
Motorola, Incorporated
Semiconductor Products Sector
6501 William Cannon Drive West
Austin TX 78735-8598

DSP56002
Evaluation Module
Quick Start Guide

Order this document by
DSP56002EVMUM/D
Rev. 1.0, 3/1999

© Copyright Motorola, Inc., 1999. All rights reserved.

MOTOROLA reserves the right to make changes without further notice to any products included and covered
hereby. MOTOROLA makes no warranty, representation or guarantee regarding the suitability of its products for
any particular purpose, nor does MOTOROLA assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation incidental,
consequential, reliance, exemplary, or any other similar such damages, by way of illustration but not limitation, such
as, loss of profits and loss of business opportunity. "Typical" parameters which may be provided in MOTOROLA
data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including "Typicals" must be validated for each customer application by customer’s
technical experts. MOTOROLA does not convey any license under its patent rights nor the rights of others.
MOTOROLA products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support life, or for any other application in which the
failure of the MOTOROLA product could create a situation where personal injury or death may occur. Should Buyer
purchase or use MOTOROLA products for any such unintended or unauthorized application, buyer shall indemnify
and hold MOTOROLA and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim
of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
MOTOROLA was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative
Action Employer. All other tradenames, trademarks, and registered trademarks are the property of their respective
owners.

1

2

3

4

6

5

Required Equipment

Installation Procedure

Running the Demo

Developing a Sample Program for the 56002

Using Addressing Modes

Filtering Audio

1

2

3

4

6

5

Required Equipment

Installation Procedure

Running the Demo

Developing a Sample Program for the 56002

Using Addressing Modes

Filtering Audio

Motorola Table of Contents v

Chapter 1
Equipment Required

1.1 Equipment . 1-1
1.2 What You Get with the EVM . 1-1
1.3 What You Need to Supply . 1-1

Chapter 2
Installation Procedure

2.1 Installation Procedure . 2-1

Chapter 3
Running the Demo

3.1 Running the Demo . 3-1
3.2 Connecting the Board for the Demo . 3-2
3.3 Starting the Demo . 3-2
3.4 Stopping the Demo. 3-3

Chapter 4
Developing a Sample Program for the 56002

4.1 Writing the Program. 4-1
4.2 Assembling the Program . 4-3
4.3 Introduction to the GUI . 4-3
4.4 Verifying and Debugging Programs . 4-4
4.5 Exiting The GUI. 4-5

Chapter 5
Using Addressing Modes

5.1 Writing the Program. 5-1
5.2 External Memory Configuration . 5-3
5.3 Debugging the Program . 5-4

Table of Contents

vi DSP56002EVM Quick Start Guide Motorola

Chapter 6
Filtering Audio

6.1 Application Requirements . 6-1
6.2 Configuring the CODEC . 6-1
6.3 Verifying the Input and Output of Data. 6-1
6.4 Implementing the Filter in the DSP . 6-4
6.4.1 Conclusion . 6-8

Motorola List of Figures vii

3-1 Main Features of the EVM . 3-1

3-2 Alternative Configuration of J8 . 3-2

3-3 Details of Pins Required to Run the Demo. 3-3

4-1 The GUI . 4-3

5-1 Unified Memory Map . 5-3

5-2 Partitioned Memory Map . 5-3

6-1 Example of a Digital Filter . 6-3

List of Figures

viii DSP56002EVM Quick Start Guide Motorola

Motorola List of Examples ix

4 -1 Sample Program . 4-2

5 -1 Using Addressing Modes . 5-2

6 -1 Filtering Audio Program . 6-2

6 -2 QSFILTER.ASM Code. 6-5

List of Examples

x DSP56002EVM Quick Start Guide Motorola

Motorola Equipment Required 1-1

Chapter 1
Equipment Required

1.1 Equipment

The following section will give a brief summary of the equipment required to use the
EVM, some of which will be supplied with the EVM, and some of which will have to be
supplied by the user.

