A Small Parallel C Simulator

Manuel Mollar
Depto. de Informatica

Universidad Jaume 1
Aptdo. 242, 12071 Castellén, Spain

Abstract

The C language is an interesting choice for paral-
lel programming with the transputer. We present a
module built in C that allows a program written in
INMOS Parallel C to be run in any computer with
minor changes, using a sequential compiler. Only the
language is stmulated, not the architecture, providing
fast execution and reasonably accurate teming.

1 Introduction.

Our simulator allows the compilation and execu-
tion of parallel programs written in Parallel C using
our favorite programming toolset in the correspond-
ing computer. The main goal is the simulation of
the language, not the architecture. In consequence,
the debugging facilities will be those of the program-
ming tool, so the training effort is minimum. In short,
the main advantages of the built simulator are four:
debugging facilities, high execution speed, deadlock
detection and the possibility of running without the
transputer hardware. It has been written in ANSI C
to guarantee portability. After having developed it
using the Borland C IE on a PC-clone, it has been
compiled under HP UX without any change.

In §2 we describe the simulation guidelines and give
some definitions, in §3 and §4, the necessary changes to
program source are described. In §5 and §6 the basic
simulation strategy and algorithms are given, showing
the debugging possibilities in §8 and §9. In §7 we
explain the available multiprogramming features.

2 The simulation.

The simulator is constructed as two include files
and one module that must be linked with the parallel
program. It provides the routines for communication,
and a transparent concurrence mechanism to simulate
the parallelism. The chosen concurrence strategy is
based in a co-routine scheme built using the setjmp
C package. Of course, a round-robin scheduler would
be more realistic, but the difficulties and the loss of
portability are evident. Furthermore, most debuggers

will not run with this scheme. Co-routine based con-
current execution is far from the behavior of the par-
allel program. However, once the transfer strategy has
been understood, the sequential trace of the program
is very convenient for a good tracking of the parallel
algorithm.

For every processor, the simulator distinguishes
(and can compute) among Total Time (TT), In-
put Waiting Time (IWT), Output Waiting Time
(OWT), Communication Time (CMT), and Computa-
tion Time (CPT). Last one is the employed by the sim-
ulating processor (in all that follows, the host proces-
sor) in executing any no-communication instruction.
A scale factor is computed to return the real trans-
puter times (T805).

The communication costs (CMT) are estimated
with a usual theoretical model: estimate the cost
of the link set up and the cost of the transmis-
sion of one byte. The total cost is: cost of
set up + cost per byte * no. of bytes. Both can be
manual or automatically adjusted. Setting them to
0,0, the simulator will show the degree of parallelism
of the algorithm. The communication costs are only
accounted in the processor that does the output op-
eration (in all that follows, the output processor); in
the input processor, it is accounted as Input Waiting
Time, defined as the time from the input operation
request to its completion. By Output Waiting Time
we designate the expired one from the output request
till the input operation beginning.

Always, we know the Total Time per processor, so
the maximum one is the time of the parallel algorithm.
We also know the total computation time, as the ad-
dition of the Computation Time of every processor.
Then, the simulator can compute the speed up of the
algorithm for any given number of processors respect
to the same algorithm executed in one processor.

In the simulation, a processor executes its code se-
quentially until it requires to communicate with an-
other. Depending on the situation of the other, ex-
ecution 1s transferred to it. The transfer routine ac-



counts the expended CPU time. The algorithmic ef-
fort 1s centered in the communication routines, as we
will explain.

The number of physical links in the transputer can
be extended in the simulation to any number. So, an
algorithm designed for a n-cube that runs directly in
the T805 transputer for n = 1,2,3, can be tested for
any value of n, to prove its correction, simply increas-
ing the number of links at configuration time.

3 The tailored program.

In the transputer system, configured executable
code may be constituted by different programs for the
different processors [1]. Now, by evident reasons, only
a program can be present. The solution is that each
simulated processor executes a routine of the tailored
program. This routine does not need to be different for
every processor, the configuration mechanism allows
to allocate the same routine for several processors.

