
Scyld Beowulf Series 29

User’s Guide

Scyld Software

Scyld Beowulf Series 29: User’s Guide
by Scyld Software
29cz Edition
Published April 2005
Copyright © 2001, 2002, 2003, 2004, 2005 Scyld Software

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,

mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

Scyld Beowulf and the Scyld logo are trademarks of Scyld Software. All other trademarks and copyrights referred to are the property of their respective owners.

Table of Contents
Preface...v

Feedback...v

1. Scyld Beowulf Overview..1

What is a Beowulf Cluster?..1
A Brief Beowulf History...1
First Generation Beowulf Clusters..3
Scyld Beowulf...3
Top Level Features of Scyld Beowulf...3

Scyld Beowulf Technical Summary..4
Beowulf Process Space Migration Technology..5
Compute Node Boot Procedure..5
Compute Node Categories..5
Compute Node States..5
Major Software Components..6

Typical Applications of Scyld Beowulf..8

2. Interacting with the System...9

Verifying that the Cluster is Up and Running...9
Issuing Commands..9

Master Node..9
Compute Node..9

bpsh and Shell Interaction...10
Copying Data to Compute Nodes...11
Monitoring and Signaling Processes..12

top, ps, and kill..12
Monitoring Node Status..13

Beostatus GUI Tool...13
bpstat Command Line Tool...15
beostat Command Line Tool...15

3. Running Programs...17

Introduction...17
Program Execution Description on a Stand-alone Computer...17
What’s Different About Program Execution on a Scyld Beowulf Cluster?..17

Traditional Beowulf Cluster - Description...17
Scyld Beowulf Cluster - Description..18
Executing Programs That Aren’t Parallelized..18

Starting and Migrating Programs to Compute Nodes (bpsh)..18
Copying information to the Compute Nodes for Your Program (bpcp)..19

An Introduction to Parallel Programming APIs...19
MPI - A Brief Description..20
PVM - A Brief Description...20
Others..21

Mapping Jobs - How do Jobs get "Mapped" to the Compute Nodes?..21
Running Serial Programs in Parallel (mpprun and beorun)..22

mpprun..22
beorun..23

Running MPI-Aware Programs..23
Direct Execution..23

iii

mpirun...24
Usingmpirun ..24
Setting Mapping Parameters from Within a Program...24

Running with Myrinet...25
Running PVM-Aware Programs...25
Other Programs that are Parallelized But Do Not Use MPI or PVM...25
Batching Jobs..26

The Beowulf Batch Queuing (bbq) Package...26
Submitting Jobs...26
Job Processing...27
Queue Management...27

PBS..28
File Systems..28

File System Options..28
PVFS...29

Copying Files to PVFS..30
Examining File Distributions...31
Checking on Server Status...31

Sample Programs Included in the Distribution...31
Linpack..32
MPI-Mandel..32

A. Glossary of Parallel Computing Terms...35

iv

Preface

Welcome to the Scyld Beowulf Cluster Operating System User’s Guide. This manual is for someone who will use a Beowulf
cluster to run applications. This manual covers the basics of Beowulf parallel computing - what a Beowulf is, what you can
do with it, and how you can use it. Topics covered include basic Beowulf architecture, unique features of the Scyld Beowulf
Operating System, navigating the Scyld environment, how to run programs, and how to monitor their performance.

What’s not covered here is how to install, configure, or administer your Beowulf cluster. If you have not yet built your
cluster or installed the Scyld Beowulf Operating System, you need to refer to theInstallation Guide. If you are looking
for information on administering your cluster, you will need to read theAdministrator’s Guide. This manual is for the user
accessing a Beowulf System that has already been configured.

What’s also not covered is a complete guide to using the Linux operating system, on which the Scyld software is based. Some
of the basics you need to know are presented here. However, if you’ve never used Linux or UNIX before, it is suggested
that you check out a book or online resources about the subject. A good source of information are books byO’Reilly and
Associates1.

This manual will not teach you to write programs for a Beowulf cluster. You will find information about developing appli-
cations in theProgrammer’s Guide.

With this manual, you will learn the basic functionality of the utilities needed to start being productive with a Scyld Beowulf
cluster.

Feedback
We welcome any reports on errors or problems that you may find. We also would like your suggestions on improving this
document. Please direct all comments and problems to: <support@scyld.com >.

When writing your e-mail, please be as specific as possible, especially with errors in the text. Include the chapter and section
information. Also, mention in which version of the manual you found the error. This version is 29cz, published April 2005.

Notes
1. http://www.oreilly.com

v

Preface

vi

Chapter 1. Scyld Beowulf Overview

The Scyld Beowulf Cluster Operating System is a Linux-based software solution for high performance computing systems.
It solves many of the problems long associated with Linux Beowulf-class cluster computing while simultaneously reducing
the costs of system installation, administration and maintenance. With the Scyld Beowulf Cluster Operating System, the
cluster is presented to the user as a single, large scale parallel computer.

This chapter serves as an introduction to both the Scyld Beowulf Cluster Operating System and this document. It presents
background information on Beowulf clusters and then delves into the specifics of a Scyld Beowulf. By the end of this
chapter, you will understand what a Beowulf cluster is and how it can be used. You will also understand the differences
between the standard Beowulf architecture and a Scyld Beowulf. A high-level technical summary of Scyld Beowulf and
its major software components is also presented in this chapter with further details provided throughout the Scyld Beowulf
Series 29.

What is a Beowulf Cluster?
The termBeowulfrefers to a multi-computer architecture designed for executing parallel computations. ABeowulf clusteris
a parallel computer system conforming to the Beowulf architecture, which consists of a collection of commodity computers
referred to asnodesconnected via a private network running an open source operating system. Each node, typically running
Linux, has its own processor(s), memory storage and I/O interfaces. The nodes communicate with each other through
a private network, such as Ethernet or Myrinet, using standard network adapters. The nodes usually do not contain any
custom hardware components and are trivially reproducible.

One of these nodes, designated as themaster node, is usually attached to both the private network and the public network,
and is the cluster’s administration console. The remaining nodes are commonly referred to ascompute nodesor slave nodes.
The master node is responsible for controlling the entire cluster and for serving parallel jobs and their required files to the
compute nodes. In most cases, the compute nodes in a Beowulf cluster are configured and controlled by the master node.
Typically these compute nodes do not have keyboards nor monitors and are accessed soley through the master node. To the
cluster’s master node, the compute nodes are simply treated as additional processor and memory resources available for its
use.

In conclusion, Beowulf is a technology of networking Linux computers together to create a parallel, virtual supercomputer.
The collection as a whole is known as a Beowulf cluster. While early Linux-based Beowulf clusters provided a cost effective
hardware alternative to the supercomputers of the past for executing high performance computing applications, the original
software implementations for Linux Beowulf clusters were not without their problems. The Scyld Beowulf Cluster Operating
System addresses and solves many of these problems.

A Brief Beowulf History

The type ofcluster computerarchitecture described in the previous section has been around for a while in various forms.
This original concept for anetwork of workstations(NOW) simply used a group of normal processors connected through a
typical office network. These workstations used a small amount of special software to harness their idle cycles. This concept
is depicted in the figure shown below.

1

Chapter 1. Scyld Beowulf Overview

Figure 1-1. Network-of-Workstations Architecture

The NOW concept evolved to thePile-of-PCsarchitecture with one master PC connected to the public network and the
remaining PCs in the cluster connected to each other, and the master through a private network. Over time, this concept
solidified into the Beowulf architecture as described in the previous section and depicted in the figure shown below.

Figure 1-2. A Basic Beowulf Cluster

For a cluster to be correctly termed aBeowulf, it must adhere to theBeowulf philosophy. This philosophy has three main
components:

1. scalable performance

2. the nodes must be using commodity off-the-shelf (COTS) hardware

3. the nodes must be running open source software, typically Linux

2

Chapter 1. Scyld Beowulf Overview

Using commodity hardware allows Beowulf clusters to take advantage of the economies of scale in the larger computing
markets. In this way, Beowulf clusters can always take advantage of the fastest processors developed for high-end work-
stations, the fastest networks developed for backbone network providers, and so on. The progress of Beowulf clustering
technology is not governed by any one company’s development whims, resources or schedule.

First Generation Beowulf Clusters

The original Beowulf software environments were implemented as downloadable add-ons to commercially available Linux
distributions. These Linux distributions included all of the software needed for a networked workstation: the kernel, various
Linux utilities and many add-on packages. The downloadable Beowulf add-ons included several programming environments
and development libraries as individually installable packages.

With this first generation Beowulf scheme, every node in the cluster required a full Linux installation and was responsible
for running its own copy of the kernel. This requirement combined with the lack of a uniform, commercially supported
distribution created many administrative headaches for the maintainers of Beowulf-class clusters. For this reason, early
Beowulf systems tended to be deployed by the software application developers themselves and required detailed knowledge
to install and use. The Scyld Beowulf Cluster Operating System distribution reduces and/or eliminates these and other
problems associated with the original Beowulf-class clusters.

Scyld Beowulf

The Scyld Beowulf Cluster Operating System provides a software solution designed specifically for Beowulf clusters.
The Scyld distribution streamlines the process of configuring, administering, running and maintaining a Beowulf-class
cluster computer. It was developed with the goal of providing the operating system software infrastructure for commercial
production cluster solutions.