1.2 What You Get with the EVM
• EVM board

• 3.5” disk titled ‘Debug - EVM’

• Debug - EVM Manual

• DSP56002 User’s Manual

• DSP56000 Family Manual

• DSP56002 Data Sheet

• CS4215 Data Sheet

• EVM Schematics

• DSP56002 Evaluation Module Quick Start Guide

• The main board documentation is in the form of a READ.ME file on the EVM
Software disk.

1.3 What You Need to Supply
• A PC (386 class or higher) with 2 Mbytes of memory, a 3.5” floppy disk drive, and

a serial port capable of 19,200 baud

• An RS-232 cable (DB-9 male to DB-9 female)

• A power supply, between 7 V and 9 V @ 700 mA (a.c. or d.c.)

• In order to use the demo, an audio source, headphones, and cables (with 1/8” stereo
plugs) to connect into the audio part of the board.

1-2 DSP56002EVM Quick Start Guide Motorola

What You Need to Supply

Motorola Installation Procedure 2-1

Chapter 2
Installation Procedure

2.1 Installation Procedure

Insert the Debug - EVM disk into the floppy disk drive, ensure that you are have selected
the correct drive, and type “install”

You will be asked to specify the source drive, which will be your floppy disk drive, and to
specify the destination drive, which should be your hard drive.

A directory will then be created on the hard drive called “EVM”. This directory will
contain all the files you require to use the DSP56002EVM.

The EVM software is now installed.

2-2 DSP56002EVM Quick Start Guide Motorola

Installation Procedure

Motorola Running the Demo 3-1

Chapter 3
Running the Demo

3.1 Running the Demo

The EVM software includes a demonstration program. This demonstration is designed to
show the advantage of 24-bit DSPs over 16-bit DSPs. The following section gives step by
step instructions on how to run this demo. See Figure 3-1 to see an example of an EVM.

Figure 3-1. Main Features of the EVM

CS4215

IN

HDPHNE

OUT

Space for EEPROM

MUSIC
SOURCE

HEADPHONES

LINE LEVEL
OUTPUT

J4

J2

J17 J12

J13

32K x 8
FSRAM

32K x 8
FSRAM

32K x 8
FSRAM

J11

J7

J8
J10

DSP56002
2.1mm

Screw
Terminals

OnCE HOST

Power Supply
Inputs

7-9v a.c. or d.c.

To Be Connected to the
Serial Port of the PC

3-2 DSP56002EVM Quick Start Guide Motorola

Connecting the Board for the Demo

3.2 Connecting the Board for the Demo

When you receive the board some jumpers should already have been fitted on J8, J10, and
J12. Please ensure that these jumpers have been fitted as shown in the diagram above.

Use the RS-232 cable to connect the PC’s serial port to the DB-9 connector labelled
‘OnCE’ on the EVM. This will enable the board to be controlled from the PC.

To run the demo you need a music source (with a phones output) which must be connected
to the stereo input port labelled ‘IN’ and a pair of headphones connected to the port
labelled ‘HDPHNE’.

Connect the power supply to the board using either the 2.1mm jack plug, or the screw
terminals.

When you switch on the power supply, the green LED on the board should light.

3.3 Starting the Demo

To start the demo, first start the music source and put on the headphones. Then simply
type ‘demo’ from the EVM directory. Full details of how to work the demo, and what it
demonstrates will be displayed on screen.

After the instruction page, the demo will start, and the graphical user interface (GUI) will
appear on the screen. Details on the GUI will follow in Section 4.3.

Note: If a message appears to say that the GUI cannot communicate with the board,
try changing the position of the jumpers on J8, as shown in Figure 3-2.

Figure 3-2. Alternative Configuration of J8

A number of commands will then be executed. You will notice that the red LED is lit
during the execution of these commands. This indicates that the DSP is in DEBUG mode.

The demo can then be controlled using the methods described in the instruction page. For
example:

• To hear the input signal with the added 60 Hz tone, briefly connect J17 pin 1 to
ground.