Thus, the first tailoring operation is to join the orig-
inal programs into a single one, maintaining the mul-
tiple file structure, if desired. To do it, all the mawn
routines must be renamed. Then, a new main routine
must be created, intended to configure the network
and to start the simulation. To avoid the construction
of a parser for the files accepted by icconf[1], the sim-
ulator includes a set of routines that implements the
configuration task.

The joining process has a drawback concerning to
global variables. Suppose that in the transputer net-
work configuration, a program must be shared by sev-
eral processors. In the tailored code, we want to allo-
cate the same routine for these processors. Then, all
the global variables from the original program must
be converted into local ones to the renamed routine.
The presence of global data in the tailored program
implies the simulation of a shared memory. The only
alternative 1s the replication of the variables, with the
corresponding naming task or the inclusion in a vec-
tor, but this is not a serious approach.

To avoid having a program for the simulator and
others for the transputer, we can use the C preproces-
sor. Using the #ifdef directive, code can be tailored
at compilation time, using the appropriate definitions.
For example, suppose that we want to run a program
in processor 0 and another in the rest of processors.
We can write the code for a single file like this:

/* Here the headers for all the processors */
#ifndef procR
/* Here special headers for processor 0 */
#endif
#ifndef procR
#ifdef procO
int main()
#else
void RoutineFor0 ()
#endif
/* Here the code for processor 0 */
#endif [+ #ifndef */
#ifndef procO
#ifdef procR
int main()
#else
void RoutineForRest ()
#endif
/* Here the code for the rest of processors */
#endif [+ #ifndef */
#ifdef InSimulator
void main()
/* Here the code for configuring */
#endif

In this example, for the real machine, we must
define proc0 at compiling time to generate code for
processor 0, define procR to generate code for the rest
of processors. When in the simulator, InSimulator is
already defined, allowing code generation for the sim-
ulator. So, the tailoring process becomes automatic.
If the multiple file scheme is maintained, a more sim-
ple use of the preprocessor will give the correct result.
Using the #ifdef directive for the main and selecting
the files at link time, will be enough.

4 The configuration routines.

These procedures are similar to those used by icconf
to make them easy to use. The main difference comes
from the tailored program: each simulated processor
holds a routine of the program, not a different program
(like in the original occurs). Furthermore, no distinc-
tion is made between process and processor, so the
original sentences place and use are joined in a single
one, Place. It sets which routine 1s allocated in what
processor, with an estimate of the extra workspace
that the routine needs (in the stack), as we will ex-
plain. Another parameter to Place is the result to a
call to Interface. This routine implements partially
the original interface: only I/O channels and integer
values are supported as parameters. The process Id
is treated as a special case, to economize memory. A
call to Place, will be, for example:



Place(rout, extra, proc,
Interface(5,iPId,ilnpChan,East,iOutChan,East,
ilnpChan, West,iOutChan, West)),

which will place a routine rout in processor proc with
the extra stack eztra and with an interface including
five parameters: the PID, an input process (designed
by ilnpChan) for link East (1), an output process for
the same link, and the same for link West.

Channel specification in the interface implies ex-
plicit determination of the physical link on which the
channel will be placed, so the original place sentence
applied to channels is not necessary (and not imple-
mented). To connect two processors, the Connect
procedure is used, specifying the two processors and
the two links. Establishing connection between two
processors by a determined link implies the existence
of two channels for each processor, which can be used
by the placed routine if they are specified in the inter-
face construction.

Despite the differences with the original configu-
ration process may seem substantial, this simplified
scheme allows in practice setting up most of the con-
figuration schemes, in the desired way: the use of
get_param by the program does not need to be modi-
fied.

Furthermore, dynamic creation of interfaces is pos-
sible, allowing their construction at run time. Using
this facility, a set of built in topologies is given with the
simulator, included in misc.h, allowing quickly start-
ing:

e A bi-directional ring of processors,

e A crossbar of any number of processors,

e A full tree with any number of sons by node and
any deepth,

e A wrapped mesh with any number of dimensions
with any number of processors by dimension, and

e A hypercube of any dimension.

