitor exploits the visitor design pattern [2]. In this pattern there exists a set of classes
that can be visited but each of this classes must be visited in a different way. For example, in
our AST a method declaration cannot be treated in the same way as a variable declaration.
The pattern solves this problem by adding an accept method which takes in a visitor as its
argument, to each class to be visited. In the visitor there exists a method for each class which
defines how that class is visited. The accept method in each class then calls the appropriate
method in the visitor to visit that class.

When the visitor is passed a class it first creates a file which will contain a representation
of the AST in DOT graph format. First it writes the declaration of a directed graph and
an opening brace into the file. Then, when the visitor traverses down an edge it determines
the start and end nodes of this edge and creates an edge in the DOT file. The visitor does
not write edges to the file when the visitor traverses back up the tree. After the entire tree
is traversed we write the closing curly brace to the file and close the file. For example if we

pub l i c c l a s s Test {
pub l i c s t a t i c void main (St r ing [] a rgs) {

i n t i = 2 ;
i = i >> 1 ;
//@ a s s e r t i == 1 ;

}
}

Figure 6.3: A simple program that right shifts an integer.

generate the DOT file for the AST produced for the Java program in Figure 6.3 and convert
it to graphical format we get the graph in Figure 6.4: As we are now able to visualize an

Figure 6.4: AST for the Test program

AST, we can now discuss what an AST is.

Page 11 of 17

Chapter 7: Abstract Syntax Tree

This section will describe what an Abstract Syntax Tree (AST for short) is and its relation
to unsoundness and incompleteness.

7.1 The AST

Wikipedia [3] provides this definition for the AST:

an abstract syntax tree is a finite, labeled, directed tree, where the internal nodes
are labeled by operators, and the leaf nodes represent the operands of the node
operators

Figure 7.1: Subsection of AST for Test program

As an example consider the subsection of the AST for the Test program seen in Figure 7.1.
Each node is labeled with its node ID, node type, and source code relating to that node. This
piece of the AST corresponds to the opening brace after the definition of the main method
to the closing brace of the main method in our Test program.

The BlockStmt corresponds to the the opening and closing braces associated with the main
method in the Test program. The children of this node are the variable declaration for i
(VarDeclStmt int i = 2;) and a statement which assigns i the value of i right shifted by
1 bit (EvalStmt i = i >> 1;). As the graph shows these statements can be broken down
further into simpler operators and operands.

While many operators in the AST take more than one operand, it is possible, as this example
shows, to have operators with a single operand.

Page 12 of 17

7.2 Unsoundness, Incompleteness and the AST

An AST represents an entire Java class or program. Every Java source code has an equiv-
alent AST. Using this AST we determine where in the associated code an unsoundness or
incompleteness occurs. Thus, if we get an unsound or incomplete case we generate the graph
of the AST associated with that unsoundness or incompleteness. Then, using the graph, we
determine what parts of the AST defines this case. When those parts are determined we can
then proceed to write code to warn about this unsoundness or incompleteness.

For example, in our Test program we know an incompleteness exists when the right shift
operator is used. As Figure 7.1 shows there are three nodes with source code that includes
the right shift operator. If any node in the AST contains the right shift operator we can warn
about this incompleteness.

The above example shows how useful visualization of the AST is to understanding an un-
soundness or incompleteness. Without the graph generation code understanding an unsound-
ness or incompleteness requires learning the structure of the AST. The graphs negate the need
to learn the AST structure the graphs show the structure of the AST. Thus, understanding
an unsoundness or incompleteness is both easier and quicker.

In the next section we will describe how ESC/Java2 was extended to automatically warn
about unsound or incomplete cases.

Page 13 of 17

Chapter 8: Automatic Soundness and

Completeness Warnings

This section describes the design and implementation of the warning system.

8.1 System Design

ESC/Java2 ’s ability to reason about programs is constantly evolving. One reason for this
evolution is because ESC/Java2 supports multiple provers and theories each of which has
their own set of unsoundness and incompleteness issues. Thus, the system should support
multiple sets of test cases, one for each prover and theory. Without these sets some tests may
generate warnings that do not apply to the prover and theory that is used.

With this in mind our system must be easy to extend to accommodate newly discovered
unsound or incomplete cases. However, if a test for any such case no longer applies to
ESC/Java2 , then the test should discarded.

First we must have a means of determining if an AST contains any unsound or incomplete
cases. To test for an unsoundness or incompleteness, we create a visitor that traverses the
AST looking for nodes that determine if that unsoundness or incompleteness exists for the
Java code represented by the AST. When a case is found in an AST, we emit a warning
indicating which case along with the exact location of where the case has occurred in Java
code, provided by the user.