J8 J8

Stopping the Demo

Motorola Running the Demo 3-3

• To hear the result of the filter with the 24-bit coefficients, briefly connect J17 pin 3
to ground.

• To hear the result of the filter with the same coefficients, but rounded to 16-bits,
briefly connect J17 pin 2 to ground.

It is suggested that you touch the relevant pin on J17 to pin 16 (bottom right hand corner)
of J7. See Figure 3-3.

Figure 3-3. Details of Pins Required to Run the Demo

The reason that the contrast between the two filters is so vast is due to the fact that with
16-bit coefficients, it is impossible to place the notch of the filter exactly on 60 Hz. It is
slightly offset and will therefore miss the noise. With the 24-bit coefficients, it is possible
to place the filter on exactly 60 Hz.

3.4 Stopping the Demo

To stop the execution of the demo, type “force r” in the COMMAND window in the
bottom left corner of the screen. To exit the GUI, type “quit”.

• An RS-232 cable (DB-9 male to DB-9 female)

• A power supply, between 7 V and 9 V @ 700 mA (ac or dc)

• In order to use the demo, an audio source, headphones, and cables (with 1/8” stereo
plugs) to connect into the audio part of the board.

J17
1

2

3

J7

16 (GND)

(IRQA)

(IRQB)

(NMI)

3-4 DSP56002EVM Quick Start Guide Motorola

Stopping the Demo

Motorola Developing a Sample Program for the 56002 4-1

Chapter 4
Developing a Sample Program for the
56002
The following section contains a worked example detailing how to develop a very simple
program for the DSP. It will demonstrate the form of assembly programs, give instructions
on how to assemble programs, and show how the GUI can be used to verify the operation
of, and, if necessary, to debug the program.

4.1 Writing the Program

The program can be edited using one of a large number of standard editors, e.g MS-DOS
edit, Turbo C editor, EMACS, etc. It is also possible to use a word processor if it has a
‘save as text’ option.

The following program, as shown in Example 4 -1, will perform the very simple task of
adding two numbers together.

Note: It is important to remember that the 56000 family of processors use fractional
arithmetic. Please read DSP56000 Family Manual, Section 3.3 “Data
Representation and Rounding,” if you are unfamiliar with the DSP56000
family.

Note: A semi-colon (;) comments to the end of the line.

 Labels must be left justified

4-2 DSP56002EVM Quick Start Guide Motorola

Writing the Program

Example 4 -1. Sample Program
;**
;A SIMPLE PROGRAM
;**
;THIS SIMPLE PROGRAM WILL ADD TWO NUMBERS
;**
;Y MEMORY
;**

org y:$0 ;instructs the assembler that we
;are referring to Y memory starting
;at location 0

input1 dc $1234 ;y:input1 is defined as a $1234
;$ indicates a hexadecimal value

result ds 1 ;reserve a single word of space in
;y memory. label it ‘result’

;**
;X MEMORY
;**

org x:$0 ;instruct the assembler that we are
;now referring to X data memory,
;starting at location 0

input2 dc $2345 ;x:input2 is defined as $2345

;**
;PROGRAM
;**

org p:0 ;put following program in program
;memory starting at location 0

jmp begin ;p:0 is the reset vector i.e where
;the DSP looks for instructions
;after a reset

org p:$40 ;start the main program at p:$40
;above the main interrupt vectors

begin move y:input1,y0 ;load input1 into register y0
move x:input2,a ;move input2 into accumulator a
add y0,a ;add input1 to input 2
move a,y:result ;store the result at location

;y:result

jmp * ;this is equivalent to
;label jmp label
;and is therefore a never-ending,
;empty loop

;**
;END OF THE SIMPLE PROGRAM
;**

Note: For more information on interrupt vectors refer to DSP56000 Family Manual,
Section 7.3, “Exception Processing State (Interrupt Processing).”

Introduction to the GUI

Motorola Developing a Sample Program for the 56002 4-3

Once you have typed in this file, save it as add2num.asm and quit the editor.

