

ETC PRESS
Everything You Wanted to Know

(and more) About the Jam-O-Drum

A Study in Project Management

Cycle 1 Fall 2001

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

FOREWORD

This manual was created to serve as the primary source for Jam-O-Drum

documentation. However, it has a greater purpose in that it may be used as a case study

and guide for the creation and development of other software-based entertainment

experiences. The wide range of disciplines and materials used in the creation of a Jam-

O-Drum experience afford a sort of diverse benchmark that may supplement many

production ventures. The manual is structured around a particular Jam-O-Drum project

known as Musica. The strategies and tips contained within are the amalgamation of

several years of project management study and experience, coupled with the lessons

learned in this project cycle. I hope this will save the reader countless man-hours of

pedestrian troubleshooting and allow the most important aspect of the project, the

experience, to flourish.

- DV

i10/30/01 A Study in Project Management i

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

ACKNOWLEDGEMENTS

The Musica team would like to thank the many people who helped us stumble through

the project step-by-step. Much ado to Wil Paredes and Cliff Forlines for helping to set

up the software environment; Dennis Cosgrove, Jason Pratt and the rest of Stage 3 for

their continual support of Alice; Ben Carter for helping to assemble the Jam-O-Drum

base; Randy Hsiao and the Jam-O-World team for contacts; Donnie Antonini for his

assistance with the finer points of Alice; Mike Rankin for endless 3D Studio guruship;

and of course Frank Garvey, our advisor, for helping us etch out our concept, keeping

us on track, and assorted electrical wizardry. Last, but not least, we would like to thank

Janeen, Don, and Randy for their unrelenting support and feedback.

-- The Musica Project Group

10/30/01 A Study in Project Management ii

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

HOW TO USE THIS DOCUMENT

This document is divided into three parts and a series of appendices, each with a

purpose and chronological placement to guide the reader through a Jam-O-Drum cycle.

Part one deals presents the cycle from a project management viewpoint. The Jam-O-

Drum is introduced and the experience concept is established. Step-by-step techniques

guide the reader through the critical first days of the cycle and into the development of

the project. Concepts such as the demographic, division of responsibility, and software

engineering form the skeleton of the development process. Next the option of legacy

development is discussed followed by an inventory list for the experience. At the end

of part one the reader is challenged to adopt a unique perspective during the project

cycle.

Part two delves into the technical details of the perennial committees. Practice and

theory are covered for hardware, software, modeling/painting, animation, music and

user testing. Each chapter offers both a look at Jam-O-Drum experience fabrication in

general, and also the particulars of the example experience, Musica.

Part three encourages the reader to look beyond the cycle’s duration and campaigns for

a further dedication to project continuity in the form of documentation and

accountability. The Jam-O-Drum as a commercial product is also examined in depth,

providing an exhaustive list of the materials and labor that go into producing a Jam-O-

Drum experience. With this information it is easily possible to pitch the Jam-O-Drum

for sale to potential vendors.

The appendices cover a selection of the digital artifacts from the accompanying CD

including screenshots, contact information, recommended reading, troubleshooting and

Jam-O-Drum diagrams and schematics.

This document is intended to be all encompassing and touch on virtually every facet for

the Jam-O-Drum phenomenon. The editor welcomes any comments or corrections.

10/30/01 A Study in Project Management iii

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

TABLE OF CONTENTS

FOREWORD ..I

ACKNOWLEDGEMENTS ... II

HOW TO USE THIS DOCUMENT ... III

TABLE OF CONTENTS ..IV

PART I: ELEMENTARY PROJECT MANAGEMENT .. 1

1. SO YOU’VE DECIDED TO CREATE A JAM-O-DRUM EXPERIENCE..................... 2

1.1. WHAT IS THE JAM-O-DRUM?.. 2
1.2. THE EXPERIENCE CONCEPT .. 2
1.3. WHAT IS MUSICA? .. 3
1.4. SEVEN WEEKS OR FOURTEEN? ... 3

2. PROJECT MANAGEMENT.. 5

2.1. YES, THIS SHOULD COME FIRST... 5
2.2. THE FIVE THINGS NO ONE THINKS WILL HAPPEN (BUT ALWAYS DO) 6
2.3. YOUR CONCEPT, YOUR DEMOGRAPHIC ... 7
2.4. THE MISSION STATEMENT .. 8
2.5. COMMITTEE STRUCTURE .. 9
2.6. YOU’VE BEEN ELECTED.. 10

2.6.1. Many Hats.. 10
2.6.2. Responsibilities .. 10
2.6.3. Intangible Requirements .. 11

2.7. PLANNING YOUR CYCLE / SOFTWARE ENGINEERING .. 11
2.7.1. The Need for Engineering.. 11
2.7.2. Getting Status... 12
2.7.3. Risk Management... 13
2.7.4. The Spiral Process ... 13
2.7.5. The Beauty of MS Project .. 14
2.7.6. Scheduling Milestones ... 15
2.7.7. Assigning Tasks.. 15

2.8. A CAREER’S WORTH OF STUDY ... 16

10/30/01 A Study in Project Management iv

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

3. THE PLAYERS ... 17

3.1. THE A-TEAM... 17
3.2. ETC CO-DIRECTORS ... 17
3.3. YOUR ADVISOR... 17
3.4. THE PROGRAM COORDINATOR ... 18
3.5. THE TECHNICAL COORDINATOR... 18
3.6. STAGE 3 RESEARCH GROUP.. 18
3.7. PREVIOUS JAM-O-DRUM TEAM MEMBERS... 18

4. LEGACY DEVELOPMENT: PRO AND CON... 19

4.1. YOU ARE THE BEST HACKER IN THE WORLD... 19
4.2. JAM-O-DRUM CODE BASE HISTORY... 20
4.3. ALICE V. OPENGL V. DIRECTX .. 20

5. WHAT YOU’LL NEED (INVENTORY) .. 22

5.1. A STOCK LIST FOR FUN .. 22
5.2. JAM-O-DRUM COMPONENTS .. 22
5.3. HOST COMPUTER .. 23
5.4. HARDWARE TOOLS ... 24
5.5. SOFTWARE DEVELOPMENT TOOLS ... 24
5.6. CONTENT CREATION TOOLS ... 24

6. STANDING ON THE GORGE (10,000 FEET ABOVE)... 25

6.1. DON’T SWEAT THE SMALL STUFF…... 25
6.2. THE VIEW FROM 10,000 FEET... 25

PART II: DIVIDE AND CONQUER (COMMITTEES) ... 27

7. HARDWARE ... 28

7.1. ROOM SETUP... 28
7.2. SOLDERING BASICS... 28

7.2.1. Preparation.. 28
7.2.2. Avoiding “Cold Solder Joints”.. 29
7.2.3. Using a Heat Sink .. 29
7.2.4. Heat Shrink v. Electrical Tape... 29
7.2.5. Finishing Up .. 30

10/30/01 A Study in Project Management v

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

7.2.6. Caveats .. 30
7.3. INPUT DEVICES ... 30

7.3.1. Receiving Data... 30
7.3.2. Turntables .. 30
7.3.3. Drum Pads ... 31

7.4. AUDIO EQUIPMENT ... 31
7.5. ELECTRONICS.. 32

7.5.1. The Black Box .. 32
7.5.2. Gameports.. 32

7.5.2.1. Materials ... 32
7.5.2.2. How to Proceed... 32
7.5.2.3. Caveats.. 34

7.5.3. Encoder to EDIVIDE Wiring ... 35
7.5.3.1. Materials ... 35
7.5.3.2. What is the EDIVIDE? ... 35
7.5.3.3. How to Proceed... 35

7.6. THE MIRROR ... 36
7.6.1. The Best Mirror ... 36
7.6.2. Mounting.. 36
7.6.3. Hanging ... 37

7.7. THE PROJECTOR .. 37
7.7.1. Positioning... 37
7.7.2. Flipping the Image... 37

7.8. HOST COMPUTER SETUP ... 38

8. SOFTWARE I: THEORY .. 39

8.1. LEGACY CODE: A SYSTEM DESIGN EXAMPLE ... 39
8.2. SYSTEM ARCHITECTURE... 39

8.2.1. The Wedding Cake (A Marriage of HLLs)... 39
8.2.2. C++ ... 40
8.2.3. Java.. 40
8.2.4. Python and Alice.. 41

9. SOFTWARE II: PRACTICE ... 42

9.1. HIGH-LEVEL LANGUAGES FOR ABSTRACTION ... 42

10/30/01 A Study in Project Management vi

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

9.2. THE JAM-O-DRUM EXPERIENCE BUILDER ... 42
9.2.1. Why JODEB?... 42
9.2.2. C++ Wrappers and JNI... 42

9.2.2.1. DirectX.. 43
9.2.2.2. DirectXEvents... 43
9.2.2.3. DirectInput .. 43
9.2.2.4. DirectSound .. 44

9.2.3. Java and the Experience Builder Core .. 44
9.2.3.1. Input .. 46
9.2.3.2. ZeumControlPanel .. 46
9.2.3.3. Controllable .. 46
9.2.3.4. PadListener ... 46
9.2.3.5. DiskListener.. 47

9.2.4. The Java-Python-Alice Love Triangle ... 47
9.2.4.1. JAlice as a Media-Interaction Engine ... 47
9.2.4.2. The JAlice Configuration File .. 49

9.2.5. Using JAlice for Animation.. 49
9.2.5.1. Introduction: What is JAlice World Script?... 49
9.2.5.2. JAlice World Script v. Calling JAlice Script from Java 49
9.2.5.3. Methods of Scripting in JAlice ... 50

9.3. MUSICA APPLICATION SOURCE .. 51
9.3.1. Java.. 51

9.3.1.1. Main Classes ... 51
9.3.1.2. Musica Package Interface and Class Summary .. 52
9.3.1.3. Java’s Role in Alice .. 53

9.3.2. Python and Alice.. 53

10. MODELING AND PAINTING .. 54

10.1. RAPID PROTOTYPING .. 54
10.2. THE LEVEL-OF-DETAIL TRADEOFF... 54
10.3. CREATING TEXTURES ... 54
10.4. MAPPING TEXTURES ... 55
10.5. EXPORTING YOUR MODEL.. 55

11. ANIMATION ... 57

10/30/01 A Study in Project Management vii

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

11.1. KEYFRAME V. NATIVE ALICE ... 57
11.2. EXPORTING KEYFRAME ANIMATIONS FROM 3DS .. 57
11.3. OBJECT REUSE AND RESOURCE CONVERSATION ... 57

12. SOUND ... 59

12.1. I CAN HEAR! (DIGITAL SOUND 101) .. 59
12.2. ACOUSTIC MAGIC: EFFECTS ... 59
12.3. WRITING A SCORE: SEQUENCES ... 59
12.4. A POOR MAN’S MUSIC: SAMPLES .. 60
12.5. COMPRESSION AND QUALITY ... 61
12.6. CREATING CONTENT WITH CAKEWALK PRO AUDIO .. 61
12.7. THE POLYPHONY SOUND MANAGER .. 61

13. USABILITY ... 63

13.1. THE VALUE OF USER TESTING.. 63
13.2. USER CASE SCENARIOS .. 63
13.3. PLANNING USER TESTING... 64

13.3.1. How Often and When?... 64
13.3.2. The User Base.. 64
13.3.3. Designing the Test ... 65

13.3.3.1. Asking the Right Questions .. 65
13.3.3.2. Concept Testing .. 65

13.4. CONDUCTING THE TEST .. 66
13.5. DATA MINING ... 66
13.6. REVISION... 66
13.7. MORE ON USABILITY .. 67

PART III: BEYOND THE CYCLE ... 68

14. DEDICATION TO CONTINUITY.. 69

14.1. TIME WELL SPENT .. 69
14.2. DOCUMENT EVERYTHING ... 69

14.2.1. The Growing Experience Compendium... 69
14.2.2. Digital Resources... 70

14.3. EVOLUTION OF THE JAM-O-DRUM?.. 70

10/30/01 A Study in Project Management viii

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

15. JAM-O-DRUM FOR SALE.. 72

15.1. THE PRICE TAG OF REALITY... 72
15.2. MATERIALS AND LABOR... 72

APPENDIX A: MATERIALS PURCHASING PROCEDURE ... 73

APPENDIX B: PREVIOUS JAM-O-DRUM TEAM MEMBERS.. 74

APPENDIX C: RECOMMENDED READING.. 76

SOFTWARE ENGINEERING/PROJECT MANAGEMENT.. 76
HUMAN-COMPUTER INTERACTION/USABILITY ... 76
COMPUTER GRAPHICS.. 76
ELECTRONIC MUSIC/MIDI... 76
ACM .. 76

APPENDIX D: SAMPLE EXPERIENCE CONFIGURATION FILE................................... 77

APPENDIX E: TROUBLESHOOTING.. 79

3D STUDIO MAX... 79
JALICE.. 79
JBUILDER ... 80
THE PROJECTOR ... 81
HARDWARE INPUT ... 81

APPENDIX F: MUSICA SCREENSHOTS .. 83

APPENDIX G. DIAGRAMS AND SCHEMATICS .. 85

10/30/01 A Study in Project Management ix

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

PART I:
ELEMENTARY

PROJECT
MANAGEMENT

110/30/01 A Study in Project Management 1

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

1. SO YOU’VE DECIDED TO CREATE
A JAM-O-DRUM EXPERIENCE

1.1. What is the Jam-O-Drum?
The Jam-O-Drum (JOD) is a large, multiuser, input/output device designed to

encourage collaboration. The JOD is a round table 6’4”

in diameter divided into four quadrants by user stations. At each station is a MIDI

drumpad, a turntable-like ring, and a speaker. Guests provide input to the Jam-O-Drum

by hitting the drum pads with their hands, and spinning the turntables to either the left

or the right. A large mirror is hung over the table and receives a signal from a high

contrast/resolution projector. The software application is displayed on the surface of

the Jam-O-Drum from the light reflected off of the mirror. Guests may play the game

on the table together while making music emanate from the four speakers.

Figure 1. Jam-O-Drum 3.0.

1.2. The Experience Concept
The purpose of the Jam-O-Drum is to provide a collaborative multimodal form of

communication and expression. The common demographic for Jam-O-Drum

experiences is school children, though frequently the visceral appeal in the Jam-O-

Drum attracts people of all ages. Guests may collaborate to play a simple video game

while enabling them with the direct power to create music, sounds, and colorful graphic

animations. It is imperative that all Jam-O-Drum teams keep this in mind when

210/30/01 A Study in Project Management 2

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

designing an experience. The rich, visual and aural cues received from the hitting and

rotating of the drums parts provide a vibrant, powerful sense of stimulation.

1.3. What Is Musica?
Musica is a collaborative experience for the Jam-O-Drum targeted at children of age

seven or older and centered around basic musical notation. One to four guests play a

musical game inspired by the arcade classic Arkanoid. Each player begins with a

paddle in the shape of a ½ rest symbol. Players deflect the brightly-colored balls with

the paddles via rotation of the turntables in an attempt to break patterned blocks

containing musical notes and symbols. Each block when broken will add its note to a

growing musical sequence that may be played when a player strikes a drumpad. Upon

successful completion of the level, the players will be rewarded with a new set of balls

and a prerecorded musical sequence.

Figure 2. Musica, a Jam-O-Drum Experience.

Musica conveniently entails just about every major tenet of software engineering and

project management. The experience is ultimately intended for installation at the

Children’s Museum in Pittsburgh, but a final product couldn’t be developed in the first

cycle. Fortunately, though, the project will present a playable demo ready for user-

testing and revision, and leaves off at a good stopping point for handoff to the next

team. Throughout the remainder of this text all examples and references will be

serviced by the Musica project and its first cycle.

1.4. Seven Weeks or Fourteen?
Probably the most fundamental factor in deciding what kind of experience you’re going

to create for the Jam-O-Drum is your cycle length. Creating a professional, ready-for-

10/30/01 A Study in Project Management 3

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

sale application in seven weeks is daunting at best, but hopefully with this document

(and all the hardware working before you start), you can pull it off. For a fourteen

week cycle, this becomes much easier as a fully-functional game can be created from

concept to testing in seven weeks, and the second half of the cycle can involve scores of

neat extras for setting up the environment and adding to the experience. This way when

it’s complete you will have a robust and user-friendly production. Also, if you are

considering rewriting the rendering engine and/or input code for the JOD, this would

most likely necessitate a fourteen-week cycle (see Chapter 4, Legacy Code: Pro and

Con).

