

 100 Crossing Boulevard
Framingham, MA 01702-5406 USA

www.nmscommunications.com

ADI Service Developer's
Reference Manual

9000-62162-18

 ADI Service Developer's Reference Manual

2 NMS Communications

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of NMS Communications Corporation.

© 2009 NMS Communications Corporation. All Rights Reserved.

Alliance Generation is a registered trademark of NMS Communications Corporation or its subsidiaries. NMS
Communications, Natural MicroSystems, AG, CG, CX, QX, Convergence Generation, Natural Access,
Natural Access MX, CT Access, Natural Call Control, Natural Media, NaturalFax, NaturalRecognition,
NaturalText, Fusion, Open Telecommunications, Natural Platforms, NMS HearSay, AccessGate, MyCaller,
and HMIC are trademarks or service marks of NMS Communications Corporation or its subsidiaries. Multi-
Vendor Integration Protocol (MVIP) is a registered trademark of GO-MVIP, Inc. UNIX is a registered
trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd.
Windows NT, MS-DOS, MS Word, Windows 2000, and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Clarent and Clarent
ThroughPacket are trademarks of Clarent Corporation. Sun, Sun Microsystems, Solaris, Netra, and the Sun
logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and/or other
countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the United States and/or other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc. Linux is a registered trademark of
Linus Torvalds. Red Hat is a registered trademark of Red Hat, Inc. All other marks referenced herein are
trademarks or service marks of the respective owner(s) of such marks. All other products used as
components within this product are the trademarks, service marks, registered trademarks, or registered
service marks of their respective owners.

Every effort has been made to ensure the accuracy of this manual. However, due to the ongoing
improvements and revisions to our products, NMS Communications cannot guarantee the accuracy of the
printed material after the date of publication or accept responsibility for errors or omissions. Revised
manuals and update sheets may be published when deemed necessary by NMS Communications.

P/N 9000-62162-18

Revision history

Revision Release date Notes

1.0 May, 2002 MCM, combined 6424-20 and 6341-24 for Natural Access 2002-1

1.1 April, 2003 MCM, Natural Access 2003-1

1.2 December, 2003 SRR, Natural Access 2004-1 Beta

1.3 April, 2004 MCM, Natural Access 2004-1

1.4 November, 2004 SRR, Natural Access 2005-1 Beta

1.5 March 2005 SRR, Natural Access 2005-1

1.6 October, 2005 DEH/LBG, Natural Access 2005-1, SP 1

1.7 July 2006 SRG, Natural Access 2005-1, SP 2

1.8 February, 2009 DEH, Natural Access R8.1

Last modified: January 22, 2009

Refer to www.nmscommunications.com for product updates and for information
about support policies, warranty information, and service offerings.

NMS Communications 3

Table Of Contents

Chapter 1: Introduction ...7

Chapter 2: Overview of the ADI service ...9
ADI service definition... 9

Using ADI with the Natural Call Control service ... 9
ADI terminology ... 9

Setting up the Natural Access environment ..10
Initializing Natural Access ...10
Creating event queues and contexts...10
Opening services ...11
Linking with the ADI service..12

Chapter 3: Developing applications..13
Recording and playing...13

Voice encoding formats ..13
Data transfer methods ...18
DTMFabort mask ...19
Recording...20
Playing...25
System restrictions ..30
Using simultaneous play and record ...30

Performing NMS native play and record ...31
NMS native play and record advantages..31
Implementing NMS native play and record ..32
Native play ...33
Native record without inband silence and DTMF detection35
Native record with inband silence and DTMF detection38

Managing call progress..43
Tone detection ..43
Call progress tone events ...48
Call progress voice events ..48
Call progress termination events..49
System restrictions ..49

Detecting tones..50
Starting tone detection...50
Stopping tone detection..51

Generating tones..52
Playing tones ..52
Terminating tone generation ...52
System restrictions ..52

Collecting digits ...53
Synchronous digit collection ..53
Asynchronous digit collection...55
Modifying DTMF detection ...56
Terminating DTMF detection..56
Improving DTMF using echo cancellation...56

Controlling echo...57
Echo cancellation examples...57
Echo canceller components ...59
Specifying echo canceller parameters ...61

Table of Contents ADI Service Developer's Reference Manual

4 NMS Communications

Configuring boards for echo cancellation ...61
Recommendations for controlling echo..64

Detecting energy..66
Starting energy detection ...66
Stopping energy detection ..67

Detecting voice activity ...67
Configuring boards for voice detection ..68
Using voice activity detection ..68

Sending and receiving FSK data ...69
Sending FSK data ..69
Terminating FSK data transmission ..70
Receiving FSK data ..70
Terminating FSK data reception...70

Performing low-level call control ...71
Using on-board timers ..72

Starting the timer..72
Stopping the timer...72

Chapter 4: Function summary..73
Telephony protocol functions..73
Record and play functions..73

Initiating record and play operations ..73
Terminating record and play operations ..73
Using buffer management functions ...73
Using status and modification functions ..74

Call progress functions..74
Tone detection functions ...74
Tone generation functions ...75
Digit collection functions..75
Echo cancellation functions ..75
DTMF and MF detection functions..76
Frequency shift key data functions..76
Low-level call control functions...77
On-board timer functions...77
Configuration information functions...78

Chapter 5: Function reference ...79
Using the function reference ..79
adiAssertSignal ..80
adiCollectDigits ..82
adiCommandEchoCanceller ..85
adiCommandRecord..91
adiFlushDigitQueue...95
adiGetBoardInfo...97
adiGetBoardSlots ... 100
adiGetBoardSlots32 .. 103
adiGetContextInfo .. 106
adiGetDigit .. 109
adiGetEEPromData ... 111
adiGetEncodingInfo .. 113
adiGetPlayStatus.. 115
adiGetRecordStatus .. 117
adiGetTimeStamp... 119

ADI Service Developer's Reference Manual Table of Contents

NMS Communications 5

adiInsertDigit... 121
adiModifyEchoCanceller ... 123
adiModifyPlayGain .. 128
adiModifyPlaySpeed.. 130
adiPeekDigit .. 131
adiPlayAsync ... 132
adiPlayFromMemory ... 136
adiQuerySignalState ... 139
adiRecordAsync.. 141
adiRecordToMemory ... 145
adiSetBoardClock ... 149
adiSetNativeInfo .. 150
adiStartCallProgress ... 154
adiStartDial ... 158
adiStartDTMF... 161
adiStartDTMFDetector... 163
adiStartEnergyDetector ... 165
adiStartMFDetector... 167
adiStartPlaying .. 170
adiStartProtocol ... 174
adiStartPulse ... 177
adiStartReceivingFSK.. 179
adiStartRecording... 182
adiStartSendingFSK.. 186
adiStartSignalDetector .. 189
adiStartTimer .. 192
adiStartToneDetector.. 194
adiStartTones .. 198
adiStopCallProgress .. 201
adiStopCollection ... 203
adiStopDial.. 204
adiStopDTMFDetector ... 206
adiStopEnergyDetector ... 208
adiStopMFDetector ... 210
adiStopPlaying ... 212
adiStopProtocol.. 213
adiStopReceivingFSK .. 215
adiStopRecording ... 216
adiStopSendingFSK .. 217
adiStopSignalDetector... 218
adiStopTimer ... 220
adiStopToneDetector .. 222
adiStopTones... 224
adiSubmitPlayBuffer ... 226
adiSubmitRecordBuffer ... 228

Chapter 6: Demonstration programs..231
Summary of the demonstration programs .. 231

ctademo.c and ctademo.h... 231
Host port to port connection: hostp2p ... 232
Play and record: playrec.. 234
Multi-threaded application: threads... 236

Table of Contents ADI Service Developer's Reference Manual

6 NMS Communications

Chapter 7: Errors ...237
Alphabetical error summary ... 237
Numerical error summary.. 239

Chapter 8: Events ..241
Event data structure ... 241

DONE events .. 242
Alphabetical event summary .. 243
Numerical event summary... 245
Events ordered by category ... 247

Administrative events... 247
Play and record events ... 248
DTMF events... 248
MF events .. 248
Call progress events .. 249
Tone detector events ... 250
Call control primitives .. 250
Miscellaneous events.. 251

Chapter 9: Parameters...253
Overview of the ADI service parameters .. 253
ADI_CALLPROG_PARMS .. 254
ADI_COLLECT_PARMS... 256
ADI_DIAL_PARMS .. 257
ADI_DTMF_PARMS ... 259
ADI_DTMFDETECT_PARMS .. 260
ADI_ENERGY_PARMS.. 260
ADI_FSKRECEIVE_PARMS.. 261
ADI_FSKSEND_PARMS.. 261
ADI_PLAY_PARMS .. 261
ADI_RECORD_PARMS ... 262
ADI_START_PARMS.. 264
ADI_TONE_PARMS ... 267
ADI_TONEDETECT_PARMS... 268

Chapter 10: DSP files..269
DSP file summary... 269

NMS Communications 7

11 Introduction
The ADI Service Developer's Reference Manual describes how to develop an
application using the ADI service in the Natural Access environment. It also provides
detailed descriptions of the ADI functions. Use this reference manual with the Natural
Access Developer's Reference Manual.

This document is intended for developers of telephony and voice applications who
are using Natural Access. This document defines telephony terms where applicable,
but assumes that you are familiar with telephony concepts and the C programming
language.

NMS Communications 9

22 Overview of the ADI service
ADI service definition

The ADI service is a C function library component of Natural Access that enables
application programs to execute multiple telephony functions on NMS
Communications AG boards, CG boards, QX boards, and PacketMedia HMP software.

The ADI service provides the following functionality:

• Play/record

• Tone detection

• Tone generation

• DTMF collection

• Echo cancellation

• Auxiliary functions such as energy detection, voice activity detection, FSK
data transmission and reception, low-level call control, on-board timers, and
board functions

• Call progress

Using ADI with the Natural Call Control service

The Natural Call Control (NCC) service is the standard call control for NMS
Communications products. The NCC service replaces all call control functions that the
ADI service formerly provided.

For more information about the NCC service, refer to the Natural Call Control Service
Developer's Reference Manual.

ADI terminology

A port is the object on which telephony functions are performed. It contains physical
and logical resources on the board. A port is represented by a context and a context
handle (ctahd), a software handle that enables the application (and its developer) to
keep track of software activities.

To access most functionality on a port, the application must associate a telephony
protocol with the port. On AG and CG hardware, the telephony protocol is embodied
by a trunk control program (TCP), and must be loaded during board initialization.
NMS Communications provides TCPs for most standard telephone line interfaces.
Starting a protocol enables the use of call control functions. Almost all functions
require a protocol to be loaded. For applications that do not use call control functions
or choose to manage the line interface manually, the NOCC (no call control) TCP is
provided.

For more information about controlling calls under specific TCPs, refer to the NMS
CAS for Natural Call Control Developer's Reference Manual.

Overview of the ADI service ADI Service Developer's Reference Manual

10 NMS Communications

Setting up the Natural Access environment

Before you can call functions from the ADI library, the application must initialize
Natural Access and open the ADI service. Application setup for Natural Access
consists of the following steps:

1. Initialize Natural Access for the process.

2. Create event queues and contexts.

3. Open services on each context.

To set up a second Natural Access application that shares a context with the first
application:

1. Initialize the Natural Access application.

2. Create event queues.

3. Attach the application to the existing context.

Initializing Natural Access

Initialize Natural Access by calling ctaInitialize and specifying the service and
service manager names. Service managers are dynamic link libraries (DLLs) in
Windows and shared libraries in UNIX. Only the services initialized in the call to
ctaInitialize can be opened by the application.

Use one of the following service managers in your call to ctaInitialize:

Board family Manager

AG ADIMGR

CG ADIMGR

QX QDIMGR

Note: The PacketMedia HMP process is a member of the CG board family.

Creating event queues and contexts

After initializing Natural Access, create the event queues and contexts.

Create one or more event queues by calling ctaCreateQueue and specifying the
service managers to attach to each queue. The ADI service manager is ADIMGR (or
QDIMGR). When you attach a service manager to a queue, you make that service
manager available to the queue.

Create a context by calling ctaCreateContext and providing the queue handle
(ctaqueuehd) that was returned from ctaCreateQueue. All events for services on
the context are received in the specified event queue. ctaCreateContext returns a
context handle (ctahd), which the application supplies when invoking ADI service
functions. Events communicated back to the application are also associated with the
context.

Refer to the Natural Access Developer's Reference Manual for details on the
programming models created by the use of contexts and event queues.

ADI Service Developer's Reference Manual Overview of the ADI service

NMS Communications 11

Opening services

Open services on a context by calling ctaOpenServices. When opening the ADI
service, specify a context, a specific board, a timeslot, and a mode. The parameter
structure CTA_MVIP_ADDR contains the following fields: board, bus, stream,
timeslot, and mode. For all boards, bus and stream can be 0.

The board field specifies the board number you want to use. For AG and CG boards,
refer to the system configuration file for the board keyword identifying each board in
the system. See the NMS OAM System User's Manual for more information. For QX
boards, refer to the qx.cfg configuration file for board identification. See the QX 2000
Installation and Developer's Manual for more information.

The timeslot and mode fields are used to calculate which timeslots to allocate to the
service. The timeslot specifies the base timeslot, and the mode dictates how many
timeslots are allocated.

The mode field can be one of the following values:

Value Description

ADI_VOICE_INPUT Receives in-band data only. The data is received by the DSP on the given
timeslot.

ADI_VOICE_OUTPUT Transmits in-band data only. The data is transmitted by the DSP on the given
timeslot.

ADI_VOICE_DUPLEX Receives and transmits in-band data on the given timeslot. Typically used with
the NOCC protocol and allows media (for example, voice and fax) reception and
transmission.

ADI_FULL_DUPLEX This is both ADI_SIGNAL_DUPLEX and ADI_VOICE_DUPLEX. The port receives
and transmits both in-band media and out-of-band signaling.

Use the demonstration program ctatest to verify that the ADI service is properly
installed. Refer to the Natural Access Developer's Reference Manual for more
information about ctatest.

When you open the ADI service, specify a DSP address. A DSP address is specified as
a timeslot. Bus and stream fields are 0 (zero). The following table shows valid
timeslot values for NMS Communications boards:

Board Timeslot

CG 6000/C 0 - 127

CG 6100C 0 - 599

CG 6500C, CG 6565/C,
CG 6060/C

0 - 511

PacketMedia HMP 0 - maximum determined by license agreement

AG 4000/C, AG 4040/C 0 - 127

AG 2000, AG 2000-BRI 0 - 7

AG 2000C 0 - 23

QX 2000 0 - 3

Overview of the ADI service ADI Service Developer's Reference Manual

12 NMS Communications

When the ADI service manager is attached to an event queue, it opens the board
driver and associates the muxable wait object returned by the driver open command
with the event queue. When this wait object is signaled on receipt of events from the
board, ctaWaitEvent processes the events through the ADI service and passes any
event generated back to the calling function.

Using the ADI service in driver-only mode

To access only the board driver, use the special board argument
ADI_AG_DRIVER_ONLY in place of a real board number in the CTA_MVIP_ADDR
structure. This argument permits the application to use a virtual port. The application
can use the following functions on a context in driver-only mode, since they do not
require physical board resources:

• adiGetBoardInfo

• adiGetBoardSlots

• adiGetBoardSlots32

• adiGetTimeStamp

• adiGetEEPromData

adiGetTimeStamp and adiGetEEPromData are not available for QX boards.

Note: All other functions that take a context handle (ctahd) require board-level
resources.

Linking with the ADI service

The ADI service contains two components, the ADI service interface and the ADI
service implementation. When building a Natural Access application that uses the
ADI service, link to adiapi.lib (under UNIX, libadiapi.so).

For existing applications, modify the make files to link with adiapi.lib (libadiapi.so).
Since earlier applications using the ADI service linked to adimgr.lib (under UNIX,
libadimgr.so), it is included only for backward compatibility.

See the Natural Access Service Writer's Manual for more details about service
implementation.

NMS Communications 13

33 Developing applications
Recording and playing

The most convenient way to program playing and recording applications is to use the
Voice Message service since it provides disk management with the playing and
recording functionality. The Voice Message service uses the ADI service device level
record and play functions. To use the Voice Message service with the ADI service
playing and recording functions, open both services on the same context.

When using the Voice Message service, you do not call the ADI playing and recording
functions directly. The Voice Message service calls the functions when needed. For
more information, refer to the Voice Message Service Developer's Reference Manual.

To create an application using your own disk management functions, call the ADI
functions directly.

This topic presents:

• Voice encoding formats

• Data transfer methods

• DTMFabort mask

• Recording

• Playing

• System restrictions

• Using simultaneous play and record

Voice encoding formats

When recording or playing speech files, you must select an encoding format. The
primary issue to consider when selecting a format is the compression ratio and the
fidelity. More aggressive compression requires less disk space and reduces host-to-
board loading, but uses more DSP resources.

Each encoding format has a minimum data block size, called a frame. Frames vary in
size and duration depending upon the encoding format. For NMS Communications
boards, a frame corresponds to 10 or 20 milliseconds of speech, depending on the
encoding format.

Developing applications ADI Service Developer's Reference Manual

14 NMS Communications

AG and CG boards support the following encoding formats:

• NMS Communications ADPCM 16, 24, 32 kbit/s and PCM framed 64 kbit/s

• G.726-compliant ADPCM

• G.723.1 5.3 kbit/s and 6.3 kbit/s (CG boards only)

• G.729A 8 kbit/s (CG boards only)

• OKI ADPCM (24 and 32 kbit/s)

• A-law and mu-law PCM

• 8-bit and 16-bit linear PCM at 11 kilo-samples per second

• 16-bit linear PCM at 8 kilo-samples per second

• IMA ADPCM (24 and 32 kbit/s)

• Microsoft GSM full rate

QX boards support the following encoding formats:

• NMS Communications ADPCM 16, 24, 32 kbit/s and PCM framed 64 kbit/s

• G.726 16, 24, 32, and 40 kbit/s

• OKI ADPCM (24 and 32 kbit/s)

• A-law and mu-law PCM

• 8-bit and 16-bit linear PCM at 11 kilo-samples per second

• 16-bit linear PCM at 8 kilo-samples per second

• IMA ADPCM (24 and 32 kbit/s)

• VOX ADPCM 32 kbit/s

The PacketMedia HMP process supports the following encoding formats:

• NMS Communications ADPCM 16, 24, 32 kbit/s and PCM framed 64 kbit/s

• G.726-compliant ADPCM 32 kbit/s

• OKI ADPCM (32 kbit/s)

• IMA ADPCM (32 kbit/s)

• A-law and mu-law PCM

• 16-bit linear PCM at 8 kilo-samples per second

The encodings refer to the data going to and from the host, typically stored in a
voice file. With the exception of ADI_ENCODE_NMS_64, host encoding is
independent of line encoding, which is always either mu-law or A-law depending on
how the board is configured when it is initialized.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 15

The following table lists the ADI encoding formats:

Encoding format Description Sample
size
(bits)

Sample
rate
(Hz)

Frame
size
(bytes)

Frame
time
(ms)

Data rate
(bytes/sec)

ADI_ENCODE_NMS_16 NMS
Communications
ADPCM
16 kbit/s

2 8000 42 20 2100

ADI_ENCODE_NMS_24 NMS
Communications
ADPCM
24 kbit/s

3 8000 62 20 3100

ADI_ENCODE_NMS_32 NMS
Communications
ADPCM
32 kbit/s

4 8000 82 20 4100

ADI_ENCODE_NMS_64 Framed PCM
64 kbit/s

8 8000 162 20 8100

ADI_ENCODE_MULAW mu-law
64 kbit/s

8 8000 80 10 8000

ADI_ENCODE_ALAW A-law 64 kbit/s 8 8000 80 10 8000

ADI_ENCODE_EDTX_MULAW mu-law
64 kbit/s with
EDTX headers

8 8000 82 10 8000

ADI_ENCODE_EDTX_ALAW A-law
64 kbit/s with
EDTX headers

8 8000 82 10 8000

ADI_ENCODE_PCM8M16 PCM 8 kss
16 bit mono
(WAVE)

16 8000 160 10 16000

ADI_ENCODE_OKI_24 OKI ADPCM
24 kbit/s

4 6000 30 10 3000

ADI_ENCODE_OKI_32 OKI ADPCM
32 kbit/s

4 8000 40 10 4000

ADI_ENCODE_PCM11M8 PCM 11 kss
8 bit mono
(WAVE)

8 11000 110 10 11000

ADI_ENCODE_PCM11M16 PCM 11 kss
16 bit mono
(WAVE)

16 11000 220 10 22000

ADI_ENCODE_G723_5 ITU G.723.1
5.3 kbit/s

N/A 8000 20 30 667

ADI_ENCODE_G723_6 ITU G.723.1
6.3 kbit/s

N/A 8000 24 30 800

ADI_ENCODE_EDTX_G723_5 ITU G.723.1
5.3 kbit/s with
EDTX headers

N/A 8000 22 30 667

Developing applications ADI Service Developer's Reference Manual

16 NMS Communications

Encoding format Description Sample
size
(bits)

Sample
rate
(Hz)

Frame
size
(bytes)

Frame
time
(ms)

Data rate
(bytes/sec)

ADI_ENCODE_EDTX_G723_6 ITU G.723.1
6.3 kbit/s with
EDTX headers

N/A 8000 26 30 800

ADI_ENCODE_EDTX_G723 ITU G.723.1
with EDTX
headers

N/A 8000 26 30 800

ADI_ENCODE_G726 ITU G.726
ADPCM
32 kbit/s

4 8000 40 10 4000

ADI_ENCODE_EDTX_G726 ITU G.726
ADPCM
32 kbit/s with
EDTX headers

4 8000 42 10 4000

ADI_ENCODE_G726_16 ITU G.726
ADPCM
16 kbit/s

2 8000 Variable Variable 2000

ADI_ENCODE_G726_24 ITU G.726
ADPCM
24 kbit/s

3 8000 Variable Variable 3000

ADI_ENCODE_G726_32 ITU G.726
ADPCM
32 kbit/s

4 8000 Variable Variable 4000

ADI_ENCODE_G726_40 ITU G.726
ADPCM
40 kbit/s

5 8000 Variable Variable 5000

ADI_ENCODE_G729A ITU G.729A
8 kbit/s

N/A 8000 10 10 1000

ADI_ENCODE_EDTX_G729A ITU G.729A
8 kbit/s with
EDTX headers

N/A 8000 12 10 1000

ADI_ENCODE_IMA_24 IMA ADPCM
24 kbit/s

4 6000 36 10 3600

ADI_ENCODE_IMA_32 IMA ADPCM
32 kbit/s

4 8000 46 10 4600

ADI_ENCODE_VOX_32 VOX ADPCM
32 kbit/s

4 8000 40 10 4000

ADI_ENCODE_GSM MS-GSM
13 kbit/s

N/A 8000 130 80 1625

Note: The Voice Message service has equivalent encoding formats with names that
begin with VCE_.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 17

DSP files

When recording or playing speech files on AG boards, a specific DSP file must be
loaded for each encoding type.

When recording or playing speech files on CG boards, a specific DSP file must be
loaded for each encoding type except when using the native play and record feature.
The native play and record feature combines an ADI port with an MSPP endpoint and
plays or records speech data directly to or from an IP endpoint with no transcoding.
Native play and record supports:

• Playing media files recorded from streams that contain SID frames, silence,
RFC 2833 frames, and lost frame markers.

• Silence and DTMF detection and reporting while recording RTP streams.

For information on the native play and record feature, refer to Performing NMS
native play and record on page 31.

The previous table lists the ADI_ENCODE_EDTX encoding formats to use for native
recording. For native playing, use either the ADI_ENCODE_EDTX or ADI_ENCODE
encoding formats. adiSetNativeInfo sets play and record parameters.

For QX boards, the standard DSP file supports the valid encoding types. For more
information, see Encoding formats and DSP files on page 134. The table lists the DSP
files that must be loaded on the AG and CG boards. It also lists the valid encoding
types that QX boards and PacketMedia HMP processes support.

Buffer sizes

Except for buffers that contain speech data recorded in one of the
ADI_ENCODE_EDTX encoding formats, all buffers submitted to the ADI service play
functions must be large enough to contain an integral number of frames for the
selected encoding format. For example, if you select ADI_ENCODE_NMS_24, the
buffer size must be a multiple of 62 bytes. Failure to submit a buffer meeting this
size requirement causes the play function to terminate with CTAERR_BAD_SIZE. For
ADI_ENCODE formatted data without EDTX headers that meet the multiple frame
size requirement, buffers submitted to the ADI service can be any size.

Use the ADI_ENCODE_EDTX encoding formats to record speech data directly from an
IP endpoint. Buffers recorded from encoded RTP codec streams can contain variable
size frames and must contain marker frames representing silence and discontinuous
transmission (DTX) periods. These characteristics do not guarantee that any given
buffer size will contain an integer multiple of codec frames, marker frames, or both.
Therefore, buffers containing ADI_ENCODE_EDTX formatted data submitted to the
ADI service can be any size.

Each board has a physical buffer size that is both board and encoding dependent. If
you submit a buffer larger than the physical size, the ADI service divides the buffer
into physical segments and submits those segments to the board. To eliminate
fractional buffers and to reduce the board-to-host interactions, the optimum user
buffer will be a multiple of the physical buffer size. This size is retrieved with
adiGetEncodingInfo.

The ADI service employs a double-buffering scheme when recording and playing
voice files. When the board finishes processing a buffer, the application must already
have allocated and submitted the subsequent buffer to the ADI service.

Developing applications ADI Service Developer's Reference Manual

18 NMS Communications

On heavily loaded systems, the throughput requirements between the host and the
board can cause gaps in the voice record or playback. This is called an underrun
condition. Failure to maintain pace with the board can also cause underruns in the
voice record or playback. Greater file compression may be necessary to eliminate the
problem.

The ADI service counts the number of underruns that occur, but not the duration.
Call adiGetRecordStatus and adiGetPlayStatus to retrieve the underrun count.

Note: Do not submit small buffers (buffers that hold less than one second of data).
Small buffers can also cause underruns. Derive the data throughput for a given
encoding method from the adiGetEncodingInfo return values.

Data transfer methods

The ADI service provides three methods by which the application can transfer speech
data to and from the board:

Method Description

Single memory
transaction

The application submits a single data buffer to the ADI service.

Asynchronous transfer The application serially submits multiple buffers by exchanging commands and
events with the ADI service.

Callback transfer The ADI service manages the buffers and invokes an application callback
function to retrieve or store data.

The functions used to initiate play or record depend upon the data transfer method
selected, as shown in the following table:

Operation Single memory Asynchronous Callback

Play adiPlayFromMemory adiPlayAsync adiStartPlaying

Record adiRecordToMemory adiRecordAsync adiStartRecording

adiStartPlaying and adiStartRecording are not supported when Natural Access is
running in client/server mode. For more information, refer to the Natural Access
Developer's Reference Manual.

Single memory transaction

If the application invokes adiPlayFromMemory or adiRecordToMemory, it
supplies a single buffer that is retained by the ADI service for the duration of the
function. The ADI service divides the application buffer into physical segments and
performs all handshaking with the board.

Note: A buffer submitted for playing can be shared by multiple instances of the play
function (within the same process) but the buffer submitted for recording must be
unique for each active recording instance.

When the ADI service delivers ADIEVN_PLAY_DONE or ADIEVN_RECORD_DONE to
the application, the buffer is then available for reuse or disposal.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 19

In summary:

• Single memory transaction is relatively simple and minimizes application
interaction.

• Single memory transaction consumes a large virtual address space for large
voice files. An application may experience latency reading or writing large files
to and from storage.

Asynchronous transfer

The asynchronous transfer method gives you maximum latitude with buffer address,
size, and submission. When the play or record function is started with adiPlayAsync
or adiRecordAsync, an initial buffer is submitted. Whenever the board starts a new
buffer, an event is generated. The application must submit a new buffer (using
adiSubmitPlayBuffer or adiSubmitRecordBuffer) before the board finishes the
current buffer.

In summary:

• The programmer can control buffer addresses and sizes with asynchronous
transfer, and have asynchronous access to a storage medium.

• Asynchronous transfer is more complicated to program.

Callback transfer

The callback transfer method balances simplicity in programming and resource
consumption. The ADI service allocates the buffers and invokes an application-
specified callback function whenever a buffer needs to be filled (during a play
function) or when a buffer needs to be emptied (during a record function). Within the
callback routine, the application synchronously accesses the storage medium before
returning.

In summary:

• Callback transfer minimizes virtual memory consumption and is simple to
implement.

• The application cannot control the buffer addresses or sizes with callback
transfer, and it requires synchronous access to a storage medium.

DTMFabort mask

By default, the board terminates play and record when any DTMF key is entered. You
can specify which DTMF keys terminate the function using the DTMFabort mask in
ADI_PLAY_PARMS on page 261 or ADI_RECORD_PARMS on page 262.

The DTMFabort mask is a 16-bit entity in which each bit corresponds to a specific key
on the telephone keypad. Setting a bit in the mask terminates the voice function if
that particular key is entered. The DTMFabort mask corresponds to the DTMF
telephone keys as shown:

Most significant bit to least significant bit

Bit position

DTMF key

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D C B A # * 9 8 7 6 5 4 3 2 1 0

Developing applications ADI Service Developer's Reference Manual

20 NMS Communications

For example, if the abort mask is set to 0x03FF, the play or record function
terminates if the remote party enters any digit from 0 through 9. The adidef.h
include file contains #defines (ADI_DTMF_xxx) for each digit and for certain digit
groups.

Note: The DTMFabort mask has no effect on digit collection.

If any digits are queued in the ADI service when a play or record voice operation is
started, and the voice operation is to terminate on those specific touchtones, the
voice operation terminates immediately. To prevent this from happening, use
adiFlushDigitQueue or adiGetDigit to remove the escape key from the queue.

The digit queue is automatically flushed when a call is released.

Recording

The ADI_RECORD_PARMS structure contains the record function parameters.

Initiating record

The ADI service provides three functions to initiate voice record. The function used
depends upon the data transfer method.

Use this function... When...

adiRecordToMemory The application submits a single buffer to the ADI service.

adiStartRecording The ADI service invokes an application-specified callback function when a buffer
is full. The application must store the data before returning.

Note: Applications running in client/server mode do not support
adiStartRecording.

adiRecordAsync The ADI service generates a buffer full event when each buffer is full. The
application asynchronously stores the data and submits empty buffers in
response.

The ADI service returns SUCCESS if the recording function successfully started.

Terminating record

The record function terminates when the ADI service delivers
ADIEVN_RECORD_DONE, regardless of the transfer method. The event value field
contains one of the following termination reasons:

If... Then play ends with...

The call was released by either party CTA_REASON_RELEASED

A DTMF digit specified in the abort mask was entered by the remote party CTA_REASON_DIGIT

The application aborted recording with adiStopRecording CTA_REASON_STOPPED

The remote party never spoke (see the no voice illustration) CTA_REASON_NO_VOICE

The remote party stopped speaking for the voice end time period (see the
voice end illustration)

CTA_REASON_VOICE_END

The remote party spoke longer than the maximum duration (see the
timeout illustration)

CTA_REASON_TIMEOUT

ADI Service Developer's Reference Manual Developing applications

NMS Communications 21

Record termination - no voice

The following illustration shows record termination - no voice:

T ime

S ta r t
r eco rd ing
command

Record done even t
(REASON_NO_VOICE)

Record
s ta r ted
even t

novo ice t ime

maxt ime

beept ime

Record termination - voice end

The following illustration shows record termination - voice end:

"Ca l l me a t work . "

T ime

S ta r t
r e cord ing
command

Record done even t
(REASON_VOICE_END)

Record
s ta r ted
even t

novo i ce t ime

max t ime

s i l ence t ime
beept ime

Record termination - timeout

The following illustration shows record termination - timeout:

T ime

S ta r t
r e co rd ing
command

Reco rd done even t
(REASON_TIMEOUT)

Record
s ta r t ed
even t

novo i ce t ime

max t ime

beept ime

" I ' m g o in g to le a ve i ns t ru c t io n s a b o u t "

Developing applications ADI Service Developer's Reference Manual

22 NMS Communications

Three timer parameters terminate the record function:

Parameter Description

novoicetime Time, in milliseconds, that the remote party has after the beep-sync prompt to start
speaking. novoicetime is stored in the ADI_RECORD_PARMS structure.

silencetime Maximum silence duration, in milliseconds, after the remote caller has stopped speaking.
silencetime is stored in the ADI_RECORD_PARMS structure.

maxtime Record function time limit, in milliseconds. The remote caller has maxtime milliseconds
after the beep to completely record a message. maxtime is a function argument specified
when initiating the record function.

Data transfer using callback mode

In record callback mode, the ADI service allocates two record buffers when the
record function initiates. The ADI service invokes the application-specified callback
routine whenever a record buffer is filled. You specify the callback function when you
initiate record with adiStartRecording.

When the ADI service fills a record buffer, it invokes the record callback function and
passes it the buffer pointer and the buffer size. The callback routine writes the data
to a storage medium such as a disk and returns.

Data transfer using asynchronous mode

In asynchronous mode, the application transfers voice data from the board to the
host by cooperatively exchanging commands and events with the ADI service, as
shown in the following illustration:

App l i ca t ion

T ime

ADIEVN_RECORD_DONE

adiRecordAsync

ad iSubmitRecordBuffer

ADIEVN_RECORD_STARTED

ADIEVN_RECORD_BUFFER_FULL

adiSubmitRecordBuffer

T ime

ADI serv i ce

ADI Service Developer's Reference Manual Developing applications

NMS Communications 23

Transferring voice data during record follows this process:

1. The application initiates recording in asynchronous mode by invoking
adiRecordAsync.

2. The ADI service generates ADIEVN_RECORD_STARTED to inform the
application to submit the second buffer.

3. The application submits the buffer by invoking adiSubmitRecordBuffer.

4. The ADI service sends ADIEVN_RECORD_BUFFER_FULL to the application
when a record buffer has been filled. The buffer address and size are
provided.

5. If the ADI_RECORD_BUFFER_REQ bit is set in the value field in
ADIEVN_RECORD_BUFFER_FULL, the ADI service needs another record
buffer. In response, the application invokes adiSubmitRecordBuffer.

6. Steps 2 - 5 are repeated until recording completes and the ADI service
generates ADIEVN_RECORD_DONE.

The following illustration shows the complete life cycle for record using asynchronous
data transfer:

Stopp ing

Act ive

Id le

ADIEVN_RECORD_DONE

ADIEVN_RECORD_BUFFER_FULL
adiSubmitRecordBuffer

Wai t
record
s ta r ted

ADIEVN_RECORD_STARTED

ADIEVN_RECORD_DONE

adiRecordAsync

ADIEVN_RECORD_DONE

adiStopRecording

adiStopRecording

Developing applications ADI Service Developer's Reference Manual

24 NMS Communications

The states for asynchronous record transfer are as follows:

State Description

Idle The function is not active.

Wait record started The record function enters this state when the application invokes
adiRecordAsync. The ADI service sends the initial buffer to the board. The
board responds with ADIEVN_RECORD_STARTED at which time, the board is
actively recording. The application must submit the second required record
buffer if the ADI_RECORD_BUFFER_REQ bit is set in the event's value field.

Active The record function enters the active state after receiving
ADIEVN_RECORD_STARTED. The record function remains active until one of the
terminating conditions described in Terminating record on page 20 occurs. The
ADI service and the application exchange buffer full events and submit buffer
commands while in this state as described:

• The ADI service generates ADIEVN_RECORD_BUFFER_FULL when a record
buffer is full.

• In response, the application invokes adiSubmitRecordBuffer to continue
recording.

• A maximum of two user record buffers can be actively submitted at any
given time. adiSubmitRecordBuffer returns the error
ADIERR_TOO_MANY_BUFFERS if a third buffer is submitted.

Stopped The application can immediately abort the record function by invoking
adiStopRecording. The ADI service does not execute any more record
functions from the application while in the stopping state. Any record functions
invoked by the application result in the ADI service returning
CTAERR_INVALID_SEQUENCE. When ADIEVN_RECORD_DONE is delivered to
the application, the record state returns to idle.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 25

Recording with automatic gain control

By default, AGC is disabled and the record gain is determined only by the gain
parameter. To enable AGC, set AGCenable in ADI_RECORD_PARMS to 1.

The following illustration shows the automatic gain control (AGC) record parameters:

time

attack
attack

decay

target
level

silence
level

am
pl

itu
de

input signal

output signal

AGCtargetampl, AGCsilenceampl, AGCattacktime, and AGCdecaytime control the
behavior of the AGC. The default values for these parameters are appropriate for
most applications. Refer to ADI_RECORD_PARMS on page 262 for a description of
each of the AGC parameters.

Note: When AGC is enabled, the gain parameter in ADI_RECORD_PARMS
determines the gain applied when record begins. AGC must be disabled if you are
using voice activity detection.

Playing

Playing follows this process:

1. The application invokes a function to initiate playing.

2. The ADI service prompts the application for data.

3. The application provides data to the ADI service and can instruct the ADI
service to automatically stop playing after the buffer plays (by setting the
ADI_LASTBUFFER_SUBMITTED flag).

Steps 2 and 3 are typically performed multiple times.

4. The ADI service terminates play upon delivering ADIEVN_PLAY_DONE. Refer
to Terminating play on page 26 for termination reasons that can be included
as part of the event.

The ADI_PLAY_PARMS structure contains the play function parameters.

Developing applications ADI Service Developer's Reference Manual

26 NMS Communications

Initiating play

The ADI service provides three functions to initiate playing speech. The function used
depends upon the data transfer method selected:

Use this function... When the...

adiPlayFromMemory Application submits a single memory buffer to the ADI service.

adiStartPlaying ADI service invokes application callback when data is needed.

Note: Applications running in client/server mode do not support
adiStartPlaying.

adiPlayAsync ADI service generates a buffer request event when more data is needed. The
application asynchronously submits play buffers in response.

The ADI service returns SUCCESS if the start playing command is successfully sent
to the board.

Terminating play

The play function terminates when the ADI service delivers ADIEVN_PLAY_DONE,
regardless of the transfer method selected. The event value field contains the
termination reason, as follows:

If... Then play ends with...

The application submitted a buffer with the
ADI_LASTBUFFER_SUBMITTED flag and the buffer finished playing

CTA_REASON_FINISHED

The call was released by either party CTA_REASON_RELEASED

A DTMF digit specified in the abort mask was entered by the remote
party

CTA_REASON_DIGIT

The application aborted play by calling adiStopPlaying CTA_REASON_STOPPED

The play was aborted by the speech recognizer CTA_REASON_RECOGNITION

Playing voice data in callback mode

In callback mode, the ADI service allocates a buffer and invokes an application-
specified function to play voice data into it. You specify the callback function when
play is initiated with adiStartPlaying.

When the ADI service requires data, it invokes the callback function, passing it a
buffer to fill and the buffer size. The application's callback routine reads data from a
storage medium (for example, a disk) into the buffer. The callback returns the
amount of data read and a flag indicating whether to terminate the playing session
after the buffer is played.

Playing voice data using callback mode follows this process:

1. The application invokes adiStartPlaying.

The ADI service invokes the callback function from within the
adiStartPlaying context to retrieve the initial buffer (before
adiStartPlaying returns).

2. The ADI service invokes the application's callback function when a play buffer
needs to be filled with voice data.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 27

3. The application's callback function fills the buffer before returning.

At this point, if the application indicates that this is the last buffer (using the
ADI_LASTBUFFER_SUBMITTED flag) or if a termination condition occurs, the
play operation may terminate.

4. Steps 2 and 3 are repeated until the ADI service generates
ADIEVN_PLAY_DONE.

The application cannot invoke ADI service functions while the callback is
executing.

Delaying the callback function could interfere with event processing for any context
opened on the same queue.

Playing voice data in asynchronous mode

In asynchronous mode, the application transfers voice data from the host to the
board by cooperatively exchanging commands and events with the ADI service, as
shown:

App l i ca t ion

T ime

ADIEVN_PLAY_DONE

ad iP layAsync

adiSubmitP layBuf fer

ADIEVN_PLAY_BUFFER_REQ

ADIEVN_PLAY_BUFFER_REQ

adiSubmitP layBuf fer

Time

ADI se rv i ce

Transferring voice data asynchronously during play follows this process:

1. The application invokes adiPlayAsync.

2. The ADI service sends ADIEVN_PLAY_BUFFER_REQ whenever the board
starts a new buffer.

3. The application invokes adiSubmitPlayBuffer in response to
ADIEVN_PLAY_BUFFER_REQ.

4. Steps 2 and 3 are repeated until play completes and the ADI service
generates ADIEVN_PLAY_DONE.

Developing applications ADI Service Developer's Reference Manual

28 NMS Communications

The following illustration shows the life-cycle for play in asynchronous transfer mode:

Stopp ing

Act i ve

Id l e

ad iP layAsync

ADIEVN_PLAY_DONE

ADIEVN_PLAY_BUF_REQ
ad iSubmitP layBuffer

ADIEVN_PLAY_DONE

adiStopPlay ing

The three states for asynchronous play transfer are:

State Description

Idle Play is not active.

Active When the application invokes adiPlayAsync, the ADI service sends the initial buffer to the
board and transits to the active state. The play state remains active until one of the
terminating conditions described in Terminating play on page 26 occurs.

The ADI service sends events and the application submits buffers while in this state as
described:

• The ADI service generates ADIEVN_PLAY_BUFFER_REQ whenever the board starts a
new buffer (more play data is needed).

• In response to the ADI service, the application invokes adiSubmitPlayBuffer to
continue playing. The application can terminate the play function by setting the
ADI_LASTBUFFER_SUBMITTED flag. The ADI service generates ADIEVN_PLAY_DONE
when the data already submitted has been played.

The application cannot invoke adiSubmitPlayBuffer unless the ADI service has given it
ADIEVN_PLAY_BUFFER_REQ. The ADI service returns ADIERR_TOO_MANY_BUFFERS when
adiSubmitPlayBuffer is invoked without first receiving a buffer request event.

Stopping The application can abort play by invoking adiStopPlaying. The ADI service does not
accept more play commands from the application while in the stopping state. Any play
functions invoked by the application prompt the ADI service to return
CTAERR_INVALID_SEQUENCE. When ADIEVN_PLAY_DONE is delivered to the application,
the play state returns to idle.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 29

Controlling gain during play

Adjust the play volume at play initiation by changing the default value of the play
gain parameter stored in ADI_PLAY_PARMS on page 261. You can also modify
volume at any time while the play function is active by calling adiModifyPlayGain.
The default value of the gain is 0 dB (no gain). Gain can be set to any value in the
range of -54 dB to +24 dB.

Controlling speed during play

The playing speed can also be adjusted for some encodings. To modify the play
speed, call adiModifyPlaySpeed during a currently active play. Speed control is
available for the following encoding formats:

• ADI_ENCODE_NMS_16

• ADI_ENCODE_NMS_24

• ADI_ENCODE_NMS_32

• ADI_ENCODE_NMS_64

• ADI_ENCODE_OKI_24

• ADI_ENCODE_OKI_32

If you invoke adiModifyPlaySpeed for a play operation with data in any other
encoding format, the play operation continues at its original speed.

Note: The PacketMedia HMP process and the QX 2000 board do not support
adiModifyPlaySpeed.

To enable speed control, increase the maxspeed play parameter stored in
ADI_PLAY_PARMS from its default value of 100.

When play is started with a higher value of maxspeed, the necessary DSP resources
are allocated to support increased speed. You can start play with a fast speed (up to
maxspeed) by changing the value of the speed parameter in the function call. For the
AG boards and the CG boards, slow down up to 50 percent of normal speed is
supported.

Note: Starting play with maxspeed greater than 100 requires additional DSP
resources beyond that required for playing at normal speed. To determine whether
your boards and configuration can support speed up, refer to the NMS OAM System
User's Manual.

Developing applications ADI Service Developer's Reference Manual

30 NMS Communications

System restrictions

Consider the following system restrictions when using voice record and playback:

• Only one function can drive the output to the telephone line; therefore, the
following functions are mutually exclusive:

• Voice recording with beep enabled (since the record beep prompt
drives the output)

• Voice play

• Tone generation

• FSK sending

• If the DTMF detector is disabled, voice functions cannot terminate when digits
are entered.

• The following functions are typically configured to share the same group of
task processors:

• Call progress

• Voice record

• Voice play

• Tone generation

• MF detection

For the typical configuration, DSP capacity is allotted under the assumption that
every context is running no more than one of these functions at any given time.
There is nothing preventing the application from concurrently executing some
combinations of these functions on some contexts. If, however, multiple contexts
concurrently execute a combination of these functions, the DSP capacity may be
exhausted.

Delays in data processing

NMS Communications boards support DSP functions using a variety of data block
sizes. As a consequence, the delays in data processing depend on the data block size
of the specific DSP function. In addition, command and event processing to and from
the DSPs on these boards occurs at a rate faster than 10 ms.

Using simultaneous play and record

To use simultaneous play and record with an AG board, add the following line to the
board section in the board keyword file:
Buffers[0].Num=n

where n = 4 times the number of ports on your board. For example, an AG 2000
board contains 8 ports, so n would be 32.

You must disable the beep when recording. If you do not, the record function tries to
seize the output and generates CTAERR_OUTPUT_ACTIVE. To disable the beep, set
the record parameter beepfreq or beeptime to 0.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 31

Performing NMS native play and record

NMS native play and record enables applications to maintain the quality of audio data
played and recorded over network interfaces while minimizing the encoding and
decoding resources needed to process the audio data.

Applications can perform the following tasks with NMS native play and record:

• Record voice data from RTP data streams transferred through MSPP service
endpoints.

• Play and record media streams that contain silence, SID frames, RFC 2833
markers, and lost frame markers.

• Perform silence and DTMF detection while recording RTP streams.

• Play media recorded directly from RTP streams to PSTN (DS0) ports without
changing the native format of the data.

CG boards and PacketMedia HMP processes support NMS native play and record
functionality.

NMS native play and record advantages

When an application plays or records audio data over an IP network, typically the
application must encode or decode the data. Audio data is often encoded in a
compressed format such as G.711 or G.723.1. Encoding or decoding the audio
stream can consume system resources and incrementally degrade the quality of the
data.

When an application records audio data using native record, the audio is stored in
the NMS EDTX (extended discontinuous transmission) format without encoding the
data. The application can then either play back the audio data directly to a network
interface or transfer the data to the PSTN interface through a decoder.

Developing applications ADI Service Developer's Reference Manual

32 NMS Communications

The following illustration shows the advantages of native play and record:

RTP
endpo in ts

ADI port ADI service

Transcode

Play

Record

DS0 DS0

Transcode

Play Record

PSTN

Native play and record

Implementing NMS native play and record

NMS native play and record uses an NMS proprietary format called EDTX (extended
discontinuous transmission) to store and play back codec frames. EDTX formatting
incorporates an optional silence compression scheme that uses silence frames in the
recorded stream to indicate periods of silence.

Native play and record supports the following encoding types:

• AMR (CG boards only)

• G.711A, G.711U

• G.723.1

• G.726

• G.729A/B

For more information about supported vocoder types, refer to the Fusion vocoder
readme.txt files.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 33

Applications can implement native play and record in the following ways:

Implementation Description

Native play Application plays a stream of audio data from an ADI port to an RTP
endpoint.

Native record without
inband silence and DTMF
detection

Application receives and records a stream of audio data from an RTP
endpoint. No data decoding takes place, inband silence detection is not
supported, and DTMF detection is supported only through Fusion RFC 2833
support.

Native record with inband
silence and DTMF detection

Application receives and records a stream of audio data from an RTP
endpoint, and in parallel, decodes the data from its network format (for
example, G.711A or G.723.1). The application also performs silence
detection, DTMF detection, or both with the data.

For a PacketMedia HMP process, refer to the PacketMedia HMP Developer's
Manual for implementation procedures.

Native play

To implement native play functionality, the application performs the following tasks:

• Opens the ADI service on the context and starts the nocc protocol.

• Opens the MSPP service on the context and creates an RTP endpoint.

• Retrieves the filter ID of the RTP endpoint.

• Supplies the ADI service with information about the RTP audio streams and
specifies the desired behavior for native play operations.

• Starts and stops playing audio data from a native audio stream.

The following illustration shows an overview of the native play mechanism:

RT P
endpo in t

ADI port ADI service
Audio data

Sample procedure

When implementing native play functionality, applications use functions from the
following resources:

• Natural Access functions to set up event queues and contexts, and to open
services on the contexts.

• ADI service functions to start a protocol, set native play settings, and play out
audio data.

• MSPP functions to create an RTP endpoint and retrieve the unique filter ID for
the endpoint.

