
A Small Parallel C SimulatorManuel MollarDepto. de Inform�aticaUniversidad Jaume IAptdo. 242, 12071 Castell�on, SpainAbstractThe C language is an interesting choice for paral-lel programming with the transputer. We present amodule built in C that allows a program written inINMOS Parallel C to be run in any computer withminor changes, using a sequential compiler. Only thelanguage is simulated, not the architecture, providingfast execution and reasonably accurate timing.1 Introduction.Our simulator allows the compilation and execu-tion of parallel programs written in Parallel C usingour favorite programming toolset in the correspond-ing computer. The main goal is the simulation ofthe language, not the architecture. In consequence,the debugging facilities will be those of the program-ming tool, so the training e�ort is minimum. In short,the main advantages of the built simulator are four:debugging facilities, high execution speed, deadlockdetection and the possibility of running without thetransputer hardware. It has been written in ANSI Cto guarantee portability. After having developed itusing the Borland C IE on a PC-clone, it has beencompiled under HP UX without any change.In x2 we describe the simulation guidelines and givesome de�nitions, in x3 and x4, the necessary changes toprogram source are described. In x5 and x6 the basicsimulation strategy and algorithms are given, showingthe debugging possibilities in x8 and x9. In x7 weexplain the available multiprogramming features.2 The simulation.The simulator is constructed as two include �lesand one module that must be linked with the parallelprogram. It provides the routines for communication,and a transparent concurrence mechanism to simulatethe parallelism. The chosen concurrence strategy isbased in a co-routine scheme built using the setjmpC package. Of course, a round-robin scheduler wouldbe more realistic, but the di�culties and the loss ofportability are evident. Furthermore, most debuggers

will not run with this scheme. Co-routine based con-current execution is far from the behavior of the par-allel program. However, once the transfer strategy hasbeen understood, the sequential trace of the programis very convenient for a good tracking of the parallelalgorithm.For every processor, the simulator distinguishes(and can compute) among Total Time (TT), In-put Waiting Time (IWT), Output Waiting Time(OWT), Communication Time (CMT), and Computa-tion Time (CPT). Last one is the employed by the sim-ulating processor (in all that follows, the host proces-sor) in executing any no-communication instruction.A scale factor is computed to return the real trans-puter times (T805).The communication costs (CMT ) are estimatedwith a usual theoretical model: estimate the costof the link set up and the cost of the transmis-sion of one byte. The total cost is: cost ofset up + cost per byte * no. of bytes. Both can bemanual or automatically adjusted. Setting them to0,0, the simulator will show the degree of parallelismof the algorithm. The communication costs are onlyaccounted in the processor that does the output op-eration (in all that follows, the output processor); inthe input processor, it is accounted as Input WaitingTime, de�ned as the time from the input operationrequest to its completion. By Output Waiting Timewe designate the expired one from the output requesttill the input operation beginning.Always, we know the Total Time per processor, sothe maximumone is the time of the parallel algorithm.We also know the total computation time, as the ad-dition of the Computation Time of every processor.Then, the simulator can compute the speed up of thealgorithm for any given number of processors respectto the same algorithm executed in one processor.In the simulation, a processor executes its code se-quentially until it requires to communicate with an-other. Depending on the situation of the other, ex-ecution is transferred to it. The transfer routine ac-