Obviously, when more than four links are needed,
the algorithms cannot be directly implemented in the
T805 transputer. Here, the interface is constructed
using the links in the order 1,2,3,0,4,5, ... . So, com-
patibility is maintained when possible.

A complete description may be found in the include
file misc.h.

5 Process management.

Each processor is simulated with a co-routine that
executes one of the renamed routines. Each proces-
sor has its local clock. Process work space is allo-
cated in the stack, including the local data. Only three
procedures implement process management. The rou-
tine StartSystem called when the configuration task is

done, assigns a PID to itself (we refer to it as the ini-
tial process) and transfers to the processor 1. Using
an informal notation, the algorithm is simple:

set the initial time
transfer(1)
repeat
for every non finished process do
transfer to it
until no process

The Transfer routine is only called internally by the
communication routines, so context switching is trans-
parent to the user. The algorithm for Transfer(PID)
follows.

localclock+= current time of host processor -
previous initialtime
if process with this PID does not exist then
set the work space for the current process
call the placed routine
exit_terminate(0)
else if process has finished then error
else initialtime= current time of host processor
transfer to the process with this PID

The other routine 1s ezit_terminate, that simply
marks the process as terminated and transfers exe-
cution to the initial process, entering the previous re-
peat loop, transferring control to any other non fin-
ished process. This loop is also intended to schedule
any process that performs some action after the last
call to some communication routine, because process
scheduling is only carried out by the communication
routines.

It is usual that the first simulated routine called
by any program is get_param. This is not necessary
in the real machine, but it is in the simulator. The
first time that a program calls get_param, it does its
expected work, and then starts the next process. The
declared local variables are already allocated in the
stack, so the extra stack 1s only intended to allow
possible calls to other routines, and acts as a work
space for the process. The process creation ordering is
1,2, ...,n-1,0, sotheremaining of the stack is avail-
able for proc. 0, despite its extra stack (the specified).
This is very convenient, because proc. 0 may need a
great amount of stack to perform 1/0.

6 The communication routines.

The data structure for every process is an array
of channel descriptors. One input channel and an-
other output one are allocated for each physical link,
no matter if they were not specified in the interface,
for simplicity. Each descriptor holds what link in



what processor is connected to it. The communication
strategy i1s a simple buffer operation: the data passed
to ChanOut are copied into a buffer pointed by the
input channel descriptor of the connected processor.
ChanlIn will deallocate the buffer after copying it to
its destination.

When a process calls Chanln, data may be not
ready. In our concurrence scheme, waiting for the
message consists in transferring control to the part-
ner process, from which data are expected. Calling
ChanQut by the output process, execution is trans-
ferred to the input process. The specification for
Chanln is given in [2] and the basic algorithm may

be:

if message not received then
transfer to the output process
/* execution continues here if a transfer to this
process occurs */
if data have been received then
copy information
deallocate buffer
else deadlock

And for ChanOut:

allocate buffer

copy message to it

transfer to the input process

if data not deallocated then
deadlock

However this is not valid. Deadlocks will be de-
tected where they do not occur, due that the control
may be transferred to the input process by another
process. For example, suppose this situation:

Process 2
Chanln from 1
ChanOut to 0

Process 1
ChanOut to 2
ChanOut to 0

Process 0
Chanln from 1
Chanln from 2

Starting from processor 0, control will return to 1t
from processor 2, and data are not ready in the chan-
nel to proc. 1. If control is another time transferred
to proc. 1, the second ChanOut (to proc. 0) will be
performed, and the example communication will ter-
minate.