Developing applications ADI Service Developer's Reference Manual

34 NMS Communications

The following procedure shows functions used to implement a typical native play
operation:

Step Action

1 Invoke ctaCreateQueue to create a Natural Access event queue.

ctaCreateQueue (&queuehd)

2 Invoke ctaCreateContext to create a Natural Access context for the audio channel.

ctaCreateContext (queuehd, &ctahd)

3 Invoke ctaOpenServices to open the ADI and MSPP services on the context.

ctaOpenServices (ctahd, svclist, nsvcs)

4 Invoke adiStartProtocol to start the nocc protocol on the ADI port.

adiStartProtocol (ctahd, "nocc", NULL, startparms)

5 Invoke mspCreateEndpoint to create an audio MSPP service RTP endpoint.
mspCreateEndpoint returns an MSPP service endpoint handle (ephd).

mspCreateEndpoint (ctahd, mspaddrstruct, mspparmstruct, &rtpephd)

6 Invoke mspGetFilterHandle to retrieve the runtime filter ID (fltID) associated with the RTP
endpoint handle (ephd). The application uses the returned fltID as the destination for the audio
stream played out from the ADI port.

mspGetFilterHandle (rtpephd, MSP_ENDPOINT_RTPFDX, &fltID)

7 Invoke adiSetNativeInfo to set NMS native play parameters, specifying both the context handle
of the ADI port and the RTP endpoint fltID returned by mspGetFilterHandle.

adiSetNativeInfo (ctahd, NULL, fltID, fltID_parms)

8 Invoke adiPlayFromMemory to begin playing a message.

adiPlayFromMemory (ctahd, encoding, buffer, bufsize, parms)

9 Invoke adiStopPlaying to stop playing the message.

adiStopPlaying (ctahd)

ADI Service Developer's Reference Manual Developing applications

NMS Communications 35

Example

The following example shows how to perform a native play operation:
ret = ctaCreateQueue(NULL, 0, &hCtaQueueHd);

ret = ctaCreateContext(hCtaQueueHd, 0, "Play", &ctahd);

ServiceCount = 2;
ServDesc[0].name.svcname = "ADI";
ServDesc[0].name.svcmgrname = "ADIMGR";
ServDesc[0].mvipaddr.board = board;
ServDesc[0].mvipaddr.mode = 0;
ServDesc[1].name.svcname = "MSP";
ServDesc[1].name.svcmgrname = "MSPMGR";
ret = ctaOpenServices(ctahd, ServDesc, ServiceCount);
ret = WaitForSpecificEvent(CTAEVN_OPEN_SERVICES_DONE, &event);

ret = adiStartProtocol(ctahd, "nocc", NULL, NULL);
ret = WaitForSpecificEvent(ADIEVN_STARTPROTOCOL_DONE, &event);

// create mspp RTP endpoint
ret = mspCreateEndpoint(ctahd, &mspAddr, &mspParm, &ephd);
ret = WaitForSpecificEvent(MSPEVN_CREATE_ENDPOINT_DONE, &event);

// get cg6xxx board handle
ret = mspGetFilterHandle(msphd, MSP_FILTER_RTPFDX_EPH, rtp_play_filter_handle);
ret = adiSetNativeInfo(ctahd, NULL, /* no ingress handle, as this is a play only */
rtp_play_filter_handle, &natpr_ctl); /* RTP endpoint filter ID
specified as a destination for audio */
ret = adiPlayFromMemory(ctahd, ADI_ENCODE_EDTX_AMRNB, /* audio play */
MemoryBuffer, RecordedBytes, NULL);
.
.
.
ret = adiStopPlaying (ctahd);

Native record without inband silence and DTMF detection

To implement native record functionality without inband silence detection or DTMF
detection, the application performs the following tasks:

• Creates a Natural Access event queue and context.

• Opens the ADI and MSPP services on the context and starts the nocc protocol
on the context.

• Creates an MSPP RTP endpoint and an MSPP record channel on the context.

• Connects the RTP endpoint with the record channel to create a record
connection.

• Retrieves the filter ID of the jitter filter within the record channel.

• Supplies the ADI service with information about the RTP audio streams and
specifies the desired behavior for native record operations.

• Starts and stops recording audio data from a network audio stream.

Note: Applications can perform DTMF detection using Fusion RFC 2833 support, but
silence detection is not supported. Refer to the Fusion Developer's Manual for more
information.

Developing applications ADI Service Developer's Reference Manual

36 NMS Communications

The following illustration shows an overview of the native record mechanism without
voice decoding:

Reco rd channe l RTP
endpo i n t

ADI
port

ADI
service

M SPP re co rd connec t i on

MSP_NO_CONNECT

J i t t e r f i l t e r

Sample procedure

Applications use functions from the following Natural Access resources to implement
native record functionality without inband silence detection or DTMF detection:

• Natural Access functions to set up event queues and contexts, and to open
services on the contexts.

• ADI service functions to start a protocol, set native record settings, and
record incoming audio data.

• MSPP functions to create a voice connection consisting of a record channel
and an RTP endpoint, and to retrieve the unique filter ID associated with the
record channel.

The following procedure shows functions used to implement a typical native record
operation without decoding:

Step Action

1 Invoke ctaCreateQueue to create a Natural Access event queue.

ctaCreateQueue (&queuehd)

2 Invoke ctaCreateContext to create a Natural Access context for the audio channel.

ctaCreateContext (queuehd, &ctahd)

3 Invoke ctaOpenServices to open the ADI and MSPP services on the context.

ctaOpenServices (ctahd, svclist, nsvcs)

4 Invoke mspCreateEndpoint to create an audio RTP endpoint. mspCreateEndpoint returns an
endpoint handle (ephd).

mspCreateEndpoint (ctahd, mspaddrstruct, mspparmstruct, &rtpephd)

5 Invoke mspCreateChannel to create a record channel.

mspCreateChannel (ctahd, chnladdr, chnlparms, &chanhd)

6 Invoke mspConnect to connect the record channel with the RTP endpoint. Specify
MSP_NO_CONNECT instead of a DS0 endpoint handle.

mspConnect (MSP_NO_CONNECT, chanhd, rtpephd)

7 Invoke mspEnableChannel to enable the record channel to process data.

mspEnableChannel (msphd)

8 Invoke adiStartProtocol to start the nocc protocol on the audio channel.

adiStartProtocol (ctahd, "nocc", NULL, startparms)

9 Invoke mspGetFilterHandle to retrieve the filter identifier (fltID) associated with the MSPP
record channel.

mspGetFilterHandle (chanhd, MSP_FILTER_JITTER, &fltID)

ADI Service Developer's Reference Manual Developing applications

NMS Communications 37

Step Action

10 Invoke adiSetNativeInfo to set NMS native record parameters. Specify both the context handle
of the ADI port and the fltID returned by mspGetFilterHandle.

adiSetNativeInfo (ctahd, fltID, NULL, natpr_parms)

11 Invoke ctaGetParms to return parameter values for the ADI_RECORD_PARMS structure.

ctaGetParms(ctahd, parmid, buffer, size)

12 Invoke adiRecordToMemory to begin recording audio data.

adiRecordToMemory (ctahd, buf, bufsize, rec_param)

13 Invoke adiStopRecording stop recording audio data.

adiStopRecording (ctahd)

Example

The following example shows how to perform a native record operation without
decoding:
ret = ctaCreateQueue(NULL, 0, &hCtaQueueHd) ;
ret = ctaCreateContext(hCtaQueueHd, 0, "Record", &ctahd);

ServiceCount = 2;
ServDesc[0].name.svcname = "ADI";
ServDesc[0].name.svcmgrname = "ADIMGR";
ServDesc[0].mvipaddr.mode = ADI_VOICE_DUPLEX;
ServDesc[0].mvipaddr.stream = 0;
ServDesc[0].mvipaddr.timeslot = record_timeslot;
ServDesc[1].name.svcname = "MSP";
ServDesc[1].name.svcmgrname = "MSPMGR";

ret = ctaOpenServices(ctahd, ServDesc, ServiceCount);
ret = WaitForSpecificEvent(CTAEVN_OPEN_SERVICES_DONE, &Event);

// IP Channel Initialization
MSPHD ds0_ephd = MSP_NO_CONNECT;
MSPHD rtp_ephd;

// Create and init RTP endpoint
&
mspCreateEndpoint(ctaHd, &rtpaddr, &rtp_params, rtp_ephd);
if (! WaitForSpecificEvent(MSPEVN_CREATE_ENDPOINT_DONE, &Event, 5000))
{
 printf("Failed waiting for MSPEVN_CREATE_ENDPOINT_DONE (RTP)");
 return FAILURE;
}

chanaddr.nBoard = Board;
chanaddr.channelType = G711RecordChannel;
chanaddr.FilterAttribs = MSP_FCN_ATTRIB_RFC2833;
chan_params.size = sizeof(MSP_CHANNEL_PARAMETER);
chan_params.channelType = G711RecordChannel;
chan_params.ChannelParms.VoiceParms.size = sizeof(MSP_VOICE_CHANNEL_PARMS);

// Create channel
mspCreateChannel(ctaHd, &chanaddr, &chan_params, &msphd);
CTA_EVENT CtaEvent;
if (! WaitForSpecificEvent(MSPEVN_CREATE_CHANNEL_DONE, &Event, 5000))
{
 printf("Failed waiting for MSPEVN_CREATE_CHANNEL_DONE");
 return FAILURE;
}

Developing applications ADI Service Developer's Reference Manual

38 NMS Communications

// connect mspp endpoints
ret = mspConnect(ds0_ephd, msphd, rtp_ephd);
if (! WaitForSpecificEvent(MSPEVN_CONNECT_DONE, &Event, 5000))
{
 printf("Failed waiting for MSPEVN_CONNECT_DONE");
 return FAILURE;
}

// connect mspp enable channel
mspEnableChannel(msphd);
if (! WaitForSpecificEvent(MSPEVN_ENABLE_CHANNEL_DONE, &Event, 5000))
{
 printf("Failed waiting for MSPEVN_ENABLE_CHANNEL_DONE");
 return FAILURE;
}

//adiStartProtocol
adiStartProtocol(ctahd, "nocc", NULL, NULL);
if (! WaitForSpecificEvent (ADIEVN_STARTPROTOCOL_DONE, &Event, 5000))
{
 printf("Failed to receive ADIEVN_STARTPROTOCOL_DONE event");
 return FAILURE;
}

// get cg6xxx board handle
ret = mspGetFilterHandle(msphd, MSP_FILTER_JITTER, &cg6xxx_board_filter_handle);

ADI_NATIVE_CONTROL parms = {0}; /* Native parameters */
parms.frameFormat = 0;
parms.include2833 = 0;
parms.vadFlag = 0;
parms.nsPayload = 0;
parms.mode = ADI_NATIVE;
parms.rec_encoding = ADI_ENCODE_EDTX_MU_LAW;
parms.payloadID = 0;
ret = adiSetNativeInfo(ctahd, cg6xxx_board_filter_handle,
NULL, /* this is record only so no egress handle */
&parms);

// get default adi record parms
ret = ctaGetParms(ctahd, ADI_RECORD_PARMID, &recparms, sizeof(ADI_RECORD_PARMS));
ret = adiRecordToMemory(ctahd, ADI_ENCODE_EDTX_MU_LAW, /* audio rec */
MemoryBuffer, RecordedBytes, &recparms);
.
.
.
adiStopRecording (ctahd);

Native record with inband silence and DTMF detection

On CG boards, use the following procedure to implement native record with inband
silence detection or DTMF detection. For PacketMedia HMP processes, refer to the
implementation procedure in the PacketMedia HMP Developer's Manual.

To implement native record functionality with inband silence detection or DTMF
detection, the application performs the following tasks:

• Opens the ADI service on a Natural Access context and starts the nocc
protocol on the context.

• Opens the MSPP service and the ADI service on a second context, and creates
an RTP endpoint, a DS0 endpoint, and a voice channel on the context.

• Connects the RTP endpoint, DS0 endpoint, and voice channel to create a
voice connection.

• Creates a switch connection between the ADI port and the DS0 endpoint.

• Retrieves the filter ID of the jitter filter associated with the voice channel.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 39

• Supplies the ADI service with information about the RTP audio streams and
specifies the desired behavior for native record operations.

• Starts and stops recording audio data from a network audio stream.

The following illustration shows an overview of the native record mechanism with
voice decoding enabled:

MSPP vo i ce connec t i on

Vo i ce channe l

RTP
endpo in t

ADI
service

Vo i c e d e cod e r J i t t e r f i l t e r
Silence

and DTMF
detection

Record

ADI port

Switching
(SWI)

Aud io da ta

DS0
endpo in t

Sample procedure

Applications use functions from the following Natural Access resources to implement
native record functionality with inband silence detection or DTMF detection:

• Natural Access functions to set up event queues and contexts and to open
services on the contexts.

• ADI service functions to start a protocol, set native record settings, and
record incoming audio data.

• MSPP functions to create a voice connection consisting of a voice decoding
channel, an RTP endpoint, and a DS0 endpoint, and to retrieve the unique
filter ID of the RTP endpoint's jitter filter.

• SWI functions to switch together the ADI service port and the MSPP service
connection (through the DS0 endpoint).

The following procedure shows functions used to implement a typical native record
operation with decoding on CG boards:

Step Action

1 Invoke ctaCreateQueue to create a Natural Access event queue.

ctaCreateQueue (&queuehd)

2 Invoke ctaCreateContext to create a Natural Access context for the audio channel.

ctaCreateContext (queuehd, &ctahd)

3 Invoke ctaOpenServices to open the ADI service on the context.

When using ctaOpenServices, the application must specify the following:

• Set the svclist.mvipaddr.mode parameter to ADI_VOICE_DUPLEX to allocate DSP
resources for the channel on the CG board.

• Set the svclist.mvipaddr.stream parameter to 0 and the svclist.mvipaddr.timeslot
parameter to a unique and valid entry. For more information, refer to the Natural
Access Developer's Reference Manual.

ctaOpenServices (ctahd, svclist, nsvcs)

4 Invoke adiStartProtocol to start the nocc protocol on the audio channel and enable silence
detection on the audio channel.

adiStartProtocol (ctahd, "nocc")

Developing applications ADI Service Developer's Reference Manual

40 NMS Communications

Step Action

5 Invoke swiOpenSwitch to open a switching device for the context. swiOpenSwitch returns a
switch handle (swihd).

swiOpenSwitch (ctahd, "cg6ksw", board, 0x0, &swihd)

6 Invoke ctaCreateContext to create a Natural Access context for the MSPP channel.

ctaCreateContext (queuehd, &msphd)

7 Invoke ctaOpenServices to open the MSPP service on the context.

ctaOpenServices (msphd, svclist, nsvcs)

8 Invoke mspCreateEndpoint to create an audio RTP endpoint. mspCreateEndpoint returns an
endpoint handle (&rtpephd).

mspCreateEndpoint (msphd, mspaddrstruct, mspparmstruct, &rtpephd)

9 Invoke mspCreateEndpoint to create an audio DS0 endpoint. mspCreateEndpoint returns an
endpoint handle (&ds0ephd).

mspCreateEndpoint (msphd, mspaddrstruct, mspparmstruct, &ds0ephd)

10 Invoke mspCreateChannel to create a full duplex or voice decoding channel.

mspCreateChannel (msphd, chnladdr, chnlparms, &chanhd)

11 Invoke mspConnect to connect the DS0 and RTP endpoints with the voice channel.

mspConnect (ds0ephd, chanhd, rtpephd)

12 Invoke mspEnableChannel to enable the record channel to process data.

mspEnableChannel (msphd)

13 Invoke swiMakeConnection with the swihd returned by swiOpenSwitch to connect the MSPP
DS0 output to the ADI audio channel input and vice versa. When using swiMakeConnection,
the application specifies the stream and timeslot used to create the ADI port and the stream and
timeslot used to create the DS0 endpoint.

swiMakeConnection (swihd, adi_ds0, ds0ephd, 2)

14 Invoke mspGetFilterHandle to retrieve the filter identifier (fltID) associated with the MSPP
record channel.

mspGetFilterHandle (chanhd, MSP_FILTER_JITTER, &fltID)

15 Invoke adiSetNativeInfo to set NMS native record parameters. Specify both the context handle
of the ADI port and the fltID returned by mspGetFilterHandle.

adiSetNativeInfo (ctahd, fltID, NULL, natpr_parms)

16 Invoke ctaGetParms to return parameter values for the ADI_RECORD_PARMS structure.

ctaGetParms(ctahd, parmid, buffer, size)

17 Invoke adiRecordToMemory to begin recording a message.

adiRecordToMemory (ctahd, buf, bufsize, rec_param)

18 Invoke adiStopRecording stop recording the audio portion of the message.

adiStopRecording (ctahd)

ADI Service Developer's Reference Manual Developing applications

NMS Communications 41

Example

The following example shows how to perform a native record operation that supports
ADI silence and DTMF detection on CG boards:
ret = ctaCreateQueue(NULL, 0, &hCtaQueueHd);
// create context for ADI port
ret = ctaCreateContext(hCtaQueueHd, 0, "Record", &ctahd);

ServiceCount = 1;
ServDesc[0].name.svcname = "ADI";
ServDesc[0].name.svcmgrname = "ADIMGR";
ServDesc[0].mvipaddr.mode = ADI_VOICE_DUPLEX;
ServDesc[0].mvipaddr.stream = 0;
ServDesc[0].mvipaddr.timeslot = record_timeslot;

ret = ctaOpenServices(ctahd, ServDesc, ServiceCount);
ret = WaitForSpecificEvent(CTAEVN_OPEN_SERVICES_DONE, &Event);
{
 printf("Failed to receive CTAEVN_OPEN_SERVICES_DONE event");
 return FAILURE;
}

//adiStartProtocol
adiStartProtocol(ctahd, "nocc", NULL, NULL);
if (! WaitForSpecificEvent (ADIEVN_STARTPROTOCOL_DONE, &Event, 5000))
{
 printf("Failed to receive ADIEVN_STARTPROTOCOL_DONE event");
 return FAILURE;
}

ret = swiOpenSwitch(ctahd, "agsw", Board, 0, &swihd);
if (ret != SUCCESS)
{
 printf("Makeconnections: Failed to open board %d\n",Board);
 return FAILURE;
}

// create context for MSPP channel
ret = ctaCreateContext(hCtaQueueHd, 0, "MSPP", &ipHd);

ServiceCount = 2;
ServDesc[0].name.svcname = "ADI";
ServDesc[0].name.svcmgrname = "ADIMGR";
ServDesc[0].mvipaddr.mode = ADI_VOICE_DUPLEX;
ServDesc[0].mvipaddr.stream = 0;
ServDesc[0].mvipaddr.timeslot = fusion_timeslot;
ServDesc[1].name.svcname = "MSP";
ServDesc[1].name.svcmgrname = "MSPMGR";

ret = ctaOpenServices(iphd, ServDesc, ServiceCount);
ret = WaitForSpecificEvent(CTAEVN_OPEN_SERVICES_DONE, &Event);
{
 printf("Failed to receive CTAEVN_OPEN_SERVICES_DONE event");
 return FAILURE;
}
// IP Channel Initialization
MSPHD ds0_ephd;
MSPHD rtp_ephd;

// Create and init RTP endpoint
MSP_ENDPOINT_ADDR rtpaddr = {0};
MSP_ENDPOINT_PARAMETER rtp_params = {0};

rtpaddr.size = sizeof(MSP_ENDPOINT_ADDR);
rtpaddr.eEpType = MSP_ENDPOINT_RTPFDX;
rtpaddr.nBoard = Board;
...

Developing applications ADI Service Developer's Reference Manual

42 NMS Communications

mspCreateEndpoint(ipHd, &rtpaddr, &rtp_params, &rtp_ephd);
if (! WaitForSpecificEvent(MSPEVN_CREATE_ENDPOINT_DONE, &Event, 5000))
{
 printf("Failed waiting for MSPEVN_CREATE_ENDPOINT_DONE (RTP)");
 return FAILURE;
}

// create mspp DS0 endpoint
MSP_ENDPOINT_ADDR ds0addr = {0};
ds0addr.eEpType = MSP_ENDPOINT_DS0;
ds0addr.nBoard = Board;
ds0addr.size = sizeof(MSP_ENDPOINT_DS0);
ds0addr.EP.DS0.nTimeslot = fusion_timeslot;
MSP_ENDPOINT_PARAMETER ds0parms = {0};
ds0parms.size = sizeof(DS0_ENDPOINT_PARMS);
ds0parms.eParmType = MSP_ENDPOINT_DS0;
ds0parms.EP.DS0.media = MSP_VOICE;
mspCreateEndpoint(ipHd, &ds0addr, &ds0parms, &ds0_ephd);
if (! WaitForSpecificEvent(MSPEVN_CREATE_ENDPOINT_DONE, &Event, 5000))
{
 printf("Failed waiting for MSPEVN_CREATE_ENDPOINT_DONE (DS0)");
 return FAILURE;
}

// create mspp Channel
MSP_CHANNEL_ADDR chanaddr = {0};
MSP_CHANNEL_PARAMETER chan_params = {0};

chanaddr.nBoard = Board;
chanaddr.channelType = G711FullDuplex;
chanaddr.FilterAttribs = MSP_FCN_ATTRIB_RFC2833;
chan_params.size = sizeof(MSP_CHANNEL_PARAMETER);
chan_params.channelType = G711FullDuplex;
chan_params.ChannelParms.VoiceParms.size = sizeof(MSP_VOICE_CHANNEL_PARMS);
...
// Create channel
mspCreateChannel(ipHd, &chanaddr, &chan_params, &msphd);
CTA_EVENT CtaEvent;
if (! WaitForSpecificEvent(MSPEVN_CREATE_CHANNEL_DONE, &Event, 5000))
{
 printf("Failed waiting for MSPEVN_CREATE_CHANNEL_DONE");
 return FAILURE;
}

// connect mspp endpoints
ret = mspConnect(ds0_ephd , msphd, rtp_ephd);
if (! WaitForSpecificEvent(MSPEVN_CONNECT_DONE, &Event, 5000))
{
 printf("Failed waiting for MSPEVN_CONNECT_DONE");
 return FAILURE;
}

// connect mspp enable channel
mspEnableChannel(msphd);
if (! WaitForSpecificEvent(MSPEVN_ENABLE_CHANNEL_DONE, &Event, 5000))
{
 printf("Failed waiting for MSPEVN_ENABLE_CHANNEL_DONE");
 return FAILURE;
}

// connect Fusion and ADI timeslots to allow Silence and DTMF detection
SWI_TERMINUS input[2];
SWI_TERMINUS output[2];

output[0].bus = MVIP95_LOCAL_BUS;
output[0].stream = BoardStream;
output[0].timeslot = record_timeslot;
output[1].bus = MVIP95_LOCAL_BUS;
output[1].stream = BoardStream;
output[1].timeslot = fusion_timeslot;
input[0].bus = MVIP95_MVIP_BUS;

ADI Service Developer's Reference Manual Developing applications

NMS Communications 43

input[0].stream = BoardStream+1;
input[0].timeslot = fusion_timeslot;
input[1].bus = MVIP95_MVIP_BUS;
input[1].stream = BoardStream+1;
input[1].timeslot = record_timeslot;
swiMakeConnection (swihd, input, output, 2)

// get cg6xxx board handle
ret = mspGetFilterHandle(msphd, MSP_FILTER_JITTER, &cg6xxx_board_filter_handle);

ADI_NATIVE_CONTROL parms = {0}; /* Native parameters */
parms.frameFormat = 0;
parms.include2833 = 0;
parms.vadFlag = 0;
parms.nsPayload = 0;
parms.mode = ADI_NATIVE;
parms.rec_encoding = ADI_ENCODE_EDTX_MU_LAW;
parms.payloadID = 0;
ret = adiSetNativeInfo(ctahd, cg6xxx_board_filter_handle,
NULL, /* this is record only so no egress handle */
&parms);

// get default adi record parms
ret = ctaGetParms(ctahd, ADI_RECORD_PARMID, &recparms, sizeof(ADI_RECORD_PARMS));
ret = adiRecordToMemory(ctahd, ADI_ENCODE_EDTX_MU_LAW, /* audio rec */
MemoryBuffer, RecordedBytes, &recparms);
.
.
.
adiStopRecording (ctahd);

Managing call progress

Call progress functions monitor in-band energy to detect network tones, voice, and
modem or fax terminal tones. Call progress functions enable you to manage low-
level call control directly. Call progress is affected by the parameters stored in the
ADI_CALLPROG_PARMS structure.

This topic presents:

• Tone detection

• Call progress tone events

• Call progress voice events

• Call progress termination events

• System restrictions

Tone detection

Call progress functions are automatically invoked when nccPlaceCall is specified
and turned off when the call reaches a connected state. Once the call is in a
connected state, an application can invoke call progress functions and analyze in-
band energy as described in the following topics.

Telephone network tone detection

The call progress functions analyze in-band audio to detect the following telephone
network signals:

• SIT (special information tone)

• Reorder (fast busy)

• Busy

Developing applications ADI Service Developer's Reference Manual

44 NMS Communications

• Ringing (referred to as ring tone)

• Number unassigned tone

The ADI_CALLPROG_PARMS parameters set the criteria to determine if the energy
received is a telephone network tone or voice. These parameters are sent to the
board by adiStartCallProgress.

The following terms are used to characterize telephone network tones:

Term Description

Pulse width Time during which a tone is active.

Inter-pulse delay Time between two active tone pulses.

Tone cycle Time during which a tone is active and then absent.

The following illustration shows generic tone characteristics:

T ime

Energy

Pu l se
w id th

In te rpu l s e
de lay

Tone cyc l e

The ADI service uses a precise tone detector and a broadband tone detector to
distinguish tones from voice data.

Precise tone detection

The precise tone detector analyzes in-band audio at specific frequencies to detect the
following types of tones:

• Busy

• Reorder

• SIT (special information tone)

• CED (generated by fax terminals or modems)

• TDD/TTY (generated by devices for the hearing impaired)

• Number unassigned

The application specifies which of these tones to detect by configuring the precmask
in ADI_CALLPROG_PARMS. If the busy tone detection is not enabled, the ADI service
takes more time to discern the busy tone using broadband tone detection. If SIT
detection and CED detection are not enabled, these tones cannot be detected.

The precqualtime parameter determines the duration in which the tones are
qualified. This parameter applies to all three tones defined in this topic. Set it to the
time required to detect the tone of shortest duration.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 45

Broadband tone detection

The broadband detection method uses simple high and low pass frequency
discrimination together with broadband energy measurements over time to qualify
network tones. For example, the DSP determines that a ring tone is present if all of
the following conditions are met:

• There is energy below the telephone network tone frequency threshold (1
kHz).

• There is little or no energy above the network tone frequency threshold.

• The amplitude and frequency are reasonably steady over the period of time
defining the ring tone.

Two signal characteristics are used for broadband tone detection: time period and
cadence.

When defining time period, the application specifies time limits for excluding each
telephone network tone. The following illustration shows the effect these limits have
on the tones. The waveforms depicted are in milliseconds and are representative of
tones in the USA.

T ime

Energy

500

T ime

Max
reorder

Maxbusy

T ime

Maxr ing

T ime

Reorder

Busy

Ringing

Dial tone

40002000

250

250

500

Developing applications ADI Service Developer's Reference Manual

46 NMS Communications

The time parameters shown in the previous illustration are stored in
ADI_CALLPROG_PARMS on page 254.

Note: The ADI service presumes that maxreorder is less than maxbusy, and
maxbusy is less than maxring. This relationship defines a time tolerance (minimum
and maximum) for each of the three tones detected.

The second characteristic used for broadband tone detection is the signal's cadence.
The application specifies tone counts in ADI_CALLPROG_PARMS. The signal must
satisfy the single tone criteria described in the following illustration for the respective
number of cycles before the ADI service concludes the signal is present. The
following table defines the cadence for each signal:

Tone Parameter Description

Busy busycount Busy signal received.

Reorder busycount Reorder received.

Ring ringcount Call not answered.

For example, when busycount reorder tones are counted, the ADI service concludes
it is receiving a reorder (fast busy) signal.

The following illustration depicts ring tone termination. After having established that
the line is receiving a ring tone, the ADI service concludes that the remote trunk has
quit ringing if a ring tone is not received in the maxringperiod. This parameter
controls the ring quit event.

R ing cyc le Max r ingpe r iod

T ime

Energy R ing qu i t

2000 4000

Voice detection

If the ADI service does not detect a network tone, call analysis advances into the
final stage of voice detection.

The ADI service detects when the remote party starts and stops speaking. These are
the voice begin and voice end conditions, respectively. The voice begin condition
indicates that the call is being answered by the remote party.

The ADI service supports three voice duration time thresholds: medium, long, and
extended. The duration for these three thresholds is specified in the
ADI_CALLPROG_PARMS structure. The application can set the connectmask and
disconnectmask to force call resolution on any of these voice thresholds, as well as
on the voice end condition.

For example, the application expects a voice to begin speaking with a short
salutation (for example, Hello). The voice medium time threshold should be set
accordingly.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 47

The precise definition of each of these conditions is controlled by parameters in the
callprog structure in ADI_CALLPROG_PARMS:

Voice
condition

Description Controlling parameter in callprog in
ADI_CALLPROG_PARMS

Voice begin Remote party begins speaking. None.

Voice
medium

Remote party has spoken for a period
longer than the first time threshold.

voicemedium - (ms) first time threshold.

Voice long Remote party has spoken for a period
longer than the second time threshold.

voicelong - (ms) second time threshold.

Voice
extended

Remote party has spoken for a period
longer than the third time threshold.

voicextended - (ms) third and final time
threshold.

Voice end Remote party stopped speaking. silencetime - (ms) qualification time before
concluding voice end.

Voice begin can be triggered when the remote party begins speaking. Voice end
occurs after an absence of voice for silencetime milliseconds. The following
illustration shows call progress analysis voice detection:

T ime

Vo ice beg in

"He l l o . "
"NMS

Commun ica t i ons "

Vo i ce end

Energy

s i l ence t ime s i l ence t ime

Using call placement timeout

To ensure that call placement is resolved within a certain time period, the ADI
service provides a timeout parameter. The timeout parameter in
ADI_CALLPROG_PARMS specifies the maximum time after the last detected event
before the ADI service generates ADIEVN_CP_DONE with a value of
CTA_REASON_TIMEOUT. Setting the timeout parameter in ADI_CALLPROG_PARMS
to zero overrides the timeout feature.

Developing applications ADI Service Developer's Reference Manual

48 NMS Communications

Call progress tone events

The call progress tone events are mapped from tone events described in:

• Telephone network tone detection

• Precise tone detection

• Broadband tone detection

Call progress tone events are controlled by the ADI_CALLPROG_PARMS structure.
The following tones are detected by call progress:

If the detected tone is... The ADI event is...

Dial tone ADIEVN_CP_DIALTONE

Reorder tone ADIEVN_CP_REORDERTONE

Ring tone ADIEVN_CP_RINGTONE

Ring quit ADIEVN_CP_RINGQUIT

SIT ADIEVN_CP_SIT

Fax/modem answer tone ADIEVN_CP_CED

TDD/TTY tone ADIEVN_CP_TDD

Call progress voice events

The call progress voice events are mapped from the voice events described in Voice
detection on page 46 and are controlled by the ADI_CALLPROG_PARMS structure.

Whenever a voice event occurs during call progress, ADIEVN_CP_VOICE is
generated. The event value field contains the voice event:

If the remote party... The ADI event reason
is...

Begins speaking (voice begin) ADI_CP_VOICE_BEGIN

Has spoken for a period longer than the first time threshold (voice
medium)

ADI_CP_VOICE_MEDIUM

Has spoken for a period longer than the second time threshold (voice
long)

ADI_CP_VOICE_LONG

Has spoken for a period longer than the third time threshold (voice
extended)

ADI_CP_VOICE_EXTENDED

Stopped speaking (voice end) ADI_CP_VOICE_END

ADI Service Developer's Reference Manual Developing applications

NMS Communications 49

Call progress termination events

Call progress terminates when any of the following events occur:

If... The ADI event is...

A dial tone is detected ADIEVN_CP_DIALTONE

A busy tone is detected ADIEVN_CP_BUSYTONE

A reorder tone is detected ADIEVN_CP_REORDERTONE

A SIT tone is detected ADIEVN_CP_SIT

There is no answer ADIEVN_CP_NOANSWER

A fax or modem answer tone is detected ADIEVN_CP_CED

A TDD/TTY device tone is detected ADIEVN_CP_TDD

Additionally, you can configure the stopmask parameter in the
ADI_CALLPROG_PARMS structure to selectively terminate on the occurrence of any
of the following telephone network events:

Telephone network event ADI event

A ring tone is detected. ADIEVN_CP_RINGTONE

There is a loss of ring tone with no subsequent events. ADIEVN_CP_RINGQUIT

Remote party begins speaking (voice begin). Check the
value field of the event for the voice event.

ADIEVN_CP_VOICE, with
ADIEVN_CP_VOICE_BEGIN in the value field

Remote party has spoken for a period longer than the
first time threshold (voice medium). Check the value
field of the event for the voice event.

ADIEVN_CP_VOICE, with
ADIEVN_CP_VOICE_MEDIUM in the value
field

Remote party has spoken for a period longer than the
second time threshold (voice long). Check the value
field of the event for the voice event.

ADIEVN_CP_VOICE, with
ADIEVN_CP_VOICE_LONG in the value field

Remote party has spoken for a period longer than the
third time threshold (voice extended). Check the value
field of the event for the voice event.

ADIEVN_CP_VOICE, with
ADIEVN_CP_VOICE_EXTENDED in the value
field

Remote party stopped speaking (voice end). Check the
value field of the event for the voice event.

ADIEVN_CP_VOICE, with
ADIEVN_CP_VOICE_END in the value field

When call progress terminates, ADIEVN_CP_DONE is generated.

System restrictions

When using the NOCC protocol, call progress functions can be run at any time. With
all other protocols, call progress is under the control of the protocol until the call
enters the connected state. Once the call is in the connected state, the application
can run call progress functions.

Developing applications ADI Service Developer's Reference Manual

50 NMS Communications

Detecting tones

The tone detector runs a precise tone filter for a single or dual frequency tone. Each
instance of the ADI service (for example, each context) has up to six programmable
tone detectors. If the current telephony protocol employs an in-band cleardown tone
detector, the first tone detector is not available. The tone detectors can generate the
following events:

• ADIEVN_TONE_n_BEGIN

where n is the programmable tone ID (1-6)

• ADIEVN_TONE_n_END

where n is the programmable tone ID (1-6)

This topic presents:

• Starting tone detection

• Stopping tone detection

Starting tone detection

In addition to the tone detector identifier that specifies a tone ID of 1 through 6,
adiStartToneDetector takes four parameters that describe a single or dual
frequency tone:

Parameter Description

freq1 Frequency 1. The center frequency in Hz of a single tone or the first of two frequencies in
a dual tone.

bandw Bandwidth 1. The bandwidth around Frequency 1 that is acceptable.

freq2 Frequency 2. The center frequency in Hz of the second of two frequencies in a dual tone.
Set this value to zero for single frequency tones.

bandw2 Bandwidth 2. The bandwidth around Frequency 2 that is acceptable. Set this value to zero
for single frequency tones.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 51

The range of frequencies detected is the center frequency plus or minus one-half of
the bandwidth. The following illustration describes the tone detection frequency
parameters:

Bandw id th

Hz

Frequency

You can further modify the tone detector's default behavior by specifying the
following parameters (which reside in the ADI_TONEDETECT_PARMS structure) when
invoking adiStartToneDetector, or by modifying the system defaults:

Parameter Description

qualampl Qualification amplitude; the broadband qualification level in dBm required to further
qualify any energy as tone.

qualtime Qualification time; the time in milliseconds in which the tone must be present before
reporting ADIEVN_TONE_n_BEGIN. After qualifying at tone, this parameter is used to
qualify the absence of the tone to report ADIEVN_TONE_n_END.

The following illustration describes the tone detection qualification parameters:

S igna l
amp l i tude

qua l t ime
qua l t ime

T ime

qua lamp l

Note: Do not modify the reflevel and reserved parameters in
ADI_TONEDETECT_PARMS. These parameters apply to the DSP algorithms and are
provided for diagnostic purposes when working with NMS Technical Services.

Stopping tone detection

adiStopToneDetector immediately terminates a tone detector. The ADI service
generates ADIEVN_TONE_n_DETECT_DONE with the value set to
CTA_REASON_STOPPED.

The ADI service can also generate ADIEVN_TONE_n_DETECT_DONE with an error
code, ADIERR_xxx or CTAERR_xxx, if the function is incorrectly started.

Developing applications ADI Service Developer's Reference Manual

52 NMS Communications

Generating tones

NMS Communications boards are capable of generating single and dual frequency
tones.

Playing tones

adiStartTones enables the application to play a list of single or dual frequency
tones. Each individual tone has the following attributes, which are stored in the
ADI_TONE_PARMS structure:

Parameter Description

ontime A configurable active time period.

offtime A configurable inactive time period following the active time period.

iterations Number of times to repeat the tone.

The combined duration of ontime and offtime represents one complete cycle.

adiStartDTMF is a DTMF tone generator with programmable interdigit delays. The
function accepts a string of digits and an ADI_DTMF_PARMS structure. The
parameter structure allows you to specify interdigit pause duration for the comma
and period characters, which can be interspersed with the DTMFs in the digit string.

Terminating tone generation

adiStopTones immediately terminates active tone generation. Regardless of which
tone type is active, the ADI service generates ADIEVN_TONES_DONE with the value
set to CTA_REASON_STOPPED.

The number of iterations is specified in ADI_TONE_PARMS, which is passed to
adiStartTones. If the specified number of iterations is completed, the ADI service
generates ADIEVN_TONES_DONE with the value set to CTA_REASON_FINISHED.

If an error occurs in starting the function, the DONE event is sent with the value set
to ADIERR_xxx or CTAERR_xxx.

System restrictions

Because only one function can drive the output of the telephone line, the following
functions are mutually exclusive:

• Tone generation

• Voice playback

• Voice record when beep is enabled

ADI Service Developer's Reference Manual Developing applications

NMS Communications 53

Collecting digits

The ADI service provides both synchronous and asynchronous digit collection
functions. Call control must be in the connected state to activate the digit collection
functions and the application must leave the DTMF detector enabled. DTMF detection
parameters are loaded when the protocol is started.

In general, digit collection operates as follows:

• When a caller depresses a digit on the handset, the board sends
ADIEVN_DIGIT_BEGIN to the application, and the digit becomes available.

• When the caller releases the key, the board sends ADIEVN_DIGIT_END to the
application.

• Each event's value field contains an ASCII value indicating the key pressed or
released. The valid values are 0 through 9, * (asterisk), # (number sign), and
A through D.

This topic presents:

• Synchronous digit collection

• Asynchronous digit collection

• Modifying DTMF detection

• Terminating DTMF detection

• Improving DTMF using echo cancellation

Synchronous digit collection

The ADI service maintains an internal DTMF digit queue to store digits entered by the
remote party. If the application is not actively collecting digits using
adiCollectDigits, DTMFs entered by the remote party are appended to the queue,
as shown in the following illustration.

The digit is stored in the ADI service digit queue when ADIEVN_DIGIT_BEGIN is
received. If the ADI service digit queue is full when ADIEVN_DIGIT_BEGIN arrives,
the oldest digit is discarded and the latest digit is queued. The ADI service digit
queue can hold 64 digits.

Developing applications ADI Service Developer's Reference Manual

54 NMS Communications

The following illustration shows background digit collection:

ADI
serv iceAppl icat ion

T ime

ad iCol lectDigi ts

ADIEVN_DIGIT_BEGIN (8)

T ime

'7 '

'3 '

ADIEVN_DIGIT_END(8)

ADIEVN_DIGIT_BEGIN(3)

ADIEVN_DIGIT_END(3)

ADIEVN_DIGIT_BEGIN(7)

ADIEVN_DIGIT_END(7)

ADIEVN_COLLECTION_DONE

'8 '

'3 '' 8 '

User buf fer ADI service d ig i t
queue

' 8 '

' 3 '' 8 '

The ADI service provides four synchronous functions that access the internal ADI
service digit queue:

Function Description

adiGetDigit Retrieves a single digit from the ADI service internal digit queue, thus removing
the oldest digit from the queue. If the queue is empty, a zero (0) is returned;
otherwise, the ASCII value is returned.

adiInsertDigit Inserts a digit at the end of the ADI service internal digit queue.

adiPeekDigit Retrieves the oldest digit from the ADI service internal digit queue, without
removing the digit from the queue.

adiFlushDigitQueue Discards all digits stored in the internal digit queue.

None of these functions can be invoked if the application is actively collecting digits
with adiCollectDigits.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 55

Asynchronous digit collection

The ADI service enables applications to collect DTMF digit strings asynchronously into
their own buffers. adiCollectDigits initiates digit collection into a user-specified
buffer rather than into the ADI service digit queue. Digits are appended to the user-
specified buffer until a terminating event occurs.

The following illustration represents asynchronous digit collection:

ADI
serv iceApp l icat ion

T ime

ad iCo l lec tDigi ts

ADIEVN_DIG IT_BEGIN(8)

T ime

ADIEVN_DIGIT_END(8)

ADIEVN_DIGIT_BEGIN(3)

ADIEVN_DIGIT_END(3)

ADIEVN_DIGIT_BEGIN(7)

ADIEVN_DIGIT_END(7)
ADIEVN_COLLECTION_DONE

User buf fer ADI serv ice
d ig i t queue

‘8’

‘8’ ‘3’

‘8’ ‘3’ ‘7’

Because they perform read and write operations on the internal digit queue, an
application cannot call adiGetDigit and adiFlushDigitQueue while actively
collecting digits. The ADI service returns an error if an application attempts to modify
the internal digit queue while digit collection is active.

You can modify the collection function's default behavior by redefining the
parameters in ADI_COLLECT_PARMS when invoking adiCollectDigits.

Terminating asynchronous digit collection

The collection operation has programmable termination conditions. An application
can also prematurely terminate the function by invoking adiStopCollection. In all
cases, the ADI service sends ADIEVN_COLLECTION_DONE to the application, which
indicates that collection finished. The value field contains the termination reason.

The maxdigits argument in adiCollectDigits specifies the maximum number of
digits to collect. Only digits written to the user buffer are counted. For example,
digits discarded because they are not in the acceptable list are not counted. Digit
collection terminates when this maximum digit count is reached.

Developing applications ADI Service Developer's Reference Manual

56 NMS Communications

If digits are stored in the ADI service's internal digit queue when adiCollectDigits is
invoked, the ADI service processes the digits individually from the front of the ADI
service digit queue. Each digit processed is checked against a list of acceptable
digits, and a list of terminating digits, which are stored in the validDTMFs and
terminator fields in the ADI_COLLECT_PARMS structure. Invalid digits are discarded.
Terminating digits cause digit collection to terminate.

When digit collection terminates, ADIEVN_COLLECTION_DONE is delivered to the
application. For information on reasons, see adiCollectDigits.

Digit collection can also terminate when the interdigit timeout value in
ADI_COLLECT_PARMS is exceeded.

Modifying DTMF detection

You can modify the DTMF detector's default behavior when invoking
adiStartProtocol or adiStartDTMFDetector. The DTMF detector parameters are
stored in the ADI_DTMFDETECT_PARMS structure. The following illustration shows
the effect of these parameters:

onqua l amp l

o f fqua l amp l

S igna l
amp l i tude

onqua l t ime
o f fqua l t ime

T ime

Note: Do not modify onthreshold and offthreshold. These parameters apply to the
DSP algorithms and are provided for diagnostic purposes when working with NMS
Technical Services.

Terminating DTMF detection

adiStopDTMFDetector immediately terminates DTMF detection. The ADI service
generates ADIEVN_DTMFDETECT_DONE with the value set to
CTA_REASON_STOPPED.

The ADI service can also generate ADIEVN_DTMFDETECT_DONE with an error code,
ADIERR_xxx or CTAERR_xxx, if the function is incorrectly started.

Improving DTMF using echo cancellation

Echo cancellation improves the ability of the DTMF detector to recognize digits during
play, a capability referred to as DTMF cut-through performance.

Using echo cancellation with the DTMF detector allows the use of a more selective
DTMF detector, which improves resistance to talk-off (the false detection of digits in
a speaker's voice).

ADI Service Developer's Reference Manual Developing applications

NMS Communications 57

AG and CG boards have an alternate DSP file (dtmfe) used specifically with echo
cancellation. To load dtmfe:

Step Action

1 Locate the reference to dtmf.xxx in the DSP.C5x[x].Files[y] keyword (DSP.C5x[x].Files for CG
boards), where xxx is either .dsp, .m54, or .f54. There may be no file extension.

2 Change dtmf to dtmfe.

3 Save the changes and re-initialize the board.

Echo cancellers of moderate length and adaptation time typically provide
improvement of 10 to 15 dB in DTMF cut-through performance.

Controlling echo

NMS Communications echo cancellers can be used to implement echo control for the
following applications:

Application Implementation

PSTN terminal Improves DTMF detection (DTMF cut-through) or automatic speech recognition
performance by eliminating leakage of playback audio into the receive signal path. This
behavior typically applies to IVR or voice mail applications of NMS Communications
boards.

Network echo
control

Eliminates talker echo so that peer-to-peer human communications do not suffer the
annoying effects. This behavior typically applies to IP telephony gateway applications
on NMS Communications boards.

This topic presents:

• Echo cancellation examples

• Echo canceller components

• Specifying echo canceller parameters

• Configuring boards for echo cancellation

• Recommendations for controlling echo

Echo cancellation examples

DTMF cut-through example

In an IVR application, the user typically uses DTMF keys to make option selections.
Since the user calling into the IVR system does not always wait for the whole
message to be played, an echo canceller is needed to cancel the local and near-end
echo of the prompt played by the application. Canceling the echo enables the local
DTMF detector to recognize a received tone during the time the message is played.

The echo canceller improves the signal-to-noise ratio as seen by the DTMF detector
on the NMS Communications board. The useful signal is the received DTMF signal
and the noise is the echo of the message prompt played by the board.

Developing applications ADI Service Developer's Reference Manual

58 NMS Communications

Similar to the example of DTMF cut-through, the echo canceller also helps in
improving cleardown tone detection. The following illustration shows echo
cancellation for DTMF cut-through:

P lay

DTMF Echo cance l l e r

Echo pa th

Host-based ASR example

This application is similar to the DTMF cut-through example with the automatic
speech recognition (ASR) system replacing or augmenting the DTMF detector for
control of the IVR session. ASR algorithms require a high performance echo
canceller. A prompt is played out on the board. The user commands the application
by saying a keyword (for example, a number or a name) to make a selection. The
person's response is processed by the software that runs on the host or on the
board. A necessary condition for a correct recognition is an echo-free received signal.
The echo canceller on the local board must respond quickly to any changes and
totally cancel the echo without distorting the incoming signal.

The echo canceller provides settings to optimize performance for ASR applications.
The ASR application may need to defeat its endpointing until the echo canceller has
fully converged. Empirical tests have shown that the echo suppressor part of the
echo canceller (sometimes called the non-linear processor or NLP) must be disabled.
These controls can be used through ADI functions.

IP telephony gateway (network echo canceller) example

Another important application of echo cancellation can be found in IP telephony
gateways. The following illustration shows the two gateways:

Speech
decode r

Echo
cance l l e r

PSTN
in te r fa ce

Speech
encode r

PSTN

Loca l and
nea r -end

echo

IP
in te r fa ce

IP
ne twork

For a two-wire connection, the gateway echo canceller cancels the local echo
generated by the on-board hybrid and the near-end echo generated by the near-end
hybrid. The returned echo level for the echo canceller must be as low as possible
because the one way delay for this type of connection can be 100 ms or more.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 59

For a four-wire connection to the PSTN, the echo canceller cancels the near-end
echo, or in some cases, no echo at all. For a near-end echo, the requirements are
the same as in the previous case.

Without proper echo control in an IP telephony application, annoying echo can be
heard by both speakers in a duplex voice conversation. The longer the delay through
the IP network, the more unpleasant the effects of any residual or uncancelled echo.

Echo canceller components

The following illustration shows the structure of the echo canceller:

E
ch

o
 s

o
u

rc
e

P r ede lay
bu f fe r F IR f i l te r

Bypass
mux

NLP

Double ta l k
de tec tor

Prede lay Windowing F l ter l ength

Mode

Bypass Enab le
D i sab le

Ga in

R i n Ro u t

S i nS o u t

Adapta t i on
log i c

Adapt t ime

Adapt

Subt rac tor
+

-

Echo cancellers are four port devices, two ports facing the near end and two ports
facing the far end. The four ports are: Rin, Rout, Sin, and Sout.

R stands for receive if the port is situated in the receive path. S stands for send if the
port is situated in the send path. The subscripts in and out define the input and output
ports of the echo canceller on the corresponding path.