Scyld software was designed with the differences between master and compute nodes in mind, and only runs appropriate
parts of the operating system on each component. Instead of having a collection of computers each running its own fully
installed operating system, Scyld creates one large distributed computer. The user of a Scyld Beowulf cluster will never
login to one of the compute nodes, nor worry about which compute node is which. To the user, the master nodeis the
computer and the compute nodes appear merely as attached processors capable of providing more computing power. With
a Scyld Beowulf, the cluster appears to the user as a single computer:

• the compute nodes appear as attached processor and memory resources

• all jobs start on the master and are migrated to the compute nodes at runtime

• all compute nodes are managed/administered collectively via the master

The Scyld Beowulf architecture simplifies cluster integration and setup, minimal and easy system administration, increases
reliability, and seamless cluster scalability. In addition to its technical advances, Scyld Beowulf provides a standard, stable,
commercially supported platform for deploying advanced clustering systems.

Top Level Features of Scyld Beowulf

The following list summarizes the top level features available with Scyld Beowulf:

3

Chapter 1. Scyld Beowulf Overview

Easy Installation

The Scyld Beowulf installation procedure is identical to a standard Linux server installation with one additional dialog
screen for configuring the network interfaces on the master node. See theScyld Beowulf Installation Guidefor full
details.

Install Once, Execute Everywhere

A full installation of Scyld Beowulf is only required on a single node in the cluster, the master node. Compute nodes
are provisioned from the master node during their boot-up procedure and dynamically cache any additional parts of the
system during process migration.

Single System Image

Scyld Beowulf makes a clusteract and feellike a single, multi-processor, parallel computer. The master node maintains
and presents to the user a single process space for the entire cluster. See the section on theBProc: Beowulf Distributed
Process Spacein theSystem Design Descriptionchapter in theScyld Beowulf Administrator’s Guide.

Execution Time Process Migration

Scyld Beowulf stores applications on the master node. At execution time, processes are migrated from the master
node to the compute nodes. This approach virtually eliminates the risk ofversion skewand means hard disks are not
required for the compute nodes. See the section on theBProc: Beowulf Distributed Process Spacein theSystem Design
Descriptionchapter in theScyld Beowulf Administrator’s Guide.

Seamless Cluster Scalability

Scyld Beowulf seamlessly supports the dynamic addition and deletion of compute nodes to / from the cluster with-
out modification to existing source code and / or configuration files. See theBeoSetupchapter in theScyld Beowulf
Administrator’s Guide.

Administration Tools

Scyld Beowulf includes simplified tools for performing cluster administration and maintenance. Both graphical user
interface (GUI) and command line interface (CLI) tools are supplied. See theScyld Beowulf Administrator’s Guide.

Web-based Administration Tools

Scyld Beowulf includes web-based tools for remote administration and monitoring of the cluster and job execution.
See theAdministrator’s Guidefor more information.

Batch Queuing Tools

Scyld Beowulf includes a robust batch queuing / job scheduling system.BBQ, the Scyld Beowulf Batch Queuing
system, includes command-line, GUI and web-based interfaces. See the chapter onRunning Programsin this guide
and the chapter onJob Batchingin theAdministrator’s Guide.

Additional Features

Additional features include support for cluster power management (Wake-on-LAN, Power On/Off), both runtime and
development support for MPI and PVM, and support for the LFS, NFS3 and PVFS file systems. This information is
covered in various places throughout the Scyld Beowulf documentation set.

Fully Supported

Scyld Beowulf is fully supported by Scyld Software.

4

Chapter 1. Scyld Beowulf Overview

Scyld Beowulf Technical Summary
Scyld Beowulf presents a more uniform system image of the entire cluster to both users and applications through extensions
to the kernel. A guiding principle of these extensions is to have little increase in kernel size and complexity and more impor-
tantly, negligible impact on individual processor performance. In addition to its enhanced Linux kernel, the Scyld Beowulf
distribution includes improved libraries and utilities specifically designed for high performance computing applications.
Generally speaking, more detailed information on the various topics discussed in this section can be found in other chapters
of this document and in theAdministrator’s Guide.

Beowulf Process Space Migration Technology

Scyld Beowulf is able to provide a single system image through its use ofBProc, the Beowulf process space management
kernel enhancement.BProc enables the processes running on cluster compute nodes to be visible and manageable on the
master node. All processes appear in the master node’s process table. Processes start on the master node and are migrated
to the appropriate compute node byBProc. Process parent-child relationships and UNIX job control information are both
maintained with migrated jobs. Thestdout andstderr stream from jobs is redirected back to the master through the
network. TheBProcmechanism is one of the primary features that makes Scyld Beowulf different from traditional Beowulf
clusters. For more information, see theSystem Design Descriptionchapter in theScyld Beowulf Administrator’s Guide.

Compute Node Boot Procedure

The compute nodes in a Scyld Beowulf cluster boot using a two-stage procedure. Compute nodes begin their boot process
using a local, minimalstage 1boot image, after which they contact the master node to obtain their finalstage 2boot image.
Stage 1 boot images contain a minimal Linux kernel with just enough functionality to configure a reliable TCP/IP socket
connection between the compute node and the master node.

Once the stage 1 image is booted, the compute node attempts to communicate with the master to obtain its required runtime
files and complete its initialization procedure. After the master node validates the compute node’s Ethernet address and ver-
ifies the node isofficially part of the cluster, it replies back to the compute node with the its IP address and a fully functional
stage 2 kernel. Further information on the cluster boot procedure can be found in both theSystem Design Descriptionand
theBooting the Clusterchapters in theScyld Beowulf Administrator’s Guide.

Compute Node Categories

Each compute node in the cluster is classified into one of three categories by the master node:unknown, ignoredor con-
figured. An unknownnode is one not formally recognized by the cluster as being either aconfigurednode or anignored
node. When bringing a new compute node online, or after replacing an existing node’s network interface card, the node will
be classified asunknown. Ignorednodes are typically nodes that for one reason or another you’d like the master node to
simply ignore. They are not considered part of the cluster and will not receive a response from the master during their boot
process. Aconfigurednode is one that is listed in the cluster configuration file using thenode tag. These are nodes that
are formally part of the cluster and recognized as such by the master node. When running jobs on your cluster, these are
the nodes actually used as computational resources by the master. For more information on node categories, see theSystem
Design Descriptionchapter in theScyld Beowulf Administrator’s Guide.

Compute Node States

For each of theconfigurednodes in the cluster,BProcmaintains the current condition of the node. This piece of information,
known as the node’sstate, is always one of the following values:down, unavailable , error , up, reboot , halt , pwroff

or boot . Each state is described below.

5

Chapter 1. Scyld Beowulf Overview

down

Node is not communicating with the master and its previous state was eitherdown, up, error , unavailable or boot

unavailable

Node has been marked unavailable or off-line by the cluster administrator; typically used when performing maintenance
activities

error

Node encountered an error during its initialization; this state may also be set manually by the cluster administrator

up

Node completed its initialization without error; node is online and operating normally.This is the only state in which
end users may use the node.

reboot

Node has been commanded to reboot itself; node will remain in this state until it reaches theboot state as described
below

halt

Node has been commanded to halt itself; node will remain in this state until it is reset or powered back on, and reaches
theboot state as described below

pwroff

Node has been commanded to power itself off; node will remain in this state until it is powered back on and reaches
theboot state as described below

boot

Node has completed itsphase 2boot but is still initializing; after the node finishes booting, its next state will be either
up or error

More information on thenode statescan be found in theSystem Design Descriptionchapter in theAdministrator’s Guide.

Major Software Components

The following is a list of the major software components distributed with the Scyld Beowulf Cluster Operating System. For
more information, see the relevant sections in the Scyld Beowulf Series 29: theInstallation Guide, Administrator’s Guide,
theUser’s Guide, theReference Guide, and theProgrammer’s Guide.

bproc

The Beowulf process migration technology; an integral part of Scyld Beowulf

beosetup

A GUI interface for configuring the cluster

beostatus

A GUI interface for monitoring cluster status

6

Chapter 1. Scyld Beowulf Overview

beostat

A text-based tool for monitoring cluster status

beoboot

A set of utilities for booting the compute nodes

beofdisk

A utility for remote partitioning of hard disks on the compute nodes

beoserv

The beoboot server; it responds to compute nodes and serves the boot image

bpmaster

The bproc master daemon; it only runs on the master node

bpslave

The bproc compute daemon; it runs on each of the compute nodes

bpstat

A bproc utility; it reports status information for all nodes in the cluster

bpctl

A bproc utility; a command line mechanism for controlling the nodes

bpsh

A bproc utility; a replacement utility forrsh (remote shell)

bpcp

A bproc utility; a mechanism for copying files between nodes, similar torcp (remote copy).

MPI

The Message Passing Interface; optimized for use with Scyld Beowulf

PVM

The Parallel Virtual Machine; optimized for use with Scyld Beowulf

mpprun

A parallel job creation package for Scyld Beowulf

bbq

The Beowulf Batch Queue system; a cluster enhanced version ofatq

beoqstat

The GUI BBQ tool; a GUI interface for viewing and deleting your batch jobs

7

Chapter 1. Scyld Beowulf Overview

beoweb

The web-based cluster administration and monitoring tool package

Typical Applications of Scyld Beowulf
Beowulf clustering provides a great solution for anyone executing jobs that involve a large number of computations and
large amounts of data, such as image rendering. For example, some of the special effects used in the movieTitanic were
done using clusters. Beowulf clustering is ideal for both large monolithic parallel jobs but also for running many normal
sized jobs, many times such as in monte carlo type analysis. Examples of Beowulf applications include Finite Element
Analysis for mechanical system modeling, seismic data analysis, computational fluid dynamics, financial analysis, genome
research, computational drug development, etc.

