GPIB

NI-488.2M™ User
Manual for Windows 95

November 1995 Edition
Part Number 321037A-01

© Copyright 1995 National Instruments Corporation.
All Rights Reserved.

. Internet Support

GPIB: gpi b. support @ati nst.com
DAQ: dag. support @ati nst.com
VXI:vxi . support @at i nst.com
LabVIEW: | v. support @ati nst.com
LabWindows: | w. support @ati nst.com
HiQ: hi q. support @ati nst.com
VISA:vi sa. support @ati nst.com

FTP Site: ft p. nati nst.com
Web Address: www. nat i nst. com

. Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

J L FaxBack Support

(512) 418-1111 or (800) 329-7177

Y Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678 or (800) 328-2203

Y . .
International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 48301892, Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 202 2544,
Netherlands 03480 33466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 20 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute
programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of
shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair
or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation
of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on
the outside of the package before any equipment will be accepted for warranty work. National Instruments
will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been
carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National
Instruments reserves the right to make changes to subsequent editions of this document without prior
notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In
no event shall National Instruments be liable for any damages arising out of or related to this document or
the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’'S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO
THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
This limitation of the liability of National Instruments will apply regardiess of the form of action, whether in
contract or tort, including negligence. Any action against National Instruments must be brought within one
year after the cause of action accrues. National Instruments shall not be liable for any delay in performance
due to causes beyond its reasonable control. The warranty provided herein does not cover damages,
defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments
installation, operation, or maintenance instructions; owner’s modification of the product; owner's abuse,
misuse, or negligent acts, and power failure or surges, fire, flood, accident, actions of third parties, or other
events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in
whole or in part, without the prior written consent of National Instruments Corporation.

Trademarks

® ™ ™ ™ .
NI-488~, NI-488.2 , NI-488.2M , and TNT4882C are trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of
reliability suitable for use in treatment and diagnosis of humans. Applications of National Instruments
products involving medical or clinical treatment can create a potential for accidental injury caused by product
failure, or by errors on the part of the user or application designer. Any use or application of National
Instruments products for or involving medical or clinical treatment must be performed by properly trained
and qualified medical personnel, and all traditional medical safeguards, equipment, and procedures that are
appropriate in the particular situation to prevent serious injury or death should always continue to be used
when National Instruments products are being used. National Instruments products are NOT intended to be
a substitute for any form of established process, procedure, or equipment used to monitor or safeguard
human health and safety in medical or clinical treatment.

Table
of
Contents
About This Manual
How to Usethe Manual SEt ..o Xiii
Organization of ThiSManUalcccoeirriiiie e Xiv
Conventions Used in ThiSManUalc.ccooeieieneinineresee e XV
Related DOCUMENEELIONeoveeeeieeeieiese ettt r et s seeeeneas Xvi
Customer COMMUNICBEIONcc.evvereeeeeieeeieiee e seeee e e e see e enesaeseeseens Xvi
Chapter 1
Introduction
GPIB OVEINVIBIW ...ttt ettt sttt 1-1
Talkers, Listeners, and CONrollerscovvvvvnenneneneieneesees e 11
Controller-In-Charge and System Controllerooceoeveieieininienneeee, 11
GPIB AGArESSINGcoveiiieeieieeienie ettt se e be e e ene s 1-2
Sending Messages ACrOSSthe GPIB ... 1-2
DAALINES ..ot 1-2
HaNASNAKE LINEScoviiieeirieerecrerees s 1-3
Interface Management LineS.........cccooevereinineneicne e 1-3
Setting Up and Configuring Y our SyStemcccoeveiereieiniene e 1-4
Controlling More Than One Boardccccceeereneieneeienenienenens 1-5
Configuration REQUIFEMENLScceruereriererene e 1-5
The NI-488.2M Software COMPONENEScoerererrererienere e sesne e 1-6
NI-488.2M Driver and Driver UtIlItiescooeeviennenereeeeeseenee 1-6
16-bit Windows SUPPOIT FIlESc.cceiiriieeeeeeieere e 1-7
Microsoft C/C++ Language Interface Files.........cooeveiiiiiinineceece 1-7
Microsoft Visual Basic Language Interface Filescooeveieininiiiicienns 1-7
Sample ApPliCaION FIlES ..o e 1-8
How the NI-488.2M Software Works with Windows 95ccccoeeveiniiennenennenns 1-8
Uninstalling the Plug and Play GPIB Hardware............cccooeeeieninienenene e 1-9
Uninstalling the Plug and Play GPIB SOftWare...........cccoovirireiriene e 1-11

© National Instruments Corporation v NI-488.2M User Manual for Windows 95

Table of Contents

Chapter 2
Application Examples
Example 1: Basic COMMUNICELIONcoueererieieeeeeesies e s 2-2
Example 2: Clearing and Triggering DEVICES.........coccoureririneneneeeeesiesie e 2-4
Example 3: ASyNCron0US 1/O........cocuiiiiiiie e e 2-6
Example 4: End-of-String MOE.........ccoiiiiiiinrese s 2-8
EXample 5: ServiCe REQUESES........coiirirerierierie sttt 2-10
Example 6: Basic Communication with |EEE 488.2-Compliant Devices 2-14
Example 7: Serial Polls Using NI-488.2 ROULINESccooeruirieierieneneneieee e 2-16
Example 8: Parallel POIIS ... e 2-18
Example 9: Non-Controller EXampPIe ... 2-21
Chapter 3
Developing Your Application
Choosing How to ACCess gpib-32.0llccoovevveiriere e 31
Choosing Between NI-488 Functions and NI-488.2 ROULINEScccceveeeeeereeenennnn 32
Using NI-488 Functions: One Device for Each Boardcc.ccccvvivveveeenene 32
NI-488 DeViCe FUNCLIONS.........cocirieiieieericcsieesee e 32
NI-488 BOard FUNCLIONSc.coveirieiererieerieiesesie st 33
Using NI-488.2 Routines. Multiple Boards and/or
MUIIPIE DEVICES. ..ottt see et see s 33
Checking Status with Global Variablesccccoevvirivereeecece e 34
StAtUS WOId — IDSEA ..o 34
Error Variabl@ — TDEIT ..o 35
Count Variables—ibent and ibentlc.ooeeveiiniineneee e 3-6
Using Win32 Interactive Control to Communicate with Devicesccoceveveeeeennn. 36
Writing Your NI-488 APPlICALiONcceeueeeeririesesereceee e seeee e ere s 37
[TEMSTO INCIUAE ...t 37
NI-488 Program Shellccoviiveeeririreee e s 3-8
General Program Steps and EXamplescovovvvveveerecresieseseseseeseseeesee s 3-8
Step 1. OPEN @ DEVICE......cieieieieseereeeee e 39
Step 2. Clear the DEVICE ..o 39
Step 3. Configure the DEVICEcoveeeeeveeeee e 39
Step 4. Trigger the DEVICE ...c.veueeeeeeecece e 3-10
Step 5. Wait for the Measurementcccceeevvvevecereseneeeneseens 3-10
Step 6. Read the Measurementcccceevevvvecenesinseereee e 311
Step 7. Processthe Data........cccovvveeeeeneseseseseeeeese e st 311
Step 8. Placethe Device OffliNe.......ccovvvveveveveresereeeeeeeeeens 311
Writing Your NI-488.2 APPHCAiON ...cc.ceeeeeiireseeeeee et 312
[TEMS O INCIUAE ...t s 312
NI-488.2 Program Shell ... 313

NI-488.2M User Manual for Windows 95 v © National Instruments Corporation

Table of Contents

Genera Program Steps and EXamPIES ..o 3-14

Step L. INItIaliZatiON ..c.coveeeeeicee s 314

Step 2. Find All LISLENESS ..o 314

Step 3. Identify the INSruMENtoveoereireeeee e 315

Step 4. Initializethe INSIrUMENtcocveieieiceeee e 315

Step 5. Configure the INSIrument ..o 3-16

Step 6. Trigger the INSIrUMEeNt ... 3-16

Step 7. Wait for the Measurementccceeeerreneneensenesieenens 3-17

Step 8. Read the Measurementccveevrerneiniees e 3-17

Step 9. Processthe Data........ccovveeeveeereieneneeee e 318

Step 10. Placethe Board Offline.........cooveeviininniceeeece 318

Compiling and Linking Y our APPliCaLIONccoereirieiirieeriee e 318

MiCrosoft ViSUal CICH ..ottt st snenea 3-18

RV IS U= I 2 - S T oSSR 3-19

Direct ENtry With C ..o e 319

Microsoft Visual CICH+cvvieiieiseiseesee s 321

BOrand C/CHt ...ttt 321

Running Existing Winl6 GPIB ApPliCatioNS.........cccoeirieirieirieinsesieeseeeseeieseeees 3-22

Chapter 4
Debugging Your Application

RUNNiNg GPIB INfOIMELIONceiiiiiiiiieeniese e 41
Debugging with the Global Status Variables..........ccocviiinineienee e 4-2
Debugging with Win32 Interactive CONtrolcccceninineneneniescsese e 4-2
GPIB EITON COUBS ...ttt 4-2
Troubleshooting EDVR Error CONditionsccccoererereeienenene e 4-3
EDVR Error with ibcntl Set to OXEO28002Ccvovvverereeneerireeneeeeseeeneens 4-3
EDVR Error with ibentl Set to OXEOQL140025ccoeeveeeireeeiereenieeseeeneenes 4-4
EDVR Error with ibentl Set to OXEOQL140035ccovveeveeeereeireneesieeseeeneees 4-4
EDVR Error with ibentl Set to OXE0320029ccovveeveeireeirereeneeeseeeneenes 4-4
L6011 T0 01g= L0l =g (0] 1= TP 4-4
THMING EFTOIS .ttt et e ettt s b e e b b e bbb s 45
COMMUNICALION ETTOISvieiteeieerieereee e ene e 45
REPEat AQArESSING ...ttt 45
Termination MEthOd..........c.ooiiiie e 45
COMMON QUESLIONSveviceieiteceerie st ee st e et e e st sae e e e e sreeeesresseentesbeennasneenneneens 4-6

© National Instruments Corporation vii NI-488.2M User Manual for Windows 95

Table of Contents

Chapter 5
Win32 Interactive Control Utility
OVEIVIBIV ...ttt ettt h b e bt bt e b e b e se e e b e b e se et et et et e aeebeeaeebesbeneees 51
Example Using NI-488 FUNCLIONScoriririierieeecrenie e 51
Win32 Interactive Control SYNEBXccocevereierinierieiese e s 54
NUMDEE SYNEBXveviitiierie et e 54
SENG SYNEBX .ttt ettt sb e b e e sbe b e 54
ACAIrESS SYNLAXcveveiiieeie ettt et 55
Win32 Interactive Control Syntax for NI-488 Functions............cccccceeerenene. 55
Win32 Interactive Control Syntax for NI1-488.2 Routinesccocevvenene. 58
SEBIUS WWOIA ..ottt bttt s ettt sb e s bt e e ebe b 59
Error INFOFMELION ..ot sen 59
L0018 0| USSP P AR TURURTRRRPRURUIN 5-10
CommOoN NI-488 FUNCLIONScouiiiiieiriirie et sre s 5-10
TOFING . e 5-10
TDAEV . 5-11
TOWWIE . e b e 512
TOF bbb s 5-13
Common NI-488.2 Routines in Win32 Interactive CONntrolcccoeerenenenenieene. 513
SEEABB.2 ... bbbt 5-13
SENd aNA SENALISEcveeieieieieie st 5-13
RECEIVE ... et et ene 514
AUXITArY FUNCLIONS ...t s e 5-15
Set (UANAME OF 488.2) ...ttt s 5-15
Help (Display Help INformation)ccccoeeereninineeenesesese e 5-16
I (Repeat Previous FUNCLION) ..o e e 5-16
- (Turn OFF Display) and + (Turn ON Display)c.ccooererrieneneneneneeeenens 5-16
N* (Repeat FUNCLION N TIMES) ..ot e 5-17
P (EXECULE INAITECE FIlE) ...t 5-17
Print (Display the ASCI SEFNG) .o.eeeeeriiieinere e e 5-18
Chapter 6
GPIB Programming Techniques
Termination Of Data TraNSFErS ..ot 6-1
High-Speed Data Transfers (HSA88)ocveveeeererereiereeeeese s 6-2
ENabling HSABB........coo et st 6-2
System Configuration Effectson HSA488cccovvveveveecenese e 6-3
Waiting for GPIB CONAitiONScccoieriereeieeeeieeceeeee s 6-4
Device-Level Calsand Bus Management..........ccooeeeeererrsenenesesseseeseeseseesessesseseenns 6-4
Talker/Listener APPIICALIONScveeeeeecese e en 6-5

NI-488.2M User Manual for Windows 95 vili © National Instruments Corporation

Table of Contents

SETA POHING ot 6-5
Service Requests from |EEE 488 DEVICEScccveevvrerieirieeneereieseeesiens 6-5
Service Requests from |EEE 488.2 DEVICESccevvveieeriiienieireerieeseiens 6-6
Automatic Serial POIINGco.oviiiiieee e 6-6
StUCK SRQ SEALE......eeieeeeeeieieeeierie et 6-7
AUtopolling and INEEITUPLS ..o 6-7
SRQ and Seria Polling with NI-488 Device FUNCLioNs............cccvvervenenenne 6-7
SRQ and Serial Polling with NI-488.2 ROULINESccoeerreninieerreeiee 6-8
Example 1: Using FiNdRQSooooieinrireereere s 6-9
Example 2: Using AIISPOILoooceriieiceeee e 6-9
Parall @l POIINGcueuiiiiieieieieeresieie ettt 6-10
Implementing aParallel POII ..o 6-10
Parallel Polling with NI-488 FUNCLIONScccooiiiiiniiereeeneeee 6-10
Parallel Polling with NI-488.2 ROULINESccoeoeieenieinieeieeee 6-12
Chapter 7
GPIB Configuration Utility
OVEIVIBIV ..ottt bbb e e bbbt bt e bt e st nn e 7-1
Configure the NI-488.2M SOftWare.......c..ccreririiinieieeeere e 7-2
Appendix A
Status Word Conditions
LT (0 L= o (o) A-2
QLI LY L@ 2 (o L= A0 o o) S A-2
L I I (0 L= A o) A-2
SROQI (D) e A-2
(O Y (6 Y ISR A-3
L0 1V 1 = I (o = Y20 o] (o) A-3
LOK (B 1.ttt A-3
REM (BIO) oo A-3
LG L (o] ¢) ST STTTN A-4
ATN (BFA) oot A-4
TACS (D) . A-4
[N @RS (oo) ST A-4
(D IS (o] o) ISR A-4
DCAS (D) .t e A-5

© National Instruments Corporation X NI-488.2M User Manual for Windows 95

Table of Contents

Appendix B

Error Codes and SOIULIONS.........oooooccvceereeceeceeesessssisseeess s B-1
EDVR (0) ottt bbbt bbb B-2
ECIC (L) vttt sttt ettt b e st e bbb bt et B-2
ENOL (2) ©oteeteietsisieteie sttt sttt sttt bbb b bt st b bbbt b e nnnnnas B-3
EADR (B) 1ottt bbb bbb B-3
BEARG (4) ottt bbb bbb B-4
ESAC (5) 1ttt ettt sttt b s B-4
EABO (B) ..ttt bbbttt e B-4
ENEB (7) otetetrestetett ettt bbbttt bbb B-5
EDIMA (8) .ttt ittt st e bbbk e B-5
BEOIP (10) .ttt ettt bbbttt B-6
BECAP (L1) ettt et B-6
EFSO (12) .ttt bbb B-6
EBUS (14) oottt st B-7
ESTB (15) c.tueieteteuetrires ettt ettt st bbbt st b et b bbb B-7
ESRQ (16) .eeieceeiiririeiei ettt bbb et B-7
ETAB (20) .ottt B-7

Appendix C

Customer COMMUNICALION ... c1

GIOSSAIY ... Glossary-1

INABX ... Index-1

Figures
Figure 1-1. GPIB AQAreSS BItScecuiiiiiierieeeestes e 1-2
Figure 1-2. Linear and Star System Configurationccccceeervenenienenesieseneenes 1-4
Figure 1-3. Example of Multiboard System Setup.........cccooeeerenereienienene s 1-5
Figure 1-4. How the NI-488.2M Software Works with Windows 95 1-9
Figure 1-5. Selecting an Interface to REMOVE ..o 1-10
Figure 1-6. Add/Remove Programs Properties Dialog BOX..........ccooeverecenccnennns 1-11
Figure 1-7. Uninstallation RESUILSooierireieeeeeree e 1-12
Figure 2-1. Program Flowchart for Example 1 ... 2-3
Figure 2-2. Program Flowchart for Example 2 ... 2-5
Figure 2-3. Program Flowchart for Example 3 ... 2-7
Figure 2-4. Program Flowchart for Example 4 ... 2-9
Figure 2-5. Program Flowchart for Example 5 ... 2-12
Figure 2-6. Program Flowchart for EXample 6 ... 2-15

NI-488.2M User Manual for Windows 95 X © National Instruments Corporation

Table of Contents

Figure 2-7. Program Flowchart for EXample 7 ..o 2-17
Figure 2-8. Program Flowchart for ExXample 8cccoeoveinnenncineeceee 2-20
Figure 2-9. Program Flowchart for EXample 9 ... 2-22
Figure 3-1. Genera Program Shell Using NI-488 Device Functions 3-8
Figure 3-2. Genera Program Shell Using NI-488.2 ROULINESceoeeerieeennen. 3-13
Figure 7-1. NI-488.2M Settings Tab for the AT-GPIB/TNT (PnP)cccccovvveueneee. 7-3
Figure 7-2. Device Templates Tab for the Logical Device Templates 7-4
Tables
Table 1-1. GPIB Handshake LiNeS..........cociveineinnisieeseeseeeseeeseee e 1-3
Table 1-2. GPIB Interface Management LiNeS...........cooeveverenenieneeieeeeeeeeee 1-3
Table 3-1. StAUS WOId LAYOULoviiieeieeeeeter e 35
Table 4-1. GPIB EITOr COUES......ovviierieiiieieisiees s 4-3

Table 5-1. Syntax for Device-Level NI-488 Functionsin Win32

INtEraCtive CONLIOlccvvveereierie e 5-6
Table 5-2. Syntax for Board-Level NI-488 Functionsin Win32

INtEraCtive CONLIOlccvvveereierie e 57
Table 5-3. Syntax for NI1-488.2 Routines in Win32 Interactive Contral 58
Table 5-4. Auxiliary Functions in Win32 Interactive Controlc.ccccoveneenee 5-15

© National Instruments Corporation X NI-488.2M User Manual for Windows 95

About
This
Manual

This manual describes the features and functions of the NI-488.2M
software for Windows 95. The NI-488.2M software is meant to be
used with the Microsoft Windows 95 operating system. This manual
assumes that you are already familiar with Windows 95.