4.2 Assembling the Program

To assemble the program you have written, type “asm56000 -a -b -l add2num.asm”.

Provided there are no errors, this will create 2 additional files:

 add2num.cld

 add2num.lst

The .cld file is the assembled version of the program, and this is what will be downloaded
onto the device. The .lst file is the list file which gives full details of where program and
data will be placed in the DSP memory.

If errors are reported, recheck the source (.asm) file.

4.3 Introduction to the GUI

This section will give a brief introduction to the GUI, detailing only that which is required
to work through the example. Full details of the GUI can be found in the Debug - EVM
manual.

To start up the GUI, type “evm56K”. The display you will see should be similar to
Figure 4-1.

Figure 4-1. The GUI

DATA HEX

UNASSEMBLE

COMMAND

REGISTERS HEX

MENU

EVM>

4-4 DSP56002EVM Quick Start Guide Motorola

Verifying and Debugging Programs

The DATA window, shown in the top left corner displays the data. To display the contents
of X data memory, starting at location x:0, click in the COMMAND window and type:
“display x:0”.

The radix in which the data is shown can be changed by clicking the box which is shown
as containing the word HEX in the diagram above. Data can also be displayed in a
graphical form. To do this type “display x:0 -graph”. To change back to text type “display
x:0 -text”.

The UNASSEMBLE window shows an unassembled version of the contents of program
memory. The next instruction to be executed will be highlighted.

As already shown the COMMAND window is where OnCE commands (i.e the controlling
commands) are entered.

The REGISTERS window shows the contents of the registers of the ALU (Arithmetic
Logic Unit) and the AGU (Address Generation Unit).

4.4 Verifying and Debugging Programs

To load the add2num program developed earlier, click in the command window and type
“load add2num”.

Note: The previous contents of the memory which are not overwritten will remain
unchanged

The instruction at P:0 will be highlighted as this will be the first instruction to be executed.
However, before we start to execute the program we should check that the values we
expect to be in data memory are there. To do this type:

display y:input1
and then
display x:input2

To step through the program, type “step” at the command prompt.

Note: SHORTCUTS: Instead of typing in the entire command, type the start of the
command, and by pressing the space bar, the GUI will complete the remainder.
To repeat the last command, simply press return.

As you step through the code, you will see the instructions having an effect on the
registers shown in the REGISTERS window.

Once you have stepped through the program, ensure that the program has executed
correctly, by checking that y:result contains the value $3579.

Exiting The GUI

Motorola Developing a Sample Program for the 56002 4-5

Stepping through the program like this is good for short programs, but is impractical for
large complex programs. The way to debug large programs is to set breakpoints. These are
user defined points at which execution of the code will stop allowing the user to step
through the section of interest.

To set a breakpoint in the add2num to check the result in accumulator a before it is moved
into Y memory, the command is “break p:$43”. You will see the breakpoint indicated in
the unassemble window.

To point the DSP back to the start point of the program, type “change pc 0”. This changes
the program counter such that it is pointing to the reset vector. To start the program
running, the command is go.

The DSP will stop when it reaches the breakpoint, you will then be able to step through
the remainder of the code.

4.5 Exiting The GUI

To exit from the GUI, type quit at the command prompt.

4-6 DSP56002EVM Quick Start Guide Motorola

Exiting The GUI

Motorola Using Addressing Modes 5-1

Chapter 5
Using Addressing Modes
The following section will give details of another worked example. This one is slightly
more complicated than the previous one and will demonstrate the use of the addressing
modes, and how to configure the external memory.

5.1 Writing the Program

This file will take two lists of data, one in internal X memory, one in external Y memory,
and calculate the sum of the products of the two lists. Calculating the sum of products is
the basis for many DSP functions, therefore the DSP has a special instruction (the mac
instruction) which multiples two values and adds the result to the contents of an
accumulator. See Example 5 -1.