These types of jobs can be performed many times faster running on a Scyld Beowulf cluster as compared to running on a
single computer. The increase in speed depends on the application itself, the number of nodes in the cluster, and the type
of equipment used in the cluster. All of these items can be easily tailored and optimized to suit the needs of your specific
application.

More and more applications are being developed for both business and commercial applications. Many companies are
handling more data than ever before and need increasing computational power to handle it efficiently. In many cases, these
needs are being fulfilled using Beowulf clusters. The following are some examples of applications already being performed
using Beowulf clusters.

Computationally Intensive Activities

Optimization problems, stock trend analysis, complex pattern matching, medical research, genetics research, image
rendering

Scientific Computing / Research

Engineering / simulations, 3D modeling, finite element analysis, fluid dynamics, PCB / ASIC routing

Large-Scale Data Processing

Data mining, complex data searches and results generation, manipulating large amounts of data, data archival and
sorting

Web / Internet Uses

Web farms, application serving, transaction serving, calculating serving, data serving

8

Chapter 2. Interacting with the System

Verifying that the Cluster is Up and Running
Before you interact with a cluster, you might first want to make sure that the cluster has compute nodes that are up and
running. Unlike traditional Beowulf clusters, Scyld Beowulf provides consistent reporting at multiple levels about the avail-
ability of the nodes.

Thebeostatustool is the best way to get an idea of the status of the cluster, including which nodes are up. Thebeostatus
tool has many ways of showing you the status of individual nodes. The default way is to show up as an X window. This
happens when you log in and can be done by simply typingbeostatusat the command prompt. These different ways are
documented later in this chapter.

In order to actually use a Scyld Beowulf cluster, you must have at least one node up. As shown in the screenshot above, all
of the nodes that are up have a green check mark on their row. If there are less nodes up than you think there should be, or
some say error, you should contact your systems administrator so that they can fix the problem.

Another command that can be used isbpstat. When run without any options, it prints out a listing of all the nodes and their
current stats. If you are usingbpstat instead of looking for the green checkmark, you will want to check that the node’s state
is set toup.

Issuing Commands

Master Node

When you log into the cluster, you are actually logging into the Master Node. As such, any commands that you type directly
on the command line will execute on the master node. The only exception to that is when you use the special commands for
interacting with the compute nodes.

9

Chapter 2. Interacting with the System

Compute Node

Bpsh is a utility for running jobs on the compute nodes. It is primarily intended for running utilities and maintenance tasks,
rather than for parallel programs. Bpsh is a replacement for the traditional UNIX utility “rsh”, used to run a job on a remote
computer. Likersh, the arguments tobpsh are the node to run the command on, and the command to run.Bpsh, doesn’t
allow you to get an interactive shell on the remote node likersh does, however it does allow you to run a command on more
than one node without having to type the command once for each node.

The typical use ofbpsh is to run a command or utility program on a single node or a range of nodes. For example, if you
wanted to check for the existence of a file in the/tmp directory of node 3 called “output”, from the master node you would
simply run the command:

bpsh 3 ls /tmp/output

and the output would appear on the master node in the terminal on which you issued the command. A range of nodes can
also be specified for bpsh to operate on. To run the same command on nodes 3, 4, and 5 simultaneously, you would issue
the command:

bpsh 3,4,5 ls /tmp/output

The -a flag is used to indicate tobpsh that you wish to run on all available nodes. So, the command:

bpsh -a ls /tmp/output

would produce output for every node currently active in your cluster. If you have a large cluster, this output may be hard to
read. For instance, if your cluster had 64 nodes, and on half of them the file /tmp/output existed, and you ran the command
above you would get back the text “/tmp/output” 32 times and the text “ls: /tmp/output: no such file or directory” 32 times.
The lines of output would be sorted by the speed at which the compute nodes responded. This makes it impossible to
determine if the file existed on a particular node or not.bpsh has a number of options for formatting its output to make it
more useful for the user. The-L option makes bpsh wait for a full line from a node before it prints out the line. This keeps
you from having half a line from node 0 printed, with a line from node 1 tacked onto the end, then followed by the rest of
the line from node 0. The-p option prefixes each line of output with the node number of the line that produced it (this forces
the functionality for-L as well). The-s option forces the output of each node to be printed in sorted numerical order, ie. all
the output for 0 will appear before any of the output for node 1. A divider can be added between the output of each node by
adding a-d option. Using-d causes the functionality of-s to be used even if-s isn’t specified. So, the command:

bpsh -A -d -p ls /tmp/output

when run on an 8 node cluster would produce output like this:

0 ---
0: ls: /tmp/output: No such file or directory

1 ---
1: ls: /tmp/output: No such file or directory

which makes it clear which nodes do and do not have the designated file.

Bpshprovides a convenient yet powerful interface for manipulating all or a subset of the cluster nodes simultaneously.Bpsh
maintains the flexibility of being able to access a node individually, but removes the requirement of accessing each compute
node individually when a collective operation is desired. The complete reference to all the options available for the bpsh
command can be found in theReference Guide.

10

Chapter 2. Interacting with the System

bpsh and Shell Interaction

Some advanced users like to use special shell features such as piping and input and output redirection. Getting this func-
tionality to work with bproc can sometimes be tricky, so this section is aimed at explaining what is required to get this
functionality to work as you’d like. In all the examples below, the program running will becmda. If it is piped to anything,
it will be piped to cmdb, if an input file is used, that file will be/tmp/input and if an output file is used, it will be
/tmp/output , and the node used will always be node 0.

The easy case is running a command on the compute node, and doing something with its output on the master, or giving it
input from the master. Here are a few examples:

bpsh 0 cmda | cmdb
bpsh 0 cmda > /tmp/output
bpsh 0 cmda < /tmp/input

A bit trickier thing to do is to run the command on the compute node and do something with its input or output on that
compute node. There are two ways of doing that. The first way requires that all the programs you run be on the compute
node. For this to work, you would first have to copy the cmda and cmdb executable binaries to the compute node. After
copying the executables, here is an example of how you could execute them:

bpsh 0 sh -c "cmda | cmdb"
bpsh 0 sh -c "cmda > /tmp/output"
bpsh 0 sh -c "cmda < /tmp/input"

The other way does not require any of the programs to be on the compute node, but wastes a lot of network bandwidth as it
takes the output, sends it to the master node, then right back to the compute node. Here is how it would work:

bpsh 0 cmda | bpsh 0 cmdb
bpsh 0 cmda | bpsh 0 dd of=/tmp/output
bpsh 0 cat /tmp/input | bpsh 0 cmda

The final thing to do, is to run a command on the master and do something with its input or output on the compute nodes.

cmda | bpsh 0 cmdb
cmda | bpsh 0 dd of=/tmp/output
bpsh 0 cat /tmp/input | cmda

Copying Data to Compute Nodes
There are a few different ways to get data from the master node to the compute node. The easiest way is NFS shared files.
By default, all files in/home are shared to all compute nodes via NFS. This includes all files that are in your home directory.
In order to access the file on the compute node, you need to open the file and it will be there, even though its really accessing
the file that is stored on the master node.

Another method for getting data to a compute node is to usebpcp. This command works much like the standard UNIX
commandcp in that you pass it a file to copy as one argument and the destination as the next argument. However, any file

11

Chapter 2. Interacting with the System

listed, the source, destination, or both, can be prepended with a node number and a: to specify that the file in question is
on that node. So, if you wanted to copy the file/tmp/foo to the same location on node 1, you would do:

bpcp /tmp/foo 1:/tmp/foo

The third method for transfering data is to do it programatically. This is a bit more complex, so will only be described
conceptually here. If you are using an MPI job, you can have your rank 0 process on the master node read in the data, then
use MPI’s message passing abilities to send the data over to a compute node. If you are instead writing a program that uses
BProc functions directly, you can read the data while you are on the master node, then when you move over to the compute
node, you should still be able to access the data you read in while on the master node.

Monitoring and Signaling Processes

top, ps, and kill

One of the features that Scyld Beowulf has that traditional beowulf doesn’t is a shared Process Id (pid) space. This allows
you to see and control jobs that are running on the compute nodes from the master node using standard UNIX tools such as
top, ps, andkill .

Scyld Beowulf adds a tool calledbpstat that makes it easy to see what nodes the processes are actually running on.bpstat
has two options that help us know what nodes a process is running on.

The first option is -p. Usingbpstat -p lists all of the processes that are currently being send to compute nodes and gives
their pid as well as the node they are running on and the node they started on.

[user@cluster root]# bpstat -p
PID Node
6301 0
6302 1
6303 0
6304 2
6305 1
6313 2
6314 3
6321 3

The PID column tells us what the process id is. The Node column indicates which node it is running on.