10/30/01 A Study in Project Management 4

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

2. PROJECT MANAGEMENT

2.1. Yes, This Should Come First
Entertainment Technology is exciting. The feeling of getting a new project, a new

team, a new goal, a new product…it’s breathtaking. Picture yourself at your first

project meeting. One of the first things you (and everyone else) are feeling is that

tempting chorus of “Concept, Creation, Celebration.” It says, “Let’s get going!” But

it’s a siren song. It’s so easy to sit around and brainstorm of great things to do.

“Maybe it could be like this. Oh, yea, then we could add this to go along with so and

so…”. The conversation dances on and on in inspired, ethereal circles. After about

twenty or thirty minutes of this scattered bliss, the joyful mood is broken. The one guy

in the back sitting back in his chair clears his throat and says, “That’s all well and good,

but is it feasible given the resources we have?” And there it is, the honeymoon is over,

and it’s all downhill from there.

But it doesn’t have to be like that! The unhindered delight of creative exploration can

find harmony with the cold, unfeeling regime of pragmatism. And you don’t even need

to pick a token bad guy to drain the life out of every idea you have (most of the time).

Quite frequently managers are portrayed in the media as pointy-haired idiots that don’t

know a keyboard from a two-by-four. That’s personnel management, however. Project

management, on the other hand, is mainly good planning and recognizing your

resources. Every member on the team should be self-managed and assertive, yet there

is a need for a hierarchy of responsibility and division of labor across the board. By

simply being candid, questioning everything, and always expecting a setback, you can

maximize your worth to your project and your group. As a wise man once said, C.S.

stands for nothing more than Common Sense.

Throughout the rest of this chapter, we’ll go over the basics of project management that

every person should know. This includes some of the methods team leaders need, and

the tools individuals can use to survey and map out how the time will be spent during

the cycle.

10/30/01 A Study in Project Management 5

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

2.2. The Five Things No One Thinks Will Happen
(But Always Do)

1. No one finishes early.

People will unconsciously alter their level of effort and production to expand the task

duration to its limit. Whether it’s from procrastinating, nitpicking, or stalling during the

learning curve, all but the most motivated of zealots will always finish assigned tasks

on time or late.

2. Everything takes longer than it should.

No matter how terrific a team of hackers you may have, things will run over. Projects

like the Jam-O-Drum have many critical points of failure because they involve so many

systems. Electrical components break, hardware doesn’t play with software, basic

image manipulation is finicky, and the experience may just turn out to be no fun.

Whether the Jam-O-Drum is physically complete and set up when you receive it or not,

there is a lot of conversion going on between a guest striking a drum pad and an

unstable Windows PC trying to keep track of game physics and about six sounds at

once. One of the very first milestones that must be set, and met with total success, is

mastery of the tools. As well as one thinks they have a grasp on how the system

operates, the learning won’t stop until the project is over. For this reason, it’s

imperative to provide more time than one would think is necessary when planning the

acclimation of the materials; and tests and demonstrations of the mastery are needed to

back up these claims. Otherwise a lot of time will be wasted in development still trying

to learn the system.

3. Assumptions make for a fast trip to nowhere.

This principle is linked with the last, because it’s always easy to believe one is in

control of their domain. The hard truth is you’re never totally in control, and to believe

otherwise is what burns time and produces rejected artifacts. Never underestimate how

foreign the system can seem. Remember, it was created by a group of people who have

an entirely different way of thinking than you, in addition to a different skill set. It will

take a lot of documentation, a lot of talking and a lot of questioning even the most

mundane of previous decisions.

10/30/01 A Study in Project Management 6

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

4. Requirements will change.

The strongest canon in software engineering is that things will go wrong, and

requirements will change. The client may alter his idea of where the project is going,

the venue/environment may undergo some drastic modification, or things may just not

work, prompting a stern paring down of the objectives and direction. Hardware is

discontinued, software is unsupported, and new versions just don’t mesh like the old

ones. For all these reasons, perform risk analysis and rapid prototype.

5. Anything less than a ridiculous level of communication will lead to ruin.

This is the most crucial of all things taken for granted. In times where development and

revision is on an accelerated pace (usually at the end of the cycle), the project is most

prone to fall apart. Some people are making revisions almost constantly, others may be

lost as to their role in the production during crunch-time, and of course everything

either gets done twice or not at all. Anytime a change to the project is made, remember

the five W’s: who made the change, what was done, where was it made, when did it

occur/will it be finished, and why was it performed. This sort of email should be sent

out, in bulleted list format, every time someone closes up shop for a session. And

check in the files!

It’s also critical that tradeoffs are agreed on by a majority of the group, and that

everyone is aware of them. Features will be cut, sample quality may be sacrificed in the

interest of space, and personal testing may reveal a fundamental change is needed in the

way routine is handled. These are all things everyone has to know, regardless of title

and background. Appreciating your teammates’ skills and their viewpoint will

undoubtedly produce higher quality work.

2.3. Your Concept, Your Demographic
Creating an entertainment experience is a lot like having a dinner party. The way you

present yourself, your house, and your meal is tightly interwoven with who’s coming

over. This can start from either end. Perhaps you feel like having a swanky, highbrow

European dinner that lasts for hours, rife with all the accoutrements of style. Or maybe

it’s just chili, tacos, and football. On the other hand, you may have in mind to invite all

of your prominent business partners, or just the guys at the bowling alley. Either way,

either the concept or the demographic gives you a kick-start on how to define the other.

10/30/01 A Study in Project Management 7

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

For Musica, we decided early on we wanted to make an experience for children. This

was motivated heavily by the fact that the Jam-O-Drum had been installed in a number

of museums prior to our cycle. This need not be an overbearing precedent. The Jam-O-

Drum could be used in high school to motivate interest and participation in the arts, for

collaborative public performance, or even music theory instruction. In our case, we

knew that since our demographic was elementary and middle school children, we had to

provide a concept that was visually and aurally rich, as well as easy to pick-up, with

very a visceral entertainment appeal. Also we decided eventually we’d like to set up

the drum in a children’s museum that would have a high turnover and a steady flow of

traffic, the experience would have to allow anyone to start playing at any time, and the

entire experience shouldn’t consist of more than a few simple stages.

Since the Jam-O-Drum appeals to such a wide audience, it matters less about which

area you choose to start with. If you have a great concept, then it’s not hard to fit a

demographic to it and thusly define your expectations as to the level of detail and depth

the experience will go into. Conversely, it’s quite easy to create a concept that

embodies an underlying theme and goal for a particular audience. The key point in this

step is to pick one or the other, immerse yourself in it, and then justify both your

concept and your demographic by a multitude of relationships. (Kids like playing, kids

like learning. Making music is playing, teaching music is learning.)

2.4. The Mission Statement
The crux of an arched bridge is the keystone. The keystone absorbs the brunt of the

stress in the structure, and holds everything else in place. Just like bridges, projects

need keystones. The experience mission statement gives strength and resolve to the

project. Whenever there is doubt in the project, repeat the mission statement.

Actors define their objectives with an infinitive. Corporations often adopt the same

strategy for their mission statements. It should be strong, compelling, and include the

demographic and the goal. [Our mission statement is] To provide a rich, colorful,

entertaining experience for schoolchildren while familiarizing them with the basic

symbols and concepts of musical notation and theory. Pick a battle cry you can rally

around, you’ll need it later if morale sinks.

10/30/01 A Study in Project Management 8

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

2.5. Committee Structure
After the group has decided on the concept and the demographic, the next pivotal task is

getting to know your project team. For the most part people will have an idea of what

areas they’d like to work with. This desire will stem from the skills one already has and

those looking to be developed. For the project to succeed, and people to have fun (the

former is actually quite dependent on the latter), there needs to be a healthy balance on

all required committees of rookies and veterans. A committee of expert programmers

will most likely produce a tight and efficient solution to the software problem, but a mix

of masters and amateurs will enable both to grow from the experience, in

communication and problem-solving skills, but also in devotion to the project. People

by nature like to be challenged, but not smothered or overwhelmed in the face of rival

skill. Most importantly, every facet of the experience needs to be serviced by a

committee with a well-equipped team. If no one in the project team has the necessary

skills to develop a critical aspect of the experience, then perhaps it is in the best

interests of the project and the group to reexamine the scope of the cycle.

Distribution of labor and responsibility is quintessential to giving individuals enough

breathing room to concentrate on their tasks. Ultimately, one person is responsible for a

particular part of the experience, and the leadership at that level must be unfaltering.

The Jam-O-Drum is much like a video-game experience, but with custom hardware and

collaborative intent. With this in mind, the Musica team of five people developed the

following hierarchy:

Committee Members Role

Hardware 5 Purchasing, assembly, integration, support of all
tangible materials: the JOD, drum pads, drum
module, amplifier, mixer, computer, reflecting mirror,
etc.

Software 3 Mastery, development, documentation and support
of legacy and new code.

Modeling and
Painting

3 Creation and support of all models, textures,
backgrounds, static game graphics.

Animation 3 Creation and support of all animations and visual
effects.

10/30/01 A Study in Project Management 9

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

Music 3 Creation and support of all musical sequences,
samples, and sound effects.

User Testing 5 Development of user test scenarios, obtaining test
subjects, recording and analysis of test data.

Table 1. Musica Committee Breakdown.

Of course, each committee was also responsible for the mastery of all relevant tools,

both hardware and software. Concept was engineered by the entire group during the

first few weeks of the cycle. Storyboards and concept art were produced by the

majority of the team to supplement this. The User Testing committee was not actually

utilized during the first Musica cycle because of time constraints, but it is one of the

most important aspects of developing the experience, and was left as such for the next

cycle.

2.6. You’ve Been Elected

2.6.1. Many Hats
Entertainment projects require a lot of interdisciplinary work. Teams are going to be

small and the parallelism in the work is relatively thick. As such, you’re going to wear

a lot of hats during your cycle. You’ll probably serve on half the committees in one

way or another, and for one of them chances are you’ll be a chair. When volunteering

(or being selected) for chair, it’s best that your leadership role be in your strongest suit.

If no one is adroit in one particular area, it will take the person with the most

background or most willingness to learn it quickly. Being a committee chair is not

something to be taken lightly. Responsibility for the success of the committee’s entire

aspect lies on the chair’s shoulders. Being said, chair is not for the weak of heart or

introverted.

2.6.2. Responsibilities
Besides preferably being one of the most skilled members of the committee, the chair

has to carry on a number of organizational tasks to keep the committee on task,

efficient, and operating at its peak level. It’s in the chair’s duties to:

• schedule all committee meetings

• plan the development cycle for the committee

10/30/01 A Study in Project Management 10

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

• allocate tasks and distribute the workload evenly to the committee members

• monitor that the committee’s progress remains on schedule and true to the mission
statement

• appoint a committee scribe to take notes at all committee meetings

• ensure documentation is maintained and all committee productions are archived
properly

2.6.3. Intangible Requirements
Aside from the executive tasks of a chair, there are more subtle obligations as well. A

chair must be a leader, and act as such. Delegation and policy must be dispatched with

authority, and deadlines must be enforced. The committee members must be driven,

motivated and inspired by the chair. It’s the chair’s responsibility to push the team to

excel and demand performance. If there is not strong leadership, a committee will stall

and wander. It’s imperative that the committee’s goals, the timeline, and contribution

are all clearly drawn out and reaffirmed periodically by the chair. Exceptional people

only do exceptional things when motivated to do so.

2.7. Planning Your Cycle / Software Engineering

2.7.1. The Need for Engineering
Writing software is a science, designing software is engineering. Just like civil

engineering, the process may be implemented by anyone with some technical know-

how, but without proper training is a recipe for disaster. You wouldn’t drive across a

bridge built by someone who simply knew how to mix concrete and use a blowtorch,

would you?

Software development is a field harder than any other of its kind, namely because there

aren’t any tried and true methods for its process. There is no underlying physical

science for programming computers other than it’s only a matter of time until they (and

their programs) fail, and most fail a lot sooner than you’d like. To make matters worse,

your project isn’t simply an exercise in software development. It’s a debacle-in-waiting

of project management, and interdisciplinary project management at that. All at the

same time, you have people constructing and assembling hardware, spending hundreds

of dollars on materials and services, crafting models and animations, writing music,

creating a theme and concept, and of course writing hundreds of lines of fragmented,

10/30/01 A Study in Project Management 11

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

inefficient, and unintelligible code. Oh, and you have seven weeks to do it. There never

existed a project that cried louder for software engineering process.

Now that your palms have grown sweaty and the dark, ominous thunderhead of failure

is rumbling in the distance, you are prepared to listen to reason. You will use strict

method to engineer your experience, because wandering from procedure for just one

day can set you back weeks. Fortunately for you, the path to successful project

management involves very simple concepts and actions. Unfortunately for you, it’s so

numbingly simple that you’re likely to forget it, or brush it aside in the name of short-

term brute strength.

Leadership and authority must be bold and unflagging. Deadlines must be met

constantly, with justification reinforced at every stage. Communication has to occur

like breathing, not a decision may go unannounced or unjustified to the team. Risks

must be analyzed constantly, and a backup plan must exist for any possible threat.

Prototypes will be generated frequently, and tested often internally and externally.

Every step of the cycle must be mapped out and responsibility allocated so no one

person may sit idle waiting on something else. But most importantly, every

microscopic interaction with the project must be viewed objectively, in perspective with

regard to the rest of the cycle, and handled with the utmost common sense. These are

the commandments of engineering your experience.

2.7.2. Getting Status
There needs to be bracketing in all areas of your project. Committee chairs report to

advisors, committee members report to chairs. The committee chair must be totally

aware of each of his members’ status at any one time: what they have done, what

they’re currently working on, what they have left to do; also, what resources are being

utilized, what the critical elements are for the tasks’ completion, and what obstacles the

members’ may encounter. There are a lot of balls to juggle, but with constant

affirmation and electronic record of the committee’s progress, it barely becomes

manageable. Every director/cast member relationship like these must adhere to an

unyielding process and be able to present all the incident effects at a moment’s notice.

Only through rigorous bi-directional communication can failure and waste be weeded

out.

10/30/01 A Study in Project Management 12

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

It may also be helpful to have executive committee chair meetings weekly as well. By

exchanging status from an aspect-oriented point-of-view, the chairs may better decide

where to allocate resources and which team-members may have their duties’ priorities

downgraded (or upgraded) in one particular area or another to keep all of the project’s

development on the same page. This also serves as a forum for chairs to analyze in

what areas team members (including themselves) are most productive and where a

rebalancing of responsibility may increase overall productivity.

2.7.3. Risk Management
Risk analysis is the art of brainstorming failure. By studying all the possible (and

virtually impossible) pitfalls your committee may encounter, the team greatly increases

its chances for success. A good way to start is to write a rough timeline of your

project’s evolution along the top of a whiteboard. Concentrate on the elements needed

for the experience’s completion for a moment and then brainstorm as many possible

things going wrong, epic or infinitesimal, and write them on the board, with arrows

tracing the disaster to the point(s) on the timeline where it could occur. A half an hour

of this should produce several whiteboards of tragedy. After assessing each of these

risks individually, the processes of risk reduction and risk management may begin.

Pretend each potential problem is a time bomb. Even if you can’t think of a direct

solution to diffuse it, there are a myriad of paths to take to lessening its likeliness of

happening or impact.

With the density of this material being generated, it would be worthwhile to record and

catalog all of your risks and prevention methods in tabular form. Also, your risks must

be reexamined periodically, for new problems can spring up as the project evolves and

begins to branch down different paths. Each week’s worth of work will produce new

problems and hopefully solutions, the key is to get to them before they cause your

project to stall.

2.7.4. The Spiral Process
The Spiral Process is a risk-based software development method for rapidly producing

prototypes and performing analysis of the production in a cyclic manner. Cycles move

from risk analysis to requirements to design to implementation/testing. As the process

moves onward, the phases get longer and the materials produced become more and

more complicated.