Developing applications ADI Service Developer's Reference Manual

60 NMS Communications

The main components of the echo canceller are:

Component Description

Predelay buffer Signals sent into the echo path enter a predelay buffer prior to being operated on
by the FIR filter. Depending on the board, the predelay can be set from 0 to a
maximum of 20 ms delay. This predelay is introduced to compensate for the pure
delay in the echo path.

Finite impulse
response (FIR)
filter

The echo canceller FIR filter tries to mimic the echo path. The coefficients or taps
of the FIR filter determined by the adaptation logic, determine the FIR filter
response. The FIR filter converges to mimic the echo channel when the coefficients
of this filter equal the impulse response of the echo path. The length of the FIR
filter determines how much of an echo is covered by the echo canceller.

The FIR filter and the adaptation logic can be referred to as an adaptive filter.

Subtractor The subtractor subtracts the output of the FIR filter from the signal in the send
path. If the adaptation performs well (for example, the echo path has been exactly
identified), Sin is equal to the adaptive filter output (echo estimate) and the
difference is zero. Because the adaptive filter can never match the echo path
exactly, the difference between Sin and the echo estimate is never zero. This
difference is called the error signal and is used by the adaptive filter to improve its
performance. The better the estimation of the echo path, the smaller the energy of
the error signal. The attenuation of the signal at the output of the subtractor in
relation to the Sin signal is denoted as echo returned loss enhancement (ERLE).

Adaptation logic The adaptation logic updates the FIR filter coefficients using the error signal. A
modified least mean square (LMS) algorithm is used to modify the coefficients in
an iterative fashion. The application can freeze or stop this adaptation, or reset the
value of the coefficients to restart convergence.

Double-talk
detector

The double-talk detector detects when both callers speak at the same time (IP
telephony application) or when DTMF is input to the system at the same time as
audio playback (IVR). In the presence of double-talk, this detector sends a
command to the adaptation logic to stop or slow the adaptation of the coefficients.
Detecting the double talk situation is critical for correct operation of the echo
canceller. If adaptation continues during double-talk, the adaptive filter modifies
its coefficients based on the information contained in the Sin signal. In this case,
this is the sum of the echo of Rout signal and the signal produced by the near-end
talker. The adaptation would therefore be erroneous.

Non-linear
processor (echo
suppressor)

The non-linear processor is a device with a defined suppression threshold level in
which signals having a level detected:

• Below the threshold are suppressed.

• Above the threshold are passed (although the signal can be distorted).

The non-linear processor functions only during single talk situations. The non-
linear processor attenuates the residual echo that could not be cancelled by the
adaptive filter.

Input gain For all boards except QX boards, the application can provide input signal gain or
loss.

Bypass The application can bypass the echo canceller and restart at any time. Use Bypass
when voiceband modems or fax machines terminate both ends of the connection in
an IP telephony application.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 61

Specifying echo canceller parameters

If you use echo cancellation in your application, you may need to modify the
callctl.mediamask in ADI_START_PARMS (or the mediamask in NCC_ADI_START)
before you start a telephony protocol. The mediamask controls which functions are
running or reserved when the call enters the connected state. Reserved indicates
that the DSP MIPS have been committed to the operation before the operation
starts. The application must reserve DSP resources in advance by using mediamask
for DTMF detection, silence detection, cleardown detection, and echo cancellation.

The ADI service initiates echo cancellation when a telephony protocol is started. The
appropriate parameters must be set before calling adiStartProtocol or
nccStartProtocol. For information on the echo cancellation parameters, refer to
ADI_START_PARMS on page 264.

The echo canceller parameters can be modified after the echo canceller is started by
calling adiModifyEchoCanceller.

For all board types, the predelay parameter time shifts the correlation buffer. This
enables shorter filter lengths to be shifted in time, allowing more echo energy to be
captured, as shown in the following illustration:

Por t inpu t da ta

Cor re la ted por t ou tpu t da ta

p rede lay
f i l te r l ength

T ime
The default mode (mode = 1) chooses the best possible echo cancellation for the
available DSP power on the board. Choosing echo cancellation parameters that
consume more DSP power than is available can result in errors when all ports are
active. To determine whether your boards support echo cancellation, refer to Default
filter length and adaptation time values on page 62.

Configuring boards for echo cancellation

Echo cancellation requires board-specific settings.

Note: The PacketMedia HMP process does not support echo cancellation.

Configuring AG boards for echo cancellation

For AG boards, configure the system for echo cancellation by editing the board
keyword file. Add echo.m54, echo_v3.m54, or echo_v4.m54, depending on the
features you require, to the list of files in DSP.C5x[x].Files[y].

For information on DSP file features, see DSP file summary on page 269.

To enable echo cancellation with the board's default settings, set the parameter
ADI.START.echocancel.mode or NCC.X.ADI_START.echocancel.mode to 1. The AG
4000, AG 4000C, AG 4040, and AG 4040C boards do not have default settings. See
Default filter length and adaptation time values on page 62.

Developing applications ADI Service Developer's Reference Manual

62 NMS Communications

For AG boards, as the predelay value is in increments, the correlated data buffer is
shifted later in time. The predelay can be adjusted to center the correlated data on
most of the echo energy. The valid range is from 0 to 20 milliseconds.

Refer to the board's installation and developer's manual for more information.

Configuring QX boards for echo cancellation

For QX boards using analog ports, predelay must be set to 0 milliseconds to capture
local and near-end echo. QX boards reduce the level of the echo less than -60 dBm.
Therefore, depending on the level of the transmitted signal and impedance
adaptation, the improvement of the QX boards can be greater than -30 dB.

Refer to the QX 2000 Installation and Developer's Manual for more information.

Configuring CG boards for echo cancellation

The resource definition string and the list of data processing modules (DPM) loaded
on the DSPs on the CG boards have a default setup that includes echo.

To configure a CG board for echo cancellation, edit the board keyword file. Add
echo.f54, echo_v3.f54, or echo_v4.f54, depending on the features you require, to
the list of files in DSP.C5x[x].Files. For information on DSP file features, see DSP file
summary on page 269.

CG 6565/C boards and CG 6060/C boards use C5441 DSPs and not C5420 DSPs for
applications. The DSP files have .f41 extensions instead of .f54 extensions. For
information about configuring hardware echo cancellation on CG 6565/C boards and
CG 6060/C boards, refer to the board installation and developer's manual.

The default echo, Echo.In20_apt25 specified in the resource definition string, has a
20 ms filter length and an adapt rate of 25 percent of the maximum adaptation rate.
If an echo different from Echo.In20_apt25 is needed, change the resource definition
string. Replace the current echo in the resource definition string with the new echo.

Note: Changing a function in the resource definition string can decrease the number
of ports that run on the board. Each DSP function has its own resource requirement.
If the new function has higher resource requirements than the function it is
replacing, the number of ports the board can run can be less.

Refer to the board installation and developer's manual for more information.

Default filter length and adaptation time values

To enable echo cancellation with default settings, set ADI.START.echocancel.mode or
NCC.X.ADI_START.echocancel.mode to 1.

The following table shows the default filter length and adaptation time values for
each board type:

Board type Filter length Adaptation time

CG 20 ms 200 (25 percent of maximum adaptation rate)

AG 2000, AG 2000C 4 ms 100 ms

AG 4000, AG 4000C,
AG 4040, AG 4040C

0 ms 0 ms

QX 2000 20 ms Not used.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 63

To enable echo cancellation with specific parameters:

• Set ADI.START.echocancel.mode or NCC.X.ADI_START.echocancel.mode to 2.

• Set ADI.START.echocancel.filterlength or
NCC.X.ADI_START.echocancel.filterlength to values of your choosing.

• Set ADI.START.echocancel.adapttime or
NCC.X.ADI_START.echocancel.adapttime to values of your choosing.

Features

The following table provides general information about the echo canceller features:

Features AG 2000, AG 2000C,
AG 4000, AG 4000C,
AG 4040, AG 4040C

CG QX 2000

Filter length 2,4,6,8,10,16,20,24,32,
40,48,64 ms

2,4,6,8,10,16,20,24,
32,40,48,64 ms

1,2...20 ms

Echo pre-delay 0,1,2...20 ms 0,1,2...20 ms 0,1,2...20
ms

Double talk detector Yes Yes Yes

Input gain Yes Yes No

Echo suppressor
enable/disable

Yes Yes Yes

Adaptation
enable/disable

Yes Yes Yes

Windowing enable No No Yes

Bypass Yes Yes Yes

Comfort noise
generation

Yes Yes No

Tone disabling Yes Yes No

Developing applications ADI Service Developer's Reference Manual

64 NMS Communications

Performance parameters

The following table provides general information about the echo canceller
performance parameters:

Performance AG 2000, AG 2000C,
AG 4000, AG 4000C,
AG 4040, AG 4040C

CG QX
2000

Minimum echo return loss (ERLmin).
For all values of ERL greater than ERLmin, the echo
canceller delivers the expected performance. If
the real ERL is less than the ERLmin, the echo
canceller does not function correctly.

6 dB 6 dB 6 dB

Maximum echo return loss enhancement (ERLE). 33 dB 33 dB 33 dB

Non-linear processor loss. An additional loss
introduced in the reception path, only when pure
echo is received (no near-end speech).

36 dB 36 dB 12 dB,
24 dB

Typical convergence time on speech. Convergence
time depends on the transmitted signal, double
talk events, and adaptation time parameter for AG
2000, AG 2000C, AG 4000, AG 4000C, AG 4040,
AG 4040C, and CG boards and on echo return loss
of the network. The convergence time can be
greater than the values presented in this table.

Less than 1 second.
Obtained using
echo_v3.x54. For
echo.x54, the typical
convergence time on
speech is < 4 seconds.

Less than 1
second.
Obtained using
echo_v3.x54.

Less
than 1
second.

Recommendations for controlling echo

Transmission level planning and echo

For IP telephony applications, proper audio levels and echo are tightly coupled. It is
desirable to provide adequate listening levels; but increasing system gains anywhere
in the four-wire trunk portion of a connection can make proper echo control difficult
to attain under a wide range of telephony equipment and connection scenarios. In
general, have no more than a zero dB of gain in each direction of the complete four-
wire part of a connection. If it is necessary to increase the gain prior to a low-bit rate
codec for example, there should be a commensurate loss at the output of the
decoder.

Using Microsoft NetMeeting or other IP telephony clients

In IP telephony applications, the connection can be asymmetric. For example, you
can talk on a telephone through an IP telephony gateway connected through an IP
link to someone using Microsoft NetMeeting client on the remote end. At this
NetMeeting client, the microphone and loudspeakers should not be used; a
microphone headset is preferred. With a microphone and speaker combination at the
NetMeeting client, the person on the telephone end of the connection will hear
considerable echo due to the acoustic, loudspeaker-to-microphone acoustic coupling.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 65

Delay and echo

In IP telephony applications, a user's tolerance to echo in a telephone conversation is
reduced by the more end-to-end delay there is in the connection. IP packet delay is
caused by routers and WAN facilities. High packet inter-arrival packet jitter usually
must be absorbed by jitter buffers in the media gateway. The more jitter there is in
the IP network, the longer the jitter buffer must be so the user does not experience
poor audio quality due to packet loss.

Designers of IP telephony applications must reduce the number of routers and the
amount of packet jitter so that any residual, uncanceled echo does not unnecessarily
degrade the quality of the telephone connection.

Non-voice terminals (FAX and modem pass-through)

For IP telephony applications, it is desirable to handle non-voice communication
devices such as modems. Modem transport can be handled by setting up a full
duplex G.711 MSPP channel. Disable the echo canceller since it impairs both FDM
(frequency division multiplexing) and EC (echo cancelling) modem transmission.

For T.30 FAX, T.38 can be used as a packet transport, or the MSPP channel can be
set to G.711. In either case, disable the echo canceller.

Automatic speech recognition

Speech control of an IVR application can present special echo control challenges.
Consider the following recommendations to improve the ability of the speaker to cut
through a voice prompt to control the application:

• The echo suppressor should be disabled.

• The echo canceller with the fastest adaptation time should be used.

Depending on which board you use, you may be able to select an echo canceller that
has faster convergence (reduces echoes more quickly). For example, the CG 6000C
echo canceller can be configured for a 100 percent adaptation rate (fast). With a 20
ms echo coverage, this canceller requires 5.40 MIPS.

Minimization of two-wire switching

Hybrids in telephony circuits convert two-wire transmission to and from four-wire
transmission. Most modern circuit switched telephony switching is done at four-wire
points in a connection. Older two-wire switching still exists. Each interface from a
two-wire to a four-wire connection can be a source of echoes. Therefore, wherever
possible, minimize the use of two-wire switching.

Developing applications ADI Service Developer's Reference Manual

66 NMS Communications

Detecting energy

The ADI service is capable of running an energy detector that examines the in-band
signal and reports energy and silence transitions.

Note: Do not use the energy detector if you are using voice activity detection.

This topic presents:

• Starting energy detection

• Stopping energy detection

Starting energy detection

adiStartEnergyDetector takes the following qualification time parameters:

Parameter Description

energyqual Energy qualification time; the time, in milliseconds, that energy must be present to report
an energy event.

silencequal Silence qualification time; the time, in milliseconds, that energy must be absent to report
a silence event.

You can modify the energy detector's default behavior by specifying the following
parameters (stored in ADI_ENERGY_PARMS) when invoking
adiStartEnergyDetector:

Parameter Description

thresholdampl Threshold amplitude; the noise level, in dBm, below which is considered silence. Noise
above this level is further qualified as energy.

deglitch Deglitch time; the minimum time, in milliseconds, before a transition between energy
and silence is recognized.

autostop Automatic stop; controls whether the energy detector continues running after the first
event. By default, automatic stop is enabled.

The following illustration shows the energy detection parameters:

S igna l
amp l i tude

energyqua l
s i l encequa l

T ime

th resho ldampl

The energy detector generates the following events:

• ADIEVN_SILENCE_DETECTED

• ADIEVN_ENERGY_DETECTED

• ADIEVN_ENERGY_DETECT_DONE

ADI Service Developer's Reference Manual Developing applications

NMS Communications 67

Stopping energy detection

adiStopEnergyDetector immediately terminates energy and silence detection. The
ADI service generates ADIEVN_ENERGYDETECT_DONE with the value set to
CTA_REASON_STOPPED, which means that the operation was stopped by application
request.

The ADI service also generates ADIEVN_ENERGYDETECT_DONE, and ADIERR_xxx,
CTAERR_xxx, or CTA_REASON_FINISHED. When set to autostop (one-shot), the
value is set to CTA_REASON_FINISHED and the size field contains either
ADIEVN_ENERGY_DETECTED or ADIEVN_SILENCE_DETECTED.

Detecting voice activity

NMS Communications AG and CG boards, as well as the PacketMedia HMP process,
provide a voice activity detector that suppresses user voice silence during dialogues
with a voice recognition system. By preventing silent data from being sent to the
application for ASR processing, host processing resources can be conserved.

The voice activity detector provides the following features:

Feature Description

Voice activity
detection

Detects audio energy and triggers data transmission only when speech is present.

Pre-speech
buffering

When the voice activity detector detects speech, the board runtime immediately
sends the previously filled buffer to the host, reducing the problem of clipped
speech.

Voice event
signaling

Sends SPEECH_BEGIN and SPEECH_END messages, and noise and signal energy to
the host application.

Recorded
stream control

Pauses and resumes sending recorded data to the runtime, while keeping the voice
activity detector algorithm active on the DSP.

The voice activity detector enables host application control of voice activity detection
features, including:

• Start (with new or default parameters) and stop voice activity detection.

• Update voice activity detection parameters on the fly.

• Enable and disable voice activity detection signaling.

• Pause and resume the recorded stream from the board to the host.

The voice activity detector has a fixed delta threshold that allows it to adapt to the
background noise level. When the voice level is higher than the background noise
level by a specified delta, the detector sends a SPEECH_BEGIN event to the
application. When the voice level falls below the background noise level, the detector
sends a SPEECH_END event.

Use the voice activity detector with any ASR application that is recording with one of
the following encoding formats:

• ADI_ENCODE_MULAW

• ADI_ENCODE_ALAW

• ADI_ENCODE_PCM8M16

Voice activity detection does not interfere with other existing capabilities such as
DTMF detection and echo cancellation.

Developing applications ADI Service Developer's Reference Manual

68 NMS Communications

Configuring boards for voice detection

To configure the system for voice activity detection, edit the board keyword file as
follows:

For these boards... Add this DSP file... To this keyword...

AG rvoice_vad.m54 DSP.C5x[x].Files[y]

CG rvoice_vad.f54 DSP.C5x[x].Files

For example:
DSP.C5x[1..31].Files = dtmf rvoice_vad

To configure the PacketMedia HMP process for voice activity detection, set the value
of the EnableVAD keyword to Yes. For example:
EnableVAD = Yes

Configure dynamic buffer allocation on the board to prevent host underruns.

You can also configure CG boards for voice activity detection by defining a DSP
resource pool and specifying rvoice_vad as the resource definition:
Resource[0].Definitions = (dtmf.det_all & rvoice_vad.rec_alaw & rvoice_vad.rec.play_alaw)

Note: QX boards do not support voice activity detection.

Using voice activity detection

Voice activity detection and voice activity detection messaging are disabled by
default. To enable voice activity detection, call adiCommandRecord on an actively
running ADI recording function (such as adiRecordAsync).
ADIEVN_RECORD_STARTED must be received before calling adiCommandRecord.

You can perform the following functions using adiCommandRecord:

• Enable and disable voice activity detection

• Configure voice activity detection with application parameters

• Enable and disable voice activity detection messaging

• Pause and resume voice streaming from the board to the host

ADI Service Developer's Reference Manual Developing applications

NMS Communications 69

Sending and receiving FSK data

The ADI service is capable of sending and receiving frequency shift key (FSK) data.
The transmit function is an implementation of the modem portion of Bellcore
advisory TA-NWT-000030. The basic modulation is continuous-phase binary FSK at
1200 baud between 1200 Hz (mark) and 2200 Hz (space). The only supported baud
rate is 1200.

This topic presents:

• Sending FSK data

• Terminating FSK data transmission

• Receiving FSK data

• Terminating FSK data reception

Sending FSK data

To send FSK data, call adiStartSendingFSK.

While it is running, the FSK transmitter is in one of the following states:

• Idle

• Sending channel seizure

• Sending mark

• Sending data

An FSK transmission consists of a sequence of states used to transmit a data packet,
and it is bracketed by silence or the idle state.

An FSK transmission with analog display services interface (ADSI) feature phones
consists of the following sequence of data: sending mark, sending data. The sending
channel seizure state never occurs in ADSI feature phones. Therefore, noseizureflag
in the ADI_FSKSEND_PARMS structure must be set to 1.

Parameters for sending FSK data

adiStartSendingFSK requires the following parameters defined in the
ADI_FSKSEND_PARMS structure:

Field name Description Default
value

Valid
values

noseizureflag 0: Allows send channel seizure state and sending mark
state.
1: Allows only sending mark state.

1 0, 1

level Transmit output level. -14 dBm -

seizetime Length of channel seizure in milliseconds; ignored if
noseizureflag is set to 1.

1000 -

marktime Length of initial mark signal in milliseconds. 500 -

baudrate Transmission baud rate. 1200 1200

Developing applications ADI Service Developer's Reference Manual

70 NMS Communications

Terminating FSK data transmission

Use adiStopSendingFSK to stop the send function. The event value field contains
CTA_REASON_STOPPED. The number of bytes sent before the function was stopped
cannot be determined.

Receiving FSK data

Call adiStartReceivingFSK to enable an application to receive FSK data. While it is
running, the FSK receiver is in one of the following four states:

• Idle

• Receiving channel seizure

• Receiving mark

• Receiving data

A complete packet of FSK data consists of either of the following sequences:

• Receive channel seizure, receive mark, receive data

• Receive mark, receive data

During the receive process, errors can occur that cause the function to terminate
prematurely. If errors occur, ADIEVN_FSK_RECEIVE_DONE is sent with one of the
following reasons:

Reason Description

ADI_REASON_DROP_IN_DATA Stopped because of drop in data. The noseizureflag signal dropped to
silence during data, not during stop mark period.

ADI_REASON_BAD_STOP_BIT Stopped because of data framing error. The stop bit at the end of data
was a space, not a mark.

Parameters for receiving FSK data

adiStartReceivingFSK requires the following parameters defined in the
ADI_FSKRECEIVE_PARMS structure:

Field Description Default
value

minlevel Required minimum receive level. -35 dBm

minmark Required minimum initial mark and seizure time, in milliseconds. 10

mindrop Minimum dropout to silence before a packet is considered terminated, in
milliseconds.

5

baudrate Transmission baud rate. 1200

Terminating FSK data reception

Use adiStopReceivingFSK to stop the receive function. The event value field
contains CTA_REASON_STOPPED. The size of the partial buffer received is stored in
the size field of the event structure.

ADI Service Developer's Reference Manual Developing applications

NMS Communications 71

Performing low-level call control

The ADI service includes functions that enable applications to perform call control
from the host. These functions are typically used with the NOCC (no call control)
protocol. Their use is restricted when running other CAS protocols.

For example, all channel associated signaling (CAS) protocols reserve out-of-band
signaling, so ADI service functions that perform out-of-band signaling may not be
available. For information about CAS protocols, refer to the NMS CAS for Natural Call
Control Developer's Manual.

The following low-level control functions are available in the ADI service:

If you want to... Then use...

Assert an out-of-band signaling pattern adiAssertSignal

Pulse an out-of-band signaling pattern for a duration adiStartPulse

Start detection of out-of-band signaling bits adiStartSignalDetector

Stop detection of out-of-band signaling bits adiStopSignalDetector

Query the current inbound out-of-band signaling bits adiQuerySignalState

Start DTMF/pulse dialing of digits adiStartDial

Stop DTMF/pulse dialing of digits adiStopDial

The out-of-band signaling functions relate to either the physical out-of-band signal
bits of digital protocols or the control of analog interface boards. In both cases, four
signaling bits are addressed: A, B, C, and D, often written as ABCD, and defined by a
bit mask (0x8, 0x4, 0x2, and 0x1, respectively). When using these functions, refer to
the appropriate manual for your telephone line interface board.

adiStartDial and adiStopDial enable you to perform dialing operations when you
are not running formal call control.

Developing applications ADI Service Developer's Reference Manual

72 NMS Communications

Using on-board timers

The ADI service supports one on-board timer per context on a board. This on-board
timer has 10 ms resolution. The timer generates periodic events. You specify both
the period and number of events when invoking adiStartTimer.

Starting the timer

To start the timer, call adiStartTimer and pass a context, a timeout value, and an
event count value. A DONE event is generated when the timer expires.

If the count value is greater than one, a tick event is generated for each expiration
of the timeout with a DONE event for the final expiration.

The timer can be reset or restarted with an additional call to adiStartTimer. When
restarted, previous timer definitions are discarded and the timer begins with the new
parameters.

Note: Unlike most Natural Access asynchronous functions, the timer is not
automatically stopped when a call is released.

Start timer events

The following table lists the start timer events:

Event Description

ADIEVN_TIMER_DONE Once the timer has completed (expired), the ADI service generates a DONE
event with the value field set to CTA_REASON_FINISHED. A DONE event is
received with an error in the value field only if the board has an error. If the
timer is stopped by calling adiStopTimer, the value field is
CTA_REASON_STOPPED.

ADIEVN_TIMER_TICK If count is greater than 1, the ADI service generates a tick event for the first
count-1 expirations.

Stopping the timer

adiStopTimer stops the timer started with adiStartTimer. Once the timer has
stopped, a DONE event is generated.

Stop timer event

The following table lists the stop timer event:

Event Description

ADIEVN_TIMER_DONE When the timer is stopped, a DONE event is generated with the value field set
to CTA_REASON_STOPPED.

NMS Communications 73

44 Function summary
Telephony protocol functions

After setting up the ADI service, you must start a telephony protocol on each context
to perform telephony activities. The NCC service provides a null protocol, NOCC, for
applications that do not require call control. Refer to the NMS CAS for Natural Call
Control Developer's Manual for a list of telephony protocols and parameters and for
information about controlling calls under specific trunk control protocols (TCPs).

Record and play functions

The ADI service provides functions for recording and playing speech data.

Initiating record and play operations

Choose a set of functions to initiate record and play operations as appropriate to
your application's data transfer method, according to the following table:

Operation Memory transaction Asynchronous Callback

Play adiPlayFromMemory adiPlayAsync adiStartPlaying

Record adiRecordToMemory adiRecordAsync adiStartRecording

Terminating record and play operations

The ADI service provides the following functions to stop record and play regardless of
the data transfer method:

Function Synchronous/
Asynchronous

Description

adiStopPlaying Asynchronous Terminates playing.

adiStopRecording Asynchronous Terminates recording.

Using buffer management functions

For the asynchronous data transfer methods, a buffer is submitted using one of the
following functions:

Function Synchronous/
Asynchronous

Description

adiSubmitPlayBuffer Asynchronous Supplies a buffer to an asynchronous play operation.

adiSubmitRecordBuffer Asynchronous Supplies a buffer for an asynchronous record operation.

Function summary ADI Service Developer's Reference Manual

74 NMS Communications

Using status and modification functions

The following functions provide status information or modify an active record or play
operation:

Function Synchronous/
Asynchronous

Description

adiModifyPlayGain Synchronous Changes the gain applied to the speech while playing.

adiModifyPlaySpeed Synchronous Changes the play speed while playing.

adiGetPlayStatus Synchronous Retrieves play (or last play) status.

adiGetRecordStatus Synchronous Retrieves record (or last record) status.

adiGetEncodingInfo Synchronous Returns frame size, data rate, and maximum buffer size for a
given encoding format.

adiCommandRecord Asynchronous Sends a data array containing raw commands to an actively
running recording function. Use this function to enable voice
activity detection.

Call progress functions

Call progress analysis primarily allows the application to control and monitor the
placement of outbound calls when not using call control (for example, when using
the NOCC protocol). Call progress analysis can also be used at any time after a call is
connected. For example, when receiving an inbound call, an application can start up
a call progress analysis operation to detect modem tones, fax terminal tones, or
voice.

The following ADI functions start and stop call progress analysis:

Function Synchronous/
Asynchronous

Description

adiStartCallProgress Asynchronous Starts call progress analysis.

adiStopCallProgress Asynchronous Stops call progress analysis.

Tone detection functions

The following functions enable and disable detectors of precise tones, raw energy,
and silence:

Function Synchronous/
Asynchronous

Description

adiStartToneDetector Asynchronous Starts a precise tone detector.

adiStopToneDetector Asynchronous Stops a precise tone detector.

adiStartEnergyDetector Asynchronous Starts the energy detector (energy versus silence).

adiStopEnergyDetector Asynchronous Stops the energy detector (energy versus silence).

ADI Service Developer's Reference Manual Function summary

NMS Communications 75

Tone generation functions

NMS boards generate single and dual frequency tones. The following ADI functions
control tone generation:

Function Synchronous/
Asynchronous

Description

adiStartTones Asynchronous Plays a sequence of user-defined tones.

adiStartDTMF Asynchronous Starts playing a sequence of DTMF tones; MF tones can also be
generated.

adiStopTones Asynchronous Terminates playing tones.

Digit collection functions

The ADI service provides the following synchronous and asynchronous digit collection
functions:

Function Synchronous/
Asynchronous

Description

adiGetDigit Synchronous Retrieves a single digit from the internal digit collection queue.

adiInsertDigit Synchronous Inserts a digit at the end of the ADI service internal digit
queue.

adiPeekDigit Synchronous Reads the first digit from the internal digit collection queue
without removing it.

adiFlushDigitQueue Synchronous Flushes the internal digit collection queue.

adiCollectDigits Asynchronous Starts asynchronous digit collection.

adiStopCollection Asynchronous Terminates digit collection.

Echo cancellation functions

Echo cancellation improves DTMF/tone detection and speech recognition performance
during playing by canceling any leakage of the playback audio from the receive
signal path. It also improves peer-to-peer human communications in an IP telephony
gateway application by eliminating talker echo.

Echo cancellation is configured as part of starting a protocol with adiStartProtocol.
The echo canceller automatically starts when a call enters the conversation state.

The following functions modify echo cancellation parameters:

Function Synchronous/
Asynchronous

Description

adiCommandEchoCanceller Asynchronous Sends commands to the echo canceller tone disabler.

adiModifyEchoCanceller Asynchronous Modifies the echo canceller parameters after echo
cancellation is started.

Function summary ADI Service Developer's Reference Manual

76 NMS Communications

DTMF and MF detection functions

The ADI service provides functions for enabling and disabling DTMF and MF
detection. By default, DTMF detection is enabled when a call is established.

The following functions enable and disable DTMF and MF tone detection:

Function Synchronous/
Asynchronous

Description

adiStartDTMFDetector Asynchronous Starts DTMF detection (default is on).

adiStopDTMFDetector Asynchronous Stops DTMF detection.

adiStartMFDetector Asynchronous Starts the MF tone detector.

adiStopMFDetector Asynchronous Stops the MF tone detector.

Frequency shift key data functions

NMS boards are capable of sending and receiving frequency shift key (FSK) data. The
transmit function is an implementation of the modem portion of Bellcore advisory
TA-NWT-000030. The basic modulation is continuous-phase binary FSK at 1200 baud
between 1200 Hz (mark) and 2200 Hz (space). The only supported baud rate is
1200. Alternatively, the implementation is based on ITU V.23 FSK at 1200 baud
between 1300 Hz (mark) and 2100 Hz (space).

The following functions are used to send or receive frequency shift key data:

Function Synchronous/
Asynchronous

Description

adiStartSendingFSK Asynchronous Initiates sending frequency shift key data.

adiStopSendingFSK Asynchronous Stops the sending function.

adiStartReceivingFSK Asynchronous Receives frequency shift key data.

adiStopReceivingFSK Asynchronous Stops the receive function.

FSK modems are the low-level building blocks for analog display services interface
(ADSI). The ADI service does not provide an ADSI programming interface, but you
can use the FSK functions to implement ADSI applications.

ADI Service Developer's Reference Manual Function summary

NMS Communications 77

Low-level call control functions

The following functions provide low-level access to the line interface. This access is
typically needed only when using the NOCC (no call control) protocol. These
functions are used when the application is directly controlling the line interface or
when a CAS protocol is not needed. Use these functions carefully, especially if you
are running a telephony protocol.

The following ADI functions provide low-level call control:

Function Synchronous/
Asynchronous

Description

adiAssertSignal Synchronous Asserts an out-of-band signaling pattern. adiAssertSignal
returns before the pattern is actually asserted.

adiStartPulse Asynchronous Pulses an out-of-band signaling pattern for a duration.

adiStartSignalDetector Asynchronous Starts detection of out-of-band signaling bits.

adiStopSignalDetector Asynchronous Stops detection of out-of-band signaling bits.

adiQuerySignalState Asynchronous Queries the current inbound out-of-band signaling bits.

adiStartDial Asynchronous Starts DTMF/MF/pulse dialing of digits.

adiStopDial Asynchronous Stops DTMF/MF/pulse dialing of digits.

On-board timer functions

The ADI service supports one application timer per port. This on-board timer has 10
ms resolution and can be used when the application is controlling the protocol from
application space. The following timer functions are provided by the ADI service:

Function Synchronous/
Asynchronous

Description

adiStartTimer Asynchronous Starts an on-board timer.

adiStopTimer Asynchronous Stops an on-board timer.

Function summary ADI Service Developer's Reference Manual

78 NMS Communications

Configuration information functions

The following functions retrieve information about a system configuration or specific
board. They also set the time or native play and record parameters:

Function Synchronous/
Asynchronous

Description

adiGetBoardInfo Synchronous Retrieves information about the board.

adiGetBoardSlots
adiGetBoardSlots32

Synchronous Retrieves the board's MVIP configuration.

adiGetContextInfo Synchronous Retrieves the context status and configuration.

adiGetEEPromData Synchronous Retrieves OEM data for a given board.

adiGetTimeStamp Synchronous Converts an event timestamp to a count of the seconds
elapsed since January 1, 1970.

adiSetBoardClock Synchronous Sets the time on an AG board, CG board, or PacketMedia HMP
process.

adiSetNativeInfo Synchronous Sets parameters that enable applications to play and record
media to and from RTP streams. In addition, this function
enables applications to play media recorded from an RTP
stream to a PSTN port and vise versa.

Board functions communicate only with the board's driver and not directly with the
board. When opening the ADI service to use these functions, you do not specify an
MVIP address. The board_number parameter in the mvipaddr structure can be set to
ADI_AG_DRIVER_ONLY.

NMS Communications 79

55 Function reference
Using the function reference

This section provides an alphabetical reference to the ADI service functions. A
prototype of each function is shown with the function description, details of all
arguments, and return values. Function information typically includes:

Supported
board types

Each function supports one or more of the following board types:

• QX boards

• AG boards

• CG boards

• PacketMedia HMP process

Prototype The prototype is followed by a list of the function arguments. NMS Communications
data types include:

• WORD (16-bit unsigned)

• DWORD (32-bit unsigned)

• INT16 (16-bit signed)

• INT32 (32-bit signed)

• BYTE (8-bit unsigned)

If a function argument is a data structure, the complete data structure is defined.

Return values The return value for a function is either SUCCESS or an error code. For asynchronous
functions, a return value of SUCCESS indicates the function was initiated; subsequent
events indicate the status of the operation.

Refer to Alphabetical error summary on page 237 for a list of all errors returned by
the ADI service functions.

Events If events are listed, the function is asynchronous and is complete when the DONE
event is returned. If no events are listed, the function is synchronous.

Additional information such as reason codes and return values is provided in the value
field of the event.

Refer to Alphabetical event summary on page 243 for details of all ADI service events.

DSP file Lists the DSP file that is required for this function. Refer to DSP file summary on page
269 for a list of DSP files.

Example Example functions that start with Demo are excerpts taken from the demonstration
code, which is shipped with the product.

Example functions that start with my are excerpts taken from sample application
programs.
The notation /* ... */ indicates additional code, which is not shown.

Function reference ADI Service Developer's Reference Manual

80 NMS Communications

adiAssertSignal

Asserts an out-of-band signaling pattern to the line.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiAssertSignal (CTAHD ctahd, unsigned pattern)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

pattern Bit mask to assert.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_AVAIL Specified context's protocol does not allow an out-of-band signaling
pattern.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function is not valid in the current port state.

CTAERR_OUTPUT_ACTIVE Specified port is actively dialing.

CTAERR_SVR_COMM Server communication error.

Details

adiAssertSignal asserts the specified out-of-band signaling pattern, which is either
the physical out-of-band signal bits of digital lines or relates to the control of analog
interface boards. In both cases, four signaling bits are addressed: A, B, C, and D,
often written as ABCD, and defined by a bit mask (0x8, 0x4, 0x2, and 0x1,
respectively). The following constants are in adidef.h and can be combined with the
OR operator to assert any group of bits: ADI_A_BIT, ADI_B_BIT, ADI_C_BIT, and
ADI_D_BIT.

This function cannot be used unless the current protocol specifically allows it.
CTAERR_FUNCTION_NOT_AVAIL is returned if the application invokes
adiAssertSignal when disallowed by the protocol.

When using adiAssertSignal and adiStartPulse on AG 4000, AG 4000C, AG 4040,
AG 4040C, or CG boards configured for D4 framing, ensure that the C bit and the D
bit are set the same as the A bit and the B bit. Otherwise, the received A bit and B
bit at the remote end remains in an indeterminate state.

For example, to set the A bit high and the B bit low, call adiAssertSignal as follows:
adiAssertSignal (ctahd, ADI_A_BIT | ADI_C_BIT);

ADI Service Developer's Reference Manual Function reference

NMS Communications 81

When using this function with a system that includes an analog interface board, refer
to the hardware installation manual for the analog interface board for specific
information on how the A and B bits affect the telephone line.

For more information, refer to Performing low-level call control on page 71.

See also

adiQuerySignalState, adiStartDial

Example
/*
* Not using standard call control; managing actual line interface directly.
*/

#define MY_ONHOOK 0x00
#define MY_OFFHOOK (ADI_A_BIT | ADI_B_BIT)

void myPickUp(CTAHD ctahd)
{
 adiAssertSignal(ctahd, MY_OFFHOOK);
}

void myHangUp(CTAHD ctahd)
{
 adiAssertSignal(ctahd, MY_ONHOOK);
}

Function reference ADI Service Developer's Reference Manual

82 NMS Communications

adiCollectDigits

Starts collecting DTMF digits.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiCollectDigits (CTAHD ctahd, char *buffer, unsigned maxdigits,
ADI_COLLECT_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

buffer Pointer to the buffer that receives the collected digits. Because the returned string is
NULL-terminated, the buffer must be sized to at least maxdigits +1 bytes.

maxdigits Maximum number of digits to collect.

parms Pointer to a digit collection parameter structure as shown (NULL designates default
values for parameters):

typedef struct
{
 DWORD size; /* size of this structure */
 DWORD firsttimeout; /* timeout waiting for the first digit*/
 /* use 0 to wait forever. */
 DWORD intertimeout; /* timeout waiting for the next digit */
 /* use 0 to wait forever. */
 DWORD waitendtone; /* if non-zero, collection does not */
 /* end until the end of the final dtmf*/
 DWORD validDTMFs; /* mask of acceptable digits; use 0 */
 /* or ADI_DIGIT_ANY to accept all. */
 DWORD terminators; /* mask of terminating digits; use 0 */
 /* to indicate no terminators. */
} ADI_COLLECT_PARMS;

Refer to ADI_COLLECT_PARMS on page 256 for field descriptions and valid values.

ADI Service Developer's Reference Manual Function reference

NMS Communications 83

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_BAD_ARGUMENT buffer pointer is NULL.

CTAERR_BAD_SIZE maxdigits is 0.

CTAERR_FUNCTION_ACTIVE Attempt was made to get a digit or flush the digit queue while
collecting digits.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function is not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_COLLECTION_DONE Generated when collection completes. The event buffer field points to
the same buffer passed to adiCollectDigits. The size field contains
the number of characters collected, plus one to account for the null
terminator. The value field contains one of the following termination
reasons, or an error code:

CTA_REASON_DIGIT
Terminating digit received.

CTA_REASON_FINISHED
Expected number of digits collected.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Terminated by adiStopCollection.

CTA_REASON_TIMEOUT
Timed out waiting for a digit.

Details

Use adiCollectDigits to start the asynchronous collection of DTMF digits. Any digits
received before collection is started are included, unless they were discarded by
calling adiFlushDigitQueue. Any digit not included in the validDTMFs mask is
discarded. Collection terminates and ADIEVN_COLLECTION_DONE is generated when
one of the following occurs:

• The maximum number of digits (maxdigits) is collected.

• The initial (firsttimeout) or interdigit (intertimeout) timeout expires.

• A terminating (terminators) digit is received.

• adiStopCollection is issued.

• The call is released.

Note: If a digit is in both the terminators mask and in the validDTMFs mask, it is
included as the last digit in the collected string. If the string contains maxdigits
digits, the termination reason is CTA_REASON_FINISHED.

Function reference ADI Service Developer's Reference Manual

84 NMS Communications

See also

adiGetDigit, adiStartDTMFDetector, adiStopDTMFDetector

Example
int myGetDigits(CTAHD ctahd, char *digits, int maxdigits)
{
 ADI_COLLECT_PARMS parms;
 CTA_EVENT event;

 *digits = 0;

 ctaGetParms(ADI_COLLECT_PARMID, &parms, sizeof parms);
 parms.firsttimeout = 4000; /* wait 4 seconds for first digit */
 parms.intertimeout = 2000; /* wait 2 seconds between digits */

 adiCollectDigits(ctahd, digits, maxdigits, &parms);

while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */
 switch(event.id)
 {
 case ADIEVN_COLLECTION_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* remote hang-up */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* AG Access API error */
 else if(strlen(digits) == 0)
 return MYFAILURE; /* no digits provided */
 else
 return SUCCESS; /* got digits */
 break;

 case ADIEVN_CALL_DISCONNECTED:
 /* In case this event was on the way up when we started
 * collection. Wait for 'collection done' event.
 */
 break;

 case ADIEVN_DIGIT_BEGIN:
 case ADIEVN_DIGIT_END:
 /* Typically don't want digit events. Wait for the
 * string of digits with 'collection done'.
 */
 break;
 }
 }
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 85

adiCommandEchoCanceller

Sends a data array containing raw commands to an actively running echo
cancellation function. Use adiCommandEchoCanceller to enable and configure
echo canceller tone detection.

Supported board types

• AG

• CG

Prototype

DWORD adiCommandEchoCanceller (CTAHD ctahd, WORD *data [], DWORD
nwords)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

data Pointer to an array of 16-bit data containing the commands.

nwords Number of 16-bit data words.

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_FUNCTION_NOT_ACTIVE Echo canceller function was not started before calling
adiCommandEchoCanceller.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_ECHOCANCEL_STATUS Generated if the echo canceller enables send status mode. For
information about this mode of operation, refer to echocancel.mode
in ADI_START_PARMS. The echo canceller stores the status
information in an event buffer. The information is arranged
according to the ADI_ECHOCANCEL_STATUS_INFO structure in
adidef.h. QX 2000 boards do not support the sending of echo
canceller status information.

ADIEVN_ECHOCANCEL_TONE This event contains two words of information about the tone that
was detected. See Details for information.

Function reference ADI Service Developer's Reference Manual

86 NMS Communications

DSP files

The following DSP file must be loaded to the board to enable echo canceller tone
detection:

For these boards... Add this DSP file...

AG echo_v4.m54

CG echo_v4.f54

Refer to the board installation and developer's manual for information about MIPS
usage.

Details

The echo canceller must be started before adiCommandEchoCanceller will work.
For information, see Controlling echo on page 57.

This function sends three commands to the tone detector.

Command A

Use the first command to start or stop the echo canceller tone detector, configure all
options, and initialize all parameters:

Word Description Valid
range

Typical
values

Word 1 Configures the echo canceller tone detector. Set bits as
follows:

• Bit 0: 0 = stop, 1 = start

• Bit 1: 0 = phase reversal requested

• Bit 2: 0 = amplitude modulation detection requested

• Bit 3: 0 = send/receive switching required

• Bit 4: 0 = send path always if bit 3 = 1, 1 = receive path
always if bit 3 = 1

• Bit 5: 0 = send all events to host

• Bit 6: 0 = take direct control of echo canceller's NLP

• Bit 7: 0 = take direct control of echo canceller's bypass

• Bit 8: 0 = take direct control of echo canceller's
reactivation after silence detection

• Bit 9: 0 = silence detection locks the send/receive path
when silence detected

N/A 0001

ADI Service Developer's Reference Manual Function reference

NMS Communications 87

Command B

Use the second command to specify the type of tone to be detected:

Word Description Valid range Typical values

1 Tone number 0 through 3 N/A

2 Maximum frequency [300 through
3000]

2100+15 for
CED

3 Minimum frequency [300 through
3000]

2100-15 for CED

4 Level (32). Compute the value using the following
formula:

17030 x pow(10, level/10.0),

where level is in dBm in the range -42 to 0.

N/A 0001

5 Qualification time (ms) 0 through 32767 500 for CED

Tone number 0 is reserved for CED detection (phase reversal and amplitude
modulation detection). Templates 1 through 3 can be set to any value. The template
is deactivated when maximum frequency is set to 0.

Command C

Use the third command to modify the default configuration for CED detection,
including phase reversal detection and amplitude modulation:

Word Description Valid
range

Typical
values

1 Maximum periodicity (ms) (phase reversal). 0 through
32767

480

2 Minimum periodicity (ms) (phase reversal). 0 through
32767

420

3 Maximum range of amplitude (amplitude modulation detection). A
tolerance is taken by the program.

0 through
32767
(0 = no
detection)

6554

4 Periodicity (amplitude modulation detection).

The program on periodicity requirements takes a 20 to 25 percent
tolerance.

0 through
32767

67

5 Time out before path switching (send/receive path switch).

The DCE detector switches back and forth from send to receive until a
tone is detected. This activity provides a 50 percent MIPS load for
tone detection on both send and receive paths. The function needs
about 50 ms to detect a tone and lock itself.

0 through
32767

60

6 Silence threshold (echo cancellation reactivation). Use the following
formula to compute the value:

17030 x pow(10, level/10.0),

where level is in dBm in the range -42 to 0.

N/A 0021h

7 Silence duration.

Since fax has a longer silence period, echo cancellation could be
reactivated during fax protocol after the specified amount of time.

200
through
5000

NA

Function reference ADI Service Developer's Reference Manual

88 NMS Communications

ADIEVN_ECHOCANCEL_TONE contains two words of information about the tone that
was detected.

Word 1 indicates if the tone was a DCE tone or a single tone:

Bit number Description

15 Type of event.
If bit 15 = 0 (DCE tone detected):

• Bit 14 = Amplitude modulation detected

• Bit 13 = Phase reversals detected

• Bit 12 = Silence detected after DCE detection

Examples:

• (14,13,12) = 0,0,0 (ANS)

• (14,13,12) = 0,1,0 (ANS)

• (14,13,12) = 1,0,0 (ANSam)

• (14,13,12) = 1,1,0 (ANSam)

• (14,13,12) = x,x,1 (silence after ANSxxx detection)

If bit 15 = 1 (single tone detected):

• Bits 14,13,12 = template's number detected

Examples:

• (14,13,12) = 0,0,1 (template 1)

• (14,13,12) = 0,1,0 (template 2)

• (14,13,12) = 0,1,1 (template 3)

11 Path number on which tone was detected.

• 0 = Send path or echo canceller reference path

• 1 = Receive path

4,3,2,1,0 Level of the tone (dB). The tone level is equal to (bits 4-0) x (-3) dBm0. Dynamic goes
from 0 to -93 dBm0. Precision is ± 1.5 dB.
Examples:

• (0,0,0,1,1) = -9 dBm0

• (0,0,1,0,1) = -15 dBm0

Word 2 indicates the frequency (or frequencies) detected. Because templates can be
programmed for a range of tones, it is possible to detect multiple tones within the
same template. The following formula is used:

2 x cos(2π x F/8000),

Examples:

• (15,...,0) = 7FFFh F = 0 Hz

• (15,...,0) = 3254h F = 1748 Hz

• (15,...,0) = 896Ah F = 2613 Hz

When a tone is detected, the program scans all templates and locks itself on the first
template that satisfies the frequency and level detected. Program templates
appropriately to deal with this behavior. For example:

• Template 2 = [800 - 1300] Hz, ...

• Template 3 = [1000 - 1020] Hz, ...

ADI Service Developer's Reference Manual Function reference

NMS Communications 89

In this example, when a 1010 Hz tone appears, the program sends back an event
associated with template 2 because it is the first template that meets all criteria for
the detection. Thus, DCE detection is programmed on template 0 exclusively.

Once tone is detected, no path switching is performed until the end of detection.

If bit 9 of command A is set to 1, silence duration is computed according to the time
connected to the right path. For example, if silence duration is set to 400 ms, 800
ms might pass before silence is detected.

See also

adiModifyEchoCanceller

Function reference ADI Service Developer's Reference Manual

90 NMS Communications

Example
// test routine that prompts for parameter values
DWORD myTestCommandEC(CTAHD ctahd)
{
 char command;
 WORD Aparms[1];
 WORD Bparms[5];
 WORD Cparms[7];

 DWORD nparms;
 WORD parms[16];
 WORD wtemp;
 DWORD dwtemp;

 promptchar ("Enter Command (A,B or C)", &command);
 switch (command)
 {
 case 'A':
 promptw ("EC Config", &Aparms[0]);
 nparms = 2;
 parms[0] = 1; // command code "A"
 memcpy (&parms[1], Aparms, sizeof Aparms);
 break;
 case 'B':
 promptw ("Tone #", &Bparms[0]);
 promptw ("Max Freq", &Bparms[1]);
 promptw ("Min Freq", Bparms[2]);
 prompt ("Level", &dwtemp);
 Bparms[3] = (WORD) (17030*pow(10,(dwtemp/10.0)));
 promptw ("Qual Time", &Bparms[4]);

 nparms = 6;
 parms[0] = 2; // command code "B"
 memcpy (&parms[1], Bparms, sizeof Bparms);
 break;
 case 'C':
 promptw ("Phase rev: T_max (ms)", &Cparms[0]);
 promptw ("Phase rev: T_min (ms)", &Cparms[1]);
 promptw ("AM: factor (%)", &wtemp);
 Cparms[2] = (WORD) (32767*wtemp/100);
 promptw ("AM: T (ms)", &Cparms[3]);
 promptw ("Tx/Rx path switching (ms)",&Cparms[4]);
 prompt ("Silence lvl (dB)", &dwtemp);
 Cparms[5] = (WORD) (17030*pow(10,(dwtemp/10.0)));
 promptw ("Silence duration (ms)", &Cparms[6]);

 nparms = 8;
 parms[0] = 3; // command code "C"
 memcpy (&parms[1], Cparms, sizeof Cparms);
 break;
 default:
 printf("Invalid command\n");
 return -1;
 }
 return adiCommandEchoCanceller (ctahd, parms, nparms);
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 91

adiCommandRecord

Sends a data array containing raw commands to an actively running recording
function. Use adiCommandRecord to enable and configure voice activity detection.