How to Use the Manual Set

Getting Started
Manual

Installation and

Configuration
H Experienced
Users
Novice
Users
NI-488.2M
User Manual for
Windows 95 : : for Win32
Application Function
Development and Routine
and Examples Descriptions

Use the getting started manual to install and configure your GPIB
hardware and software for Windows 95.

Use the NI-488.2M User Manual for Windows 95 to learn the basics of
GPIB and how to develop an application program. The user manual
also contains debugging information and detailed examples.

© National Instruments Corporation Xiii NI-488.2M User Manual for Windows 95

About This Manual

Use the NI-488.2M Function Reference Manual for Win32 for specific
NI -488 function and NI-488.2 routine information, such as format,
parameters, and possible errors.

Organization of This Manual

Thismanual is organized as follows:

© National Instruments Corporation

Chapter 1, Introduction, gives an overview of GPIB and the
NI -488.2M software.

Chapter 2, Application Examples, contains nine sample
applications designed to illustrate specific GPIB concepts and
techniques that can help you write your own applications. The
description of each example includes the programmer's task, a
program flowchart, and numbered steps which correspond to the
numbered blocks on the flowchart.

Chapter 3, Developing Your Application, explains how to develop
a GPIB application program using NI-488 functions and NI1-488.2
routines.

Chapter 4, Debugging Your Application, describes several waysto
debug your application program.

Chapter 5, Win32 Interactive Control Utility, introduces you to the
interactive control program that you can use to communicate with
GPIB devicesinteractively.

Chapter 6, GPIB Programming Techniques, describes techniques
for using some NI-488 functions and NI-488.2 routines in your
application program.

Chapter 7, GPIB Configuration Utility, contains a description of
the software configuration program you can use to configure the
NI -488.2M software.

Appendix A, Status Word Conditions, gives a detailed description
of the conditions reported in the status word, i bst a.

Appendix B, Error Codes and Solutions, lists a description of each
error, some conditions under which it might occur, and possible
solutions.

Appendix C, Customer Communication, contains forms you can
use to request help from National Instruments or to comment on
our products and manuals.

The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

Xiv NI-488.2M User Manual for Windows 95

About This Manual

* ThelIndex contains an aphabetical list of key terms and topicsin
this manual, including the page where you can find each one.

Conventions Used in This Manual

bold
italic

bold italic

nonospace

bol d
nmonospace

italic
nonospace

<>

»

|EEE 488 and
|EEE 488.2

NI-488.2M User Manual for Windows 95 X

The following conventions are used in this manual:
Bold text denotes menus, menu items, or dialog box buttons or options.

Italic text denotes emphasis, a cross reference, or an introduction to a
key concept.

Bold italic text denotes a note, caution, or warning.

Text in thisfont denotes text or charactersthat are to be literally input
from the keyboard, sections of code, programming examples, and
syntax examples. Thisfont is also used for the proper names of disk
drives, paths, directories, programs, subprograms, subroutines, device
names, functions, variables, filenames, and extensions, and for
statements and comments taken from program code.

Bold lowercase text in this font denotes the messages and responses
that the computer automatically prints to the screen.

Italic lowercase text in this font denotes that you must supply the
appropriate words or values in the place of these items.

Angle brackets enclose the name of a key on the keyboard—for
example, <PageDown>.

A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Control-Alt-Delete>.

The » symbol leads you through nested menu items and dialog box
optionsto afinal action. The sequence

File»Page Setup»Options»Substitute Fonts directs you to pull down
the File menu, select the Page Setup item, select Options, and finaly
select the Substitute Fonts option from the last dialog box.

|EEE 488 and |EEE 488.2 refer to the ANSI/IEEE Standard
488.1-1987 and the ANSI/IEEE Standard 488.2-1987,
respectively, which define the GPIB.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and
terms are listed in the Glossary.

© National Instruments Corporation

About This Manual

Related Documentation

The following document contains information that you may find
helpful as you read this manual:

» ANSI/IEEE Standard 488.1-1987, |IEEE Standard Digita Interface
for Programmable Instrumentation

 ANSI/IEEE Standard 488.2-1992, | EEE Standard Codes, Formats,
Protocols, and Common Commands

* Microsoft Windows 95 User's Guide
* Microsoft Win32 Software Development Kit for Microsoft Windows

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with
our products, and we want to help if you have problems with them. To
make it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. Theseformsarein

Appendix C, Customer Communication, at the end of this manual.

© National Instruments Corporation i NI-488.2M User Manual for Windows 95

Introduction

Chapter

This chapter gives an overview of GPIB and the NI-488.2M software.

GPIB Overview

The ANSI/IEEE Standard 488.1-1987, also known as GPIB (General
Purpose Interface Bus), describes a standard interface for
communication between instruments and controllers from various
vendors. It contains information about electrical, mechanical, and
functional specifications. The GPIB isadigital, 8-bit parallel
communications interface with data transfer rates of 1 Mbytes/s and
above, using a 3-wire handshake. The bus supports one System
Controller, usually a computer, and up to 14 additional instruments.
The ANSI/IEEE Standard 488.2-1987 extends | EEE 488.1 by defining
a bus communication protocol, a common set of data codes and
formats, and a generic set of common device commands.

Talkers, Listeners, and Controllers

GPIB devices can be Talkers, Listeners, or Controllers. A Taker sends
out data messages. Listenersreceive data messages. The Controller,
usually a computer, manages the flow of information on the bus. It
defines the communication links and sends GPIB commands to devices.

Some devices are capable of playing more than onerole. A digital
voltmeter, for example, can be a Talker and a Listener. If your personal
computer has a National Instruments GPIB interface board and
NI-488.2M software installed, it can function as a Talker, Listener, and
Controller.

Controller-In-Charge and System Controller

Y ou can have multiple Controllers on the GPIB, but only one
Controller at atime can be the active Controller, or
Controller-In-Charge (CIC). The CIC can either be active or inactive

© National Instruments Corporation 1-1 NI-488.2M User Manual for Windows 95

Chapter 1 Introduction

(Standby) Controller. Control can pass from the current CIC to anidle
Controller, but only the System Controller, usually a GPIB interface
board, can make itself the CIC.

GPIB Addressing

All GPIB devices and boards must be assigned a unique GPIB address.
A GPIB address is made up of two parts: aprimary address and an
optional secondary address.

The primary address is a number in the range 0 to 30. The GPIB
Controller uses this address to form atalk or listen address that is sent
over the GPIB when communicating with adevice.

A talk addressis formed by setting bit 6, the TA (Tak Active) bit of the
GPIB address. A listen addressis formed by setting bit 5, the LA
(Listen Active) bit of the GPIB address. For example, if adeviceisat
address 1, the Controller sends hex 41 (address 1 with bit 6 set) to make
the device a Talker. Because the Controller isusually at primary
address 0, it sends hex 20 (address 0 with bit 5 set) to make itself a
Listener. Figure 1-1 shows the configuration of the GPIB address bits.

Bit 7 6 5 4 3 2 1 0
Position
Meaning | O TA LA GPIB Primary Address (range 0-30)

Figure 1-1. GPIB Address Bits

With some devices, you can use secondary addressing. A secondary
addressis a number in the range hex 60 to hex 7E. When secondary
addressing isin use, the Controller sends the primary talk or listen
address of the device followed by the secondary address of the device.

Sending Messages Across the GPIB

Devices on the bus communicate by sending messages. Signals and
lines transfer these messages across the GPIB interface, which consists
of 16 signal lines and eight ground return (shield drain) lines. The 16
signal lines are discussed in the following sections.

Data Lines

Eight data lines, DIO1 through DIO8, carry both data and command
messages.

NI-488.2M User Manual for Windows 95 1-2 © National Instruments Corporation

Chapter 1 Introduction

Handshake Lines

Three hardware handshake lines asynchronously control the transfer of
message bytes between devices. This processis athree-wire

interlocked handsh
message bytes on t

ake, and it guarantees that devices send and receive
he data lines without transmission error. Table 1-1

summarizes the GPIB handshake lines.

Table 1-1. GPIB Handshake Lines

Line Description
NRFD Listening device is ready/not ready to receive a
(not ready for data) | message byte. Also used by the Talker to

signal high-speed GPIB transfers.

NDAC Listening device has/has not accepted a
(not data accepted) message byte.
DAV Talking device indicates signals on data lines
(datavalid) are stable (valid) data.

Interface Management Lines

Five GPIB hardware lines manage the flow of information across the
bus. Table 1-2 summarizes the GPIB interface management lines.

Table 1-2. GPIB Interface Management Lines

Line Description
ATN Controller drives ATN true when it sends
(attention) commands and false when it sends data messages.
IFC System Controller drivesthe IFC lineto initialize
(interface clear) | the bus and makeitself CIC.
REN System Controller drives the REN line to place
(remote enable) | devicesin remote or local program mode.
SRQ Any device can drive the SRQ lineto
(servicerequest) | asynchronously request service from the Controller.
EQI Talker uses the EQI line to mark the end of a data
(end or identify) | message. Controller usesthe EQOI line when it

conducts aparallée poll.

© National Instruments Corporation

NI-488.2M User Manual for Windows 95

Chapter 1 Introduction

Setting Up and Configuring Your System

Devices are usually connected with a cable assembly consisting of a
shielded 24-conductor cable with both a plug and receptacle connector
at each end. With thisdesign, you can link devicesin alinear
configuration, a star configuration, or acombination of the two.
Figure 1-2 shows the linear and star configurations.

_ Linear
Device A Configuration
Device B
—
Device C
Star

A\ Configuration

==]
Device A Device D
——
Device B Device C

Figure 1-2. Linear and Star System Configuration

NI-488.2M User Manual for Windows 95 1-4 © National Instruments Corporation

Chapter 1 Introduction

Controlling More Than One Board

Figure 1-3 shows an example of a multiboard system configuration.
gpi b0 isthe access board for the voltmeter, and gpi b1 isthe access
board for the plotter and printer. The control functions of the devices
automatically access their respective boards.

One
GPIB

Another
GPIB

Printer

Figure 1-3. Example of Multiboard System Setup

Configuration Requirements

To achieve the high data transfer rate that the GPIB was designed for,
you must limit the physical distance between devices and the number of
devices on the bus. The following restrictions are typical:

* A maximum separation of four meters between any two devices
and an average separation of two meters over the entire bus.

e A maximum total cablelength of 20 m.

* A maximum of 15 devices connected to each bus, with at |east
two-thirds powered on.

© National Instruments Corporation 1-5 NI-488.2M User Manual for Windows 95

Chapter 1 Introduction

For high-speed operation, the following restrictions apply:

All devices in the system must be powered on.

Cable lengths as short as possible up to a maximum of 15 m of
cable for each system.

With at least one equivalent device load per meter of cable.

If you want to exceed these limitations, you can use bus extendersto
increase the cable length or expander to increase the number of device
loads. Extenders and expanders are available from National
Instruments.

The following sections describe the NI-488.2M software, which
controls the flow of communication on the GPIB.

The NI-488.2M Software Components

The following section highlightsimportant components of the
NI -488.2M software for Windows 95 and describes the function of
each component.

NI-488.2M Driver and Driver Utilities

The distribution disk contains the following driver and utility files:

readme. t xt isadocumentation file that contains important
information about the N1-488.2M software and a description of any
new features. Before you use the software, read thisfile for the
most recent information.

Native, 32-bit NI-488.2M driver components. These filesare al of
theform gpi b*. * . They are acollection of dynamically
loadable, Plug and Play aware, and multitasking aware virtual
device drivers and dynamic link libraries. They areinstalled into
the Windows System directory.

gpi b-32. dl | isaWin32 dynamic link library that acts as the
interface between all Windows 95 GPIB applications and the
NI-488.2M driver components.

Win32 Interactive Control is a utility that you use to communicate
with the GPIB devices interactively using NI1-488.2 functions and
routines. It helpsyou to learn the NI1-488.2 routines and to
program your instrument or other GPIB devices.

NI-488.2M User Manual for Windows 95 1-6 © National Instruments Corporation

Chapter 1 Introduction

* The GPIB configuration utility isintegrated into the Windows 95
Device Manager. You use this utility to modify the configuration
parameters of the NI-488.2M software.

» Hardware Diagnostic is a utility that you use to verify that the
hardware isinstalled and functioning properly.

» Software Diagnostic isa utility that you use to verify that the
NI-488.2M software has been installed properly.

» GPIB Information is a utility you can use to obtain information
about your GPIB hardware and software, such as the version of the
NI-488.2M software and the type of interface board you have
installed.

16-bit Windows Support Files

e gpib.dll isthe16-bit Windows dynamic link library. When
you run an existing NI-488.2 application for Windows in the
Windows 95 environment, thisfile replaces the GPIB DLL that
you used in the Windows 3 environment for Win16 applications.

o gpib32ft.dll isthe32-bit Windows dynamic link library that
helps gpi b. dI | thunk 16-bit GPIB callsto 32-bit GPIB calls that
address the standard 32-bit dynamic link library, gpi b-32. dl | .

Microsoft C/C++ Language Interface Files
* readne. t xt isadocumentation file that containsinformation
about the C language interface.

e decl - 32. h isa32-bit includefile. It contains NI-488 function
and NI1-488.2 routine prototypes and various predefined constants.

* gpi b-32. obj isa32-bit Clanguage interfacefile. An
application links with this file in order to access the 32-bit DLL.

Microsoft Visual Basic Language Interface Files
* readne.txt isadocumentation filethat containsinformation
about the Visual Basic language interface.

* nigl obal . bas isaVisua Basic global module that contains
certain predefined constant declarations.

* vbi b-32. bas isaVisua Basic source file with NI-488.2 routine
and NI-488 function prototypes.

© National Instruments Corporation 1-7 NI-488.2M User Manual for Windows 95

Chapter 1 Introduction

Sample Application Files

The NI-488.2M software includes nine sample applications along with
source code for each language supported by the NI-488.2M software.
For a detailed description of the sample application files, refer to
Chapter 2, Application Examples.

How the NI-488.2M Software Works with Windows 95

The NI-488.2M software for Windows 95 includes a multi-layered
device driver that consists of DLL pieces that run in user mode and
VXD piecesthat run in kernel mode. User applications access this
device driver from user mode through gpi b- 32. dl | , a32-hit
Windows 95 dynamic link library.

GPIB applications access the NI1-488.2M software through
gpi b-32.dl | asfollows:

* A Win32 application can either link with the language interface

(gpi b-32. obj) or directly access the functions exported by the
DLL.

» |If you aready have an existing Win16 application, use the 16-bit
DLL (gpi b. dI |) to accessthe GPIB driver.

Figure 1-4 shows how you can use the NI -488.2M software with
Windows 95 and your GPIB application programs.

NI-488.2M User Manual for Windows 95 1-8 © National Instruments Corporation

Chapter 1 Introduction

Winl6

Application

gpib.dll

Applications

Win32
Application

gpib-32.0bj

gpib-32.dll

gpibmngr.dll

gpib32ft.dil

Win 32
Application

User Mode

Kernel Mode

VxD
Class Driver

VxD
Port Driver

GPIB Hardware

Figure 1-4. How the NI-488.2M Software Works with Windows 95

Uninstalling the Plug and Play GPIB Hardware

Before physically removing the Plug and Play GPIB hardware from the
computer, you must remove the hardware information from the
Windows 95 Device Manager.

To remove the hardware information from Windows 95, double-click
the System icon in the Control Panel, which can be opened from the
Settings selection of the Start menu. Select the Device Manager tab
inthe System Properties dialog box that appears, click the View
devices by type button at the top of the Device Manager tab, and
double-click on the National I nstruments GPIB Interfacesicon.

© National Instruments Corporation 1-9 NI-488.2M User Manual for Windows 95

Chapter 1 Introduction

To remove an interface, select it from the list of interfaces under
National I nstruments GPIB Interfaces as shown in Figure 1-5, and
click the Remove button.

System Properties

General Device Manager | Hardware Profiles Perfurmancel

% View devices by lype " Wiew devices by connection

Computer

=D Digk drives

@ Dizplay adapters

% Floppy dizk controllers

52 Hard disk contrallers

-2 Keyboard

G- fanitor

Mousze

Elﬁ' M ational Instruments GPIE Interfaces
RS & . T-GPIE/TNT [Plug and Play]
[W AT-GPIB/THT [Plug and Play)
B8 Mebwork adapters

5 Ports [COM & LPT)

- System devices

Properties | Refrezsh | Remove | Frint... |

Cloze I Cancel |

Figure 1-5. Selecting an Interface to Remove

After you remove the appropriate interface information from the Device
Manager, you should physically remove the interface from your
computer.

NI-488.2M User Manual for Windows 95 1-10 © National Instruments Corporation

Chapter 1 Introduction

Uninstalling the Plug and Play GPIB Software

Before uninstalling the software, you should remove all GPIB interface
information from the Windows 95 Device Manager, as described in the
previous section. Y ou do not need to shut down Windows 95 before
uninstalling the software.

Complete the following steps to remove the Plug and Play GPIB
software.

1. Runthe Add/Remove Programs applet from the Control Panel,
which can be opened from the Settings selection of the Start
menu. A dialog box similar to the onein Figure 1-6 appears. This
dialog box lists the software available for removal.

Add/'Remove Programs Properties

Install /U ninstall |'W'in|:||:uws Setup I Startup Diskl

Toingtall a new program from a floppy disk or CO-BOM
= diive, click [netall

YWindows, To remove a program or bo modify its installed
componentz, zelect it from the izt and click
Add/Remove.

@ The following software can be automatically removed by

F1-438. 20 Software for Windows 35
Qld "indows 3¢ and MS5-D0S5 system files
YWindows 35

Add/Bemove. . |

k. Cancel | Apply |

Figure 1-6. Add/Remove Programs Properties Dialog Box

© National Instruments Corporation 1-11 NI-488.2M User Manual for Windows 95

Chapter 1 Introduction

2. Select the GPIB software you want to remove, and click the
Add/Remove... button. The uninstall program runs and removes
all folders, programs, VxDs, DLLs, and registry entries associated
with the GPIB software. Figure 1-7 shows the results of a
successful uninstallation.

unlnztalShield will remove the software ™I-438. 2M
Software for Windows 95' from your computer. Please
wait whil_e each of the following compaonents are

v Shared program files...
Standard program files...
Folder itemns...

Frogram folders...

Program directories...

= % N N N

Program registry entries...

Uninztall successtully completed.

Figure 1-7. Uninstallation Results

If you have interfaces other than PCMCIA cards and you have not
physically removed them from your computer, you should shut down
Windows 95, power off your computer, and remove the interfaces now.
Y ou may remove PCMCIA cards without powering off your computer.

If you want to reinstall the hardware and software, refer to the getting
started manual.

NI-488.2M User Manual for Windows 95 1-12 © National Instruments Corporation

Chapter

Application Examples

This chapter contains nine sample applications designed to illustrate
specific GPIB concepts and techniques that can help you write your
own applications. The description of each example includes the
programmer’s task, a program flowchart, and numbered steps which
correspond to the numbered blocks on the flowchart.

Use this chapter along with your NI-488.2M software, which includes
the C source code for each of the nine examples. The programs are
listed in order of increasing complexity. If you are new to GPIB
programming, you might want to study the contents and concepts of the
first sample, si npl e. ¢, before moving on to more complex
examples.