10/30/01 A Study in Project Management 13

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

Figure 3. Spiral Process Paradigm with Conceptual Model.

By following this path of recursive, risk-based development for your cycle technical

and conceptual anomalies are more likely to be found and dispatched earlier, producing

more reliable and robust artifacts.

2.7.5. The Beauty of MS Project
MS Project is an electronic godsend and you using it to your advantage will

manufacture statistical wizardry not even the staunchest autistic could produce. MS

Project is a tool for production management. It keeps track of resources, team

members, schedules, tasks, critical paths, and that’s just for starters. The way it works

is your project is centered around a timeline, a beginning and an end. In between you

populate the calendar with action items for events as broad as user testing to tasks as

small as assembling a document. Subtasks may be nested within super tasks and phases

of the project. All of these may then be assigned to team members or committees.

Dependencies may also be built into your burgeoning time-pool of man-hours thus

creating critical paths for risk management.

10/30/01 A Study in Project Management 14

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

One of the most effective and easy features to use is the PERT chart. This graphical

representation of your cycle extends tasks into horizontal bars as time marches on. The

dependencies and evolutions in your project will be made visible, and individual team

members’ names can be tagged for easy reference. To wrap it all up you can print out a

long table view of your timeline and tack it up on your wall, so all may see of your

march towards success.

MS Project is available for installation on randon and strongly advised to be a tool in

each team member’s closet for self-management and communication.

2.7.6. Scheduling Milestones
Milestones are a way of defining the battles you will have to succeed in before winning

the war of your cycle. It is prudent to lay them weekly or bi-weekly, depending on your

meeting period with your advisor. They are ubertasks that will represent areas of your

project that will be unequivocally completed to keep the project on track. These may be

iconified in your MS Project file to help visualize the core victories of your

experience’s growth. Some examples include mastery of the tools, first functional

prototype deployed for testing, and all modeling and painting complete.

Beneath the canopy of milestones, it is often beneficial to recursively define a set of

sub-milestones and “inchpebbles”. These are the small steps taken towards completion

of your milestone. The more detailed and precise you can make your inchpebbles, the

more likely you will meet your milestone on time because there is an understanding of

the justification and process to translating between one phase of the cycle to the other.

2.7.7. Assigning Tasks
Assigning tasks is something that’s done frequently but rarely properly. The secret is in

documentation and accountability. Whenever a task is assigned, regardless of its

importance, the designated scribe must record the action item in strong, inflexible

words and attach the bullet-item to a name and a firm deadline. The relevant committee

must also agree on the feasibility of the task so that excuses along the line of “It was too

hard” will be nullified. In the aftermath of the assigned duration, the task must be

completed without fail. If a task is not met, the problem must be analyzed by the group

to see why there were complications and how to remedy them, be they practical or

personal. Strict task assignment and completion is a terrific way to boost morale

10/30/01 A Study in Project Management 15

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

because of its orderly sense of a definitive challenge and following completion.

Without clear-cut task assignment, vital requirements of the project will fade and

wither, eroding the constitution of the project.

2.8. A Career’s Worth of Study
This chapter has not even begun to illuminate the subjects of project management, and

more importantly software engineering. However, it has hopefully opened your eyes to

the fact there is a lot of process that exists to help produce markedly better results with

fewer resources and time. It is strongly recommended that any aspirant of project

direction/creation, entertainment or otherwise, take at least one course in project

management and another on software engineering. An excellent reference for the

philosophy and research of software engineering may be found at the Carnegie Mellon

Software Engineering Institute (http://www.sei.cmu.edu).

10/30/01 A Study in Project Management 16

http://www.sei.cmu.edu/

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

3. THE PLAYERS

3.1. The A-Team
In the early 1980s there was a television show about a group of ex-commandos who

helped innocent people in the Los Angeles underground. Each had his role in the

group. One was the leader, one a con man, another a builder. They all worked together

to help carry out the mission. Your project team is like your own personal A-Team

with the mission to protect the innocent and build a killer experience. Inside your

group, you have resources of experience, background knowledge, and talent. The most

effective way to employ the team is to maximize your individual skills and time, while

consulting for outside help when needed. Sometimes the best way to build a project is

not to build it at all, and to leverage the technology and efforts of those external to your

group for your own purposes, but more on that later.

A great place to start in building relationships outside the group is to recognize the

people most easily available to you and their role in the development of your project.

3.2. ETC Co-directors
The Co-directors of the ETC are the final word. They pick the projects for each cycle,

make the group assignments, approve the majority of acquisitions, and ultimately are

the powers that be to rate the success of your project and your personal contribution.

They also monitor the educational and commercial value of the project on a local as

well as global scale. The Co-directors are good people to talk to if conceptual advice or

guidance is needed for the project, or if human factors outside the scope of the advisor

need addressing.

3.3. Your Advisor
Your advisor is your first and most direct link to all project-related activities. He

regulates the meetings, committee responsibilities, deadlines, and virtually every other

task you’d expect the manager of a project to handle. He is also an excellent insight

into past projects’ strengths and weaknesses, particularly if they have advised on the

project material before. Simply put, your advisor is the first stop for any project

question.

10/30/01 A Study in Project Management 17

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

3.4. The Program Coordinator
The Program Coordinator is essentially the head of non-technical operations for the

ETC, and a good reference for any necessary purchases, scheduling issues, or

room/resource requests.

3.5. The Technical Coordinator
The Technical Coordinator is your software and hardware guru. He is responsible for

the mailing lists and project shares on randon, the fileserver. He also maintains user

accounts and privileges for all ETC digital assets.

3.6. Stage 3 Research Group
The Stage 3 Research Group is a wholly owned subsidiary of the Entertainment

Technology Center and the Human Computer Interaction Institute at Carnegie Mellon

University. They are most famous in the ETC for their 3D graphical prototyping

environment Alice. Alice is traditionally the most popular method in ETC Projects for

creating interactive 3D worlds. Because of Stage 3’s close relationship with the ETC,

the developers are an excellent resource for Alice-related questions and techniques.

Much of the integration that goes on between Alice and the rest of your project will

require frequent trips to Stage 3.

3.7. Previous Jam-O-Drum Team Members
Probably the most important technical resource to your team will be previous Jam-O-

Drum team members. They have the scars and experience of working with every aspect

of a JOD project and are quite likely to be of help. Musica made extensive use of two

previous ETC graduates in locating, retrieving, unpacking, and hacking together the

code base that was needed for the software foundation. As a handy reference, a list of

previous Jam-O-Drum team members is listed as an appendix to this document.

10/30/01 A Study in Project Management 18

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

4. LEGACY DEVELOPMENT:
PRO AND CON

4.1. You Are the Best Hacker in the World
Software development, especially for games, has always been an ego industry. “I have

the smallest kernel, I have the most realistic AI, I have the engine everybody wants to

develop for.” Because games are so often measured by the level of realism in the

graphics and the fastest play, it’s only natural that swarms of hired code slingers live

and die by their source. However, it’s not always in the interests of the project to have

the absolute best code around. Good artists copy, great artists steal.

You are of course the best hacker in the world. If you weren’t you wouldn’t be here

building what’s going to be the best multimodal collaborative game in the world. Code

has been written for the hardware already, code that has seen several cycles of

burgeoning size, complexity and redundancy. But it works…sort of. So now you’re

faced with the difficult decision of leveraging the legacy code for your application.

Furthermore, if you do, how much? True, you could probably crank out a blazing hot

graphics engine, a lightweight MIDI and WAV player, and a couple masquerading

game controllers, but it would take a while. Also, you’d be on your own if you did, no

one would be there to support you, and if you fell flat on your face you’d never live to

hear the end of it. So you could, on the other hand, leverage 90% of the necessary

source from the last cycle and save yourself weeks worth of time, agony, and trouble.

The code worked last time, it should work again, right? But then again, the old code

base is huge, and slow, and unstable. It involves half a dozen layers of indirection,

passing system calls off to who knows where, and if you want to do anything other than

play tic-tac-toe, chances are it will crash and burn. Nothing is ever easy.

So how do you make the decision? Well, there are two things you must do when

making your choice: make it fast, and make it hard. Fast because this isn’t an academic

study in rendering methods; you need to produce a fully functional product in as few as

seven weeks, and that is virtually a heartbeat. Hard because once you make your

decision, there is no turning back. The time allotted for your cycle will not support any

major changes in the direction of the project. If you make the wrong decision, crash,

and burn, oh well. You’re wiser and the group has learned several valuable lessons to

10/30/01 A Study in Project Management 19

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

use in the future. In Musica the decision was made to use as much legacy code as

possible. Though it was with little documentation, didn’t work, and for the first week

or so lost, it was clear there was no chance anything of tangible value would be

produced if the choice was made to rebuild. This is not to say that a bold rebuilding of

Jam-O-Drum code is not a feasible option. If a project cycle dedicates itself to simply

producing a JOD experience builder with a custom rendering engine, stripped down

media support, and little vertical depth linguistically, then this would be a fine option

and probably save future cycles infinite time and resources – if it was done right.

4.2. Jam-O-Drum Code base History
The Jam-O-Drum code base is several years old, and crosses multiple language barriers

(See Chapter 8, under System Architecture). Hardware talks to DirectX (C++), which

talks to a Java wrapper through the JNI for select parts of DX, which talks to Python

code for media manipulation, which eventually informs Alice (which incidentally is

written in Java) what to render and when. Two JOD experiences prior to Musica, Jam-

O-World and CircleMaze, both run under this structure with various styles of media

manipulation. CircleMaze is more lightweight and less Alice dependent, whereas Jam-

O-World has a huge Python world script for Alice and handles audio directly through

calls back to DirectX (bypassing Alice’s conduit to the JMF). Musica is an evolution

of two previous experiences in that all game logic is handled in Java, model imports and

animations are dispatched by Alice, and the sound code is a mix of Alice and Python

running through the JMF. The practicals of receiving input from the JOD were left

untouched and remain at the hands of the DirectInput Java wrapper.

4.3. Alice v. OpenGL v. DirectX
One of the hottest areas of debate in implementing graphics for ETC projects has been

the use of Alice. Originally, Alice was the sole option for creating the JOD

experiences, but now as other ETC projects investigate the feasibility of other engines

such as Unreal and Lithtech, it is becoming more feasible for a rewrite of the traditional

JOD code to allow a much more specialized, easier to use interface for application

building.

The centerpiece of the output battle is of course the graphics engine. Alice is of course

free, easy to prototype with, and carries unparalleled support. On the other hand, a

good graphics hacker could very easily write an OpenGL rendering engine for

10/30/01 A Study in Project Management 20

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

polygonal meshes, textures, and lighting. This would probably produce the fastest of

any rendering alternative as the code can be written in C and hand-tweaked for

specialized performance, making use of the many hardware features in today’s

mainstream graphics cards. OpenGL also carries a dedicated (but slowly evaporating)

support group by way of fans, corporations, and of course numerous graphics texts and

courses. DirectX would be arguably as fast as an OpenGL implementation, and carry

with it the ease of integration with other Microsoft products (i.e. Windows). There is

also a good deal of support for DX development from Microsoft, but a number of

people hardly consider that support. The one great advantage Alice and DX do have

over OpenGL is that they provide a conduit to the other hardware in the computer.

Alice can play MP3 and WAV files without much difficulty, and DirectX handles many

sound formats, including direct access to input devices. Lastly as a rising alternative,

one of the popular graphics engines may be leveraged for displaying JOD content, but

for now this seems less useful as the drum uses a non-directional tabletop for a viewing

surface. From an end-to-end viewpoint of continuity, a stripped down DirectX

implementation across the board would be quite appealing.

Ultimately, though the choice will be yours, and all are appealing in one way or

another. After the cycle length, concept, and demographic have been decided, this

choice should be a much easier one to make.

10/30/01 A Study in Project Management 21

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

5. WHAT YOU’LL NEED (INVENTORY)

5.1. A Stock List for Fun
This chapter acts as your garden-variety grocery list for cooking up Jam-O-Drum

experiences. You’ll probably want to print it out and carry it around in your pocket,

crossing off items as you procure them. There are of course alternatives to the name

brand components listed below, but with the name comes the peace of mind of knowing

it’s worked before, and ideally, will work again.

Most of the electrical components can be obtained from the physics store in

Hammerschlag, though several of the input pieces will need to be custom ordered from

retailers on the internet. Because of this, and problems with finding components in

stock, it is highly recommended that all needed materials are obtained in the first week

and shipped next-day delivery. The Program Coordinator is your one stop source for

purchasing, so be sure to visit her early. Also, when submitting a request for

purchasing it’s important to follow correct protocol (see Appendix A, Materials

Purchasing Procedure).

5.2. Jam-O-Drum Components
(1) Jam-O-Drum base and tabletop

(1) Alesis DM5 drum module

(1) MIDI cable (DIN) and converter to mini-DIN

(4) high quality 9” speakers

(1) sub-woofer

(1) stereo mixer

(1) amplifier

(4) analog turntable devices

(4) 10” Drumtech drum pads

(4) analog-to-digital encoders

(4) EDIVIDE encoder dividers from US Digital

10/30/01 A Study in Project Management 22

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

(1) electrical project box app. 5” x 4” x 4”

(2) game port ends (male)

(1) 5V DC plug

various audio cables and adapters

5.3. Host Computer
A strong experience of course needs a strong computer to run it, especially if you

choose to use the Alice rendering engine. Graphics, memory and bandwidth are the key

elements of any Jam-O-Drum host computer. Below are the recommended settings (as

of 10/2001) for your box. Update your expectations based on the cycle’s inception,

accordingly. Take note that the computer needs to have two sound cards of different

make, and one of them must have a MIDI input. This is require because the Jam-O-

Drum needs two game ports to run the four turntables, and a MIDI in for the drum pads.

Only the primary soundcard is used, however, to prevent conflicts (See Section 7.8,

Host Computer Setup).

Computer Name: swissmiss.etc.cmu.edu

OS: Windows 2000 Professional

Processor: 1.5 Ghz Intel P4

RAM: 512 mb RDRAM

Graphics Card: 64 mb Visiontek GeForce 3

HD: 20 gb Maxtor

Primary Soundcard: SB Live! Value 5.1

Secondary Soundcard: Montego Aureal Audio

10/30/01 A Study in Project Management 23

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

5.4. Hardware Tools

strain reducers electrical tape heat shrink

solder soldering iron very small allen wrench

power phillips-head
screwdriver

multimeter (continuity
tester) wire stripper

wire cutter scissors alligator clips

5.5. Software Development Tools
MS Visual Studio 6.0 (available for license from the Technical Coordinator)

JBuilder (available on the Musica distribution CD)

Python 2.1 (obtainable from http://www.python.org)

JAlice 4.22.01 (available on the Musica distribution CD)

5.6. Content Creation Tools
3D Studio Max R4 (available for license from the Technical Coordinator)

DeepPaint v6 (available for license from the Technical Coordinator)

Cakewalk Pro Audio 9 (available on the PCs in the recording studio)

10/30/01 A Study in Project Management 24

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

6. STANDING ON THE GORGE
(10,000 FEET ABOVE)

6.1. Don’t Sweat the Small Stuff…
A project can seem daunting at any stage. Thousands of lines of code, dozens of

electrical wires, graphics, music, user testing, hardware…there are a million things to

do, and there’s only fifty to a hundred days to do it all in. It’s incredibly easy to get

mired in the drudgery of any minute aspect of the project. Code may not work for

hours, output may never appear, and the machine may not even start. All of this,

though, is trivial. The key point to keep in mind is any one forlorn moment in the cycle

is hardly a drop of water in the bucket when it’s all over. Tomorrow will be another

day, the work will be the same, but your perspective will be radically different. When

things are rough, take a break and do something as far from the task at hand as possible.

Try not to work more than three or four hours at a time. Keep the basics in mind, you

need to eat, sleep, and stretch often to keep yourself loose. The more impossible the

scenario may seem, the more likely a decent eight hours away from it will prompt a

quick remedy. Perspective is one of the most powerful assets you have in your arsenal

to solve any problem, design or implementation.