Supported board types

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiCommandRecord (CTAHD ctahd, WORD *data [], DWORD nwords)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

data Pointer to an array of 16-bit data containing the commands.

nwords Number of 16-bit data words.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE ADI service recording function was not started before calling
adiCommandRecord.

CTAERR_INVALID_SEQUENCE adiStopRecording has already been invoked.

Function reference ADI Service Developer's Reference Manual

92 NMS Communications

Events

Event Description

ADIEVN_RECORD_EVENT Contains information sent by the custom recording function. The event
value field may contain one of the following reason codes (also defined in
/nms/include/evad.h):

EVAD_EVN_FUNCTION_DISABLED
Voice activity detection disabled.

EVAD_EVN_FUNCTION_ENABLED
Voice activity detection enabled.

EVAD_EVN_FUNCTION_ERROR
Unknown or invalid parameter.

EVAD_EVN_SIGNALLING_DISABLED
Voice activity detection messaging disabled.

EVAD_EVN_SIGNALLING_ENABLED
Voice activity detection messaging enabled.

EVAD_EVN_SPEECH_BEGIN
Speech started. The event buffer contains the energy of the frame
generating the event and the energy of the background noise in dB.

EVAD_EVN_SPEECH_END
Speech stopped. The event buffer contains the energy of the frame
generating the event and the energy of the background noise in dB.

EVAD_EVN_STREAMING_PAUSED
Voice streaming from board to application paused.

EVAD_EVN_STREAMING_RESUMED
Voice streaming from board to application resumed.

Note: The application receives ADIEVN_RECORD_EVENT asynchronously, while the
speech buffers arrive every buffersize x framerate / framesize msec, attached to
ADIEVN_RECORD_BUFFER_FULL (when speech is detected).

Details

The following DSP file must be loaded to the board to enable voice activity detection:

For these boards... Add this DSP file...

AG rvoice_vad.m54

CG rvoice_vad.f54

To configure CG boards for voice activity detection, specify rvoice_vad in the
resource definition. For example:
Resource[0].Definitions = (dtmf.det_all & rvoice_vad.rec_alaw & rvoice_vad.play_alaw...

To configure the PacketMedia HMP process for voice activity detection, set the value
of the EnableVAD keyword to Yes. For example:
EnableVAD = Yes

To enable voice activity detection, call adiCommandRecord on an actively running
ADI recording function (such as adiRecordAsync). Automatic gain control and
energy detection must be disabled when using voice activity detection. Recording
must be using ADI_ENCODE_MULAW, ADI_ENCODE_ALAW, or
ADI_ENCODE_PCM8M16.

Call adiCommandRecord after receiving ADIEVN_RECORD_STARTED.

ADI Service Developer's Reference Manual Function reference

NMS Communications 93

The first parameter must be one of the following voice activity detector commands:

Command Description

EVAD_CDE_FUNCTION_ENABLE Enable voice activity detection or update parameters. Default is
disabled.

EVAD_CDE_FUNCTION_DISABLE Disable voice activity detection. Silence is no longer suppressed.

EVAD_CDE_DEFAULT_ENABLE Enable voice activity detection with default parameters.

EVAD_CDE_STREAMING_PAUSE Pause sending voice data (silence or speech) to the host
application. Useful for keeping voice activity detection energy
thresholds update active when ASR is not active on the host.

EVAD_CDE_STREAMING_RESUME Resume sending voice data to the host application.

EVAD_CDE_SIGNALLING_ENABLE Send voice activity detection events to the host application (even
if voice activity detection or record streaming are disabled).
Default is disabled.

EVAD_CDE_SIGNALLING_DISABLE Stop sending voice activity detection events
(EVAD_SPEECH_BEGIN and EVAD_SPEECH_END) to the host
application.

When enabling voice activity detection (EVAD_CDE_FUNCTION_ENABLE), modify the
voice activity detector's default behavior with the following parameters (also defined
in /nms/include/evad.h):

Parameter Type Default Units Description

snr INT16 14 dB Signal to noise ratio. Valid range is 5 to 30 dB.

hold_stop INT16 1000 ms Speech hangover time. Valid range is 300 to 2000
ms.

min_noise INT16 -65 dB Minimum noise floor. Valid range is -100 to -40 dB.

max_noise INT16 -40 dB Maximum noise floor. Valid range is -65 to -25 dB.

signal_attack INT16 30 ms Signal attack time constant. Valid range is 10 to 200
ms.

signal_release INT16 60 ms Signal release time constant. Valid range is 10 to 200
ms.

noise_attack INT16 3000 ms Noise attack time constant. Valid range is 500 to 5000
ms.

noise_release INT16 600 ms Noise release time constant. Valid range is 100 to
2000 ms.

Convert signal_attack, signal_release, noise_attack, and noise_release into DSP
format using the following formula:
/* time constant (tc) and period need to have the same units of time */
int epsilon(float tc,float period)
{
float eps;
eps = (float)(1.0 - (float) exp((double)((-1.0 * period)/ tc)));

return (int) (eps * 32767); // return in S.15 format
}
LATENCY = 10; /* 10 msec record DPF period */
DSP_value = epsilon (time_constant, LATENCY);

Function reference ADI Service Developer's Reference Manual

94 NMS Communications

The custom recording DPF sends data to the host by calling the DSPOS function
dspkSendEvent. The first parameter sent by the function displays in the value field
of the CTA_EVENT structure. All remaining parameters display in an attached buffer.
The application is responsible for freeing the buffer after it processes the data.

For more information, refer to Detecting voice activity on page 67.

Example
 /* This code sends a command to custom record DPF and prints the events from the DPF.
*/
myWaitForEvent(ctaqueuehd, event);
switch(event->id)
{
 /* etc... */
 case ADIEVN_RECORD_STARTED:
 {
 WORD myParms[3] = { 0x1111, 0x2222, 0x3333);
 adiCommandRecord(ctahd, myParms, 3);
 /* At the DSP level, the DPF will see the following
 * command packet.
 *
 * 0x3 -> size of command packet
 * 0x1111 -> parm 1
 * 0x2222 -> parm 2
 * 0x3333 -> parm 3
 */
 }
 case ADIEVN_RECORD_EVENT:
 if (event->buffer != NULL) // event with multiple data
 {
 WORD i;
 WORD *pData = (WORD *) event->buffer;
 printf("event->value %x\n", event->value);
 printf("event->size %x\n", event->size);
 for (i=0; i < event->size / sizeof(WORD); i++)
 {
 printf("data[%d] %x\n", i, pData[i]);
 }
 if (event->size & CTA_INTERNAL_BUFFER)
 {
 ctaFreeBuffer(event->buffer);
 printf("Buffer freed\n");
 }
 }
 else
 { // event with only 1 data
 printf("event->value %x\n", event->value);
 }
 break;
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 95

adiFlushDigitQueue

Flushes the internal digit collection queue.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiFlushDigitQueue (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_ACTIVE Digit collection function is active.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Details

Use adiFlushDigitQueue to discard all digits in the ADI service internal digit
collection queue. This function cannot be invoked while the application is actively
collecting digits using adiCollectDigits.

If any digits are queued in the ADI service when a play or record voice operation is
started, and the voice operation is to terminate on those specific touchtones, the
voice operation terminates immediately. To prevent this from happening, use
adiFlushDigitQueue or adiGetDigit to remove the escape key from the queue.

The digit queue is automatically flushed when a call is released.

For more information, refer to Collecting digits on page 53.

See also

adiPeekDigit, adiStopCollection

Function reference ADI Service Developer's Reference Manual

96 NMS Communications

Example
/* Play a message, ignoring dtmfs. */
int myPlayToCompletion(CTAHD ctahd, unsigned encoding, void *buffer, unsigned bufsize)
{
 ADI_PLAY_PARMS playparms;
 CTA_EVENT event;

 ctaGetParms(ADI_COLLECT_PARMID, &playparms, sizeof playparms);
 playparms.DTMFabort = 0x0;

 adiPlayFromMemory(ctahd, encoding, buffer, bufsize, &playparms);

 do
 {
 myGetEvent(&event); /* see ctaWaitEvent example */
 } while(event.id != ADIEVN_PLAY_DONE);

 if(event.value != CTA_REASON_FINISHED)
 return MYFAILURE;

 /* We've finished playing an uninteruptable message (no DTMF abort).
 * but some DTMFs may have been pressed and are sitting in the digit
 * collection queue. If we don't remove them, the queued digits
 * will cause the next interruptible play to be aborted immediately.
 */
 adiFlushDigitQueue(ctahd);
 return SUCCESS;
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 97

adiGetBoardInfo

Obtains information about a board.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiGetBoardInfo (CTAHD ctahd, unsigned board, unsigned size,
ADI_BOARD_INFO *boardinfo)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

board Board number as specified in the board keyword file.

size Size of boardinfo structure.

boardinfo Pointer to the ADI_BOARD_INFO structure, as shown:

typedef struct
{
 DWORD size; /* Size of this structure */
 DWORD boardtype;/* Physical board type ADI_BOARDTYPE_xxx*/
 DWORD serial; /* Serial number */
 DWORD ioaddr; /* Base IO address */
 DWORD intnum; /* Interrupt number */
 DWORD bufsize; /* Buffer size */
 DWORD freemem; /* Available memory */
 BYTE daughterboardid[4]; /* Daughterboard IDs 0 = none */
 DWORD totalmips;/* Total gross DSP MIPS */
 DWORD trunktype;/* Type of digital or analog trunk */
 DWORD numtrunks;/* Number of trunks */
} ADI_BOARD_INFO;

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT boardinfo pointer is NULL.

CTAERR_BAD_SIZE size is smaller than the size of DWORD.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_SVR_COMM Server communication error.

Function reference ADI Service Developer's Reference Manual

98 NMS Communications

Details

Use adiGetBoardInfo to retrieve hardware configuration data for the specified
board. The board argument identifies a particular board. This identifier must
correlate to a board ID in the board keyword file. Refer to the board installation and
developer's manual for more information.

Note: If an analog board is populated with a mixture of line interface types, the type
of the lowest numbered interface is reported.

AG 4040 and AG 4040C boards are software compatible with AG 4000 and AG 4000C
boards. When retrieving board information on AG 4040 or AG 4040C boards,
adiGetBoardInfo reports the ADI board type as one of the AG 4000 or AG 4000C
board types, for example, ADI_BOARDTYPE_AG4000_4T. The AG 4040 or AG 4040C
trunk type, either T1 or E1, is configured in the board keyword file. If the trunk type
is not specified, adiGetBoardInfo reports the ADI board type as one of the T1
variants.

The ctahd argument is used to access the context on which the ADI service was
opened. The ADI service can be opened in driver-only mode if desired. In this case,
no actual board resources are reserved. Set the board field in the MVIP_ADDR
structure passed to ctaOpenServices to ADI_AG_DRIVER_ONLY. This function also
works with a context that has the ADI service opened on actual MVIP streams and
timeslots.

The size argument indicates how much memory to write at boardinfo address. The
ADI service stores the actual number of bytes written in the ADI_BOARD_INFO size
field.

See also

adiGetEEPromData

ADI Service Developer's Reference Manual Function reference

NMS Communications 99

Example
void myShowBoardType(CTAHD ctahd, unsigned board)
{
 ADI_BOARD_INFO boardinfo;
 char *type;
 unsigned b_ports;
 int ret;

 ret = adiGetBoardInfo(ctahd, board, sizeof boardinfo, &boardinfo);

 if(ret == SUCCESS)
 {
 switch(boardinfo.boardtype)

 case ADI_BOARDTYPE_QX2000 : type="QX 2000";b_ports=4;break;
 case ADI_BOARDTYPE_AG2000: type="AG 2000"; b_ports= 8;break;
 case ADI_BOARDTYPE_AG4000_4T:type="AG 4000 4T"; b_ports=96;break;
 case ADI_BOARDTYPE_AG4000_4E:type="AG 4000 4E"; b_ports=120;break;
 case ADI_BOARDTYPE_CG6000C_QUAD:type="CG6000C_QUAD";b_ports=120;break;

 default:
 case ADI_BOARDTYPE_UNKNOWN : type="Unknown"; b_ports=0; break;
 }
 printf("board:%2d at addr:%4x is an %-7s with %3d ports.\n",
 board, boardinfo.ioaddr, type, b_ports);
 }
 else if(ret == CTAERR_INVALID_BOARD)
 printf("There is no board # %d.\n", board);
 else
 /* unexpected error */
 printf("Error %x getting board # %d information.\n", ret, board);
}

Function reference ADI Service Developer's Reference Manual

100 NMS Communications

adiGetBoardSlots

Returns the MVIP timeslots configured for the given board.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiGetBoardSlots (CTAHD ctahd, unsigned board, unsigned mode,
unsigned maxslot, ADI_TIMESLOT *slotlist, unsigned *numslots)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

board Board number as specified in the board keyword file.

mode Stream capability, which can be either ADI_FULL_DUPLEX (both voice and signaling
streams) or ADI_VOICE_DUPLEX (voice only).

maxslot Maximum number of entries in slotlist array.

slotlist Pointer to the ADI_TIMESLOT array, defined as:

typedef struct
{
 BYTE stream ;
 BYTE slot ;
} ADI_TIMESLOT ;

numslots Returned number of entries.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT slotlist is NULL but maxslot is not 0 (zero), or maxslot is 0 (zero) but
slotlist is not NULL, or numslots is NULL, or invalid mode.

CTAERR_INVALID_BOARD board does not exist.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_SVR_COMM Server communication error.

ADI Service Developer's Reference Manual Function reference

NMS Communications 101

Details

Use adiGetBoardSlots to query the available MVIP stream:slot pairs configured for
a given board.

The ctahd argument is used to access the context on which the ADI service was
opened. The ADI service can be opened in driver-only mode if desired. In this case,
no actual board resources are reserved. Set the board field in the MVIP_ADDR
structure passed to ctaOpenServices to ADI_AG_DRIVER_ONLY. This function also
works with a context that has the ADI service opened on actual MVIP streams and
timeslots.

If mode is 0 (zero), the slots returned are the DSP addresses that correspond to
actual trunks, whether or not they are actually connected.

For example, if an AG 2000 board is partially populated, only the slots that contain
line interfaces are returned.

Note: The DSPs are automatically connected to the trunk if the telephony bus is not
enabled.

If mode is not 0 (zero), the function returns only those streams capable of
supporting the given mode. The base stream for the given mode is returned in the
ADI_TIMESLOT stream field.

Examples:

• For an AG 2000 board, stream 18 is voice and stream 19 is signaling. If
adiGetBoardSlots is invoked with mode set to ADI_FULL_DUPLEX, the
function returns an array of eight ADI_TIMESLOT structures, each with the
stream field set to 18 (18:0..7).

• For an AG 2000 board, stream 18 is voice and stream 19 is signaling. If
adiGetBoardSlots is invoked with mode set to ADI_VOICE_DUPLEX, the
function returns an array of 16 ADI_TIMESLOT structures, each with the
stream field set to 18 or 19 (18:0..7, 19:0..7).

For details on MVIP addressing, refer to the Switching Service Developer's Reference
Manual.

The maxslot argument is the number of ADI_TIMESLOTs in the application supplied
slotlist array. The ADI service returns the number of ADI_TIMESLOTs written to the
slotlist in the numslots variable. This value is in the range 0 (zero) to maxslot
inclusive.

Note: If maxslot is 0 (zero) and slotlist is NULL, numslots returns the actual
number of slots without copying any data.

adiGetBoardSlots can be used with adiGetBoardInfo to dynamically configure an
application's contexts. ctaOpenServices is called with a board number and MVIP
stream:slot to open the ADI service. The application can retrieve a complete list of
configured stream:slot pairs for any board with adiGetBoardSlots.

Function reference ADI Service Developer's Reference Manual

102 NMS Communications

Example
#define MAX_SLOTS 256
void myShowBoardSlots(CTAHD ctahd, unsigned board)
{
 ADI_TIMESLOT slotlist [MAX_SLOTS]; /* Returned array of timeslots */
 int ret;
 unsigned stream, slot1, slot2, prevslot, numslots;

 /* Read the MVIP configuration for the board. */
 ret = adiGetBoardSlots(ctahd, board, ADI_VOICE_DUPLEX, MAX_SLOTS, slotlist, &numslots
);
 if(ret == SUCCESS)
 {
 /* The ADI_TIMESLOT information contains 'stream:slot' pairs.
 * Print the information as 'stream:slot0..slotN' ranges.
 */
 unsigned i = 0;
 while(i < numslots)
 {
 /* store stream and starting slot */
 stream = slotlist[i].stream;
 slot1 = slotlist[i].slot;
 prevslot = slot1;

 while(++i < numslots && /* find ending slot */
 slotlist[i].stream == stream &&
 slotlist[i].slot == prevslot+1)
 prevslot++;
 slot2 = slotlist[i-1].slot; /* store ending slot */

 printf("%2d:%d", stream, slot1);
 if(slot2 != slot1) printf("..%d", slot2);
 puts("");
 }
 }
 else if(ret == CTAERR_INVALID_BOARD)
 printf("There is no board # %d.\n", board);
 else
 /* unexpected error */
 printf("Error %x getting board # %d information.\n", ret, board);
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 103

adiGetBoardSlots32

Returns the MVIP timeslots configured for the given board.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiGetBoardSlots32 (CTAHD ctahd, unsigned board, unsigned mode,
unsigned maxslot, ADI_TIMESLOT32 *slotlist, unsigned *numslots)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

board Board number as specified in the board keyword file.

mode Stream capability, which can be either ADI_FULL_DUPLEX (both voice and signaling
streams) or ADI_VOICE_DUPLEX (voice only).

maxslot Maximum number of entries in slotlist array.

slotlist Pointer to the ADI_TIMESLOT array, defined as:

typedef struct
{
 BYTE stream ;
 BYTE slot ;
} ADI_TIMESLOT32 ;

numslots Returned number of entries.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT slotlist is NULL but maxslot is not 0 (zero), or maxslot is 0 (zero) but
slotlist is not NULL, or numslots is NULL, or invalid mode.

CTAERR_INVALID_BOARD board does not exist.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_SVR_COMM Server communication error.

Function reference ADI Service Developer's Reference Manual

104 NMS Communications

Details

Use adiGetBoardSlots32 to query the available MVIP stream:slot pairs configured
for a given board.

The ctahd argument is used to access the context on which the ADI service was
opened. The ADI service can be opened in driver-only mode if desired. In this case,
no actual board resources are reserved. Set the board field in the MVIP_ADDR
structure passed to ctaOpenServices to ADI_AG_DRIVER_ONLY. This function also
works with a context that has the ADI service opened on actual MVIP streams and
timeslots.

If mode is 0 (zero), the slots returned are the DSP addresses that correspond to
actual trunks, whether or not they are actually connected.

For example, if an AG 2000 board is partially populated, only the slots that contain
line interfaces are returned.

Note: The DSPs are automatically connected to the trunk if the telephony bus is not
enabled.

If mode is not 0 (zero), the function returns only those streams capable of
supporting the given mode. The base stream for the given mode is returned in the
ADI_TIMESLOT32 stream field.

Examples:

• For an AG 2000 board, stream 18 is voice and stream 19 is signaling. If
adiGetBoardSlots32 is invoked with mode set to ADI_FULL_DUPLEX, the
function returns an array of eight ADI_TIMESLOT32 structures, each with the
stream field set to 18 (18:0..7).

• For an AG 2000 board, stream 18 is voice and stream 19 is signaling. If
adiGetBoardSlots32 is invoked with mode set to ADI_VOICE_DUPLEX, the
function returns an array of 16 ADI_TIMESLOT32 structures, each with the
stream field set to 18 or 19 (18:0..7, 19:0..7).

For details on MVIP addressing, refer to the Switching Service Developer's Reference
Manual.

The maxslot argument is the number of ADI_TIMESLOT32 instances in the
application supplied slotlist array. The ADI service returns the number of
ADI_TIMESLOT32 instances written to the slotlist in the numslots variable. This
value is in the range 0 (zero) to maxslot inclusive.

Note: If maxslot is 0 (zero) and slotlist is NULL, numslots returns the actual
number of slots without copying any data.

adiGetBoardSlots32 can be used with adiGetBoardInfo to dynamically configure
an application's contexts. ctaOpenServices is called with a board number and MVIP
stream:slot to open the ADI service. The application can retrieve a complete list of
configured stream:slot pairs for any board with adiGetBoardSlots32.

ADI Service Developer's Reference Manual Function reference

NMS Communications 105

Example
#define MAX_SLOTS 480
void myShowBoardSlots(CTAHD ctahd, unsigned board)
{
 ADI_TIMESLOT32 slotlist [MAX_SLOTS]; /* Returned array of timeslots */
 int ret;
 unsigned stream, slot1, slot2, prevslot, numslots;

 /* Read the MVIP configuration for the board. */
 ret = adiGetBoardSlots32(ctahd, board, ADI_VOICE_DUPLEX, MAX_SLOTS, slotlist,
&numslots);
 if(ret == SUCCESS)
 {
 /* The ADI_TIMESLOT32 information contains 'stream:slot' pairs.
 * Print the information as 'stream:slot0..slotN' ranges.
 */
 unsigned i = 0;
 while(i < numslots)
 {
 /* store stream and starting slot */
 stream = slotlist[i].stream;
 slot1 = slotlist[i].slot;
 prevslot = slot1;

 while(++i < numslots && /* find ending slot */
 slotlist[i].stream == stream &&
 slotlist[i].slot == prevslot+1)
 prevslot++;
 slot2 = slotlist[i-1].slot; /* store ending slot */

 printf("%2d:%d", stream, slot1);
 if(slot2 != slot1) printf("..%d", slot2);
 puts("");
 }
 }
 else if(ret == CTAERR_INVALID_BOARD)
 printf("There is no board # %d.\n", board);
 else
 /* unexpected error */
 printf("Error %x getting board # %d information.\n", ret, board);
}

Function reference ADI Service Developer's Reference Manual

106 NMS Communications

adiGetContextInfo

Retrieves configuration information about a specified context.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiGetContextInfo (CTAHD ctahd, ADI_CONTEXT_INFO *info, unsigned
size)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

info Pointer to a buffer to receive the information. The ADI_CONTEXT_INFO structure is
shown:

typedef struct
{ /* User accessible CONTEXT INFO structure:*/
 DWORD size; /* returned size of this structure */
 DWORD queueid; /* not used */
 DWORD userid; /* not used */
 INT32 agliberr; /* last error code after calling AGLIB */
 DWORD channel; /* AG Channel */
 DWORD board; /* AG Board number */
 DWORD stream; /* MVIP stream of this port */
 DWORD timeslot; /* MVIP slot of this port */
 DWORD mode; /* MVIP mode of operation of this port */
 DWORD maxbufsize; /* maximum board buffer size */
 char tcpname[12]; /* Current Protocol */
 DWORD state; /* port state */
 DWORD stream95; /* MVIP-95 base stream number */
} ADI_CONTEXT_INFO;

Refer to the Details section for a description of these fields.

size Amount of memory available at info, which must be large enough to receive the
ADI_CONTEXT_INFO size return value.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT info is NULL.

CTAERR_BAD_SIZE size is smaller than the size of DWORD.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_SVR_COMM Server communication error.

ADI Service Developer's Reference Manual Function reference

NMS Communications 107

Details

Use adiGetContextInfo to return information about the current state of a specified
context.

Up to size bytes of the ADI_CONTEXT_INFO structure are copied to the address at
info. If size is greater than or equal to sizeof (ADI_CONTEXT_INFO), the complete
structure is copied. The number of bytes actually copied is returned in the
ADI_CONTEXT_INFO size field.

Note: If you are using the Natural Call Control service, adiGetContextInfo does
not fill in the tcpname field of the ADI_CONTEXT_INFO structure. To retrieve this
information, the application must call nccGetLineStatusInfo.

The following table summarizes the ADI_CONTEXT_INFO structure. Many of these
context characteristics are described in other functions, as noted:

Field Description Related functions

size Returned size. N/A

queueid Not used. N/A

userid Not used. N/A

agliberr NMS internal. N/A

channel NMS internal. N/A

board Board number on which the context's DSP resides. ctaCreateContext

stream Base MVIP stream for the context. ctaCreateContext

timeslot Context's MVIP-90 timeslot. ctaCreateContext

mode Context's MVIP mode. ctaCreateContext

maxbufsize Board physical buffer size. adiGetEncodingInfo

tcpname Protocol executing on the context. adiStartProtocol

state Context state. N/A

stream95 Base MVIP-95 stream. N/A

Function reference ADI Service Developer's Reference Manual

108 NMS Communications

Example
int myShowContextState(CTAHD ctahd)
{
 ADI_CONTEXT_INFO info;

 if(adiGetContextInfo(ctahd, &info, sizeof info) != SUCCESS)
 return MYFAILURE;

 printf(" Queue ID = %d\n", info.queueid);
 printf(" User ID = %08Xh\n", info.userid);
 printf(" AG Channel = %08Xh\n", info.channel);
 printf("Last AGLIB Error = %d \n", info.agliberr);
 printf(" AG Buffer Size = %d\n", info.maxbufsize);
 printf(" Protocol = %s\n", info.tcpname);
 printf(" Board Number = %d\n", info.board);
 printf("Stream:Slot,Mode = %d:%d,", info.stream, info.timeslot);

 switch(info.mode)
 {
 case ADI_FULL_DUPLEX : puts("ADI_FULL_DUPLEX"); break;
 case ADI_VOICE_DUPLEX : puts("ADI_VOICE_DUPLEX"); break;
 case ADI_SIGNAL_DUPLEX : puts("ADI_SIGNAL_DUPLEX"); break;
 default:
 if(info.mode & ADI_VOICE_INPUT) printf("+ADI_VOICE_INPUT");
 if(info.mode & ADI_VOICE_OUTPUT) printf("+ADI_VOICE_OUTPUT");
 if(info.mode & ADI_SIGNAL_INPUT) printf("+ADI_SIGNAL_INPUT");
 if(info.mode & ADI_SIGNAL_OUTPUT) printf("+ADI_SIGNAL_OUTPUT");
 printf("\n");
 break;
 }
 printf("\n");
 return SUCCESS;
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 109

adiGetDigit

Retrieves a digit from the front of the ADI service internal digit queue.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiGetDigit (CTAHD ctahd, char *digit)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

digit Pointer to a character to store the digit copied from the digit queue. Valid digit values are
the ASCII characters 0 through 9, # (number sign), and * (asterisk), as well as A, B, C,
and D. If the digit queue is empty, *digit receives a value of 0 (zero).

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT digit is a NULL pointer.

CTAERR_FUNCTION_ACTIVE Digit collection function is already active.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Details

Use adiGetDigit to retrieve a single DTMF digit character from the front of the ADI
service internal digit queue. The oldest digit is removed from the queue and copied
to the address pointed to by digit. If the digit queue is empty, the value copied is 0
(zero).

The application must also be using ctaWaitEvent for digits to accumulate in the ADI
service internal digit queue.

This function cannot be invoked if the application is actively collecting digits using
adiCollectDigits.

To read the first digit without removing it from the collection queue, use
adiPeekDigit.

If there is a digit in the internal digit queue that is configured in the abort_mask of a
play or record operation to terminate the operation, the operation terminates
immediately. Use adiGetDigit to remove the digit from the queue.

For more information, refer to Collecting digits on page 53.

Function reference ADI Service Developer's Reference Manual

110 NMS Communications

See also

adiFlushDigitQueue, adiStopCollection

Example
/* Remove and display digits in the digit queue */
void getandshowdigits(CTAHD ctahd)
{
 for (;;)
 {
 char digit;

 adiGetDigit(ctahd, &digit);
 if(digit == '\0')
 break;
 putchar(digit);
 }
 putchar('\n');
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 111

adiGetEEPromData

Reads the on-board OEM data for a given board.

Supported board types

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiGetEEPromData (CTAHD ctahd, unsigned board, unsigned size,
ADI_EEPROM_DATA *eepromdata)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

board Board number as specified in the board keyword file.

size Size of the caller's structure (the returned size is enclosed in the eepromdata
structure).

eepromdata Pointer to the returned structure, as shown:

typedef struct
{
 DWORD size; /* Size of this structure */
 WORD data[32];/* EEprom data */
} ADI_EEPROM_DATA;

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT NULL pointer was passed for eepromdata.

CTAERR_BAD_SIZE size is smaller than the size of DWORD.

CTAERR_INVALID_BOARD Invalid board was specified.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_SVR_COMM Server communication error.

Details

Use adiGetEEPromData to return OEM information stored on a PROM on the
specified board.

The ctahd argument is used to access the context on which the ADI service was
opened. The ADI service can be opened in driver-only mode if desired. In this case,
no actual board resources are reserved. Set the board field in the MVIP_ADDR
structure passed to ctaOpenServices to ADI_AG_DRIVER_ONLY. This function also
works with a context that has the ADI service opened on actual MVIP streams and
timeslots.

Note: QX 2000 boards do not support this function. If this function is called using a
QX 2000 board, CTAERR_FUNCTION_NOT_AVAIL is returned.

Function reference ADI Service Developer's Reference Manual

112 NMS Communications

See also

adiGetBoardInfo

Example
/* Display first 16-bit value in EEProm */
void showeeprom (unsigned drvid)
{
 ADI_EEPROM_DATA eeprom;

 adiGetEEPromData(drvid, 0, sizeof eeprom, &eeprom);
 printf("data[0] = %x\n", eeprom.data[0]);
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 113

adiGetEncodingInfo

Returns data size parameters for a given voice encoding format on a specified
context.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiGetEncodingInfo (CTAHD ctahd, unsigned encoding, unsigned
*framesize, unsigned *datarate, unsigned *maxbufsize)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

encoding Data encoding method. See Voice encoding formats on page 13 for a complete list of
valid encoding methods.

framesize Pointer to returned size, in bytes, of a single voice frame for given encoding format.

datarate Pointer to returned required throughput in bytes per second, for given encoding format.

maxbufsize Pointer to returned board buffer size in bytes, for given encoding format on the
specified context. For information specific to QX boards, refer to the QX 2000
Installation and Developer's Manual.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT Invalid encoding format.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Details

Use adiGetEncodingInfo to return data size information for the given encoding
format on the specified context.

When submitting buffers of voice data for play or record, the buffers must be an
integral multiple of the encoding frame size, and should be a multiple of the board's
physical buffer (maxbufsize). All buffers of voice data submitted to the ADI service
must be an integral number of framesize bytes. For example, if the frame size is 62
bytes, a submitted buffer must be sized as n x 62 bytes where n=1,2,3....

Function reference ADI Service Developer's Reference Manual

114 NMS Communications

The datarate is provided for resource management optimization. The datarate
defines the required throughput between the host CPU and AG board (in
bytes/second). It can be used for positioning. For example, to skip ahead four
seconds in a message, move your data pointer 4 x datarate bytes (modulo
framesize).

The maxbufsize is the maximum physical buffer size for the board on the specified
context for the given encoding format. The board's physical buffer size varies
depending upon the board type and configured software. The size returned here is
rounded to a multiple of the frame size.

For information specific to QX boards, refer to the QX 2000 Installation and
Developer's Manual.

You can pass NULL for any of the function arguments that are pointers to returned
values.

See also

adiPlayAsync, adiPlayFromMemory, adiRecordAsync, adiRecordToMemory,
adiStartPlaying, adiStartRecording

Example
void myShowEncodingInfo(CTAHD ctahd, unsigned encoding)
{
 unsigned framesize, datarate, maxbufsize;

 if(adiGetEncodingInfo(ctahd, encoding,
 &framesize, &datarate, &maxbufsize) == SUCCESS)
 {
 printf("Frame size = %d bytes\n", framesize);
 printf("Data rate = %d bytes/sec\n", datarate);
 printf("Max buf size = %d bytes\n", maxbufsize);
 }
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 115

adiGetPlayStatus

Retrieves status for the active or most recently executed play operation.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiGetPlayStatus (CTAHD ctahd, ADI_PLAY_STATUS *info, unsigned
size)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

info Pointer to the ADI_PLAY_STATUS structure, as shown:

typedef struct
{
 DWORD size; /* returned size (GetPlayStatus())*/
 DWORD reason; /* reason last play ended */
 DWORD buffercount;/* counter of buffers submitted */
 DWORD framecount; /* number of frames submitted */
 DWORD totalbytes; /* total bytes submitted */
 void *buffer; /* last buffer pointer submitted */
 DWORD bytecount; /* size of last buffer submitted */
 DWORD bytesplayed;/* total bytes actually played */
 DWORD timestarted;/* actual time started (ms units) */
 DWORD underrun; /* counts out-of-frame events */
} ADI_PLAY_STATUS;

Refer to the Details section for field descriptions.

size Amount of memory available at info to receive the ADI_PLAY_STATUS.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT info is NULL.

CTAERR_BAD_SIZE size is smaller than the size of DWORD.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Function reference ADI Service Developer's Reference Manual

116 NMS Communications

Details

Use adiGetPlayStatus to retrieve status information about the active or most
recently completed voice play operation for the specified context.

Up to size bytes of the ADI_PLAY_STATUS structure are copied to the address
pointed to by info. If size is greater than or equal to the size of ADI_PLAY_STATUS,
the complete structure is copied. The number of bytes copied is returned in the
ADI_PLAY_STATUS size field.

adiGetPlayStatus can be issued while actively playing. If there is no active play
operation, the status information pertains to the most recently completed instance.

The ADI_PLAY_STATUS structure contains the following fields:

Field Description

size Number of bytes copied to info.

reason Termination condition for the last ADIEVN_PLAY_DONE. This field is 0 if the play operation
is active, or if it has not been started since the context was last opened.

buffercount Number of buffers submitted.

framecount Number of voice frames submitted.

totalbytes Number of bytes submitted by the application.

buffer Last buffer pointer submitted.

bytecount Size of the last buffer submitted.

bytesplayed Total number of bytes actually processed by the DSP and transmitted.

timestarted Timestamp for when the play operation started. Refer to adiGetTimeStamp.

underrun Total number of underruns during the play instance.

See also

adiPlayAsync, adiPlayFromMemory, adiStartPlaying, adiStopPlaying

Example
void myShowPlayStatus(CTAHD ctahd)
{
 ADI_PLAY_STATUS playstatus;

 adiGetPlayStatus(ctahd, &playstatus, sizeof playstatus);

 printf("Termination condition=%x bytes played=%d\n",
 playstatus.reason, playstatus.bytesplayed);
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 117

adiGetRecordStatus

Retrieves the record operation status.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiGetRecordStatus (CTAHD ctahd, ADI_RECORD_STATUS *info,
unsigned size)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

info Pointer to the ADI_RECORD_STATUS structure, as shown:

typedef struct
{ /* Parms related to RECORD functions:*/
 DWORD size ; /* Returned size (GetRecordStatus()) /
 DWORD reason; /* Reason last record ended */
 DWORD buffercount; /* Counter of buffers submitted */
 DWORD frame; /* Number of frames submitted */
 DWORD totalbytes; /* Total bytes submitted */
 void *buffer; /* Last buffer pointer SUBMITTED. */
 DWORD bytecount; /* Number of bytes into this buffer */
 DWORD bytesrecorded;/* Total bytes actually recorded. */
 DWORD timestarted; /* Actual time started (ms units) */
 DWORD underrun; /* Counts underrun events */
} ADI_RECORD_STATUS;

Refer to the Details section for field descriptions.

size Amount of memory available at info to receive the ADI_RECORD_STATUS.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT info is NULL.

CTAERR_BAD_SIZE size is smaller than the size of DWORD.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Function reference ADI Service Developer's Reference Manual

118 NMS Communications

Details

Use adiGetRecordStatus to retrieve status information about the active or most
recently completed voice record operation for the specified context.

Up to size bytes of the ADI_RECORD_STATUS structure are copied to the address
pointed to by info. If size is greater than or equal to the size of
ADI_RECORD_STATUS, the complete structure is copied. The number of bytes
copied is returned in the ADI_RECORD_STATUS size field.

adiGetRecordStatus can be issued while actively recording. If there is no active
record operation, the status information pertains to the most recently completed
instance.

The ADI_RECORD_STATUS structure contains the following fields:

Field Description

size Number of bytes copied to info.

reason Termination condition for the last ADIEVN_RECORD_DONE. This field is 0 if the record
operation is active, or if it has not been started since the context was last opened.

buffercount Number of buffers submitted.

framecount Number of voice frames submitted.

totalbytes Number of bytes submitted by the application.

buffer Last buffer pointer submitted.

bytecount Size of the last buffer submitted.

bytesrecorded Total number of bytes received.

timestarted Timestamp for the start of the record operation. Refer to adiGetTimeStamp.

underrun Total number of underruns during the record instance.

See also

adiRecordAsync, adiRecordToMemory, adiStartRecording, adiStopRecording

Example
void myShowRecordStatus(CTAHD ctahd)
{
 ADI_RECORD_STATUS recordstatus;

 adiGetRecordStatus(ctahd, &recordstatus, sizeof recordstatus);

 /* A termination condition of 0 indicates either record in progress,
 * or none yet started in this CTA context.
 */
 printf("Termination condition=%x, bytes recorded=%d\n",recordstatus.reason,
recordstatus.bytesrecorded);
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 119

adiGetTimeStamp

Converts an event timestamp to a count of the seconds elapsed since January 1,
1970.

Supported board types

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiGetTimeStamp (CTAHD ctahd, DWORD msgtime, unsigned long
*timesec, unsigned *timems)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

msgtime Event time stamp.

timesec Pointer to returned seconds.

timems Pointer to returned milliseconds.

Return values

Return value Description

SUCCESS

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_SVR_COMM Server communication error.

Details

Use adiGetTimeStamp to convert an event timestamp to a count of the number of
seconds elapsed since 00:00:00 January 1, 1970. The msgtime is the CTA_EVENT
timestamp value, which is in millisecond units with a 10-millisecond resolution. This
function converts the msgtime into timesec seconds and timems milliseconds
since midnight 1/1/70.

Because the event timestamp is 32 bits, it wraps every 232 milliseconds (about 49
days). adiGetTimeStamp assumes the event occurred within 24 days.

Note: This function is not supported on a QX 2000 board. If this function is called
using a QX 2000 board, CTAERR_FUNCTION_NOT_AVAIL is returned. Use
ctaGetTimeStamp instead.

Function reference ADI Service Developer's Reference Manual

120 NMS Communications

Example
#include <time.h>
void myShowTime(CTAHD ctahd, CTA_EVENT *event)
{
 struct tm *ptime;
 unsigned long timesec;
 unsigned timems;

 adiGetTimeStamp(ctahd, event->timestamp, ×ec, &timems);
 ptime = localtime(×ec);
 printf("%02d:%02d:%02d.%03d\n",
 ptime->tm_hour, ptime->tm_min, ptime->tm_sec, timems);
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 121

adiInsertDigit

Inserts a digit at the end of the ADI service internal digit queue.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiInsertDigit (CTAHD ctahd, char digit)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

digit Alphanumeric characters to store in the digit queue. Valid values are ASCII characters 0
through 9, # (number sign), and * (asterisk), as well as A, B, C, and D.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT digit is not a valid character.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Protocol not started.

CTAERR_SVR_COMM Server communication error.

Details

Use adiInsertDigit to insert a digit into the ADI digit queue. If digit collection is
active, the digit is moved to the collection buffer and the interdigit timer is reset.

This function can be used when digits arrive from either DTMF detection or from an
out-of-band indication such as RFC2833 packets. The DTMF digits are automatically
added to the queue, whereas you must call this function to add the out-of-band
digits.

The digit queue holds 62 characters. If the digit queue is full, the oldest character is
discarded without an error indication.

If the digit is in the abort mask of an active play or record operation, the play or
record operation terminates immediately. If any digit in the queue is in the abort
mask, subsequent play or record operations terminate immediately after being
started. Use adiFlushDigitQueue, adiGetDigit, or adiCollectDigits to remove
digits from the queue.

For more information, refer to Collecting digits on page 53.

Function reference ADI Service Developer's Reference Manual

122 NMS Communications

See also

adiPeekDigit

Example
//This example shows Fusion RFC 2833 events being converted to ADI digits

#include "mspunsol.h"
#include "mspdef.h"

example(CTAHD ctahd)
{
//main event loop
for(;;)
{
CTA_EVENT event;
myGetEvent(&event); /* see ctaWaitEvent example */
switch(event.id)
{
//Assumes RTP endpoint is configured with
// dtmf_event_control = SEND_FIRST_EVENT | SEND_LAST_EVENT

case MSPEVN_RFC2833_REPORT:
{
DISASM_DTMF_EVENT_STRUCT *dtmfEvt=
 (DISASM_DTMF_EVENT_STRUCT *)(event.buffer);
if ((dtmfEvt->EvtVol & LAST_DTMF_EVENT)==0)
{
char digit='\0';
switch (DtmfEvt->EvtID)
{
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9: digit='0'+DtmfEvt->EvtID; break;
case 10: digit='*'; break;
case 11: digit='#'; break;
case 12: digit='A'; break;
case 13: digit='B'; break;
case 14: digit='C'; break;
case 15: digit='D'; break;
}
if (digit !='\0')
{
adiInsertDigit(ctahd, digit);
}
}
mspReleaseBuffer(event.objHd, event.buffer);
break;
}

// other events ...
}
}
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 123

adiModifyEchoCanceller

Modifies echo cancellation parameters after echo cancellation is started.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiModifyEchoCanceller (CTAHD ctahd, ADI_ECHOCANCEL_PARMS
*parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

parms Pointer to echo cancellation parameters, as shown:

typedef struct
{ /* parameters for echo cancellation */
 WORD size; /* size of this structure */
 DWORD mode; /* echo canceller mode */
 DWORD filterlength; /* fiter length (msec) */
 DWORD adapttime; /* filter adaptation time (msec) */
 DWORD predelay; /* offset of input sample (msec) */
 INT32 gain; /* receive gain (db) */
} ADI_ECHOCANCEL_PARMS ;

For field descriptions and valid values, refer to ADI_START_PARMS on page 264.

Return values

Return values Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_FUNCTION_NOT_ACTIVE Echo canceller function was not started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_ECHOCANCEL_STATUS Generated if the echo canceller enables send status mode. For more
information about this mode of operation, refer to echocancel.mode
in ADI_START_PARMS. The echo canceller stores the status
information in an event buffer. The information is arranged
according to the ADI_ECHOCANCEL_STATUS_INFO structure in
adidef.h. QX 2000 boards do not support the sending of echo
canceller status information.

Function reference ADI Service Developer's Reference Manual

124 NMS Communications

Details

The following DSP file must be loaded to the board before running
adiModifyEchoCanceller:

For these boards... Load this DSP file...

AG echo.m54, echo_v3.m54, or echo_v4.m54

CG echo.f54, echo_v3.f54, or echo_v4.f54

QX 2000 The standard QX DSP file

Refer to DSP file summary on page 269 for DSP file descriptions. Refer to the board
installation and developer's manual for MIPS usage.

Use this function to modify echo cancellation parameters. The echo canceller must be
started for adiModifyEchoCanceller to work. For more information, see Controlling
echo on page 57.

Echo canceller operation can be enabled or disabled by setting the proper bits in the
mode parameter. You can also change the gain applied to the near-end input and the
predelay applied to the far-end input. You cannot change the filterlength and
adapttime parameters.

You must always pass a pointer to the ADI_ECHOCANCEL_PARMS structure in the
call to adiModifyEchoCanceller because the parameters for this function do not
have default values. The echo cancel parameters are in the
NCC.X.ADI_START.echocancel structure. You must copy the individual fields to the
ADI_ECHOCANCEL_PARMS structure that you pass to adiModifyEchoCanceller.

For more information about the adiModifyEchoCanceller parameter fields, refer to
ADI_START_PARMS on page 264.

ADI Service Developer's Reference Manual Function reference

NMS Communications 125

ADI_ECHOCANCEL_STATUS_INFO structure
typedef struct
{
 WORD status; /* Echo canceller status flags */
 WORD ERL; /* Echo Return Loss */
 WORD ERLE; /* Echo Return Loss Enhancement */
 WORD sndLevel; /* Level of the sent signal */
 WORD rcvLevel; /* Level of the received signal */
 WORD refPoint; /* Reflection point location */
} ADI_ECHOCANCEL_STATUS_INFO;

The ADI_ECHOCANCEL_STATUS_INFO structure contains the following fields:

Field Description

status Echo canceller status flags. See the status flag descriptions in the following table.

ERL Echo return loss ratio. ERL is the ratio of rcvLevel to sndLevel. Compute the ERL in dBm as
follows:
ERLdBm = 10 x log (1/ERL)

ERLE Echo return loss enhancement. Compute the ERLE in dBm as follows:
ERLEdBm = 10 x log (rcvLevel/(rcvLevel - ERLE))

sndLevel Power of the sent signal. Compute the sndLevel in dBm as follows:
sndLeveldBm = 10 x log (sndLevel/0x3D29)
where 0x3D29 is the 0 dBm reference value.

rcvLevel Power of the received signal. Compute the rcvLevel in dBm as follows:
rcvLeveldBm = 10 x log (rcvLevel/0x3D29)
where 0x3D29 is the 0 dBm reference value.

refPoint The position of the maximum value in the H register in 8 kHz sample increments. If the
returned value of refPoint is 120, the reflection point is 15 ms, and a minimum tail length of
20 ms is required.

Function reference ADI Service Developer's Reference Manual

126 NMS Communications

The following table describes the status flags:

Flag Values

Status bits

0 0 = Normal
1 = Send status one time

1 0 = Normal
1 = Send status automatically

2 0 = Enable HPF on reference stream (not used in v3 and up)
1 = Disable HPF on reference stream

3 0 = Disable comfort noise generation (used in v3 and up)
1 = Enable comfort noise generation
0 = Enable HPF on echo input stream (not used in v3 and up)
1 = Disable HPF on echo input stream

Control flags

4 0 = Normal
1 = Reset filter taps to zero

5 0 = Normal
1 = Bypass echo canceler

6 0 = No adapt filter taps
1 = Adapt filter taps

7 0 = Enable NLP (echo suppressor)
1 = Disable NLP

Status flags

8 0 = Diverged
1 = Converged

9 0 = Double talk
1 = Qualifying no double talk

10 0 = Double talk
1 = Qualified no double talk

11 0 = Not suppressing output
1 = Suppressing output

12 0 = Normal
1 = Possible double talk, but energy still within range of estimated ERL

See also

adiStartProtocol

ADI Service Developer's Reference Manual Function reference

NMS Communications 127

Example
int myDisableEchoAdapt(CTAHD ctahd)
{
 ADI_ECHOCANCEL_PARMS echoParms = {0};
 NCC_ADI_START_PARMS nccStartParms = {0};

 /* get echo canceller parameters used by protocol for this ctahd */
 ctaGetParms (ctahd, NCC_ADI_START_PARMID, &nccStartParms,
 sizeof(nccStartParms));
 echoParms.size = sizeof(ADI_ECHOCANCEL_PARMS);
 echoParms.mode = nccStartParms.echocancel.mode;
 echoParms.gain = nccStartParms.echocancel.gain;
 echoParms.predelay = nccStartParms.echocancel.predelay;

 echoParms.mode |= ADI_ECHOCANCEL_NO_ADAPT;

 if(adiModifyEchoCanceller(ctahd, &echoParms) !=SUCCESS)
 {
 return MYFAILURE;
 }

 /* update the parameters */
 nccStartParms.echocancel.mode = echoParms.mode;
 ctaSetParmByName(ctahd, "ncc.x.adi_start", &nccStartParms,
 sizeof nccStartParms);
 return MYSUCCESS;
}

Function reference ADI Service Developer's Reference Manual

128 NMS Communications

adiModifyPlayGain

Sets the play gain for the duration of the active play operation.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiModifyPlayGain (CTAHD ctahd, int gain)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

gain The gain (dB) applied to the data as it is playing. The valid range is -54 through +24.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Play operation is not currently active.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Details

Use adiModifyPlayGain to alter the gain applied to voice data as it is being
transmitted. The gain remains set only for the current play operation instance.
Values specified out of range are limited by the range.