8.2 Implementation

The first thing implemented was another command line option to enable this functionality.
This was accomplished in the same way as the option for generation of DOT graphs for
ASTs. Next, visitors were written to characterize each known case of unsoundness and
incompleteness of ESC/Java2 . To do this we need to extend the javafe.ast.Vistor class
of the AST for each individual unsound and incomplete case. In each of these extended
visitors we override the methods for visiting the node types that may contain the case we are
looking for. As an example, lets consider the incomplete case of right shifting.

In this example the right shift operator only appears in nodes of type BinaryExpr. Thus, if
we wish to discover this incomplete case, we define a visitor for the AST by first extending
the javafe.ast.Visitor class and override the method for visiting a BinaryExpr to check
if a right shift operator is used. If the right shift operator is found in the AST, the visitor
generates and emits a warning to the user.

From the above example a general method for adding a test for an unsound or incomplete

Page 14 of 17

case to the warning system is derived:

1. Generate a graph of the AST associated with the program with the new unsound or
incomplete case.

2. Determine which node types and what properties of those nodes determine if the case
exists or not.

3. Write a visitor that checks for these nodes and properties. If the unsoundness or
incompleteness is found generate a warning.

4. Call the visitor on each Java class processed by ESC/Java2

When ESC/Java2 processes the program in Figure 6.3 with the warning system enabled this
is the output produced:

[sidewinder@predator testcases]$ escj -warnUnsoundIncomplete Test
ESC/Java version \escjava-CURRENT-CVS
[0.681 s 8720600 bytes]

Test ...
Prover started:0.533 s 12128376 bytes
[4.349 s 12349640 bytes]

Test: main(java.lang.String[]) ...
--
./Test.java:5: Warning: Possible assertion failure (Assert)
//@ assert i == 1;
^
--
[0.923 s 12316504 bytes] failed

Test: Test() ...
[0.012 s 12472600 bytes] passed
[5.285 s 12473480 bytes total]
./Test.java:4: Warning: The semantics of the right shift operator are incomplete.
i = i >> 1;
^
2 warnings

If the unsoundness and incompleteness warning system was disabled the only warning that
is generated is the warning of a possible assertion failure. In this case the analysis of the
assertion is incorrect as this assertion will never fail for the reasons given in Section 4.2.
Without the warning system the warning of the assertion failure is a source of confusion.
When the warning system is enabled however, the second warning reduces the confusion
about the first warning.

As we now have a system for warning about soundness and completeness issues we will now
conclude our work.

Page 15 of 17

Chapter 9: Conclusions & Future Work

This section will outline the conclusions of this work and future work to improve it.

9.1 Conclusions

An automatic soundness and completeness warning system was implemented. This system
alerts users of unsoundness and incompleteness issues that arise when ESC/Java2 is process-
ing their code. The system is easy to extend when adding or removing tests for unsoundness
or incompleteness. This system is still experimental thus, the code is not very robust to
handling errors.

An AST graph generator was also implemented. The generated graphs improve the under-
standing of how these trees are structured. This generator simplifies the work necessary to
understand an unsoundness or incompleteness. This code is also experimental. Some edges
in an AST are not handled correctly because a minority of child nodes are not extended
versions of the basic javafe.ast.ASTNode. For example in Figure 6.4 there are edges that
start and end at the same node. This is a side effect of not handling children that are not
extended versions of javafe.ast.ASTNode.

9.2 Future Work

In future we want to discover and characterize more cases of unsoundness and incompleteness.
By understanding these cases we hope to improve the semantics of ESC/Java2 . Eventually
when these semantics improve we wish to enable the warning system by default.

However, the highest priority is to make this system more robust to handling errors. The
graph generator could also be improved because some edges are not handled correctly as
explained in the conclusions section.

Page 16 of 17

Bibliography

[1] E. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot.

[2] Javaworld http://www.javaworld.com. Java tip 98: Reflect on the visitor design pattern.

[3] Wikipedia http://www.wikipedia.org/. Abstract syntax tree.

[4] G.T. Leavens and Y. Cheon. Design by Contract with JML. 2005.

[5] K. Rustan, M. Leino, G. Nelson, and J.B. Saxe. ESC/Java User’s Manual.

Page 17 of 17

	Table of Contents
	Abstract
	Acknowledgments
	Project Specification
	Introduction
	Unsoundness and Incompleteness
	Unsoundness
	Incompleteness

	JML
	The Java Modeling Language

	DOT File Generation
	DOT File Format
	Generating DOT files of ASTs in ESC/Java2

	Abstract Syntax Tree
	The AST
	Unsoundness, Incompleteness and the AST

	Automatic Soundness and Completeness Warnings
	System Design
	Implementation

	Conclusions & Future Work
	Conclusions
	Future Work