6.2. The View from 10,000 Feet
It’s good practice to realign your viewpoint of the project periodically. The human

mind works in abstractions and associations, and you can maximize your effective by

breaking the situation down in smaller and smaller granules. The best place to start is

the “View From 10,000 Feet”, or the highest possible outlook on the project. An

example can be built from trying to write an appropriate musical sequence for a game.

You are building an experience for the entertainment and education of
children. You are using the Jam-O-Drum to form a series of relationships
between the players, the music, and the game. The music must be light-
hearted and spirited to induce positive feelings and reassurance. Light-
hearted music is constructed from ascending pitches and major keys…

You get the idea. Though it may sound odd, it’s actually quite helpful to meditate for

several minutes on the project’s mission statement or goal. Any problem can be solved

if it’s only taken to a high enough level and filtered down through the familiar until

reaching the unfamiliar or foreign. Also, if you’re distracted or finding it hard to focus,

10/30/01 A Study in Project Management 25

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

try to realign your direction through a motivational sequence or mantra. A favorite

game, movie clip or musical piece that you can relate to your project is helpful to have

on hand. Saturating yourself with the pure essence of what you love and admire about

your work can be a great ego-booster and allow you to return to your task with renewed

vigor.

10/30/01 A Study in Project Management 26

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

PART II:
DIVIDE AND CONQUER

(COMMITTEES)

10/30/01 A Study in Project Management 27

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

7. HARDWARE

7.1. Room Setup
The room must fulfill three requirements to house a working Jam-O-Drum: it must be

large enough, it needs to have a ceiling solid enough to support the weight of the mirror,

and it must be able to obscure light for daytime use.

The Jam-O-Drum is 6’4” in diameter, and the projector will need to be 4 to 9 feet away

from table. This depends on the particular dimensions of the mirror and the zoom

capabilities of the projector. Generally, having the projector further from the table

provides a crisper image and less warping of the image if the mirror is not at an exact

45-degree angle. At least two to three feet, minimum, should be left on all sides of the

table for participants and walking space. A room 15+ Feet long and 12+ Feet wide is

recommended, although a smaller room may work.

The mirror for the Jam-O-Drum hangs from the ceiling. The ceiling must be able to

support the weight of this mirror, the wood it is mounted on, and the chains used to

hang it.

Lastly, a room with no windows is ideal for the Jam-O-Drum because the best

projections on the table occur when the projector is the only light source in the area.

Use blinds, thick towels, or cardboard to cover windows during the daytime—or

whatever material is on-hand that best obscures light.

7.2. Soldering Basics

7.2.1. Preparation
You will need a soldering iron (or gun), wire strippers, about a dozen tubes of heat

shrink of various sizes, a small heat sink or alligator clip, and an outlet in a well-

ventilated location. A blow drier is optional for shrinking the heat shrink, one may use

the soldering iron instead. Plug in the soldering iron and give it five minutes to heat up.

Open any windows and turn on any fans, as prolonged inhalation of the fumes may

cause one to twitch or require medical attention. It is also recommended to wear safety

glasses as specs of hot rosin may spit a few inches while soldering.

10/30/01 A Study in Project Management 28

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

For any wires that must be soldered together, strip about two inches of insulation off, so

they can be twisted together with no problems. For wires that need to be soldered to a

pin or surface, about half an inch of stripping should suffice.

7.2.2. Avoiding “Cold Solder Joints”
The proper method to solder a joint is to hold the soldering iron against one of the wires

of the joint until it heats up enough to melt the solder itself. The solder should never

need to touch the soldering iron. This produces the best channel for current in a circuit,

and may actually prevent current if performed improperly, forming a “cold solder

joint”.

7.2.3. Using a Heat Sink
A heat sink’s purpose is to heat as a normal sink’s function is to water. A heat sink

collects heat and disposes of it through dissipation. Clipping the heat sink on the

stripped part of a wire to be soldered avoids agitating any heat-sensitive parts connected

to the opposite end of the wire. Heat sinks should be used whenever possible to keep

excess heat from reaching any circuitry. They can also be used so solder connections

on the other end of the wire do not melt and come undone.

7.2.4. Heat Shrink v. Electrical Tape
Heat shrink and electrical tape both serve the same purpose: to insulate wires that need

to carry an electrical signal. Electrical tape is more difficult to use when wires are

soldered in proximity to one another, and it degrades quicker over time. Heat shrink is

a better choice for most situations because it is cleaner and more durable. To use heat

shrink, select a piece slightly larger than the wire(s) it will be covering, cut it to size,

and slide it onto the wire before soldering (otherwise it won’t fit). It is easy to forget to

put the shrink on first, make it a point to remember.

Once all the soldering is complete for the component you are working on, and it has

been tested, then it is time to heat the heat shrink. Move the heat shrink over the

exposed wires and hold the soldering iron close (but do not touch) and it will start to

contract and harden. This takes patience—about 60 seconds or so for a smaller piece.

Use a blow drier if one is available in order to speed things up.

10/30/01 A Study in Project Management 29

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

7.2.5. Finishing Up
When done soldering, one must treat the tools properly so as not to ruin them, or hurt

oneself. First, melt some solder directly onto the tip of the iron until it has a silvery

appearance. This is called “tinning” the soldering iron, and keeps it in a state that

protects it and allows it to heat up more quickly next time someone uses it. Second,

place it back in its sheath and unplug it. Make sure it’s in a place where no one can

burn himself. Lastly, wash your hands with soap and water to remove the lead of the

solder from your skin.

7.2.6. Caveats
There are a couple things to look out for when soldering. Taking the time to go over

these points could save much time and frustration.

When stripping wires, be careful not to cut them. It is easy to damage the wires and not

know it until they break off after soldering. Apply minimum force on the wire

strippers, one should almost feel he is pulling the plastic insulation apart rather than

cutting it. Test all circuits for continuity before shrinking heat shrink, otherwise the

shrink will have to be cut off a bad circuit and replaced (which is a pain and a waste of

time).

7.3. Input Devices

7.3.1. Receiving Data
There are two input devices built into the Jam-O-Drum: turntables, and drum pads.

Each of four Jam-O-Drum users has his own turntable and drum pad. The turntables

can detect a turn left and a turn right, while the drum pads are capable of detecting a hit

and its force. This limited set of inputs is a challenge, as it does not have all the

possibilities of a game controller—just left, right, and hit. This does, however, lend

itself to creativity of design and novel experiences.

7.3.2. Turntables
The turntables are flat donuts, 1’ 3 ¾” in diameter, mounted on ball bearings. The

computer can detect when a turntable is spinning left or right, and this is one of the two

forms of input into a Jam-O-Drum experience. Since they are rather large and have a

moderate amount of friction, it is demanding to have to turn the turntable more than a

10/30/01 A Study in Project Management 30

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

quarter rotation very often, especially for a child. Keep this in mind while designing

experiences; don’t require large turns of turntables repetitively.

7.3.3. Drum Pads
The Drum Tech drum pads are flat 10” pads that connect to a drum module. The pads

are able to detect when they are hit as well as how hard. The drum module sends this

information as Midi signals to the computer. The drum trigger also has 20 different sets

of sound samples that it can play with the strike of a pad. User testing has shown that

this feature is one to include in a Jam-O-Drum experience. People love to hear

immediate feedback when hitting a drum pad, and the drum trigger module does this

without any work on the computer end.

7.4. Audio Equipment
The audio equipment wiring is not complicated for JOD-only installation. If house

speakers or surround sound equipment is desired, the mixer must be used to reroute

particular channels of the computer’s sound output to the speakers located around the

venue. The SB Live! card does support Dolby 5.1/EAX. For more information on this

wiring, please see the Zeum venue audio schematic. For the Musica sound layout,

consult the respective schematic.

Speakers – are connected to the subwoofer. The subwoofer has a left and right output.

Each speaker was wired in mono by combining the stereo channels.

Subwoofer – the subwoofer is connected to the amplifier.

Amplifier – the amp is connected to the mixer.

Mixer – receives sound from both the drum module and the speaker output from the

computer.

Drum Module – the drum module sends midi to the computer and has left and

right outputs that are sent to the mixer so the actual drum sounds are played also.

Cables – ¼” cable, RCA, 12g. speaker cable, headphone cable, and MIDI cable was

used.

10/30/01 A Study in Project Management 31

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

7.5. Electronics

7.5.1. The Black Box
The “Black Box” is the project box that encapsulates all that goes on between the four rotational

encoders as inputs and the two game port connections. The four wires from each of the four

rotational encoders under the turntables go into the project box along with a power cord, and two

male 15-pin game port inputs come out of the box.

7.5.2. Gameports

7.5.2.1. Materials

• A project box roughly 6”x5”x4”

• 2 Male 15-Pin inputs for the game ports.

• +5V DC Power Supply with bare wires for soldering

• Strain reliefs to fit around 4 or more wires at a time

• Access to a drill or drill press

• Screwdrivers

• Soldering Equipment

• Ties or tape to bundle wires

• 4 of the CA-3133 Finger-latching cables, ideally 3 feet in length or greater

• The 4 EDIVIDES used in the rotational encoder to EDIVIDE wiring

• Extra wire

• Perf board – A piece the size of half a graham cracker (optional)

7.5.2.2. How to Proceed

This is one of the most complicated and difficult tasks for construction of the Jam-O-

Drum, but is necessary to interface the turntables with the computer. For the specifics,

refer to the “Joystick Encoder Wiring from EDIVIDE Encoder Resolution Dividers”

diagram.

The diagram neatly depicts the wiring from the EDIVIDE out ports to the two game

ports and the power supply. The EDIVIDEs are labeled 1 through 4, corresponding to

their turntables. The turntables may be numbered any way one wishes, but it must be

kept consistent with the encoder wiring and the wiring of the drum pads. Turntables 1

and 2 end up routing to “joystick 1” while 3 and 4 input to “joystick 2”. Joystick is

10/30/01 A Study in Project Management 32

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

synonymous with “game port” in the diagram, since the encoder box emulates two

joystick connections with the game ports.

Note that in the diagram, only touching wires of the same color are wired together. For

example, all the orange power wires are connected to one another from the EDIVIDEs

and to the power supply, but they are not wired to anything else because the other wires

they cross in the diagram are different colors. Also, make sure to read the notes on the

diagram, as they are important. If wired improperly, the encoder may not be detected

by the computer as a joystick, and it could even harm the computer.

Holes should be drilled in the project box for the input wires, power supply, and 15-pin

game port connectors. Make sure the holes are consistent with the size of the strain

reliefs. Either the wires need to be put through these holes before the soldering is done,

or slits can be sawed down to them to insert the wires later, and then sealed off.

The perf board may be used to organize groups of wires. But in this case it has been

found more effective to twist wires or groups of wires around each other, solder them

together, and then heat shrink them. For the ground wires up to 9 wires need to be

soldered together: one from each EDIVIDE, two from each 15-pin connector, and one

from the ground of the power supply. To get these all touching each other on perf

board is messy. One is better off having two or three inches of stripped wire on each,

then twisting them all around each other like the smaller strings in a rope. A much

better connection can be made this way.

A similar tactic should be used when wiring the 7 pins (connected in red in the diagram)

on each 15-pin connector. For the connectors, it is best to do all other wiring first,

move the heat shrink into place, then do the red wiring since it must be wired around

the other connections.

10/30/01 A Study in Project Management 33

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

Figure 4. Switch settings on E-DIVIDE.

Once the soldering is complete, clamp the strain reliefs onto the wires and set them in

the holes of the box. Place the connected EDIVIDES into the box with the other

intermediate connections, and screw the top on. The Black Box is at this point

complete! Plug the power supply in and connect the 15-pin connectors to the two game

ports, and run the Windows test program to make sure things are working correctly (in

Settings Control Panels Gaming Options (or Game Controllers, etc.).

7.5.2.3. Caveats

When soldering to metal encased in a material such as plastic, the plastic may melt.

The 15-pin inputs for a game port are lodged in plastic, which can melt even before the

solder. Use a heat sink if possible for this sort of problem, however, for the 15-pin

input, it is not possible. In this case it is acceptable to drip solder onto the connection

rather than heat the wires. If this approach is used, make sure to test continuity

afterwards to catch any cold solder joints. If the plastic does melt and a pin moves

around, melt the plastic and use pliers to reposition the pin.

The circuitry for the turntable encoders requires a power supply. Make sure if this is

already part of the circuit that it is unplugged before working on the circuit further.

Unplug as much as possible to isolate the circuit at hand so as not to damage peripheral

equipment.

10/30/01 A Study in Project Management 34

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

7.5.3. Encoder to EDIVIDE Wiring

7.5.3.1. Materials

The following items are needed to wire the turntable’s rotational encoders to the

EDIVIDE encoder resolution dividers:

• 4 Rotational Encoders

• 4 CA-3133 10-Foot (or longer) Finger latching mating connectors

• 4 CON-FC5-22 Finger latching connector shells

• 4 EDIVIDEs

• Soldering equipment (see soldering section above)

7.5.3.2. What is the EDIVIDE?

The EDIVIDE is an “encoder resolution divider”. Its function is a relatively simple

one, although imperative. The ratio of the large turntable to the wheel attached to the

rotational encoder is rather large. A small turn of a turntable spins its rotational

encoder’s wheel many times, producing an excess of signals. The EDIVIDE can be

configured to reduce the number of signals by up to 4096 times. Without the

EDIVIDEs, the computer would be saturated with joystick input.

7.5.3.3. How to Proceed

The latching connectors have four wires, one each for the A signal, B signal, ground,

and power. Pin 1 on the EDIVIDE is for ground, pin 2 is an index (unused for the Jam-

O-Drum), pin 3 is the A channel, pin 4 for +5V DC power, and pin 5 is for the B

channel. Strip the latching cable wires about an inch and arrange them in the finger-

latching connector shell so they match up with the outputs of the rotational encoder.

The outputs from the rotational encoder may be in a different order than the inputs of

the EDIVIDE.

Optionally, the connector shells may be left out, and the wires can be soldered directly

to the rotational encoders. Previous Jam-O-Drum projects have used this approach with

no problems. However, it is cleaner and easier to use the connector shells.

Once the connector shell is in place, plug it onto the rotational encoder and plug the

other end into the EDIVIDE. Do this for each EDIVIDE.

10/30/01 A Study in Project Management 35

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

7.6. The Mirror

7.6.1. The Best Mirror
The ideal mirror is as wide as the Jam-O-Drum table surface (including the turntables

and drum pads), and 1.414 times as high as the table is wide. Since the most recent

Jam-O-Drum table is 6’4” in diameter, this means the best mirror will be about 9’ tall.

When the mirror is hanging at a 45-degree angle above the table, this aligns the front

and back ends of the mirror with the edges of the table and allow for maximum

flexibility with projector placement.

A 9’ mirror may not be available or affordable, and a smaller size will work but require

stricter positioning of the projector. Musica used a mirror about 5’ feet high, and it

produced an acceptable, although imperfect, projection. For this mirror the projector

was angled upwards from the height of the table, rather than aim it horizontally at the

mirror level with its center. Light rays traveling to the top of the mirror and hitting the

near side of the table traveled more distance than the rays hitting the bottom of the

mirror and the far side of the table. This allowed the rays on the closer portion of the

table to spread out more and produce larger images at one end than the other, slightly

warping the projection. Using a 9’ mirror would avoid this problem. Also, children are

more likely to hurt their eyes looking into the projector when it is positioned here, near

child eye-level.

7.6.2. Mounting
The mirror needs to be attached to a large piece of wood for hanging. Use at least ¾

inch thick plywood, and leave 5 inches or so to stick out beyond the edges of the mirror

(for screws). The objective here is to mount the mirror on a sturdy piece of wood that

won’t bow. A foreseeable possibility for extra sturdiness would be to construct a

skeleton of two by fours to put the plywood on.

One can attach the mirror to the plywood with a series of screws and metal discs (like

fat washers) around the circumference of the mirror. The screws will hold the metal

discs tightly clasping the edge of the mirror to the wood. The hardware store where the

mirror is purchased may be able to do the mounting itself, or at least suggest the best

method. It is strongly suggest to inquire about this.