The second option is -P. With this option,bpstat takes the output ofps and outputs it again with a new column at the
beginning indicating which node the process is running on. Here is some sample output fromps:

[user@cluster root]$ ps xf
PID TTY STAT TIME COMMAND

6503 pts/2 S 0:00 bash
6665 pts/2 R 0:00 ps xf
6471 pts/3 S 0:00 bash
6538 pts/3 S 0:00 /bin/sh /usr/bin/linpack
6553 pts/3 S 0:00 _ /bin/sh /usr/bin/mpirun -np 5 /tmp/xhpl
6654 pts/3 R 0:03 _ /tmp/xhpl -p4pg /tmp/PI6553 -p4wd /tmp
6655 pts/3 S 0:00 _ /tmp/xhpl -p4pg /tmp/PI6553 -p4wd /tmp
6656 pts/3 RW 0:01 _ [xhpl]

12

Chapter 2. Interacting with the System

6658 pts/3 SW 0:00 | _ [xhpl]
6657 pts/3 RW 0:01 _ [xhpl]
6660 pts/3 SW 0:00 | _ [xhpl]
6659 pts/3 RW 0:01 _ [xhpl]
6662 pts/3 SW 0:00 | _ [xhpl]
6661 pts/3 SW 0:00 _ [xhpl]
6663 pts/3 SW 0:00 _ [xhpl]

And here is the same output, after being run throughbpstat -P:

[user@cluster root]$ ps xf|bpstat -P
NODE PID TTY STAT TIME COMMAND

6503 pts/2 S 0:00 bash
6666 pts/2 R 0:00 ps xf
6667 pts/2 R 0:00 bpstat -P
6471 pts/3 S 0:00 bash
6538 pts/3 S 0:00 /bin/sh /usr/bin/linpack
6553 pts/3 S 0:00 _ /bin/sh /usr/bin/mpirun -np 5 /tmp/xhpl
6654 pts/3 R 0:06 _ /tmp/xhpl -p4pg /tmp/PI6553 -p4wd /tmp
6655 pts/3 S 0:00 _ /tmp/xhpl -p4pg /tmp/PI6553 -p4wd /tmp

0 6656 pts/3 RW 0:06 _ [xhpl]
0 6658 pts/3 SW 0:00 | _ [xhpl]
1 6657 pts/3 RW 0:06 _ [xhpl]
1 6660 pts/3 SW 0:00 | _ [xhpl]
2 6659 pts/3 RW 0:06 _ [xhpl]
2 6662 pts/3 SW 0:00 | _ [xhpl]
3 6661 pts/3 SW 0:00 _ [xhpl]
3 6663 pts/3 SW 0:00 _ [xhpl]

Monitoring Node Status
Scyld Beowulf includes a graphical based tool as well as command line tools for monitoring state and performance infor-
mation for each node on the cluster. The graphical based tool provides continuous updates, while the command line tools
provide snapshots only.

Beostatus GUI Tool

The Beowulf status monitorbeostatusprovides a graphical view of the node state, processor utilization, memory and disk
usage, and network performance. Each line in thebeostatusdisplay reports information about a single node. Once running,
beostatusis non-interactive; the user simply monitors the reported information. However, at startup, there are a number of
command line options which can be used to modify the default behaviour ofbeostatus.

13

Chapter 2. Interacting with the System

Figure 2-1. Screenshot of Beostatus in Gnome/X Mode

The -u flag can be used to change the update interval thatbeostatususes. The default interval is four seconds. Keep in
mind when using this option that each update produces additional loading on the master node, each compute node, and the
interconnection network, and if updates are too frequent they can affect the overall system performance.

Beostatuscan also be used in settings where an X-windows tool is undesirable or impractical, such as accessing your be-
owulf master node through a slow remote network connection. The -c flag causes beostatus to display the same information,
but to display it using the curses mode text output in the window in which the command is run. Curses allows a program to
have precise control of the position of the cursor in a text-only window. The values displayed in the window will be updated
just as they would with the graphical display.

14

Chapter 2. Interacting with the System

Figure 2-2. Beostatus in Curses Mode

bpstat Command Line Tool

The bpstat command can be used to show a snapshot of the cluster, but doesn’t continually update over time. When run
without any arguments, it prints out a list of all the nodes in the cluster including some information about them that includes
its current status. A node has to be in the ’up’ state before you can do anything with it.

[user@cluster root]$ bpstat
Node(s) Status Mode User Group
4-9 down ---------- root root
0-3 up ---x--x--x root root

beostat Command Line Tool

If you wish to see the raw data for the status on the compute nodes, you can use thebeostatcommand. The use of this
command is not detailed in this guide, however a list of all its options can be found in theReference Guide.

15

Chapter 2. Interacting with the System

16

Chapter 3. Running Programs

In this section, we’ll look at how to run serial and parallel jobs on your Beowulf cluster, and how to monitor the status of
the cluster once your applications are running.

First we will see how to manually run a simple non-cluster-aware program on a single computational node. Then we will
continue with the concept of mapping multi-process jobs on to the cluster computational nodes. We will also look at how to
run non-cluster aware program across multiple nodes, an MPI program, a PVM program, and other types of cluster aware
programs.

Introduction
You may be wondering what the difference is between executing a program on a Scyld Beowulf cluster and executing a
program on a stand-alone computer. First lets review how things work on a stand-alone computer, then we’ll talk about how
the Scyld Beowulf cluster works.

Program Execution Description on a Stand-alone Computer

On a stand-alone computer running Linux, Unix, and most other operating systems, executing a program is a very simple
process. For example, to list the files on the present working directory, you typels followed by<return>. This will provide
on your screen a list of all files and sub-directories contained in the directory you were originally in when you typedls.

So what actually happened? First off, there is a program running, called a shell, which prints the prompt and interprets
your commands. When you typels and hit<return>, the shell reads the commandls and executes the program stored as
/bin/ls . The programls collects and prints the list of files in the current directory to the standard output stream which
happens to be your screen.

What’s Different About Program Execution on a Scyld Beowulf Cluster?

So what is program execution like on a Scyld Beowulf cluster? A Scyld cluster is different than simply a group of stand-
alone machines connected by a network. In the Scyld Beowulf configuration, only the Master node is similar to a fully
installed system you are traditionally used to. The compute nodes have only the minimal system necessary to support an
application initiated from a master node.

On the master node of the cluster, since it contains a full installation,ls works exactly as it would on any other stand alone
computer system. When you typels on the master node of the cluster, thels program gets executed and returns the files as
contained on the master node just like when you would executels on any other UNIX system.

On the compute nodes program execution is very different. Remember that on a Scyld Beowulf there are no resident ap-
plications on the compute nodes of the cluster. They only reside on the Master Node. So how do you run programs on a
compute node? On a Scyld cluster processes are migrated at execution time from the Master Node to the Compute nodes.
Take ls for example. To executels on Compute Node number 1, you simply typebpsh 1 ls followed by <return>. The
result ofls shows up on your screen on the master node. How this works is via Scyld’sBProc software. A full description
of bproc andbpshand how they function are covered both in this chapter and in more detail in theAdministrator’s Guide.

Traditional Beowulf Cluster - Description
Remember, a job on a Beowulf cluster is actually a collection of processes running on the compute nodes. In traditional
clusters of computers, and even on earlier Beowulf clusters, getting all these processes started and running together was a

17

Chapter 3. Running Programs

complicated task. Starting a job consisted of each of the following tasks:

• Ensure that the user has an account on all the target nodes, either manually or via script

• Ensure that the user can spawn jobs on all the target nodes. This typically entails configuring a ‘hosts.allow‘ file on each
machine, creating a specialized PAM module (a Linux authentication mechanism), or by creating a server daemon on
each node to spawn jobs on the user’s behalf.

• Get a copy of the program binary to each node, either manually, with a script, or through a network file system.

• Ensure that each node has available identical copies of all libraries needed to run the program.

• Provide knowledge of the state of the system to the application manually, through a configuration file, or through some
add-on scheduling software.

Scyld Beowulf Cluster - Description
With a Scyld Beowulf cluster, most of these steps are removed. Jobs are started on the master node and are migrated out
to the compute nodes using BProc. By using a cluster architecture where jobs may only be initiated from the master node
using BProc:

• Users no longer need accounts on remote nodes.

• Users no longer need authorization to spawn jobs on remote nodes.

• Neither binaries nor libraries need to be available on the remote system.

• The BProc system provides a consistent view of all jobs running on the system.

With all these complications removed, it simply becomes a matter of letting BProc know about your job when you start it,
and the other requirements associated with running an application on a cluster as described go away!

There are two ways to indicate to BProc that you are about to launch a job that should execute on the node processors. One
way deals specifically with launching parallel programs (for example, MPI jobs), and the other way deals with launching
any other kind of program. Both methods are covered in this chapter.

Executing Programs That Aren’t Parallelized

Starting and Migrating Programs to Compute Nodes (bpsh)

There are no executable programs on the filesystem of the computational nodes. Thus, there’s no getty, login or shell on
the compute nodes by default. By now you are probably wondering how does one actually run a program on a computation
node?

Hopefully you are familiar with the commandsrsh or ssh. Both of these commands allow you to run a program on a remote
machine and in the absence of any command it will start a shell program on a remote machine. While neither of these will
work on Scyld Beowulf (since there are no binaries on the compute nodes) there exists a similar command calledbpsh.
bpshallows you to run an arbitrary program on a compute node. Here’s an example:

> bpsh 2 ls -FC /
dev/ etc/ home/ lib/ lost+found/ proc/ sbin/ scratch/ tmp/ usr/

18

Chapter 3. Running Programs

Here we see the standardls command running on node 2. However, you can see from the output that there is not a/bin

directory. So how didls run exactly? Well, it actually started running on the master node executed up to right before the first
line of main()and then memory mapped the entire program out to node 2. It then completed running on node 2 forwarding
the output back to the master node.

This was not a special version ofls. This will work with any program. All three standard I/O streams will by default get
forwarded back to the master. Often programs will stop working if you try to run them in the background as they start
thinking they might need to read standard input. Hence when you plan on running a program in the background on a
compute node you should use the-n flag which will close standard input at invocation.