The following example programs are included with your NI-488.2
software;

» sinpl e. c isthe source codefile for Example 1. Itillustrates
how you can establish communication between a host computer
and a GPIB device.

e clr_trg. c isthesource codefilefor Example 2. Itillustrates
how you can clear and trigger GPIB devices.

* asynch. c isthe source codefile for Example 3. Itillustrates
how you can perform non-GPIB tasks while datais being
transferred over the GPIB.

» eos. c isthesource codefile for Example 4. It illustratesthe
concept of the end-of-string (EOS) character.

* rgs. c isthesource codefilefor Example5. Itillustrates how
you can communicate with GPIB devices that use the GPIB SRQ
line to request service. This sampleiswritten using NI1-488
functions.

* easy4882. c isthe source codefile for Example 6. Itisan
introduction to NI-488.2 routines.

© National Instruments Corporation 2-1 NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

* 1r(Qgs4882. c isthe source codefilefor Example 7. It uses
NI -488.2 routines to communicate with GPIB devices that use the
GPIB SRQ lineto request service.

* ppol | . c isthe source code file for Example 8. It uses NI1-488.2
routines to conduct parallel polls.

* non_ci c. ¢ isthesource code file for Example 9. It illustrates
how you can use the NI-488.2M driver in a non-Controller
application.

Example 1: Basic Communication

This example focuses on the basics of establishing communication
between a host computer and a GPIB device.

A technician needs to monitor voltage readings using a GPIB
multimeter. His computer is equipped with an |EEE 488.2 interface
board. The NI-488.2M software isinstalled, and a GPIB cable runs
from the computer to the GPIB port on the multimeter.

The technician is familiar with the multimeter remote programming
command set. Thislist of commands is specific to his multimeter and
is available from the multimeter manufacturer.

He sets up the computer to direct the multimeter to take measurements
and record each measurement asit occurs. To do this, he has written an
application that uses some simple high-level GPIB commands. The
following steps correspond to the program flowchart in Figure 2-1.

1. Theapplication initializes the GPIB by bringing the interface board
in the computer online.

2. The application sends the multimeter an instruction, setting it up to
take voltage measurements in autorange mode.

3. Theapplication sends the multimeter an instruction to take a
voltage measurement.

4. The application tells the multimeter to transmit the data it has
acquired to the computer.

The process of requesting a measurement and reading from the
multimeter (Steps 3 and 4) is repeated as long as there are readings
to be obtained.

5. Asacleanup step before exiting, the application returns the
interface board to its origina state by taking it offline.

NI-488.2M User Manual for Windows 95 2-2 © National Instruments Corporation

Chapter 2 Application Examples

GPIB Cable

Computer

INIT

ibwrt

Multimeter

Set Up Multimeter
to Take Voltages

—(_ "VOLTS DC;AUTO"

.

Ll .
ibwrt

Tell Multimeter to
Take Measurement

ibrd

Read
Measurement
from Multimeter

Finished Getting
Measurements?

CLEAN UP

© National Instruments Corporation

Figure 2-1. Program Flowchart for Example 1

2-3

NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

Example 2: Clearing and Triggering Devices

This exampleillustrates how you can clear and trigger GPIB devices.

Two freshman physics lab partners are learning how to use a GPIB
digital oscilloscope. They have successfully loaded the NI1-488.2M
software on a personal computer and connected their GPIB board to a
GPIB digital oscilloscope. Their current lab assignment isto write a

small application to practice using the oscilloscope and its command set
using high-level GPIB commands. The following steps correspond to
the program flowchart in Figure 2-2.

1

The application initializes the GPIB by bringing the interface board
in the computer online.

The application sends a GPIB clear command to the oscill oscope.
This command clears the internal registers of the oscilloscope,
reinitializing it to default values and settings.

The application sends a command to the oscilloscope telling it to
read awaveform each timeit istriggered. Predefining thetask in
this way decreases the execution time required. Each trigger of the
oscilloscope is now sufficient to get anew run.

The application sends a GPIB trigger command to the oscilloscope
which causes it to acquire data.

The application queries the oscilloscope for the acquired data. The
oscilloscope sends the data.

The application reads the data from the oscilloscope.

The application calls an external graphics routine to display the
acquired waveform.

Steps 4, 5, 6, and 7 are repeated until al of the desired data has been
acquired by the oscilloscope and received by the computer.

8.

As a cleanup step before exiting, the application returns the
interface board to its origina state by taking it offline.

NI-488.2M User Manual for Windows 95 2-4 © National Instruments Corporation

Chapter 2 Application Examples

GPIB Cable
Computer Oscilloscope
1 INIT
| ibclr
2 Clear Clear
Oscilloscope Command
| ibwrt
Define Task to Be Done
3 When Oscilloscope is @
Triggered
| -
Ll '
ibtrg
Trigger -
4 Oscilloscope to Trigger
Get Reading Command
| ibwrt
Request Data
5 from
Oscilloscope
| ibrd
Read Data
6 from 4—@
Oscilloscope
7 Display
Waveform
No /Finished
Reading?
8 CLEAN UP

Figure 2-2. Program Flowchart for Example 2

© National Instruments Corporation 2-5 NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

Example 3: Asynchronous I/0

This exampleillustrates how an application conducts data transfers
with a GPIB device and immediately returns to perform other non-
GPIB related tasks while GPIB 1/O is occurring in the background.
This asynchronous mode of operation is particularly useful when the
requested GPIB activity may take some time to complete.

In this example, aresearch biologist istrying to obtain accurate CAT
scans of alab animal’sliver. Shewill print out a color copy of each
scan asit isacquired. The entire operation is computer-controlled. The
CAT scan machine sends the images it acquires to a computer that has
the NI-488.2M software installed and is connected to a GPIB color
printer. The biologist isfamiliar with the command set of her color
printer, as described in the user manual provided by the manufacturer.
She acquires and printsimages with the aid of an application program
she wrote using high-level GPIB commands. The following steps
correspond to the program flowchart in Figure 2-3.

1. Theapplication initializes the GPIB by bringing the interface board
in the computer online.

Animageisscanned in.

The application sends the GPIB printer acommand to print the
new image and immediately returns without waiting for the 1/0
operation to be compl eted.

The application saves the image obtained to afile.

5. The application inquires as to whether the printing operation has
completed by issuing a GPIB wait command. If the status reported
by the wait command indicates completion (CMPL isin the status
returned) and more scans need to be acquired, Steps 2 through 5
are repeated until the scans have al been acquired. If the status
reported by the wait command in Step 5 does not indicate that
printing is finished, statistical computations are performed on the
scan obtained and Step 5 is repeated.

6. Asacleanup step before exiting, the application returns the
interface board to its origina state by taking it offline.

NI-488.2M User Manual for Windows 95 2-6 © National Instruments Corporation

Chapter 2 Application Examples

GPIB Cable
Computer Color Printer
1 INIT
—
2 Image
Scan
ibwrta
Print Image :
8 Asynchronously Print Image
Non-GPIB
4 Activity: Save
to Disk
l ibwait
d

Nl

Is GPIB
Printing
Done?

Non-GPIB Activity:
Compute Statistics

6 CLEAN UP

Figure 2-3. Program Flowchart for Example 3

© National Instruments Corporation 2-7 NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

Example 4: End-of-String Mode

NI-488.2M User Manual for Windows 95 2-8 © National Instruments Corporation

This exampleillustrates how to use the end-of-string modes to detect
that the GPIB device has finished sending data.

A journdist is using a GPIB scanner to scan some picturesinto his
personal computer for anews story. A GPIB cable runs between the
scanner and the computer. Heis using an application written by an
intern in the department who has read the scanner's instruction manual
and is familiar with the scanner's programming requirements. The
following steps correspond to the program flowchart in Figure 2-4.

1. Theapplication initiaizes the GPIB by bringing the interface board

in the computer online.

2. Theapplication sends a GPIB clear message to the scanner,
initializing it to its power-on defaults.

3. The scanner needs to detect a delimiter indicating the end of a
command. In this case, the scanner expects the commands to be
terminated with <CR><LF> (carriage return, \ r , and linefeed,
\'n). The application setsits end-of-string (EOS) byte to <LF>.
The linefeed code indicates to the scanner that no more datais
coming, and is called the end-of-string byte. It flagsan
end-of -string condition for this particular GPIB scanner. The same
effect could be accomplished by asserting the EQI line when the
command is sent.

4. With the exception of the scan resolution, all the default settings
are appropriate for the task at hand. The application changes the
scan resolution by writing the appropriate command to the scanner.

5. The scanner sends back information describing the status of the
change resolution command. Thisisastring of bytes terminated
by the end-of-string character to tell the application it is done
changing the resolution.

6. The application starts the scan by writing the scan command to the
scanner.

The application reads the scan data into the computer.

As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

Chapter 2 Application Examples

GPIB Cable
Computer Scanner
1 INIT
ibclr
Reset
< Clear >)
2 Internal
State Command
| ibeos
3 Set EOS
Mode
| ibwrt
Change
4 Scan "RES:3\r\n"
Resolution
| ibrd
5 |Read Status ®7
ibwrt
6 |start Scan @—>
ibrd
7 Read | g Scanned
Data Data
8 CLEAN UP

Figure 2-4. Program Flowchart for Example 4

© National Instruments Corporation 2-9 NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

Example 5: Service Requests

This example illustrates how an application communicates with a GPIB
device that uses the GPIB service request (SRQ) line to indicate that it
needs attention.

A graphic arts designer is transferring digital images stored on her
computer to aroll of color film, using a GPIB digital film recorder. A
GPIB cable connects the GPIB port on the film recorder to the

|EEE 488.2 interface board installed in her computer. She hasinstalled
the NI-488.2M software on the host computer and is familiar with the
programming instructions for the film recorder, as described in the user
manual provided by the manufacturer. She placesafreshroll of filmin
the camera and launches a simple application she has written using
high-level GPIB commands. With the aid of the application, she
records afew images on film. The following steps correspond to the
program flowchart in Figure 2-5.

1. Theapplication initiaizes the GPIB by bringing the interface board
in the computer online.

2. Theapplication brings the film recorder to aready state by issuing
adevice clear instruction. The film recorder is now set up for
operation using its default values. (The graphic arts designer has
previously established that the default values for the film recorder
are appropriate for the type of film sheisusing).

3. The application advances the new roll of film into position so the
first image can be exposed on the first frame of film. Thisisdone
by sending the appropriate instructions as described in the film
recorder programming guide.

4. The application waits for the film recorder to signify that it is done
loading the film, by waiting for RQS (request for service). The
film recorder asserts the GPIB SRQ line when it has finished
loading the film.

5. Assoon asthe film recorder asserts the GPIB SRQ line, the
application’ swait for the RQS event completes. The application
conducts a serial poll by sending a special command message to
the film recorder that directsit to return aresponse in the form of a
seria poll status byte. This byte contains information indicating
what kind of service the film recorder is requesting or what
condition it isflagging. In thisexample, it indicates the
completion of acommand.

NI-488.2M User Manual for Windows 95 2-10 © National Instruments Corporation

6.

10.

© National Instruments Corporation

Chapter 2 Application Examples

A color image transfersto the digital film recorder in three
consecutive passes—one pass each for the red, green and blue
components of the image. Sub-steps 6a, 6b, and 6¢ are repeated
for each of the passes:

6a The application sends a command to the film recorder
directing it to accept datato create asingle passimage. The
film recorder asserts the SRQ line as soon asapassis
compl eted.

6b. The application waits for RQS.

6c. When the SRQ lineis asserted, the application serial pollsthe
film recorder to seeif it requested service, asin Step 5.

The application issues a command to the film recorder to advance
the film by one frame. The advance occurs successfully unlessthe
end of filmis reached.

The application waits for RQS, which completes when the film
recorder assertsthe SRQ line to signal it is done advancing the
film.

As soon as the application's wait for RQS completes, the
application serial pollsthe film recorder to seeif it requested
service, asin Step 5. The returned seria poll status byte indicates
either of two conditions—the film recorder finished advancing the
film as requested or the end of film was reached and it can no
longer advance. Steps 6 through 9 are repeated aslong asfilmisin
the camera and more images need to be recorded.

As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

2-11 NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

v

Exit Application
and Repair
Film Recorder

Computer

INIT

ibclr

Clear Film Recorder

ibwrt

GPIB Cable

Advance
Film

ibwait

Wait for the
Film Recorder to
Request Service

| ibrsp

Read

the Film
Recorder

Response from

Finished
Loading
Film?

Request
Service

Did You Request
Service ?

G —

Digital Film Recorder

Clear Command

NI-488.2M User Manual for Windows 95

(continues)

Figure 2-5. Program Flowchart for Example 5

2-12

© National Instruments Corporation

Chapter 2 Application Examples

(Continued)

Computer Digital Film Recorder
I |
| ibwrt |
! Create a |
" 6a Single Pass Data for Red, Green, |
! Image or Blue Pass |
|
| | ibwait |
6 | These steps |
i i Service are repeated 3 |
! Wait for Film times, once for |
| Recorder to - each color
| 6b Request Did You Request pass |
| Service Service? 1
I :
; 1
! | ibrsp |
|
| Read Response !
| 6C From Film |
| Recorder Response |
|
I e |
ibwrt
7 Advance Film @

ibwait
Request
.) Service
Wait for Film

Recorder to

8 Did You Request
Request
Service Service?
l ibrsp I

9 | Read Response From
Film Recorder Response

10 CLEAN UP

Figure 2-5. Program Flowchart for Example 5 (Continued)

© National Instruments Corporation 2-13 NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

Example 6: Basic Communication with
|IEEE 488.2-Compliant Devices

This example provides an introduction to communicating with
| EEE 488.2-compliant devices.

A test engineer in ametal factory is using |EEE 488.2-compliant tensile
testers to find out the strength of metal rods as they come out of
production. There are several tensile testers and they are all connected
to acentral computer equipped with an |EEE 488.2 interface board.
These machines are fairly voluminous and it is difficult for the engineer
to reach the address switches of each machine. For the purposes of his
future work with these tensile testers, he needs to determine what GPIB
addresses they have been set to. He can do so with the aid of asimple
application he has written. The following steps correspond to the
program flowchart in Figure 2-6.

1. Theapplication initiaizes the GPIB by bringing the interface board
in the computer online.

2. The application issues a command to detect the presence of
listening devices on the GPIB and compiles alist of the addresses
of all such devices.

3. Theapplication sends an identification query (“ * 1 DN?”) all of the
devices detected on the GPIB in Step 2.

4. The application reads the identification information returned by
each of the devices asit responds to the query in Step 3.

5. Asacleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

NI-488.2M User Manual for Windows 95 2-14 © National Instruments Corporation

Chapter 2 Application Examples

GPIB Cable GPIB Cable GPIB Cable
Computer Tensile Tester 1 Tensile Tester 2 Tensile Tester 3
1 INIT
| FindLstn Who's C
Listening? e =
Get a List
2 | of Devices Device 1
Present on is Here
GPIB < Device 2
is Here -
< Device 3
Il is Here
Send
Tell Device 1
3 | toIdentify @
Itself
| Receive
Read
4 Response
from 'MUTT 10383"
Device 1
| Send
Tell Device 2
3 to Identify "*IDN?"
Itself
| Receive
Read
4 Response d "
from < MUTT 10426
Device 2
| Send
Tell Device 3
3 to Identify "*IDN?"
Itself
| Receive
Read P
Response ["MUTT 10528"
4 from
Device 3
5 | CLEAN UP

Figure 2-6. Program Flowchart for Example 6

© National Instruments Corporation 2-15 NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

Example 7: Serial Polls Using NI-488.2 Routines

This exampleillustrates how you can take advantage of the NI1-488.2
routines to reduce the complexity of performing seria polls of multiple
devices.

A candy manufacturer isusing GPIB strain gauges to measure the
consistency of the syrup used to make candy. The plant has four big
mixers containing syrup. The syrup has to reach a certain consistency
to make good quality candy. Thisis measured by strain gauges that
monitor the amount of pressure used to move the mixer arms. When a
certain consistency is reached, the mixture is removed and a new batch
of syrup is poured in the mixer. The GPIB strain gauges are connected
to a computer with an |EEE 488.2 interface board and the NI-488.2M
softwareinstalled. The processis controlled by an application that uses
NI-488.2 routines to communicate with the | EEE 488.2-compliant
strain gauges. The following steps correspond to the program flowchart
in Figure 2-7.

1. Theapplication initiaizes the GPIB by bringing the interface board
in the computer online.

2. Theapplication configures the strain gauges to reguest service
when they have a significant pressure reading or a mechanical
failure occurs. They signal their request for service by asserting
the SRQ line.

3. Theapplication waits for one or more of the strain gaugesto
indicate that they have a significant pressure reading. Thiswait
event ends as soon as the SRQ lineis asserted.

4. Theapplication seria polls each of the strain gauges to seeif it
requested service.

5. Once the application has determined which one of the strain gauges
requires service, it takes areading from that strain gauge.

6. If the reading matches the desired consistency, a dialog window
appears on the computer screen and prompts the mixer operator to
remove the mixture and start a new batch. Otherwise, adialog
window prompts the operator to service the mixer in some other

way.

Steps 3 through 6 are repeated as long as the mixers are in operation.

7. After thelast batch of syrup has been processed, the application
returns the interface board to its original state by taking it offline.

NI-488.2M User Manual for Windows 95 2-16 © National Instruments Corporation

Chapter 2 Application Examples

GPIB Cable GPIB Cable GPIB Cable
Computer Strain Strain Strain
Gauge 1 Gauge 2 Gauge 3
1 INIT
SendList

Configure Strain

Gauges to
2 | Request Service "SRQ=HI"
When They
Have a Reading
—»

WaitSRQ

Wait for 1 or More
3| Strain Gaugesto [%Z?\?iizt
Request Service

FindRQS
X Did You Request
Serial Poll Each Service?
Strain Gauge
4 Until One d
Requesting Did You Reg}uest
Service is Service?
Located P
h es)
Receive
Get a Reading|
5 From Strain | Response
Gauge

Does the
Gauge Need
Service?

A4
% No Provide
Whatever
. ; Service is
Mixture is Ready. :
6 Display "Remove Required
Mixture"
Message

O

Done for
the
Day?

CLEAN UP

Figure 2-7. Program Flowchart for Example 7

© National Instruments Corporation 2-17 NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

Example 8: Parallel Polls

This exampleillustrates how you can use NI-488.2 routines to obtain
information from several IEEE 488.2-compliant devices at once using a
procedure called parallel polling.

The process of manufacturing a particular alloy involves bringing three
different metals to specific temperatures before mixing them to form
thealloy. Threevats are used, each containing a different metal. Each
is monitored by a GPIB ore monitoring unit. The monitoring unit
consists of a GPIB temperature transducer and a GPIB power supply.
The temperature transducer is used to probe the temperature of each
metal. The power supply is used to start a motor to pour the metal into
the mold when it reaches a predefined temperature. The three
monitoring units are connected to the |IEEE 488.2 interface board of a
computer that has the NI-488.2M softwareinstalled. An application
using NI-488.2 routines operates the three monitoring units. The
application will obtain information from the multiple units by
conducting a parallel poll, and will then determine when to pour the
metals into the mixture tank. The following steps correspond to the
program flowchart in Figure 2-8.