10/30/01 A Study in Project Management 36

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

7.6.3. Hanging
To hang the mirror, begin by screwing eyehooks into the back corners of the plywood.

Next, measure the distance from the top eyehook on one side of the mirror to the

bottom eyehook on the same side. Multiply this distance by the factor 0.707. The

result is the distance the hanging chains need to be apart from the front to the back. The

chains of each side need to be as far apart lengthwise as the eyehooks on one side are

from the other side.

Chains are suggested for hanging because they allow for quick adjustment of mirror

height. Use s-hooks to attach the eyehooks on the plywood to the dangling chains. Use

a level or similar device along the back of the plywood to make sure the mirror is

hanging at a 45-degree angle. The back of the mirror should line up with the back of

the table. Once one sets up the mirror and projector, two people can move the table to

align with the mirror and the image by grasping its metal frame. The table should be

positioned so that there are two turntables on either side of the projector’s line of sight

to avoid creating shadows that obscure the projection.

7.7. The Projector

7.7.1. Positioning
For a full-sized (9 foot) mirror, center the projector vertically and horizontally to the

mirror. Place it about 6 feet from the front of the table. One can hang the projector in a

similar fashion to the mirror using a platform, or place it on the surface of an object of

correct height. This is just a starting point, as not all projectors are the same and have

different zoom capabilities. Use trial and error to figure out the best location for

optimum table coverage.

For smaller mirrors, a closer positioning will be necessary for better table coverage.

Also, moving the mirror up the chains to a higher position will give more flexibility and

coverage. One can also try moving the projector to a lower spot and angling it upwards

slightly towards the mirror, although this configuration produces a distorted trapezoidal

projection on the table rather than a uniform rectangle.

7.7.2. Flipping the Image
Since the image on the table will most likely need to be exactly as shown on the

computer monitor, the projector needs to be set up to flip the image to counter the

10/30/01 A Study in Project Management 37

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

mirror’s effects. Make sure to use a projector that has this capability, which can usually

be accessed through a menu on the projector’s display.

7.8. Host Computer Setup
The host computer is fairly simple to set up if you are sure to configure the hardware to

use the appropriate options. If you are buying a new computer, have the hardware and

software installed by a professional. The extra dollars will save you time and agony in

the long run.

• Enable the SB Live! card as the default wave/midi player and recorder in
the Windows multimedia settings (if this is not set, you will not hear any
sound)

• Enable the SB Live! MIDI UART as the default MIDI input device in the
Windows multimedia settings

• Install two 2-axis, 4-button joysticks under the Windows game
controllers settings and TEST THEM with two joysticks, one on each
gameport on your two sound cards

• Make sure all the following software is installed and running properly.

• JBuilder

• MS Visual Studio 6.0

• MS DirectX (latest version)

• MS DirectX SDK 7.0a

• MS Core SDK

• MS Visual Source Safe

• JAlice ver. 4.22.01

• Winamp (for media testing)

• Be sure to register the computer on the SCS domain for testing so you
have access to randon and other network resources.
http://www.cs.cmu.edu/afs/cs.cmu.edu/help/www/admin/netregister.html

10/30/01 A Study in Project Management 38

http://www.cs.cmu.edu/netreg

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

8. SOFTWARE I: THEORY

8.1. Legacy Code: A System Design Example
Jam-O-Drum experiences have all used a shared code base for the past several cycles.

This is partially because the Alice rendering engine was a project requirement, and

partially because leveraging the DirectX wrappers made input and output simpler. For

the next two chapters, all of the Jam-O-Drum legacy code will be explained in design

and implementation. Even if you decide to abandon much of the legacy structure, these

chapters can be a boon in providing one example of how the software system could

work, and the interplay the different modules will need.

This chapter will cover the philosophy of the multi-lingual hierarchy and the module

interaction. The following chapter will provide a more detailed look at the source in

practice.

8.2. System Architecture

8.2.1. The Wedding Cake (A Marriage of HLLs)
The Jam-O Drum library was designed to be extensible and flexible for future use. The

idea was to offer a standardized framework to create new Jam-O Drum experiences

quickly based on the input and output encapsulated in the Java classes. Hardware is

handled by the host computer’s DirectX, which in turn is wrapped by Java. In Java

most of the game’s logic and state is maintained. Python code handles most of the

animations and effects that the Alice renderer produces. Sound may be handled either

by the Java Native Interface (JNI) and its wrapper of DirectX, or by Alice in the form of

Python.

10/30/01 A Study in Project Management 39

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

Figure 5. Jam-O-Drum Experience Builder Architecture

A detailed diagram depicting the communication between the software layers and their

components is listed in the diagrams and schematics appendix.

8.2.2. C++
Microsoft’s DirectX enables direct manipulation of the PC’s input and output hardware.

DirectX is one of the most popular methods for game developers use when creating new

applications or engines. While DirectX is indeed powerful, it is also quite expansive

and difficult to take in at first. To use it efficiently, a programmer must have a

significant amount of experience with Microsoft development tools and their mindset.

Because of the difficult interface to the DirectX library, the most important features

have been wrapped in Java so the JOD experience developer need not be overly

concerned about having a close relationship with it.

8.2.3. Java
The Java layer of the system is the second largest (DirectX is huge) and host to the Jam-

O-Drum Control Panel, which is used to start JOD experiences. This is the main JOD

library on top of which new experiences can be created. The philosophy of the JOD

Experience Builder is to encapsulate all of the Jam-O Drum resources in a set of

packages. The Java packages assume that the hardware is operating properly and

maintains little knowledge of the underlying system’s state.

10/30/01 A Study in Project Management 40

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

New JOD experiences should begin by building the experience framework under the

Controllable interface. This implements a Java control panel that can be used to

launch JOD applications. There is also an Input class that is an abstraction of the

physical drum pad and turntable devices. Listeners are used to look for input from the

devices so the application can process the data accordingly.

The constructs in the experience that handle application launching and input processing

allow a rapid prototyping of Java-based experiences. After the framework of the game

is laid, output may be handled through the Python/Alice layer for rendering and effects.

8.2.4. Python and Alice
Alice is a rapid-prototyping environment for 3D worlds created by the Stage 3 Research

Group. Alice has been used traditionally for Jam-O-Drum experiences because it

allows quick production of environments involving models, animation, and sound. In

the name of simplicity, Alice worlds can be quickly made to generate JOD interfaces

for the tabletop. Sounds effects and music may be easily played using Alice’s connect

to Java and the JMF. Alice also handles all of the animations needed for game play.

While Alice is not necessarily a requirement for a Jam-O-Drum experience, the legacy

and support are present for this sort of development. In the next chapter the basics of

Alice and its use for JOD experiences will be described.

10/30/01 A Study in Project Management 41

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

9. SOFTWARE II: PRACTICE

9.1. High-Level Languages for Abstraction
This chapter covers the Musica/Jam-O-Drum code from a functional perspective. What

follows will cover the salient points of the classes and methods in the software model.

Sections 9.2 covers the elementary Jam-O-Drum Experience Builder, on top of which

other experiences are developed. Each language layer and its specifics will be

addressed in turn. Section 9.3 involves source created specifically for Musica, and is a

good example of what is needed to be constructed for an experience on the builder.

9.2. The Jam-O-Drum Experience Builder

9.2.1. Why JODEB?
The Jam-O-Drum Experience Builder (JODEB) is a foundation for new rapid JOD

prototyping. By adding a few simple Java classes and calls to run Python code in Alice,

new experiences may be constructed and tested quickly. JODEB involves wrapping

C++ DirectX functions for ease-of-use, and standard procedures like processing input

and output are already handled. The JOD experience makes use of the existing basis to

present the content for the new application.

9.2.2. C++ Wrappers and JNI
As discussed in the previous chapter, the Jam-O-Drum legacy code makes use of

DirectX to handle all direct communication with the system hardware. DirectX is

written in C++, and encapsulates a large system of input and output functions for the

sound, game controllers, and display. Jam-O-Drum wraps features of the DirectSound

and DirectInput modules, as well as Windows Multimedia for receiving MIDI input.

JAlice wraps its own part of Direct3D internally, but that’s of no concern to the

programmer.

In addition to the JavaDocs produced from the Musica code, below is a brief summary

of the DirectX behaviors wrapped by the JNI. The key classes are listed and described

by function.

10/30/01 A Study in Project Management 42

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

9.2.2.1. DirectX

The DirectX.java class defines an instance of the DirectX presence for Java to utilize.

It holds a DX event queue that keeps track of occurrences necessitating communication

with the hardware. It also encapsulates the initialization and shut down of DX manager.

The HWND is a handle for the window the operations are being performed in.

9.2.2.2. DirectXEvents

9.2.2.2.1 DXEventQueue
The DXEventQueue is basically a thread that receives and dispatches events as they are

triggered within the application.

9.2.2.2.2 Other DXEvents
The other DXEvent classes are declared wrappers for any instance of an object, listener

or dispatcher of DirectX events. Both DirectSound and DirectInput also have listener

objects to look for events to add to the queue.

9.2.2.3. DirectInput

9.2.2.3.1 DirectInput
DirectInput keeps track of all active input devices in the application (a combination of

keyboard, joystick, mouse), and provides access to them much like DirectSound’s

sound devices.

9.2.2.3.2 Device and PolledDevice
Device is an instance of any DirectInput device that allows access to its state. It is

based on the DXEventDispatcher. PolledDevice, which extends Device and

implements Runnable, handles the starting and stopping of a thread to poll and generate

events from the input device. The main difference between the two is the methods

required for extracting data. Mouse and keyboard are Devices, whereas Joystick is a

PolledDevice.

9.2.2.3.3 Joystick, Mouse and Keyboard (Three Great Friends)
Joystick extends the PolledDevice class with a smattering of specific operations for

maintaining a joystick’s state and listener threads. Mouse and Keyboard are derived

from the Device class, their classes exist primarily to wrap their C++ equivalents with

little change.

10/30/01 A Study in Project Management 43

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

9.2.2.4. DirectSound

9.2.2.4.1 DirectSound
This class allows the creation of a new instance of a DirectSound manager. The

manager is initialized and shutdown through the JNI much like that of the DirectX

class. The class also maintains the number and access to the sound devices in use.

9.2.2.4.2 SoundDevice
SoundDevice allows a conduit for audio output. Each SoundDevice has an associated

SoundBuffer (or set of buffers) and listener. Speaker configuration and mixer status

may be set for a particular device.

9.2.2.4.3 SoundBuffer
The SoundBuffer class services the playback of a particular event request. The JNI can

load, unload, play, stop, or precache files in the buffer. The priority, position, and

velocity (volume) of the buffer may also be modified for advanced manipulation of the

samples.

9.2.3. Java and the Experience Builder Core
The fundamental Java JOD library is a package called edu.cmu.etc.jamodrum. It

contains JBuilder packages and classes. Every Jam-O-Drum experience is actually a sub

package within this package. Understanding this package is the foundation necessary to

write new experiences. The following is a description of the usage of the library,

illustrated with some successful experiences as examples, including Hip-Hop (Dancer),

CircleMaze and Musica.

The figure on the next page provides an overview of classes in the builder.

10/30/01 A Study in Project Management 44

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

edu.cmu.etc.jamodrum

Basic Java JOD library

Controllable
(interface)

DiskInputData

DiskListener
(interface)

Input

PadInputData

PadListener
(interface)

ZeumControlPanel
(Main class)

edu.cmu.etc.jamodrum.midiinput

MIDIInput

padinput

edu.cmu.etc.jamodrum.lazysusaninput

JoystickInput

KeyboardInput

USAGE OF THE BASIC
JAVA JAM-O DRUM LIBRARY

JAVA CLASSES

edu.cmu.etc.jamodrum.musica

Driver (main class)

AlicePlayer (extends edu.cmu.cs.stage3.alice.player.Player)
Game (implements Controllable, DiskListener, PadListener)

edu.cmu.etc.jamodrum.circlemaze

NewCircleMaze (implements Controllable, DiskListener, PadListener)

CMPlayer (extends edu.cmu.cs.stage3.alice.player.Player)

edu.cmu.etc.jamodrum.dancer

Dancer (implements Controllable, DiskListener, PadListener)

JamOPlayer (extends edu.cmu.cs.stage3.alice.player.Player)

Java

Figure 6. Integral JODEB Classes.

10/30/01 A Study in Project Management 45

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

9.2.3.1. Input

Much as you’d expect, the input class receives data from the Jam-O-Drum experience.

It has one input for the turning disks and one for the drum pads.

9.2.3.2. ZeumControlPanel

The Basic JOD library has a main file called ZeumControlPanel. This is the main class

of the library and constitutes the control panel of the Jam-O Drum from which every

experience can be started. It appears as a window with a pull-down menu with which

the operator can select a loaded experience. In order to add a new experience to the

widget, the author must modify this class to include it.

There are three Java interfaces that must be implemented in order to create a new

experience: Controllable, PadListener and DiskListener.

9.2.3.3. Controllable

The Controllable interface allows the control panel to start and stop the new experience.

It has the following two methods that must be implemented:

Start(Input in, Frame frame)

This method is called by the control panel whenever a new experience needs to be

started. All initialization for the experience should be done in this method.

The first parameter is an Input object that refers to the input of the Jam-O-Drum. This

object is created by the control panel and is passed through this function, already

initialized. The new experience can assume the input is working and ready to receive

input. The second parameter is a reference to the control panel frame.

Stop()

This method is called by the control panel when the experience is stopped by the Jam-

O-Drum operator. All shutdown for the experience should be performed in this

method.

9.2.3.4. PadListener

The PadListener interface allows the experience to receive the input from the drum pads

of the Jam-O-Drum. It allows the experience to handle the event raised when a guest

strikes a drum pad. It has the following method that must be implemented:

10/30/01 A Study in Project Management 46

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

padHit(PadInputData inData)

This method is called when a drum pad is struck. The parameter inData is an object that

contains all the available information of the pad hit and allows one to know which drum

pad has been hit and how hard (velocity).

9.2.3.5. DiskListener

The DiskListener interface allows the experience to receive the input from the turning

wheels of the Jam-O Drum. It allows the experience to handle the event raised when a

disk is turned. DiskListener has three methods that must be implemented. The most

important is the following:

diskTurn(DiskInputData inData)

This method is called when a disk (turntable) is moved on the JOD. The parameter

inData is an object that contains all the available information of the turn and allows to

know which wheel has been turned and in which direction.

These three interfaces are enough to receive the input of the Jam-O Drum and to start

and stop the experience. The experience author may concentrate on the application

itself because the mundane details of its operation are already implemented.

9.2.4. The Java-Python-Alice Love Triangle

9.2.4.1. JAlice as a Media-Interaction Engine

For display, the video signal from the graphics card is routed to a high-fidelity projector

and mirror to the Jam-O-Drum table. The experience author can choose how to handle

the rendering of the experience, but hear we discuss the existing method. In order to

illustrate briefly how the existent experiences handled the output, we are going to talk

about the interaction between the actual experience and JAlice.

A JAlice world consists of a set of 3D objects (commonly imported from 3D Studio

source) and JPython scripts that can be executed by the engine in order to move and

animate objects. In order to use JAlice as the animation engine, the experience author

must create a new JAlice world with all of the components already imported and

arranged in their startup orientation.

10/30/01 A Study in Project Management 47

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

To integrate the JAlice world with the JOD experience, the world must not be executed

from the JAlice executable, but instead, it must be invoked by the Java code of the

experience. From there, the Java JAlice library may be used to start the engine and load

the world. This indirect way to run the JAlice engine is perpetuated by a configuration

file.

Figure 7. Java-Alice Package Interaction

10/30/01 A Study in Project Management 48

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

9.2.4.2. The JAlice Configuration File

From the experience project, an executable file is built that starts the experience. For

Musica this file has been named as JamODrumMusica.exe. It takes the .config that has

the same name as the executable to initialize the application. This file specifies some

parameters for JAlice and the name of the main class that should be run. Usually this is

ZeumControlPanel. An example of such a config file is included as an appendix.

9.2.5. Using JAlice for Animation

9.2.5.1. Introduction: What is JAlice World Script?

JAlice scripts are written in Python, a very-high level scripting language. Under the

“Behaviors” section of a JAlice world, there is a section where Python script can be

typed directly. All this script is saved in the world folder with the name “script.py”.