One thing to understand with the default compute node setup is that it is not possible to run shell scripts on the compute
nodes. While it’s perfectly possible to run a shell like/bin/bash on the compute nodes, none of the expected executables
will be found on the compute nodes. It is possible to copy the shell utilities (likels) over to the compute node. However, it is
not recommended. Shell scripts should be run on the master and modified to include anybpshcommands required to affect
the nodes.

Copying information to the Compute Nodes for Your Program (bpcp)

You may need to get data to and from the computational nodes. Thebpcp command has the same syntax asrcp or scp, and
is similar to the plain UNIXcp.

Before we get to some examples we should note that by default the/home directories of a user are NFS exported to each of
the nodes. This is an easy way to be able to readsmallconfiguration files on the compute nodes. However, the NFS serving
of the master has limited capacity, so don’t try to read large files on multiple nodes using NFS from the server. At the very
least, it will turn the network and the NFS server of the master node into a major bottleneck. It it also possible to overload
the NFS server to the point that it will shutdown its NFS services. (This normally shouldn’t happen, but you can’t say we
didn’t warn you.)

Here are some examples of its usage. Let’s copy a data file calledf001.dat from the current directory to the/tmp directory
on node 6.

> bpcp f001.dat 6:/tmp

The default directory on the compute node is the current directory on the master. Be aware that the current directory on the
compute node may either not exist or already be NFS mounted from the master.

> cd /tmp
> bpcp f002.dat 2:

Here we have copied the file/tmp/f002.dat to the/tmp directory on node 2.

You can copy directly from node to node without any data passing between the nodes.

> bpcp 2:/tmp/f002.dat 3:/tmp

With this command we copied a file directly between node 2 and node 3. The contents of the file never passed though the
master during this transaction.

19

Chapter 3. Running Programs

An Introduction to Parallel Programming APIs
What does it mean to run in parallel? Most programmers are familiar with sequential programs. Simple programs like "Hello
World" and basic sorting programs are typically sequential programs. That is, the program has a beginning, an execution
sequence, and an end. At any time while it is running, it is only executing at a single point. A thread is similar to a sequential
program in that is also has a beginning, a sequence, and an end. Also, at any time while it is running, there is a single point of
execution. The big difference is that a thread is not a stand-alone program; it runs within a program. The concept of threads
becomes important when a program has multiple threads running at the same time and performing different tasks. To run
in parallel means that more than one thread of execution is running at the same time often on different processors or in the
case of a cluster, different computers. There are a few things required to make this work and be useful. First, somehow the
program has to get to the different computers and get started. Second, at some point the data has to be exchanged between
the processes.

In the simplest case, you run the same single process program with different input parameters on all the nodes and gather the
results at the end of the run. This idea of using a cluster to get faster results of the same non-parallel program with different
input is calledparametricexecution.

However, you can imagine a much more complicated example. Say you are running a simulation, where each process
represents some number of elements in the system. Every few time steps all the elements need to exchange data across
boundaries to synchronize the simulation. This is where we start to see the need for amessage passing interface.

To solve these two problems of program startup and message passing, you can develop your own code using POSIX inter-
faces or you could depend on an existing parallel application programming interface (API) for solving these issues. Scyld
recommends using a standard parallel API called MPI (Message Passing Interface).

MPI - A Brief Description

MPI (Message Passing Interface) is currently the most popular API for writing parallel programs. The MPI standard doesn’t
specify many of the details of exactly how it should be implemented. This is very nice for system vendors (like Scyld) as they
can change the way MPI programs run without adversely affecting the output of the program. The Scyld Beowulf product
includes MPICH - a freely available implementation of the MPI standard. MPICH is a development project managed by
Argonne National Laboratory and Mississippi State University (visitthe MPICH web site1 for more information).

With MPI, the same program is automatically started a number of times and is allowed to ask two questions. How many of
us (size) are there, and which one am I (rank)? Then, a big set of conditionals are evaluated to determine what each process
is going to do. You are also allowed to send and receive messages from other processes.

The advantages of MPI is that the programmer:

• doesn’t have to worry about how the program gets started on all the machines.

• has a simplified interface to deal with interprocess messages.

• doesn’t have to worry about mapping processes to nodes.

• abstracts out the details of the network so it can be implemented over very different kinds of hardware allowing your code
to be more portable.

PVM - A Brief Description

Parallel Virtual Machine (PVM) was an earlier parallel programming interface. It was not a specification like MPI but a
single set of source code distributed on the Internet. PVM reveals much more about the details of starting your job on remote
nodes. That is, it fails to abstract out those implementation details as well as MPI does. It’s also considered deprecated by

20

Chapter 3. Running Programs

most, but there are existing applications written for it. In general, we advise against writing new programs in PVM, but there
may be existing application written in PVM you need to run. Also in particular cases, some of the unique features of PVM,
may suggest its use.

Others

As mentioned earlier, one can develop their own parallel API by using various UNIX and TCP/IP standards. Just in terms
of starting a remote program, there are programs written:

• using the rexec function call.

• to use the rexec or rsh program to invoke a sub-program.

• to use Remote Procedure Call (RPC).

• to invoke another sub-program using the inetd super server.

The problem with all of these is that there are a lot of implementation details to deal with. What are the network addresses?
What is the path to the program? What is the account name on each of the computers? How is one going to load balance the
cluster. Since Scyld Beowulf is a bit different and doesn’t have binaries on all the nodes, your mileage may vary using these
methods.

Briefly, we can say that Scyld has some experience with gettingrexec()calls to work and one can simply substitutebpsh
for rsh for programs that usersh, but that we recommend you write your parallel code in MPI.

Mapping Jobs - How do Jobs get "Mapped" to the Compute Nodes?
To run programs specifically designed to execute in parallel across a cluster, things are a slightly more complex. When one
wants to run a program across multiple machines, a little more information is required. The minimal information is: How
many nodes do you want to run on?

The easy way to do this is by setting the environment variableNP. Here’s an example:

> NP=4 ./a.out

This will run the MPI program a.out, which is located in the current directory, with four processes. What isn’t specified is
where these processes will run. That’s the job of themapper.

We divide the job of scheduling between what we callMappingandBatching(also known asQueuing). Mapping is the act
of deciding which node each process will run on. While it seems awfully simple, as various requirements are added, it can
get complex. The mapper scans available resources at job submission time to decide which processors to run on.Batching
is the queuing of jobs until the mapped resources become available. Scyld Beowulf includes a mapping API documented in
the Programmer’s Guide that describes how to write your own mapper.

The default mapper’s behavior can be controlled by setting the following environment variables:

• NP - The number of processes requested. Not the number of processors. As in the example above, NP=4 ./a.out will run
the MPI program a.out with four processes.

• ALL_CPUS- Set the number of processes to the number of CPUs available to the current user. If in the example above,
ALL_CPUS=1 ./a.out would run the MPI program a.out on all available CPUs.

• ALL_LOCAL- Run every process on the master node. (For debugging purposes.)

21

Chapter 3. Running Programs

• NO_LOCAL- Don’t run any processes on the master node.

• EXCLUDE- A colon delimited list of nodes that should be avoided during the node assignment.

• BEOWULF_JOB_MAP- A colon delimited list of nodes. The first node listed will be the first process (MPI Rank 0) and so
on.

There is also a small program calledbeomap that will give you a peek at what the mapping would have been for a job
run right now by the current user with the current environment. It’s quite useful in shell scripts or to learn about how these
environment variables work.

Here are some more examples:

> NP=4 beomap
-1:1:2:3
> NO_LOCAL=1 NP=4 beomap
0:1:2:3

Running Serial Programs in Parallel (mpprun and beorun)
For jobs that are not “MPI-aware” or “PVM-aware”, but need to be started in parallel, the utilitiesmpprunandbeorunare
provided. More sophisticated thanbpsh, mpprunandbeoruncan automatically select ranges of nodes on which to start your
program. They can also run tasks on the master node, and can determine the number of CPUs on a node and start a copy
on each CPU.mpprunandbeorunare very similar, and have similar parameters, but differ in thatmpprunruns programs
sequentially on the selected prcessors, whilebeorunruns programs concurrently on the selected processors.

mpprun

Mpprun is intended for applications rather than utilities and runs them sequentially on the selected nodes. The basic syntax
of how to usempprunis as follows:

mpprun [options] prog-name arg1 arg2

Theprog-nameis the program you wish to run; it need not to be a parallel program. Thearg arguments are the arguments
that should be passed to each copy of the program you are running.

The complete list of options that can be passed tompprunis documented in theReference Guide. Options exist to control
the number of processors to start copies of the program on, to start one copy on each node in the cluster, to start one copy
on each CPU in the cluster, to force all jobs to run on the master node, or to prevent any jobs from running on the master
node. The most interesting of the options is the--mapor --beowulf_job_mapoption. The map option allows you to specify
the specific nodes on which copies of a program should be run as a colon separated list. This argument, if specified, is used
by the mapping software to override the optimally selected resources that it would otherwise use.

Some examples of usingmpprunare shown below:

mpprun -np 16 app infile outfile

The command above runs 16 tasks of program app.

mpprun -np 16 --exclude 2:3 app infile outfile

22

Chapter 3. Running Programs

Runs 16 tasks of program app on any available nodes except nodes 2 and 3.

mpprun --beowulf_job_map 4:2:1:5 app infile outfile

Runs 4 tasks of program app with task 0 on node 4, task 1 on node 2, task 2 on node 1 and task 3 on node 5.

beorun

Beorun is intended to run applications rather than utilities and runs them concurrently on the selected nodes. The basic
syntax of how to usebeorunis as follows:

beorun [options] prog-name arg1 arg2

Theprog-nameis the program you wish to run; it need not to be a parallel program. Thearg arguments are the arguments
that should be passed to each copy of the program you are running.