1. Theapplication initiaizes the GPIB by bringing the interface board
in the computer online.

2. The application configures the temperature transducer in the first
monitoring unit by choosing which of the eight GPIB data lines the
transducer uses to respond when a parallel poll is conducted. The
application also sets the temperature threshold. The transducer
manufacturer has defined the individual status (i st) bit to be true
when the temperature threshold is reached, and the configured
status mode of the transducer is assert the data line. When a
parallel poll is conducted, the transducer assertsits datalineif the
temperature has exceeded the threshold.

3. Theapplication configures the temperature transducer in the
second monitoring unit for parallel polls.

4. The application configures the temperature transducer in the third
monitoring unit for parallel polls.

5. The application conducts non-GPIB activity while the metals are
heated.

6. The application conducts a paralel poll of all three temperature
transducers to determine whether the metals have reached the
appropriate temperature. Each transducer assertsits dataline

NI-488.2M User Manual for Windows 95 2-18 © National Instruments Corporation

© National Instruments Corporation

Chapter 2 Application Examples

during the configuration step if its temperature threshold has been
reached.

If the response to the poll indicates that all three metals are at the
appropriate temperature, the application sends a command to each
of the three power supplies, directing them to power on. Then the
motors start and the metals pour into the mold.

If only one or two of the metals is at the appropriate temperature,
Steps 5 and 6 are repeated until the metals can be successfully
mixed.

The application unconfigures all of the transducers so that they no
longer participate in parallel polls.

As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

2-19 NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

GPIB GPIB GPIB GPIB GPIB
GPIB Cable Cable Cable Cable Cable Cable
Computer UNIT 1 UNIT 2 UNIT 3
Temp Power Temp Power Temp Power
Transducer | Supply Transducer | Supply Transducer | Supply
1 INIT
PPollConfig
Configure
2 | Transducer 1 for Paéa'[:l')l’:’o"
Parallel Polls nable
PPollConfig
Configure
3| Transducer 2 Parallel Poll »
for Parallel Polls Enable
l PPollConfig
4 Configure
Transducer 3 Parallel Poll >
for Parallel Polls Enable
5 Non-GPIB
Activity
Parallel Poll }—» > >
SendList
" " | - | - |-
7 | Start Power MIX ON = > »
Supplies
PPollUnconfig
PPoll
8 Unconfigure Paé?s":llmzon > > |
9 CLEAN UP

NI-488.2M User Manual for Windows 95

Figure 2-8. Program Flowchart for Example 8

2-20

© National Instruments Corporation

Chapter 2 Application Examples

Example 9: Non-Controller Example

This exampleillustrates how you can use the NI-488.2M software to
emulate a GPIB device that is not the GPIB Controller.

A software engineer has written firmware to emulate a GPIB device for
aresearch project and istesting it using an application that makes
simple GPIB calls. The following steps correspond to the program
flowchart in Figure 2-9.

1. Theapplication brings the device online.

2. Theapplication waits for any of three eventsto occur: the device
to become listen-addressed, become talk-addressed, or receive a
GPIB clear message.

3. Assoon as one of the events occurs, the application takes an action
based upon the event that occurred. If the device was cleared, the
application resets the internal state of the device to default values.
If the device was talk-addressed, it writes data back to the
Controller. If the device was listen-addressed, it readsin new data
from the Controller.

© National Instruments Corporation 221 NI-488.2M User Manual for Windows 95

Chapter 2 Application Examples

Device Controller

1 | INIT |

ibwait

Yvy

Wait to be Talk
Addressed,
2 Listen
Addressed, or
Cleared

Reset
3 | Internal
State Yes

Is This the
Clear Event?

Is This the
Talk
Addressed
Event?

ibwrt
3 Write Out @
New Data
ibrd

3 Read In @
New Data

Figure 2-9. Program Flowchart for Example 9

NI-488.2M User Manual for Windows 95 2-22 © National Instruments Corporation

Chapter

Developing Your
Application

This chapter explains how to develop a GPIB application program
using NI-488 functions and NI-488.2 routines.

Choosing How to Access gpib-32.dll

Applications can access the NI1-488.2M dynamic link library
(gpi b-32. dl I) either by using an NI1-488.2M language interface or
with direct access.

If you need to accessthe gpi b- 32. dl | from alanguage other than
Microsoft Visual C/C++ or Microsoft Visual Basic 4.0, you must
directly accessthe gpi b- 32. dl | . You can directly accessthe DLL
from any programming environment that allows you to request
addresses of variables and functions that aDLL exports. The

gpi b-32. dl | exports pointers to each of the global variables:

e user_ibstaisapointertoi bsta
e user_iberr isapointertoi berr
e user_ibcntl isapointertoi bentl

Thegpi b- 32. dl | aso exports pointersto all of the NI-488 and
NI-488.2 calls. For example, it exports a pointer to the NI1-488 i bwr t
function. For a detailed example showing how to use direct access,
refer to the sample program dl | dev. ¢ that came with your
NI-488.2M software.

© National Instruments Corporation 31 NI-488.2M User Manual for Windows 95

Chapter 3 Developing Your Application

Choosing Between NI-488 Functions and NI-488.2
Routines

Y our distribution disk contains two distinct sets of subroutinesto meet
your application needs. Both of these sets, the NI-488 functions and
the NI-488.2 routines, are compatible across computer platforms and
operating systems, so you can port programs to other platforms with
little or no source code modification. For most application programs,
the NI-488 functions are sufficient. Y ou should use the NI1-488.2
routines if you have a complex configuration with one or more interface
boards and multiple devices. Regardless of which option you choose,
the driver automatically addresses and performs other bus management
operations necessary for device communication.

The following sections discuss some differences between NI1-488
functions and NI1-488.2 routines.

Using NI-488 Functions: One Device for Each Board

If your system has only one device attached to each board, the NI -488
functions are probably sufficient for your programming needs. Some
other factors that make the NI -488 functions more convenient include
the following:

e With NI-488 asynchronous I/O functions (i bcnda, i br da, and
i bwrt a), you can initiate an I/O sequence while maintaining
control over the CPU for non-GPIB tasks.

* NI-488 functionsinclude built-in file transfer functions (i br df
andi bwtf)

* With NI-488 functions, you can control the bus in non-typical
ways or communicate with non-compliant devices.

The NI -488 functions consist of high-level (or device) functions that
hide much of the GPIB management operations and low-level (or
board) functions that offer you more control over the GPIB than
NI-488.2 routines. The following sections describe these different
function types.

NI-488 Device Functions

Device functions are high-level functions that automatically execute
commands that handle bus management operations such as reading
from and writing to devices or polling them for status. If you use

NI-488.2M User Manual for Windows 95 32 © National Instruments Corporation

Chapter 3 Developing Your Application

device functions, you do not need to understand GPIB protocol or bus
management. For information about device-level calls and how they
manage the GPIB, refer to Device-Level Calls and Bus Management, in
Chapter 6, GPIB Programming Techniques.

NI-488 Board Functions

Board functions are low-level functions that perform rudimentary GPIB
operations. Board functions access the interface board directly and
require you to handle the addressing and bus management protocol. In
cases when the high-level device functions might not meet your needs,
low-level board functions give you the flexibility and control to handle
situations such as the following:

e Communicating with non-compliant (non-1EEE 488.2) devices

e Altering various low-level board configurations

* Managing the bus in non-typical ways

The NI-488 board functions are compatible with, and can be
interspersed within, sequences of NI-488.2 routines. When you use
board functions within a sequence of NI-488.2 routines, you do not
need aprior cal toi bf i nd to obtain aboard descriptor. You simply
substitute the board index as the first parameter of the board function

cal. With thisflexibility, you can handle non-standard or unusual
situations that you cannot resolve using NI1-488.2M routines only.

Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices

When your system includes a board that must access multiple devices,
use the NI-488.2 routines. NI-488.2 routines can perform the following
tasks with asingle cal:

* Find al of the Listeners on the bus

» Find adevice requesting service

» Determine the state of the SRQ line, or wait for SRQ to be asserted
» Address multiple devicesto listen

© National Instruments Corporation 33 NI-488.2M User Manual for Windows 95

Chapter 3 Developing Your Application

Checking Status with Global Variables

Each NI-488 function and NI-488.2 routine updates four global
variablesto reflect the status of the device or board that you are using.
The statusword (i bst a), the error variable (i ber r) and the count
variables (i bcnt andi bent |) contain useful information about the
performance of your application program. Y our program should check
these variables frequently. The following sections describe each of
these global variables and how you can use them in your application
program.

Status Word — ibsta

All functions update aglobal statusword, i bst a, which contains
information about the state of the GPIB and the GPIB hardware. The
value stored ini bst a isthe return value of al of the NI-488 functions
except i bfi nd andi bdev. You can test for the conditions reported
ini bst a and use that information to make decisions about continued
processing. If you check for possible errors after each call, debugging
your application is much easier.

i bst a isal6-bit value. A bit value of one (1) indicates that a certain
condition isin effect. A bit value of zero (0) indicates that the
conditionisnot in effect. Each bitini bst a can be set for NI-488
device calls (dev), NI1-488 board calls (brd) and N1-488.2 cdlls, or all
(dev, brd).

Table 3-1 shows the condition that each bit position represents, the bit
mnemonics, and the type of calls for which the bit can be set. For a
detailed explanation of each of the status conditions, refer to
Appendix A, Satus Word Conditions.

NI-488.2M User Manual for Windows 95 34 © National Instruments Corporation

Chapter 3 Developing Your Application

Table 3-1. Status Word Layout

Bit | Hex
Mnemonic | Pos. | Value | Type Description
ERR 15 8000 dev,brd | GPIB error
TIMO 14 4000 dev, brd | Timelimit exceeded
END 13 2000 dev, brd | END or EOS detected
SRQI 12 1000 brd SRQ interrupt received
RQS 11 800 dev Device requesting service
CMPL 8 100 dev, brd | I/O completed
LOK 7 80 brd Lockout State
REM 6 40 brd Remote State
CiC 5 20 brd Controller-In-Charge
ATN 4 10 brd Attention is asserted
TACS 3 8 brd Talker
LACS 2 4 brd Listener
DTAS 1 2 brd Device Trigger State
DCAS 0 1 brd Device Clear State

The language header file included on your distribution disk contains the
mnemonic constantsfor i bst a. You can check abit positionin

i bst a by using its numeric value or its mnemonic constant. For
example, bit position 15 (hex 8000) detects a GPIB error. The
mnemonic for thisbit iSERR. To check for a GPIB error, use either of
the following statements after each NI -488 function and NI-488.2
routine as shown:

if (ibsta & ERR) gpiberr();

or
if (ibsta & 0x8000) gpiberr();

where gpi berr () isan error-handling routine.
Error Variable — iberr

If the ERR bit is set in the statusword (i bst a), a GPIB error has
occurred. When an error occurs, the error type is specified by the value
ini berr .

© National Instruments Corporation 35 NI-488.2M User Manual for Windows 95

Chapter 3 Developing Your Application

Note: Thevalueini berr ismeaningful asan error type only when the
ERRbitissetini bst a, indicating that an error has occurred.

For more information on error codes and solutions refer to Chapter 4,
Debugging Your Application, or Appendix B, Error Codes and
Solutions.

Count Variables — ibcnt and ibcntl

The count variables are updated after each read, write, or command
function. i bent andi bent | are 32-bit integers. On some systems,
like MS-DOS, i bcnt isal6-bitinteger, and i bent | isa32-bit
integer. For cross-platform compatibility, all applications should use

i bent | . If you are reading data, the count variables indicate the
number of bytesread. If you are sending data or commands, the count
variables reflect the number of bytes sent.

In your application program, you can use the count variables to

null -terminate an ASCI| string of data received from an instrument.
For example, if dataisreceived in an array of characters, you can use
i bent | to null-terminate the array and print the measurement on the
screen asfollows:

char rdbuf[512];
ibrd (ud, rdbuf, 20L);
if (!(ibsta & ERR)){
rdbuf[ibentl] = "\0";
printf ("Read: %\n", rdbuf);
}
el se {
error();

}

i bent | isthe number of bytesreceived. Databeginsin the array at
index zero (0); therefore, i bent | isthe position for the null character
that marks the end of the string.

Using Win32 Interactive Control to Communicate with
Devices

Before you begin writing your application program, you might want to
use the Win32 Interactive Control utility. With Win32 Interactive
Control, you communicate with your instruments from the keyboard
rather than from an application program. Y ou can use Win32

NI-488.2M User Manual for Windows 95 36 © National Instruments Corporation

Chapter 3 Developing Your Application

Interactive Control to learn to communicate with your instruments
using the NI-488 functions or NI -488.2 routines. For specific device
communication instructions, refer to the user manual that came with
your instrument. For information about using Win32 Interactive
Control and for detailed examples, refer to Chapter 5, Win32
Interactive Control Utility.

Writing Your NI-488 Application

Items to Include

This section discusses items you should include in your application
program, general program steps, and an NI-488 example. In this
manual the example code is presented in C using the standard C
language interface. The NI-488.2M software includes the source code
for this example written in C (devsanp. ¢) and the source code for
this example written to use direct entry to access the gpi b- 32. dl |
(dl I dev. c).

The NI-488.2M software al so includes the source code for nine
application examples, which are described in Chapter 2, Application
Examples.

Include the appropriate GPIB header file. Thisfile contains
prototypes for the NI-488 functions and constants that you can use
in your application program.

e Check for errors after each NI1-488 function call.

» Declare and define afunction to handle GPIB errors. Thisfunction
takes the device offline and closes the application. If the function
isdeclared as:
voi d gpi berr (char * msg);

/* function prototype */

then your application invokesit as follows:

if (ibsta & ERR) {
gpi berr("GPIB error");

}

© National Instruments Corporation 37 NI-488.2M User Manual for Windows 95

Chapter 3 Developing Your Application

NI-488 Program Shell

Figure 3-1 isaflowchart of the steps to create your application program
using NI-488 functions. The flowchart isfor device-level calls.

w

/ Open Device (ibdev) /

Are All
Devices
Open?

No

Yes

Make a Device-Level Call
* Send Data to Device (ibwrt)
 Receive Data from Device (ibrd)
* Clear Device (ibclr)

« Serial Poll Device (ibrsp)

and so on

Finished GPIB No

Programming?

/ Close Device (ibonl) /

Closed All
Devices?

Figure 3-1. General Program Shell Using NI-488 Device Functions

General Program Steps and Examples

The following steps demonstrate how to use the NI-488 device
functionsin your program. This example configures adigital
multimeter, reads 10 voltage measurements, and computes the average
of these measurements.

NI-488.2M User Manual for Windows 95 38 © National Instruments Corporation

Chapter 3 Developing Your Application

Step 1. Open a Device
Your first NI-488 function call should betoi bdev to open adevice.

ud = i bdev(0, 1, 0, Ti0s, 1, 0);
if (ibsta & ERR) {
gpi berr("ibdev error");

}

Theinput arguments of the i bdev function are asfollows:

0 Board index for GPIBO
1 Primary GPIB address of the device
0 No secondary GPIB address for the device

T10s 1/0 timeout value (10)
1 Send END message with the last byte when writing to device
0 Disable EOS detection mode

Whenyou cdl i bdev, the driver automatically initializes the GPIB by
sending an Interface Clear (IFC) message and placing the devicein
remote programming state.

Step 2. Clear the Device

Clear the device before you configure the device for your application.
Clearing the device resetsits internal functions to a default state.
i bclr(ud);
if (ibsta & ERR) {
gpi berr("ibclr error");

}

Step 3. Configure the Device

After you open and clear the device, it is ready to receive commands.
To configure the instrument, you send device-specific commands using
the i bwrt function. Refer to the instrument user manual for the
command bytes that work with your instrument.

ibwt(ud,"*RST; VAC, AUTQ TRIGGER 2; *SRE 16", 35L);
if (ibsta & ERR) {
gpi berr("ibwt error");

}

© National Instruments Corporation 39 NI-488.2M User Manual for Windows 95

Chapter 3

Developing Your Application

The programming instruction in this example resets the multimeter
(*RST). The meter isinstructed to measure the volts alternating
current (VAC) using auto-ranging (AUTO), to wait for atrigger from the
GPIB interface board before starting a measurement (TRl GGER 2),
and to assert the SRQ line when the measurement compl etes and the
multimeter isready to send the result (* SRE 16). Thelast argument
represents the number of bytes to be sent.

Step 4. Trigger the Device

If you configure the device to wait for atrigger, you must send a trigger
command to the device before reading the measurement value. Then
instruct the device to send the next triggered reading to its GPIB output
buffer.

i btrg(ud);
if (ibsta & ERR) {
gpi berr("ibtrg error");
}
i bwrt (ud, " VAL1?", 5L);
if (ibsta & ERR) {
gpi berr("ibwt error");

}

Step 5. Wait for the Measurement

After you trigger the device, the RQS hit is set when the device is ready
to send the measurement. Y ou can detect RQS by using thei bwai t
function. The second parameter indicates what you are waiting for.
Noticethat thei bwai t function aso returns when the 1/0 timeout
valueis exceeded.

printf("Waiting for RQ...\n");
ibwait (ud, TIMJRQ);
if (ibsta & (ERRITIM)) {

gpi berr("ibwait error");

}

When SRQ has been detected, seria poll the instrument to determine if
the measured datais valid or if afault condition exists. For IEEE 488.2
instruments, you can find out by checking the message available
(MAV) hit, bit 4 in the status byte that you receive from the instrument.

ibrsp (ud, &StatusByte);
if (ibsta & ERR) {

gpi berr("ibrsp error");
}

NI-488.2M User Manual for Windows 95 310 © National Instruments Corporation

Chapter 3 Developing Your Application

if (!I(StatusByte & MAWbit)) ({
gpi berr ("I nproper Status Byte");
printf(" Status Byte = Ox%\n", StatusByte);

Step 6. Read the Measurement

If the datais valid, read the measurement from the instrument.
(Asci i ToFl oat isafunction that takes a null-terminated string as
input and outputs the floating point number it represents.)

ibrd (ud, rdbuf, 10L);
if (ibsta & ERR) {
gpi berr("ibrd error");

}

rdbuf[ibcentl] = "\0";
printf("Read: %\n", rdbuf);

/* Qutput ==> Read: +10.98E-3 */
sum += Asci i ToFl oat (rdbuf);

Step 7. Process the Data

Repeat Steps 4 through 6 in aloop until 10 measurements have been
read. Then print the average of the readings as shown:

printf("The average of the 10 readings is %\n",
sum 10. 0);

Step 8. Place the Device Offline
Asafinal step, take the device offline using the i bonl function.
i bonl (ud, 0);

© National Instruments Corporation 311 NI-488.2M User Manual for Windows 95

Chapter 3 Developing Your Application

Writing Your NI-488.2 Application

This section discusses items you should include in an application
program that uses NI-488.2 routines, general program steps, and an
NI-488.2 example. In this manual the example code is presented in C
using the standard C language interface. The NI-488.2M software
includes the source code for this example written in C (sanp4882. ¢)
and the code for this example written to use direct entry to access the
gpi b-32.dl1 (dl|4882.c).