Note: You do not need to type this program, it is provided as QS_EX2.ASM

5-2 DSP56002EVM Quick Start Guide Motorola

Writing the Program

Example 5 -1. Using Addressing Modes
;**
;WORKED EXAMPLE 2
;**
PBASE EQU $200 ;instruct the assembler to replace

;every occurrence of PBASE with $200
XBASE EQU $0 ;used to define the position of the

;data in X memory
YBASE EQU $200 ;used to define the position of the

;data in Y memory

BCR EQU $FFFE ;address, in X memory, of the
;bus control register

org x:XBASE ;internal x memory
list1 dc $475638,$738301,$92673A,$898978,$091271,$F25067

dc $987153,$3A8761,$987237,$34B852,$734623,$233763
dc $F76756,$423423,$324732,$F40029

org y:$YBASE ;external y memory
list2 dc $F98734,$800000,$FEDCBA,$487327,$957572,$369856

dc $247978,$8a3407,$734546,$344787,$938482,$304F82
dc $123456,$657784,$567123,$675634

org p:0
jmp begin ;reset vector

org p:PBASE ;external program memory
begin clr a ;clear accumulator a

move #list1,r0 ;pointer to the start of list1
move #list2,r4 ;pointer to the start of list2
movep #0,x:BCR ;want zero wait state accesses to

;the external memory
;movep (move to peripheral) allows
;you to move immediate data into a
;memory location

move x:(r0)+,x0 y:(r4)+,y0
;load value in X memory pointed to
;by the contents of r0 into x0 and
;post-increment r0
;load value in Y memory pointed to
;by r4 into y0 and post-increment
;r4

do #15,endloop
mac x0,y0,a x:(r4)+,x0 y:(r0)+,y0

;parallelism allows arithmetic
;instruction, TWO data loads
;and two register post-increments
;to be done in one instruction
;cycle.

endloop jmp *
;***

External Memory Configuration

Motorola Using Addressing Modes 5-3

Note: The jmp * instruction is NOT inside the loop.

Note: There is a bug in this program.

5.2 External Memory Configuration

There is an option to configure the external memory of the board in two different ways.
Full details of the corresponding memory maps are in the READ.ME file.

The external memory map is controlled by the position of the jumper on J12. See
Figure 5-1 and Figure 5-2.

Figure 5-1. Unified Memory Map

Figure 5-2. Partitioned Memory Map

Note: For more details on memory maps see Section 3.2 in the DSP56002 User’s
Manual.

With the memory configured as shown in Figure 5, external memory is regarded as one
large block. There is no separation between X, Y, or P. In this configuration X:$1000,
Y:$1000, and P:$1000 are treated as the same memory cell.

J12

P X Y
0

$1FF

$7FF

INTERNAL

EXTERNAL $FF

J12

P X Y
0

$1FFINTERNAL

EXTERNAL

$3FFF

$FF

5-4 DSP56002EVM Quick Start Guide Motorola

Debugging the Program

In the second configuration, the memory is divided into two areas. Half of the external
memory is mapped to Y, and the remainder is unified between P and X memory.

In this example we want to make use of external Y memory, and external P memory,
therefore we require the partitioned memory map. Place the jumper on J12 accordingly.

5.3 Debugging the Program

Assemble and run the program as before. i.e:

asm56000 -a -b -l QS_EX2.asm

evm56k

 then

 put a breakpoint in the code at the jmp * instruction

 and type “go” at the COMMAND prompt.

If the program was working correctly the result in accumulator a would be :

$ FE 9F2051 6DFCC2

However there is a bug in the program, which you may have already spotted. Debug the
program!

Note: If you can’t find the bug, see the solution at the bottom of the this page.

Debugging the Program

MotorolaUsing Addressing Modes5-5

SOLUTION: Registers r0 and r4 are used incorrectly inside the do loop.
r0 should be used to point to the list which is in X memory, r4 should
be used to point to the list in Y memory.

5-6 DSP56002EVM Quick Start Guide Motorola

Debugging the Program

Motorola Filtering Audio 6-1

Chapter 6
Filtering Audio
The following section contains a more complex worked example. This will show how to
develop an application using the on-board codec, and the codec configuration file supplied
with the EVM software.