The complete list of options that can be passed tobeorunis documented in theReference Guide. Options exist to control
the number of processors to start copies of the program on, to start one copy on each node in the cluster, to start one copy
on each CPU in the cluster, to force all jobs to run on the master node, or to prevent any jobs from running on the master
node. The most interesting of the options is the--mapor --beowulf_job_mapoption. The map option allows you to specify
the specific nodes on which copies of a program should be run as a colon separated list. This argument, if specified, is used
by the mapping software to override the optimally selected resources that it would otherwise use.

Some examples of usingbeorunare shown below:

beorun -np 16 app infile outfile

The command above runs 16 tasks of program app.

beorun -np 16 --exclude 2:3 app infile outfile

Runs 16 tasks of program app on any available nodes except nodes 2 and 3.

beorun --beowulf_job_map 4:2:1:5 app infile outfile

Runs 4 tasks of program app with task 0 on node 4, task 1 on node 2, task 2 on node 1 and task 3 on node 5.

Running MPI-Aware Programs
So what do we mean by MPI-aware programs? Programs that have been written to the MPI specification and linked with
the Scyld MPICH library are MPI-aware programs.

Direct Execution

Let’s assume we have a compiled MPI program calledmy-mpi-prog. Let us also assume that the user is running the Bourne
shell (/bin/sh or /bin/bash). Different shells have different semantics for setting environment variables. Details about how
to build MPI programs can be found in theProgrammer’s Guide. Let’s apply the environment variables we learned about

23

Chapter 3. Running Programs

in the mapping section to runningmy-mpi-prog. First let’s run a four process job using the copy ofmy-mpi-prog that is in
the current directory.

NP=4 ./my-mpi-prog

Another way of saying the same thing would be:

NP=4
export NP
./my-mpi-prog

Notice the user didn’t have to say which node to run on or how to get the program there. That’s taken care of by the mapper
which always runs jobs on the nodes with the lowest CPU utilization. However, the user can affect where the program runs
using some of the other environment variables. Here’s another example:

NP=6 NO_LOCAL=1 EXCLUDE=2:4:5 ./my-mpi-prog

In this example we are starting six processes (NP=6), not running any of them on the master node (NO_LOCAL=1) or nodes
2, 4, or 5 (EXCLUDE=2:4:5).

mpirun

Almost all implementations of MPI have ampirun program. So you may choose to start your MPI jobs using that command.

mpirun can be used exactly likempprun, and supports all the same features asmpprundoes. However,mpirun has some
additional features available specifically targeted at MPI programs.

Using mpirun

All of the options available via environment variables through direct execution are available as flags tompirun. For example,
thempiruncommand:

mpirun -np 16 mpiprog arg1 arg2

is equivalent to running the commands (in Bourne shell):

export NP=16
mpiprog arg1 arg2

as long as mpiprog is a properly compiled MPI job (see theProgrammer’s Guidefor details on creating MPI programs).

Setting Mapping Parameters from Within a Program

A program can be designed to set all the required parameters itself. This option makes it possible to create programs in which
the parallel execution is completely transparent. However, it should be noted that this will only work on Scyld Beowulf,
while the rest of your MPI program should work on any MPI platform. Use of this feature differs from the in-line approach
in that all options that need to be set on the command line can be set from within the program, and this feature may only
be used with programs specifically designed to take advantage of it, rather than any arbitrary MPI program. However, this
option makes it possible to produce turn-key application and parallel library functions in which the parallelism is completely
hidden. More details in the use of this option are provided in theProgrammer’s Guide, but a brief example of the necessary
program source code to invokempirunwith the-np 16option from within a program is shown below.

24

Chapter 3. Running Programs

Example 3-1. MPI Programming Example

/* Standard MPI include file */
#include <mpi.h >

/* Scyld mpirun include file */
#include <mpirun.h >

main(int argc, char **argv) {
setenv("NP","16",1); // set up mpirun env vars
MPI_Init(&argc,&argv);
MPI_Finalize();

}

Running with Myrinet

The Scyld MPI library has Ethernet support built-in. If your application was compiled with this library and you now want
to run under Myrinet, then there are at least two ways to fix this problem. First, you can modify your environment so your
application will use the Myrinet version of the MPI library. To do this, simply type the following command before running
your program:

[user1@cluster]$ LD_PRELOAD=/usr/lib/libgmpi.so.1

Alternatively, you can have your system administrator replace the Ethernet version of the MPI library with the Myrinet
version.

Running PVM-Aware Programs
PVM applications are programs that have been written to use theParallel Virtual Machinesoftware system, anapplication
programming interface(API) for writing parallel applications. This software system, designed to enable a collection of
heterogeneous computers to be used as a coherent and flexible concurrent computational resource, has been specifically
tailored to take advantage of the technologies used in a Scyld Beowulf. Therefore, a PVM-aware program is one that has
been written to the PVM specification and linked against the Scyld PVM library. A complete discussion of how to configure
a cluster to use PVM is beyond the scope of this document, however a brief introduction is provided below (with the
assumption that the reader has some background knowledge on using PVM).

The master PVM daemon can be started on the master node using the PVM console:pvm. You can then use the console’s
add command to add compute nodes to your virtual machine. The syntax for the command is as follows:add .#, replacing
the ’#’ character with the node’s assigned number in the cluster (as listed bybeosetupor bpstat. Alternately, you can
start the PVM console by specifying a hostfile name on the command line. This file should contain the .# names of the
compute nodes you want as part of the virtual machine. As with standard PVM, this method automatically spawns PVM
slave daemons to the appropriate compute nodes in the cluster. From within the PVM console, use theconf command to list
your virtual machine’s configuration. You should see a separate line for each node being used. Once your virtual machine
has been configured, you simply run your PVM applications like you normally would.

Other Programs that are Parallelized But Do Not Use MPI or PVM
Programs written for use on other types of clusters may involve various levels of change to function on Scyld Beowulf.
Scripts or programs that invokersh and/orrcp can instead callbpshandbpcp, respectively. Also,beomapmay be used by

25

Chapter 3. Running Programs

any script to load balance programs that are to be dispatched to the compute nodes. Details, on how to port applications to
Scyld Beowulf may be found in theProgrammer’s Guide.

Batching Jobs

The Beowulf Batch Queuing (bbq) Package

The bbq package provides a simple job batch spooler. It is based on the standardat package and has been enhanced to
handle the Scyld cluster environment. It is installed by default during the normal installation procedure.bbq generates a list
of requested processor resources based on the same variables thatmpirun , andmpprun use, and releases submitted jobs as
the requested resources become available to keep the cluster at a predetermined level of utilization. This ’level of utilization’
will be referred to as theload averagein the remainder of this discussion.

With bbq, users can schedule programs to run at specific times or just submit programs to run as cluster processor resources
are available. Thebbq package consists of three programs, the daemonatd, a job submission toolat, and a queue viewer
bbq. The Scyld enhancements are supported only on theb queue. Other standardat queues are available, but only theb
queue has knowledge of the cluster resources. As a convenience, the commandbatch has been aliased toat -q b which
uses theb queue for job submission.

User job output will be captured as text and sent in an email to the user. Both standard out and standard error are captured
and sent to username@localhost. To forward the mail to your regular email account, create a.forward text file in your home
directory on the master node containing the full email address of where you wish to send the mail. Note that you can have
multiple entries in this file, and mail will be sent to each of them.

Submitting Jobs

Users may submit jobs by typing at thebatch prompt or redirecting a file on the batch command line. For the interactive
batch prompt, simply typebatch time/date, the promptat> will then be displayed. Type each command at the prompt
followed by a carriage return, then terminate the sequence with a^d character.batch will then parse any time and date
parameters, display the time to execute the sequence, and then exit. To use an input file, simply create a text file with the
commands you wish to execute and use the-f option or the< pipe symbol. For example,batch noon tomorrow -f jobfile
, or batch noon tomorrow < myfile . Note, that there is no functional difference between the two methods.

When entering commands interactively or through a file, it is recommended that the first line be a comment identifying the
job. Comments are started with the# character, and are not processed.bbq displays the first 38 characters of user input, and
so will display the comment and following characters up to the 38 character limit. This should assist in identifying the job
later.

The time specification used bybbq allows for a wide range of string types. Users can specify time in friendly terms like
now, noon, midnight , today, and do simple arithmetic expressions such asnow + 3hours, 4pm + 2days. Some examples,
batch 06:32 2001-06-04, same asbatch 6:32am jun 4 2001, batch noon sun, batch tomorrow. When only the time is
specified and the time is greater than the current time, a date of today is assumed. When the time is in the past, tomorrow
is assumed. When only the date is specified the time is assumed to be the current time. When both the time and a date are
given the time must be specified first. Any unrecognized formats or expressions in the time specification will be answered
with aGarbled timeerror message.

When submitting jobs, users should be aware of how their environment is set and not mix programs with different resource
requests in one job. For example, a job with the following lines,

NP=3
myprogram1

26

Chapter 3. Running Programs

NP=4
myprogram2

would confuse thebashshell asbbq would place bothNP strings in the environment.bashuses the first string and ignores
the second. Likewise, if the user hasNP already in the environment before thebatch command is run, the first NP is used.
To remove any confusion, users should not have any MPI variables set in their default environment, but instead set them in
the job file, or as part of thempirun command line. You can use the shellunset variablenamecommand to remove any
existing ones. See the next section for a list of all MPI environment variables.