The NI-488.2M software & so includes the source code for nine
application examples, which are described in Chapter 2, Application
Examples.

Items to Include

* Include the appropriate GPIB header file. Thisfile contains
prototypes for the NI-488.2 routines and constants that you can use
in your application program.

* Check for errors after each NI1-488.2 routine call.

» Declare and define afunction to handle GPIB errors. Thisfunction
takes the device offline and closes the application. If the function
isdeclared as:
voi d gpi berr (char * msg);

/* function prototype */
Then your application invokesiit as follows:
if (ibsta & ERR) {
gpi berr("GPIB error");
}

NI-488.2M User Manual for Windows 95 312 © National Instruments Corporation

Chapter 3 Developing Your Application

NI-488.2 Program Shell

Figure 3-2 isaflowchart of the steps to create your application program

using NI-488.2 routines.
@D

Initialize Specified GPIB
Interface (SendIFC)

Are All Boards
Initialized?

Making
High-Level or
Low-Level Call?

Low-Level High-Level

Make a Low-Level Call Make a High-Level Call
« Address Devices to Listen (SendSetup) « Send Data to Device (Send)
« Send Data to Addressed Listener * Receive Data from Device
(SendDataBytes) (Receive)
« Address Device to Talk (ReceiveSetup) « Clear Device (DevClear)
« Receive Data from Addressed Talker « Serial Poll Device
(RcvRespMsg) (ReadStatusByte)
and so on and so on

Finished GPIB No

Programming?

Are All Boards
Closed?

Figure 3-2. General Program Shell Using NI-488.2 Routines

© National Instruments Corporation 313 NI-488.2M User Manual for Windows 95

Chapter 3 Developing Your Application

General Program Steps and Examples

The following steps demonstrate how to use the NI-488.2 routinesin
your program. This example configures adigital multimeter, reads 10
voltage measurements, and computes the average of these
measurements.

Step 1. Initialization

Usethe Sendl FC routine to initialize the bus and the GPIB interface
board so that the GPIB board is Controller-In-Charge (CIC). The only
argument of Sendl FC isthe GPIB interface board number.

Sendl FC(0) ;
if (ibsta & ERR) {

gpi berr (" Sendl FC error");
}

Step 2. Find All Listeners

Usethe Fi ndLst n routine to create an array of al of the instruments
attached to the GPIB. The first argument is the interface board number,
the second argument is the list of instruments that was created, the third
argument isalist of instrument addresses that the procedure actually
found, and the last argument is the maximum number of devices that
the procedure can find (that is, it must stop if it reachesthe limit). The
end of the list of addresses must be marked with the NOADDR constant,
which is defined in the header file that you included at the beginning of
the program.

for (loop = 0; loop <=30; |oop++){
instrunents[loop] = |oop;

}

instrunents[31] = NOADDR,

printf("Finding all Listeners on the bus...\n");

Fi ndl stn(0, instrunents, result, 30);

if (ibsta & ERR) {
gpi berr ("FindLstn error");

}

NI-488.2M User Manual for Windows 95 314 © National Instruments Corporation

Chapter 3 Developing Your Application

Step 3. Identify the Instrument

Send an identification query to each device for identification. For this
example, assume that all of the instruments are |EEE 488.2-compatible
and can accept the identification query, * | DN? . In addition, assume
that Fi ndLst n found the GPIB interface board at primary address 0
(default) and, therefore, you can skip thefirst entry inthe r esul t
array.
for (loop = 1; loop <= num Listeners; |oop++) {
Send(0, result[loop], "*IDN?", 5L, NLend);
if (ibsta & ERR) {
gpi berr("Send error");
}
Recei ve(0, result[loop], buffer, 10L, STOPend);
if (ibsta & ERR) {
gpi berr (" Receive error");
}
buffer[ibentl] ="'\0";
printf("The instrunent at address %l is a %\n",
resul t[loop], buffer);
if (strncrmp(buffer, "Fluke, 45", 9) == 0) {
fluke = result[l oop];
printf("**** Found the Fluke ****\n");
br eak;

}

if (loop > numListeners) {
printf("Did not find the Fluke!\n");
i bonl (0,0);
exit(1);

}

The constant NLend signals that the new line character with EQOI is
automatically appended to the data to be sent.

The constant STOPend indicates that the read is stopped when EQI is
detected.

Step 4. Initialize the Instrument

After you find the multimeter, use the Devd ear routineto clear it.
Thefirst argument isthe GPIB board number. The second argument is
the GPIB address of the multimeter. Then send the IEEE 488.2 Reset
command to the meter.

© National Instruments Corporation 315 NI-488.2M User Manual for Windows 95

Chapter 3

Developing Your Application

Devd ear (0, fl uke);
if (ibsta & ERR) {

gpi berr ("DevC ear error")
}

Send(0, fluke, "*RST", 4L, NLend);
if (ibsta & ERR) {
gpi berr("Send *RST error");
}
sum = 0. 0;
for(m=0; nx10; mt+){
/* start of loop for Steps 5 through 8 */

Step 5. Configure the Instrument

After initialization, the instrument is ready to receive instructions. To
configure the multimeter, use the Send routine to send device-specific
commands. Thefirst argument is the number of the access board. The
second argument is the GPIB address of the multimeter. The third
argument is a string of bytes to send to the multimeter.

The bytesin this example instruct the meter to measure volts
alternating current (VAC) using auto-ranging (AUTO), to wait for a
trigger from the Controller before starting a measurement (TRl GGER
2), and to assert SRQ when the measurement has been completed and
the meter isready to send theresult (* SRE 16). The fourth argument
represents the number of bytesto be sent. Thelast argument, NLend,
isaconstant defined in the header file which tells Send to append a
linefeed character, with EOI asserted, to the end of the message sent to
the multimeter.

Send (0, fluke, "VAC, AUTO TRIGGER 2; *SRE 16", 29L,
NLend) ;
if (ibsta & ERR) {

gpi berr (" Send setup error");

}

Step 6. Trigger the Instrument

In the previous step, the multimeter was instructed to wait for atrigger
before conducting a measurement. Now send atrigger command to the
multimeter. You could usethe Tri gger routineto accomplish this,
but because the Fluke 45 is | EEE 488.2-compatible, you can just send it
thetrigger command, * TRG TheVAL1? command instructs the
meter to send the next triggered reading to its output buffer.

NI-488.2M User Manual for Windows 95 316 © National Instruments Corporation

Chapter 3 Developing Your Application

Send(0, fluke, "*TRG VAL1?", 11L, NLend);
if (ibsta & ERR) {

gpi berr("Send trigger error");
}

Step 7. Wait for the Measurement

After the meter istriggered, it takes a measurement and displaysit on
its front panel and then asserts SRQ. Y ou can detect the assertion of
SRQ using either the Test SRQ or Vi t SRQ routine. If you have a
process that you want to execute while you are waiting for the
measurement, use Test SRQ. For this example, you can use the

Wi t SRQ routine. The first argument in Wi t SRQisthe GPIB board
number. The second argument isaflag returned by Wai t SRQ that
indicates whether or not SRQ is asserted.

Wai t SRQ(0, &SRQasserted);
if (!SRQasserted) {

gpi berr("WaitSRQ error");
}

After you have detected SRQ, use the ReadSt at usByt e routine to
poll the meter and determine its status. The first argument isthe GPIB
board number, the second argument is the GPIB address of the
instrument, and the last argument isavariable that ReadSt at usByt e
uses to store the status byte of the instrument.

ReadSt at usByt e(0, fluke, &statusByte);
if (ibsta & ERR) {

gpi berr (" ReadSt at usByte error");
}

After you have obtained the status byte, you must check to see if the
meter has a message to send. Y ou can do this by checking the message
available (MAV) hit, bit 4, in the status byte.

if (!(statusByte & MAVhit) {
gpi berr ("I nproper Status Byte");
printf("Status Byte = Ox%\n", statusByte);

Step 8. Read the Measurement

Usethe Recei ve function to read the measurement over the GPIB.
The first argument is the GPIB interface board number, and the second
argument is the GPIB address of the multimeter. The third argument is
astring into which the Recei ve function places the data bytes from

© National Instruments Corporation 317 NI-488.2M User Manual for Windows 95

Chapter 3

Developing Your Application

the multimeter. The fourth argument represents the number of bytesto
be received. The last argument indicates that the Recei ve message
terminates upon receiving a byte accompanied with the END message.
(Asci i ToFl oat isafunction that takes a null-terminated string as
input and outputs the floating point number it represents.)
Recei ve(0, fluke, buffer, 10L, STOPend);
if (ibsta & ERR) {

gpi berr (" Receive error");

}

buffer[ibcntl] = "\0";

printf (Reading : 9%\n", buffer);

sum += Asci i ToFl oat (buffer);

} /* end of loop started in Step 5 */

Step 9. Process the Data

Repeat Steps 5 through 8 in aloop until 10 measurements have been
read. Then print the average of the readings as shown:

printf ("The average of the 10 readings is : %\n",
sum 10);

Step 10. Place the Board Offline

Before ending your application program, take the board offline using
the i bonl function.

i bonl (0, 0);

Compiling, Linking, and Running Your GPIB Win32

Application

The following sections describe how to compile, link, and run your
Win32 GPIB application.

Microsoft Visual C/C++

Before you compile your Win32 C application, make sure that the
following lineisincluded at the beginning of your program:

#i ncl ude “decl -32. h”

After you have written your C application program, you must compile
the application program using Microsoft Visual C/C++ (version 2.0 or
higher). Next, link the application with the C language interface,

NI-488.2M User Manual for Windows 95 318 © National Instruments Corporation

Chapter 3 Developing Your Application

gpi b- 32. obj . To compile and link a Win32 console application
named cprog in a DOS shell, type the following on the command line:

cl cprog.c gpib-32. obj

To run your application from the Windows environment, choose the
Run... option from the Start menu. Enter the name of the compiled
program in the dialog box that pops up. To run your application from a
DOS shell, type the name of your compiled program on the DOS
command line.

Visual Basic

For Win32 applications, use Microsoft Visua Basic (version 4.0 or
higher). Before you run your Visua Basic application, include the files
ni gl obal . bas andvbi b- 32. bas in your application project file.

To run your application from the Visual Basic environment, choose the
Start option from the Run menu to execute your program.

Direct Entry with C

Before you compile your Win32 C application, make sure that the
following lines are included at the beginning of your application:

#i fdef _ cplusplus

extern "C'{

#endi f

#i ncl ude "decl -32. h"

/* dobal variable for the handle to the | oaded
gpi b-32.dlI. */

HI NSTANCE Gpi b32Li b = NULL;

/* Pointers to NI -488.2 global status variables */
int *Pibsta;

int *Piberr;

I ong *Pibcntl;

#i fdef __cplusplus

}

#endi f

In addition to pointers to the status variables and a handle to the loaded
gpi b- 32. dl | , you must define the direct entry prototypes for the
functions you use in your application. The prototypes for each function
exported by gpi b- 32. dl | can befound in the NI -488.2M Function
Reference Manual for Win32. The NI-488.2M direct entry sample
programsillustrate how to use direct entry to accessgpi b-32.dl | .
LoadLi brary and Get Pr ocAddr ess are used to load the

© National Instruments Corporation 319 NI-488.2M User Manual for Windows 95

Chapter 3

Developing Your Application

gpi b-32. dl | and get pointersto its exported functions. For more
information on direct entry, refer to the Win32 SDK (Software
Development Kit) online help.

In your Win32 application, you first need to load gpi b- 32. dl | . The
following code fragment illustrates how to call the LoadLi br ary
function and check for an error:

Gpi b32Li b=LoadLi brary("GPI B-32. DLL");
if (QGpib32Lib == NULL) {

return FALSE;
}

Next, your Win32 application needsto use Get Pr ocAddr ess. The
following code fragment illustrates how to get the addresses of the
pointers to the status variables and any functions it needs to use:

Pibsta = (int *) GetProcAddress(&i b32Li b,
(LPCSTR) "user _i bsta”);

Piberr = (int *) GetProcAddress(&i b32Li b,
(LPCSTR) "user _i berr”);

Pibcntl = (long *) GetProcAddress(Goi b32Li b,
(LPCSTR) "user _i bent”);

Pi bdev = (int (__stdcall *)(int, int, int, int, int,
int)) GetProcAddress(Gpi b32Li b,
(LPCSTR) "i bdev");

Pibonl = (int (__stdcall *)(int, int))
Get ProcAddr ess(Gpi b32Li b, (LPCSTR)"i bonl");

If Get ProcAddr ess fails, it returnsa NULL pointer. The following
code fragment illustrates how to verify that none of the callsto
Get ProcAddr ess failed:

if ((Pibsta == NULL) ||
(Piberr == NULL) ||
(Pibcntl == NULL) ||
(Pibdev == NULL) ||
(Pibonl == NULL)) {
/1 ERRCR!
}

NI-488.2M User Manual for Windows 95 320 © National Instruments Corporation

Chapter 3 Developing Your Application

Y our Win32 application dereferences the pointer to access either the
status variables or function. The following code illustrates how to call a
function and access the status variable from within your application:

dvm = (*Pi bdev) (0, 1, 0, Ti0s, 1, 0);
if (*Pibsta & ERR) {

printf(“Call failed");
}

Before exiting your application, you need to freegpi b- 32. dI | with
the following command:

FreeLi brary(Gpi b32Li b);

For more information on direct entry, refer to the Win32 SDK
(Software Development Kit) online help.

Microsoft Visual C/C++

After you have written your Win32 application, you must compile the
application using Microsoft Visual C/C++ (version 2.0 or higher). To
compile and link a Win32 console application named cpr og inaDOS
shell, type the following on the command line:

cl cprog.c

To run your application from the Windows environment, choose the
Run... option from the Start menu. Enter the path and name of the
compiled program in the dialog box that appears. To run your
application from a DOS shédll, type the name of your compiled program
on the DOS command line.

Borland C/C++

After you have written your Win32 Borland C/C++ (version 4.0 or
higher) application, compileit using the - w32 option to create a
console application. From the command linein a DOS shell, type the
following command to compile and link a Win32 application named
Cprog:

bcc32 -w32 cprog.c

To run your application from the Windows environment, choose the
Run... option from the Start menu. Enter the name of the compiled
program in the dialog box that appears. To run your application from a
DOS shell, type the name of your compiled program on the DOS
command line.

© National Instruments Corporation 321 NI-488.2M User Manual for Windows 95

Chapter 3 Developing Your Application

Running Existing Win16 GPIB Applications

Y ou can run existing Winl6 GPIB applications under Windows 95 by
using the pair of 16-to-32 bit thunking DLLs, gpi b. dl | and
gpi b32ft. dl | , whichareincluded with your NI-488.2M software.

To run 16-bit Windows GPIB applications, the system uses the special
GPIB dynamic link library, gpi b. dl | . When you install the
NI-488.2M software, gpi b. dl | and gpi b32ft. dl | arecopied
into the Windows System directory. These DLL s are automatically
accessed whenever you execute a Winl6 GPIB application.

NI-488.2M User Manual for Windows 95 322 © National Instruments Corporation

Chapter

Debugging Your
Application

This chapter describes several ways to debug your application program.

Running GPIB Information

The GPIB Information utility program is a simple diagnostic tool you
can use to obtain information about the NI-488.2M software you are
using and any GPIB interface boards in your system. Thisinformation
helps you determine the capabilities of your NI-488.2M software and is
also helpful if you need to call National Instruments for technical
support.

Run GPIB Information with no parameters. The program displays
software information such as the name and version of your GPIB
software, the type of GPIB interface board and functions that you can
use with the software, and whether or not you can use the HS488
high-speed protocol. GPIB Information also displays information
about each GPIB interface board installed in your system, including the
name of the board, the type of Controller chip it uses, the hardware
settings, the type of functions that the board can use, and whether or not
the board can use the HS488 high-speed communication protocol. The
typical GPIB Information output is as follows:

GPIB Information (Cct 9 1995)
Copyright 1995 National Instrunents Corp. Al rights
reserved.
Sof tware | nfornation:
The NI -488.2M Software for Wndows 95 is | oaded.
You are running Version 1.0.
It supports both the NI -488 functions and the
NI -488.2 routines.
It supports the HS488 hi gh-speed protocol

Har dwar e | nformati on:
GPI BO: AT-GPI B/ TNT board using the TNT4882C chi p.
It supports both the NI -488 functions and NI -488. 2
routines.

© National Instruments Corporation 4-1 NI-488.2M User Manual for Windows 95

Chapter 4

Debugging Your Application

It supports the HS488 hi gh-speed protocol.
It uses base |/O address 0x2QC0.

It uses interrupt |evel 11.

It uses DVA channel 5.

Debugging with the Global Status Variables

After each function call to your NI-488.2M driver, i bst a, i berr ,

i bent ,and i bent | are updated before the call returns to your
application. Y ou should check for an error after each GPIB call. Refer
to Chapter 3, Developing Your Application, for more information about
how to use these variables within your program to automatically check
for errors.

After you determine which GPIB call isfailing and note the
corresponding values of the global variables, refer to Appendix A,
Satus Word Conditions, and Appendix B, Error Codes and Solutions.
These appendixes can help you interpret the state of the driver.

Debugging with Win32 Interactive Control

If your application does not automatically check for and display errors,
you can locate an error by using the Win32 Interactive Control utility.
Simply issue the same functions or routines, one at atime as they
appear in your application program. Because Win32 Interactive
Control returns the status values and error codes after each call, you
should be able to determine which GPIB call isfailing. For more
information about Win32 Interactive Control , refer to the online help.

After you determine which GPIB call isfailing and note the
corresponding values of the global variables, refer to Appendix A,
Satus Word Conditions, and Appendix B, Error Codes and Solutions.
These appendixes can help you interpret the state of the driver.

GPIB Error Codes

Table 4-1 lists the GPIB error codes. Remember that the error variable
is meaningful only when the ERR bit in the status variable is set. For a
detailed description of each error and possible solutions, refer to
Appendix B, Error Codes and Solutions.

NI-488.2M User Manual for Windows 95 4-2 © National Instruments Corporation

Chapter 4 Debugging Your Application

Table 4-1. GPIB Error Codes

Error iberr

Mnemonic | Value Meaning
EDVR 0 System error
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 No Listeners on the GPIB
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument to function call
ESAC 5 GPIB board not System Controller as

required

EABO 6 1/O operation aborted (timeout)
ENEB 7 Nonexistent GPIB board
EDMA 8 DMA error
EQIP 10 Asynchronous I/O in progress
ECAP 11 No capability for operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial poll status byte queue overflow
ESRQ 16 SRQ stuck in ON position
ETAB 20 Table prablem

Troubleshooting EDVR Error Conditions

In some cases, calls to NI-488 functions or NI-488.2 routines may
return with the ERR bit setini bst a and thevalue EDVRin i berr .
Thevaluestoredini bent | isuseful in troubleshooting the error
condition.