6.1 Application Requirements

The end product of this worked example will be an assembly program which will take an
audio signal, through the codec, subject it to a simple low pass filter, and output the result
back through the codec. Each step of the development will be documented.

6.2 Configuring the CODEC

The CS4215 is a sophisticated device and is therefore relatively complex to configure. An
attempt has been made to isolate the user of the EVM from this complexity by including
the files ‘ada_init.asm’ and ‘txrx_isr.asm’ with the software.

The file ‘ada_init’ can be used to initialize the codec. It has been set up such that the
parameters can be changed by the user easily by changing one of a few control words. The
code will currently be in the format necessary for the demo with the 60 Hz filter. It will
remain the same for this demonstration.

Note: When including this file in your program, you MUST ensure that there is no
conflict in memory. e.g. The ada_init.asm program uses locations x:0..9, the
users program should therefore not use these locations.

6.3 Verifying the Input and Output of Data

The best and easiest way to verify that the codec is being configured correctly and that the
data is being received and transmitted by the DSP correctly, is to simply pass the data
straight through without any processing at all. The following program (which you will
find as QS6_3.asm) will do this. See Example 6 -1.

6-2 DSP56002EVM Quick Start Guide Motorola

Verifying the Input and Output of Data

Example 6 -1. Filtering Audio Program
;**
;VERIFYING THE OPERATION OF THE CODEC AND THE SSI
;THIS PROGRAM WILL CONFIGURE THE CODEC, ACCORDING TO THE PARAMETERS IN THE
;ADA_INIT.ASM FILE, AND RECEIVE AND THEN TRANSMIT AUDIO DATA WITHOUT
;AFFECTING IT.
;**

START EQU $40

ORG P:0
jmp START

ORG p:$000c
jsr ssi_rx_isr ;SSI receive data
jsr ssi_rx_isr ;SSI receive data with exception
jsr ssi_tx_isr ;SSI transmit data
jsr ssi_tx_isr ;SSI transmit data with exception

;These interrupt service routines
;contained in the file
;tx_rx_isr.asm.
;See 56002 manual for information
;on interrupts

ORG P:START

movep #$261009,x:PLL ;these labels are defined in the
movep #0,x:BCR ;ada_init.asm program
ori #3,mr ;set bit0 and bit1 in the mode

;register i.e. mask interrupts
movec #0,sp ;clear hardware stack pointer
move #0,omr ;mode 0;enabl int. PRAM;rst=0000
move #$40,r6 ; initialize stack pointer
move #-1,m6 ; linear addressing

; these are used by the isrs

include ‘ada_init.asm’
;initialize the codec

TONE_OUTPUT EQU HEADPHONE_EN+LINEOUT_EN+(4*LEFT_ATTN)+(4*RIGHT_ATTN)
TONE_INPUT EQU MIC_IN_SELECT+(15*MONITOR_ATTN)

loop_1
jset #2,x:SSISR,* ;wait for frame sync. to pass
jclr #2,x:SSISR,* ;wait for frame sync

move x:RX_BUFF_BASE,a ;move left sample into acc. a
move x:RX_BUFF_BASE+1),b

;move right sample into acc. b

jsr process_stereo ;jump to the subroutine which will
;process the samples

Verifying the Input and Output of Data

Motorola Filtering Audio 6-3

move a,x:TX_BUFF_BASE ;move a into position from which
;it can be transmitted

move b,x:TX_BUFF_BASE+1
;move b into the position from
;which it can be transmitted

move #TONE_OUTPUT,y0 ;set up control words
move y0,x:TX_BUFF_BASE+2
move #TONE_INPUT,y0
move y0,x:TX_BUFF_BASE+3

jmp loop_1

process_stereo
nop
nop
nop
rts

The implementation of digital filters can be found in most DSP textbooks. See Figure 6-1.

The filter described below will be implemented in the QSFILTER.ASM.