See also

adiModifyPlaySpeed, adiPlayAsync, adiPlayFromMemory, adiStartPlaying,
adiStopPlaying

ADI Service Developer's Reference Manual Function reference

NMS Communications 129

Example
int myPlaySmartly(CTAHD ctahd, unsigned encoding,
 void *buffer, unsigned bufsize)
{
 ADI_PLAY_PARMS playparms;
 CTA_EVENT event;
 int currentgain = 0;
 int currentspeed = 100;

 ctaGetParms(ADI_COLLECT_PARMID, &playparms, sizeof playparms);
 playparms.DTMFabort = 0x0; /* Don't abort on any DTMF */

 if(adiPlayFromMemory(ctahd, encoding,
 buffer, bufsize, &playparms) != SUCCESS)
 return MYFAILURE;

 do
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_DIGIT_BEGIN:
 switch((char)event.value)
 {
 case '1': /* slower */
 currentspeed -= 20;
 adiModifyPlaySpeed(ctahd, currentspeed);
 break;

 case '3': /* faster */
 currentspeed += 20;
 adiModifyPlaySpeed(ctahd, currentspeed);
 break;

 case '4': /* softer */
 currentgain -= 3; /* decrement 3 dB */
 adiModifyPlayGain(ctahd, currentgain);
 break;

 case '6': /* louder */
 currentgain += 3; /* increment 3 dB */
 adiModifyPlayGain(ctahd, currentgain);
 break;

 default: /* ignore others */
 break;
 }
 break;

 case ADIEVN_DIGIT_END: /* ignore end of dtmf */
 case 0: /* no event */
 default:
 break;
 }
 } while(event.id != ADIEVN_PLAY_DONE);

 if(event.value != CTA_REASON_FINISHED)
 return MYFAILURE;

 return SUCCESS;
}

Function reference ADI Service Developer's Reference Manual

130 NMS Communications

adiModifyPlaySpeed

Sets the playback speed for the duration of the active play operation.

Supported board types

• AG

• CG

Prototype

DWORD adiModifyPlaySpeed (CTAHD ctahd, int speed)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

speed Percentage of change to apply to the original recording, where 100 percent is no change.
Valid range of change depends on the capabilities of the hardware and DSP files installed.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Play is not currently active.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Details

Use adiModifyPlaySpeed to alter the speed (faster or slower) applied to voice data
as it is being transmitted. The speed remains set only for the current play operation
instance. Values specified out of range are limited by the range (the valid AG and CG
board range is 100 to 200 percent).

Refer to the board installation and developer's manual for a table of MIPS usage for
all functions.

Note: The PacketMedia HMP process and QX 2000 boards do not support this
function. If this function is called using a QX 2000 board,
CTAERR_FUNCTION_NOT_AVAIL is returned. If this function is called using
PacketMedia HMP, it has no effect on the speed and does not return an error
message.

See also

adiModifyPlayGain, adiPlayAsync, adiPlayFromMemory, adiStartPlaying,
adiStopPlaying

ADI Service Developer's Reference Manual Function reference

NMS Communications 131

adiPeekDigit

Reads the first digit in the ADI service internal digit queue without removing it.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiPeekDigit (CTAHD ctahd, char *digit)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

digit Pointer to a character to store the digit copied from the digit queue.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT digit is a NULL pointer.

CTAERR_FUNCTION_ACTIVE Digit collection function is already active.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Details

adiPeekDigit reads a single DTMF digit character from the front of the ADI service
internal digit queue without removing it. The digit is copied to the address pointed to
by digit. Valid digit values are the ASCII characters 0 through 9, # (number sign),
and * (asterisk), as well as A, B, C, and D. If the digit queue is empty, the value is 0
(zero).

This function cannot be invoked if the application is actively collecting digits using
adiCollectDigits.

For more information, refer to Collecting digits on page 53.

See also

adiFlushDigitQueue, adiStopCollection

Function reference ADI Service Developer's Reference Manual

132 NMS Communications

adiPlayAsync

Initiates a voice play operation with asynchronous buffer submission.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiPlayAsync (CTAHD ctahd, unsigned encoding, void *buffer, unsigned
bufsize, unsigned flags, ADI_PLAY_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

encoding Data encoding format. See Voice encoding formats on page 13 for a complete list.

buffer Pointer to initial voice data buffer.

bufsize Number of bytes stored at the address in buffer.

flags Indicates if the specified buffer is the only buffer to be played (can be set to
ADI_PLAY_LAST_BUFFER or 0).

parms Pointer to play parameters according to the following structure (NULL value uses the
default play parameters):

typedef struct
{
 DWORD size; /* size of this structure */
 DWORD DTMFabort;/* abort on DTMF */
 INT32 gain; /* playing gain in dB */
 DWORD speed; /* initial speed in percent (AG boards only) */
 DWORD maxspeed; /* max play speed in percent (AG boards only)*/
} ADI_PLAY_PARMS;

Refer to ADI_PLAY_PARMS on page 261 for field descriptions and valid values.

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_BAD_ARGUMENT Either invalid encoding or NULL buffer.

CTAERR_BAD_SIZE bufsize is not a multiple of framesize for selected encoding.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_OUTPUT_ACTIVE Play failed because there is another active output function.

CTAERR_SVR_COMM Server communication error.

ADI Service Developer's Reference Manual Function reference

NMS Communications 133

Events

Event Description

ADIEVN_PLAY_BUFFER_REQ Generated when the ADI service needs a buffer containing voice data.
The application responds by either submitting a full buffer
(adiSubmitPlayBuffer) or a full or partial buffer
(adiSubmitPlayBuffer with flag indicating ADI_PLAY_LAST_BUFFER).
If the ADI_PLAY_UNDERRUN bit is set, an underrun occurred, meaning
that playing was temporarily suspended because there was no buffer to
play.

ADIEVN_PLAY_DONE Generated by the ADI service when the play operation terminates. The
event size field contains the total number of bytes played during the
function's instance. The event value field contains one of the following
termination conditions, or an error code:

CTA_REASON_DIGIT
Aborted due to DTMF.

CTA_REASON_FINISHED
Buffer submitted with the ADI_PLAY_LAST_BUFFER flag set completed
playing.

CTA_REASON_RECOGNITION
Aborted because of speech recognition. You receive this reason only if
the application is using a speech recognition library.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Stopped by application request.

Details

Use adiPlayAsync to initiate a voice playback operation. The voice data is supplied
in a sequence of buffers. The application has complete latitude and responsibility for
allocating, filling, and submitting buffers to the ADI service.

The bufsize can be arbitrarily large but must be an integral multiple of framesize
bytes for the selected encoding. For optimum performance, the bufsize must be
the largest frame multiple that fits in one board buffer. You can obtain this size by
calling adiGetEncodingInfo (refer to the maxbufsize argument). If bufsize is less
than or equal to the board buffer size, you can reuse the buffer as soon as this
function returns. Otherwise, to avoid overwriting data, you must wait for the second
ADIEVN_PLAY_BUFFER_REQ before you can reuse the buffer.

After play initiates, the ADI service sends ADIEVN_PLAY_BUFFER_REQ to the
application whenever more data is needed. The application responds to this event by
submitting a filled voice buffer with adiSubmitPlayBuffer. The application must
submit buffers only in response to ADIEVN_PLAY_BUFFER_REQ.

For proper operation, each buffer must be submitted while the previous buffer is
being played. If a buffer is submitted too late, an underrun occurs and silence is
played. You can monitor for underruns by checking the ADI_PLAY_UNDERRUN bit in
the value field of the ADIEVN_PLAY_BUFFER_REQ event. Use adiGetPlayStatus to
retrieve a count of underruns that occurred since play started.

The application terminates play by submitting a buffer with the flags argument set
to ADI_PLAY_LAST_BUFFER. After the ADI service has played the buffer that was
submitted with the flag set, it generates ADIEVN_PLAY_DONE with the value set to
CTA_REASON_FINISHED.

Function reference ADI Service Developer's Reference Manual

134 NMS Communications

Refer to Recording and playing on page 13 for information about play operations in
asynchronous mode.

Encoding formats and DSP files

When recording or playing speech files on AG boards, a specific DSP file must be
loaded for each encoding type. For QX boards, the standard DSP file supports the
valid encoding types. For more information, refer to Voice encoding formats on page
13.

When recording or playing speech files on CG boards, a specific DSP file must be
loaded for each encoding type except when using the native play and record feature.
The native play and record feature combines an ADI port with an MSPP endpoint and
plays or records speech data directly to or from an IP endpoint with no transcoding.
For information on the native play and record feature, refer to Performing NMS
native play and record on page 31.

The following table lists the DSP files that must be loaded on the AG and CG boards.
It also lists the valid encoding types that QX boards and PacketMedia HMP processes
support:

Encoding type AG DSP file CG DSP file QX
support

PacketMedia HMP
support

ADI_ENCODE_ALAW rvoice.m54 or
rvoice_vad.m54

rvoice.f54 or
rvoice_vad.f54

Y Y

ADI_ENCODE_G723_5 g723.f54 N N

ADI_ENCODE_G723_6 g723.f54 N N

ADI_ENCODE_G726 g726.m54 g726.f54 Y Y

ADI_ENCODE_G726_16 y N

ADI_ENCODE_G726_24 y N

ADI_ENCODE_G726_32 y N

ADI_ENCODE_G726_40 y N

ADI_ENCODE_G729A g729.f54 N N

ADI_ENCODE_GSM gsm_ms.m54 gsm_ms.f54 N N

ADI_ENCODE_IMA_24 ima.m54 ima.f54 Y N

ADI_ENCODE_IMA_32 ima.m54 ima.f54 Y Y

ADI_ENCODE_NMS_16 voice.m54 voice.f54 Y Y

ADI_ENCODE_NMS_24 voice.m54 voice.f54 Y Y

ADI_ENCODE_NMS_32 voice.m54 voice.f54 Y Y

ADI_ENCODE_NMS_64 voice.m54 voice.f54 Y Y

ADI_ENCODE_MULAW rvoice.m54 or
rvoice_vad.m54

rvoice.f54 or
rvoice_vad.f54

Y Y

ADI_ENCODE_OKI_24 oki.m54 oki.f54 Y N

ADI_ENCODE_OKI_32 oki.m54 oki.f54 Y Y

ADI Service Developer's Reference Manual Function reference

NMS Communications 135

Encoding type AG DSP file CG DSP file QX
support

PacketMedia HMP
support

ADI_ENCODE_PCM8M16 rvoice.m54 or
rvoice_vad.m54

rvoice.f54 or
rvoice_vad.f54

Y Y

ADI_ENCODE_PCM11M8 wave.m54 wave.f54 Y N

ADI_ENCODE_PCM11M16 wave.m54 wave.f54 Y N

ADI_ENCODE_VOX_32 y N

Refer to DSP file summary on page 269 for DSP file descriptions. Refer to the board
installation and developer's manual for MIPS usage.

See also

adiModifyPlayGain, adiModifyPlaySpeed, adiPlayFromMemory,
adiSetNativeInfo, adiStartPlaying, adiStopPlaying,

Example

Refer to the playrec demonstration program.

Function reference ADI Service Developer's Reference Manual

136 NMS Communications

adiPlayFromMemory

Initiates a voice play operation using data from a single memory-resident buffer.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiPlayFromMemory (CTAHD ctahd, unsigned encoding, void *buffer,
unsigned bufsize, ADI_PLAY_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

encoding Encoding type. See Voice encoding formats on page 13 for a complete list.

buffer Pointer to voice data buffer.

bufsize Number of bytes stored at the address in buffer (bufsize can be arbitrarily large).

parms Pointer to play parameters according to the following structure (NULL uses default
values):

typedef struct
{ /* parms related to adiStartPlaying*/
 DWORD size ; /* size of this structure */
 DWORD DTMFabort;/* abort on DTMF; */
 INT32 gain; /* Recording gain in dB */
 DWORD speed; /* initial speed in percent */
 DWORD maxspeed; /* maximum play speed in percent */
} ADI_PLAY_PARMS;

Note: Fields in bold are not applicable to the native play and record feature.

Refer to ADI_PLAY_PARMS on page 261 for field descriptions and valid values.

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_BAD_ARGUMENT Either invalid encoding or NULL buffer.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_OUTPUT_ACTIVE Play failed because there is another active output function.

CTAERR_SVR_COMM Server communication error.

ADI Service Developer's Reference Manual Function reference

NMS Communications 137

Events

Event Description

ADIEVN_PLAY_DONE Generated by the ADI service when playing terminates. The event size field
contains the total number of bytes played during the function instance. The
event value field contains one of the following terminating conditions, or an
error code:

CTA_REASON_DIGIT
Aborted due to DTMF.

CTA_REASON_FINISHED
Complete buffer played.

CTA_REASON_RECOGNITION
Aborted because of speech recognition.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Stopped by application request.

Details

When recording or playing speech files on AG boards, a specific DSP file must be
loaded for each encoding type. For QX boards, the standard DSP file supports the
valid encoding types. For more information, refer to Voice encoding formats on page
13.

When recording or playing speech files on CG boards, a specific DSP file must be
loaded for each encoding type except when using the native play and record feature.
The native play and record feature combines an ADI port with an MSPP endpoint and
plays or records speech data directly to or from an IP endpoint with no transcoding.
For information on the native play and record feature, refer to Performing NMS
native play and record on page 31.

For more information, see Encoding formats and DSP files on page 134. The table
lists the DSP files that must be loaded on the AG and CG boards. It also lists the
valid encoding types that QX boards and PacketMedia HMP processes support. Refer
to the board installation and developer's manual for MIPS usage.

adiPlayFromMemory starts playing a single memory-resident buffer of bufsize
bytes. The ADI service generates ADIEVN_PLAY_DONE when the function
terminates. To avoid unintentionally modifying data, the application must not modify
the buffer until it receives the DONE event.

For more information, refer to Playing on page 25.

See also

adiGetEncodingInfo, adiGetPlayStatus, adiModifyPlayGain,
adiModifyPlaySpeed, adiPlayAsync, adiSetNativeInfo, adiStartPlaying,
adiStopPlaying

Function reference ADI Service Developer's Reference Manual

138 NMS Communications

Example
int myPlayMemory(CTAHD ctahd, unsigned encoding,
 void *buffer, unsigned bufsize)
{
 CTA_EVENT event;

 if(adiPlayFromMemory(ctahd, encoding, buffer, bufsize, NULL) != SUCCESS)
 return MYFAILURE;

 do
 {
 myGetEvent(&event);/* see ctaWaitEvent example*/
 } while(event.id != ADIEVN_PLAY_DONE);

 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated*/
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 139

adiQuerySignalState

Queries the current state of the out-of-band signaling bits. Use only with NOCC
protocol.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiQuerySignalState (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE adiStartSignalDetector was not called.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_RESOURCE_CONFLICT A protocol other than NOCC is active.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_QUERY_SIGNAL_DONE After the ADI service queries the board for the current signaling
pattern, the ADI service generates an event with the size field
containing the current signaling pattern. It is a mask of the
following constants found in adidef.h: ADI_A_BIT, ADI_B_BIT,
ADI_C_BIT, and ADI_D_BIT.

Details

The AG 2000, AG 2000C, and AG 2000-BRI boards require signal.m54 to be loaded.

Use adiQuerySignalState to query the out-of-band signaling detector for the
current state of the signaling bits. These signaling bits can be the actual T1/E1 digital
carrier signaling bits, or they can relate to specific detectors of analog interface
boards (for example, a ring detector). In both cases, the ADI service recognizes four
signaling bits: A, B, C, and D, often written as ABCD, and defined by the constants
ADI_A_BIT, ADI_B_BIT, ADI_BIT, and ADI_D_BIT.

Note: This function can be called only if you started detection using
adiStartSignalDetector.

Function reference ADI Service Developer's Reference Manual

140 NMS Communications

Example
int myShowMVIP(CTAHD ctahd)
{
 CTA_EVENT event;

 if(adiQuerySignalState(ctahd) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_QUERY_SIGNAL_DONE:
 printf("MVIP signalling bits = 0x%x (%c%c%c%c)\n",
 (event.value&0xf),
 (event.value&0x8)?'A':'-', (event.value&0x4)?'B':'-',
 (event.value&0x2)?'C':'-', (event.value&0x1)?'D':'-');
 break;

 /* ... */
 }
 }
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 141

adiRecordAsync

Initiates recording in asynchronous buffer mode.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiRecordAsync (CTAHD ctahd, unsigned encoding, unsigned
maxmsec, void *buffer, unsigned bufsize, ADI_RECORD_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

encoding Encoding type. See Voice encoding formats on page 13 for a complete list.

maxmsec Maximum duration for recording (milliseconds). When voice activity detection is enabled,
maxmsec is the maximum duration of speech recording, excluding silences.

buffer Pointer to buffer to receive recorded data.

bufsize Number of bytes available at buffer (bufsize must be set to an exact multiple of the framesize
for the selected encoding).

parms Pointer to record parameters according to the following structure (NULL uses default values):

typedef struct
{
 WORD size; /* size of this structure */
 DWORD DTMFabort; /* mask that specifies DTMF tones to abort; */
 INT32 gain; /* recording gain in dB SLC parms (used if silence det);*/
 DWORD novoicetime; /* length of initial silence to stop recording (ms);*/
 /* use 0 to deactivate initial silence detection. */
 DWORD silencetime; /* length of silence to stop recording after */
 /* voice has been detected; use 0 to deactivate. */
 INT32 silenceampl; /* qualif level for silence (dBm) */
 DWORD silencedeglitch; /* deglitch while qualifying silence */
 /*-[Beep for record]------------------------------*/
 DWORD beepfreq; /* beep frequency (Hz) */
 INT32 beepampl; /* beep amplitude (dBm) */
 DWORD beeptime; /* beep time (ms) 0=no beep */
 /*--[AGC parms]-----------------------------------*/
 DWORD AGCenable; /* enable AGC; use 1 to activate */
 INT32 AGCtargetampl; /* target AGC level (dBm) */
 INT32 AGCsilenceampl; /* silence level (dBm) */
 WORD AGCattacktime; /* attack time (ms) */
 DWORD AGCdecaytime; /* decay time (ms) */
} ADI_RECORD_PARMS;

Refer to ADI_RECORD_PARMS on page 262 for field descriptions and valid values.

Function reference ADI Service Developer's Reference Manual

142 NMS Communications

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_BAD_ARGUMENT Either invalid encoding selected or NULL buffer pointer passed.

CTAERR_BAD_SIZE size is less than one frame.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_OUTPUT_ACTIVE Record failed because there is another active output function.

CTAERR_RESOURCE_CONFLICT Silence detector is in use by adiStartEnergyDetector.

CTAERR_SVR_COMM Server communication error.

ADI Service Developer's Reference Manual Function reference

NMS Communications 143

Events

Event Description

ADIEVN_RECORD_STARTED Generated by the ADI service after the function is started on the
board. If the ADI_RECORD_BUFFER_REQ bit in the event value
field is set, more buffers are needed and the application must
submit another empty buffer.

ADIEVN_RECORD_BUFFER_FULL Generated by the ADI service when a buffer is filled with recorded
voice data.

The event contains the following fields:

• buffer: Pointer to a previously submitted user buffer.

• size: Number of bytes recorded into buffer.

• value: Flags; If the ADI_RECORD_BUFFER_REQ bit is set,
more buffers are needed and the application must submit
another empty buffer. If the ADI_RECORD_UNDERRUN bit is
set, an underrun occurred. There was no new buffer to record
information when this one was completed.

ADIEVN_RECORD_DONE Generated when the record operation completes. The event size
field contains the total number of bytes recorded during the record
instance lifetime. The value field contains one of the following
termination reasons or error codes:

CTA_REASON_DIGIT
Aborted due to DTMF.

CTA_REASON_NO_VOICE
No voice detected.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Stopped by application request.

CTA_REASON_TIMEOUT
Record time limit (maxmsec) reached.

CTA_REASON_VOICE_END
User stopped speaking.

CTAERR_FUNCTION_NOT_AVAIL
Required DSP file not loaded on the board.

CTAERR_xxx or ADIERR_xxx
Record failed.

Details

When recording or playing speech files on AG boards, a specific DSP file must be
loaded for each encoding type. For QX boards, the standard DSP file supports the
valid encoding types. For more information, refer to Voice encoding formats on page
13.

When recording or playing speech files on CG boards, a specific DSP file must be
loaded for each encoding type except when using the native play and record feature.
The native play and record feature combines an ADI port with an MSPP endpoint and
plays or records speech data directly to or from an IP endpoint with no transcoding.
For information on the native play and record feature, refer to Performing NMS
native play and record on page 31.

Function reference ADI Service Developer's Reference Manual

144 NMS Communications

For more information, see Encoding formats and DSP files on page 134. The table
lists the DSP files that must be loaded on the AG and CG boards. It also lists the
valid encoding types that QX boards and PacketMedia HMP processes support. Refer
to the board installation and developer's manual for MIPS usage.

Use adiRecordAsync to initiate a voice record operation. The data is supplied to the
application in a sequence of buffers. The application submits empty buffers using
adiSubmitRecordBuffer for the duration of the operation. These buffers are then
filled with recorded voice data and ADIEVN_RECORD_BUFFER_FULL events are
returned. The application has complete latitude and responsibility for allocating,
flushing, and submitting the buffers.

When the ADI service needs another buffer, it sets the ADI_RECORD_BUFFER_REQ
bit in the event value field for ADIEVN_RECORD_STARTED and
ADIEVN_RECORD_BUFFER_FULL. The application responds by submitting another
empty buffer using adiSubmitRecordBuffer. The application submits buffers only
when requested by the ADI service. The ADI service owns the buffer until either
ADIEVN_RECORD_BUFFER_FULL or ADIEVEN_RECORD_DONE is delivered to the
application.

The last buffer before the DONE event can be a partial buffer. The DONE event itself
does not include a buffer of data. The record operation terminates when the
application receives ADIEVN_RECORD_DONE.

Note: The final buffer submitted is not always returned to the application. If the
application dynamically allocates buffers, it must keep track of submitted buffers to
free any outstanding buffers when record is done.

For optimum performance, the bufsize must be the largest frame multiple that fits
in one board buffer. You can obtain this size by calling adiGetEncodingInfo (refer
to the maxbufsize argument).

For proper operation, each buffer must be submitted while the previous buffer is
being filled. If a buffer is submitted too late, an underrun occurs and the input data
is lost. You can monitor for underruns by checking the ADI_RECORD_UNDERRUN bit
in the value field of ADIEVN_RECORD_BUFFER_FULL. Use adiGetRecordStatus to
retrieve a count of underruns that occurred since record started.

Note: You cannot initiate a record operation while playing voice or generating tones
unless you disable the record beep by setting either ADI_RECORD.beeptime or
ADI_RECORD.beepfreq to 0 (zero). You cannot start a record operation if the energy
detector is active unless both ADI_RECORD.novoicetime and
ADI_RECORD.silencetime are 0 (zero).

For more information, refer to Recording on page 20.

See also

adiCommandRecord, adiRecordToMemory, adiSetNativeInfo,
adiStartRecording, adiStopRecording

Example

Refer to the playrec demonstration program.

ADI Service Developer's Reference Manual Function reference

NMS Communications 145

adiRecordToMemory

Initiates recording of an RTP stream into a single memory-resident buffer.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiRecordToMemory (CTAHD ctahd, unsigned encoding, void *buffer,
unsigned bufsize, ADI_RECORD_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

encoding Encoding type. See Voice encoding formats on page 13 for a complete list.

buffer Pointer into process memory to receive encoded data.

bufsize Number of bytes pointed by buffer (bufsize can be arbitrarily large and is truncated to a
multiple of the framesize for the selected encoding).

If recording a channel using the native record feature and silence compression is enabled
(refer to the expandsilence parameter in ADI_NATIVE_PARMS), this buffer size does not
imply a specific time limit. If the application requires a specific time limit, use
adiStartRecording or adiRecordAsync to set the maximum record time parameter.

parms Pointer to record parameters according to the following structure (NULL designates
default values):

typedef struct
{
 DWORD size; /* Size of this structure */
 DWORD DTMFabort; /* Abort on DTM */
 INT32 gain; /* Recording gain in dB */
 /*-[SLC parms (used if silence det)] */
 DWORD novoicetime; /* Length of initial silence to stop */
 /* Recording (ms); use 0 to deactivate */
 /* Initial silence detection. */
 DWORD silencetime; /* Length of silence to stop recording */
 /* After voice has been detected (ms); */
 /* Use 0 to deactivate. */
 INT32 silenceampl; /* Qualif level for silence (dBm) */
 WORD silencedeglitch; /* Deglitch while qualifying silence(ms)*/
 /*-[Beep for record]--------------------*/
 DWORD beepfreq; /* Beep frequency (Hz) */
 INT32 beepampl; /* Beep amplitude (dBm) */
 DWORD beeptime; /* Beep time (ms) 0=no beep */
 /*--[AGC parms]-------------------------*/
 WORD AGCenable; /* Enable AGC; use 1 to activate */
 INT32 AGCtargetampl; /* Target AGC level (dBm) */
 INT32 AGCsilenceampl; /* Silence level (dBm) */
 DWORD AGCattacktime; /* Attack time (ms) */
 DWORD AGCdecaytime; /* Decay time (ms) */
} ADI_RECORD_PARMS;

Note: Fields in bold are not applicable to the native play and record feature.

Refer to ADI_RECORD_PARMS on page 262 for field descriptions and valid values.

Function reference ADI Service Developer's Reference Manual

146 NMS Communications

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_BAD_ARGUMENT Invalid encoding or NULL buffer.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_OUTPUT_ACTIVE Record failed because there is another active output function.

CTAERR_RESOURCE_CONFLICT Silence detector is in use by adiStartEnergyDetector.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_RECORDING_DONE Generated when the recording operation terminates. The event size
field contains the total number of bytes written into the buffer. The
value field contains one of the following termination reasons or error
codes:

CTA_REASON_DIGIT
Aborted due to DTMF.

CTA_REASON_FINISHED
Buffer filled.

CTA_REASON_NO_VOICE
No voice detected.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Stopped by application request.

CTA_REASON_VOICE_END
User stopped speaking.

CTAERR_FUNCTION_NOT_AVAIL
Required DSP file not loaded on the board.

CTAERR_xxx or ADIERR_xxx
Record failed.

ADI Service Developer's Reference Manual Function reference

NMS Communications 147

Details

When recording or playing speech files on AG boards, a specific DSP file must be
loaded for each encoding type. For QX boards, the standard DSP file supports the
valid encoding types. For more information, refer to Voice encoding formats on page
13.

When recording or playing speech files on CG boards, a specific DSP file must be
loaded for each encoding type except when using the native play and record feature.
The native play and record feature combines an ADI port with an MSPP endpoint and
plays or records speech data directly to or from an IP endpoint with no transcoding.
For information on the native play and record feature, refer to Performing NMS
native play and record on page 31.

For more information, see Encoding formats and DSP files on page 134. The table
lists the DSP files that must be loaded on the AG and CG boards. It also lists the
valid encoding types that QX boards and PacketMedia HMP processes support. Refer
to the board installation and developer's manual for MIPS usage.

Use adiRecordToMemory to initiate recording to memory-resident buffer of size
bufsize and return to the application. The ADI service records data into the buffer
until one of the terminating conditions described in ADIEVN_RECORDING_DONE
occurs.

Note: You cannot initiate a record operation while playing voice or generating tones
unless you disable the record beep by setting either ADI_RECORD.beeptime or
ADI_RECORD.beepfreq to 0 (zero). You cannot start a record operation if the energy
detector is active, unless both ADI_RECORD.novoicetime and
ADI_RECORD.silencetime are 0 (zero).

For more information, refer to Recording on page 20.

See also

adiCommandRecord, adiGetEncodingInfo, adiSetNativeInfo,
adiStopRecording

Function reference ADI Service Developer's Reference Manual

148 NMS Communications

Example
/* Record to supplied buffer, stopping after 1 second of silence. */
int myRecord(CTAHD ctahd, unsigned encoding,
 void *buf, unsigned bufsize, unsigned *bytesrecorded)
{
 ADI_RECORD_PARMS parms;
 CTA_EVENT event;
 unsigned datarate; /* average bytes/sec */
 int myret;
 unsigned silencetime = 1000;
 unsigned trimsize = 0;

 /* Modify default silence timeout */
 ctaGetParms (ADI_RECORD_PARMID, &parms, sizeof parms);
 parms.silencetime = silencetime;

 if(adiRecordToMemory (ctahd, encoding, buf, bufsize, &parms) != SUCCESS)
 return MYFAILURE;

 do
 {
 myGetEvent(&event); /* see ctaWaitEvent example */
 } while (event.id != ADIEVN_RECORD_DONE);

 switch (event.value)
 {
 case CTA_REASON_FINISHED: /* Buffer filled */
 myret = SUCCESS;
 break;

 case CTA_REASON_NO_VOICE: /* No voice detected */
 *bytesrecorded = 0;
 myret = SUCCESS;
 break;

 case CTA_REASON_RELEASED: /* The call was terminated */
 myret = MYDISCONNECT;
 break;

 case CTA_REASON_STOPPED: /* adiStopRecording was called */
 case CTA_REASON_DIGIT: /* Aborted due to touchtone */
 /* DTMF is trimmed automatically by AG board */
 *bytesrecorded = event.size;
 myret = SUCCESS;
 break;
 case CTA_REASON_VOICE_END: /* Silence after voice */
 *bytesrecorded = event.size;
 adiGetEncodingInfo (ctahd, encoding, NULL, &datarate, NULL);
 trimsize = datarate * silencetime / 1000;
 myret = SUCCESS;
 break;

 default: /* an error code */
 myret = MYFAILURE;
 break;
 }

 if (myret == SUCCESS)
 {
 if (*bytesrecorded > trimsize)
 *bytesrecorded -= trimsize;
 else
 *bytesrecorded = 0;
 }

 return myret;
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 149

adiSetBoardClock

Sets the time on an AG or a CG board.

Supported board types

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiSetBoardClock (CTAHD ctahd, unsigned board, unsigned long time)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

board Board number as specified in the board keyword file.

time Number of seconds elapsed since 1/1/70.

Return values

Return value Description

SUCCESS

CTAERR_DRIVER_SEND_FAILED Invalid board.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_SVR_COMM Server communication error.

Details

Use adiSetBoardClock to update the time on an AG board or a CG board, affecting
the timestamp in all events that originate on the board. board does not have to be
the same board that the ADI service is opened on, but it must be the same family of
board (AG or CG). If you are opening the ADI service only to set the clock, set
services[0].mvipaddr.mode to 0 (zero) in the call to ctaOpenServices so that no
timeslot is used.

See also

adiGetTimeStamp

Example
int mySetBoardClock (CTAHD ctahd, unsigned board)
{
 time_t ltime = time(NULL);
 return adiSetBoardClock(ctahd, board, ltime);
}

Function reference ADI Service Developer's Reference Manual

150 NMS Communications

adiSetNativeInfo

Enables native play and record mode for an ADI port.

Supported board types

• CG

• PacketMedia HMP process

Prototype

DWORD adiSetNativeInfo (CTAHD ctahd, DWORD ingresshd, DWORD
egresshd, ADI_NATIVE_CONTROL *control)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

ingresshd MSPP filter handle that connects the ADI native record channel on the board to the MSP
jitter buffer.

egresshd MSPP endpoint handle that connects the ADI native play channel on the board to the RTP
endpoint.

ADI Service Developer's Reference Manual Function reference

NMS Communications 151

Argument Description

control Pointer to the ADI_NATIVE_CONTROL structure, as shown:

typedef struct
{
DWORD size; /* Size of this structure
 */
DWORD mode; /* Enables and disables native
 */
 /* play/record mode for the adi port.
 */
 /* (ADI_NATIVE, ADI_IVR_ONLY)
 */
DWORD play_encoding; /* Encoding type for native play (refer to
adidef.h*/
 /* for a complete list of ADI_ENCODING_xxx
values).*/
 /* If the mode is ADI_NATIVE and this encoding
type*/
 /* matches the one specified in a subsequent play
*/
 /* command, the native path will be used,
otherwise*/
 /* the PSTN play or record path will be used.
*/
DWORD rec_encoding; /* Encoding type for native record (refer to
*/
 /* adidef.h for a complete list of
ADI_ENCODING_xxx*/
 /* values). If the mode is ADI_NATIVE and this
*/
 /* encoding type matches the one specified in a
*/
 /* subsequent record command, the native path will
*/
 /* be used, otherwise the PSTN play or record path
*/
 /* will be used.
*/
DWORD frameformat; /* specifies record frame format
*/
DWORD include2833; /* include RFC2833 markers in record buffers
*/
WORD payloadID; /* RTP payload type for egress
*/
WORD nsPayload; /* nonstandard payload indicator for Egress RTP,
*/
 /* 0 (default)=RFC3267 AMR payload is used,
*/
 /* 1=AMR IF2 frames are packed as payload)
*/
WORD vadFlag; /* VAD enable (1)/disable (0) sending of SID
frames*/
} ADI_NATIVE_CONTROL;

Refer to the Details section for field descriptions.

Function reference ADI Service Developer's Reference Manual

152 NMS Communications

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Details

Use adiSetNativeInfo to set the native play and record parameters. The native play
and record feature enables applications to use the ADI service to play and record
voice data directly to and from RTP endpoints associated with MSPP service
connections. For information about the native play and record feature, refer to
Performing NMS native play and record on page 31.

To enable the native play and record feature in the ADI_NATIVE_CONTROL
structure, set the mode to ADI_NATIVE. Also set the encoding type so that it
matches the encoding type specified in the associated ADI play or record function
calls. The specified encoding type must be one of the ADI_ENCODE_EDTX formats.
For information about encoding formats, refer to Recording and playing on page 13.

Subsequent play calls specifying an encoding type with the same base codec type
use the native path to play directly to the MSPP filter. The egress handle in this
function specifies the MSPP filter. For example, if the ADI_ENCODE_EDTX_G723 is
specified in the call, subsequent play or record calls specifying
ADI_ENCODE_G723_6, ADI_ENCODE_G723_5, ADI_ENCODE_EDTX_G723,
ADI_ENCODE_EDTX_G723_6, or ADI_ENCODE_EDTX_G723_5 use the native play
path.

Subsequent record calls specifying an ADI_ENCODE_EDTX encoding type with the
same base codec type use the native path to record from the MSPP filters. The
ingress handle in this function specifies the MSPP filters. For example, if the
ADI_ENCODE_EDTX_G723 is specified in the call, subsequent play or record calls
specifying ADI_ENCODE_EDTX_G723, ADI_ENCODE_EDTX_G723_6, or
ADI_ENCODE_EDTX_G723_5 use the native record path.

To disable the native feature in the ADI_NATIVE_CONTROL structure, set the mode
to ADI_IVR_ONLY.

Because the native record mode responds to silence as well as to audio data, the ADI
port requires DSP resources for silence detection.

ADI Service Developer's Reference Manual Function reference

NMS Communications 153

The ADI_NATIVE_CONTROL structure contains the following fields:

Field Description

size Size of the structure in bytes.

mode ADI_NATIVE = use the ADI service to play and record voice data directly to and from
RTP endpoints associated with MSPP service connections.

ADI_IVR_ONLY = use the PSTN play or record path.

play_encoding Native play data encoding format. See Recording and playing on page 13 for a
complete list.

rec_encoding Native record data encoding format. See Recording and playing for a complete list.

frameformat Frame format in record buffers:
0 = Variable frame size with compressed silence
1 = Variable frame size with expanded silence
2 = Fixed frame size with compressed silence
3 = Fixed frame size with expanded silence

include2833 RFC2833 markers in record buffers:
0 = Disable
1 = Enable

payloadID Payload type used in egress RTP packets as defined in RFC3551.

nsPayload Payload format of egress RTP packets:
0 = Standard payload format
1 = Nonstandard payload format

vadFlag Send SID frames:
0 = Enable (default)
1 = VAD disable

See also

adiPlayAsync, adiPlayFromMemory, adiRecordAsync, adiRecordToMemory,
adiStartPlaying, adiStartRecording

Example
void mySetNativeInfo(CTAHD ctahd, DWORD ingresshd, DWORD egresshd, int encoding, int
payloadID)
{
ADI_NATIVE_CONTROL np;
np.rec_encoding = encoding;
np.play_encoding = encoding;
np.frameformat = 0;
np.include2833 = 0;
np.mode = ADI_NATIVE;
np.nsPayload = 0;
np.payloadID = payloadID;
np.vadFlag = 1
if((ret =adiSetNativeInfo(ctahd, ingresshd, egresshd, &np)) == SUCCESS)
printf("Set Native Control Successful for handle %x\n", ctahd);
else
printf("Set Native Control Failed (%x) for handle %x\n",ret, ctahd);
return;
}

Function reference ADI Service Developer's Reference Manual

154 NMS Communications

adiStartCallProgress

Starts monitoring call progress analysis data.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStartCallProgress (CTAHD ctahd, ADI_CALLPROG_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

parms Pointer to call progress analysis parameters, stored in the ADI_CALLPROG_PARMS, as
follows (NULL designates default values):

typedef struct
{
 DWORD size; // Size of this structure
 DWORD timeout; // If no tone/voice detected, done via timeout (ms)
 DWORD busycount; // Number of busy cycles until report and quit;
 // busycount ignored if precise busy detected.
 DWORD ringcount; // Number of ring cycles until report and quit.
 DWORD maxreorder; // Separates fast busy from busy (ms)
 DWORD maxbusy; // Separates busy from ring cycle (ms)
 DWORD maxring; // Separates ring from dial tones (ms)
 DWORD maxringperiod; // Maximum ring period before CP_RING_QUIT (ms)
 DWORD voicemedium; // Time after VOICE BEGIN until VOICE MEDIUM (ms)
 DWORD voicelong; // Time after VOICE BEGIN until VOICE LONG (ms)
 DWORD voicextended; // Time after VOICE BEGIN until VOICE EXTENDED (ms)
 DWORD silencetime; // Silence period after voice til VOICE END (ms)
 DWORD precqualtime; // Precise tone qualification time (ms)
 DWORD precmask; // Precise tone mask
 DWORD stopmask; // mask to auto-stop adiCallProgress:
 INT32 silencelevel; // Reference level below which is "silence" (dBm)
 DWORD voicetoneratio;// voice vs. tone ratio (IDUs)
 DWORD qualtonetime1; // Qualify time 1 for the TONE state (ms);
 DWORD qualtonetime2; // Qualify time 2 for the TONE state (ms);
 DWORD qualvoicetime1;// Qualify time 1 for the VOICE state (ms);
 DWORD qualvoicetime2;// Qualify time 2 for the VOICE state (ms);
 DWORD leakagetime; // Leaky integrator time constant (in ms)
 DWORD noiselevel; // Level window for QT2 state (in IDUs)
} ADI_CALLPROG_PARMS;

Refer to ADI_CALLPROG_PARMS on page 254 for field descriptions.

ADI Service Developer's Reference Manual Function reference

NMS Communications 155

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT Function argument had an invalid value, or a required pointer argument
was NULL.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_CP_BUSYTONE Detected a busy tone.

ADIEVN_CP_CED Detected a called party modem or fax terminal tone.

ADIEVN_CP_DIALTONE Detected a dial tone.

ADIEVN_CP_DONE Call progress analysis terminated normally. The event value field can
contain one of the following termination conditions or an error code:

CTA_REASON_FINISHED
CTA_REASON_TIMEOUT
CTA_REASON_RELEASED
CTA_REASON_STOPPED

ADIEVN_CP_NOANSWER Detected no answer. The parameterized number of rings were detected
without voice being detected.

ADIEVN_CP_RINGQUIT Call progress analysis stopped detecting ring tones. Ring was previously
detected and another ring was not detected in time. The cause can be a
network error or a soft speaker answering the phone.

ADIEVN_CP_RINGTONE Detected ring tone.

ADIEVN_CP_REORDERTONE Detected a reorder (fast-busy) tone.

ADIEVN_CP_SIT Detected a special information tone (SIT).

If ADI_CPMSK_PRECISE_SITEXT is set in precmask, the low order three
bits in the event value field indicate the type of SIT detected:

001 = intercept
011 = reorder; ineffective other
101 = vacant code
111 = no circuit available

ADIEVN_CP_STOPPED Call progress analysis terminated by the application.

Function reference ADI Service Developer's Reference Manual

156 NMS Communications

Event Description

ADIEVN_CP_TDD Detected a TDD/TTY device tone.

ADIEVN_CP_VOICE Call progress analysis detected voice. The event value field contains one
of the following:

ADI_CP_VOICE_BEGIN
ADI_CP_VOICE_MEDIUM
ADI_CP_VOICE_LONG
ADI_CP_VOICE_EXTENDED
ADI_CP_VOICE_END

Details

The following DSP files must be loaded to the board before running
adiStartCallProgress:

For these boards... Load these DSP files...

AG callp.m54
ptf.m54

CG callp.f54
ptf.f54

QX The standard QX DSP file

Refer to DSP file summary on page 269 for DSP descriptions. Refer to the board
installation and developer's manual for a table of MIPS usage for all functions.

Use this function to start the call progress analysis operation. This is the same
functionality utilized by call control. It can be used by applications that are not using
standard call control, or by any application during the connected state.

Caution: Modifying the following fields in ADI_CALLPROG_PARMS can compromise your application's
ability to interact with the telephone network:

voicetoneratio
qualtonetime1
qualtonetime2
qualvoicetime1
qualvoicetime2
leakagetime
noiselevel

The call progress analysis operation always terminates when any of the following
events occurs:

• ADIEVN_CP_DIALTONE

• ADIEVN_CP_BUSYTONE

• ADIEVN_CP_RORDTONE

• ADIEVN_CP_SIT

• ADIEVN_CP_NOANSWER

• ADIEVN_CP_CED

• ADIEVN_CP_TDD

ADI Service Developer's Reference Manual Function reference

NMS Communications 157

You can configure the ADI_CALLPROG_PARMS stopmask parameter to stop when
any of the following events occur:

• ADIEVN_CP_RINGTONE

• ADIEVN_CP_RINGQUIT

• ADIEVN_CP_VOICE_BEGIN

• ADIEVN_CP_VOICE_MEDIUM

• ADIEVN_CP_VOICE_LONG

• ADIEVN_CP_VOICE_EXTENDED

• ADIEVN_CP_VOICE_END

See also

adiStopCallProgress

Example
/* Wait for voice detection or any network tone.
* Returns SUCCESS if voice is detected within 30 seconds, else DISCONNECT.
*/
int waitforvoice(CTAHD ctahd)
{
 ADI_CALLPROG_PARMS parms;
 CTA_EVENT event;
 DWORD last_cp_event = 0;

 ctaGetParms (ctahd, ADI_CALLPROG_PARMID, &parms, sizeof parms);
 parms.stopmask |= ADI_CPSTOP_ON_VOICE_BEGIN;
 parms.timeout = 30000; /* Increase timeout from default 10 seconds */

 if(adiStartCallProgress (ctahd, &parms) != SUCCESS)
 return MYFAILURE;

 do
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 if (ADIEVN_CP_VOICE <= event.id && event.id <= ADIEVN_CP_CED)
 last_cp_event = event.id;

 } while (event.id != ADIEVN_CP_DONE);

 switch (event.value)
 {
 case CTA_REASON_FINISHED:
 if (last_cp_event == ADIEVN_CP_VOICE)
 return SUCCESS;
 else
 return MYDISCONNECT; /* hang-up tone detected */

 case CTA_REASON_TIMEOUT: /* nothing detected - give up */
 case CTA_REASON_RELEASED: /* The call was terminated */
 case CTA_REASON_STOPPED:
 default:
 return MYDISCONNECT;
 }
}

Function reference ADI Service Developer's Reference Manual

158 NMS Communications

adiStartDial

Starts the dialing function for applications that are not using protocol-independent
call control.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStartDial (CTAHD ctahd, char *digitstr, ADI_DIAL_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

digitstr Pointer to string of digits to be dialed (ADI_MAX_DIGITS).

parms Pointer to dialing parameters, stored in ADI_DIAL_PARMS structure as follows (NULL
designates default values):

typedef struct
{
 WORD size; /* size of this structure */
 DWORD method; /* default dialing method: 0=DTMF, 1=pulse, 2=MF */
 DWORD breaktime; /* duration of pulse digit break (ms) */
 DWORD maketime; /* duration of pulse digit make (ms) */
 DWORD interpulse; /* interdigit delay between pulsed digits (ms) */
 DWORD flashtime; /* duration of the flash-hook (ms) */
 DWORD shortpause; /* duration of the comma in dialing string (ms) */
 DWORD longpause; /* duration of the dot in dialing string (ms) */
 INT32 dtmfampl1; /* first dtmf amplitude (dBm) */
 INT32 dtmfampl2; /* second dtmf amplitude (dBm) */
 DWORD dtmfontime; /* ON duration of DTMFs (ms) */
 DWORD dtmfofftime; /* OFF duration of DTMFs (ms) */
 DWORD dialtonewait; /* max time to wait for dialtone (ms) on ';' */
 /* precise dialtone parameters: */
 DWORD tonefreq1; /* frequency to detect */
 DWORD tonebandw1; /* bandwidth */
 DWORD tonefreq2; /* 2nd frequency to detect (dualtone) */
 DWORD tonebandw2; /* 2nd bandwidth */
 INT32 tonequalampl; /* broadband qual level (in dBm) */
 DWORD tonequaltime; /* qualification time (in ms) */
 DWORD tonereflevel; /* reserved */
 DWORD reserved; /* reserved, must be 0 */
 DWORD tonetotaltime; /* total time for dial tone with interruptions */
} ADI_DIAL_PARMS;

In some instances, the dtmfofftime can increase by 20 ms.

Refer to ADI_DIAL_PARMS on page 257 for field descriptions.

ADI Service Developer's Reference Manual Function reference

NMS Communications 159

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT digitstr is NULL.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_OUTPUT_ACTIVE Open port failed because the stream and slot are already opened on
another port.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_DIAL_DONE The reason in the value field can contain either an error or one of the following:

CTA_REASON_FINISHED
CTA_REASON_RELEASED
CTA_REASON_STOPPED

Details

For AG boards and CG boards, adiStartDial requires one or more of the following
DSP files to be loaded, depending on the digitstr and related parameters:

CG boards AG boards Use

tone.f54 tone.m54 Generating DTMF and MF tones.

None signal.m54
(AG 2000, AG 2000C, and AG 2000-BRI only)

Generating pulse digits.

ptf.f54 ptf.m54 Precise dial tone detection.

For QX boards, this function is supported in the standard DSP file. Refer to the QX
2000 Installation and Developer's Manual for a table of MIPS usage for all functions.

Use this function to start dialing for NOCC users. adiStartDial is similar to
adiStartDTMF, but also allows access to pulse-dialing, flashing, and precise dial
tone detection.

Note: The DTMF detector is disabled while adiStartDial is active.

Function reference ADI Service Developer's Reference Manual

160 NMS Communications

digitstr can contain the following embedded escape characters that control the
dialing sequence:

Character Description

; (semicolon) Wait for precise dial tone.

. (period) Insert long pause in dialing.

, (comma) Insert short pause in dialing.

! Flash hook.

P Switch to pulse dialing.

T Switch to DTMF dialing.

M Switch to MF dialing.

The following table lists the mapping to the United States MF digits for MF dialing:

Digit United States MF name

0 to 9 Specific digit address

B MF ST3P

C MF STP

D MF KP

E MF KP2, MF ST2P

F MF ST

NOCC users can start a call progress analysis operation (adiStartCallProgress)
after receiving the DONE event.

After calling adiStartDial, expect a DONE event. If the function is dialing DTMFs, the
outbound voice path must be available (not in use by another function). If the
function is pulse dialing, the outbound signaling path must be available.

See also

adiStartMFDetector, adiStartProtocol, adiStopDial

ADI Service Developer's Reference Manual Function reference

NMS Communications 161

adiStartDTMF

Starts generating a string of DTMFs or MFs.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStartDTMF (CTAHD ctahd, char *digits, ADI_DTMF_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

digits Pointer to a string of DTMF digits including 0 though 9, A through F, * (asterisk), #
(number sign), and , (comma) or . (period) for pauses. All other characters are ignored.

parms Pointer to DTMF parameters according to the following structure (NULL value uses the
default values):

typedef struct
{
 DWORD size; /* size of this structure */
 INT32 ampl1; /* level of first tone (dBm) */
 INT32 ampl2; /* level of second tone (dBm) */
 DWORD ontime; /* on duration of DTMF tone (ms) */
 DWORD offtime; /* off duration of DTMF tone (ms) */
 DWORD shortpause;/* duration of ',' (ms) */
 DWORD longpause /* duration of '.' (ms) */
} ADI_DTMF_PARMS;

In some instances, the dtmfofftime can increase by 20 ms.

Refer to ADI_DTMF_PARMS on page 259 for field descriptions.

Return values

Return value Description

SUCCESS

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_OUTPUT_ACTIVE Open port failed because the stream and slot are already opened on
another port.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_TONES_DONE Value field can contain CTA_REASON_FINISHED or CTA_REASON_STOPPED.

Function reference ADI Service Developer's Reference Manual

162 NMS Communications

Details

The following DSP file must be loaded to the board before running adiStartDTMF:

For these boards... Load this DSP file...

AG tone.m54

CG tone.f54

QX The standard QX DSP file

See DSP file summary on page 269 for DSP file descriptions. Refer to the board-
specific installation and developer's manual for a table of MIPS usage for all
functions.