counts the expended CPU time. The algorithmic ef-fort is centered in the communication routines, as wewill explain.The number of physical links in the transputer canbe extended in the simulation to any number. So, analgorithm designed for a n-cube that runs directly inthe T805 transputer for n = 1,2,3, can be tested forany value of n, to prove its correction, simply increas-ing the number of links at con�guration time.3 The tailored program.In the transputer system, con�gured executablecode may be constituted by di�erent programs for thedi�erent processors [1]. Now, by evident reasons, onlya program can be present. The solution is that eachsimulated processor executes a routine of the tailoredprogram. This routine does not need to be di�erent forevery processor, the con�guration mechanism allowsto allocate the same routine for several processors.Thus, the �rst tailoring operation is to join the orig-inal programs into a single one, maintaining the mul-tiple �le structure, if desired. To do it, all the mainroutines must be renamed. Then, a new main routinemust be created, intended to con�gure the networkand to start the simulation. To avoid the constructionof a parser for the �les accepted by icconf [1], the sim-ulator includes a set of routines that implements thecon�guration task.The joining process has a drawback concerning toglobal variables. Suppose that in the transputer net-work con�guration, a program must be shared by sev-eral processors. In the tailored code, we want to allo-cate the same routine for these processors. Then, allthe global variables from the original program mustbe converted into local ones to the renamed routine.The presence of global data in the tailored programimplies the simulation of a shared memory. The onlyalternative is the replication of the variables, with thecorresponding naming task or the inclusion in a vec-tor, but this is not a serious approach.To avoid having a program for the simulator andothers for the transputer, we can use the C preproces-sor. Using the #ifdef directive, code can be tailoredat compilation time, using the appropriate de�nitions.For example, suppose that we want to run a programin processor 0 and another in the rest of processors.We can write the code for a single �le like this:

=� Here the headers for all the processors �=#ifndef procR=� Here special headers for processor 0 �=#endif#ifndef procR#ifdef proc0int main()#elsevoid RoutineFor0 ()#endif=� Here the code for processor 0 �=#endif =� #ifndef �=#ifndef proc0#ifdef procRint main()#elsevoid RoutineForRest ()#endif=� Here the code for the rest of processors �=#endif =� #ifndef �=#ifdef InSimulatorvoid main()=� Here the code for con�guring �=#endifIn this example, for the real machine, we mustde�ne proc0 at compiling time to generate code forprocessor 0, de�ne procR to generate code for the restof processors. When in the simulator, InSimulator isalready de�ned, allowing code generation for the sim-ulator. So, the tailoring process becomes automatic.If the multiple �le scheme is maintained, a more sim-ple use of the preprocessor will give the correct result.Using the #ifdef directive for the main and selectingthe �les at link time, will be enough.4 The con�guration routines.These procedures are similar to those used by icconfto make them easy to use. The main di�erence comesfrom the tailored program: each simulated processorholds a routine of the program, not a di�erent program(like in the original occurs). Furthermore, no distinc-tion is made between process and processor, so theoriginal sentences place and use are joined in a singleone, Place. It sets which routine is allocated in whatprocessor, with an estimate of the extra workspacethat the routine needs (in the stack), as we will ex-plain. Another parameter to Place is the result to acall to Interface. This routine implements partiallythe original interface: only I/O channels and integervalues are supported as parameters. The process Idis treated as a special case, to economize memory. Acall to Place, will be, for example:



Place(rout, extra, proc,Interface(5,iPId,iInpChan,East,iOutChan,East,iInpChan,West,iOutChan,West)),which will place a routine rout in processor proc withthe extra stack extra and with an interface including�ve parameters: the PID, an input process (designedby iInpChan) for link East (1), an output process forthe same link, and the same for link West.Channel speci�cation in the interface implies ex-plicit determination of the physical link on which thechannel will be placed, so the original place sentenceapplied to channels is not necessary (and not imple-mented). To connect two processors, the Connectprocedure is used, specifying the two processors andthe two links. Establishing connection between twoprocessors by a determined link implies the existenceof two channels for each processor, which can be usedby the placed routine if they are speci�ed in the inter-face construction.Despite the di�erences with the original con�gu-ration process may seem substantial, this simpli�edscheme allows in practice setting up most of the con-�guration schemes, in the desired way: the use ofget param by the program does not need to be modi-�ed.Furthermore, dynamic creation of interfaces is pos-sible, allowing their construction at run time. Usingthis facility, a set of built in topologies is given with thesimulator, included in misc.h, allowing quickly start-ing:� A bi-directional ring of processors,� A crossbar of any number of processors,� A full tree with any number of sons by node andany deepth,� A wrapped mesh with any number of dimensionswith any number of processors by dimension, and� A hypercube of any dimension.Obviously, when more than four links are needed,the algorithms cannot be directly implemented in theT805 transputer. Here, the interface is constructedusing the links in the order 1,2,3,0,4,5, ... . So, com-patibility is maintained when possible.A complete description may be found in the include�le misc.h.5 Process management.Each processor is simulated with a co-routine thatexecutes one of the renamed routines. Each proces-sor has its local clock. Process work space is allo-cated in the stack, including the local data. Only threeprocedures implement process management. The rou-tine StartSystem called when the con�guration task is