For a tutorial on Python visit http://www.python.org.

The Python script typed in the world script section can directly interact with the JAlice

world, and issue JAlice commands. The best documentation on JAlice script

commands is found on the Carnegie Mellon Building Virtual Worlds class web site

(http://www.alice.org/building.htm). The specific link to the help section is:

http://www-2.cs.cmu.edu/afs/andrew/course/05/331/webSpace/alice_help.html .

One of the most useful functions for understanding JAlice objects is the following:

def printActions(object):

print object.__class__.getMethods()

When called with the name of one of the world’s objects, a complete list of all the

methods for the given object is printed out. This is also a quick way to get an idea of all

the possible ways an object can be used in a world.

9.2.5.2. JAlice World Script v. Calling JAlice Script from Java

All coding does not have to be done directly in the JAlice world. Some Jam-O-Drum

groups have put as much code in the JAlice world as possible, whilst other groups did

most of the logical coding in Java and passed basic object manipulation commands to

JAlice. If using Java at all, some balance must be struck that best suits the needs of the

project.

10/30/01 A Study in Project Management 49

http://www.python.org/
http://www.alice.org/building.htm
http://www-2.cs.cmu.edu/afs/andrew/course/05/331/webSpace/alice_help.html

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

What are the tradeoffs? Java has a few obvious advantages. First of all, there is a large

existing Java code base for the Jam-O-Drum already. Second, for large amounts of

coding, Java lends itself to organization because of its modularity and strong typing.

Scripting in JAlice, on the other hand, requires all the code to be in the script.py file

with the exception that it is possible to import modules. However, importing modules

is inefficient and eats up processor time.

Scripting in JAlice has its advantages as well. Overall, it is better for performance,

since JAlice needs all the processing time it can get. If a Java thread is doing constant

work, it imposes on JAlice. Also, Python is relatively simple to learn for those that do

not know Java either.

9.2.5.3. Methods of Scripting in JAlice

When scripting in JAlice, there are a few techniques that keep popping up as either very

useful or necessary for worlds. These are discussed below, using Musica as an

example.

Once of the most useful commands is that which allows an object to be copied. In

Musica there were prototypes for each different type of musical block. Some levels

had many copies of the same type of block, although in the JAlice world having all of

these present would have been needless clutter. So as Musica reads in a level, it

spawns copies of the blocks it needs using the command:

newObject = copy(object, name, classesToShare)

One word of warning: expect performance to sink temporarily while copying objects.

This is why Musica restricts its use of the copy() method to only the loading of each

new level.

When objects are on the screen that becomes temporarily unnecessary, Musica uses the

object.hideRightNow() command. This optimizes JAlice’s work process until the

objects are needed again. When they are, the object.showRightNow() command

summons them back. For instance, the object that is textured with the “You Win!”

image is always present and floating above the board. It is actually hidden the whole

game, and only shows up via showRightNow() when a set of players wins the game.

10/30/01 A Study in Project Management 50

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

Another useful feature of JAlice is its built in ability to change objects textures on the

fly (as well as other characteristics). This was most helpful when displaying scores.

Each number of the score (up to 7 digits) is an object textured with a “0” at the start of

the Musica game. The JAlice world had textures with the numbers 0 through 9

imported, waiting to be used. When the score needed to be changed, a

PropertyAnimation was used to switch the seven textures to the textures of the correct

numbers. (To activate any animations, they need to be passed as a parameter in the

run(animation) command.)

Last, JAlice provides simple support for playing of WAV and MP3 files. By running a

SoundAnimation animation with the sound as a parameter, the sound is played. Any

sound that is imported in the JAlice world can be played this way from the world script.

One of these calls looks like this:

run(SoundAnimation(blockHit1))

Where blockHit1 is a sound in the Musica world. There is a tradeoff to think about

between using WAV files and using MP3 files. MP3 files are relatively small, but need

to be decompressed in real time, while WAV files consume inordinate amounts of

memory but do not need to be compressed, more on this later.

9.3. Musica Application Source

9.3.1. Java
The core of the Musica software is the main Java package

edu.cmu.etc.jamodrum.musica. As a part of the object-oriented software design

process, an initial UML static class diagram was produced that shows the internal and

external relationships of the classes. A hard copy is available in the diagrams and

schematics appendix.

9.3.1.1. Main Classes

Driver

Driver handles the main loop of the game, regulating the state and the thread sleep time.

This class is created by the control panel when the user selects the Musica experience.

10/30/01 A Study in Project Management 51

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

Game

This class implements the three interfaces of the JOD library. It is the controllable

object passed to the control panel and it receives the input from the Jam-O-Drum.

AlicePlayer

This class extends the class Player of the JAlice package

(edu.cmu.cs.stage3.alice.player) and it handles all the interaction with the JAlice engine

including initialization, loading and running the JAlice world, as well as handling the

JPython methods used for world animations.

Wall, Ball, Paddle, Block

These classes represent game objects and track their position and velocities to varying

degrees.

9.3.1.2. Musica Package Interface and Class Summary

Interface Summary

Collidable

Provides an interface for objects that require collision detection to affect each other.

Updatable

Objects that implement this interface have some form of update that gets performed

every cycle of some loop, most likely a game loop.

Class Summary

AlicePlayer - Manages all the interaction between the game and JAlice as the user

interface

Ball -A ball is an object that is deflected off the paddles to break the musical blocks.

Block -Musical block placed in the board.

Driver - Main class for Musica.

EdgeWall - Walls in the edge of the board that make the ball fall off

FileInputOutput - Class that can be used to read and write from and to text files.

Game - Class that manages the game MUSICA on the Jam-O Drum

10/30/01 A Study in Project Management 52

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

Level - Manages the information of a level in the game

Paddle - Represents a paddle in the game.

UpdateManager - Manages all the Updatable and Collidable objects

Vec3D - Class that can be used for representation of 3 Dimensional points or vectors

Wall - These walls are to ricochet the ball and cannot be destroyed

9.3.1.3. Java’s Role in Alice

The Musica JAlice world has all the imported models for the animations and JPython

methods for all internal game events. These methods are called from the Game class,

through the AlicePlayer class.

9.3.2. Python and Alice
In Musica, all sound management is handled through Python and JAlice’s access to the

JMF (see the Sound chapter for more information). The basic animations for rotating

the blocks and the balls are simple JAlice animation scripts. For more information on

JAlice animation scripts, see the Musica JAlice world script, script.py.

10/30/01 A Study in Project Management 53

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

10. MODELING AND PAINTING

10.1. Rapid Prototyping
Rapid prototyping is one of the best ways to ensure quality in production. By

producing either throwaway or evolutionary trial products every week or so, surveyed

estimates may be used to test the feasibility of your experience and its features.

It’s important to have rough 3D models as soon as possible, both for conceptual review

and for use in an early functional prototype for the game. These models may be basic

forms that haven’t been painted. These allow you to experiment within Alice to see if

your features will be able to live up to your concept art.

10.2. The Level-of-Detail Tradeoff
In creating models, you have the ability to make a really high quality (high polygon)

model. The problem is, the more polygons you have in your model the slower Alice

will run. So the goal is to make a model with the fewest amount of polygons as

possible, without sacrificing visual fidelity. For example, in Musica, the ball was a

900+ polygon model. Four other balls with the same polygon count substantially

hindered the frame rate. In the end, the polygon count for a ball was cut to 160. The

ball is understandably not as smooth but the detail loss is minimal.

There are a lot of different methods for producing level-of-detail (LOD) compression,

both offline and dynamic. 3DS uses a simple method for reducing the polygon count of

models, but there are elegant and topology-preserving alternatives such as polygonal

decimation, vertex clustering and quadric-error metrics. More information on LOD

techniques is available at the ACM’s digital library.

10.3. Creating Textures
Most of the textures for Musica were created in Photoshop. All of the textures applied

to the 3D models were stored as Windows bitmaps. Pixel resolution is used when

deciding the size of your image. The most important thing to remember about the

bitmaps is that the resolution needs to be a power of 2. For example: 2, 4, 16, 32, 64,

128, 256, and 512. The image can be a 128x256 pixel size or some variance of it.

Actual image size in inches is irrelevant. The key to efficiency is to use the coarsest

10/30/01 A Study in Project Management 54

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

resolution while maintaining a good level of fidelity for your image. This reduces your

file size and makes Alice run quicker.

10.4. Mapping Textures
When you have made all of the textures you want in Photoshop, load your model in 3D

Studio and open the texture editor. Click on the box to the right of “Diffuse” in the

“Maps” section of the editor. Select “Bitmap” then choose your bitmap that you want to

add on to your model. Once you select the bitmap click and drag it on to your model.

After that press the checkered box button that is under all of the samples, this makes

your image appear on the model. After you apply the BMP you need to align it

properly on your model. Go to your “Modifier List” and select “UVW Map.” This

allows you to center your texture on your model. You also need the UV map if you

plan on exporting the model to Alice.

DeepPaint was used by the Musica painting team to help map the textures onto the

blocks. The cube bitmap was designed such that it has all of the sides for the cube on

one BMP. First the cube was exported from 3D Studio to DeepPaint. This is done by

selecting the “hammer tab” and under “utilities” choosing the “More” button. Select

the DeepPaint option. You should now have a button below the utilities menu. Now

click the “PaintIt” button. In DeepPaint we then proceeded to click on the Map option

on the top. All of the sides from the cube were separated and laid out on the bitmap to

correlate with the appropriate sides. The file was then sent back to 3D Studio Max.

10.5. Exporting Your Model
It’s easiest to export your model when there is only one per 3D Studio file. It is

possible to export multiple objects per file, but Alice may also import the other textures

in your Material Editor. This means you have to go in to Alice and delete each extra

BMP out individually.

The first thing to do is select the object you want to export into Alice. Click on the File

menu and select “Export Selected.” Select the folder you are exporting to. It’s best to

keep your ASE file with the bitmaps that are associated with it. The folders may tend to

get a little cluttered but Alice has problems importing if it can’t locate the bitmap.

When selecting ASE exporting options make sure Mesh Definition, Materials,

Transform Animation Keys, Mesh Normals, Mapping Coordinates, Vertex Colors,

10/30/01 A Study in Project Management 55

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

Geometric, Shapes, and Use Keys are selected. Lighting or cameras may not be

imported into Alice. Also, you cannot export entire worlds. It’s extremely problematic.

10/30/01 A Study in Project Management 56

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

11. ANIMATION

11.1. Keyframe v. Native Alice
An interesting experience is always reinforced by attractive animations of your models.

3D Studio provides some tools for scripting some basic keyframe animations.

Unfortunately, these animations rarely import into JAlice successfully as it recognizes

only position and rotation information. Thusly, when designing your experience, it’s

best to prepare yourself for one or the other, depending on which renderer you’ve

chosen to use. If you do choose to use Alice for animation, there are a number of

tutorials in Alice involving creating Python scripts in a variety of ways. For more

information on scripting in Alice, see section 9.2.5.

11.2. Exporting Keyframe Animations from 3DS
Exporting an object with keyframe animations is done the exact same way as exporting

your model. The only difference is when you start JAlice you need to copy the black

text at the bottom of the screen and paste it into your behaviors script for the world.

Newer versions of JAlice might provide better support for imported animations so

check with Stage 3 on the feasibility of what actions you hope to perform. Musica

ultimately did not import any keyframe animations as it was found to be easier to

accomplish the simple effects within JAlice. Initially explosions were designed for the

blocks but JAlice did not handle this action well due to the structure of the multi-

faceted cubes.

11.3. Object Reuse and Resource Conversation
It’s important, regardless of what method is used, to conserve graphical resources in

your experience. Minimize the number of objects and creations to what is attractive but

practical. For instance, if an object is “destroyed” during game play, it is far more

prudent to remove the object from view rather than remove it from the game. This way

the object may be reused later for another instance. The same goes for animations. If a

stock animation can be used for a different purpose with slight modification, create an

animation structure that reflects this. Perhaps one block is always used in the same

pattern for a certain event. The object may be simplified based on the viewable set of

objects in the scene. A crude sort of back-face culling can be applied since the objects

10/30/01 A Study in Project Management 57

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

are projected onto a two dimensional surface. Since the view must be identical or very

similar from four different viewpoints around the board, 3D animation is rarely of any

benefit. This is the sort of mindset that must be employed when working with a rapid-

prototyping environment, for the faster and easier it is to build your experience, the

lower the degree your implementation can take advantage of the operations you are

performing and thusly make for a slower application all together.

10/30/01 A Study in Project Management 58

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

12. SOUND

12.1. I Can Hear! (Digital Sound 101)
For a Jam-O-Drum experience, the aural stimulus is just as important as its visual

presentation. Sound should be produced often, from both the direct and indirect input

of the guest. Themed sound effects should be triggered often, sequences should reward

the guest periodically, and consonant samples should be presented for the guest to

generate.

Digital sound is an electronic sampling of the acoustic vibration received by the human

ear. Without getting into acoustic theory, suffice it to say that CD-quality sound may

be reproduced through a compressed .wav file sampled at 44khz in 16-bit stereo. There

are three types of sound that you may use in your Jam-O-Drum experience: effects,

sequences, and samples.

12.2. Acoustic Magic: Effects
Sound effects are played when certain events occur during the game’s play. This

includes objects colliding or exploding, lives/balls being lost, or a new hi score being

set. There are virtually an endless amount of sound effects that can be used in a game.

The key is to provide enough rich and varied effects so that the experience becomes

more interesting, but not so much that they interfere with the game play. Too many

effects can clog the media pipeline, especially in Alice.

Sound effects are usually stored as .wav files, and less than 300k apiece, depending on

duration and quality. They can be created by a variety of means. Sonic Foundry’s

Sound Forge is an audio editor and can create and modify sounds. A note or series of

musical notes can be played by a midi sequencer like Cakewalk Pro Audio and

converted to .wav format as well. It’s also possible to record effects the old fashioned

way with a microphone and a wave recorder. For Musica, sound effects were produced

by the Korg X-5 Synthesizer and modified using Cakewalk. All the Musica effects,

sequences and samples are available on the archival CD.

12.3. Writing a Score: Sequences
Sequences are prearranged sets of samples, normally played by the computer’s sound

card. The synthesizer receives messages from a sequencer, and produces sounds

10/30/01 A Study in Project Management 59

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

accordingly. MIDI is a data format for storing such sequences of messages. Though a

MIDI sequence is sound card dependent, and not actually digital audio, the output from

a played sequence may be recorded to digital audio and later compressed into a MP3 or

WMA file.

Sequences are much less frequent than effects, and commonly used at transitional parts

of the game, though background music may be played as in the Jam-O-World or

CircleMaze application. Musica plays sequences only at level start or completion, or

when the game is idle. There is also a sequence associated when all of a player’s balls

have been lost.

It’s important that the sequences cater to the experience’s concept and demographic.

Just like a film, the soundtrack must be uniform and engender a particular sort of

feeling that the graphics complement. For Musica, all of the sequences are bright and

lively, relying mostly on major keys. The duration and complexity of the pieces are also

important factors. Since the Musica experience was intended for a children’s museum

with a constant flow of traffic, none of the tracks, except for the idle music, are longer

than 30 seconds. In fact, the first two level completion sequences are both scarcely

more than 15 seconds. They also are limited to eight channels each with simple melody

and percussive structures.

12.4. A Poor Man’s Music: Samples
Allowing the guest a certain amount of interactivity and music making is one of the key

features of the Jam-O-Drum. Since the JOD does have four drum pads, the guest

expects a reaction when one is struck, musically if not also graphically. In Musica, this

is accomplished by the destruction of the note-blocks on the game board and the

playing of samples. A sample is a prerecorded piece of digital audio in a certain timbre

(tone color) at a certain frequency (note). Each block in Musica is a different color and

has a musical note (C, D, E, F, G, A, B) associated with it. When the block is

destroyed, the note is added to a queue. When a guest strikes one of the drum pads

while playing, the sequence of notes is played back in the timbre of the instrument on

the guest’s pad. The sequence is then cleared and waits to receive a new sequence of

notes. Since the Alice media interface does not currently support MIDI messages,

samples were made of musical notes. For each of the six possible instruments, .wav

10/30/01 A Study in Project Management 60

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

files were generated for each note in one octave. This way, no matter which order the

notes are broken in, the resulting sequence is pleasurable.