Use this function to start generating a sequence of DTMF tones or MF tones. Use
adiStopTones to terminate DTMF or MF generation.

Note: While adiStartDTMF is active, the DTMF detector is disabled.

digits can contain the following embedded escape characters that control the dialing
sequence:

Character Description

. (period) Insert long pause in dialing.

, (comma) Insert short pause in dialing.

T Switch to DTMF dialing (default).

M Switch to MF dialing.

To generate MF tones, precede the string with an M.

The following table lists the mapping to the United States MF digits for MF dialing:

Digit United States MF name

0 to 9 Specific digit address

B MF ST3P

C MF STP

D MF KP

E MF KP2, MF ST2P

F MF ST

See also

adiStartTones

ADI Service Developer's Reference Manual Function reference

NMS Communications 163

adiStartDTMFDetector

Starts DTMF detection.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStartDTMFDetector (CTAHD ctahd, ADI_DTMFDETECT_PARMS
*parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

parms Pointer to DTMF detection parameters according to the following structure (NULL value
uses the default values):

typedef struct
{
 DWORD size; /* size of this structure */
 DWORD columnfour; /* 1=detect DTMFs A,B,C,D; 0=don't */
 INT32 onqualampl; /* min input lev to qual tone (dBm) */
 DWORD onthreshold; /* reserved */
 DWORD onqualtime; /* qualify time of DTMF (ms) */
 INT32 offqualampl; /* min input lev of valid DTMF (dBm)*/
 DWORD offthreshold; /* reserved */
 DWORD offqualtime; /* disqualify time for tone (ms) */
} ADI_DTMFDETECT_PARMS;

Refer to ADI_DTMFDETECT_PARMS on page 260 for field descriptions.

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Function reference ADI Service Developer's Reference Manual

164 NMS Communications

Events

Event Description

ADIEVN_DIGIT_BEGIN Raw DTMF digit detected on.

ADIEVN_DIGIT_END Raw DTMF digit detected off.

ADIEVN_DTMF_DETECT_DONE DTMF detector no longer running. The event value field contains one
of the following:

CTA_REASON_RELEASED
Call terminated.

CTAERR_xxx or ADIERR_xxx
DTMF detector failed.

CTA_REASON_STOPPED
Function stopped with adiStopDTMFDetector.

Details

The following DSP file must be loaded to the board before running
adiStartDTMFDetector:

For these boards... Load this DSP file...

AG dtmf.m54 or dtmfe.m54

CG dtmf.f54 or dtmfe.f54

QX The standard QX DSP file

See DSP file summary on page 269 for DSP file descriptions. Refer to the board
installation and developer's manual for a table of MIPS usage for all functions.

Use this function to enable detection of DTMFs. By default, the DTMF detector is
active after the NOCC protocol is started, or when the context enters the call control
connected state. Therefore, this function is needed only to restart the DTMF detector
if it was stopped using adiStopDTMFDetector or to modify the DTMF detector
parameters.

An ADIEVN_DIGIT_BEGIN event and an ADIEVN_DIGIT_END event are generated
for every digit detected. Each event contains the ASCII representation (character) of
the digit: 0 through 9, A through D, * (asterisk), or # (number sign) in the event
value field.

The DTMF detector must be enabled for the digit collection functions (for example,
adiCollectDigits or adiGetDigit).

ADI Service Developer's Reference Manual Function reference

NMS Communications 165

adiStartEnergyDetector

Starts the energy detector.

Note: Do not use the energy detector if you are using voice activity detection.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStartEnergyDetector (CTAHD ctahd, unsigned energyqual, unsigned
silencequal, ADI_ENERGY_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

energyqual Qualification time for energy (in milliseconds).

silencequal Qualification time for silence (in milliseconds).

parms Pointer to energy detector parameters according to the following structure (NULL
designates default values):

typedef struct
{ /* parameters for energy detection:*/
 DWORD size; /* size of this structure */
 INT32 thresholdampl; /* silence level (dBm) */
 DWORD deglitch; /* ms deglitch during transitions */
 DWORD autostop; /* on detection, 1=autostop 0=don't*/
} ADI_ENERGY_PARMS;

Refer to ADI_ENERGY_PARMS on page 260 for field descriptions.

Return values

Return value Description

SUCCESS

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_RESOURCE_CONFLICT Silence detector in use by a record function.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_ENERGY_DETECTED Energy detector reporting energy.

ADIEVN_ENERGY_DETECT_DONE Energy detector terminated.

ADIEVN_SILENCE_DETECTED Energy detector reporting silence.

Function reference ADI Service Developer's Reference Manual

166 NMS Communications

Details

The following DSP file must be loaded to the board before running
adiStartEnergyDetector:

For these boards... Load this DSP file...

AG dtmf.m54 or dtmfe.m54

CG dtmf.f54 or dtmfe.f54

QX The standard QX DSP file

See DSP file summary on page 269 for DSP file descriptions. Refer to the board
installation and developer's manual for a table of MIPS usage for all functions.

Use this function to start a low-level energy detector that reports energy and silence
transitions.

The thresholdampl is the dBm threshold below which is considered silence. Once
energy or silence is internally qualified as detected, the deglitch time is used during
transitions above and below the threshold. The autostop field indicates that the
function stops once energy or silence is detected. The maximum valid value for
energyqual and silencequal is 65535.

If autostop is set, ADIEVN_ENERGY_DETECT_DONE is received with the value field
set to CTA_REASON_FINISHED and the size field is set to either
ADIEVN_ENERGY_DETECTED or ADIEVN_SILENCE_DETECTED.

In continuous mode, ADIEVN_ENERGY_DETECTED and
ADIEVN_SILENCE_DETECTED are received as the detector changes between these
states.

ADIEVN_ENERGY_DETECT_DONE can also be returned with the value field set to an
error or CTA_REASON_STOPPED if adiStopEnergyDetector is called.

Note: You cannot start the energy detector while a record operation is active unless
both ADI_RECORD.novoicetime and ADI_RECORD.silencetime are 0 (zero) when the
record operation was started. For a voice record operation, the relevant parameters
are VCE_RECORD.novoicetime and VCE_RECORD.silencetime.

For more information, refer to Detecting energy on page 66.

ADI Service Developer's Reference Manual Function reference

NMS Communications 167

adiStartMFDetector

Enables the detection of MFs (multi-frequency tones).

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStartMFDetector (CTAHD ctahd, unsigned mftype)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

mftype Type of MF tone to detect:

ADI_MF_US
ADI_MF_CCITT_FORWARD
ADI_MF_CCITT_BACKWARD

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_FUNCTION_NOT_AVAIL mf.dsp not loaded to the board.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_MF_DETECT_DONE DTMF detector is no longer running. The event value field contains one
of the following:

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Function stopped by adiStopMFDetector.

CTAERR_xxx or ADIERR_xxx
DTMF detector failed.

ADIEVN_MF_DIGIT_BEGIN MF digit detected on.

ADIEVN_MF_DIGIT_END MF digit detected off.

Function reference ADI Service Developer's Reference Manual

168 NMS Communications

Details

The following DSP file must be loaded to the board before running
adiStartMFDetector:

For these boards... Load this DSP file...

AG mf.m54

CG mf.f54

QX The standard QX DSP file

See DSP file summary on page 269 for DSP file descriptions. Refer to the board
installation and developer's manual for a table of MIPS usage for all functions.

Use this function to enable detection of MFs (multi-frequency tones). Stop the
function by calling adiStopMFDetector.

You must disable DTMF detection using adiStopDTMFDetector before initiating MF
detection, as there are some overlapping frequency ranges in which both a DTMF
and an MF event are reported. Likewise, when the application is finished with MF
detection, re-enable DTMF detection (adiStartMFDetector) if DTMFs are desired.

ADIEVN_MF_DIGIT_BEGIN and ADIEVN_MF_DIGIT_END are generated for every MF
tone detected. Each event contains an ASCII representation (character) of the MF
digit in the event value field.

This table lists the MF frequencies for each mftype, along with the digit value
returned in the event's value field:

Digit US MF ITU forward ITU backward

1 700,900 1380,1500 1140,1020

2 700,1100 1380,1620 1140,900

3 900,1100 1500,1620 1020,900

4 700,1300 1380,1740 1140,780

5 900,1300 1500,1740 1020,780

6 1100,1300 1620,1740 900,780

7 700,1500 1380,1860 1140,660

8 900,1500 1500,1860 1020,660

9 1100,1500 1620,1860 900,660

0 1300,1500 1740,1860 780,660

B 700,1700 1380,1980 1140,540

C 900,1700 1500,1980 1020,540

D 1100,1700 1620,1980 900,540

E 1300,1700 1740,1980 780,540

F 1500,1700 1860,1980 660,540

ADI Service Developer's Reference Manual Function reference

NMS Communications 169

The following table lists the mapping to the United States MF digits for MF dialing:

Digit United States MF name

0 to 9 Specific digit address

B MF ST3P

C MF STP

D MF KP

E MF KP2, MF ST2P

F MF ST

Note: The digit values are the same as those used by adiStartDTMF and
adiStartDial when MF digits are dialed.

See also

adiStartDTMFDetector, adiStopDTMFDetector

Function reference ADI Service Developer's Reference Manual

170 NMS Communications

adiStartPlaying

Starts a playing operation using a callback routine to get data. This function is not
supported when Natural Access is running in client/server mode.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStartPlaying (CTAHD ctahd, unsigned encoding, ADIPLAY_ACCESS
access, void *userarg, ADI_PLAY_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

encoding Data encoding selection. See Voice encoding formats on page 13 for a complete list.

access Pointer to a callback function that supplies data to be played. See the Details section for
a prototype of this function.

userarg An arbitrary pointer or value to be passed to the callback function every time it is
invoked.

parms Pointer to play parameters according to the following structure (NULL value uses default
values):

typedef struct
{ /* parms related to adiStartPlaying: */
 DWORD size; /* size of this structure */
 DWORD DTMFabort; /* abort on DTMF */
 INT32 gain; /* playing gain in dB */
 DWORD speed; /* initial speed in percent */
 DWORD maxspeed; /* maximum play speed in percent */
} ADI_PLAY_PARMS;

Refer to ADI_PLAY_PARMS on page 261 for field descriptions.

ADI Service Developer's Reference Manual Function reference

NMS Communications 171

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_BAD_ARGUMENT Invalid encoding.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_NO_MEMORY Could not allocate an internal buffer.

CTAERR_NOT_IMPLEMENTED Function not implemented.

CTAERR_OUTPUT_ACTIVE Play failed because there is another active output function.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_PLAY_DONE Playing terminated, with one of the following reasons in the value field:

CTAERR_xxx or ADIERR_xxx
Error codes indicate play failed.

CTA_REASON_DIGIT
Aborted due to DTMF.

CTA_REASON_FINISHED
ADI service finished playing the last buffer.

CTA_REASON_RECOGNITION
Aborted because of speech recognition.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Stopped by application request.

Details

When recording or playing speech files on AG boards, a specific DSP file must be
loaded for each encoding type. For QX boards, the standard DSP file supports the
valid encoding types. For more information, refer to Voice encoding formats on page
13.

When recording or playing speech files on CG boards, a specific DSP file must be
loaded for each encoding type except when using the native play and record feature.
The native play and record feature combines an ADI port with an MSPP endpoint and
plays or records speech data directly to or from an IP endpoint with no transcoding.
For information about the native play and record feature, refer to Performing NMS
native play and record on page 31.

Function reference ADI Service Developer's Reference Manual

172 NMS Communications

For more information, see Encoding formats and DSP files on page 134. The table
lists the DSP files that must be loaded on AG and CG boards. It also lists the valid
encoding types that QX boards and PacketMedia HMP processes support. Refer to the
board installation and developer's manual for MIPS usage.

For QX boards and the PacketMedia HMP process, the maxspeed and speed
parameters are not used.

The ADI service allocates a buffer and invokes the access function provided by the
programmer. The buffer and size are passed to the callback function and the
application must fill the buffer with voice data (for example, read data from a file)
before returning.

access is invoked from within adiStartPlaying for the first buffer and subsequently
invoked from within ctaWaitEvent. The prototype for the callback function is:

int NMSSTDCALL access (void *userarg, void *buffer, unsigned size, unsigned
*rsize)

Argument Description

userarg Pointer to value previously passed to adiStartPlaying.

buffer Pointer to memory to be filled with voice data.

size Size (bytes) of the buffer.

rsize Returned number of bytes of voice data put into the buffer by the callback routine. This
value is returned to the ADI service.

access has the following return values:

Return value Description

SUCCESS Play continues as normal. The ADI service invokes access again when
needed.

ADI_PLAY_LAST_BUFFER When the ADI service finishes playing the buffer being returned from
access, ADIEVN_PLAY_DONE is generated with the value field set to
CTA_REASON_FINISHED. access is not invoked again for the current
playing instance.

If the access return value is neither SUCCESS nor ADI_PLAY_LAST_BUFFER, the
ADI service immediately terminates the playing instance. ADIEVN_PLAY_DONE is
generated and the value field is set to ADIERR_PLAYREC_ACCESS.

access returns the number of bytes written to the buffer in the rsize variable. If the
returned size is larger than the buffer or the returned size is not a multiple of the
framesize for the given encoding, the ADI service terminates the play function and
generates ADIEVEN_PLAY_DONE and the value field is set to CTAERR_BAD_SIZE.

Note: Starting a play operation with the maxspeed parameter greater than 100
consumes additional DSP cycles. You may not be able to run the number of ports
normally supported. Refer to the board installation and developer's manual for more
information.

For more information, refer to Playing on page 25.

ADI Service Developer's Reference Manual Function reference

NMS Communications 173

See also

adiGetPlayStatus, adiModifyPlayGain, adiModifyPlaySpeed, adiPlayAsync,
adiPlayFromMemory, adiSetNativeInfo, adiStopPlaying

Example

This example shows a fragment of a program that plays the file test.vce using
adiStartPlaying and the associated access routine.
int NMSSTDCALL readAccess (
 void *userarg,
 void *buffer,
 unsigned size,
 unsigned *rsize)
{
 FILE *fp = (FILE *)userarg;

 *rsize = fread(buffer, 1, size, fp);

 if (ferror(fp))
 return -1;
 if (feof(fp))
 return ADI_PLAY_LAST_BUFFER;
 return SUCCESS;
}

int myPlayFile(CTAHD ctahd, unsigned encoding, char *filename)
{
 CTA_EVENT event;
 FILE *fp;

 /* note: binary open */
 if((fp = fopen(filename, "rb")) == NULL)
 return MYFAILURE;

 if(adiStartPlaying(ctahd, encoding, readAccess, fp, NULL) != SUCCESS)
 return MYFAILURE;

 do
 {
 myGetEvent(&event); /* see ctaWaitEvent example */
 } while(event.id != ADIEVN_PLAY_DONE);

 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
}

Function reference ADI Service Developer's Reference Manual

174 NMS Communications

adiStartProtocol

Starts the NOCC protocol on a specified context.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStartProtocol (CTAHD ctahd, char *protoname, WORD
*protoparms, ADI_START_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

protoname Name of the protocol trunk control program (TCP). The valid value is NOCC.

protoparms Valid value is NULL.

parms Pointer to an ADI_START_PARMS structure, as shown (NULL uses default parameter
values):

typedef struct
{
 DWORD size; /* size of this structure */
 ADI_CALLCTL_PARMS callctl; /* call control parms */
 ADI_DIAL_PARMS dial; /* dial control parms */
 ADI_DTMFDETECT_PARMS dtmfdet; /* DTMF detection parms */
 ADI_CLEARDOWN_PARMS cleardown; /* cleardown detect. parms*/
 ADI_ECHOCANCEL_PARMS echocancel; /* echo canceller parms */
} ADI_START_PARMS;

Refer to ADI_START_PARMS on page 264 for field descriptions.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT protoname is invalid or NULL or parms contains an invalid size field.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_STARTPROTOCOL_DONE If successful, the value field contains CTA_REASON_FINISHED;
otherwise, the value contains an error code, such as:

CTAERR_BAD_ARGUMENT
Invalid protocol name; the protocol associated with protoname
was not specified in the configuration file.

ADI Service Developer's Reference Manual Function reference

NMS Communications 175

Details

Use adiStartProtocol to specify the NOCC protocol. The function initializes the ADI
service and by default starts the DTMF detector.

The ADI_START_PARMS data structure consists of the following substructures:

• ADI_CALLCTL_PARMS controls which functions are started automatically by
adiStartProtocol.

The ADI_CALLCTL_PARMS structure is defined as:
typedef struct
{ /* call control parameters: */
 DWORD size; /* size of this structure */
 DWORD eventmask; /* not used */
 DWORD mediamask; /* functions to run: */
 #define ADI_CC_RESVDTMF 0x0001
 /* reserve dtmf detection */
 #define ADI_CC_RESVSILENCE 0x0002
 /* reserve silence detector */
 #define ADI_CC_RESVCLRDWN 0x0004
 /* reserve clear-down det. */
 #define ADI_CC_AUTODTMF 0x0008
 /* start DTMF detection */
 #define ADI_CC_AUTOECHO 0x0010
 /* start echo canceller */
 #define ADI_CC_ALLMEDIA(ADI_CC_RESVDTMF|\
 ADI_CC_RESVSILENCE|ADI_CC_RESVCLRDWN|\
 ADI_CC_AUTODTMF|ADI_CC_AUTOECHO)
 DWORD blockmode; /* not used */
 DWORD debugmask; /* not used */
} ADI_CALLCTL_PARMS;

• ADI_DIAL_PARMS specifies how to perform dialing. Refer to adiStartDial for
the structure definition.

• ADI_DTMFDETECT_PARMS controls DTMF detection if required by the
protocol, as well as initial DTMF detection in the conversation (connected)
state if started automatically by the protocol. Refer to
adiStartDTMFDetector for the structure definition.

• ADI_ECHOCANCEL_PARMS controls the application of an echo cancellation
algorithm to the context in the connected state and is defined as:
typedef struct
{ /* parameters for echo cancellation*/
 DWORD size; /* size of this structure */
 DWORD mode; /* echo canceller mode */
 DWORD filterlength;/* filter length (msec) */
 DWORD adapttime; /* filter adaptation time (msec) */
 DWORD predelay; /* offset of input sample (msec) */
 INT32 gain; /* receive gain (db) */
} ADI_ECHOCANCEL_PARMS ;

Refer to the Parameters section for default values and a more detailed explanation of
the fields in these structures.

When the protocol is NOCC, adiStartProtocol must be called before any ADI
functions are invoked. The application can execute any function once
ADIEVN_STARTPROTOCOL_DONE is received.

For details about using telephony protocols in the application, refer to the NMS CAS
for Natural Call Control Developer's Manual.

Function reference ADI Service Developer's Reference Manual

176 NMS Communications

See also

adiStopProtocol

Example
int myStartProtocol(CTAHD ctahd)
{
 CTA_EVENT event;

 /* start "no call control" protocol with all default parameters */
 if(adiStartProtocol(ctahd, "NOCC", NULL, NULL) != SUCCESS)
 return MYFAILURE;

 do
 {
 myGetEvent(&event); /* see ctaWaitEvent example */
 } while(event.id != ADIEVN_STARTPROTOCOL_DONE);

 if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* started successfully */
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 177

adiStartPulse

Starts the generation of an out-of-band pulse.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStartPulse (CTAHD ctahd, unsigned signal, unsigned timeon,
unsigned timeoff)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

signal Bit mask/pattern to pulse (assert temporarily), which is a combination of the following
constants:

ADI_A_BIT (0x8)
ADI_B_BIT (0x4)
ADI_C_BIT (0x2)
ADI_D_BIT (0x1)
zero (0)

timeon Duration of the pulse (in milliseconds) with the pattern activated.

timeoff Duration after the pulse (in milliseconds), before the DONE event is sent.

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_FUNCTION_NOT_AVAIL Necessary .dsp file was not downloaded to the board.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_PULSE_DONE Generated by the ADI service when the pulse function terminates. The event
value field contains the termination reason.

Function reference ADI Service Developer's Reference Manual

178 NMS Communications

Details

AG 2000 and AG 2000C boards require signal.m54 to be loaded.

For QX boards, this function is supported in the standard DSP file.

Use adiStartPulse to output a specified signaling bit pattern for a precise duration.
This function is non-blocking and returns back to the application immediately after
starting the pulse.

The out-of-band signal pattern is either the physical out-of-band signal bits of a
digital protocol or it relates to the control of an analog interface board. In both cases,
four signaling bits, A, B, C, and D, often written as ABCD, and defined by a bit mask
(0x8, 0x4, 0x2, and 0x1, respectively), are used. The following constants are in
adidef.h. They can be combined by using the OR operation to define any group of
bits: ADI_A_BIT, ADI_B_BIT, ADI_C_BIT, and ADI_D_BIT. For example, if the line
is off-hook, a 0 (zero) is pulsed (for example, generate a flash hook).

When using this function with an analog interface board, refer to the hardware
installation manual for the analog interface board for specific information on how the
A and B bits affect the telephone line.

This function is not available if the current protocol reserves use of out-of-band
signaling. Typically, call control protocols take over the line signaling and the
application does not need to assert or reset line codes or pulses explicitly.

adiStartPulse overrides adiAssertSignal. For the duration of the pulse, the line
pattern is determined by the signaling state specified by adiStartPulse. It then
reverts to the pattern previously asserted by adiAssertSignal.

For more information, refer to Performing low-level call control on page 71.

ADI Service Developer's Reference Manual Function reference

NMS Communications 179

adiStartReceivingFSK

Receives frequency shift key (FSK) data.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStartReceivingFSK (CTAHD ctahd, void *buffer, unsigned bufsize,
ADI_FSKRECEIVE_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

buffer Pointer to buffer to hold received data.

bufsize Size of buffer to receive.

parms Pointer to the FSK receive parameters, stored in the following structure (NULL designates
default values):

typedef struct
{
 DWORD size; /* Size of this structure */
 INT32 minlevel; /* Required minimum receive level (dB) */
 DWORD minmark; /* Minimum required initial mark and seizure */
 DWORD droptime; /* Minimum dropout to silence before a */
 /* packet is considered terminated (ms) */
 DWORD baudrate; /* Baud rate (only 1200 supported) */
} ADI_FSKRECEIVE_PARMS;

Refer to ADI_FSKRECEIVE_PARMS on page 261 for field descriptions.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT buffer is NULL or size is 0 (zero).

CTAERR_FUNCTION_ACTIVE Function already started.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Function reference ADI Service Developer's Reference Manual

180 NMS Communications

Events

Event Description

ADIEVN_FSK_RECEIVE_DONE Generated by the ADI service when the receive function terminates.
The event value field contains one of the following termination
conditions or an error code:

ADI_REASON_DROP_IN_DATA
Stopped due to drop in data.

ADI_REASON_BAD_STOP_BIT
Stopped due to data framing error. The stop bit at the end of data
was space, not mark.

CTA_REASON_FINISHED
Data was received successfully.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Stopped by application request.

Details

The following DSP file must be loaded to the board before running
adiStartReceivingFSK:

Load this DSP file... For these boards...

Bellcore 1200/2200 Hz V.23 1300/2100 Hz

AG adsir.m54 adsir_j.m54

CG adsir.f54 adsir_j.f54

QX The standard QX DSP file The standard QX DSP file

See DSP file summary on page 269 for DSP file descriptions. Refer to the board
installation and developer's manual for a table of MIPS usage for all functions.

Use this function to receive frequency shift key (FSK) data. The function can be
stopped using adiStopReceivingFSK. When the function completes,
ADIEVN_FSK_RECEIVE_DONE is generated.

If the event value field contains CTA_REASON_FINISHED or
CTA_REASON_STOPPED, the size field of the event structure contains the number of
bytes received. The received buffer is in the buffer field. If errors occur, the receive
operation is terminated and the event value field contains either
ADI_REASON_DROP_IN_DATA or ADI_REASON_BAD_STOP_BIT.

For more information, refer to Sending and receiving FSK data on page 69.

ADI Service Developer's Reference Manual Function reference

NMS Communications 181

Example
#define MYRECEIVE_FAILURE (-11)
#define MYRECEIVE_STOPPED (-12)

int myReceiveFSK(CTAHD ctahd)
{
 CTA_EVENT event;
 char buffer [512];

 if(adiStartReceivingFSK(ctahd, buffer, sizeof buffer, NULL) != SUCCESS)
 return MYFAILURE;

 do
 {
 myGetEvent(&event); /* see ctaWaitEvent example */
 } while(event.id != ADIEVN_FSK_RECEIVE_DONE);

 switch(event.value)
 {
 case CTA_REASON_FINISHED:
 return SUCCESS;

 case CTA_REASON_RELEASED:
 return MYDISCONNECT;

 case CTA_REASON_STOPPED:
 /* Receive was stopped by another application thread */
 return MYRECEIVE_STOPPED;

 case ADI_REASON_DROP_IN_DATA:
 case ADI_REASON_BAD_STOP_BIT:
 return MYRECEIVE_FAILURE;

 default:
 if(CTA_IS_ERROR(event.value))
 return MYFAILURE;
 }
 return MYFAILURE;
}

Function reference ADI Service Developer's Reference Manual

182 NMS Communications

adiStartRecording

Starts a recording operation using a callback routine to deliver data. This function is
not supported when Natural Access is running in client/server mode.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStartRecording (CTAHD ctahd, unsigned encoding, unsigned
maxtime, ADIRECORD_ACCESS access, void *userarg, ADI_RECORD_PARMS
*parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

encoding Encoding type. See Voice encoding formats on page 13 for a complete list.

maxtime Maximum recording time (in milliseconds). Use zero for no time limit. When voice activity
detection is enabled, maxtime is the maximum duration of speech recording, excluding
silences.

access Pointer to a function to receive recorded data. See the prototype in the Details section.

userarg An arbitrary pointer, the value of which is passed to the callback function (access) on
every invocation.

parms Pointer to record parameters according to the following structure (NULL uses default
values):

typedef struct
{
 DWORD size; /* size of this structure */
 DWORD DTMFabort; /* abort on DTMF */
 INT32 gain; /* recording gain in dB */
 /*-[SLC parms (used if silence det)] */
 DWORD novoicetime; /* length of initial silence to stop */
 /* recording (ms); use 0 to deactivate */
 /* initial silence detection. */
 DWORD silencetime; /* length of silence to stop recording */
 /* after voice has been detected (ms); */
 /* use 0 to deactivate. */
 INT32 silenceampl; /* qualif level for silence (dBm) */
 DWORD silencedeglitch;
 /* deglitch while qualifying silence(ms) */
 /*-[Beep for record]---------------------*/
 DWORD beepfreq; /* beep frequency (Hz) */
 INT32 beepampl; /* beep amplitude (dBm) */
 DWORD beeptime; /* beep time (ms) 0=no beep */
 /*--[AGC parms]--------------------------*/
 DWORD AGCenable; /* enable AGC; use 1 to activate */
 INT32 AGCtargetampl; /* target AGC level (dBm) */
 INT32 AGCsilenceampl;/* silence level (dBm) */
 DWORD AGCattacktime; /* attack time (ms) */
 DWORD AGCdecaytime; /* decay time (ms) */
} ADI_RECORD_PARMS;

Refer to ADI_RECORD_PARMS on page 262 for field descriptions.

ADI Service Developer's Reference Manual Function reference

NMS Communications 183

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_BAD_ARGUMENT Invalid encoding selected or NULL buffer pointer passed.

CTAERR_BAD_SIZE size is less than one frame.

CTAERR_FUNCTION_ACTIVE Record is already active or the energy detector is active.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_NOT_IMPLEMENTED Function not implemented.

CTAERR_OUTPUT_ACTIVE Record failed because there is another active output function.

CTAERR_RESOURCE_CONFLICT Silence detector is in use by adiStartEnergyDetector.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_RECORD_DONE The value field contains one of the following termination reasons or error
codes:

CTA_REASON_DIGIT
Aborted due to DTMF.

CTA_REASON_NO_VOICE
No voice detected.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Stopped by application request.

CTA_REASON_TIMEOUT
Record time limit reached.

CTA_REASON_VOICE_END
User stopped speaking.

CTAERR_FUNCTION_NOT_AVAIL
Required DSP file not loaded on the board.

CTAERR_xxx or ADIERR_xxx
Record failed.

Function reference ADI Service Developer's Reference Manual

184 NMS Communications

Details

When recording or playing speech files on AG boards, a specific DSP file must be
loaded for each encoding type. For QX boards, the standard DSP file supports the
valid encoding types. For more information, refer to Voice encoding formats on page
13.

When recording or playing speech files on CG boards, a specific DSP file must be
loaded for each encoding type except when using the native play and record feature.
The native play and record feature combines an ADI port with an MSPP endpoint and
plays or records speech data directly to or from an IP endpoint with no transcoding.
For information about the native play and record feature, refer to Performing NMS
native play and record on page 31.

For more information, see Encoding formats and DSP files on page 134. The table
lists the DSP files that must be loaded on the AG and CG boards. It also lists the
valid encoding types that QX boards and PacketMedia HMP processes support. Refer
to the board installation and developer's manual for MIPS usage.

Use adiStartRecording to start a recording operation. adiStartRecording uses a
callback routine (access) to deliver data. The ADI service allocates buffers and
initiates recording. When a buffer fills with voice data, the ADI service invokes
access, passing it the buffer address and size. The application must copy the buffer
to a storage medium before returning from access.

access is invoked from ctaWaitEvent. The prototype for the access function is:
int NMSSTDCALL access (void *userarg, void *buffer, unsigned size)

where:

Argument Description

userarg Pointer to value previously passed in adiStartRecording.

buffer Pointer to memory allocated by the ADI service.

size Size (bytes) of valid data in the buffer.

If the application's access returns a value other than SUCCESS, the ADI service
terminates the record operation and generates ADIEVN_RECORD_DONE with a value
field of ADIERR_PLAYREC_ACCESS.

Note: You cannot initiate a record operation while playing voice or generating tones
unless you disable the record beep by setting either ADI_RECORD.beeptime or
ADI_RECORD.beepfreq to 0 (zero). You cannot start a record operation if the energy
detector is active unless both ADI_RECORD.novoicetime and
ADI_RECORD.silencetime are 0 (zero).

For more information, refer to Recording on page 20. Refer to ADI_RECORD_PARMS
on page 262 for field descriptions.

See also

adiCommandRecord, adiGetRecordStatus, adiRecordAsync,
adiRecordToMemory, adiSetNativeInfo, adiStopRecording

ADI Service Developer's Reference Manual Function reference

NMS Communications 185

Example

The following code fragment records into the file test.vce using adiStartRecording:
int NMSSTDCALL writeAccess(
 void *userarg,
 void *buffer,
 unsigned size)
{
 FILE *fp = (FILE *)userarg;

 fwrite(buffer, 1, size, fp);
 if (ferror(fp))
 return -1;
 return SUCCESS;
}

int myRecordFile(CTAHD ctahd, unsigned encoding)
{
 CTA_EVENT event;
 FILE *fp;

 /* note: binary open */
 if((fp = fopen("test.vce", "wb")) == NULL)
 return MYFAILURE;

 if(adiStartRecording(ctahd, encoding, 0,
 writeAccess, fp, NULL) != SUCCESS)
 return MYFAILURE;

 do
 {
 myGetEvent(&event); /* see ctaWaitEvent example */
 } while(event.id != ADIEVN_RECORD_DONE);

 fclose(fp);

 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
}

Function reference ADI Service Developer's Reference Manual

186 NMS Communications

adiStartSendingFSK

Sends frequency shift key (FSK) data.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStartSendingFSK (CTAHD ctahd, void *buffer, unsigned bufsize,
ADI_FSKSEND_PARMS *parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

buffer Buffer to send.

bufsize Size of buffer to send.

parms Pointer to FSK send parameters, as follows (NULL designates default values):

typedef struct
{
 DWORD size; /* Size of this structure */
 DWORD noseizureflag;/* No channel seizure when set */
 INT32 level; /* Transmit output scaling (dBm) */
 DWORD seizetime; /* Length of channel seizure in (ms) */
 DWORD marktime; /* Length of the initial mark signal in (ms)*/
 DWORD baudrate; /* Baud rate (only 1200 supported) */
} ADI_FSKSEND_PARMS;

Refer to ADI_FSKSEND_PARMS on page 261 for field descriptions.

Return values

Return value Description

SUCCESS

CTAERR_BAD_ARGUMENT Function argument had an invalid value, or a required pointer argument
was NULL.

CTAERR_FUNCTION_ACTIVE Function already active.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

ADI Service Developer's Reference Manual Function reference

NMS Communications 187

Events

Event Description

ADIEVN_FSK_SEND_DONE Generated by the ADI service when the send function terminates. The
event value field contains one of the following termination conditions:

CTAERR_xxx or ADIERR_xxx
Function failed.

CTA_REASON_FINISHED
Buffer submitted was sent in its entirety.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Stopped by application request.

Details

The following DSP file must be loaded to the board before running
adiStartSendingFSK:

Load this DSP file... For these boards...

Bellcore 1200/2200 Hz V.23 1300/2100 Hz

AG adsix.m54 adsix_j.m54

CG adsix.f54 adsix_j.f54

QX The standard QX DSP file The standard QX DSP file

See DSP file summary on page 269 for DSP file descriptions. Refer to the board
installation and developer's manual for a table of MIPS usage for all functions.

Use this function to initiate sending frequency shift key (FSK) data. When parms is
set to NULL, the default parameter values are used. A typical buffer size is 512
bytes. The buffer size is limited to half the value of the maxbufsize field in the
ADI_CONTEXT_INFO structure. The only baud rate supported is 1200.

Call adiStopSendingFSK to stop this function. ADIEVN_FSK_SEND_DONE is
delivered when the send operation completes.

For more information, refer to Sending and receiving FSK data on page 69.

Function reference ADI Service Developer's Reference Manual

188 NMS Communications

Example
#define MYSEND_STOPPED (-13)

int mySendFSK(CTAHD ctahd, void *buffer, unsigned bufsize)
{
 CTA_EVENT event;

 if(adiStartSendingFSK(ctahd, buffer, bufsize, NULL) != SUCCESS)
 return MYFAILURE;

 do
 {
 myGetEvent(&event); /* see ctaWaitEvent example */
 } while(event.id !=- ADIEVN_FSK_SEND_DONE);

 switch(event.value)
 {
 case CTA_REASON_FINISHED:
 return SUCCESS;

 case CTA_REASON_RELEASED:
 return MYDISCONNECT;

 case CTA_REASON_STOPPED:
 /* Send was stopped by another application thread */
 return MYSEND_STOPPED;

 default:
 if(CTA_IS_ERROR(event.value))
 return MYFAILURE;
 }
 return MYFAILURE;
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 189

adiStartSignalDetector

Starts detecting changes in incoming out-of-band signaling bits.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStartSignalDetector (CTAHD ctahd, unsigned initial, unsigned mask,
unsigned timeon, unsigned timeoff)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

initial Mask indicating the expected incoming line state (refer to mask for possible values).

mask Mask indicating the bits to monitor. For example, by setting this mask to ADI_A_BIT, all
transitions of the A bit are reported and transitions of the other bits are ignored. The
following constants are in adidef.h and can be combined using the OR operation to
monitor any group of bits:

ADI_A_BIT
ADI_B_BIT
ADI_C_BIT
ADI_D_BIT

timeon Deglitching (debounce) time (in milliseconds) for the ON state of the masked bits. The bit
transition to HIGH is not reported unless it exceeds timeon.

timeoff Deglitching (debounce) time (in milliseconds) for the OFF state of the masked bits. The
bit transition to LOW is not reported unless it exceeds timeoff.

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not valid in the current call state.

CTAERR_FUNCTION_ACTIVE Function already active.

CTAERR_FUNCTION_NOT_AVAIL Necessary .dsp file was not downloaded to the board.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not valid in the current port state.

CTAERR_SVR_COMM Server communication error.

Function reference ADI Service Developer's Reference Manual

190 NMS Communications

Events

Event Description

ADIEVN_SIGNALBIT_CHANGED After the detector is started, if a bit transition is detected, the ADI
service generates ADIEVN_SIGNALBIT_CHANGED with the value
field set to the bit change and the size field set to the current state
of the signaling bits.

The change is defined as follows:

0xA1
A bit went HI

0xB1
B bit went HI

0xC1
C bit went HI

0xD1
D bit went HI

0xA0
A bit went LO

0xB0
B bit went LO

0xC0
C bit went LO

0xD0
D bit went LO

The current state is a mask of the bits ADI_A_BIT, ADI_B_BIT,
ADI_C_BIT, and ADI_D_BIT.
These messages are serialized with the transitions. You receive one
event for each bit change.

ADIEVN_SIGNAL_DETECT_DONE The value field can be set to any of the following:

CTAERR_xxx or ADIERR_xxx
Signal detector function failed.

CTA_REASON_STOPPED
Function stopped as a result of calling adiStopSignalDetector.

Details

AG 2000, AG 2000C, and AG 2000-BRI boards require signal.m54 to be loaded.

Use adiStartSignalDetector to enable detection of incoming out-of-band signaling
bits. After this function is called, transitions of masked bits are reported as events,
along with the current state of all bits.

If the line state does not match the value set in initial, an event is generated after
qualification time, timeon, or timeoff.

Note: This function is incompatible with standard call control. Contexts running a
standard protocol other than NOCC are usually excluded from using this function.
Protocols usually use out-of-band signaling bits for call setup (detection of incoming
calls) and call teardown (detection of hang-up). For more information about
controlling calls under specific TCPs, refer to the NMS CAS for Natural Call Control
Developer's Manual.

For more information, refer to Performing low-level call control on page 71.

ADI Service Developer's Reference Manual Function reference

NMS Communications 191

See also

adiQuerySignalState

Example
#define ALL_BITS (ADI_A_BIT|ADI_B_BIT|ADI_C_BIT|ADI_D_BIT)

int myMonitorSignal(CTAHD ctahd)
{
 CTA_EVENT event;
 /* start function to monitor all bit changes of 100 ms */
 if(adiStartSignalDetector(ctahd, 0, ALL_BITS, 100, 100) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 const char *pc;

 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_SIGNAL_DETECT_DONE:
 if(event.value == CTA_REASON_STOPPED)
 return SUCCESS;
 else
 return MYFAILURE;

 case ADIEVN_SIGNALBIT_CHANGED:
 switch(event.value) /* value contains the change */
 { /* size contains current state */
 case 0xA1: pc = "A ON"; break;
 case 0xB1: pc = "B ON"; break;
 case 0xC1: pc = "C ON"; break;
 case 0xD1: pc = "D ON"; break;
 case 0xA0: pc = "A OFF"; break;
 case 0xB0: pc = "B OFF"; break;
 case 0xC0: pc = "C OFF"; break;
 case 0xD0: pc = "D OFF"; break;
 }
 printf("MVIP bit change: %s\tsignalling bits = 0x%x "
 "(%c%c%c%c)\n",
 pc, (event.value&0xf),
 (event.size&0x8)?'A':'-', (event.size&0x4)?'B':'-',
 (event.size&0x2)?'C':'-', (event.size&0x1)?'D':'-');
 break;
 /* might include cases to handle disconnect event, DTMFs, etc. */
 }
 }
}

Function reference ADI Service Developer's Reference Manual

192 NMS Communications

adiStartTimer

Starts (or restarts) a timer on the board.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStartTimer (CTAHD ctahd, unsigned timeout, unsigned count)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

timeout Timeout value (in milliseconds).

count Number of events.

Return values

Return value Description

SUCCESS

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_TIMER_DONE After the timer completes (expires), the ADI service generates a DONE event
with the value field set to CTA_REASON_FINISHED. If the board is in error,
there is an error in the value field. The value is CTA_REASON_STOPPED if the
timer is halted with adiStopTimer.

ADIEVN_TIMER_TICK If count is greater than 1, the ADI service generates a tick event for the first
(count-1) expirations. On the final expiration, ADIEVN_TIMER_DONE is
generated.

Details

The ADI service supports one application timer per port. This on-board timer has 10
ms resolution. The timer can be used when the application is controlling the protocol
from application space. The timer generates periodic events. Specify both the period
(timeout) and number of events (count).

Stop the timer by calling adiStopTimer. Reset or restart the timer with another call
to adiStartTimer. When the timer is restarted, previous timer definitions are
discarded and the timer begins with the new parameters.

Note: Unlike most other ADI service asynchronous functions, the timer function is
not stopped automatically when a call is released.

For more information, refer to Using on-board timers on page 72.

ADI Service Developer's Reference Manual Function reference

NMS Communications 193

Example
int myTimer(CTAHD ctahd, unsigned ms)
{
 CTA_EVENT event;

 if(adiStartTimer(ctahd, ms, 1 /*count*/) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_TIMER_DONE:
 if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;

 /* might include cases to handle disconnect event, DTMFs, etc. */
 }
 }
}

Function reference ADI Service Developer's Reference Manual

194 NMS Communications

adiStartToneDetector

Starts detecting a precise tone.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStartToneDetector (CTAHD ctahd, unsigned toneid, unsigned freq1,
unsigned bandw1, unsigned freq2, unsigned bandw2, ADI_TONEDETECT_PARMS
*parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

toneid ID or instance of the detector. The range is 1 through 6. If the current protocol is
providing cleardown detection, toneid=1 is not available.

freq1 First (or only) frequency to detect (in Hz).

bandw1 Bandwidth of the first frequency (in Hz).

freq2 The second frequency (in Hz) if the tone contains two frequencies, otherwise zero.

bandw2 Bandwidth of the second frequency.

parms Pointer to tone detection parameters, as shown (NULL designates default values):

typedef struct
{
 DWORD size; /* size of this structure */
 INT32 qualampl;/* broadband qual level (in dBm) */
 DWORD qualtime;/* qualification time (in ms) */
 DWORD reflevel;/* qual thresh,output of filter (IDUs)*/
 DWORD reserved;/* reserved, must be 0 */
} ADI_TONEDETECT_PARMS;

Refer to ADI_TONEDETECT_PARMS on page 268 for field descriptions.

ADI Service Developer's Reference Manual Function reference

NMS Communications 195

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not available in the current call state.

CTAERR_BAD_ARGUMENT Function argument had an invalid value, or a required pointer
argument was NULL.

CTAERR_FUNCTION_ACTIVE Function already active.

CTAERR_FUNCTION_NOT_AVAIL Necessary .dsp file was not downloaded to the board.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_TONE_1_BEGIN Precise tone 1 detected on.

ADIEVN_CP_CED Call progress analysis detected modem tone.

ADIEVN_CP_DIALTONE Call progress analysis detected dial tone.

ADIEVN_CP_DONE Call progress analysis complete.

ADIEVN_TONE_1_END Precise tone 1 detected off.

ADIEVN_TONE_2_BEGIN Precise tone 2 detected on.

ADIEVN_TONE_2_END Precise tone 2 detected off.

ADIEVN_TONE_3_BEGIN Precise tone 3 detected on.

ADIEVN_TONE_3_END Precise tone 3 detected off.

ADIEVN_TONE_4_BEGIN Precise tone 4 detected on.

ADIEVN_TONE_4_END Precise tone 4 detected off.

ADIEVN_TONE_5_BEGIN Precise tone 5 detected on.

ADIEVN_TONE_5_END Precise tone 5 detected off.

ADIEVN_TONE_6_BEGIN Precise tone 6 detected on.

ADIEVN_TONE_6_END Precise tone 6 detected off.

ADIEVN_TONE_1_DETECT_DONE Precise tone detector 1 terminated.

ADIEVN_TONE_2_DETECT_DONE Precise tone detector 2 terminated.

ADIEVN_TONE_3_DETECT_DONE Precise tone detector 3 terminated.

ADIEVN_TONE_4_DETECT_DONE Precise tone detector 4 terminated.

ADIEVN_TONE_5_DETECT_DONE Precise tone detector 5 terminated.

ADIEVN_TONE_6_DETECT_DONE Precise tone detector 6 terminated.

Function reference ADI Service Developer's Reference Manual

196 NMS Communications

Details

For AG and CG boards, adiStartToneDetector requires one of the following DSP
files to be specified in the board keyword file, depending on the toneid specified:

CG
boards

AG
boards

Description

dtmf.f54
dtmfe.f54

ptf.m54 For toneid 1.

ptf.f54 ptf.m54 For toneid 2 through 6. The CG board uses dtmf/dtmfe for toneid 2 when
detecting a single tone.

For QX boards, this function is supported in the standard DSP file. Refer to the QX
2000 Installation and Developer's Manual for a table of MIPS usage for all functions.

Use this function to start detecting a precise tone, which consists of one or two
frequencies. The precise tone is defined in terms of center frequency and bandwidth
pairs, specified in Hz. Bandwidth is the total band around the center frequency (for
example, +/- bandwidth/2).

After the detector is started, if the specified tone is detected, the ADI service
generates a BEGIN event. If the tone stops, the ADI service generates an END event.
The detector continues until it is stopped by adiStopToneDetector, which is
followed by a DONE event.

You can change the minimum qualification time specified by qualtime in the
ADI_TONEDETECT_PARMS structure.

To set a time limit on the detection, use adiStartTimer to generate a timeout event.
Call adiStopToneDetector if a timeout occurred.

For more information, refer to Detecting tones on page 50.

ADI Service Developer's Reference Manual Function reference

NMS Communications 197

Example
int myDetectDialtone(CTAHD ctahd)
{
 CTA_EVENT event;
 unsigned toneid = 2;
 unsigned frequency1 = 350;
 unsigned bandwidth1 = 50;
 unsigned frequency2 = 440;
 unsigned bandwidth2 = 50;

 if(adiStartToneDetector(ctahd, toneid, frequency1, bandwidth1,
 frequency2, bandwidth2, NULL) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_TONE_2_BEGIN:
 adiStopToneDetector(ctahd, toneid);
 break; /* on TONE_DETECT_DONE, will return */
 case ADIEVN_TONE_2_DETECT_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;

 /* might include cases to handle disconnect, DTMFs, etc. */
 }
 }
}

Function reference ADI Service Developer's Reference Manual

198 NMS Communications

adiStartTones

Starts generating one or more tones.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStartTones (CTAHD ctahd, unsigned count, ADI_TONE_PARMS
*parms)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

count Number of entries in the parms array.

parms Pointer to an array of tones defined by the following structure (NULL designates default
values):

typedef struct
{
 DWORD size ; /* size of this structure */
 DWORD freq1; /* first frequency (Hz) */
 INT32 ampl1; /* level of first tone (dBm) */
 DWORD freq2; /* second frequency (Hz) */
 INT32 ampl2; /* level of second tone (dBm) */
 DWORD ontime; /* on duration of DTMF tone (ms) */
 DWORD offtime; /* off duration of DTMF tone (ms) */
 INT32 iterations;/* times to repeat above; -1 = forever*/

} ADI_TONE_PARMS;

Refer to ADI_TONE_PARMS on page 267 for field descriptions.

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not available in the current call state.

CTAERR_FUNCTION_ACTIVE Function already active.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_OUTPUT_ACTIVE Function failed because there is another active output function.

CTAERR_SVR_COMM Server communication error.

ADI Service Developer's Reference Manual Function reference

NMS Communications 199

Events

Event Description

ADIEVN_TONES_DONE The value field contains any of the following reasons:

CTAERR_xxx or ADIERR_xxx
Tone generation failed.

CTA_REASON_FINISHED
Tones generated.

CTA_REASON_STOPPED
Tone generation stopped by adiStopTones.

Details

The following DSP file must be loaded to the board before running adiStartTones:

For these boards... Load this DSP file...

AG tone.m54

CG tone.f54

QX The standard QX DSP file

See DSP file summary on page 269 for DSP file descriptions. Refer to the board
installation and developer's manual for a table of MIPS usage for all functions.

Use this function to start generating a sequence of tones, each consisting of one or
two frequencies and an iteration count. The DONE event is generated when the tone
sequence completes.

Each tone within the sequence comprises an ontime and an offtime, as well as an
iterations count, all of which are contained in the ADI_TONE_PARMS structure. The
final iteration is complete when the offtime expires. To generate a tone continuously,
set iterations to -1 and specify an offtime of 0 (zero).

Use adiStopTones to prematurely terminate tone generation.

For more information, refer to Generating tones on page 52.

See also

adiStartDTMF

Function reference ADI Service Developer's Reference Manual

200 NMS Communications

Example
/* generates an Intralata Reorder SIT per BellCore */
int myPlaySITReorder(CTAHD ctahd)
{
 ADI_TONE_PARMS p[3] = {0};
 CTA_EVENT event;
 int tonecnt = 3;

 p[0].freq1 = 914; p[0].ampl1 = -24; p[0].ontime = 275; p[0].iterations = 1;
 p[1].freq1 = 1429; p[1].ampl1 = -24; p[1].ontime = 380; p[1].iterations = 1;
 p[2].freq1 = 1777; p[2].ampl1 = -24; p[2].ontime = 380; p[2].iterations = 1;

 if(adiStartTones(ctahd, tonecnt, p) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_TONES_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;
 }
 }
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 201

adiStopCallProgress

Stops a call progress analysis operation.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStopCallProgress (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not available in the current call state.