done, assigns a PID to itself (we refer to it as the ini-tial process) and transfers to the processor 1. Usingan informal notation, the algorithm is simple:set the initial timetransfer(1)repeatfor every non �nished process dotransfer to ituntil no processThe Transfer routine is only called internally by thecommunication routines, so context switching is trans-parent to the user. The algorithm for Transfer(PID)follows.localclock+= current time of host processor -previous initialtimeif process with this PID does not exist thenset the work space for the current processcall the placed routineexit terminate(0)else if process has �nished then errorelse initialtime= current time of host processortransfer to the process with this PIDThe other routine is exit terminate, that simplymarks the process as terminated and transfers exe-cution to the initial process, entering the previous re-peat loop, transferring control to any other non �n-ished process. This loop is also intended to scheduleany process that performs some action after the lastcall to some communication routine, because processscheduling is only carried out by the communicationroutines.It is usual that the �rst simulated routine calledby any program is get param. This is not necessaryin the real machine, but it is in the simulator. The�rst time that a program calls get param, it does itsexpected work, and then starts the next process. Thedeclared local variables are already allocated in thestack, so the extra stack is only intended to allowpossible calls to other routines, and acts as a workspace for the process. The process creation ordering is1, 2, ..., n-1, 0, so the remaining of the stack is avail-able for proc. 0, despite its extra stack (the speci�ed).This is very convenient, because proc. 0 may need agreat amount of stack to perform I/O.6 The communication routines.The data structure for every process is an arrayof channel descriptors. One input channel and an-other output one are allocated for each physical link,no matter if they were not speci�ed in the interface,for simplicity. Each descriptor holds what link in



what processor is connected to it. The communicationstrategy is a simple bu�er operation: the data passedto ChanOut are copied into a bu�er pointed by theinput channel descriptor of the connected processor.ChanIn will deallocate the bu�er after copying it toits destination.When a process calls ChanIn, data may be notready. In our concurrence scheme, waiting for themessage consists in transferring control to the part-ner process, from which data are expected. CallingChanOut by the output process, execution is trans-ferred to the input process. The speci�cation forChanIn is given in [2] and the basic algorithm maybe:if message not received thentransfer to the output process=� execution continues here if a transfer to thisprocess occurs �=if data have been received thencopy informationdeallocate bu�erelse deadlockAnd for ChanOut:allocate bu�ercopy message to ittransfer to the input processif data not deallocated thendeadlockHowever this is not valid. Deadlocks will be de-tected where they do not occur, due that the controlmay be transferred to the input process by anotherprocess. For example, suppose this situation:Process 0 Process 1 Process 2ChanIn from 1 ChanOut to 2 ChanIn from 1ChanIn from 2 ChanOut to 0 ChanOut to 0Starting from processor 0, control will return to itfrom processor 2, and data are not ready in the chan-nel to proc. 1. If control is another time transferredto proc. 1, the second ChanOut (to proc. 0) will beperformed, and the example communication will ter-minate.Deadlock detection is possible establishing the max-imum number of transfers (always to the same proces-sor). Observe that anyway, with three processors atmost two transfers will be necessary to schedule thesystem. With n processors, if processor 0 performsa ChanIn to communicate with proc. 1, at most theother n-2 procs. can demand communication withproc. 0 without knowing for certain that deadlock willoccur, so at most n-2 extra transfers can be admit-ted, no matter from which processor come. If the last