Filter order: M=2

No. of sections N=2

Transpose Direct Form I cascade of 2nd order sections:

H(z) = ∏

Figure 6-1. Example of a Digital Filter

z-1

z-1

z-1

z-1

x(n) y(n)

b10

b11

b12

a11

a12 b22

b21

b20

a21

a22

6-4 DSP56002EVM Quick Start Guide Motorola

Implementing the Filter in the DSP

For a low pass filter with a cut-off of 1 kHz, the coefficients by the filter design package
are:

b10 = 0.00371753

b11 = 0.00741518

a11 = 0.83384359

b12 = 0.00370753

a12 = -0.34867418

b20 = 0.00485158

b21 = 0.00970316

a21 = 0.86615109

b22 = 0.00485158

a22 = -0.38555753

6.4 Implementing the Filter in the DSP

The code which implements the filter is QSFILTER.ASM. The actual implementation is
such that the audio is passed straight through for about the first ten seconds, then is filtered
for ten seconds, then straight through, then filtered, and cycles like this until execution of
the program is halted. See Example 6 -2.

Implementing the Filter in the DSP

Motorola Filtering Audio 6-5

Example 6 -2. QSFILTER.ASM Code
;**
;QSFILTER : LOW PASS FILTERING DEMO FOR DSP56002EVM.
;WILL PASS AUDIO STRAIGHT THROUGH FOR APPROXIMATELY TEN SECONDS, THEN FILTER
;FOR TEN SECONDS, THEN STRAIGHT THROUGH, ETC..ETC..ETC
;**
START EQU $40

ORG X:$10
coefd dc 0.00370753 ;b10

dc 0.5 ;scaling factor
dc 0.00741518 ;b11
dc 0.83384359 ;a11
dc 0.00370753 ;b12
dc -0.34867418 ;a12

dc 0.00485158 ;b20
dc 0.5 ;scaling factor
dc 0.00970316 ;b21
dc 0.86615109 ;a21
dc 0.00485158 ;b22
dc -0.38555753 ;a22

ORG y:$10
rtdelay bsc 4,$0 ;define 4 locations for rtdelay,

;initialize as 0
ltdelay bsc 4,$0 ;define 4 locations for ltdelay,

;initialize as 0
tempstore ds 1 ;define a single location for the

;temporary storage.

ORG P:0
jmp START

ORG p:$000c
jsr ssi_rx_isr ;SSI receive data
jsr ssi_rx_isr ;SSI receive data with exception
jsr ssi_tx_isr ;SSI transmit data
jsr ssi_tx_isr ;SSI transmit data with exception

;These interrupt service routines
;contained in the file
;tx_rx_isr.asm.
;See 56002 manual for information
;on interrupts

ORG P:START

movep #$261009,x:PLL ;these labels are defined in the
movep #0,x:BCR ;ada_init.asm program
ori #3,mr ;set bit0 and bit1 in the mode

;register i.e. mask interrupts
movec #0,sp ;clear hardware stack pointer

6-6 DSP56002EVM Quick Start Guide Motorola

Implementing the Filter in the DSP

move #0,omr ;mode 0;enabl int. PRAM;rst=0000
move #$40,r6 ; initialize stack pointer
move #-1,m6 ; linear addressing

; these are used by the isrs

include ‘ada_init.asm’
;initialize the codec

TONE_OUTPUT EQU HEADPHONE_EN+LINEOUT_EN+(4*LEFT_ATTN)+(4*RIGHT_ATTN)
TONE_INPUT EQU MIC_IN_SELECT+(15*MONITOR_ATTN)

loop_1
do #$60,wait ;do for approximately 10 seconds
do #$FFF,wait_inner
jset #2,x:SSISR,* ;wait for frame sync. to pass
jclr #2,x:SSISR,* ;wait for frame sync

move x:RX_BUFF_BASE,a ;move left sample into acc. a
move x:RX_BUFF_BASE+1),b

;move right sample into acc. b

move a,x:TX_BUFF_BASE ;move a into position from which
;it can be transmitted

move b,x:TX_BUFF_BASE+1
;move b into the position from
;which it can be transmitted