Deadlock detection is possible establishing the max-
imum number of transfers (always to the same proces-
sor). Observe that anyway, with three processors at
most two transfers will be necessary to schedule the
system. With n processors, if processor 0 performs
a Chanln to communicate with proc. 1, at most the
other n-2 procs. can demand communication with
proc. 0 without knowing for certain that deadlock will
occur, so at most n-2 extra transfers can be admit-
ted, no matter from which processor come. If the last

transfer does not carry the message, deadlock occurs.
So the algorithm for Chanln is this:

while (message not received) and
(number of transfers is less than n) do

transfer to the output process
if data not received then

deadlock

else ...

Observe that during the extra transfers, control
pass through processes that can be doing output, so a
similar loop must appear in ChanOut.

For each input channel, /W7 and the number of
input operations (N10O) are accounted. For each out-
put channel, OWT, the number of output operations
(NOO) and the number of transferred bytes (NTB)
are registered. The values NOO and NTB are ac-
counted in order to give complete information to the
user. Communication times are no explicitly accumu-
lated. So, the computation time (C'PT) is obtained
from:

TT = CPT+ S cpumnt IWT + OWT+
NOO * (channel set up time)+
NTB # (time per byte)].

While 7T is measured in the transfer operation,
considering the previous algorithms, the communica-
tion times must be determined in the Chanln routine.
Transfer operations in Chanln and ChanOut will cause
undesired CPU time spent. So, considering the high
performance of the original Parallel C routines, the
algorithmic CPU time is discarded and the computa-
tion time for Chanln and ChanOut is reduced to the
minimum updating directly 77T for the process. Sup-
posing the data received and 77 the processor time at
which ChanlIn begins and T'O the (different) processor
time at which the corresponding ChanOut begins, the
algorithm for time measuring is:

if 'l < TO then
/* input process is waiting */
wait =T0 -TI+CMT
TO+=CMT
TI=T0O
IWT+ = wait

else
wait =TI —-TO
TO=TI4+CMT

TI=TO
IWT4+ =CMT
OWT+ = wait

The routines ChanInChanFail and ChanOutChan-

Fail described in [2] have not been implemented. How-



ever, ChanInTimeFail or ChanOutTimeFail, are very
interesting for asynchronous parallel programming.
Now, suppose that tszmel is the max. waiting time for
ChanInTimeFail and ttmeQO the same for ChanOut-
TimeFail, the algorithm for ChanInTimeFail follows.

repeat /x to handle a ChanOutTimeFail that fails */
repeat perform transfers
until data received or deadlock condition
if no data received then
if timel > 0 then
TIi+ = timel
IWT+ = timel
return failure
else
deadlock
else
compute CMT
if TI <TO then
wait =TO —T1
if (timel > 0) and (timel < wait) then
/x failing */
auxr =TI + timel
watt = timel
faill =true
else
aur =TO+ CMT
watt = aur — 1T'1
T0O = aux
IWT+ = wait
TI = aux
else
wait =TI —TO
if (timeO > 0) and (timeO < wait) then
aur = T0 + timeO
wait = timeO

fatlO = true
CMT =0
else
aur =TI+ CMT
OWT+ = wait
TO = aux
IWT+=CMT
TI+=CMT

if not faill then
copy data and deallocate
until faill or not failO
return faill

Observe that the previous algorithm for Chanln
is embedded in this one. So, ChanInTimeFail is
the basic input routine: Chanln is ChanlnTimeFail
with #imel = -1. The same applies for ChanOut and

ChanOutTimeFail, where simpler changes are made to
return failure when deadlock or not message in timeO.

7 Multiprogramming features.

The first requirement for an optimal simulator is
that any program written in Parallel C may run on the
simulator. However, this 1s not true here. The simu-
lator does not support multiprogramming in a trans-
puter. So all the calls relative to process management
are not supported, except those of time measuring.
Really, we have originally designed the simulator to
develop and test some numerical parallel algorithms.
In this context, one process per processor is a usual
practice, to obtain greater efficiencies.