transfer does not carry the message, deadlock occurs.So the algorithm for ChanIn is this:while (message not received) and(number of transfers is less than n) dotransfer to the output processif data not received thendeadlockelse ...Observe that during the extra transfers, controlpass through processes that can be doing output, so asimilar loop must appear in ChanOut.For each input channel, IWT and the number ofinput operations (NIO) are accounted. For each out-put channel, OWT , the number of output operations(NOO) and the number of transferred bytes (NTB)are registered. The values NOO and NTB are ac-counted in order to give complete information to theuser. Communication times are no explicitly accumu-lated. So, the computation time (CPT ) is obtainedfrom: TT = CPT +PChannel[IWT +OWT+NOO � (channel set up time)+NTB � (time per byte)]:While TT is measured in the transfer operation,considering the previous algorithms, the communica-tion times must be determined in the ChanIn routine.Transfer operations in ChanIn and ChanOut will causeundesired CPU time spent. So, considering the highperformance of the original Parallel C routines, thealgorithmic CPU time is discarded and the computa-tion time for ChanIn and ChanOut is reduced to theminimum updating directly TT for the process. Sup-posing the data received and TI the processor time atwhich ChanIn begins and TO the (di�erent) processortime at which the corresponding ChanOut begins, thealgorithm for time measuring is:if TI < TO then=� input process is waiting �=wait = TO � TI + CMTTO+ = CMTTI = TOIWT+ = waitelsewait = TI � TOTO = TI +CMTTI = TOIWT+ = CMTOWT+ = waitThe routines ChanInChanFail and ChanOutChan-Fail described in [2] have not been implemented. How-



ever, ChanInTimeFail or ChanOutTimeFail, are veryinteresting for asynchronous parallel programming.Now, suppose that timeI is the max. waiting time forChanInTimeFail and timeO the same for ChanOut-TimeFail, the algorithm for ChanInTimeFail follows.repeat =� to handle a ChanOutTimeFail that fails �=repeat perform transfersuntil data received or deadlock conditionif no data received thenif timeI � 0 thenTI+ = timeIIWT+ = timeIreturn failureelsedeadlockelsecompute CMTif TI � TO thenwait = TO � TIif (timeI � 0) and (timeI < wait) then=� failing �=aux = TI + timeIwait = timeIfailI =trueelseaux = TO + CMTwait = aux� TITO = auxIWT+ = waitT I = auxelsewait = TI � TOif (timeO � 0) and (timeO < wait) thenaux = TO + timeOwait = timeOfailO = trueCMT = 0elseaux = TI +CMTOWT+ = waitTO = auxIWT+ = CMTTI+ = CMTif not failI thencopy data and deallocateuntil failI or not failOreturn failIObserve that the previous algorithm for ChanInis embedded in this one. So, ChanInTimeFail isthe basic input routine: ChanIn is ChanInTimeFailwith timeI = -1. The same applies for ChanOut and