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_CP_DONE After the call progress analysis operation stops, the ADI service generates a
DONE event with the value field set to CTA_REASON_STOPPED.

Details

Use adiStopCallProgress to disable the call progress analysis operation started by
adiStartCallProgress. After this function is called, call progress analysis events are
not reported.

Call progress analysis cannot be restarted until the DONE event is received.

Function reference ADI Service Developer's Reference Manual

202 NMS Communications

Example
int myStopCallProgress(CTAHD ctahd)
{
 CTA_EVENT event;

 if(adiStopCallProgress(ctahd) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_CP_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;

 /* might include cases to handle disconnect, DTMFs, etc. */
 }
 }
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 203

adiStopCollection

Stops the asynchronous digit collection operation.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStopCollection (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

ADIERR_INVALID_CALL_STATE Function not available in the current call state.

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_COLLECTION_DONE After digit collection terminates, the ADI service generates a DONE
event with the value field set to CTA_REASON_STOPPED.

Details

Use adiStopCollection to stop digit collection started with adiCollectDigits. When
digit collection stops, ADIEVN_COLLECTION_DONE is generated. Any digits already
collected are included in the event's buffer.

See also

adiFlushDigitQueue, adiGetDigit

Function reference ADI Service Developer's Reference Manual

204 NMS Communications

adiStopDial

Stops the dial operation.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStopDial (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE Attempt made to stop a function that is already being stopped.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_DIAL_DONE After the dial operation stops, the ADI service generates a DONE event with
the value field set to CTA_REASON_STOPPED.

Details

Use adiStopDial to stop the dial function started by adiStartDial. You can restart
the dial operation (and any other operation requiring voice output) after you receive
the DONE event.

ADI Service Developer's Reference Manual Function reference

NMS Communications 205

Example
int myStopDial(CTAHD ctahd)
{
 CTA_EVENT event;

 if(adiStopDial(ctahd) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_DIAL_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;

 /* might include cases to handle disconnect, DTMFs, etc. */
 }
 }
}

Function reference ADI Service Developer's Reference Manual

206 NMS Communications

adiStopDTMFDetector

Stops DTMF detection.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStopDTMFDetector (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE Attempt made to stop a function that is already being stopped.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_DTMF_DETECT_DONE After the detector stops, the ADI service generates a DONE event
with the value field set to CTA_REASON_STOPPED.

Details

Use adiStopDTMFDetector to disable detection of DTMFs. Detection is
automatically enabled by the call control protocols upon transition to the
ADI_CC_STATE_CONNECTED state. After this function is called, DTMF events are not
reported. After the DONE event is received, restart the detector with
adiStartDTMFDetector.

adiCollectDigits does not work if you disable DTMF detection. No digits are
collected and no events are generated.

ADI Service Developer's Reference Manual Function reference

NMS Communications 207

Example
int myStopDTMFDetector(CTAHD ctahd)
{
 CTA_EVENT event;

 if(adiStopDTMFDetector(ctahd) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_DTMF_DETECT_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;

 /* might include cases to handle disconnect, DTMFs, etc. */
 }
 }
}

Function reference ADI Service Developer's Reference Manual

208 NMS Communications

adiStopEnergyDetector

Stops the energy detector.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStopEnergyDetector (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE Attempt made to stop a function that is already being stopped.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_ENERGY_DETECT_DONE After the detector stops, the ADI service generates a DONE event
with the value field set to CTA_REASON_STOPPED.

Details

Use adiStopEnergyDetector to stop the low-level energy detector started by
adiStartEnergyDetector. After this function is called, energy and silence transitions
are not reported. You can restart the energy detector after you receive the DONE
event.

For more information, refer to Detecting energy on page 66.

ADI Service Developer's Reference Manual Function reference

NMS Communications 209

Example
int myStopEnergyDetector(CTAHD ctahd)
{
 CTA_EVENT event;

 if(adiStopEnergyDetector(ctahd) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_ENERGY_DETECT_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;

 /* might include cases to handle disconnect, DTMFs, etc. */
 }
 }
}

Function reference ADI Service Developer's Reference Manual

210 NMS Communications

adiStopMFDetector

Stops the MF detector.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStopMFDetector (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE Attempt was made to stop a function that is already being
stopped.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_MF_DETECT_DONE After the detector stops, the ADI service generates a DONE event with
the value field set to CTA_REASON_STOPPED.

Details

Use adiStopMFDetector to disable detection of MFs. After this function is called, MF
events are not reported. When the DONE event is received, restart the MF detector
with adiStartMFDetector.

ADI Service Developer's Reference Manual Function reference

NMS Communications 211

Example
int myStopMFDetector(CTAHD ctahd)
{
 CTA_EVENT event;

 if(adiStopMFDetector(ctahd) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_MF_DETECT_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;
 }
 }
}

Function reference ADI Service Developer's Reference Manual

212 NMS Communications

adiStopPlaying

Stops the play operation.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStopPlaying (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE Attempt made to stop a function that is already being stopped.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_PLAY_DONE After playing stops, the ADI service generates a DONE event with the value
field set to CTA_REASON_STOPPED.

Details

Use adiStopPlaying to stop the play operation started by either adiStartPlaying,
adiPlayFromMemory, or adiPlayAsync. When the DONE event is received, you
can restart the play operation and any other operation requiring voice output.

For more information, refer to Playing on page 25.

ADI Service Developer's Reference Manual Function reference

NMS Communications 213

adiStopProtocol

Stops the execution of a telephony protocol.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStopProtocol (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_STOPPROTOCOL_DONE When the protocol stops, the ADI service generates a DONE event
with the value field set to CTA_REASON_FINISHED.

Details

Use adiStopProtocol to stop a protocol previously started with adiStartProtocol.
You can stop the running protocol from any state. If the protocol is in the middle of a
call, the call is aborted (abnormally), the outgoing line signaling is set to
ADI_CC_STATE_IDLE, and the incoming signaling is ignored. All functions executing
on the context that require being in the connected state are automatically terminated
with CTA_REASON_RELEASED.

When the DONE event is returned, you can start a new protocol.

Function reference ADI Service Developer's Reference Manual

214 NMS Communications

Example
int myStopProtocol(CTAHD ctahd)
{
 CTA_EVENT event;

 if(adiStopProtocol(ctahd) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_STOPPROTOCOL_DONE:
 if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;
 }
 }
}

ADI Service Developer's Reference Manual Function reference

NMS Communications 215

adiStopReceivingFSK

Stops receiving frequency shift key (FSK) data.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStopReceivingFSK (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_FSK_RECEIVE_DONE Generated by the ADI service when the FSK receive function
terminates. The event value field contains:

CTA_REASON_STOPPED
Stopped by application request.

Details

Use adiStopReceivingFSK to stop the receipt of data initiated by
adiStartReceivingFSK. For more information, refer to Sending and receiving FSK
data on page 69.

Function reference ADI Service Developer's Reference Manual

216 NMS Communications

adiStopRecording

Stops the recording operation.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStopRecording (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE Attempt made to stop a function that is already being stopped.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_RECORD_DONE After recording stops and the final buffer is presented, the ADI service
generates a DONE event with the value field set to
CTA_REASON_STOPPED.

Details

Use adiStopRecording to stop the recording operation started by either
adiStartRecording, adiRecordToMemory, or adiRecordAsync. You can restart
recording when you receive the DONE event.

For more information, refer to Recording on page 20.

ADI Service Developer's Reference Manual Function reference

NMS Communications 217

adiStopSendingFSK

Stops sending frequency shift key (FSK) data.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStopSendingFSK (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_FSK_SEND_DONE Generated by the ADI service when the send operation terminates. The
event value field contains CTA_REASON_STOPPED (stopped by
application request).

Details

Use adiStopSendingFSK to abort the transmission of FSK data initiated by
adiStartSendingFSK. For more information, refer to Sending and receiving FSK
data on page 69.

Function reference ADI Service Developer's Reference Manual

218 NMS Communications

adiStopSignalDetector

Stops the out-of-band signaling bit detector.

Supported board types

• QX

• AG

• CG

Prototype

DWORD adiStopSignalDetector (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE Attempt was made to stop a function that is already being
stopped.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_SIGNAL_DETECT_DONE After signal detection stops, the ADI service generates a DONE
event with a value field of CTA_REASON_STOPPED.

Details

Use adiStopSignalDetector to disable detection of incoming out-of-band signaling
bits. After calling this function, incoming out-of-band bit transitions are not reported.

This function is incompatible with standard call control. Contexts running a standard
protocol other than NOCC are usually excluded from using this function. Protocols
usually use out-of-band signaling bits for call setup (detection of incoming calls) and
call teardown (detection of hang-up). For information about controlling calls under
specific TCPs, refer to the NMS CAS for Natural Call Control Developer's Manual.

For more information, refer to Performing low-level call control on page 71.

ADI Service Developer's Reference Manual Function reference

NMS Communications 219

See also

adiStartSignalDetector

Example
int myStopSignalDetector(CTAHD ctahd)
{
 CTA_EVENT event;

 if(adiStopSignalDetector(ctahd) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_SIGNAL_DETECT_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;

 /* might include cases to handle disconnect, DTMFs, etc. */
 }
 }
}

Function reference ADI Service Developer's Reference Manual

220 NMS Communications

adiStopTimer

Aborts the timer operation.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStopTimer (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE Attempt made to stop a function that is already being stopped.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_TIMER_DONE After the timer operation stops, the ADI service generates a DONE event with
a value field of CTA_REASON_STOPPED.

Details

Use adiStopTimer to abort the timer operation started by adiStartTimer. For more
information, refer to Using on-board timers on page 72.

ADI Service Developer's Reference Manual Function reference

NMS Communications 221

Example
int myStopTimer(CTAHD ctahd)
{
 CTA_EVENT event;

 if(adiStopTimer(ctahd) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_TIMER_DONE:
 if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;

 /* might include cases to handle disconnect, DTMFs, etc. */
 }
 }
}

Function reference ADI Service Developer's Reference Manual

222 NMS Communications

adiStopToneDetector

Stops a precise tone detector.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStopToneDetector (CTAHD ctahd, unsigned toneid)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

toneid A specified instance of the detector to stop. Current range is 1 through 6, and
corresponds to the toneid passed to adiStartToneDetector.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE Attempt made to stop a function that is already being stopped.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_TONE_1_DETECT_DONE Precise tone detector 1 terminated.

ADIEVN_TONE_2_DETECT_DONE Precise tone detector 2 terminated.

ADIEVN_TONE_3_DETECT_DONE Precise tone detector 3 terminated.

ADIEVN_TONE_4_DETECT_DONE Precise tone detector 4 terminated.

ADIEVN_TONE_5_DETECT_DONE Precise tone detector 5 terminated.

ADIEVN_TONE_6_DETECT_DONE Precise tone detector 6 terminated.

ADI Service Developer's Reference Manual Function reference

NMS Communications 223

Details

Use adiStopToneDetector to deactivate a precise tone detector. When the detector
stops, the ADI service generates a DONE event with the value field set to
CTA_REASON_STOPPED. A specific DONE event is defined for each of six precise
tone detectors.

You can restart the tone detector specified by the toneid when you receive the
DONE event.

For more information, refer to Detecting tones on page 50.

Example
int myStopToneDetector(CTAHD ctahd) /* stop detector #2 */
{
 CTA_EVENT event;

 if(adiStopToneDetector(ctahd, 2) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_TONE_2_DETECT_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;

 /* might include cases to handle disconnect, DTMFs, etc. */
 }
 }
}

Function reference ADI Service Developer's Reference Manual

224 NMS Communications

adiStopTones

Stops generating tones.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiStopTones (CTAHD ctahd)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

Return values

Return value Description

SUCCESS

CTAERR_FUNCTION_NOT_ACTIVE Attempt made to stop a function that was not running.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE Attempt made to stop a function that is already being stopped.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

Events

Event Description

ADIEVN_TONES_DONE When the tone generation function is stopped, the ADI service generates a
DONE event with the value (reason) CTA_REASON_STOPPED.

Details

Use adiStopTones to terminate tone generation started by either adiStartTones or
adiStartDTMF. You can restart tone generation, and any other functions requiring
voice output, when you receive the DONE event.

For more information, refer to Generating tones on page 52.

ADI Service Developer's Reference Manual Function reference

NMS Communications 225

Example
int myStopTones(CTAHD ctahd)
{
 CTA_EVENT event;

 if(adiStopTones(ctahd) != SUCCESS)
 return MYFAILURE;

 while(1)
 {
 myGetEvent(&event); /* see ctaWaitEvent example */

 switch(event.id)
 {
 case ADIEVN_TONES_DONE:
 if(event.value == CTA_REASON_RELEASED)
 return MYDISCONNECT; /* call has been terminated */
 else if(CTA_IS_ERROR(event.value))
 return MYFAILURE; /* API error */
 else
 return SUCCESS; /* stopped normally */
 break;

 /* might include cases to handle disconnect, DTMFs, etc. */
 }
 }
}

Function reference ADI Service Developer's Reference Manual

226 NMS Communications

adiSubmitPlayBuffer

Submits a buffer of data for a play operation initiated by adiPlayAsync.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiSubmitPlayBuffer (CTAHD ctahd, void *buffer, unsigned size,
unsigned flags)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

buffer Pointer to buffer containing voice data to be played.

size Size of buffer (bytes).

flags Set to ADI_PLAY_LAST_BUFFER if the given buffer is the last in the message; otherwise
set to 0.

Return values

Return value Description

SUCCESS

ADIERR_TOO_MANY_BUFFERS Application is out of synchronization with the play operation.
Submit buffers only when requested.

CTAERR_BAD_ARGUMENT buffer is NULL.

CTAERR_BAD_SIZE size is not a multiple of framesize for the encoding in
adiPlayAsync.

CTAERR_FUNCTION_NOT_ACTIVE Either voice is not playing or the play operation was not initiated
by calling adiPlayAsync.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE adiStopPlaying was already invoked or the
ADI_PLAY_LAST_BUFFER flag was already set in a previous call to
adiSubmitPlayBuffer or adiPlayAsync.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

ADI Service Developer's Reference Manual Function reference

NMS Communications 227

Events

Event Description

ADIEVN_PLAY_BUFFER_REQ Generated by the ADI service when a buffer with voice data is required.

ADIEVN_PLAY_DONE Generated by the ADI service when the play operation terminates with
a reason (value field) of:

CTAERR_xxx or ADIERR_xxx
Play failed.

CTA_REASON_DIGIT
Aborted due to DTMF.

CTA_REASON_FINISHED
Application submitted buffer with ADI_PLAY_LAST_BUFFER set and the
buffer was completely played.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Stopped by application request.

Details

Use adiSubmitPlayBuffer to asynchronously submit buffers, provided that the:

• Play operation was initiated by adiPlayAsync.

• Play operation is currently active.

• ADI_PLAY_LAST_BUFFER flag was not set for any buffer submission for the
current playing instance.

• ADI service issued ADIEVN_PLAY_BUFFER_REQ to the application and the
application did not subsequently submit a buffer (only one buffer can be
submitted to a play operation at a time).

size can be arbitrarily large, but must be an integral multiple of the frame size for
the selected encoding. For optimum performance, size must be the largest frame
multiple that will fit in one board buffer. You can obtain this size by calling
adiGetEncodingInfo (refer to the maxbufsize argument). If size is less than or
equal to the board buffer size, you can re-use the buffer as soon as this function
returns.

buffer can be set to NULL and size set to 0 (zero) only if the
ADI_PLAY_LAST_BUFFER flag is set. In this case, the play operation terminates
when the previously submitted buffer finishes.

See also

adiGetPlayStatus, adiStopPlaying

Example

Refer to the playrec demonstration program.

Function reference ADI Service Developer's Reference Manual

228 NMS Communications

adiSubmitRecordBuffer

Supplies an empty buffer to an asynchronous record operation that was initiated
using adiRecordAsync.

Supported board types

• QX

• AG

• CG

• PacketMedia HMP process

Prototype

DWORD adiSubmitRecordBuffer (CTAHD ctahd, void *buffer, unsigned size)

Argument Description

ctahd Context handle returned by ctaCreateContext or ctaAttachContext.

buffer Pointer into process memory where recorded voice data will be written.

size Size of the buffer (bytes).

Return values

Return value Description

SUCCESS

ADIERR_TOO_MANY_BUFFERS More than two buffers were submitted. A maximum of two buffers
can be submitted to a record operation at any given time.

CTAERR_BAD_ARGUMENT buffer is NULL.

CTAERR_BAD_SIZE size is 0 (zero).

CTAERR_FUNCTION_NOT_ACTIVE Either not recording or the recording operation was not initiated
by calling adiRecordAsync.

CTAERR_INVALID_CTAHD Context handle is invalid.

CTAERR_INVALID_SEQUENCE adiStopRecording was already invoked.

CTAERR_INVALID_STATE Function not available in the current port state.

CTAERR_SVR_COMM Server communication error.

ADI Service Developer's Reference Manual Function reference

NMS Communications 229

Events

Event Description

ADIEVN_RECORD_BUFFER_FULL Generated by the ADI service when a buffer is filled with recorded
voice data. The event contains the following fields:

buffer
Pointer to a previously submitted user buffer.

size
Number of bytes recorded into buffer.

value
Flags; if the ADI_RECORD_BUFFER_REQ bit is set, more buffers
are needed and the application must submit another empty buffer.
If the ADI_RECORD_UNDERRUN bit is set, an underrun occurred.
There was no new buffer to record information when this one
completed.

ADIEVN_RECORD_DONE Generated by the ADI service when the record operation
terminates. The event size field contains the total number of bytes
recorded during the function instance. The value field contains one
of the following termination reasons or an error code:

CTA_REASON_DIGIT
Aborted due to DTMF.

CTA_REASON_NO_VOICE
Remote party never spoke.

CTA_REASON_RELEASED
Call terminated.

CTA_REASON_STOPPED
Stopped by application request.

CTA_REASON_TIMEOUT
Maximum record limit reached.

CTA_REASON_VOICE_END
Remote party stopped speaking.

CTAERR_xxx or ADIERR_xxx
Record failed.

Details

Use adiSubmitRecordBuffer to asynchronously submit empty buffers to a record
operation, provided that the:

• Record operation was initiated by adiRecordAsync.

• Record operation is active.

• Application does not already have two actively submitted buffers.

The ADI service truncates the size so that the effective size is a multiple of the
encoding frame size selected in adiRecordAsync. If the effective size is zero,
CTAERR_BAD_SIZE is returned.

See also

adiGetRecordStatus

Example

Refer to the playrec demonstration program.

NMS Communications 231

66 Demonstration programs
Summary of the demonstration programs

Each demonstration program is shipped as an executable program with its source
files and make files.

Note: The incta and outcta programs demonstrate placing inbound and outbound
calls. Refer to the Natural Access Developer's Reference Manual for information
about these demonstration programs.

The following demonstration programs are provided with Natural Access and the ADI
service:

Program Demonstrates...

hostp2p A live voice connection between two ports using play and record functions.

playrec Playing and recording using asynchronous and callback methods.

threads A simple, multi-threaded answering machine.

Before you start the demonstration programs, ensure that

• Natural Access is properly installed.

• The board is executing.

• Switching is correctly configured.

Refer to the board installation and developer's manual for details on installing the
board.

ctademo.c and ctademo.h

All of the demonstration programs use a common set of high-level functions
contained in ctademo.c and ctademo.h. This demonstration code provides functions
for initializing Natural Access, opening and closing ports, waiting for calls, placing
calls, answering calls, performing record and playback operations, and collecting
digits. Use these functions as base code for developing your applications with Natural
Access. This library of functions is for demonstration only, and is subject to change
without notice.

Demonstration programs ADI Service Developer's Reference Manual

232 NMS Communications

Host port to port connection: hostp2p

hostp2p demonstrates live voice connection between two ports using play and record
functions. This program uses simultaneous play and record of small buffers to
simulate a real-time voice connection between two voice calls. It uses the
asynchronous play and record functions of the ADI service.

Usage
hostp2p options

where options are:

Option Use this option to specify the...

-b n Board number. Default = 0.

-B n Second board number (if different).

-s [n:]m First port DSP address. Default = 0:0.
Specify only the timeslot.

-S [n:]m Second port DSP address. Default = 0:1.
Specify only the timeslot.

-p protocol Protocol to run. Default = LPS0.

-P protocol Second port protocol (if different).

-e n Encoding type. Refer to adidef.h. Default = 10 (mu-law).

-f n Buffer size (ms). Default = 60.

-d digits Digits to dial on port 2 (if not NOCC).

-E len:tim Echo cancellation length:adaptime. Default = 4:100.

Running hostp2p

This procedure assumes that you are testing on an AG 2000 board with loop start
line interfaces connected to phone lines. hostp2p requires rvoice.m54 and echo.m54
for an AG 2000 board.

Ensure that the board keyword file is set to SwitchConnections = Yes or
Clocking.HBus.ClockMode = STANDALONE for the board you are using. These
settings ensure that the default DSP-to-line interface connections are set up by NMS
OAM.

ADI Service Developer's Reference Manual Demonstration programs

NMS Communications 233

To run hostp2p:

Step Action

1 Start hostp2p by entering the following command at the prompt:

hostp2p -p lps0 -d digits

hostp2p starts and the following information appears:

CTA host port to port voice Demo V 1.0 (Dec 8 1997)
 Port #1: Board 0 Stream 0 Slot 0 Protocol = lps0
 Port #2: Board 0 Stream 0 Slot 1 Protocol = lps0
 Encoding = 10
 Buffer time = 60 msec
 Echocanceling length = 4 msec, adapt time= 100 msec

 Initializing and opening the CTA context...
 Daemon not running. Using process global default parms.
 Trace disabled.

 Waiting for incoming call...

hostp2p waits for an incoming call.

2 Place a call to the telephone line connected to port 0.

The following information appears:

Incoming Call...
Answering call...
Call connected.

Placing a call to '5551212'...

hostp2p places a call to the number you specified. When the called party answers, you have a
connection.

Demonstration programs ADI Service Developer's Reference Manual

234 NMS Communications

Play and record: playrec

playrec demonstrates voice play and record using asynchronous buffer submission
and play and record callback routines. This demonstration operates in two phases:
asynchronous voice play and record operations, and callback voice play and record
operations.

If you do not specify a buffer size on the command line (-z), playrec retrieves the
board physical buffer using adiGetEncodingInfo.

The demonstration is constructed so that the play and record functions are
synchronous within the application. This is a single-port, single-threaded
demonstration.

Note: adiStartPlaying and adiStartRecording (and consequently, this
demonstration program) are not supported while Natural Access is running in
client/server mode.

Usage
playrec [options]

where options are:

Option Use this option to...

-? Display command line options.

-h Display command line options.

-b n Specify the board number n. Default is 0.

-s n:m Specify MVIP stream and timeslot. Default is 0:0.

-r n Specify the maximum recording duration (in seconds).

-z n Specify the application buffer size. Must be a multiple of NMS_24 frame size (62).

Featured functions

adiGetEncodingInfo, adiPlayAsync, adiRecordAsync, adiStartPlaying,
adiStartRecording, adiSubmitPlayBuffer, adiSubmitRecordBuffer

ADI Service Developer's Reference Manual Demonstration programs

NMS Communications 235

Running playrec

The following procedure assumes that you are using an AG 2000 DID board with a
2500-type telephone connected to one of the lines.

To run playrec:

Step Action

1 Navigate to the \nms\ctaccess\demos\playrec directory.

2 Start playrec by entering the following command at the prompt:

playrec [-b n -s n:m -r n -z n]

Make sure that you specify the proper board and timeslot. The default value for both
arguments is 0 (zero).

You are prompted to record a brief message. The prompt is played using asynchronous buffer
submission and ADIEVN_PLAY_BUFFER_REQ is displayed on your screen (assuming you did not
specify an application buffer large enough to fit the whole prompt file).

You can prematurely terminate the prompt by entering a touchtone.

3 At the record beep prompt, begin speaking.

ADIEVN_RECORD_BUFFER_FULL displays on your screen for each buffer_size time period.

4 You can prematurely terminate the recording by entering a touchtone or by ceasing to speak.

The recording you just made is played back. Again, the message ADIEVN_PLAY_BUFFER_REQ
displays on your screen.

5 Repeat steps 2 and 3. The process repeats using callback mode. Since Natural Access
automatically invokes the callback routine, the displayed event messages are replaced with the
corresponding callback events.

Note: This demonstration program enables you to experiment with buffer sizes. The
encoding format for the files is ADI_ENCODE_NMS_24, which has a 62-byte frame
size. Buffer sizes you specify with the -z option must therefore be multiples of 62.

Demonstration programs ADI Service Developer's Reference Manual

236 NMS Communications

Multi-threaded application: threads

threads demonstrates handling multiple ports using one thread per port. This
demonstration application is a multi-threaded answering machine using ctademo.
Each thread opens a port and repeatedly waits for calls on the port. Each time a call
is received, it answers, plays the answering message, and hangs up.

Note: adiStartPlaying (and consequently, this demonstration program) is not
supported when the application is running in client/server mode.

Usage
threads [options]

where options are:

Option Use this option to specify the...

-b n Board number n. Default is 0.

-s n:m MVIP stream and timeslot for the first channel. Default is 0:0.

-n nports Number of ports (and threads) to use. Default is 1.

-p protocol Protocol to run. Default is lps0.

-f filename Voice file to use for answering message. Default is answer.vce. Encoding is assumed to
be ADI_ENCODE_NMS_24.

Featured functions

adiStartPlaying (in DemoPlayFile)

Running threads

Before running threads, verify that your system has the proper configuration. It must
have the desired number of lines connected to loop start hybrids having the same
MVIP stream and successive MVIP timeslots.

To run threads, type the following command at the prompt:

threads [-b n -s n:m -n nports -p protocol -f filename]

Specify the MVIP stream, the lowest-numbered MVIP timeslot, and the number of
timeslots to use.

The demonstration continues to answer all of the lines until you stop it by pressing
Ctrl+C.

Note: Code in threads parses and documents the command line arguments and
creates threads under various operating systems. RunDemo performs the call
handling.

NMS Communications 237

77 Errors
Alphabetical error summary

All ADI service functions return either SUCCESS, or an error code indicating that the
function failed and the reason for the failure. ADI service error codes are defined in
the adidef.h and ctaerr.h include files. The error codes are prefixed with ADIERR_ or
CTAERR_.

For a complete list of CTAERR_ codes, refer to the Natural Access Developer's
Reference Manual.

Asynchronous functions return SUCCESS if the input arguments and context state
are valid for the given function and if the ADI service sent the command to the
hardware providing the service. SUCCESS, in this case, means the function was
initiated and a DONE event is generated for the function.

The following table alphabetically lists the ADI service errors:

Error name Hex Decimal Description

ADIERR_CANNOT_CREATE_CHANNEL 0x00010006 65542 Unable to create a channel to the
board due to either board or driver
limitations.

ADIERR_INVALID_CALL_STATE 0x00010005 65541 Function not valid in the current call
state. For example, many functions
require the call to be in
ADI_CC_STATE_CONNECTED.

ADIERR_INVALID_QUEUEID 0x00010002 65538 Bad queue or driver ID.

ADIERR_NO_DSP_PORT 0x00010007 65543 No input or output stream for
requested function.

ADIERR_NO_DSP_RESOURCES 0x00010008 65544 Not enough free DSP resources to run
the requested function.

ADIERR_NOT_ENOUGH_RESOURCES 0x0001000A 65546 Unable to obtain port resource from
on-board resource management.

ADIERR_PLAYREC_ACCESS 0x00010001 65537 User callback routine for playing or
recording returned a value other than
SUCCESS or
ADI_PLAY_LAST_BUFFER.

ADIERR_TOO_MANY_BUFFERS 0x00010004 65540 Attempted to submit a play or record
buffer with two buffers pending.

ADIERR_UNKNOWN_BOARDTYPE 0x00010003 65539 Board type is unrecognized
(adiGetBoardSlots).

CTAERR_BAD_ARGUMENT 0x00000007 7 Function argument had an invalid
value, or a required pointer argument
was NULL.

Errors ADI Service Developer's Reference Manual

238 NMS Communications

Error name Hex Decimal Description

CTAERR_BAD_SIZE 0x0000000B 11 Size argument was too small to
receive a data structure, or a play or
record buffer was not a multiple of the
framesize for the specified encoding.

CTAERR_BOARD_ERROR 0x00000003 3 Unexpected error occurred on the
board. In most cases,
ADIEVN_BOARD_ERROR contains the
board error code.

CTAERR_DRIVER_OPEN_FAILED 0x00000014 20 Driver open failed because either the
driver was not installed or the
maximum number of opens was
exceeded.

CTAERR_DRIVER_RECEIVE_FAILED 0x00000016 22 Error occurred retrieving an event
from the driver, or no events were
queued in the driver.

CTAERR_DRIVER_SEND_FAILED 0x00000017 23 Error returned by the driver in sending
a message to the board. Occurs if the
board was reset.

CTAERR_DRIVER_VERSION 0x00000015 21 Driver does not support the requested
function.

CTAERR_FATAL 0x00000002 2 Internal error occurred in the Natural
Access library.

CTAERR_FUNCTION_ACTIVE 0x0000000F 15 Attempt made to start an
asynchronous function that is already
started. Also returned if an attempt
was made to get a digit or flush the
digit queue while collecting digits.

CTAERR_FUNCTION_NOT_ACTIVE 0x0000000E 14 Attempt made to stop or modify a
function that was not running. Also
occurs when a function call is made to
ADI call control when the NCC service
is active.

CTAERR_FUNCTION_NOT_AVAIL 0x0000000D 13 • Necessary .dsp or .tcp file was not
downloaded to the board.

• Requested function required a
service that is reserved for use by
call control.

CTAERR_INVALID_BOARD 0x0000001A 26 Specified board number was not
successfully configured.

CTAERR_INVALID_CTAHD 0x00000005 5 Context handle is invalid.

CTAERR_INVALID_SEQUENCE 0x00000013 19 • Attempt was made to stop a
function that is already being
stopped.

• Play or record buffer was
submitted when it was not
expected.

ADI Service Developer's Reference Manual Errors

NMS Communications 239

Error name Hex Decimal Description

CTAERR_INVALID_STATE 0x0000000C 12 Function is not valid in the current
port state. For example, most
functions require the port to be in
ADI_STATE_STARTED, which is
entered after starting a trunk protocol.

CTAERR_LOCK_TIMEOUT 0x0000001D 29 Thread lock timed out.

CTAERR_NOT_FOUND 0x0000000A 10 Specified parameter does not exist.

CTAERR_NOT_IMPLEMENTED 0x00000009 9 Function was not implemented.

CTAERR_OUTPUT_ACTIVE 0x0000001B 27 • Open port failed because the
stream and slot are already
opened on another port.

• Output operation such as play
failed because there is another
active output function.

CTAERR_OUT_OF_MEMORY 0x00000006 6 Unable to allocate memory for driver
or port context, for play or record
buffers, or for temporary storage.
When this error occurs in a DONE
event, it can mean that there was
insufficient memory on the board.

CTAERR_OUT_OF_RESOURCES 0x00000008 8 Unable to create shared resources.

CTAERR_SHAREMEM_ACCESS 0x00000010 16 Failed accessing shared memory.

CTAERR_SVR_COMM 0X00000041 65 Server communication error.

Numerical error summary

The following table numerically lists the ADI service errors:

Hex Decimal Error name

0x00000002 2 CTAERR_FATAL

0x00000003 3 CTAERR_BOARD_ERROR

0x00000005 5 CTAERR_INVALID_CTAHD

0x00000006 6 CTAERR_OUT_OF_MEMORY

0x00000007 7 CTAERR_BAD_ARGUMENT

0x00000008 8 CTAERR_OUT_OF_RESOURCES

0x00000009 9 CTAERR_NOT_IMPLEMENTED

0x0000000A 10 CTAERR_NOT_FOUND

0x0000000B 11 CTAERR_BAD_SIZE

0x0000000C 12 CTAERR_INVALID_STATE

0x0000000D 13 CTAERR_FUNCTION_NOT_AVAIL

0x0000000E 14 CTAERR_FUNCTION_NOT_ACTIVE

0x0000000F 15 CTAERR_FUNCTION_ACTIVE

Errors ADI Service Developer's Reference Manual

240 NMS Communications

Hex Decimal Error name

0x00000010 16 CTAERR_SHAREMEM_ACCESS

0x00000013 19 CTAERR_INVALID_SEQUENCE

0x00000014 20 CTAERR_DRIVER_OPEN_FAILED

0x00000015 21 CTAERR_DRIVER_VERSION

0x00000016 22 CTAERR_DRIVER_RECEIVE_FAILED

0x00000017 23 CTAERR_DRIVER_SEND_FAILED

0x0000001A 26 CTAERR_INVALID_BOARD

0x0000001B 27 CTAERR_OUTPUT_ACTIVE

0x0000001D 29 CTAERR_LOCK_TIMEOUT

0x00000041 65 CTAERR_SVR_COMM

0x00010001 65537 ADIERR_PLAYREC_ACCESS

0x00010002 65538 ADIERR_INVALID_QUEUEID

0x00010003 65539 ADIERR_UNKNOWN_BOARDTYPE

0x00010004 65540 ADIERR_TOO_MANY_BUFFERS

0x00010005 65541 ADIERR_INVALID_CALL_STATE

0x00010006 65542 ADIERR_CANNOT_CREATE_CHANNEL

0x00010007 65543 ADIERR_NO_DSP_PORT

0x00010008 65544 ADIERR_NO_DSP_RESOURCES

0x0001000A 65546 ADIERR_NOT_ENOUGH_RESOURCES

NMS Communications 241

88 Events
Event data structure

The ADI service uses an asynchronous programming model to capitalize on the
concurrent processing between board processors and the host CPU. In response to
commands executed by the application, the ADI service generates events that
indicate certain conditions or state changes. All events are represented as a
CTA_EVENT C data structure, as shown:
typedef struct
{
 DWORD id; /* event id (ADIEVN_xxx in 'adidef.h') */
 CTAHD ctahd; /* context handle */
 DWORD timestamp; /* timestamp */
 DWORD userid; /* user id (defined by ctaCreateContext) */
 DWORD size; /* size of buffer if buffer != NULL */
 /* otherwise, may contain event */
 /* specific data */
 void *buffer; /* buffer pointer */
 DWORD value; /* Event status or event-specific data */
 DWORD objHd; /* service client side object handle */
} CTA_EVENT;

This structure, returned by ctaWaitEvent, informs the application which event
occurred on which context, and includes additional information specific to the event.

The CTA_EVENT structure contains the following fields:

Field Description

id ADI event code defined in the adidef.h header file. All ADI events are prefixed with
ADIEVN_ (for example, ADIEVN_SOMETHING_HAPPENED).

ctahd Context handle (the same as the one returned from ctaCreateContext).

timestamp Time when the event was created in milliseconds. Use ctaGetTimeStamp to interpret the
value. The resolution for AG board events is 10 milliseconds. For CG board and PacketMedia
HMP process events, the resolution is 1 millisecond.

userid User-supplied value to ctaCreateContext. This field is unaltered by the ADI service and
facilitates asynchronous programming. Its purpose is to correlate a port with an application
object or context when events occur.

size Size (bytes) of the area pointed to by buffer. If the buffer is NULL, this field can hold an
event-specific value.

buffer Pointer to data returned with the event. The field contains an application process address
and the event's size field contains the actual size of the buffer.

value Event-specific value.

objHd Service object handle for the client side.

Events ADI Service Developer's Reference Manual

242 NMS Communications

DONE events

A DONE event is a Natural Access event informing the application that an
asynchronous function completed processing. DONE event codes are in the form
ADI_function_DONE where function is the completed function (for example, PLAY,
RECORD, COLLECTION). DONE events have no special physical or processing
characteristics; they have the same physical structure and are retrieved identically
as all other events.

An asynchronous function can return SUCCESS to the application when invoked and
the function can later fail on the board. If the board detects an error when running a
function, the ADI service delivers a DONE event to the application, and the event
value field contains an error code.

ADI Service Developer's Reference Manual Events

NMS Communications 243

Alphabetical event summary

The following table alphabetically lists the ADI service events:

Event name Description

ADIEVN_BOARD_ERROR Unexpected board error returned. This error can mean that the TCP
initiated call clearing from an inappropriate state.

ADIEVN_BOARD_EVENT Low-level board event returned.

ADIEVN_COLLECTION_DONE Digit collection complete.

ADIEVN_CP_BUSYTONE Call progress analysis detected busy.

ADIEVN_CP_CED Call progress analysis detected modem tone.

ADIEVN_CP_DIALTONE Call progress analysis detected dial tone.

ADIEVN_CP_DONE Call progress analysis complete.

ADIEVN_CP_NOANSWER Call progress analysis detected no answer (after ringing).

ADIEVN_CP_RINGTONE Call progress analysis detected ring tone (remote alerting).

ADIEVN_CP_RINGQUIT Call progress analysis detected ring, but it stopped.

ADIEVN_CP_REORDERTONE Call progress analysis detected reorder tone (fast busy).

ADIEVN_CP_SIT Call progress analysis detected SIT (special information tone).

ADIEVN_CP_VOICE Call progress analysis detected voice.

ADIEVN_DIAL_DONE Dial function complete.

ADIEVN_DIGIT_BEGIN Raw DTMF digit detected on.

ADIEVN_DIGIT_END Raw DTMF digit detected off.

ADIEVN_DTMF_DETECT_DONE DTMF detector terminated.

ADIEVN_ECHOCANCEL_STATUS Arrival of echo cancellation status information.

ADIEVN_ECHOCANCEL_TONE Arrival of echo cancellation tone disabler information.

ADIEVN_ENERGY_DETECT_DONE Energy detector terminated.

ADIEVN_ENERGY_DETECTED Energy detector reporting energy.

ADIEVN_FSK_RECEIVE_DONE FSK receive operation complete.

ADIEVN_FSK_SEND_DONE FSK send operation complete.

ADIEVN_MF_DETECT_DONE MF detector terminated.

ADIEVN_MF_DIGIT_BEGIN MF digit detected on.

ADIEVN_MF_DIGIT_END MF digit detected off.

ADIEVN_PLAY_BUFFER_REQ Asynchronous request for a buffer to play.

ADIEVN_PLAY_DONE Play operation complete.

ADIEVN_PULSE_DONE Pulse function complete.

ADIEVN_QUERY_SIGNAL_DONE Returned query of out-of-band signaling bits.

Events ADI Service Developer's Reference Manual

244 NMS Communications

Event name Description

ADIEVN_RECORD_BUFFER_FULL Asynchronous buffer to write to disk.

ADIEVN_RECORD_DONE Record operation complete.

ADIEVN_RECORD_EVENT Information sent by the custom recording function. See
adiCommandRecord for more detail.

ADIEVN_RECORD_STARTED Record operation started.

ADIEVN_SIGNALBIT_CHANGED Signal detector reporting a change.

ADIEVN_SIGNAL_DETECT_DONE Signal detector terminated.

ADIEVN_SILENCE_DETECTED Energy detector reporting silence.

ADIEVN_STARTPROTOCOL_DONE Acknowledgment of start protocol.

ADIEVN_STOPPROTOCOL_DONE Acknowledgment of stop protocol.

ADIEVN_TIMER_DONE Timer function complete (expired).

ADIEVN_TIMER_TICK Timer function reporting timer tick.

ADIEVN_TONE_1_BEGIN Precise tone 1 detected on.

ADIEVN_TONE_1_DETECT_DONE Precise tone detector 1 terminated.

ADIEVN_TONE_1_END Precise tone 1 detected off.

ADIEVN_TONE_2_BEGIN Precise tone 2 detected on.

ADIEVN_TONE_2_DETECT_DONE Precise tone detector 2 terminated.

ADIEVN_TONE_2_END Precise tone 2 detected off.

ADIEVN_TONE_3_BEGIN Precise tone 3 detected on.

ADIEVN_TONE_3_DETECT_DONE Precise tone detector 3 terminated.

ADIEVN_TONE_3_END Precise tone 3 detected off.

ADIEVN_TONE_4_BEGIN Precise tone 4 detected on.

ADIEVN_TONE_4_DETECT_DONE Precise tone detector 4 terminated.

ADIEVN_TONE_4_END Precise tone 4 detected off.

ADIEVN_TONE_5_BEGIN Precise tone 5 detected on.

ADIEVN_TONE_5_DETECT_DONE Precise tone detector 5 terminated.

ADIEVN_TONE_5_END Precise tone 5 detected off.

ADIEVN_TONE_6_BEGIN Precise tone 6 detected on.

ADIEVN_TONE_6_DETECT_DONE Precise tone detector 6 terminated.

ADIEVN_TONE_6_END Precise tone 6 detected off.

ADIEVN_TONES_DONE Tone generation function complete.

ADI Service Developer's Reference Manual Events

NMS Communications 245

Numerical event summary

The following table numerically lists the ADI service events:

Hex Decimal Event name

0x00012030 73776 ADIEVN_PLAY_BUFFER_REQ

0x00012031 73777 ADIEVN_RECORD_STARTED

0x00012032 73778 ADIEVN_RECORD_BUFFER_FULL

0x00012034 73780 ADIEVN_RECORD_EVENT

0x00012035 73781 ADIEVN_ECHOCANCEL_STATUS

0x00012036 73782 ADIEVN_ECHOCANCEL_TONE

0x00012040 73792 ADIEVN_DIGIT_BEGIN

0x00012041 73793 ADIEVN_DIGIT_END

0x00012048 73800 ADIEVN_MF_DIGIT_BEGIN

0x00012049 73801 ADIEVN_MF_DIGIT_END

0x00012050 73808 ADIEVN_CP_VOICE

0x00012051 73809 ADIEVN_CP_DIALTONE

0x00012052 73810 ADIEVN_CP_BUSYTONE

0x00012053 73811 ADIEVN_CP_REORDERTONE

0x00012054 73812 ADIEVN_CP_RINGTONE

0x00012055 73813 ADIEVN_CP_NOANSWER

0x00012056 73814 ADIEVN_CP_RINGQUIT

0x00012057 73815 ADIEVN_CP_SIT

0x00012059 73817 ADIEVN_CP_CED

0x00012070 73840 ADIEVN_TONE_1_BEGIN

0x00012071 73841 ADIEVN_TONE_1_END

0x00012072 73842 ADIEVN_TONE_2_BEGIN

0x00012073 73843 ADIEVN_TONE_2_END

0x00012074 73844 ADIEVN_TONE_3_BEGIN

0x00012075 73845 ADIEVN_TONE_3_END

0x00012076 73846 ADIEVN_TONE_4_BEGIN

0x00012077 73847 ADIEVN_TONE_4_END

0x00012078 73848 ADIEVN_TONE_5_BEGIN

0x00012079 73849 ADIEVN_TONE_5_END

0x0001207A 73850 ADIEVN_TONE_6_BEGIN

Events ADI Service Developer's Reference Manual

246 NMS Communications

Hex Decimal Event name

0x0001207B 73851 ADIEVN_TONE_6_END

0x00012080 73856 ADIEVN_SILENCE_DETECTED

0x00012081 73857 ADIEVN_ENERGY_DETECTED

0x00012090 73872 ADIEVN_TIMER_TICK

0x000120A0 73888 ADIEVN_SIGNALBIT_CHANGED

0x000120EE 73966 ADIEVN_BOARD_EVENT

0x000120FF 73983 ADIEVN_BOARD_ERROR

0x00012111 74001 ADIEVN_STARTPROTOCOL_DONE

0x00012112 74002 ADIEVN_STOPPROTOCOL_DONE

0x00012130 74032 ADIEVN_PLAY_DONE

0x00012131 74033 ADIEVN_RECORD_DONE

0x00012140 74048 ADIEVN_COLLECTION_DONE

0x00012141 74049 ADIEVN_DTMF_DETECT_DONE

0x00012142 74050 ADIEVN_MF_DETECT_DONE

0x00012150 74064 ADIEVN_CP_DONE

0x00012170 74096 ADIEVN_TONE_1_DETECT_DONE

0x00012171 74097 ADIEVN_TONE_2_DETECT_DONE

0x00012172 74098 ADIEVN_TONE_3_DETECT_DONE

0x00012173 74099 ADIEVN_TONE_4_DETECT_DONE

0x00012174 74100 ADIEVN_TONE_5_DETECT_DONE

0x00012175 74101 ADIEVN_TONE_6_DETECT_DONE

0x00012180 74112 ADIEVN_ENERGY_DETECT_DONE

0x00012190 74128 ADIEVN_TIMER_DONE

0x000121A0 74144 ADIEVN_PULSE_DONE

0x000121A1 74145 ADIEVN_SIGNAL_DETECT_DONE

0x000121A2 74146 ADIEVN_QUERY_SIGNAL_DONE

0x000121B0 74160 ADIEVN_TONES_DONE

0x000121C0 74176 ADIEVN_DIAL_DONE

0x000121E0 74208 ADIEVN_FSK_RECEIVE_DONE

0x000121E1 74209 ADIEVN_FSK_SEND_DONE

ADI Service Developer's Reference Manual Events

NMS Communications 247

Events ordered by category

This topic presents the ADI service events by category. The following fields are
always assigned, regardless of the event:

• id

• ctahd

• timestamp

• userid

The remaining value, size, and buffer fields vary depending upon the event. If there
is no relevant information for a field, it can be empty for the specific event. The
buffer field is filled only if data is given to the application. Any events that yield data
are noted. The value field can contain an error code if the operation is in error when
started or if the function fails.

This topic presents:

• Administrative events

• Play and record events

• DTMF events

• MF events

• Call progress events

• Tone detector events

• Call control primitives

• Miscellaneous events

Administrative events

ID Value field Size field

ADIEVN_BOARD_ERROR low word=parm0
high word=xx00

low word=parm1
high word=parm2

ADIEVN_BOARD_EVENT low word=msgtyp
high word=obj

low word=parm0
high word=parm1

ADIEVN_STARTPROTOCOL_DONE ADI_REASON_xxx

ADIEVN_STOPPROTOCOL_DONE ADI_REASON_xxx

Events ADI Service Developer's Reference Manual

248 NMS Communications

Play and record events

ID Value field Size field

ADIEVN_PLAY_BUFFER_REQ 1=started
2=underrun

ADIEVN_PLAY_DONE ADI_REASON_xxx Bytes played

ADIEVN_RECORD_BUFFER_FULL 1=buffer requested
2=underrun
3=both

Buffer size

ADIEVN_RECORD_DONE ADI_REASON_xxx Bytes recorded

ADIEVN_RECORD_EVENT

ADIEVN_RECORD_STARTED 0 (zero) or ADI_RECORD_BUFFER_REQ

Note: The CTA_EVENT.buffer field for ADIEVN_RECORD_BUFFER_FULL contains a
data pointer.

DTMF events

ID Value field Size field

ADIEVN_COLLECTION_DONE ADI_REASON_xxx String length +
1

ADIEVN_DIGIT_BEGIN 0 through 9, A through D, * (asterisk), # (number
sign)

ADIEVN_DIGIT_END 0 through 9, A through D, * (asterisk), # (number
sign)

ADIEVN_DTMF_DETECT_DONE ADI_REASON_xxx

Note: The CTA_EVENT.buffer field for ADIEVN_COLLECTION_DONE contains a data
pointer.

MF events

Size field is not applicable.

ID Value field

ADIEVN_MF_DETECT_DONE ADI_REASON_xxx

ADIEVN_MF_DIGIT_BEGIN 0 through 9, B through F

ADIEVN_MF_DIGIT_END 0 through 9, B through F

Note: See adiStartMFDetector for translation of MF events.

ADI Service Developer's Reference Manual Events

NMS Communications 249

Call progress events

Size field is not applicable.

ID Value field

ADIEVN_CP_BUSYTONE

ADIEVN_CP_CED

ADIEVN_CP_DIALTONE

ADIEVN_CP_DONE ADI_REASON_xxx

ADIEVN_CP_NOANSWER

ADIEVN_CP_RINGQUIT

ADIEVN_CP_RINGTONE Number of rings

ADIEVN_CP_REORDERTONE

ADIEVN_CP_SIT

ADIEVN_CP_VOICE ADI_CP_VOICE_xxx

Note: Number of rings is set to 1 on the first occurrence of the event. If the call
progress stopmask is set to enable multiple ring events, this field contains a count of
the number of rings.

Events ADI Service Developer's Reference Manual

250 NMS Communications

Tone detector events

Size field is not applicable.