However, several multiprogramming features have
been implemented, as follows. The fact that the sim-
ulator does not support explicit multiprogramming,
inhibits the possibility of performing concurrent 1/0.
Concurrent input, for example, 1s useful to make si-
multaneous input from different links. Even in a sin-
gle link communication, concurrent I/O can be very
useful to increase efficiency by means an intermediate
message buffering. This possibility is valid for any par-
allel program. Then, in the simulator, an additional
option is available at configuration time to stay that
all /0 is handled by an intermediate buffering process
for every channel. The code executed by this virtual
process follows.

For input operations:

repeat forever
read message into auxiliary buffer (at time 7'%)

send it to the user process (at time T7)

For output operations:

repeat forever
read message from user process into auxiliary

buffer (at time T'0)
send it to the partner (at time 7o)

In the real machine, the communication times may
be strongly improved, but additional memory will be
needed. In the simulation, no process is created, and
no memory 1s needed for buffers. Simply, Chanln will
compute times in a different way. Although in the
transputer process contention will disappear in most
cases (using the buffering), the simulated behavior is
the same that without the buffering, by obvious rea-
sons.

The suggested use of this option follows: when the
program works, activate the option and then, compare
execution times; if they are really improved, building
the buffering with auxiliary processes in the transputer
may be justified.



In the simulator, concurrent mode is not com-
patible with time fail routines. Considering than
T: < TI and TO < To, three situations are pos-
sible: T¢ < TI < To, To < Ti < TI and
Ti: < To < TI. The algorithm for Chanln follows:

if TI < To then
IWT+=To-TI+TC
To+=TC
TI=To
else
if To < Ti then
To=Ti+TC
if To > TI then
IWIT+=To—-T1
TI=To
else
To+=TC
if To > TI then
IWIT+=To—-T1
TI=To
Ti =TI

The WT is incremented in ChanOut, that, before
transfering does:

if To /« previous, actualized by Chanln */
> TO /* actual */ then
OWT+=To—-TO
TO="To
else
To=TO /* for the next x/

8 Debugging facilities.

The simulator has a trace mode in which several
events are logged to the output.
mainly the relatives to communication activity, includ-
ing waiting times. Combining the trace with the pos-
sibility of using prinif instructions from any processor,
a classical debugging method is obtained.

Of course, we prefer the possibilities given by inter-
active symbolic debuggers. The use of the step by step
execution founds here a similar situation to those that
appears in event-driven programs: a step may result
in an excessive number of operations for debugging
purpose. Suppose that a call to ChanQOut is executed.
It will perform a transfer to the input process, that in
its turn can cause another transfers. So, when control
returns to the next instruction, a lot of work may be
done, and if we search for some error, 1t may appear
in this step.

Breakpoints are the recommended tool. If we put
them in the critical points of the program, each time
that the control passes through the breakpoint, execu-

The events are

tion will stop. If several processors share a same rou-
tine (it is usual), the breakpoint will affect to the first
processor that arrives to it. When conditional break-
points are available, the processor selection is allowed
using the variable Process, which returns the current
process. Evidently, this variable must not be used into
the program.

For debugging purposes, synchronization is an im-
portant task. In the transputer, under idebug, putting
breakpoints in the different processors allows pausing
all the processors at the desired point. Without the
debugger, synchronization usually needs to be done in
the transputer by means of message passing. In the
simulator, only one process will arrive at his break-
point at a time, due the sequential nature of the sim-
ulation; so another way of synchronization is neces-
sary. The routine Synchronize, located in the desired
points, simulates such a message passing, without any
channel use. Processes are blocked inside Synchronize
until every one calls it. Then execution continues in
processor 0. But Synchronize, in contrast with mes-
sage passing, does not affect CPU time; it can appear
in the source code as it is needed, without changing
timing results.