ChanOutTimeFail, where simpler changes are made toreturn failure when deadlock or not message in timeO.7 Multiprogramming features.The �rst requirement for an optimal simulator isthat any program written in Parallel C may run on thesimulator. However, this is not true here. The simu-lator does not support multiprogramming in a trans-puter. So all the calls relative to process managementare not supported, except those of time measuring.Really, we have originally designed the simulator todevelop and test some numerical parallel algorithms.In this context, one process per processor is a usualpractice, to obtain greater e�ciencies.However, several multiprogramming features havebeen implemented, as follows. The fact that the sim-ulator does not support explicit multiprogramming,inhibits the possibility of performing concurrent I/O.Concurrent input, for example, is useful to make si-multaneous input from di�erent links. Even in a sin-gle link communication, concurrent I/O can be veryuseful to increase e�ciency by means an intermediatemessage bu�ering. This possibility is valid for any par-allel program. Then, in the simulator, an additionaloption is available at con�guration time to stay thatall I/O is handled by an intermediate bu�ering processfor every channel. The code executed by this virtualprocess follows.For input operations:repeat foreverread message into auxiliary bu�er (at time T i)send it to the user process (at time TI)For output operations:repeat foreverread message from user process into auxiliarybu�er (at time TO)send it to the partner (at time To)In the real machine, the communication times maybe strongly improved, but additional memory will beneeded. In the simulation, no process is created, andno memory is needed for bu�ers. Simply, ChanIn willcompute times in a di�erent way. Although in thetransputer process contention will disappear in mostcases (using the bu�ering), the simulated behavior isthe same that without the bu�ering, by obvious rea-sons.The suggested use of this option follows: when theprogram works, activate the option and then, compareexecution times; if they are really improved, buildingthe bu�ering with auxiliary processes in the transputermay be justi�ed.



In the simulator, concurrent mode is not com-patible with time fail routines. Considering thanT i � TI and TO � To, three situations are pos-sible: T i � TI < To; To < T i � TI andT i � To � TI. The algorithm for ChanIn follows:if TI < To thenIWT+ = To� TI + TCTo+ = TCTI = Toelseif To < T i thenTo = T i+ TCif To > TI thenIWT+ = To� TITI = ToelseTo+ = TCif To > TI thenIWT+ = To� TITI = ToT i = TIThe WT is incremented in ChanOut, that, beforetransfering does:if To =� previous, actualized by ChanIn �=> TO =� actual �= thenOWT+ = To � TOTO = ToelseTo = TO =� for the next �=8 Debugging facilities.The simulator has a trace mode in which severalevents are logged to the output. The events aremainly the relatives to communicationactivity, includ-ing waiting times. Combining the trace with the pos-sibility of using printf instructions from any processor,a classical debugging method is obtained.Of course, we prefer the possibilities given by inter-active symbolic debuggers. The use of the step by stepexecution founds here a similar situation to those thatappears in event-driven programs: a step may resultin an excessive number of operations for debuggingpurpose. Suppose that a call to ChanOut is executed.It will perform a transfer to the input process, that inits turn can cause another transfers. So, when controlreturns to the next instruction, a lot of work may bedone, and if we search for some error, it may appearin this step.Breakpoints are the recommended tool. If we putthem in the critical points of the program, each timethat the control passes through the breakpoint, execu-

tion will stop. If several processors share a same rou-tine (it is usual), the breakpoint will a�ect to the �rstprocessor that arrives to it. When conditional break-points are available, the processor selection is allowedusing the variable Process, which returns the currentprocess. Evidently, this variable must not be used intothe program.For debugging purposes, synchronization is an im-portant task. In the transputer, under idebug, puttingbreakpoints in the di�erent processors allows pausingall the processors at the desired point. Without thedebugger, synchronization usually needs to be done inthe transputer by means of message passing. In thesimulator, only one process will arrive at his break-point at a time, due the sequential nature of the sim-ulation; so another way of synchronization is neces-sary. The routine Synchronize, located in the desiredpoints, simulates such a message passing, without anychannel use. Processes are blocked inside Synchronizeuntil every one calls it. Then execution continues inprocessor 0. But Synchronize, in contrast with mes-sage passing, does not a�ect CPU time; it can appearin the source code as it is needed, without changingtiming results.9 Pro�ling.Several routines use Synchronize, in particularthose of time information. Suppose that a segmentof the parallel algorithm has a portion of code in dif-ferent processors. To obtain partial execution times,this portion can be selected. The routine BeginPro-�le (Pro�le Variable) called from processor 0 marksthe beginning of the portion to be measured; the endis marked by EndPro�le, also in the proc. 0. In theother procs., the equivalent portions are marked bytwo calls to Synchronize, which must be done in allthe processors. If no code corresponding to the paral-lel algorithm is present, it will simply be called twice.The pair BeginPro�le - EndPro�le accumulates exe-cution data in the variable, and then, in any point ofthe source code, the routine ShowPro�le will write areport on the output. The returned data are the men-tioned CPT; IWT;OWT;NIO;NOO;NTB and TT ,detailed by channel if proceeds and desired.Similar action performs the pair SynchronizeCPU -ShowCPU, which, using the previous routines, marksthe begin and the end of a report, showing data. Themain di�erences are: no accumulation is performed,an implicit pro�le variable is used, and, when syn-chronizing, CPU times of all processors are set to beequal to the greatest CPU time. The increased CPUtime is accounted as IWT in a virtual channel. Ob-serve that it is a valid approach, due that to obtain