12.5. Compression and Quality
As with most computer programs, quality and size of the media are inversely

proportional. With digital audio, the better the selection sounds, the larger the file will

be. Optimization is always necessary, especially with video games, so it’s important to

think about conservation of your resources when preparing the soundtrack. The sound

effects can be of poorer quality (lower frequency, fewer bits, mono) because they are

only heard briefly. No sample, however, should be reduced in quality to the point

where it has a large amount of noise. Samples can be of middle quality because they’re

closer to sequences, but still they are short clips played while there are other things

going on in the game. The sequences should be of fairly high quality, because they are

a reward to the guest and shine through their complex harmonies.

In Alice, this is even more of a necessity than if one were using DirectX to handle the

audio. Alice will play .wav and .mp3 files, but each one must be loaded into Alice’s

before the program is run. For this reason, all of the sequences in Musica are MP3 files

because .wav files are unmanageable if they are longer than a few seconds. Alice

decompresses the MP3s during playback and sends the .wav data to the sound card.

Producing versions of varying quality is a good step to take when creating digital audio

for your experience. A bit of testing with different combinations of your media can

greatly increase both the durability and smoothness of your application.

12.6. Creating Content with Cakewalk Pro Audio
Cakewalk Pro Audio 9 is a multi-track MIDI sequencing application. With it you can

perform a wide variety of standard MIDI effects and modifications, as well as record

performance and script. Cakewalk was used for all of the Musica effects, sequences

and samples. It’s available on all the PCs in the recording studio. As a reference, there

is a lengthy user’s manual in PDF format on the computers as well.

12.7. The Polyphony Sound Manager
There are many ways to handle the playing of audio in your Jam-O-Drum application.

Depending on how advanced your needs are, it’s possible to leave most of the grunt

work to Alice and the JMF. The Polyphony Sound Manager is a very simple Python

10/30/01 A Study in Project Management 61

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

class that makes sound programming quite easy. An instance of the sound manager is

declared in the world script in Alice. It has internal procedures for playing individual

sounds for certain points in the game. It also has the power to stop any sound that is

currently playing. The interface for the game programmer is exceptionally simple.

Whenever a sound event is needed in the game, the controlling application (either from

Python or Java) calls the polyphony.handleSoundEvent(eventType, sampleType =

“none”) function with either one or two parameters, depending on the event. The

parameter tells the manager what sound to play, and gives it extra information if

necessary (like which musical instrument to use). If a sound needs to be stopped, the

controlling function simply calls polyphony.stopSound(eventType), where eventType is

the sound event to be stopped. The only other work needed is to have the sounds

declared in the Alice world before use. Polyphony handles both .mp3 and .wav files.

For a more detailed look at the Polyphony sound manager, please see the Musica JAlice

world script, script.py.

In Musica, the sound system is restricted to the four speakers in the table and the

subwoofer underneath it, all wired in mono. If a more complicated setup is required, it

is possible to make use of a simple mixer to route selected channels to different parts of

the room. For even more advanced spatiality, Dolby 5.1 is supported by both the SB

Live! card and DirectSound. This does, however, involve a substantially larger amount

of programming.

10/30/01 A Study in Project Management 62

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

13. USABILITY

13.1. The Value of User Testing
User testing such an important phase of your cycle that it deserves its own committee.

Since you’re most likely developing for a demographic outside of your own, every

design decision you make must be validated in user testing. What may seem as natural

to you may be completely undiscoverable by the next person. In creating an experience

like the Jam-O-Drum, it is clear there will be a wide range of guests interacting with the

application on a daily basis. User testing not only answers questions about the ease-of-

use of the experience, but also the theme and fun. You will learn very quickly,

especially with children, what is and is not entertaining to your audience. The smallest

mundane feature in the experience may turn out to be the element that your guests find

most intriguing. This is extremely valuable information, and you will need to modify

your application to reflect your discoveries. Like all other elements of your cycle, user

testing must be carried out with process while keeping in mind a certain level of

gravity.

13.2. User Case Scenarios
User case scenarios are a good place to start. The software engineers on your team will

probably want to create several diagrams simulating the program flow. You can make

good use of these and adapt them slightly to reflect the same data from a user’s

viewpoint. Walking through the experience, paying close attention to the input and

output from the application will be quite fruitful, allowing you to analyze possible weak

points in the interface. At any moment the user sends input to the computer (like hitting

the drum, turning the pad), the user is going to expect a certain response from the

computer. You need to make sure that the response the computer issues is within the

expectations of the user. Conversely, when the computer is displaying data looking for

an input, you predict what sorts of cues (aural or visual) the user would react to. This is

designing for your audience.

By studying user case scenarios, you can discover potential pitfalls in the interface, and

know what to expect when conducting a user test. The more difficult side of usability is

expecting what the guest will enjoy. Children have a short attention span and will

abandon your experience in a heartbeat if it is too hard, too undiscoverable, or too

10/30/01 A Study in Project Management 63

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

boring. This can only be helped by rapid prototyping and getting a workable demo out

to your user-base early on, perhaps in the form of a throwaway prototype, or a slightly

modified previous cycle’s experience that embodies your theme and concept.

13.3. Planning User Testing

13.3.1. How Often and When?
Planning user testing is not something that should be put off, mostly because you won’t

have a lot of experience in it and things will probably change quite a bit before you’re

finished. User testing should be a consideration from day one of the project and not

something shoved in at the end. While the other committees are beginning

development, user testing can be planning case scenarios and specific tests with

particular goals in mind. Ideally, development can produce a throwaway or

evolutionary prototype shortly after mastering the tools. Preliminary user testing can be

conducted then to determine the feasibility and value of the major features. It may be

discovered that the crux of the experience is less well received than was initially

predicted. User testing should also be scheduled a for a week or so before the cycle is

over, so final revisions may be made to tailor the experience to the intended audience

before release. These estimates are for a seven-week cycle, and should be at least

doubled for a fourteen-week cycle; even a third iteration may be necessary. Fortunately

test users are easy to find for young demographics.

13.3.2. The User Base
Obtaining users for testing is not a difficult task, but one that must be done early and

not at the last minute. Several of the professors in the department have connections to

scores of children, whether their own or people who work in childcare and education.

An elementary school or a day camp can be a veritable gold mine of information.

Children are great testers because they are completely honest; they’ll let you know

when they don’t like something.

10/30/01 A Study in Project Management 64

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

13.3.3. Designing the Test

13.3.3.1. Asking the Right Questions

While you can learn a lot from just running the program and letting your guests roam

free, it’s good to have some structure to how things will be run before you start. Some

things to map out are:

• How many users you will have per test and total (1, 2, 3, 4?)

• How long each test group will have with the JOD

• How much (and what) information you want to provide to the group before

letting them start.

• How soon you want to step in and help users having trouble.

• What questions do you want the test to answer?

This last bullet is very important. Usability testing is a science, and there are many

formal methods of discovering certain types of data from a test. It is wise to put all of

the things you want to know in the form of a question, and to make them as quantitative

as possible. This is hard, but when surveying the users after the tests, the less room you

give them to wander off the topic, the closer to the point they will be and the more

valuable the data. For example, say you wanted to find out if a user liked the color

scheme on the Jam-O-Drum.

• Are the colors in the game good? (weak)

• Do you like the blue wheel? (good)

• Which do you like more the red wheel or the blue one? (best)

Targeted questions are a good way to extract binary responses from your users. For

broader topics, the subject can be wider, but it’s best to stick to an optometrist-style line

of questioning (“Is that better or worse?”).

13.3.3.2. Concept Testing

If you’re doing feature surveys or concept tests early on, it may be beneficial to open up

the questioning a bit more, and let the user help design the interface. For example, if

you were going to build a game that let children put together robots from a set of parts

and buttons, you may cut out paper versions of the widgets you would display and let

10/30/01 A Study in Project Management 65

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

the users arrange them as they like. By noting path the users take to assembling the

interface, and the results they produce, you can gain the perspective you need to design

an experience your audience will not only understand, but also enjoy.

13.4. Conducting the Test
When conducting the test, it’s important to stick to your schedule and be sure to have

the entire team around to assist the experience and watch. Someone should handle

surveying the users before and after the test. Another person can keep team and handle

the logistics of cycling groups in and out, and giving the necessary background to the

guests. While one team member records the data and takes notes, the rest of the team

can support the system and help the users when needed.

13.5. Data Mining
After it’s all done, a substantial report should be compiled cross-referencing the groups,

removing errant data, and searching for trends. If you conduct a thorough and well-

planned test, you can gain a lot of insight into the thought and learning patterns of your

user base. Key things to look for are times to master the controls, recurring examples of

users getting lost or confused, and moments when the user expressed exceptional joy or

satisfaction.

Aside from your own personal use, conducting a public user test study and inviting

other project teams to visit can be beneficial to all. The data extracted from your user

test may be of value to not just future Jam-O-Dream teams, but any team that shares a

similar concept or demographic. It would be prudent to do a thorough job documenting

your usability test and results, and then publishing them locally for communal profit.

13.6. Revision
When your user test results are processed, you can begin making revisions to the design

to improve the interface. Instead of simply distributing the results to your group, hold a

group meeting with your advisor and go over the results together. As a team, you can

decide if the concept needs modification, and discuss the feasibility of revisions to the

visuals, music, or program behavior. Not all user complaints can be brought into

accordance, but by resolving similar problems and unifying the changes to maintain that

the application stays true to the experience, you can greatly improve the overall user

rating for your next iteration.

10/30/01 A Study in Project Management 66

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

13.7. More on Usability
This chapter doesn’t even scratch the surface of what should go into a commercial

product like the Jam-O-Drum. It is strongly recommended that you study more about

the subject matter outside of this manual. Usability testing is a large field with a lot to

learn about making the most of user feedback. There is much literature on the topic of

usability, user testing, and data mining. See the appendix on recommended reading for

more information.

10/30/01 A Study in Project Management 67

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

PART III:
BEYOND THE CYCLE

10/30/01 A Study in Project Management 68

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

14. DEDICATION TO CONTINUITY

14.1. Time Well Spent
It’s not a secret that project cycles are insanely short. Corporations spend twelve to

eighteen months to release a professional-quality product for distribution. You have

seven to fourteen weeks. Admittedly, there are significant differences in scale and

market, but a damn good app is a damn good app. The Entertainment Technology

Center is petri dish for novel experiences. Every project that’s issued to a group is done

so in hopes that it turns into something commercial grade, something worth selling.

This is, after all, a technical program. If the opportunity came along to sell your app

along with a copy of the custom hardware, well…that’s the next chapter, but back to the

topic at hand.

Project cycles are short, very short, and that’s why it’s imperative that every group

coming into a cycle needs all the help it can get. There is no quicker way to kill the

chances of a great idea breaking out of Doherty than a lousy handoff. For this reason

(and the divine will of the software engineering gods), it is your ethical responsibility

as a member of this department to produce comprehensive documentation.

Period.

14.2. Document Everything

14.2.1. The Growing Experience Compendium
This manual was devised so that any one person could pick it up and learn virtually

anything about the Jam-O-Drum (and its project management) they could possibly

desire. Every question that came up and all the materials that were used during the

Musica cycle are in included in this document and its accompanying CD. In a perfect

world, you wouldn’t need to contact any of the previous experience professionals for

assistance in working something out. But this isn’t a perfect world or a perfect

document, so use the contact information in the appendix if you’re lost.

As detailed as this document is, it is not all-inclusive. New problems will be unearthed,

new cycles will take different software approaches, and new shortcuts will be

discovered. Thusly, it is important that all future teams keep track of their progress in a

similar manner. New schematics and drawings will be drafted, class structures and

10/30/01 A Study in Project Management 69

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

flowcharts will be produced. All of these materials should be combined along with the

requisite history of the committees’ development and decisions. For the last week of

the cycle, those materials should be assembled and formed as a supplement to this

manual. Over time, the supplements will accrue and a veritable epic of the Jam-O-

Drum will propagate.

14.2.2. Digital Resources
In addition to the project manual, it’s important to include all of the artifacts and tools

from a cycle onto a data CD for future reference. The accompanying disc for this

manual contains a wide assortment of concept and production materials, including:

• final Alice World

• final SourceSafe Database

• login information for SS database

• all 3DS files

• all DeepPaint files

• all bitmaps (textures)

• all screenshots/images

• all music

• a copy of the finished website

• a copy of the manual

• a copy of the development version of Alice (4.22.01)

• all necessary SDKs

14.3. Evolution of the Jam-O-Drum?
Perhaps in time, with the aid of these materials, there may come a point where the

process becomes so well documented and easy to perform that perhaps building

experiences can be relegated to classes of younger students. The Jam-O-Drum

development challenge could be used as college undergraduate or high school projects

as a study in rapid prototyping and developing interdisciplinary experiences. Imagine

high school students, apathetic about computer science and technology, now

encouraged to work on an assignment about making their own custom video games,

their own multimodal experiences. Early on, young programmers realize they cannot

perform this task alone and need artists, musicians, and playwrights to help them

10/30/01 A Study in Project Management 70

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

produce a compelling experience in half a semester. Half a dozen groups in this new

interdisciplinary class compete, each building their own Jam-O-Drum application and

registering for time slots to test their creation on the hardware. Getting people to work

together and respect each others’ talents earlier in education can only aid in accelerating

the critical collaboration and communication skills needed for tomorrow’s generation.

10/30/01 A Study in Project Management 71

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

15. JAM-O-DRUM FOR SALE

15.1. The Price Tag of Reality
The Jam-O-Drum device is an expensive item. The Jam-O-Drum experience is a very

expensive item. Hundreds of man-hours go into the creation of a simple, interactive

system that lasts little more than ten minutes start to finish. But the value that comes

out of the apparatus is priceless. When contemplating the sale of a Jam-O-Drum

experience, don’t think of it as a custom video game, think of it as an identity.

The Jam-O-Drum is a unique piece of equipment unto itself. That, coupled with the

fact that the applications it runs are compelling, immersive, collaborative, and even a

little educational make it a very hot item. This chapter attempts to leave the realm of

innocent humanitarianism that the Jam-O-Drum was designed around and provide a

perspective on the assumed physical value of a system if one so chooses to “sell out”

(no pun intended).

15.2. Materials and Labor
The following chart lists the purchase price of all the equipment that is used to create a

Jam-O-Drum experience. Consumables are included as well. All charts in this chapter

are available on the supplementary CD in .xls format.

(Please see the attached spreadsheets in Appendix G.)

10/30/01 A Study in Project Management 72

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

APPENDIX A:
MATERIALS PURCHASING PROCEDURE

Like any professional project, you’re going to need supplies. Software licenses,

hardware, and project materials are all needed for the development of your experience.

The technical coordinator is your gateway to procurement, but there are some

guidelines to following when requesting materials:

1. All purchases under 100$ may be approved directly by the technical coordinator.

Any purchase amount greater than 100$ and less than 1000$ will require the

directors approval. Any individual purchase over 1000$ requires a request to the

budget office, which will research externally the best vendor and equivalent model

(if possible). It’s best to try and avoid this last scenario all together, because the

process employed for purchases over 1000$ is slow, inefficient, and likely to end up

producing something other than what you really need. It could very easily take

weeks. For this reason, you need to employ some creative thinking to get the

equipment you need.

2. Purchase requests (unless petty) must be submitted in advance to the technical

coordinator via email.

3. When submitting a request for materials, the report must detail for each item: the

justification of the item, the price of the item, and the vendor and contact

information for purchasing the item. A running total of all the items in the request

must also be tallied.

4. For petty impulse materials (like electrical tape, solder, etc.) a receipt must

accompany the submission to the technical coordinator for reimbursement. Tax

will not be reimbursed on any impulse purchase by a team member as Carnegie

Mellon is tax exempt.

5. Before making any request for purchase, first check to see if materials are already

available. There are a large number of surplus materials in the ETC for use ranging

from keyboards, mice and joysticks, to markers, paper, and tools.