move #TONE_OUTPUT,y0 ;set up control words
move y0,x:TX_BUFF_BASE+2
move #TONE_INPUT,y0
move y0,x:TX_BUFF_BASE+3

wait
nop

wait_inner

do #$60,wait2 ;do for approximately 10 seconds
do #$FFF,wait2_inner
jset #2,x:SSISR,* ;wait for frame sync. to pass
jclr #2,x:SSISR,* ;wait for frame sync

move x:RX_BUFF_BASE,a ;move left sample into acc. a
move x:RX_BUFF_BASE+1),b

;move right sample into acc. b

jsr process_stereo ;jump to the subroutine which will
;process the samples

move a,x:TX_BUFF_BASE ;move a into position from which
;it can be transmitted

move b,x:TX_BUFF_BASE+1
;move b into the position from
;which it can be transmitted

move #TONE_OUTPUT,y0 ;set up control words
move y0,x:TX_BUFF_BASE+2

Implementing the Filter in the DSP

Motorola Filtering Audio 6-7

move #TONE_INPUT,y0
move y0,x:TX_BUFF_BASE+3

wait2
nop

wait2_inner

jmp loop_1

process_stereo
move #ltdelay,r0 ;set up pointer to left delay

;storage
jsr filter ;filter the left sample
move a,y:tempstorage ;filtered value in a, store it
move b,a ;move the right sample into acc. a
move #rtdelay,r0 ;set up pointer to right delay

;storage
jsr filter ;filter the right sample
move a,b ;move filtered right sample into b
move y:tempstorage,a ;move filtered left sample into a
rts

filter
move #LINEAR,m0 ;set up addressing mode
move m0,m4 ;set up the addressing mode
ori #$08,mr ;enable the scaling mode

do #2,stage
asr a #<coefs,r4 ;set up pointer to the coefficients

;shift the sample right
move a,x0 y:(r0)+,a

;x0=ip a=delayed z-2
asr a x:(r4)+,x1

;a= (z-2)/2 x1= bi0
macr x1,x0,a x:(r4)+,x1 y:(r0)-,y0

;a=(z-2)/2+(bi0*ip)=op
;x1 = 0.5 y0=delay z-1

mpy y0,x1,a a,y1 x:(r4)+,x1
;a=(z-1)/2 x1= =a11

mac x0,x1,a x:(r4)+,x1
;a=(z-1)/2+(bi1*ip) x1= ai1

macr y1,x1,a x:(r4)+,x1
;a=(z-1)/2+(bi1*ip)+(ai1*op)
;x1 = bi2

mpy x1,x0,a x:(r4)+,x1 a,y:(r0)+
;a=(bi1*ip) x1=ai2 save previous a

macr y1,x1,a ;a=(bi1*ip)+(ai2*op)
tfr y1,a x:(r4)+,x0 a,y:(r0)+

stage
and #$F3,mr
rts

6-8 DSP56002EVM Quick Start Guide Motorola

Implementing the Filter in the DSP

include ‘txrx_isr.asm’

end

6.4.1 Conclusion

You have now come to the end of the quick start document, and hopefully it has given you
a good basic understanding of the EVM. For further information please refer to the
manuals provided.

1

2

3

4

6

5

Required Equipment

Installation Procedure

Running the Demo

Developing a Sample Program for the 56002

Using Addressing Modes

Filtering Audio

1

2

3

4

6

5

Required Equipment

Installation Procedure

Running the Demo

Developing a Sample Program for the 56002

Using Addressing Modes

Filtering Audio

	Cover
	Table of Contents
	List of Figures
	List of Examples
	Chapter�1 Equipment Required
	Chapter�2 Installation Procedure
	Chapter�3 Running the Demo
	Chapter�4 Developing a Sample Program for the 56002
	Chapter�5 Using Addressing Modes
	Chapter�6 Filtering Audio