EDVR Error with ibcntl Set to 0xE028002C

If acall is made with a board number that is within the range of allowed
board numbers (typically 0 to 3), but which has not been assigned to a
GPIB interface, an EDVR error condition occurswith i bent | setto
0xE028002C. Y ou can assign a board number to a GPIB interface by
configuring the NI-488.2M software and selecting an interface name.
Refer to the getting started manual for information on how to configure
the NI1-488.2M software.

© National Instruments Corporation 4-3 NI-488.2M User Manual for Windows 95

Chapter 4 Debugging Your Application

EDVR Error with ibcntl Set to 0xE0140025

If acal is made with aboard number that is not within the range of
allowed board numbers (typically 0 to 3), an EDVR error condition
occurswith i bent | set to OXE0140025.

EDVR Error with ibcntl Set to 0xE0140035

If acal is made with adevice number that is not within the range of
allowed device numbers (typicaly 1 to 32), an EDVR error condition
occurswith i bent | set to OXE0140035.

EDVR Error with ibcntl Set to 0xE0320029

If acall is made with a board number that is assigned to a GPIB
interface that is unusable because of aresource conflict, an EDVR error
condition occurswithi bent | set to 0xE0320029. Refer to the
troubleshooting instructions in the getting started manual. Thiserror is
also returned if you remove a PCMCIA-GPIB or PCMCIA-GPIB+
while the driver is accessing it.

Configuration Errors

Several applications require customized configuration of the GPIB
driver. For example, you might want to terminate reads on a special
end-of-string character, or you might require secondary addressing. In
these cases, you can either permanently reconfigure the driver using the
NI-488.2M software configuration utility, which isintegrated with the
Windows 95 Device Manager, or temporarily reconfigure the driver
while your application is running using thei bconf i g function.

Note: National | nstruments recommends using i bconf i g to modify the
NI-488.2M driver configuration dynamically.

If your program uses dynamic configuration, it will always work
regardless of the previous configuration of the driver. Refer to the
description of i bconfi g inthe NI-488.2M Function Reference
Manual for Win32 for more information.

NI-488.2M User Manual for Windows 95 4-4 © National Instruments Corporation

Chapter 4 Debugging Your Application

Timing Errors

If your application fails, but the same calls issued in the Win32
interactive control utility are successful, your program might be issuing
the NI-488.2 calls too quickly for your device to process and respond to
them. This problem can also result in corrupted or incompl ete data.

A well behaved |EEE 488 device should hold off handshaking and set
the appropriate transfer rate. If your deviceis not well behaved, you
can test for and resolve the timing error by single-stepping through
your program and inserting finite delays between each GPIB call. One
way to do thisisto have your device communicate its status whenever
possible. Although this method is not possible with many devices, it is
usually the best option. Y our delays will be controlled by the device
and your application can adjust itself and work independently on any
platform. Other delay mechanisms will probably cause varying delay
times on different platforms.

Communication Errors

Repeat Addressing

Devices adhering to the |EEE 488.2 standard should remain in their
current state until specific commands are sent across the GPIB to
change their state. However, some devices require GPIB addressing
before any GPIB activity. Therefore, you might need to configure your
NI-488.2M driver to perform repeat addressing if your device does not
remain in its currently addressed state. Refer to Chapter 7, GPIB
Configuration Utility, or to the description of i bconf i g (option

| bc READDR) in the NI-488.2M Function Reference Manual for Win32
for more information about reconfiguring your software.

Termination Method

Y ou should be aware of the data termination method that your device
uses. By default, your NI-488.2M software is configured to send EOI
on writes and terminate reads on EOI or a specific byte count. 1f you
send a command string to your device and it does not respond, it might
be because it does not recognize the end of the command. Y ou might
need to send a termination message such as <CR> <L F> after awrite
command as follows:

i bwrt (dev,” COWWAND\ x0A\ xOD", 9) ;

© National Instruments Corporation 4-5 NI-488.2M User Manual for Windows 95

Chapter 4

Debugging Your Application

Common Questions

How can | determine which type of GPIB hardwarel haveinstalled?

Run the GPIB Information utility. To run the utility, select the GPIB
I nfor mation item under Start»Programs»NI -488.2M Softwar e for
Windows 95. GPIB Information returns information about the GPIB
boards currently configured for use in your system.

How can | determine which version of the N1-488.2M software | haveinstalled?

Run the GPIB Information utility. To run the utility, select the GPIB

I nfor mation item under Start»Programs»NI -488.2M Softwar e for
Windows 95. GPIB Information returns information about the version
of the NI-488.2M software currently installed.

How can | determineif my GPIB hardware and software are correctly
installed?

Refer to the getting started manual for instructions on running the
hardware and software diagnostic tests.

When should | usethe Win32 Interactive Control utility?

Y ou can use the Win32 Interactive Control utility to test and verify
instrument communication, troubleshoot problems, and develop your
application program. For more information, refer to Chapter 5, Win32
Interactive Control Utility.

How do | usean NI-488.2M languageinterface?

For information about using NI-488.2M |language interfaces, refer to
Chapter 3, Developing Your Application.

How do I communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument
manufacturer. The command sequences you use are totally dependent
on the specific instrument. The documentation for each instrument
should include the GPIB commands you need to communicate with it.
In most cases, NI-488 device-level cals are sufficient for
communicating with instruments. Refer to Chapter 3, Developing Your
Application, for more information.

NI-488.2M User Manual for Windows 95 4-6 © National Instruments Corporation

Chapter 4 Debugging Your Application

Can | usethe NI-488 and NI-488.2 callstogether in the same application?
Y es, you can mix NI-488 functions and NI-488.2 routines.
What can | doto check for errorsin my GPIB application?

Examine the value of ibsta after each NI-488 or NI-488.2 call. If acall
fails, the ERR bit of i bst a isset and an error codeis stored in

i berr . For moreinformation about global status variables, refer to
Chapter 3, Developing Your Application.

What information should | have beforel call National I nstruments?

When you call National Instruments, you should have the results of the
hardware and software diagnostic tests along with the output from the
GPIB Information utility. Also, make sure you have filled out the
technical support form in Appendix C, Customer Communication.

© National Instruments Corporation 4-7 NI-488.2M User Manual for Windows 95

Win32 Interactive Control

Utility

Chapter

Overview

This chapter introduces you to Win32 Interactive Control, the
interactive control utility that you can use to communicate with GPIB
devicesinteractively.

With the Win32 Interactive Control utility, you communicate with the
GPIB devices through functions you enter at the keyboard. For specific
information about how to communicate with your particular device,
refer to the manual that came with the device. Y ou can use Win32
Interactive Control to practice communication with the instrument,
troubleshoot problems, and develop your application program.

One way Win32 Interactive Control helps you to learn about your
instrument and to troubleshoot problems is by displaying the following
information on your screen whenever you enter acommand:

» Theresults of the statusword (i bst a) in hexadecimal notation
e The mnemonic constant of each bit setini bst a

e The mnemonic value of the error variable (i ber r) if an error
exists (the ERR bitissetini bst a)

* The count value for each read, write, or command function
» Thedatareceived from your instrument

Example Using NI-488 Functions

This section shows how you might use Win32 Interactive Control to
test a sequence of NI-488 device function calls. You do not need to
remember the parameters that each function takes. If you enter the
function name only, Win32 Interactive Control prompts you for the
necessary parameters.

© National Instruments Corporation 51 NI-488.2M User Manual for Windows 95

Chapter 5

Win32 Interactive Control Utility

To run Win32 Interactive Control, select the Win32 I nteractive
Control item under Start»Programs»NI-488.2M Softwar e for
Windows 95. Y our screen should appear as follows:

National |nstrunents
| EEE 488 Interface Bus Interactive Control Program

(1BIQ

Copyright 1993 National Instrunents Corp. Version 3.0
(Wn32)

Version Date: Oct 6 1995 Version Tinme: 09:42:25

Al rights reserved

Type ‘help’ for help or ‘q to quit

Usei bdev to find the device name which is assigned to your
devicein the GPIB Configuration Utility. The following example
shows how you could usei bdev to open adevice, assign it to
access board gpi b0, choose a primary address of 6 with no
secondary address, set atimeout of 10 s, enable the END message,
and disable the EOS mode:
. i bdev

enter board index: O

enter primary address: 6

enter secondary address: O

enter tineout: 13

enter 'EA on |last byte' flag: 1

enter end-of-string node/byte: 0O
id = 32256

udo:

Y ou could also input all the same information with the i bdev
command as follows:

cibdev 06 0 1310
id = 32256

udo:
Clear the device as follows:

udO: ibclr
[0100] (cnpl)

Write the function, range, and trigger source instructionsto your

device. Refer to the instrument user manual for the command
bytes that work with your instrument.

ud0: i bwt

enter string: "F3R7T3"
[0100] (crpl)
count: 6

NI-488.2M User Manual for Windows 95 52 © National Instruments Corporation

© National Instruments Corporation

Chapter 5 Win32 Interactive Control Utility

or

udO: ibwt "F3R7T3"
[0100] (crpl)
count: 6

Trigger the device asfollows:

ud0: ibtrg

[0100] (cnpl)

Wait for atimeout or for your device to request service. If the
current timeout limit istoo short, use i bt mo to changeit. Usethe
i bwai t command asfollows:

udO: i bwait

enter wait mask: TIMO RQS
[0900] (rgs cnpl)

or

udO: ibwait TIMO RQS
[0900] (rgs cnpl)

Read the seria poll status byte. This serial poll status byte varies
depending on the device used.

ud0: ibrsp
[0100] (cnpl)
Pol | : 0x40 (deci nal 64)

Use the read command to display the data on the screen both in hex
values and their ASCII equivalents.

ud0: ibrd

enter byte count: 18
[0100] (cnpl)
count: 18
4e 44 43 56 20 30 30 30 NDCV 00O
2e 30 30 34 37 45 2b 30 0047E+0O0
Oa Oa
or
udO: ibrd 18
[0100] (cnpl)
count: 18
4e 44 43 56 20 30 30 30 NDCV 00O
2e 30 30 34 37 45 2b 30 0047E+0O0
Oa Oa

53 NI-488.2M User Manual for Windows 95

Chapter 5 Win32 Interactive Control Utility

9. Placethe device offline as follows:

udO: i bon
enter value: 0

[0100] (cnpl)
or

udO: ibonl O
[0100] (cnpl)

10. Terminate the Win32 Interactive Control utility by entering q at
the prompt.

Win32 Interactive Control Syntax

When you enter commands in Win32 Interactive Control, you can
either include the parameters, or the program prompts you for values.
Some commands require numbers as input values. Others might
require you to input a string.

Number Syntax
Y ou can enter numbers as hexadecimal, octal, or decimal integer.

Hexadecimal numbers—Y ou must precede hex numbers by zero and x
(for example, OxD).

Octal numbers-Y ou must precede octal numbers by zero only (for
example, 015).

Decimal numbers—Enter the number only.

String Syntax

Y ou can enter strings as an ASCI| character sequence, octal bytes, hex
bytes, or special symbols.

ASCII character sequence—Y ou must enclose the entire sequencein
guotation marks.

Octal bytes-Y ou must use a backs ash character followed by the octal
value. For example, octal 40 isrepresented by \ 40.

Hex bytes-Y ou must use a backslash character and an x followed by
the hex value. For example, hex 40 is represented by \ x40.

NI-488.2M User Manual for Windows 95 54 © National Instruments Corporation

Address Syntax

Chapter 5 Win32 Interactive Control Utility

Secial Symbols-Some instruments require special termination or
end-of-string (EQOS) characters that indicate to the device that a
transmission has ended. The two most common EOS charactersare\ r
and \n. \r represents acarriage return character and \ n representsa
linefeed character. Y ou can use these specia charactersto insert the
carriage return and linefeed charactersinto a string, asin
"F3R5T1\r\n".

Many of the NI-488.2 routines have an address or address list
parameter. An addressis a 16-bit representation of the GPIB address of
adevice. The primary addressis stored in the low byte and the
secondary address, if any, is stored in the high byte. For example, a
device at primary address 6 and secondary address 0x67 has an address
of 0x6706. A NULL addressis represented as Oxffff.

Win32 Interactive Control Syntax for NI-488 Functions

Tables 5-1 and 5-2 summarize the syntax of NI-488 functionsin Win32
Interactive Control. v represents a number that you input. string
represents a string that you input. For more information about the
function parameters, use the online help feature.

© National Instruments Corporation 55 NI-488.2M User Manual for Windows 95

Chapter 5 Win32 Interactive Control Utility

Table 5-1. Syntax for Device-Level NI-488 Functions in Win32 Interactive Control

Syntax Description

i bask M Return configuration information where rm is amnemonic
for a configuration parameter or equivalent integer value

i bbna brdname | Change access board of device where br dnane is
symbolic name of new board

i belr Clear specified device

ibconfig m v | Alter configurable parameters where m is mnemonic for a
configuration parameter or equivalent integer value

ibdev v vvvvv | Openanunused device i bdev parametersareboard id,
pad,sad,tno, eos, eot

i beos v Change/disable EOS message

i beot v Enable/disable END message

iblnvyv Check for presence of device on the GPIB at pad, sad

i bl oc Go to loca

i bonl v Place device online or offline

i bpad v Change primary address

i bpct Pass control

i bppc v Parallel poll configure

ibrd v Read datawherev isthe bytes to read

i brda v Read data asynchronously wherev isthe bytesto read

i brdf flname Read datato file wheref | name is pathname of file to read

i brpp Conduct a parallel poll

i brsp Return serial poll byte

i bsad v Change secondary address

i bst op Abort asynchronous operation

ibtmo v Change/disable time limit

ibtrg Trigger selected device

i bwai t mask Wiait for selected event where mask isahex, octal, or
decimal integer or amask bit mnemonic

ibwt string Write data

ibwta string Write data asynchronously

ibwrtf flname | Writedatafrom afilewheref | name ispathname of file to
write

NI-488.2M User Manual for Windows 95 56 © National Instruments Corporation

Chapter 5 Win32 Interactive Control Utility

Table 5-2. Syntax for Board-Level NI-488 Functions in Win32 Interactive Control

Syntax Description
i bask M Return configuration information where nm is amnemonic
for a configuration parameter or equivalent integer value
i bcac v Become active Controller
i bcnd string Send commands
i bcnda string | Send commands asynchronously

i bconfig m v

Alter configurable parameters where nm is mnemonic for a
configuration parameter or equivalent integer value

i bdma v Enable/disable DMA
i beos v Change/disable EOS message
i beot v

Enable/disable END message

i bfi nd udnane

Return unit descriptor where udnane isthe symbolic name
of board (for example, gpi b0)

ibgts v Go from Active Controller to standby

i bist v Set/clear i st

i blines Read the state of all GPIB control lines

ibln v v Check for presence of device on the GPIB at pad, sad

i bl oc Gotolocal

i bonl v Place device online or offline

i bpad v Change primary address

i bppc v Parallel poll configure

ibrd v Read datawhere v isthe bytesto read

i brda v Read data asynchronously wherev isthe bytesto read

i brdf flname Read datato file where f | name is pathname of file to read

i brpp Conduct a parallel poll

ibrsc v Request/rel ease system control

ibrsv v Request service

i bsad v Change secondary address

i bsic Send interface clear

i bsre v Set/clear remote enable line

i bstop Abort asynchronous operation

ibtmo v Change/disable time limit

i bwai t mask Wait for selected event where nmask isahex, octal, or
decimal integer or amask bit mnemonic

ibwt string Write data

ibwta string | Writedataasynchronously

ibwtf flnanme

Write datafrom afilewheref | nane ispathname of fileto
write

© National Instruments Corporation

57 NI-488.2M User Manual for Windows 95

Chapter 5 Win32 Interactive Control Utility

Win32 Interactive Control Syntax for NI-488.2 Routines

Table 5-3 summarizes the syntax of NI-488.2 routinesin Win32
Interactive Control. v represents a number that you input and st ri ng
representsastring. addr ess represents an address, and addr | i st
represents alist of addresses separated by commas. For more
information about the routine parameters, use the built-in online help
feature or refer to the NI-488.2M Function Reference Manual for

Win32.

Table 5-3. Syntax for NI-488.2 Routines in Win32 Interactive Control

Routine Syntax Description
Al'l Spol | addrli st Serial poll multiple devices
Devd ear address Clear adevice
Devd earLi st addrli st Clear multiple devices
Enabl eLocal addrli st Enable local control
Enabl eRenot e addrl i st Enable remote control
Fi ndLstn addrlist v Find all Listeners
Fi ndRQS addr i st Find device asserting SRQ
PassControl address Pass control to adevice
PPol | Parallel poll devices
PPol | Config address v v Configure device for paralle poll
PPol | Unconfig address Unconfigure device for paralel poll
RcvRespMsg address string v Receive response message
ReadSt at usByt e addr ess Serial poll adevice
Receive address string v Receive data from adevice
Recei veSet up address Receive setup
Reset Sys addrli st Reset multiple devices
Send address string v Send datato adevice
SendCnds string Send command bytes
SendDat aByt es addrlist stringv Send data bytes
Sendl FC Send interface clear
SendLi st addrlist string v Send data to multiple devices
SendLLO Put devicesin local lockout

(continues)

NI-488.2M User Manual for Windows 95 58 © National Instruments Corporation

Chapter 5 Win32 Interactive Control Utility

Table 5-3. Syntax for NI-488.2 Routines in Win32 Interactive Control (Continued)

Routine Syntax Description

SendSet up addrli st Send setup

Set RALS addrli st Put devices in remote with lockout
state

Test Sys addrli st Cause multiple devices to perform
self-tests

Test SRQ Test for service request

Trigger address Trigger adevice

TriggerlList addrlist Trigger multiple devices

Vi t SRQ Wait for service request

Status Word

In Win32 Interactive Control, all NI-488 functions (except i bf i nd
and i bdev) and NI-488.2 routines return the statusword i bst a in
two forms. ahex value in square brackets and alist of mnemonicsin
parentheses. In the following example, the status word is on the second
line. It shows that the device function write operation completed
successfully:

udO: i bwt "f2t3x"
[0100] (crpl)
count: 5

udo:

For more information about the status word, refer to Chapter 3,
Developing Your Application.

Error Information

If an NI-488 function or NI-488.2 routine completes with an error,
Win32 Interactive Control displays the relevant error mnemonic. Inthe
following example, an error condition EBUS has occurred during a data
transfer.

ud0: i bwt "f2t3x"
[8100] (err cnpl)

error: EBUS
count: 1
udo:

© National Instruments Corporation 59 NI-488.2M User Manual for Windows 95

Chapter 5

Count

Win32 Interactive Control Utility

In this example, the addressing command bytes could not be
transmitted to the device. Thisindicatesthat either dev1 is powered
off, or the GPIB cable is disconnected.

For adetailed list of the error codes and their meanings, refer to
Chapter 4, Debugging Your Application.