10/30/01 A Study in Project Management 73

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

APPENDIX B: PREVIOUS JAM-O-DRUM
TEAM MEMBERS

Project/Cycle Name Committees Email (cmu.edu)

Musica Fall ’01-1 Dan Schoedel Modeling/Painting,

Animation, Hardware

dschoede@andrew.

Musica Fall ’01-1 Dave Ventura Music, Programming,

Hardware

dventura@

Musica Fall ’01-1 Ingrid Moncada Programming, music,

hardware

icm@andrew.

Musica Fall ’01-1 Ray Mazza Hardware,

programming,

animation

rmazza@andrew.

Musica Fall ’01-1 Ying-Tzu Lin Modeling/Painting,

Animation, Music,

Hardware

yingtzl@andrew.

Musica Fall ’01-1 Frank Garvey ADVISOR fgarvey@andrew.

Project/Cycle Name Areas of Expertise Email (cmu.edu)

Jam-O-World

Spring ’01-2

Cliff Forlines Programming, User

Testing

forlines@cs.

Jam-O-World

Spring ’01-2

Kevin AuYoung Animation, User

Testing, Interface

Design

auyoung@andrew.

Jam-O-World

Spring ’01-2

Wil Paredes Programming, User

Testing

paredes+@andrew.

Jam-O-World

Spring ’01-2

Tina “Bean”

Blaine

ADVISOR sabean2@earthlink.net

10/30/01 A Study in Project Management 74

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

Project/Cycle Name Areas of Expertise Email (cmu.edu)

Jam-O-World

Spring ’01-1

Cliff Forlines Programming, User

Testing

forlines@cs.

Jam-O-World

Spring ’01-1

Philo Chua Interface Design, User

Testing

pchua@andrew.

Jam-O-World

Spring ’01-1

Rebecca Crivella Interface Design, User

Testing

crivella@andrew.

Jam-O-World

Spring ’01-1

Wil Paredes Programming, User

Testing

paredes+@andrew.

Jam-O-World

Spring ’01-1

Tina “Bean”

Blaine

ADVISOR sabean2@earthlink.net

10/30/01 A Study in Project Management 75

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

APPENDIX C: RECOMMENDED READING

Software Engineering/Project Management
The Mythical Man-Month. Frederick P. Brooks.

An Integrated Approach to Software Engineering. P. Jalote.

Game Programming Gems (series). Various authors, Academic Press.

Human-Computer Interaction/Usability
Bringing Design to Software. Terry Winograd, ed.

Usability Engineering. Jakob Nielsen.

Computer Graphics
Computer Graphics: Principles and Practice. Foley and van Dam.

Advanced Rendering Techniques. Watt and Watt.

OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.2.

Mason Woo et al.

Graphics Gems (series). Various authors, Academic Press.

Electronic Music/MIDI
MIDI: A Comprehensive Introduction. Joseph Rothstein.

The Complete Guide to Game Audio: For Composers, Musicians, Sound Designers, and

Game Developers. Aaron Marks.

Cakewalk Pro Audio 9 User’s Guide. Twelve Tone Systems Inc.

ACM
A copious archive of published research papers on computer science is available at the

ACM Digital Library, http://www.acm.org/dl (Highly Recommended).

10/30/01 A Study in Project Management 76

http://www.acm.org/dl

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

APPENDIX D: SAMPLE EXPERIENCE
CONFIGURATION FILE

javapath c:/JamODrum/jre/bin/java

Initial heap size

vmparam -Xms32m

Maximum Heap size

vmparam -Xmx256m

Enable incremental garbage collection

vmparam -Xincgc

python path

vmparam -Dpython.path=c:/JamODrum/jython-2.0/lib

addpath classes

JRE standard and extension jars

addjars c:/JamODrum/jre/lib

addjars c:/JamODrum/jre/lib/ext

JAlice jars

addjars c:/JamODrum/lib

addjars c:/JamODrum/externalLib

10/30/01 A Study in Project Management 77

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

##

###

To use the MUSICA WORLD:

For main class, use either:

edu.cmu.etc.jamodrum.musica.Driver or

edu.cmu.etc.jamodrum.ZeumControlPanel

(To ensure that the joystick inputs work, use ZeumControlPanel

better)

Either Driver or ZeumControlPanel use the following parameters:

Path and name of the Jalice world

Indicator to enable ball falling off the board

0 -> The balls will bounce in the edge of the boards as if we had

4 walls # (this is for testing)

1 -> The balls will fall off the board like the original game

#

Number of balls

#

Example:

mainclass edu.cmu.etc.jamodrum.ZeumControlPanel "C:\MusicaAlice\Jam-

0-Alice" # 0 2

will play the game with 2 balls and with the balls bouncing

everywhere

##

##

mainclass edu.cmu.etc.jamodrum.ZeumControlPanel "C:\MusicaAlice\Jam-0-

Alice" 1 1 0

10/30/01 A Study in Project Management 78

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

APPENDIX E: TROUBLESHOOTING

3D Studio MAX
• Problem: Why is the applied bitmap not at the right angle, and not on the right face

of the object?

Solution: First, after assigning the texture to the object, make sure that you check the

“Show Map in the ViewPort” button in the “Material Editor” to show you the object with

texture in your 3D max window. Then, apply the “UVW Mapping” under “Modify”

manual to the selected object.

• Problem: When I apply a bitmap in 3D max and check the “UVW Mapping”, why still

can’t I make the texture image of the right size and fit the object surface?

Solution: After you applied the UVW Mapping function to the object, click on the “+”

sign of it. That will unfold its sub-function “Gizmo”. It will turn yellow when you click

on, then you can apply any transformation, like uniform scale, un-uniform scale, or

squash, to the bitmap.

JAlice
• Problem: Why when I import my ASE file into the JAlice, I can’t see anything and my

JAlice is stuck there.

Solution: You can’t import your entire 3D Max model in the same time. That will crash

your JAlice. All you need to do is save each object in the 3D Max scene as an

independent ASE file. Then import these files one by one.

• Problem: Why is my texture memory in the JAlice is so big?

Solution: When you import ASE file of each object into JAlice, you think you import the

selected object independently, but actually all the textures or bitmaps in the whole 3D

Max file are imported all together. So, to cut down the texture memory in JAlice, try to

save each object you want to import as a new .max file first, then export it to .ase before

import it to your JAlice world.

10/30/01 A Study in Project Management 79

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

• Problem: What can I do if I already have bunches bitmap texture in my JAlice world?

Solution: Unfortunately, all you can do now is to check all objects on the left side

column of you JAlice window, click into the TextureMaps, and delete all unneeded

TextureMap on the right part by right click and select delete.

• Problem: Why I can’t find my objects when I import them into JAlice and lose all my

animation I make in 3D max?

Solution: Before you import any of your objects, make sure that you have already reset

its pivot point to its center point. Then also check the Manual “Utilities” that you can find

on the right top part of your 3D Max window, select the object and click “Reset XForm”

button and then check “Reset Transform” appearing below. As to the animation, after

you import the animated 3D max object into JAlice instead of creating your own

animations in JAlice, copy all the scripts in the bottom window to top “World Script”

window in your JAlice. And trigger it by choosing the event in “Behaviors” window, and

type the name of your original animation in the “Response” column.

• Problem: I’m getting an error in Alice’s behavior script, and all I did was comment

something out.

Solution: Usually this means you’ve commented out the body of a function and left on

the top line (the def foo():) which results in an error. Try filling in the body with a

placebo command, like foobar = 4. Or you may have commented out something else that

Python does not like.

• Problem: I press “Play” in Alice and a gray screen pops up, nothing more.

Solution: This is not your fault. Just save your work and restart Alice. Things will then

work again.

JBuilder
• Problem: I am trying to open a Jam-O-Drum project in JBuilder, and when I compile, I

get lots of errors. Shouldn’t it be left in a working state?

Solution: Yes, it should be left in working order. However, when JBuilder projects are

moved to a different computer, the libraries need to be set up again for the project.

Activate the menu option “Project Project Properties” and a box will pop up. Under

the “paths” tab, click on the “Required Libraries” sub-tab. Click on “Add”. Click on

10/30/01 A Study in Project Management 80

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

“New”. Make up a name such as “JAlice External Lib” and then show it the “External

Lib” folder in the Jam-O-Drum folder. Finally, click “Add” again. Then repeat this

process for the normal libraries, which are located in “Jam-O-Drum/Lib”.

The Projector
• Problem: The projection doesn’t fill the whole table.

Solution:

Step 1: Zoom the projector out.

Step 2: Move the projector to the distance from the table where it’s projection just starts

to show over the edges of the mirror.

Step 3: Consult the Hardware section on the Mirror and Projector.

• Problem: The projection is warped.

Solution: Consult the Hardware section on the Mirror and Projector.

Hardware Input
• Problem: Direct X cannot “acquire” the turntables encoded as joysticks through the

game port.

Solution:

Step 1. Make sure the circuitry is plugged in via the +5V DC power supply.

Step 2. Double check to make sure all wires are connected to the correct locations. Are

pins 1, 3, 6, 8, 9, 11, and 13 wired to each other? They should be if they are not.

Step 3. Use a continuity tester (or the continuity test function on a multimeter) to make

sure all solder connections are good. See the section on soldering for instructions on how

to do this.

• Problem: I can’t get input from the drum pads.

Solution:

Step 1: Make sure the pads are plugged into the drum module, and that the drum module

is powered on. Also, make sure the drum module is plugged into the MIDI port on the

computer.

10/30/01 A Study in Project Management 81

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

Step 2: Configure the program to use the proper sound device (in

edu.cmu.etc.jamodrum.MIDIInput.java). There is a choice of using either the “SB Live!

MIDI UART” sound card or the “MPU-401” on the mother board. Use the SB Live!

(unless you are not using a Sound Blaster audio card).

Step 3: Put print statements in edu.cmu.etc.jamodrum.NoteEventObject’s

constructor to print out the note it makes every time it is called. Hit the four drum

pads and record these four notes. In edu.cmu.etc.jamodrum.midiinput.PadInput,

change the constants declared for each pad to the notes you just detected. Once this

is done, do not change any of the settings on the drum module except for the

volume, as doing so may change the notes output by pad hits.

10/30/01 A Study in Project Management 82

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

APPENDIX F: MUSICA SCREENSHOTS

10/30/01 A Study in Project Management 83

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

10/30/01 A Study in Project Management 84

Everything You Ever Wanted to Know (and More) About Jam-O-Drum 4.0

APPENDIX G.
DIAGRAMS AND SCHEMATICS

10/30/01 A Study in Project Management 85

	FOREWORD
	ACKNOWLEDGEMENTS
	HOW TO USE THIS DOCUMENT
	TABLE OF CONTENTSFOREWORDIACKNOWLEDGEMENTSIIHOW T
	SO YOU’VE DECIDED TO CREATE�A JAM-O-DRUM EXPERIE�
	What is the Jam-O-Drum?
	The Experience Concept
	What Is Musica?
	Seven Weeks or Fourteen?

	PROJECT MANAGEMENT
	Yes, This Should Come First
	The Five Things No One Thinks Will Happen �(But Always Do)
	Your Concept, Your Demographic
	The Mission Statement
	Committee Structure
	You’ve Been Elected
	Many Hats
	Responsibilities
	Intangible Requirements

	Planning Your Cycle / Software Engineering
	The Need for Engineering
	Getting Status
	Risk Management
	The Spiral Process
	The Beauty of MS Project
	Scheduling Milestones
	Assigning Tasks

	A Career’s Worth of Study

	THE PLAYERS
	The A-Team
	ETC Co-directors
	Your Advisor
	The Program Coordinator
	The Technical Coordinator
	Stage 3 Research Group
	Previous Jam-O-Drum Team Members

	LEGACY DEVELOPMENT: �PRO AND CON
	You Are the Best Hacker in the World
	Jam-O-Drum Code base History
	Alice v. OpenGL v. DirectX

	WHAT YOU’LL NEED \(INVENTORY\)
	A Stock List for Fun
	Jam-O-Drum Components
	Host Computer
	Hardware Tools
	Software Development Tools
	Content Creation Tools

	STANDING ON THE GORGE�(10,000 FEET ABOVE)
	Don’t Sweat the Small Stuff…
	The View from 10,000 Feet

	HARDWARE
	Room Setup
	Soldering Basics
	Preparation
	Avoiding “Cold Solder Joints”
	Using a Heat Sink
	Heat Shrink v. Electrical Tape
	Finishing Up
	Caveats

	Input Devices
	Receiving Data
	Turntables
	Drum Pads

	Audio Equipment
	Electronics
	The Black Box
	Gameports
	Materials
	How to Proceed
	Caveats

	Encoder to EDIVIDE Wiring
	Materials
	What is the EDIVIDE?
	How to Proceed

	The Mirror
	The Best Mirror
	Mounting
	Hanging

	The Projector
	Positioning
	Flipping the Image

	Host Computer Setup

	SOFTWARE I: THEORY
	Legacy Code: A System Design Example
	System Architecture
	The Wedding Cake (A Marriage of HLLs)
	C++
	Java
	Python and Alice

	SOFTWARE II: PRACTICE
	High-Level Languages for Abstraction
	The Jam-O-Drum Experience Builder
	Why JODEB?
	C++ Wrappers and JNI
	DirectX
	DirectXEvents
	DXEventQueue
	Other DXEvents

	DirectInput
	DirectInput
	Device and PolledDevice
	Joystick, Mouse and Keyboard (Three Great Friends)

	DirectSound
	DirectSound
	SoundDevice
	SoundBuffer

	Java and the Experience Builder Core
	Input
	ZeumControlPanel
	Controllable
	PadListener
	DiskListener

	The Java-Python-Alice Love Triangle
	JAlice as a Media-Interaction Engine
	The JAlice Configuration File

	Using JAlice for Animation
	Introduction: What is JAlice World Script?
	JAlice World Script v. Calling JAlice Script from Java
	Methods of Scripting in JAlice

	Musica Application Source
	Java
	Main Classes
	Musica Package Interface and Class Summary
	Java’s Role in Alice

	Python and Alice

	MODELING AND PAINTING
	Rapid Prototyping
	The Level-of-Detail Tradeoff
	Creating Textures
	Mapping Textures
	Exporting Your Model

	ANIMATION
	Keyframe v. Native Alice
	Exporting Keyframe Animations from 3DS
	Object Reuse and Resource Conversation

	SOUND
	I Can Hear! (Digital Sound 101)
	Acoustic Magic: Effects
	Writing a Score: Sequences
	A Poor Man’s Music: Samples
	Compression and Quality
	Creating Content with Cakewalk Pro Audio
	The Polyphony Sound Manager

	USABILITY
	The Value of User Testing
	User Case Scenarios
	Planning User Testing
	How Often and When?
	The User Base
	Designing the Test
	Asking the Right Questions
	Concept Testing

	Conducting the Test
	Data Mining
	Revision
	More on Usability

	DEDICATION TO CONTINUITY
	Time Well Spent
	Document Everything
	The Growing Experience Compendium
	Digital Resources

	Evolution of the Jam-O-Drum?

	JAM-O-DRUM FOR SALE
	The Price Tag of Reality
	Materials and Labor

	APPENDIX A: �MATERIALS PURCHASING PROCEDURE
	APPENDIX B: PREVIOUS JAM-O-DRUM TEAM MEMBERS
	Programming, User Testing
	Animation, User Testing, Interface Design
	Programming, User Testing
	ADVISOR
	Programming, User Testing
	Interface Design, User Testing
	Interface Design, User Testing
	Programming, User Testing
	ADVISOR
	APPENDIX C: RECOMMENDED READING
	Software Engineering/Project Management
	Human-Computer Interaction/Usability
	Computer Graphics
	Electronic Music/MIDI
	ACM

	APPENDIX D: SAMPLE EXPERIENCE CONFIGURATION FILE
	APPENDIX E: TROUBLESHOOTING
	3D Studio MAX
	JAlice
	JBuilder
	The Projector
	Hardware Input

	APPENDIX F: MUSICA SCREENSHOTS
	APPENDIX G. �DIAGRAMS AND SCHEMATICS