ID Value field

ADIEVN_TONE_1_BEGIN

ADIEVN_TONE_1_DETECT_DONE ADI_REASON_xxx

ADIEVN_TONE_1_END

ADIEVN_TONE_2_BEGIN

ADIEVN_TONE_2_DETECT_DONE ADI_REASON_xxx

ADIEVN_TONE_2_END

ADIEVN_TONE_3_BEGIN

ADIEVN_TONE_3_DETECT_DONE ADI_REASON_xxx

ADIEVN_TONE_3_END

ADIEVN_TONE_4_BEGIN

ADIEVN_TONE_4_DETECT_DONE ADI_REASON_xxx

ADIEVN_TONE_4_END

ADIEVN_TONE_5_BEGIN

ADIEVN_TONE_5_DETECT_DONE ADI_REASON_xxx

ADIEVN_TONE_5_END

ADIEVN_TONE_6_BEGIN

ADIEVN_TONE_6_DETECT_DONE ADI_REASON_xxx

ADIEVN_TONE_6_END

Call control primitives

ID Value field Size field

ADIEVN_DIAL_DONE ADI_REASON_xxx

ADIEVN_FSK_RECEIVE_DONE ADI_REASON_xxx Buffer size

ADIEVN_FSK_SEND_DONE ADI_REASON_xxx

ADIEVN_PULSE_DONE ADI_REASON_xxx

ADIEVN_QUERY_SIGNAL_DONE ADI_REASON_xxx ADI_BIT_xxx

ADIEVN_SIGNALBIT_CHANGED ADI_x_BIT_xxx ADI_BIT_xxx

ADIEVN_SIGNAL_DETECT_DONE ADI_REASON_xxx

Note: The CTA_EVENT.buffer field for ADIEVN_FSK_RECEIVE_DONE contains a data
pointer.

ADI Service Developer's Reference Manual Events

NMS Communications 251

Miscellaneous events

ID Value field Size field

ADIEVN_ECHOCANCEL_STATUS Size of ADI_ECHOCANCEL_STATUS_INFO

ADIEVN_ECHOCANCEL_TONE low word=type of tone
high word=frequency

ADIEVN_ENERGY_DETECT_DONE ADI_REASON_xxx Event ID (if condition is FINISHED)

ADIEVN_ENERGY_DETECTED

ADIEVN_SILENCE_DETECTED

ADIEVN_TIMER_DONE ADI_REASON_xxx

ADIEVN_TIMER_TICK Tick count

Note: The CTA_EVENT.buffer field for ADIEVN_ECHOCANCEL_STATUS contains a
data pointer.

NMS Communications 253

99 Parameters
Overview of the ADI service parameters

The behavior of many ADI functions is controlled by multiple parameters. These
parameters are grouped together into structures. Each parameter structure has a set
of default values that is sufficient for many configurations. The parameters can be
modified to:

• Enable or disable function features.

• Adapt the function for exceptional configurations.

For example, when recording voice data, the application programmer can alter the
function's behavior by modifying any of the record parameters that specify

• Any subset of DTMF keys entered by the telephone caller that abort the
function.

• Gain applied to the input signal.

• An initial timeout that defines the time in which the caller must start speaking
before the operation terminates.

• The amount of silence after a caller has stopped speaking before the
operation terminates.

• Record-synchronization prompt frequency, amplitude, and duration.

• Automatic gain control settings.

For QX boards, refer to the QX 2000 Installation and Developer's Manual for each
category of structure and default parameters values.

For information about parameter management in Natural Access, refer to the Natural
Access Developer's Reference Manual.

Parameters ADI Service Developer's Reference Manual

254 NMS Communications

ADI_CALLPROG_PARMS

Dependent function: adiStartCallProgress

Field name Type Default Units Description

busycount DWORD 4 count Number of non-precise busy tones that must occur
before busy or fast busy is reported.
Valid range is 1 through 32767.

leakagetime DWORD 8 ms Do not modify.

maxbusy DWORD 1500 ms Threshold time defining the total time period (on time
plus off time) for distinguishing between slow busy and
ringing tone. Valid range is 0 through 32767.

maxreorder DWORD 700 ms Threshold time defining the total time period (on time
plus off time) for distinguishing between fast busy
(reorder) and slow busy.
Valid range is 0 through 32767.

maxring DWORD 3000 ms Maximum duration of a tone to distinguish a ringing tone
from a dial tone.
Valid range is 0 through 32767.

maxringperiod DWORD 8000 ms Length of time of the last ringing tone plus the silence
that follows, before call progress reports a ringing-ended
event.

noiselevel DWORD 0x14000 IDU Do not modify.

precmask DWORD 7 mask Mask to control which precise detectors to run. To form
a value, use the OR operator with any of the following
bit masks:

• ADI_CPMSK_PRECISE_CED (0x0001): CED tone
modem

• ADI_CPMSK_PRECISE_SIT (0x0002): SIT

• ADI_CPMSK_PRECISE_BUSY (0x0004): Busy and
reorder tone (US)

• ADI_CPMSK_PRECISE_425 (0x0008) 425 Hz tone
(busy and reorder tone, non-US)

• ADI_CPMSK_PRECISE_SITEXT (0x0010): SIT type
reporting

• ADI_CPMSK_PRECISE_TDD (0x0020): TDD/TTY
device

• ADI_CPMSK_PRECISE_NU (0x0040): Unassigned
number

You can run only three of the four detectors
concurrently. If you specify all four detectors, busy and
reorder tones are determined by cadence alone, and
only the SIT, CED, and TDD/TTY detectors are enabled.
Busy and reorder tone (bit value 0x0004) and the 425
Hz tone selection (bit value 0x0008) are mutually
exclusive. If you choose both, only the 425 Hz filter is in
effect.

precqualtime DWORD 150 ms Precise tone qualification time. All precise tones must be
longer than this time to qualify.

ADI Service Developer's Reference Manual Parameters

NMS Communications 255

Field name Type Default Units Description

qualtonetime1 DWORD 60 ms Do not modify.

qualtonetime2 DWORD 80 ms Do not modify.

qualvoicetime1 DWORD 60 ms Do not modify.

qualvoicetime2 DWORD 60 ms Do not modify.

ringcount DWORD 7 count Number of ring tones that must occur before
NO_ANSWER is reported.
Valid range is 1 through 32767.

silencelevel INT32 -40 dBm Maximum signal level that is considered to be silence.
Valid AG board and CG board range is -46 through -34.
Valid QX board range is -45 through 0.

silencetime DWORD 1500 ms Minimum length of a silent period after voice is detected
before call progress reports a voice-ended event.

stopmask DWORD 0 mask Mask to control which events cause call progress to stop.
A value can be formed by using the OR operation with
any of the following values:

• 0x0001 = ring tone

• 0x0002 = ring end

• 0x0004 = voice begin

• 0x0008 = medium voice duration

• 0x0010 = long voice duration

• 0x0020 = extended voice duration

• 0x0040 = voice end

timeout DWORD 1000 ms Maximum time that can elapse with no stimulus from
the network before call progress stops with reason of
timeout.
Valid range is 1 through 65535. If the value is set to
zero, the timer is disabled.

voicextended DWORD 9000 ms Minimum length of time voice must be detected before
call progress reports an extended-voice event.

voicelong DWORD 6000 ms Minimum length of time voice must be detected before
call progress reports a long-voice event.

voicemedium DWORD 3000 ms Minimum length of time voice must be detected before
call progress reports a medium-voice event.

voicetoneratio DWORD 0x30000 IDU Do not modify.

Parameters ADI Service Developer's Reference Manual

256 NMS Communications

ADI_COLLECT_PARMS

Dependent function: adiCollectDigits

Field name Type Default Units Description

firsttimeout DWORD 10000 ms Maximum time to wait for the first digit.
Use 0 to wait forever. Otherwise, the valid range is 1 through
2147483647.

intertimeout DWORD 5000 ms Maximum time to wait for any digit after the first digit.
Use 0 to wait forever. Otherwise, the valid range is 1 through
2147483647.

terminators DWORD 0x0C00 mask Mask that specifies which digits cause collection to terminate.
A value can be formed by using the OR operation with any of
the values for the validDTMFs field. Use 0 to indicate no
terminators.

validDTMFs DWORD 0x07FF mask Mask that specifies the digits to collect; only specified digits
are added to the collected digit string. Specify
ADI_DIGIT_ANY to accept all digits. See Valid DTMF values
on page 256 for information.

Optionally, the value ADI_COLLECT_QUIETLY can be added
to this parameter to suppress all but the final
ADIEVN_DIGIT_BEGIN and ADIEVN_DIGIT_END events that
are normally generated as each digit arrives.

waitendtone DWORD 0 mask Flag to indicate that collection ends at the trailing edge of the
last digit. If 0, collection ends as soon as the final digit is
detected. If 1, collection does not end until the end of the
final digit.

Valid DTMF values

A value that combines all of the valid DTMF values can be formed by using
ADI_DIGIT_ALL (0xFFFF). Values can also be formed by using the OR operation with
any of the following values:

Digit Name Value

0 ADI_DIGIT_0 0x0001

1 ADI_DIGIT_1 0x0002

2 ADI_DIGIT_2 0x0004

3 ADI_DIGIT_3 0x0008

4 ADI_DIGIT_4 0x0010

5 ADI_DIGIT_5 0x0020

6 ADI_DIGIT_6 0x0040

7 ADI_DIGIT_7 0x0080

8 ADI_DIGIT_8 0x0100

9 ADI_DIGIT_9 0x0200

* ADI_DIGIT_STAR 0x0400

ADI Service Developer's Reference Manual Parameters

NMS Communications 257

Digit Name Value

ADI_DIGIT_POUND 0x0800

A ADI_DIGIT_A 0x1000

B ADI_DIGIT_B 0x2000

C ADI_DIGIT_C 0x4000

D ADI_DIGIT_D 0x8000

ADI_DIAL_PARMS

Dependent function: adiStartDial

Field name Type Default Units Description

breaktime DWORD 60 ms Break (on-hook) duration for dial pulses.
Valid AG board and CG board range is 0 through 30000.
Valid QX board range is 0 through 32767.

dialtonewait DWORD 5000 ms Maximum time to wait for dial tone (; character).
Valid range is 0 through 65535.

dtmfampl1 INT32 -6 dBm Amplitude of the low frequency component of the DTMF
pair.
Valid AG board, CG board, and PacketMedia HMP range is
-54 through -3.
Valid QX board range is -90 through 0.

dtmfampl2 INT32 -4 dBm Amplitude of the high frequency component of the DTMF
pair.
Valid AG board, CG board, and PacketMedia HMP range is
-54 through -3.
Valid QX board range is -90 through 0.

dtmfofftime DWORD 80 ms Duration of the silence time between each digit.
Valid AG board, CG board, and PacketMedia HMP range is
0 through 65534.
Valid QX board range is 0 through 2047.

dtmfontime DWORD 80 ms Duration of each DTMF or MF digit.
Valid AG board, CG board, and PacketMedia HMP range is
0 through 65534.
Valid QX board range is 0 through 2047.

flashtime DWORD 500 ms Amount of time to assert the on-hook signaling pattern for
a flash (! character).
Valid AG board and CG board range is 0 through 65535.
Valid QX board range is 0 through 32767.

interpulse DWORD 700 ms Inter-digit time for pulsed dialing.
Valid AG board and CG board range is 0 through 30000.
Valid QX board range is 0 through 32767.

longpause DWORD 5000 ms Amount of delay associated with the . (period) character.
Valid range is 0 through 65535.

maketime DWORD 40 ms Make (off-hook) duration for dial pulses.
Valid AG board and CG board range is 0 through 30000.
Valid QX board range is 0 through 32767.

Parameters ADI Service Developer's Reference Manual

258 NMS Communications

Field name Type Default Units Description

method DWORD 0 mask Type of signaling.

• 0=DTMF

• 1=Pulse (Not applicable for the PacketMedia HMP
process.)

• 2=MF (US)

reserved DWORD 0 internal Do not modify.

shortpause DWORD 2000 ms Amount of delay associated with the , (comma) character.
Valid range is 0 through 65535.

tonebandw1 DWORD 40 Hz Bandwidth of the first frequency of the dial tone detector.
Valid AG board, CG board, and PacketMedia HMP range is
20 through 800.
Valid QX board range is 40 through 2000.

tonebandw2 DWORD 40 Hz Bandwidth of the second frequency of the dial tone
detector.
Valid AG board, CG board, and PacketMedia HMP range is
20 through 800.
Valid QX board range is 40 through 2000.

tonefreq1 DWORD 350 Hz First (or only) dial tone frequency.
Valid AG board, CG board, and PacketMedia HMP range is
330 through 3600.
Valid QX board range is 1 through 4000.

tonefreq2 DWORD 440 Hz Second dial tone frequency. Set this value to 0 (zero) to
detect a single frequency.
Valid AG board, CG board, and PacketMedia HMP range is
330 through 3600.
Valid QX board range is 1 through 4000.

tonequalampl INT32 -28 dBm Minimum signal amplitude to qualify for dial tone
detection.
Valid AG board, CG board, and PacketMedia HMP range is
-40 through 0.
Valid QX board range is -48 through 0.

tonequaltime DWORD 50 ms Minimum duration of a qualified tone to be considered dial
tone.
Valid range is 0 through 32767.

tonereflevel DWORD 0xB000 IDU Do not modify.

tonetotaltime DWORD 0 ms Detects interrupted dial tones (stuttered dial tone) in
certain countries. Defaults to 0 (zero), which indicates that
dialing can proceed as soon as a dial tone is detected
without waiting for stuttered dial tone to end.
If set to a non-zero value, the value represents the total
qualification time for dial tone, and the following occurs:

• Only precise dialtone detection is used.

• If dialtone disappears, requalify until dialtonewait
expires.

• If dialtone lasts for totaltime, proceed with dialing.

ADI Service Developer's Reference Manual Parameters

NMS Communications 259

ADI_DTMF_PARMS

Dependent function: adiStartDTMF

Field
name

Type Default Units Description

ampl1 INT32 -6 dBm Amplitude of the low frequency component of the DTMF
pair.
Valid AG board, CG board, and PacketMedia HMP range is -
54 through -3.
Valid QX board range is -90 through 0.

ampl2 INT32 -4 dBm Amplitude of the high frequency component of the DTMF
pair.
Valid AG board, CG board, and PacketMedia HMP range is -
54 through -3.
Valid QX board range is -90 through 0.

longpause DWORD 5000 ms Amount of delay associated with the . (period) character.
Valid range is 0 through 65535.

offtime DWORD 80 ms Duration of the silence time between each DTMF digit.
Valid AG board, CG board, and PacketMedia HMP range is 0
through 65534.
Valid QX board range is 0 through 2047.
Note: In some instances, the silence time increases by 20
ms.

ontime DWORD 80 ms Duration of each DTMF digit.
Valid AG board, CG board, and PacketMedia HMP range is
0 through 65534.
Valid QX board range is 0 through 2047.

shortpause DWORD 2000 ms Amount of delay associated with the , (comma) character.
Valid range is 0 through 65535.

Parameters ADI Service Developer's Reference Manual

260 NMS Communications

ADI_DTMFDETECT_PARMS

Dependent function: adiStartDTMFDetector

Field
name

Type Default Units Description

columnfour DWORD 1 mask Flag that indicates whether to detect the A, B, C, and D DTMF
digits.
Set this value to 1 to detect these digits, or 0 to ignore them.

offqualampl INT32 -45 dBm Minimum signal required to maintain recognition of a DTMF
signal once recognition has started.
Valid AG board, CG board, and PacketMedia HMP range is -51
through -15.
Not used for QX boards.

offqualtime DWORD 40 ms Minimum duration of absence of a recognized DTMF signal
before an end-of-digit event will be emitted.
Valid AG board, CG board, and PacketMedia HMP range is 5
through 32767.
Valid QX board range is 30 through 32766.

offthreshold DWORD 0x92E0 IDU Do not modify. Not used for QX 2000 boards.

onqualampl INT32 -39 dBm Minimum signal level recognized as a DTMF signal.
Valid AG board, CG board, and PacketMedia HMP range is -51
through -15.
Not used for QX boards.

onqualtime DWORD 50 ms Minimum duration of a recognized DTMF signal before a digit
event is emitted.
Valid AG board, CG board, and PacketMedia HMP range is 22
through 32767.
Valid QX board range is 30 through 32766.

onthreshold DWORD 0xCAB0 IDU Do not modify. Not used for QX boards.

ADI_ENERGY_PARMS

Dependent function: adiStartEnergyDetector

Field name Type Default Units Description

autostop DWORD 1 mask Controls whether the energy detector continues running
after the first event.
Set this value to 1 to stop after the first event, or 0 to run
continuously.

deglitch DWORD 20 ms Minimum time before a transition between silence and
energy is recognized.
Valid AG board, CG board, and PacketMedia HMP range is 0
through 32767.
Not used for QX boards.

thresholdampl INT32 -45 dBm Minimum signal level that is considered to be energy.
Anything below this level is considered to be silence.
Valid AG board, CG board, and PacketMedia HMP range is
-51 through -15.
Valid QX board range is -45 through 0.

ADI Service Developer's Reference Manual Parameters

NMS Communications 261

ADI_FSKRECEIVE_PARMS

Dependent function: adiStartReceivingFSK

Field
name

Type Default Units Description

baudrate DWORD 1200 integer Transmission baud rate. 1200 is the only valid value.

droptime DWORD 5 ms Minimum dropout to silence before a packet is considered
terminated.

minlevel INT32 -35 dBm Required minimum receive level.

minmark DWORD 10 ms Minimum required initial mark and seizure time.

ADI_FSKSEND_PARMS

Dependent function: adiStartSendingFSK

Field name Type Default Units Description

baudrate DWORD 1200 integer Transmission baud rate. 1200 is the only valid value.

level INT32 -14 dBm Transmit output level.

marktime DWORD 500 ms Length of initial mark signal.

noseizureflag DWORD 1 integer Controls whether channel seizure is omitted.

• 0 = send channel seizure

• 1 = just send mark

seizetime DWORD 1000 ms Duration of channel seizure; ignored if noseizureflag = 1.

ADI_PLAY_PARMS

Dependent functions: adiStartPlaying, adiPlayFromMemory, adiPlayAsync

Field
name

Type Default Units Description

DTMFabort DWORD 0xFFFF mask Mask that enables you to control which DTMFs abort play.
See Valid DTMF values on page 256.

gain INT32 0 dB Gain applied to the encoded audio. Ignored for encoding
types for which applied gain is not supported.
Valid AG board, CG board, and PacketMedia HMP range is -54
through 24.
Valid QX board range is -48 through 42.

maxspeed DWORD 100 percent Maximum speed that is used. Determines how much DSP
processing power is allocated to the play function. The valid
AG board and CG board range is 100 through 200. Ignored
for encoding types for which speed modification is not
supported. Not used for QX boards.

speed DWORD 100 percent Initial speedup or slowdown factor to apply to the encoded
audio. The valid AG board and CG board range is 50 to
maxspeed. Ignored for encoding types for which speed
modification is not supported. Not used for QX boards.

Parameters ADI Service Developer's Reference Manual

262 NMS Communications

ADI_RECORD_PARMS

Dependent functions: adiStartRecording, adiRecordToMemory,
adiRecordAsync

Field name Type Default Units Description

AGCattacktime DWORD 14 ms Automatic gain control (AGC) attack time constant. This
value affects how quickly the gain is reduced for loud
signals.
Valid AG board, CG board, and PacketMedia HMP range
is 1 through 30000.
Not used for QX boards.

AGCdecaytime DWORD 304 ms AGC decay time constant. This value affects how quickly
the gain is increased for soft signals.
Valid AG board, CG board, and PacketMedia HMP range
is 1 through 30000.
Not used for QX boards.

AGCenable DWORD 0 integer Flag to enable AGC.
Set to 1 to enable AGC and 0 to disable it.
Note: AGC must be disabled if you are using voice
activity detection.

AGCsilenceampl INT32 -49 dBm Noise threshold for AGC. Gain adjustment is suspended
for signals below this level.
Valid AG board, CG board, and PacketMedia HMP range
is -72 through 0.
Not used for QX boards.

AGCtargetampl INT32 -19 dBm Target amplitude for AGC.
Valid AG board, CG board, and PacketMedia HMP range
is -72 through 0.
Valid QX board range is -42 through 0.

beepampl INT32 -20 dBm Amplitude of the record beep tone.
Valid AG board, CG board, and PacketMedia HMP range
is -54 through 3.
Valid QX board range is -90 through 0.

beepfreq DWORD 1000 Hz Frequency of the record beep tone. 0 disables the beep.
Valid AG board, CG board, and PacketMedia HMP range
is 200 through 3600.
Valid QX board range is 0 through 4000.

beeptime DWORD 200 ms Duration of the record beep tone. 0 disables the beep.
Valid AG board, CG board, and PacketMedia HMP range
is 0 through 65535.
Valid QX board range is 0 through 8000

DTMFabort DWORD 0xFFFF mask Mask that enables you to control which DTMFs abort a
record. See Valid DTMF values on page 256.

gain INT32 0 dB Gain applied to the signal before it is encoded. If
automatic gain control (AGC) is enabled, this value is the
initial gain when record is started.
Valid AG board, CG board, and PacketMedia HMP range
is -54 through 24.
Valid QX board range is -42 through 48.
Use zero to record with no gain. Values specified out of
range are translated into one of the boundary values.

ADI Service Developer's Reference Manual Parameters

NMS Communications 263

Field name Type Default Units Description

novoicetime DWORD 5000 ms Maximum length of silence at the beginning of a
recording before record is stopped with a reason of
CTA_REASON_NO_VOICE.
Use 0 to disable this timer.
Valid range is 0 through 65535. Bypass by passing a
value of 0.

silenceampl INT32 -45 dBm Maximum signal level considered to be silence.
Valid AG board, CG board, and PacketMedia HMP range
is -51 through -15.
Valid QX board range is -45 through 0.
NMS recommends that you use the default values.

silencedeglitch DWORD 100 ms Maximum non-silent interval that is ignored by the
silence detector. Any sounds that last longer than this
value reset the silence detector.
Valid AG board, CG board, and PacketMedia HMP range
is 0 through 32767. NMS recommends that you use the
default values.
Not used for QX boards.

silencetime DWORD 3000 ms Maximum length of silence after audio energy is
detected before record stops with a reason of
CTA_REASON_VOICE_END.
Use 0 to disable this timer.
Valid range is 0 through 65535. Bypass by passing a
value of 0.

Parameters ADI Service Developer's Reference Manual

264 NMS Communications

ADI_START_PARMS

Dependent function: adiStartProtocol

Field name Type Default Units Description

callctl.blockmode DWORD 0 mask Not applicable.

callctl.debugmask DWORD 0x0000 mask Not applicable.

callctl.eventmask DWORD 0x0000 mask Not applicable.

callctl.mediamask DWORD 0x001F mask Controls which functions are running or
reserved when the call enters the connected
(conversation) state. (The NOCC protocol
enters this state immediately). Reserved
indicates that the DSP MIPS are committed
to the operation before the operation
actually starts. The application must reserve
DSP resources in advance by using this
parameter for DTMF detection, silence
detection, cleardown detection, and echo
cancellation. See callctl.mediamask valid
values on page 266.

cleardown.bandw1 DWORD 40 Hz Not applicable.

cleardown.bandw2 DWORD 40 Hz Not applicable.

cleardown.freq1 DWORD 350 Hz Not applicable.

cleardown.freq2 DWORD 440 Hz Not applicable.

cleardown.qualampl INT32 -28 dBm Not applicable.

cleardown.qualtime DWORD 1000 ms Not applicable.

cleardown.reflevel DWORD 0xB000 IDU Not applicable.

cleardown.reserved DWORD 0 internal Not applicable.

cleardown.tonecount DWORD 0 integer Not applicable.

cleardown.maxofftime DWORD 0 ms Not applicable.

cleardown.maxontime DWORD 0 ms Not applicable.

cleardown.minofftime DWORD 0 ms Not applicable.

cleardown.minontime DWORD 0 ms Not applicable.

dial.breaktime DWORD 60 ms Not applicable.

dial.dialtonewait DWORD 5000 ms Not applicable.

dial.dtmfampl1 INT32 -6 dBm Not applicable.

dial.dtmfampl2 INT32 -4 dBm Not applicable.

dial.dtmfofftime DWORD 80 ms Not applicable.

dial.dtmfontime DWORD 80 ms Not applicable.

dial.flashtime DWORD 500 ms Not applicable.

dial.interpulse DWORD 700 ms Not applicable.

ADI Service Developer's Reference Manual Parameters

NMS Communications 265

Field name Type Default Units Description

dial.longpause DWORD 5000 ms Not applicable.

dial.maketime DWORD 40 ms Not applicable.

dial.method DWORD 0 mask Not applicable.

dial.reserved DWORD 0 internal Not applicable.

dial.shortpause DWORD 2000 ms Not applicable.

dial.tonebandw1 DWORD 40 Hz Not applicable.

dial.tonebandw2 DWORD 40 Hz Not applicable.

dial.tonefreq1 DWORD 350 Hz Not applicable.

dial.tonefreq2 DWORD 440 Hz Not applicable.

dial.tonequalampl INT32 -28 dBm Not applicable.

dial.tonequaltime DWORD 50 ms Not applicable.

dial.tonereflevel DWORD 0xB000 IDU Not applicable.

dtmfdet.columnfour DWORD 1 Flag that indicates whether to detect the A,
B, C, and D DTMF digits. Set this value to 1
to detect these digits, or 0 to ignore them.

dtmfdet.offqualampl INT32 -45 dBm Minimum signal required to maintain
recognition of a DTMF signal once
recognition starts.
Valid AG board, CG board, and PacketMedia
HMP range is -51 through 15.
Not used for QX boards.

dtmfdet.offqualtime DWORD 40 ms Minimum duration of absence of a
recognized DTMF signal before an end-of-
digit event is emitted.
Valid AG board, CG board, and PacketMedia
HMP range is 5 through 32767.
Valid QX board range is 0 through 32766.

dtmfdet.offthreshold DWORD 0x92E0 IDU Do not modify. Not used for QX 2000
boards.

dtmfdet.onqualampl INT32 -39 dBm Minimum signal level recognized as a DTMF
signal.
Valid AG board, CG board, and PacketMedia
HMP range is -51 through -15.
Not used for QX boards.

dtmfdet.onqualtime DWORD 50 ms Minimum duration of a recognized DTMF
signal before a digit event is emitted.
Valid AG board, CG board, and PacketMedia
HMP range is 22 through 32767.
Valid QX board range is 30 through 32766.

dtmfdet.onthreshold DWORD 0xCAB0 IDU Do not modify. Not used for QX 2000
boards.

Parameters ADI Service Developer's Reference Manual

266 NMS Communications

Field name Type Default Units Description

echocancel.adapttime DWORD 0 ms Echo canceller adaptation time for
echocancel.mode = 2 . The valid AG board
and CG board range is 100 through 1000.
Lower values require more DSP processing
power. Not used for QX boards.

echocancel.filterlength DWORD 0 ms Filter length of echo canceller for
echocancel.mode = 2. Set this value to 0 to
omit echo cancelling. Valid range is 0
through 20. Higher values require more DSP
processing power.

echocancel.gain INT32 0 dB Amount of amplification applied to echo-
cancelled output. Valid AG board and CG
board range is -54 through 24. Done by the
automatic gain control (AGC) module for QX
boards.

echocancel.mode DWORD 0 Bit field Controls echo canceller operation. Set the
mode to one of the following:

• 0 = No echo cancellation.

• 1 = Use internal defaults for filter length
and adaptation time based on board
type.

• 2 = Use specified values.

• 3 = Ignore specified filterlength and
adapttime values for
adiModifyEchoCanceller only.

Additional values can be formed by using the
OR operation. See echocancel.mode valid
values on page 267.

echocancel.predelay DWORD 0 ms Output sample delay. Valid range is 0
through 9.
For AG boards and CG boards, valid range is
0 through 20.
For QX boards, the default value is 0.

callctl.mediamask valid values

A value can be formed by using the OR operation with any of the following values:

Value Description

0x0001 Reserve DTMF detector. Not used for QX boards.

0x0002 Reserve silence detector. Not used for QX boards.

0x0004 Reserve cleardown detector. Not used for QX boards.

0x0008 Start DTMF detector.

0x0010 Start echo canceller.

ADI Service Developer's Reference Manual Parameters

NMS Communications 267

echocancel.mode valid values

Value Description

0x0004 Enable dynamic windowing. QX boards only.

0x0008 Enable echo suppressor.

0x0010 Do not reset echo canceller.

0x0020 Disable filter taps adaptation.

0x0040 Bypass echo cancellation. AG boards and CG boards only.

0x0080 Request status of echo canceller. AG boards and CG boards only.

0x0100 Enable auto-status event generation when status of echo canceller changes. AG boards and
CG boards only.

0x0200 Enable comfort noise generation. AG boards and CG boards only.

ADI_TONE_PARMS

Dependent function: adiStartTones

Field
name

Type Default Units Description

ampl1 INT32 -20 dBm Amplitude of the first (or only) frequency component.
Valid AG board, CG board, and PacketMedia HMP range is -54
through 3.
Valid QX board range is -90 through 0.

ampl2 INT32 0 dBm Amplitude of the second frequency component, if any.
Valid AG board, CG board, and PacketMedia HMP range is -54
through 3.
Valid QX board range is -90 through 0.

freq1 DWORD 1000 Hz First (or only) frequency of the generated tone.
Valid range is 200 through 3600.

freq2 DWORD 0 Hz Second frequency of the generated tone, or 0 if the tone is a
single frequency.
If not 0, valid range is 200 through 3600.

iterations INT32 1 integer Number of times to repeat the alternating tone and silence
period.
A count of -1 means repeat forever.
Otherwise the valid range is 1 through 32767.

offtime DWORD 0 ms Duration of silence between tones. Specify 0 for no off time.
Valid AG board, CG board, and PacketMedia HMP range is 0
through 65535.
Valid QX board range is 0 through 8000.

ontime DWORD 200 ms Duration of the tone.
Valid AG board, CG board, and PacketMedia HMP range is 1
through 65535.
Valid QX board range is 0 through 8000.

Parameters ADI Service Developer's Reference Manual

268 NMS Communications

ADI_TONEDETECT_PARMS

Dependent function: adiStartToneDetector

Field
name

Type Default Units Description

qualampl INT32 -28 dBm Minimum signal level that is detected.
Valid AG board, CG board, and PacketMedia HMP range is -40
through 0.
Valid QX board range is -48 through 0.

qualtime DWORD 500 ms Minimum duration of a detected tone before an event is
emitted. Also specifies the minimum duration of the absence
of detected tone before a tone-ended event is emitted.
The valid range is 0 through 32767.

reflevel DWORD 0xB000 IDU Do not modify.

reserved DWORD 0 internal Do not modify.

NMS Communications 269

1100 DSP files
DSP file summary

This topic lists the DSP files needed for particular ADI service functions. Specify the
files to be loaded in the board keyword file. Use NMS OAM to load DSP files onto
boards. For more information, refer to the board installation and developer's manual.

DSP files ending in .dsp have mu-law and A-law versions. The names shown here are
for the mu-law version. The A-law files have _a appended to the file name. For
example, the A-law version of voice.dsp is voice_a.dsp. Some DSP files have
versions with _j appended to the file name. For example, the V.23 version of
adsir.dsp is adsir_j.dsp.

Note: DSP files for CG 6000/C, CG 6100C, and CG 6500C boards use an .f54 file
extension. CG 6565/C and CG 6060/C boards use an .f41 file extension.

AG boards CG boards Description

adsir(_j).m54 adsir(_j).fxx Contains the caller ID function that decodes the modem burst
occurring between the first and second rings on a loop start
line. This file also contains the FSK data receiver.
Use adsir.xxx if one of the loop start protocols is used and
the parameter adilps.cidsupport is set to 1.
Use this file for adiStartReceivingFSK.
(_j) is the V.23 variant.

adsix(_j).m54 adsix(_j).fxx Contains the FSK data transmitter. Use this file for
adiStartSendingFSK.
(_j) is the V.23 variant.

callp.m54 callp.fxx Contains voice and tone detectors used for call progress
detection and for general tone detection.
Use callp.xxx if any outgoing or two-way trunk protocol is in
use and for adiStartCallProgress.

dtmf.m54 dtmf.fxx Contains the DTMF receiver and the energy/silence detector.
Use dtmf.xxx for DTMF detection. The energy/silence
detector is used by the record functions and by
adiStartEnergyDetector.

dtmfe.m54 dtmfe.fxx Is a variation of dtmf.xxx, optimized for use with the echo
canceller (echo.xxx). dtmfe.xxx yields better talk-off
resistance but requires the echo canceller to achieve the best
cut through performance.

echo.m54 echo.fxx Contains the echo cancellation function. The echo canceller
removes reflected energy from the incoming signal, which
improves DTMF detection and voice recognition while playing.
Use echo.xxx if echo cancellation is enabled. See
adiStartProtocol and the ADISTART_PARMS category.
Note: Substitute dtmfe.xxx for dtmf.xxx when using the
echo canceller.

echo_v3.m54 echo_v3.fxx Provides higher performance and support for longer echo
tails. Requires more resources than echo.x54 and can
decrease the number of ports.

DSP files ADI Service Developer's Reference Manual

270 NMS Communications

AG boards CG boards Description

echo_v4.m54 echo_v4.fxx Contains the echo cancellation functions available in
echo_v3.x54, as well as comfort noise generation and tone
disabling features.

None g723.fxx CG boards only. Contains ITU G.723.1 play and record
functions for both 5.3 kbit/s and 6.3 kbit/s rates. The codec
data is output as raw bytes of the encoded 30 ms frames.

g726.m54 g726.fxx Contains ITU G.726 ADPCM play and record functions. G.726
is a standard for 32 kbit/s speech coding.
Note: These functions require more DSP processing time
than the functions in voice.xxx. You cannot run as many
actively playing or recording contexts as you can with other
speech encodings.

None g729.fxx CG boards only. Contains ITU G.729A play and record
functions. The 8 kbit/s codec data is output as raw bytes of
the encoded 10 ms frames.

gsm_ms.m54 gsm_ms.fxx Contains play and record functions for MS-GSM speech
encoding at 13 kbit/s.

gsm_mspl.m54 gsm_mspl.fxx Similar in operation to gsm_ms.m54, except that maximum
output of the play function is limited.

ima.m54 ima.fxx Contains play and record functions for IMA ADPCM speech
encoding, at 24 kbit/s or 32 kbit/s.

mf.m54 mf.fxx Contains the multi-frequency receiver function. Required for
any trunk protocol that uses MF signaling and also by
adiStartMFDetector.

oki.m54 oki.fxx Contains play and record functions for OKI ADPCM speech
encoding, at 24 kbit/s or 32 kbit/s.

ptf.m54 ptf.fxx Contains precise tone filters. On AG boards, loop start
protocols use ptf.xxx for the cleardown detector. On AG and
CG boards, use ptf.xxx for adiStartToneDetector and
adiStartCallProgress.

rvoice.m54 rvoice.fxx Contains PCM play and record functions.
rvoice.xxx is required to play or record with an encoding of
ADI_ENCODE_MULAW, ADI_ENCODE_ALAW, or
ADI_ENCODE_PCM8M16.

rvoice_vad.m54 rvoice_vad.fxx Contains PCM play and record functions. Record functions can
enable voice activity detection.
rvoice_vad.xxx is required to play or record with an
encoding of ADI_ENCODE_MULAW, ADI_ENCODE_ALAW, or
ADI_ENCODE_PCM8M16.

signal.m54
(not required for
AG 4000/C and AG
4040/C boards)

qtsignal.f54,
for CG 6000/C
boards

8tsignal.f54,
for CG 6100C and
CG 6500C boards

(not required for
CG 6565/C and CG
6060/C boards)

Contains signaling, ring detector, and pulse functions. These
are out-of-band functions that typically operate on the MVIP
signaling stream.
Required for any trunk protocol except NOCC. Also required
for adiStartSignalDetector, adiQuerySignalState, and
adiStartPulse.

ADI Service Developer's Reference Manual DSP files

NMS Communications 271

AG boards CG boards Description

tone.m54 tone.fxx Contains the tone generation function.
Required for all trunk protocols except NOCC. Also required
for adiStartTones, adiStartDTMF and adiStartDial, and
for any record function to generate the beep.

voice.m54 voice.fxx Contains NMS Communications ADPCM play and record
functions. The compressed speech is in a framed format with
20 milliseconds of data per frame. Speech is compressed to
16, 24, or 32 kbit/s, or it is stored as uncompressed mu-law
or A-law (64 kbit/s). This file is required to play or record
with encoding values of ADI_ENCODE_NMS_16,
ADI_ENCODE_NMS_24, ADI_ENCODE_NMS_32, or
ADI_ENCODE_NMS_64.

None None Substitute these files for voice.dsp to apply speed up to NMS
Communications ADPCM encoded speech.

wave.m54 wave.fxx Contains play and record functions for PCM speech in formats
commonly used in WAVE files, including 8 and 16 bit, 11 kilo-
samples per second sampling.

NMS Communications 273

Index

A

ADI_BOARD_INFO 97

ADI_CALLCTL_PARMS 174

ADI_CALLPROG_PARMS 154, 254

ADI_CLEARDOWN_PARMS 174

ADI_COLLECT_PARMS 82, 256

ADI_CONTEXT_INFO 106

ADI_DIAL_PARMS 158, 257

ADI_DTMF_PARMS 161, 259

ADI_DTMFDETECT_PARMS 163, 174,
260

ADI_ECHOCANCEL_PARMS 123, 174

ADI_ECHOCANCEL_STATUS_INFO 123

ADI_EEPROM_DATA 111

ADI_ENERGY_PARMS 165, 260

ADI_FSKRECEIVE_PARMS 179, 261

ADI_FSKSEND_PARMS 186, 261

ADI_PLAY_PARMS 261

adiPlayAsync 132

adiPlayFromMemory 136

adiStartPlaying 170

ADI_PLAY_STATUS 115

ADI_RECORD_PARMS 262

adiRecordAsync 141

adiRecordToMemory 145

adiStartRecording 182

ADI_RECORD_STATUS 117

ADI_START_PARMS 174, 264

ADI_TIMESLOT 100

ADI_TIMESLOT32 103

ADI_TONE_PARMS 198, 267

ADI_TONEDETECT_PARMS 194, 268

adiapi.lib 12

adiAssertSignal 80

adiCollectDigits 82

adiCommandEchoCanceller 85

adiCommandRecord 91

adidef.h 82, 85, 113, 189

ADIERR_XXX_XXX 237, 239

ADIEVN_CP_TDD 48, 154

ADIEVN_XXX_XXX 243, 245

adiFlushDigitQueue 95

adiGetBoardInfo 97

adiGetBoardSlots 100

adiGetBoardSlots32 103

adiGetContextInfo 106

adiGetDigit 109, 121

adiGetEEPromData 111

adiGetEncodingInfo 113

adiGetPlayStatus 115

adiGetRecordStatus 117

adiGetTimeStamp 119

adiInsertDigit 121

adimgr.lib 12

adiModifyEchoCanceller 123

adiModifyPlayGain 128

adiModifyPlaySpeed 130

adiPeekDigit 131

adiPlayAsync 132

adiPlayFromMemory 136

adiQuerySignalState 139

adiRecordAsync 141

adiRecordToMemory 145, 150

adiSetBoardClock 149

adiSetNativeInfo 150

adiStartCallProgress 154

adiStartDial 158

adiStartDTMF 161

Index ADI Service Developer's Reference Manual

274 NMS Communications

adiStartDTMFDetector 163

adiStartEnergyDetector 165

adiStartMFDetector 167

adiStartPlaying 170

adiStartProtocol 174

adiStartPulse 177

adiStartReceivingFSK 179

adiStartRecording 182

adiStartSendingFSK 186

adiStartSignalDetector 189

adiStartTimer 192

adiStartToneDetector 194

adiStartTones 198

adiStopCallProgress 201

adiStopCollection 203

adiStopDial 204

adiStopDTMFDetector 206

adiStopEnergyDetector 208

adiStopMFDetector 210

adiStopPlaying 212

adiStopProtocol 213

adiStopReceivingFSK 215

adiStopRecording 216

adiStopSendingFSK 217

adiStopSignalDetector 218

adiStopTimer 220

adiStopToneDetector 222

adiStopTones 224

adiSubmitPlayBuffer 226

adiSubmitRecordBuffer 228

AGC (automatic gain control) 25

ASR (automatic speech recognition) 67

examples of echo cancellation 57

recommendations for controlling
echo 64

asynchronous transfers 18

playing voice data 27

terminating a record function 20

automatic gain control (AGC) 25

automatic speech recognition (ASR) 67

examples of echo cancellation 57

recommendations for controlling
echo 64

B

board configurations 78

echo cancellation 61

voice detection 68

C

call progress 74

adiStartCallProgress 154

adiStopCallProgress 201

managing 43

callback transfers 18

playing voice data 26

terminating a record function 20

collecting digits 53

adiCollectDigits 82

adiFlushDigitQueue 95

adiGetDigit 109

adiInsertDigit 121

adiPeekDigit 131

adiStopCollection 203

functions, summary of 75

controlling echoes 57

adiCommandEchoCanceller 85

adiModifyEchoCanceller 123

functions, summary of 75

CTA_EVENT 241

CTA_MVIP_ADDR 11

adiGetBoardInfo 97

adiGetBoardSlots 100

adiGetBoardSlots32 103

adiGetEEPromData 111

adiGetTimeStamp 119

adiSetBoardClock 149

adiSetNativeInfo 150

ADI Service Developer's Reference Manual Index

NMS Communications 275

ctaCreateContext 10

ctaCreateQueue 10

ctademo.c 231

ctademo.h 231

CTAERR_XXX_XXX 237, 239

ctaGetTimeStamp 119

ctaInitialize 10

ctaOpenServices 11

ctaWaitEvent 241

adiGetDigit 109

D

demonstration programs 231

hostp2p 232

playrec 234

threads 236

detecting energy 66

adiStartEnergyDetector 165

adiStopEnergy Detector 208

detecting tones 50

adiStartEnergyDetector 165

adiStartToneDetector 194

adiStopEnergyDetector 208

adiStopToneDetector 222

functions, summary of 74

managing call progress 43

detecting voice activity 67, 91

DONE events 241

driver-only mode 12

DSP files 134, 269

DTMF 76

collecting digits 53

digit collection functions 75

DTMFabort mask 19

echo cancellation examples 57

DTMFabort 19

E

echo cancellation 57

encoding formats 13

adiGetEncodingInfo 113

adiPlayAsync 132

errors 237, 239

events 243, 245

categories 247

data structure 241

F

fax 64

FSK data 76

adiStartReceivingFSK 179

adiStartSendingFSK 186

adiStopReceivingFSK 215

adiStopSendingFSK 217

sending and receiving 69

functions 79

call progress 74

configuration information 78

digit collection 75

DTMF and MF detection 76

FSK data 76

low-level call control 77

on-board timers 77

play 73

record 73

telephony protocol 73

tone detection 74

tone generation 75

G

gain 29

generating tones 52

adiStartDTMF 161

adiStartTones 198

adiStopTones 224

functions, summary of 75

Index ADI Service Developer's Reference Manual

276 NMS Communications

H

hostp2p demonstration program 232

I

IP telephony gateways 57

L

libadiapi.so 12

low-level call control 77

adiAssertSignal 80

adiQuerySignalState 139

adiStartDial 158

adiStartPulse 177

adiStartSignalDetector 189

adiStopDial 204

adiStopSignalDetector 218

performing 71

M

MF 76

modems 64

N

native play and record 31

adiSetNativeInfo 150

buffer sizes 17

DSP files 17

encoding formats 13

Natural Call Control service 9

nccGetLineStatusInfo 106

nccStartProtocol 61

NOCC 139

O

OEM 111

on-board timers 77

adiStartTimer 192

adiStopTimer 220

starting 72

stopping 72

out-of-band signaling 71

adiQuerySignalState 139

P

parameters 253

ADI_CALLPROG_PARMS 254

ADI_COLLECT_PARMS 256

ADI_DIAL_PARMS 257

ADI_DTMF_PARMS 259

ADI_DTMFDETECT_PARMS 260

ADI_ECHOCANCEL_STATUS_INFO
125

ADI_ENERGY_PARMS 260

ADI_FSKRECEIVE_PARMS 261

ADI_FSKSEND_PARMS 261

ADI_PLAY_PARMS 261

ADI_RECORD_PARMS 262

ADI_START_PARMS 264

ADI_TONE_PARMS 267

ADI_TONEDETECT_PARMS 268

playing voice data 25

adiGetEncodingInfo 113

adiGetPlayStatus 115

adiModifyPlayGain 128

adiModifyPlaySpeed 130

adiPlayAsync 132

adiPlayFromMemory 136

adiSetNativeInfo 150

adiStartPlaying 170

adiStopPlaying 212

adiSubmitPlayBuffer 226

functions, summary of 73

playrec demonstration program 234

R

recording voice data 20

adiGetEncodingInfo 113

adiGetRecordStatus 117

adiRecordAsync 141

adiRecordToMemory 145

adiSetNativeInfo 150

adiStartRecording 182

ADI Service Developer's Reference Manual Index

NMS Communications 277

adiStopRecording 216

adiSubmitRecordBuffer 228

functions, summary of 73

retrieving configuration information 78

adiGetBoardInfo 97

adiGetBoardSlots 100

adiGetBoardSlots32 103

adiGetContextInfo 106

adiGetEEPromData 111

S

setting time 149

simultaneous play and record 30

single memory transaction 18

speed 29

system restrictions 30

T

TCP 73

adiStartProtocol 174

adiStopProtocol 213

TDD/TTY device 154, 254

terminating play function 26

test.vce 182

threads demonstration program 236

tone detection 50

transferring data 18

two-wire switching 64

U

underruns 17

V

voice activity detection 67, 91

	Introduction
	Overview of the ADI service
	ADI service definition
	Setting up the Natural Access environment

	Developing applications
	Recording and playing
	Performing NMS native play and record
	Managing call progress
	Detecting tones
	Generating tones
	Collecting digits
	Controlling echo
	Detecting energy
	Detecting voice activity
	Sending and receiving FSK data
	Performing low-level call control
	Using on-board timers

	Function summary
	Telephony protocol functions
	Record and play functions
	Call progress functions
	Tone detection functions
	Tone generation functions
	Digit collection functions
	Echo cancellation functions
	DTMF and MF detection functions
	Frequency shift key data functions
	Low-level call control functions
	On-board timer functions
	Configuration information functions

	Function reference
	Using the function reference
	adiAssertSignal
	adiCollectDigits
	adiCommandEchoCanceller
	adiCommandRecord
	adiFlushDigitQueue
	adiGetBoardInfo
	adiGetBoardSlots
	adiGetBoardSlots32
	adiGetContextInfo
	adiGetDigit
	adiGetEEPromData
	adiGetEncodingInfo
	adiGetPlayStatus
	adiGetRecordStatus
	adiGetTimeStamp
	adiInsertDigit
	adiModifyEchoCanceller
	adiModifyPlayGain
	adiModifyPlaySpeed
	adiPeekDigit
	adiPlayAsync
	adiPlayFromMemory
	adiQuerySignalState
	adiRecordAsync
	adiRecordToMemory
	adiSetBoardClock
	adiSetNativeInfo
	adiStartCallProgress
	adiStartDial
	adiStartDTMF
	adiStartDTMFDetector
	adiStartEnergyDetector
	adiStartMFDetector
	adiStartPlaying
	adiStartProtocol
	adiStartPulse
	adiStartReceivingFSK
	adiStartRecording
	adiStartSendingFSK
	adiStartSignalDetector
	adiStartTimer
	adiStartToneDetector
	adiStartTones
	adiStopCallProgress
	adiStopCollection
	adiStopDial
	adiStopDTMFDetector
	adiStopEnergyDetector
	adiStopMFDetector
	adiStopPlaying
	adiStopProtocol
	adiStopReceivingFSK
	adiStopRecording
	adiStopSendingFSK
	adiStopSignalDetector
	adiStopTimer
	adiStopToneDetector
	adiStopTones
	adiSubmitPlayBuffer
	adiSubmitRecordBuffer

	Demonstration programs
	Summary of the demonstration programs
	Host port to port connection: hostp2p
	Play and record: playrec
	Multi-threaded application: threads

	Errors
	Alphabetical error summary
	Numerical error summary

	Events
	Event data structure
	Alphabetical event summary
	Numerical event summary
	Events ordered by category

	Parameters
	Overview of the ADI service parameters
	ADI_CALLPROG_PARMS
	ADI_COLLECT_PARMS
	ADI_DIAL_PARMS
	ADI_DTMF_PARMS
	ADI_DTMFDETECT_PARMS
	ADI_ENERGY_PARMS
	ADI_FSKRECEIVE_PARMS
	ADI_FSKSEND_PARMS
	ADI_PLAY_PARMS
	ADI_RECORD_PARMS
	ADI_START_PARMS
	ADI_TONE_PARMS
	ADI_TONEDETECT_PARMS

	DSP files
	DSP file summary