When an I/O function completes, Win32 Interactive Control displays
the actual number of bytes sent or received, regardless of the existence
of an error condition.

If one of the addresses in an address list of an NI-488.2 routine is
invalid, then the error is EARG and Win32 I nteractive Control displays
the index of the invalid address as the count.

The count has a different meaning depending on which NI-488 function
or NI-488.2 routineis called. Refer to the function descriptionsin the
NI-488.2M Function Reference Manual for Win32 for the correct
interpretation of the count return.

Common NI-488 Functions

ibfind

Usethei bf i nd function to open aboard. The following example
opens gpi bO.

1ibfind gpi b0
id = 32000

gpi bO:

i d isthe unit descriptor of the board. The prompt gpi b0 indicates
that the board is open.

Any name you use with thei bf i nd function must be avalid symbolic
nameinthedriver. gpi b0 isthe default name found in the driver. For
more information about valid names, refer to Chapter 7, GPIB
Configuration Utility.

NI-488.2M User Manual for Windows 95 510 © National Instruments Corporation

Chapter 5 Win32 Interactive Control Utility

ibdev

Thei bdev command initializes a device descriptor with the input
information.

Withi bdev , you specify the following values:
» AccessBoard for the Device

e Primary Address

» Secondary Address

» Timeout Setting

+ EOT mode

 EOSmode

The following example showsi bdev opening an available device and
assigning it to access gpi b0 (boar d = 0) with a primary address of 6
(pad = 6), asecondary address of hex 67 (sad = 0x67), atimeout of
10 s. (t mo =13), the END message enabled (eot =1), and the EOS
mode disabled (eos =0).

ibdev 0 6 0x67 13 1 0
id = 32256

udo:

If youuse i bdev without specifying parameters, Win32 Interactive
Control prompts you for the input parameters as shown in the following
example:

i bdev
enter board index: O
enter prinmary address: 6
enter secondary address: 0x67
enter timeout: 13
enter ‘EQ on last byte' flag: 1
enter end-of-string node/byte: O
id = 32256

udo:

© National Instruments Corporation 511 NI-488.2M User Manual for Windows 95

Chapter 5

ibwrt

Win32 Interactive Control Utility

Three distinct errors can occur with the i bdev call:

EDVR—No deviceis available, the board index entered refersto a
nonexistent board (that is, not 0, 1, 2, or 3), or the board has no
driver installed. The following exampleillustrates an EDVR error.

ibdev 4 6 0x67 7 1 0
id=-1

[8000] (err)

error: EDVR (0xe0140025)

ENEB—The board index entered refers to a known board (such as
0), but the driver cannot find the board. In this case, use the
configuration utility as described in Chapter 7, GPIB
Configuration Utility, and make sure you have correctly associated
alogical name (gpi b0, gpi b1, and so on) with each physical
interface.

EARG—One of the last five parametersisan invalid value. The
i bdev call returns with anew prompt and the EARG error
(invalid function argument). If the i bdev call returns with an
EARG error, you must identify which parameter isincorrect and
use the appropriate command to correct it. In the following
example, the pad has an invalid value. Y ou can correct it with an
i bpad call as shown:

:ibdev 0 66 0x67 7 1 0
id = 32256

[8100] (err cnpl)
error:. EARG

udO: i bpad 6
previ ous val ue: 30

Thei bwrt command sends data from one GPIB device to another.
For example, to send the six character data string F3R5T1 from the
computer to adevice called devl you enter the following string at the
devl prompt as shown in the following example:

udO: ibwt "F3R5T1"
[0100] (cnpl)
count: 6

NI-488.2M User Manual for Windows 95 512 © National Instruments Corporation

Chapter 5 Win32 Interactive Control Utility

The returned status word containsthe cnpl bit, which indicates a
successful 1/0 completion. The byte count 6 indicates that all six
characters were sent from the computer and received by the device.

ibrd
Thei brd command causes a GPIB device to receive data from
another GPIB device. The following example acquires data from the

device and displaysit on the screen in hex format and in its ASCII
equivalent, along with the status word and byte count.

udO: ibrd 20

[2100] (end cnpl)

count: 18

4e 44 43 56 28 30 30 30 NDCYV
2e 30 30 34 37 45 2b 30 004
0d Oa

9000
7E+0

Common NI-488.2 Routines in Win32 Interactive
Control

Set 488.2
You must usetheset command before you can use NI-488.2 routines
in Win32 Interactive Control. The syntax for thisform of the set
command is as follows:
set 488.2 n
where n represents aboard number (for example, n=0for gpi b0).
Send and SendList

The Send routine sends datato asingle GPIB device. Y ou can use the
SendLi st command to send data to multiple GPIB devices. For
example, suppose you want to send the five character string * | DN?
followed by the new line character with EOI. Y ou want to send the
message from the computer to the devices at primary address 2 and 17.
To do this, enter the SendLi st command at the 488. 2 (0) prompt
as shown in the following example:

488.2 (0): SendList 2, 17 “*IDN?” NLend

[0128] (cnpl cic tacs)
count: 6

© National Instruments Corporation 513 NI-488.2M User Manual for Windows 95

Chapter 5 Win32 Interactive Control Utility

The returned status word containsthe cnpl bit, which indicates a
successful 1/0 completion. The byte count 6 indicates that all six
characters, including the added new line, were sent from the computer
and received by both devices.

Receive

The Recei ve routine causes the GPIB board to receive data from
another GPIB device. The following example acquires 10 data bytes
from the device at primary address 5. It stops receiving data when 10
characters have been received or when the END message is received.
The acquired data is then displayed in hex format along with its ASCII
equivalent. The Win32 Interactive Control utility also displays the
status word and the count of transferred bytes.

488.2 (0): Receive 5 10 STOPend
[2124] (end cnpl cic |acs)
count: 5

48 65 6¢ 6¢C 6f Hell o

NI-488.2M User Manual for Windows 95 514 © National Instruments Corporation

Chapter 5 Win32 Interactive Control Utility

Auxiliary Functions

Table 5-4 summarizes the auxiliary functions that you can usein
Win32 Interactive Control.

Table 5-4. Auxiliary Functions in Win32 Interactive Control

Function Description

set udnane Select active device or board where udnane is
the symbolic name of the new device or board (for
example, devl or gpi b0). Cdl i bfind or

i bdev initialy to open each device or board.

Set 488.2 v | Enter 488.2 mode for board v

hel p [option] | Display help information where opt i on isany
NI-488 or NI1-488.2 call. If you do not enter an
opt i on, amenu of options appears.

! Repeat previous function.
- Turn OFF display.
+ Turn ON display.

n* function | Executefunction n timeswheref uncti on
represents the correct Win32 Interactive Control
function syntax.

nx | Execute previous function n times.

$ filenanme Execute indirect filewheref i | enane isthe
pathname of afile that contains Win32 Interactive
Control functions to be executed.

print string | Display string on screenwherest ring isan
ASCII character sequence, octa bytes, hex bytes,
or special symbols.

e Exit or quit.
q Exit or quit.

Set (udname or 488.2)

Y ou can use the set command to select 488.2 mode or to
communicate with a different device or board.

The following example shows how to enter 488.2 mode. The 488. 2
(0) prompt indicates that you are in NI-488.2 mode on board 0.

© National Instruments Corporation 515 NI-488.2M User Manual for Windows 95

Chapter 5 Win32 Interactive Control Utility

set 488.2 0

488.2 (0):

The next example switches communication from using N1-488.2
routines for gpi bO to using a unit descriptor (udO) previously
acquired by ani bdev call.

488.2 (0): set udO

udo:

Help (Display Help Information)

The help feature launches the windows help file for the Win32
Interactive Control Utility. Y ou can access help for a specific NI-488
function or NI-488.2 routine by typing hel p followed by the call name
(for example, hel p i bwrt). Help describes the function syntax for
all NI-488 functions and NI-488.2 routines.

I (Repeat Previous Function)

The! function repeats the most recent function executed. The
following exampleissuesani bsi ¢ command and then repeats that
same command:

gpi b0: ibsic
[0130] (crnpl cic atn)

gpi b0: !
[0130] (cnpl cic atn)

- (Turn Display Off) and + (Turn Display On)

The- function turns off all screen output except for the prompt. This
function is useful when you want to repeat any 1/0 function quickly
without waiting for screen output to be displayed.

The + function turns the screen output on.

In the following example 24 consecutive | etters of the aphabet are read
from adeviceusing threei br d calls.

udO: ibrd 8
[2100] (end cnpl)
count: 8

61 62 63 64 65 66 67 68 abcdef gh

udo: -

NI-488.2M User Manual for Windows 95 516 © National Instruments Corporation

Chapter 5 Win32 Interactive Control Utility

udO: ibrd 8
udo: +

udo: ibrd 8

[2100] (end cnpl)

count: 8

71 72 73 74 75 76 77 78 gr st uvwx

n* (Repeat Function n Times)

Then* function repeats the execution of the specified function n times,
where n isan integer. Inthe following example, the message Hel | o is
sent five times to the device described by udO.

udO: 5*ibwt "Hello"

In the following example, the word Hel | o issent 5 times, 20 times,
and then 10 more times.

ud0: 5*ibwt "Hello"

ud0: 20* !
udo: 10* !

Notice that the multiplier (*) does not become part of the function
name; thatis, i bwrt "Hel | 0" isrepeated 20 times, not 5* i bwrt
"Hel | 0" .

$ (Execute Indirect File)

The$ function reads a specified file and executes the Win32 Interactive
Control functions listed in that file, in sequence, asif they were entered
in that order from the keyboard. The following example executes the
Win32 Interactive Control functionslisted in thefile userfil e.

gpi b0: $ userfile

The following example repeats the operation three times.

gpi b0: 3*$ userfile

The display mode that is in effect before this function was executed can
be changed by functionsin the indirect file.

© National Instruments Corporation 517 NI-488.2M User Manual for Windows 95

Chapter 5

Win32 Interactive Control Utility

Print (Display the ASCII String)

You can usethe pri nt function to echo a string to the screen. The
following example shows how you can use ASCII or hex with the print
command.

devl: print "hello"
hel | o

devl: print "and\r\n\x67\x6f\x6f\x64\x62\ x79\ x65"
and
goodbye

Youcanasouse print todisplay comments from indirect files. The
print string appears even if the display is suppressed with the -
function.

NI-488.2M User Manual for Windows 95 518 © National Instruments Corporation

Chapter

GPIB Programming
Technigues

This chapter describes techniques for using some NI-488 functions and
NI-488.2 routines in your application program.

For more detailed information about each function or routine, refer to
the NI-488.2M Function Reference Manual for Win32.

Termination of Data Transfers

GPIB datatransfers are terminated either when the GPIB EOQI lineis
asserted with the last byte of atransfer or when a preconfigured

end-of -string (EQOS) character istransmitted. By default, the
NI-488.2M driver asserts EOI with the last byte of writes and the EOS
modes are disabled.

You can usethe i beot function to enable or disable the end of
transmission (EOT) mode. If EOT mode is enabled, the NI-488.2M
driver assertsthe GPIB EOI line when the last byte of awriteis sent
out on the GPIB. If itisdisabled, the EOI lineisnot asserted with the
last byte of awrite.

You can usethe i beos function to enable, disable, or configure the
EOS modes. EOS mode configuration includes the following
information:

e A 7-bit or 8-hit EOS byte
» EOS comparison method—This indicates whether the EOS byte has

seven or eight significant bits. For a 7-bit EOS byte, the eighth bit
of the EOS byte isignored.

* EOSwrite method-f thisis enabled, the NI1-488.2M driver
automatically asserts the GPIB EOI line when the EOS byteis
written to the GPIB. If the buffer passed intoani bwrt cal
contains five occurrences of the EOS byte, the EOI lineis asserted
as each of the five EOS bytes are written to the GPIB. If an
i bwrt buffer does not contain an occurrence of the EOS byte, the

© National Instruments Corporation 61 NI-488.2M User Manual for Windows 95

Chapter 6 GPIB Programming Techniques

EQI lineis not asserted (unless the EOT mode is enabled, in which
case the EOI lineis asserted with the last byte of the write).

* EOSread method-If thisis enabled, the NI1-488.2M driver
terminatesi brd,i brda,and i brdf callswhenthe EOSbyteis
detected on the GPIB or when the GPIB EQI lineis asserted or
when the specified count is reached. If the EOS read method is
disabled,i brd,i brda,and i brdf callsterminate only when the
GPIB EOQI lineis asserted or the specified count has been read.

You can usethe i bconfi g function to configure the software to
inform you whether or not the GPIB EOQI line was asserted when the
EOS bytewasread in. Usethe | bcEndBi t | s Normal option to
configure the software to report only the END bit ini bst a when the
GPIB EOI lineisasserted. By default, the NI-488.2M driver reports
END ini bst a when either the EOS byteisread in or the EQI lineis
asserted during aread.

High-Speed Data Transfers (HS488)

Enabling HS488

National Instruments has designed a high-speed data transfer protocol
for IEEE 488 called H488. This protocol increases performance for
GPIB reads and writes up to 8 Mbytes/s, depending on your system.

H$SA488 is a superset of the IEEE 488 standard; thus, you can mix
|EEE 488.1, |[EEE 488.2, and H$488 devicesin the same system. |If
H$A488 is enabled, the TNT4882C hardware implements high-speed
transfers automatically when communicating with HS488 instruments.
To determine whether your GPIB interface board has the TNT4882C
hardware, use the GPIB Information utility. If you attempt to enable
H$488 on a GPIB board that does not have the TNT4882C hardware,
the error ECAP isreturned.

To enable HS488 for your GPIB board, usethei bconf i g function
(option | bcHSCabl eLengt h). Thevalue passedto i bconfi g
should specify the number of meters of cable in your GPIB
configuration. If you specify a cable length that is much smaller than
what you actually use, the transferred data could become corrupted. 1f
you specify a cable length longer than what you actually use, the dataiis
transferred successfully, but more slowly than if you specified the
correct cable length.

NI-488.2M User Manual for Windows 95 62 © National Instruments Corporation

Chapter 6 GPIB Programming Techniques

In addition to using i bconf i g to configure your GPIB board for
H$488, the Controller-1n-Charge must send out GPIB command bytes
(interface messages) to configure other devices for HS488 transfers.

If you are using device-level calls, the NI1-488.2M software
automatically sends the H$488 configuration message to devices. |If
you enabled the H$488 protocol in the GPIB Configuration Utility, the
NI-488.2M software sends out the HS488 configuration message when
you usei bdev to bring adeviceonline. If you call i bconfi g to
change the GPIB cable length, the NI1-488.2M software sends out the
HS488 message again the next time you call a device-level function.

If you are using board-level functions or NI-488.2 routines and you
want to configure devices for high-speed, you must send the HS488
configuration messages using i bcnd or SendCnds . The H3488
configuration message is made up of two GPIB command bytes. The
first byte, the Configure Enable (CFE) message (hex 1F), places al
HS488 devicesinto their configuration mode. Non-HS488 devices
should ignore this message. The second byte isa GPIB secondary
command that indicates the number of meters of cable in your system.
Itis called the Configure (CFGn) message. Because HS488 can
operate only with cable lengths of 1 to 15 meters, only CFGn values of
1 through 15 (hex 61 through 6F) are valid. If the cable length was
configured properly in the GPIB Configuration Utility, you can
determine how many meters of cable are in your system by calling

i bask (option | baHSCabl eLengt h) in your application program.
For CFE and CFGn messages, refer to Appendix A, Multiline Interface
Messages, in the NI-488.2M Function Reference Manual for Win32.

System Configuration Effects on HS488

Maximum data transfer rates can be limited by your host computer and
GPIB system setup. For example, even though the theoretical
maximum transfer rate with HS488 is 8 Mbytes/s, the maximum
transfer rate obtainable on PC -compatible computers with an ISA bus
is2 Mbytes/s. The same |EEE 488 cabling constraints for a350 ns T1
delay apply to HS488. Asyou increase the amount of cablein your
GPIB configuration, the maximum data transfer rate using HS488
decreases. For example, two HS488 devices connected by two meters
of cable can transfer data faster than three HS488 devices connected by
four meters of cable.

© National Instruments Corporation 6-3 NI-488.2M User Manual for Windows 95

Chapter 6 GPIB Programming Techniques

Waiting for GPIB Conditions

You canusethe i bwai t function to obtain the currenti bst a value
or to suspend your application until a specified condition occurs on the
GPIB. If youusei bwai t with aparameter of zero, it immediately
updatesi bst a and returns. If you want to usei bwai t to wait for
one or more events to occur, then pass await mask to the function. The
wait mask should always include the TIMO event; otherwise, your
application is suspended indefinitely until one of the wait mask events
occurs.

Device-Level Calls and Bus Management

The NI-488 device-level calls are designed to perform all of the GPIB
management for your application program. However, the NI1-488.2M
driver can handle bus management only when the GPIB interface board
is CIC (Controller-In-Charge). Only the CIC is able to send command
bytes to the devices on the bus to perform device addressing or other
bus management activities. Use one of the following methods to make
your GPIB board the CIC:

» |If your GPIB board is configured as the System Controller
(default), it automatically makes itself the CIC by asserting the IFC
line the first time you make a device-level call.

* If your setup includes more than one Controller, or if your GPIB
interface board is not configured as the System Controller, use the
CIC Protocol method. To use the protocol, issuethe i bconfi g
function (option | bc Cl CPROT) or use the GPIB Configuration
Utility to activate the CIC protocol. If theinterface board is not
CIC, and you make a device-level call with the CIC Protocol
enabled, the following sequence occurs:

1 The GPIB interface board asserts the SRQ line.

2. Thecurrent CIC serial pollsthe board.

3. Theinterface board returns aresponse byte of hex 42.
4. The current CIC passes control to the GPIB board.

If the current CIC does not pass control, the NI-488.2M driver returns
the ECIC error code to your application. This error can occur if the
current CIC does not understand the CIC Protocol. If this happens, you
could send a device-specific command requesting control for the GPIB
board. Then use aboard-level i bwai t command to wait for CIC.

NI-488.2M User Manual for Windows 95 6-4 © National Instruments Corporation

Chapter 6 GPIB Programming Techniques

Talker/Listener Applications

Although designed for Controller-In-Charge applications, you can also
use the NI-488.2M software in most non-Controller situations. These
situations are known as Talker/Listener applications because the
interface board is not the GPIB Controller.

A Talker/Listener application typicaly uses i bwai t with amask of O
to monitor the status of the interface board. Then, based on the status
bitssetin i bst a, the application takes whatever action is appropriate.
For example, the application could monitor the status bits TACS
(Talker Active State) and LACS (Listener Active State) to determine
when to send data to or receive data from the Controller. The
application could also monitor the DCAS (Device Clear Active State)
and DTAS (Device Trigger Active State) bitsto determineif the
Controller has sent the device clear (DCL or SDC) or trigger (GET)
messages to the interface board. If the application detects a device
clear from the Controller, it might reset the internal state of message
buffers. If it detects atrigger message from the Controller, the
application might begin an operation such as taking a voltage reading if
the application is actually acting as a voltmeter.