9 Profiling.

Several routines use Synchronize, in particular
those of time information. Suppose that a segment
of the parallel algorithm has a portion of code in dif-
ferent processors. To obtain partial execution times,
this portion can be selected. The routine BeginPro-
file (Profile Variable) called from processor 0 marks
the beginning of the portion to be measured; the end
is marked by EndProfile, also in the proc. 0. In the
other procs., the equivalent portions are marked by
two calls to Synchronize, which must be done in all
the processors. If no code corresponding to the paral-
lel algorithm is present, it will simply be called twice.
The pair BeginProfile - EndProfile accumulates exe-
cution data in the variable, and then, in any point of
the source code, the routine ShowProfile will write a
report on the output. The returned data are the men-
tioned CPT IWT, OWT, NIO,NOO,NTB and TT,
detailed by channel if proceeds and desired.

Similar action performs the pair Synchronize CPU -
ShowCPU, which, using the previous routines, marks
the begin and the end of a report, showing data. The
main differences are: no accumulation is performed,
an implicit profile variable is used, and, when syn-
chronizing, CPU times of all processors are set to be
equal to the greatest CPU time. The increased CPU
time is accounted as IWT in a virtual channel. Ob-
serve that it is a valid approach, due that to obtain



the CPU time of a portion of the algorithm, in the
real machine, the mentioned message passing strategy
needs to be used, obtaining the same results.

As auxiliary routines, LockCPU and UnLockCPU
mark a portion of code in any processor that do not
consumes CPU time. None of the simulator routines
can be called between them. Thisis a good mechanism
to write on the output without CPU consumption.

10 Implementation details.

The time estimate features are based on the pos-
sibility of high precision time measuring in the host
computer. The clock C function returns the desired
times, but usually its resolution is very poor. For
example, in a PC, time counter is incremented 18.2
times per second; in most of the Unix systems, time
is returned in microseconds, but with intervals of 0.01
seconds. On these situations, the simulator runs, but
the time estimate i1s bad.

So, to set up the simulator in a machine, two rou-
tines must be implemented. The routine SetInstant
must obtain the actual time of day, or CPU time (of
the host), and store it in a variable of type TylInstant.
This type must be defined for convenient storage. An-
other one, Interval, computes the interval between two
previous measured instants, returning the difference in
microseconds, stored in a long int. The general speci-
fication and the implementation for the PC (with 3us
of precision) of this routines is given in the distribution

kit.

11 Experimental results.

In order to experiment with the simulator a set
of programs has been prepared. Communication and
wait times have been tested with them. Also, several
programs test the built topologies. The distribution
kit holds a user manual containing a complete exam-
ple to show the time measuring in several cases. Also,
two real programs have been used to experiment: one
to calculate the Hessenberg reduction of a matrix, and
another to compute the product singular value decom-
position (PSVD) of two matrices.

The simulator performance depends strongly on the
power of the host processor. Experimental results
show that the i80486/33 processor is about twice faster
than the T805 transputer running at 20 MHz. The
processor of our HP Apollo is 8 times faster than the
same transputer.

But the true determinant of the real time needed
for the simulation is the complexity of communica-
tions. A communication that in the transputer can
take few microseconds, in the simulation may involve
hundreds of transfers in the process scheduling from

the communication routines. The simulated time will
be rather exact, but the time employed in the simula-
tion may be many times larger.

To simulate transputer times with precision, a scal-
ing factor is computed by the simulator at run time, to
establish the relation of performance between the men-
tioned transputer and the host processor. Of course,
this factor is not very exact, and user can determine
it manually, experimenting with true programs. With
the correct factor, we have experimented over the men-
tioned processors to compute the PSVD of matrices
with different sizes over different number of proces-
sors. Results differ about 10% with the real times.
Also, the computed speed up holds this percentage
referred to the true one.

In the PC under DOS, Borland C exhibits a very
powerful and quick debugger, but stack size is limited
to 64kbytes, which reduces the number of processors
that can be simulated to nearly 300, with a very small
program. In front, under HP UX, lower memory con-
straints allow big simulations. Here, 4095 processors
are started to compute XY__ i with a fan-in algorithm
implemented over a binary tree of processors, involv-
ing about two seconds of simulation.

References

[1] INMOS Limited, “ANSI C toolset user manual”,
1990.

[2] INMOS Limited, “ANSI C toolset language refer-
ence” | 1990.