the CPU time of a portion of the algorithm, in thereal machine, the mentioned message passing strategyneeds to be used, obtaining the same results.As auxiliary routines, LockCPU and UnLockCPUmark a portion of code in any processor that do notconsumes CPU time. None of the simulator routinescan be called between them. This is a good mechanismto write on the output without CPU consumption.10 Implementation details.The time estimate features are based on the pos-sibility of high precision time measuring in the hostcomputer. The clock C function returns the desiredtimes, but usually its resolution is very poor. Forexample, in a PC, time counter is incremented 18.2times per second; in most of the Unix systems, timeis returned in microseconds, but with intervals of 0.01seconds. On these situations, the simulator runs, butthe time estimate is bad.So, to set up the simulator in a machine, two rou-tines must be implemented. The routine SetInstantmust obtain the actual time of day, or CPU time (ofthe host), and store it in a variable of type TyInstant.This type must be de�ned for convenient storage. An-other one, Interval, computes the interval between twoprevious measured instants, returning the di�erence inmicroseconds, stored in a long int. The general speci-�cation and the implementation for the PC (with 3�sof precision) of this routines is given in the distributionkit.11 Experimental results.In order to experiment with the simulator a setof programs has been prepared. Communication andwait times have been tested with them. Also, severalprograms test the built topologies. The distributionkit holds a user manual containing a complete exam-ple to show the time measuring in several cases. Also,two real programs have been used to experiment: oneto calculate the Hessenberg reduction of a matrix, andanother to compute the product singular value decom-position (PSVD) of two matrices.The simulator performance depends strongly on thepower of the host processor. Experimental resultsshow that the i80486/33 processor is about twice fasterthan the T805 transputer running at 20 MHz. Theprocessor of our HP Apollo is 8 times faster than thesame transputer.But the true determinant of the real time neededfor the simulation is the complexity of communica-tions. A communication that in the transputer cantake few microseconds, in the simulation may involvehundreds of transfers in the process scheduling from

the communication routines. The simulated time willbe rather exact, but the time employed in the simula-tion may be many times larger.To simulate transputer times with precision, a scal-ing factor is computed by the simulator at run time, toestablish the relation of performance between the men-tioned transputer and the host processor. Of course,this factor is not very exact, and user can determineit manually, experimenting with true programs. Withthe correct factor, we have experimented over the men-tioned processors to compute the PSVD of matriceswith di�erent sizes over di�erent number of proces-sors. Results di�er about 10% with the real times.Also, the computed speed up holds this percentagereferred to the true one.In the PC under DOS, Borland C exhibits a verypowerful and quick debugger, but stack size is limitedto 64kbytes, which reduces the number of processorsthat can be simulated to nearly 300, with a very smallprogram. In front, under HP UX, lower memory con-straints allow big simulations. Here, 4095 processorsare started to compute �yi=xi with a fan-in algorithmimplemented over a binary tree of processors, involv-ing about two seconds of simulation.References[1] INMOS Limited, \ANSI C toolset user manual",1990.[2] INMOS Limited, \ANSI C toolset language refer-ence", 1990.