Job Processing

Once a job is submitted, a text file will be created in the/var/spool/atdirectory containing the user’s name, group, environ-
ment, home directory, and the command sequence. The time to execute and the queue name will be encoded in the file name.
bbq relies on the standardat processing to determine the execution time for each job. When that time arrives,bbq uses the
process request mapped against the available processor resources to determine whether or not to run the job. Jobs will pend
in the queue until each of the processors requested falls below the load average selected by the cluster administrator. The
load average value is set to 80% CPU utilization by default.

To determine the processor request,bbq calls thebeomap function described in the above sections, with all of the MPI
parameters and the user’s environment.beomap then returns a list of nodes to use. Jobs are released in a first come first
serve basis, there are currently no ways to assign priorities. If one job requests all of the cluster’s processors, that job will
pend in the queue until the load of all the cluster processors falls below the threshold. No other jobs will be released while
that job is pending.

Note, that the terms process and processor have been used interchangeably, even though this is technically incorrect. Nor-
mally, bbq will use one processor for each primary process the user requests, as this maximizes the job throughput. Only
whenbbq is constrained otherwise, will it fall back to multiple processes per processor. These constraints are reached when
the user selects a limited processor list or the cluster administrator has limited this user’s access to the full cluster. For exam-
ple, the user sets NP=32, but only has permission to run on 16 uniprocessor nodes.bbq will map 2 processes per processor.
With the same example but with dual processor nodes,bbq will map 1 process per processor.

Currently,mpprun arguments for processor requests are not supported. It is expected thatmpprun will be fully supported
in the next release. You may use the environment variable equivalent for the mpprun argument until support is added.

-all-local ALL_LOCAL=1
-all-cpus ALL_CPUS=1
-allcpus ALL_CPUS=1
-np x NP=x
-nolocal NO_LOCAL=1
-map BEOWULF_JOB_MAP=x1:x2...
-exclude EXCLUDE=x1:x2...

Queue Management

Users have a few options when viewing the queue. The commandbbq lists the pending and running batch jobs to standard
out. There is also a GUI display,beoqstat, that constantly monitors the queue and updates its display every 5 seconds.
This GUI also allows jobs to be sorted and deleted. In addition, wheneverbbq detects the environment variableGATE-
WAY_INTERFACE, bbq will generate HTML to standard out. This environment variable will only be set whenbbq is called
as a CGI script via an APACHE web server. Details on these options and the available queue sorting options are available
in theReference Guide.

27

Chapter 3. Running Programs

Figure 3-1. Beoqstat - The GUI BBQ Monitor

Although any user can view all the jobs, only the job owner or root can remove a job from the queue. To do this, simply
typeatrm with the job number. Both pending and running jobs may be removed, but the reader should note thatbbq does
not have knowledge of all the individual processes that an application has started. To effectively remove a running job the
user should delete the job from the queue, and then kill each of the associated processes. To assist in maintaining high
cluster loading and accounting, the cluster administrator may require all jobs to use the job queuing system. This creates a
single job entry point where the administrator could gather job statistics, including user name, processor resource requests,
and start/end times via a simple script. To setup, the administrator sets the group on each compute node todaemonand
restarts theatd daemon with/usr/bin/atd -r . The-r options tells theatd daemon to start all jobs with a group id of daemon,
overriding the user’s normal group allowing the job to access the cluster compute nodes.

PBS

PBS originally stood for Portable Batch Scheduler. The POSIX committee adopted it as a standard thus it also stands for
POSIX Batch Scheduler. The fundamental problem with PBS is that its concept of a job is defined to be a shell script.
As we said earlier, in the default configuration Scyld nodes do run shell scripts on the compute nodes. So PBS and other
schedulers such as NQS will work fine on the master node, but can not schedule jobs on the compute nodes unless the master
configuration is modified. PBS-Pro provides a version of PBS that works on a Scyld Beowulf cluster and takes advantage of
Scyld’s BProc technology. Various Scyld users have used traditional schedulers like PBS in a cluster of clusters environment
by dispatching jobs to the master node of each sub-cluster. The system specific scheduler of each master node can then map
the jobs to its nodes. However, it is not needed if you have just one or a few clusters at your facility.

File Systems

File System Options

As you run programs on your cluster, you will often have to deal with where to put the files that those programs use or
create. Because your cluster nodes each have separate disk drives, there are a number of options for where and how you
store your files. The possibilities are:

• Store files on the local disk of each node

• Store files on the master node’s disk, and share these files with the nodes through a network filesystem

• Store files on disks on multiple nodes and share them with all nodes through the use of a parallel filesystem

28

Chapter 3. Running Programs

Each of these approaches has advantages and disadvantages. The simplest approach is to store all files on the master node.
Scyld supports this approach through the use of the standard network filesystem NFS. By default, any files in the/home

directory are shared via NFS with all the nodes in your cluster. This makes management of the files very simple, but in
larger clusters the performance of NFS on the master node can become a bottleneck for I/O intensive applications.

Storing files on the local disk of each node removes the performance problem, but makes it difficult to share data between
tasks on different nodes. Input files for programs must be distributed manually to each of the nodes, and output files from
the nodes must be manually collected back on the master. However, this mode of operation can still be useful for temporary
files created by a process and then later reused on that same node.

An alternate solution is to use a parallel filesystem. A parallel filesystem provides an interface much like a network filesys-
tem, but distributes files across disks on more than one node. Scyld provides a version of PVFS, the Parallel Virtual Filesys-
tem, which is described in more detail in the next section.

PVFS

The Parallel Virtual File System (PVFS) is a parallel file system. It allows applications, both serial and parallel, to store and
retrieve data which is distributed across a set of I/O servers. This is done through traditional file I/O semantics, which is to
say that you can open, close, read, write, and seek in PVFS files just as in files stored in your home directory.

The primary goal of PVFS is to provide a high performance “global scratch space” for Beowulf clusters running parallel
applications. If PVFS is installed and configured on your cluster, it will “stripe” files across the disks of the nodes in your
cluster, allowing you to read and write files faster than you could to a single disk.

Within your cluster, there are three different roles that a given node might play:

• metadata server

• I/O server

• client

Any node can fill one or more of these roles.

The metadata server, of which there is one per PVFS file system, maintains information on files and directories stored in a
PVFS file system. This includes permissions, owners, and the locations of data. Clients contact the metadata server when
they want to create, remove, open, or close files. They also read directories from the metadata server.

I/O servers, of which there may be many, store PVFS file data. Each one does so by creating files on local file systems
mounted on the machine, such as an existing ext2fs partition. Clients contact these servers in order to store and retrieve
PVFS file data.

Clients are the users of the PVFS system. Applications accessing PVFS files and directories run on client machines. There
are PVFS system components which perform operations on behalf of these clients.

29

Chapter 3. Running Programs

Figure 3-2. PVFS System Diagram

The figure above shows the PVFS system view, including a metadata server (mgr), a number of I/O servers (IONi) each with
a local disk, and a set of clients. For our example system, we will set up the master node as the metadata server, the eight
other nodes as both I/O servers and as clients (CNi). This would allow us to run parallel jobs accessing PVFS files from any
node and striping these files across all the nodes except the head node.

To a user, a PVFS filesystem works much the same as any other filesystem. If a PVFS filesystem exists on your cluster,
the system administrator will mount this filesystem somewhere in your directory tree, say /pvfs. Once mounted, the PVFS
directory functions the same as any other directory, and normal UNIX utilities will work on it. You can cd into the directory,
list the files in the directory with ls, and copy, move or delete files with cp, mv, or rm.

Copying Files to PVFS

If you use a standard UNIX command like cp to copy files into a PVFS directory, PVFS will provide a default striping of
your data across the I/O servers for your file. However, in many instances, the user may wish to have control of the physical
distribution of the file. The u2p command supplied with PVFS can be used to copy an existing UNIX file to a PVFS file
system while specifying physical distribution parameters.

The current physical distribution mechanism used by PVFS is a simple striping scheme. The distribution of data is described
with three parameters:

• base - the index of the starting I/O node, with 0 being the first node in the file system

• pcount - the number of I/O servers on which data will be stored (partitions, a bit of a misnomer)

• ssize - strip size, the size of the contiguous chunks stored on I/O servers

30

Chapter 3. Running Programs

Figure 3-3. Striping Example

In the figure above we show an example where the base node is 0 and the pcount is 4 for a file stored on our example PVFS
file system. As you can see, only four of the I/O servers will hold data for this file due to the striping parameters.

The syntax for u2p is:

u2p -s<stripe size> -b <base> -n <# of nodes> <srcfile> <destfile>

This function is most useful in converting pre-existing data files to PVFS so that they can be used in parallel programs.

Examining File Distributions

The pvstat utility will print out the physical distribution parameters for a PVFS file. For example, to examine a file named
foo in our PVFS file system, we see:

[root@head /root]# /usr/local/bin/pvstat /pvfs/foo /pvfs/foo: base = 0, pcount = 8, ssize = 65536

which tells us that our file foo has a stripe size of 64k and is currently striped among 8 I/O servers beginning at server 0.

Checking on Server Status

The iod-ping utility can be used to determine if a given I/O server is up and running:

[root@head /root]# /usr/local/bin/iod-ping -h 1 -p 7000 1:7000 is responding. [root@head /root]# /usr/local/bin/iod-
ping -h head -p 7000 head:7000 is down.

In this case, we have started the I/O server on node 1, so it is up and running. We are not running an I/O server on the head,
so it is reported as down. Likewise the mgr-ping utility can be used to check the status of metadata servers:

[root@head /root]# /usr/local/bin/mgr-ping -h head -p 3000 head:3000 is responding. [root@head /root]#
/usr/local/bin/mgr-ping -h 1 -p 3000 1:3000 is down.

The mgr is up and running on the head, but not running one on node 1.

These two utilities also set their exit values appropriately for use with scripts; in other words, they set their exit value to 0 on
success (responding) and 1 on failure (down). Furthermore, specifying no additional parameters will cause the program to
automatically check for a server on localhost at the default port for the server type (7000 for I/O server, 3000 for metadata
server). Not specifying a “-p” option will use the default port.

31

Chapter 3. Running Programs

Sample Programs Included in the Distribution

Linpack

The Top 500 page2 lists the fastest known computers in the world. The benchmark they use is named Linpack. The Linpack
benchmark involves solving a random dense linear system. A version of this benchmark is available via a package called
hpl.

Scyld Beowulf provides a small shell script calledlinpack that will automatically create a configuration/input file forxhpl
and start it up. It is located in/usr/bin . This script is intended to work for everyone, thus the default dimensions are
small and will not result in good performance on clusters larger than a few nodes. Feel free to read the script and customize
performance for your cluster. The file/usr/share/doc/hpl-1.0/TUNING gives some ideas on how to optimize the input
file for your cluster. The easy change to try is to increase the problem size that’s currently set to3000 at around line 15, but
it will fail if you set it too high and the nodes run out of memory.

The really useful thing aboutlinpack is that it will stress your cluster by maximizing your CPU and network usage. If it
doesn’t run to completion correctly, or takes too long to run, you probably have a network problem such as a bad switch or
incorrect configuration.

Figure 3-4. Testing your cluster with linpack

MPI-Mandel

mpi-mandel is a graphical interactive demonstration of the Mandelbrot set. Also, sincempi-mandel is a classic MPI
program it gives us a chance to practice our mapping environment variables.

Here’s a sample invocation:

prompt# ALL_CPUS=1 mpi-mandel

32

Chapter 3. Running Programs

This will run the program on all available CPUs. Notice the slave (compute node) count in the bottom left corner. Also,
this program demonstrates the performance counter library. If you are running on x86 CPUs and a kernel with performance
counter support, you’ll see that the number of integer and floating point calculations is given on the bottom of the window.
Thempi-mandel program is located in /usr/bin.

Figure 3-5. Demonstrating your cluster with MPI-Mandel

If you would like to havempi-mandel run as a free flowing demo you can load a favorites file.

prompt# NP=4 mpi-mandel --demo /usr/share/doc/mpi-mandel-1.0.20a/mandel.fav

If you shut off the "delay" under the favorites menu you’ll find that it will refresh much faster. However if your video card
is not fast enough or you are running a very non-homogeneous cluster, you’ll see only part of the screen refresh. In that case
you’ll probably want to leave the delay in.

Notes
1. http://www-unix.mcs.anl.gov/mpi/mpich/

2. http://www.top500.org/

33

Chapter 3. Running Programs

34

Appendix A. Glossary of Parallel Computing Terms

Bandwidth

A measure of the total amount of information delivered by a network. This metric is typically expressed in Millions of
bits per Second (Mbps) for data rate on the physical communication media or Megabytes per Second (MBps) for the
performance seen by the application.

Backplane Bandwidth

The total amount of data that a switch can move through it in a given time. Typically much higher than the bandwidth
delivered to a single node.

Bisection Bandwidth

The amount of data that can be delivered from one half of a network to the other half in a given time, through the least
favorable halving of the network fabric.

Boot image

The filesystem and kernel seen by the machine at boot time; contains enough drivers and information to get the system
up and running on the network

Cluster

A collection of nodes, usually dedicated to a single purpose

Compute node

Synonymous with slave node

Data Parallel

A style of programming in which multiple copies of a single program run on each node, performing the same instruc-
tions while operating on different data

Efficiency

The ratio of a programs actual speedup to its theoretical maximum.

FLOPS

Floating-point operations per second. A key measure of performance for many scientific and numerical applications

Grain size
Granularity

A measure of the amount of computation a node can perform in a given problem between communications with
other nodes. Typically defined as "coarse" (large amount of computation) or "fine" (small amount of computation).
Granularity is a key in determining the performance of a particular problem on a particular cluster

High Availability

Refers to level of reliability. Usually implies some level of fault tolerance (ability to operate in the presence of a
hardware failure)

35

Appendix A. Glossary of Parallel Computing Terms

Hub

A device for connecting the NICs in an interconnection network. Only one pair of ports can be active at any time (a
bus). Modern interconnections utilize switches, not hubs.

Isoefficiency

The ability of a problem to maintain a constant efficiency if the size of the problems scales with the size of the machine

Jobs

In traditional computing, a job is a single task. A parallel job can be a collection of tasks, all working on the same
problem but running on different nodes

Kernel

The core of the operating system, the kernel is responsible for processing all system calls and managing the system’s
physical resources

LAM

The Local Area Multicomputer, a communication library available with MPI or PVM interfaces

Latency

The length of time from when a bit is sent across the network until the same bit is received. Can be measured for just
the network hardware (wire latency) or application-application (includes software overhead)

Local area network (LAN)

An interconnection scheme designed for short physical distances and high bandwidth. Usually self-contained behind a
single router

MAC address

On an Ethernet NIC, the hardware address of the card. MAC addresses are unique to the specific NIC, and are useful
for identifying specific nodes

Master node

Node responsible for interacting with users; connected to both the public network and interconnection network; controls
the slave nodes

Message Passing

Exchanging information between processes, frequently on separate nodes

Middleware

A layer of software between the user’s application and the operating system

MPI

The Message Passing Interface, the standard for producing message passing libraries

MPICH

A commonly used MPI implementation, built on the chameleon communications layer

36

Appendix A. Glossary of Parallel Computing Terms

Network Interface Card (NIC)

The device through which a node connects to the interconnection network. The performance of the NIC and the network
it attaches to limit the amount of communication which can be done by a parallel program

Node

Single computer system (motherboard, one or more processors, memory, possibly disk, network interface)

Parallel Programming

The art of writing programs which are capable of being executed on many processors simultaneously.

Process

An instance of a running program

Process Migration

Moving a process from one computer to another after the process begins execution

PVM

The Parallel Virtual Machine, a common message passing library that predates MPI

Scalability

The ability of a problem to maintain efficiency as the number of processors in the parallel machine increases

Single System Image

All nodes in the system see identical system files. Same kernel, libraries header files, etc, guaranteeing that a program
which will run on one node will run on all nodes

Slave node

Nodes attached to master through interconnection network; used as dedicated attached processors. With Scyld, users
should never need to directly login to slave nodes

Socket

A low-level construct for creating a connection between processes on remote system

Speedup

A measure of the improvement in the execution time of a program on a parallel computer vs. time on a serial computer

Switch

A device for connecting the NICs in an interconnection network. All pairs of ports can communicate simultaneously.

Version skew

The problem of having more than one version of software or files (kernel, tools, shared libraries, header files) on
different nodes

37

Appendix A. Glossary of Parallel Computing Terms

38

	Scyld Beowulf Series 29
	Table of Contents
	Preface
	Feedback

	Chapter 1. Scyld Beowulf Overview
	What is a Beowulf Cluster?
	A Brief Beowulf History
	First Generation Beowulf Clusters
	Scyld Beowulf
	Top Level Features of Scyld Beowulf

	Scyld Beowulf Technical Summary
	Beowulf Process Space Migration Technology
	Compute Node Boot Procedure
	Compute Node Categories
	Compute Node States
	Major Software Components

	Typical Applications of Scyld Beowulf

	Chapter 2. Interacting with the System
	Verifying that the Cluster is Up and Running
	Issuing Commands
	Master Node
	Compute Node
	bpsh and Shell Interaction

	Copying Data to Compute Nodes
	Monitoring and Signaling Processes
	top, ps, and kill

	Monitoring Node Status
	Beostatus GUI Tool
	bpstat Command Line Tool
	beostat Command Line Tool

	Chapter 3. Running Programs
	Introduction
	Program Execution Description on a Standalone Computer
	What's Different About Program Execution on a Scyld Beowulf Cluster?

	Traditional Beowulf Cluster Description
	Scyld Beowulf Cluster Description
	Executing Programs That Aren't Parallelized
	Starting and Migrating Programs to Compute Nodes (bpsh)
	Copying information to the Compute Nodes for Your Program (bpcp)

	An Introduction to Parallel Programming APIs
	MPI A Brief Description
	PVM A Brief Description
	Others

	Mapping Jobs How do Jobs get "Mapped" to the Compute Nodes?
	Running Serial Programs in Parallel (mpprun and beorun)
	mpprun
	beorun

	Running MPIAware Programs
	Direct Execution
	mpirun
	Using mpirun
	Setting Mapping Parameters from Within a Program

	Running with Myrinet

	Running PVMAware Programs
	Other Programs that are Parallelized But Do Not Use MPI or PVM
	Batching Jobs
	The Beowulf Batch Queuing (bbq) Package
	Submitting Jobs
	Job Processing
	Queue Management

	PBS

	File Systems
	File System Options
	PVFS
	Copying Files to PVFS
	Examining File Distributions
	Checking on Server Status

	Sample Programs Included in the Distribution
	Linpack
	MPIMandel

	Appendix A. Glossary of Parallel Computing Terms