Serial Polling

Y ou can use seria polling to obtain specific information from GPIB
devices when they request service. When the GPIB SRQ lineis
asserted, it signals the Controller that a service request is pending. The
Controller must then determine which device asserted the SRQ line and
respond accordingly. The most common method for SRQ detection
and servicing isthe seria poll. This section describes how you can set
up your application to detect and respond to service requests from
GPIB devices.

Service Requests from IEEE 488 Devices

| EEE 488 devices request service from the GPIB Controller by
asserting the GPIB SRQ line. When the Controller acknowledges the
SRQ, it serial polls each open device on the bus to determine which
device requested service. Any device regquesting service returns a status
byte with bit 6 set and then unasserts the SRQ line. Devices not
requesting service return a status byte with bit 6 cleared.

Manufacturers of | EEE 488 devices use lower order bitsto

© National Instruments Corporation 6-5 NI-488.2M User Manual for Windows 95

Chapter 6 GPIB Programming Techniques

communicate the reason for the service request or to summarize the
state of the device.

Service Requests from IEEE 488.2 Devices

The |EEE 488.2 standard refined the bit assignments in the status byte.
In addition to setting bit 6 when requesting service, |EEE 488.2 devices
also use two other bitsto specify their status. Bit 4, the Message
Available bit (MAV), is set when the device is ready to send previously
gueried data. Bit 5, the Event Status bit (ESB), is set if one or more of
the enabled |EEE 488.2 events occurs. These events include power-on,
user request, command error, execution error, device dependent error,
query error, request control, and operation complete. The device can
assert SRQ when ESB or MAV are set, or when a manufacturer-defined
condition occurs.

Automatic Serial Polling

Y ou can enable automatic serial polling if you want your application to
conduct a serial poll automatically any time the SRQ line is asserted.
The autopolling procedure occurs as follows:

1. Toenableautopolling, use the GPIB Configuration Utility or the
configuration function, i bconf i g with option | bc AUTOPQLL.
(Autopolling is enabled by default.)

2. When the SRQ lineis asserted, the driver automatically serial polls
the open devices.

3. Each positive seria poll response (bit 6 or hex 40 is set) is stored in
a queue associated with the device that sent it. The RQS bit of the
device statusword, i bst a, is set.

4. The polling continues until SRQ is unasserted or an error condition
is detected.

5. Toempty the queue, usethei br sp function. i br sp returnsthe
first queued response. Other responses are read in first-in-first-out
(FIFO) fashion. If the RQS bit of the status word is not set when
i br sp iscalled, aserial poll is conducted and returns whatever
responseis received. You should empty the queue as soon as an
automatic serial poll occurs, because responses might be discarded
if the queueisfull.

6. If the RQS bit of the status word is till set after i br sp iscalled,
the response byte queue contains at |east one more response byte.
If this happens, you should continue to call i br sp until RQSis
cleared.

NI-488.2M User Manual for Windows 95 6-6 © National Instruments Corporation

Chapter 6 GPIB Programming Techniques

Stuck SRQ State

If autopolling is enabled and the GPIB interface board detects an SRQ,
the driver seria polls all open devices connected to that board. The
seria poll continues until either SRQ unasserts or al the devices have
been polled.

If no device responds positively to the serial poll, or if SRQ remainsin
effect because of afaulty instrument or cable, astuck SRQ stateisin
effect. If thishappensduringani bwai t for RQS, the driver reports
the ESRQ error. If the stuck SRQ state happens, no further polls are
attempted until an i bwai t for RQSismade. Wheni bwai t is
issued, the stuck SRQ state is terminated and the driver attempts a new
set of seria polls.

Autopolling and Interrupts

If autopolling and interrupts are both enabled, the NI-488.2M software
can perform autopolling after any device-level NI-488 call aslong as no
GPIB I/Oiscurrently in progress. In this case, an automatic serial poll
can occur even when your application is not making any callsto the

NI -488.2M software. Autopolling can also occur when a device-level

i bwai t for RQSisin progress. Autopolling is not allowed whenever
an application calls aboard-level NI-488 function or any NI-488.2
routine, or the stuck SRQ (ESRQ) condition occurs.

Note: The NI-488.2M software for Windows 95 does not function
properly if interrupts are disabled.

SRQ and Serial Polling with NI-488 Device Functions

Y ou can use the device-level NI-488 functioni br sp to conduct a
serial poll. i br sp conductsasingle serial poll and returns the serial
poll response byte to the application program. If automatic serial
polling is enabled, the application program can usei bwai t to suspend
program execution until RQS appearsin the statusword, i bst a. The
program can then cal i br sp to obtain the serial poll response byte.

The following example illustrates the use of thei bwai t and i brsp
functionsin atypical SRQ servicing situation when automatic serial
polling is enabled.

© National Instruments Corporation 67 NI-488.2M User Manual for Windows 95

Chapter 6

GPIB Programming Techniques

#i ncl ude "decl -32. h"
char GCet Seri al Pol | Response (int DeviceHandl e)
{
char Seri al Pol | Response = 0;
ibwait (DeviceHandle, TIMO| RQS);
if (ibsta & RQS) {
printf ("Device asserted SRQ\n");
/* Use ibrsp to retrieve the serial poll response. */
ibrsp (DeviceHandl e,
&Seri al Pol | Response);
}

return Seri al Pol | Response;

SRQ and Serial Polling with NI-488.2 Routines

The NI-488.2M software includes a set of NI-488.2 routines that you
can use to conduct SRQ servicing and serial polling. Routines pertinent
to SRQ servicing and serial polling are Al | Spol | , Fi ndRQS,
ReadSt at usByt e, Test SRQ, and Wi t SRQ.

Al | Spol | can seria poll multiple deviceswith asinglecall. It places
the status bytes from each polled instrument into a predefined array.
Then you must check the RQS bit of each status byte to determine
whether that device requested service.

ReadSt at usByt e issimilar to Al | Spol | , except that it only serial
pollsasingle device. It isalso analogous to the device-level N1-488
i brsp function.

Fi ndRQS serial pollsalist of devices until it findsadevicethat is
requesting service or until it has polled all of the devices on the list.
The routine returns the index and status byte value of the device
requesting service.

Test SRQ determines whether the SRQ line is asserted or unasserted,
and returns to the program immediately.

Wi t SRQissimilar to Test SRQ, except that Vi t SRQ suspends the
application program until either SRQ is asserted or the timeout period
is exceeded.

The following examples use NI-488.2 routines to detect SRQ and then
determine which device requested service. In these examples three
devices are present on the GPIB at addresses 3, 4, and 5, and the GPIB
interface is designated as busindex 0. The first example uses

Fi ndRQS to determine which deviceis requesting service and the

NI-488.2M User Manual for Windows 95 6-8 © National Instruments Corporation

Chapter 6 GPIB Programming Techniques

second example uses Al | Spol | to seria poll all three devices. Both
examples use Wai t SRQ to wait for the GPIB SRQ line to be asserted.

Note: Automatic serial polling is not used in these examples because you
cannot useit with NI -488.2 routines.

Example 1: Using FindRQS
Thisexample illustrates the use of Fi ndRQS to find thefirst device
that is requesting service.

voi d Get ASeri al Pol | Response (char *Devi cePad, char
*Devi ceResponse)
{
char Serial Pol | Response = 0;
int Wai t Resul t;
Addr4882_t Addrlist[4] = {3, 4,5, NOADDR};
Wai t SRQ (0, &WaitResult);
if (MaitResult) {
printf (“SRQis asserted.\n");
Fi ndRQ@ (0, AddrlList, &Serial Poll Response);
if (!(ibsta & ERR)) {
printf (“Device at pad % returned byte
%.\n", AddrList[ibcnt], (int)
Seri al Pol | Response);
*Devi cePad = AddrList[ibcnt];
*Devi ceResponse = Seri al Pol | Response;
}
}

return;

Example 2: Using AllSpoll

Thisexampleillustratesthe use of Al | Spol | to seria poll three
deviceswith asingle call.

voi d Get All Seri al Pol | Responses (Addr4882_t
AddrList[], short ResponseList[])

int Wai t Resul t;
Wai t SRQ (0, &WMitResult);
if (WaitResult) {
printf ("SRQis asserted.\n");
Al'l Spoll (0O, AddrlList, ResponseList);
if (!(ibsta & ERR))
for (i = 0; AddrList[i] != NOADDR, i++)

© National Instruments Corporation 6-9 NI-488.2M User Manual for Windows 95

Chapter 6 GPIB Programming Techniques

{
printf ("Device at pad % returned byte
%.\n", AddrList[i], ResponseList[i]);
}
}
}
return;

}

Parallel Polling

Although paralel polling is not widely used, it is a useful method for
obtaining the status of more than one device at the sametime. The
advantage of parallel polling isthat asingle paralel poll can easily
check up to eight individual devices at once. |n comparison, eight
separate serial polls would be required to check eight devices for their
seria poll response bytes. The value of the individual status bit (i st)
determines the parallel poll response.

Implementing a Parallel Poll

Y ou can implement parallel polling with either NI-488 functions or
NI-488.2 routines. If you use NI-488.2 routines to execute parallel
polls, you do not need extensive knowledge of the parallel polling
messages. However, you should use the NI -488 functions for parallel
polling when the GPIB board is not the Controller and must configure
itself for aparallel poll and set its own individual status bit (i st).

Parallel Polling with NI-488 Functions

Follow these steps to implement parallel polling using N1-488
functions. Each step contains example code.

1. Configurethe devicefor parallel polling using the i bppc
function, unless the device can configure itself for parallel polling.
i bppc requires an 8-bit value to designate the data line number,
the i st sense, and whether or not the function configures or
unconfigures the device for the parallel poll. The bit pattern isas
follows:

011ESD2D1 DO

E is1to disable parallel polling and O to enable parallel polling for
that particular device.

Sis1if thedeviceisto assert the assigned datalinewhen i st =1,
and 0 if the device isto assert the assigned datalinewhen i st =0.

NI-488.2M User Manual for Windows 95 6-10 © National Instruments Corporation

© National Instruments Corporation

Chapter 6 GPIB Programming Techniques

D2 through DO determine the number of the assigned dataline.
The physical line number is the binary line number plus one. For
example, DIO3 has a binary bit pattern of 010.

The following example code configures a device for parallel
polling using N1-488 functions. The device asserts DIO7 if its

ist =0.

In thisexample, thei bdev command is used to open a device that
has a primary address of 3, has no secondary address, has a timeout
of 3 s, asserts EOI with the last byte of awrite operation, and has
EOS characters disabled.

The following call configures the device to respond to the poll on
DIO7 and to assert theline in the case whenits i st is0. Passthe
binary bit pattern, 0110 0110 or hex 66, to i bppc .

#i ncl ude "decl -32. h"

char ppr;

dev = ibdev(0,3,0,T3s,1,0);
i bppc(dev, 0x66);

If the GPIB interface board configuresitself for a parallel poll, you
should still usethei bppc function. Pass the board index or a
board unit descriptor value as the first argument in i bppc . In
addition, if the individual status bit (i st) of the board needsto be
changed, usethe i bi st function.

In the following example, the GPIB board isto configure itself to
participate in aparallel poll. It assertsDIO5when i st =1if a
parallel poll is conducted.

i bppc(0, 0x60Q);
ibist(0, 1);

Conduct the parallel poll using i br pp and check the response for
acertain value. The following example code performs the parallel
poll and compares the response to hex 10, which corresponds to
DIOS. If that bit is set, theist of the deviceis 1.

i brpp(dev, &ppr);
if (ppr & 0x10) printf("ist = 1\n");

Unconfigure the device for parallel polling withi bppc. Natice
that any value having the parallel poll disable bit set (bit 4) in the
bit pattern disables the configuration, so you can use any value
between hex 70 and 7E.

i bppc(dev, 0x70);

6-11 NI-488.2M User Manual for Windows 95

Chapter 6

GPIB Programming Techniques

Parallel Polling with NI-488.2 Routines

Follow these steps to implement parallel polling using NI-488.2
routines. Each step contains example code.

1

Configure the device for parallel polling using the PPol | Confi g
routine, unless the device can configure itself for parallel polling.
The following example configures a device at address 3 to assert
dataline 5 (DIO5) whenitsi st valueis1.

#i ncl ude "decl -32. h"

char response;

Addr 4882_t AddresslList[2];

/* The follow ng command cl ears the GPIB. */

Sendl FC(0) ;

/* The val ue of sense is conpared with the ist bit
of the device and determ nes whether the data |line
is asserted. */

PPol | Config(0,3,5,1);

Conduct the parallel poll using PPol | , store the response, and
check the response for a certain value. In the following example,
because DIO5 is asserted by the deviceif i st =1, the program
checks bit 4 (hex 10) in the response to determine the value of
ist.

PPol | (0, &response);
/* If response has bit 4 (hex 10) set, the ist bit
of the device at that time is equal to 1. If it
does not appear, the ist bit is equal to 0. Check
the bit in the follow ng statenment. */
if (response & 0x10) {

printf("The ist equals 1.\n");

el se {
printf("The ist equals 0.\n");

Unconfigure the device for parallel polling using the

PPol | Unconf i g routine as shown in the following example. In
this example, the NOADDR constant must appear at the end of the
array to signal the end of the address list. 1f NOADDR is the only
valuein the array, all devices receive the parallel poll disable

message.
Addr essLi st [0] 3;

AddressList[1] = NOADDR
PPol | Unconfi g(0, AddressList);

NI-488.2M User Manual for Windows 95 612 © National Instruments Corporation

Chapter

GPIB Configuration Utility

This chapter contains a description of the GPIB configuration utility
you can use to configure your NI-488.2M software.

Overview

The GPIB configuration utility is integrated into the Windows 95
Device Manager. You can useit to view or modify the configuration of
your GPIB interface boards. You can aso useit to view or modify the
GPIB device templates, which provide compatibility with older
applications. The online help includes all of the information that you
need to properly configure the NI1-488.2M software.

In most cases, you should use the GPIB configuration utility only to
change the hardware configuration of your GPIB interface boards. To
change the GPIB characteristics of your boards and the configuration of
the device templates, usethei bconf i g function in your application
program. If your application program usesi bconf i g whenever it
needs to modify a configuration option, it is able to run on any
computer with the appropriate NI -488.2M software, regardless of the
configuration of that computer.

© National Instruments Corporation 7-1 NI-488.2M User Manual for Windows 95

Chapter 7 GPIB Configuration Utility

Configure the NI-488.2M Software

Y ou do not need to configure the NI1-488.2M software unless you are
using more than one GPIB interface in your system. If you are using
more than one interface, you should configure the NI1-488.2M software
to associate alogical name (gpi b0, gpi b1, and so on) with each
physical GPIB interface.

= Note: GPIB Analyzer software settings are available through the GPIB
Analyzer application.

To configure the NI -488.2M software, follow these steps:

1. Double-click the System icon in the Control Panel, which can be
opened from the Settings selection of the Start menu.

2. Select the Device Manager tab in the System Properties dialog
box that appears.

3. Click the View devices by type radio button at the top of the
Device Manager tab, and double-click the National I nstruments
GPIB Interfaces icon.

4. Double-click on the particular interface type you want to configure
inthelist of installed interfaces immediately below National
Instruments GPIB Interfaces. The Resour cestab provides
information about the hardware resources assigned to the GPIB
interface, and the NI-488.2M Settings tab provides information
about the software configuration for the GPIB interface.

5. Usethe Interface Name drop-down box to select alogical name
(GPI BO, GPI B1, and so on) for the GPIB interface. Repeat this
process for each interface you need to configure. Figure 7-1 shows
the NI1-488.2M Settingstab for an AT-GPIB/TNT (PnP).

NI-488.2M User Manual for Windows 95 -2 © National Instruments Corporation

Chapter 7 GPIB Configuration Utility

AT-GPIB/TNT (Plug and Play) Properties | x| |

General MI-488.2M Settings I Hesnurcesl

F AT-GPIB/TNT [Plug and Play)

— |54 PnP Senal Mumber 00000723

Interface Mame — Termination kMethods

- ¥ Send EOI at end af Whits

—GPIB Address— [C Teminate Read on EOS
EfIITET) I~ Set 0l with EO% on Wiite
: - [T 2hit EQS Compare
E:;T:Edaw, [0 EosBue

140 Timeaout

I 10sec :I' Advanced... |

¥ Sustem Controller

Ok I Cancel

Figure 7-1. NI-488.2M Settings Tab for the AT-GPIB/TNT (PnP)

If you want to examine or modify the logical device templates for the
GPIB software, select the National Instruments GPIB Interfacesicon
from the Device M anager tab, and click the Properties button. Select
the Device Templatestab to view thelogical device templates, as
shown in Figure 7-2.

© National Instruments Corporation 73 NI-488.2M User Manual for Windows 95

Chapter 7 GPIB Configuration Utility

National Instruments GPIBE Interfaces Properties HE

N
NONE

Figure 7-2. Device Templates Tab for the Logical Device Templates

NI-488.2M User Manual for Windows 95 7-4 © National Instruments Corporation

Appendix

Status Word Conditions

This appendix gives a detailed description of the conditions reported in
the statusword, i bst a.

For information about how to use i bst a in your application program,
refer to Chapter 3, Developing Your Application.

If afunction call returns an ENEB or EDVR error, all status word bits
except the ERR hit are cleared, indicating that it is not possible to
obtain the status of the GPIB board.

Each bitin i bst a can be set for device calls (dev), board calls (brd),
or both (dev, brd).

The following table shows the status word layout.

Bit Hex
Mnemonic | Pos. | Value | Type Description
ERR 15 8000 dev,brd | GPIB error
TIMO 14 4000 dev, brd | Timelimit exceeded
END 13 2000 dev, brd | END or EOS detected
SRQI 12 1000 brd SRQ interrupt received
RQS 11 800 dev Device requesting service
CMPL 8 100 dev, brd | I/O completed
LOK 7 80 brd Lockout State
REM 6 40 brd Remote State
CIC 5 20 brd Controller-In-Charge
ATN 4 10 brd Attention is asserted
TACS 3 8 brd Talker
LACS 2 4 brd Listener
DTAS 1 2 brd Device Trigger State
DCAS 0 1 brd Device Clear State

© National Instruments Corporation Al NI-488.2M User Manual for Windows 95

Appendix A Status Word Conditions

ERR (dev, brd)

TIMO (dev, brd)

END (dev, brd)

SRQI (brd)

ERR is set in the status word following any call that resultsin an error.
Y ou can determine the particular error by examining the error variable
i berr . Appendix B, Error Codes and Solutions, describes error
codesthat arerecorded ini ber r aong with possible solutions. ERR
is cleared following any call that does not result in an error.

TIMO indicates that the timeout period has been exceeded. TIMO is
set in the status word following ani bwai t call if the TIMO bit of the
i bwai t mask parameter is set and the time limit expires. TIMOis
also set following any synchronous I/0 functions (for example, i bend,
ibrd,i bwt 6 Receive, Send, and SendOrds) if atimeout occurs
during one of these calls. TIMO iscleared in all other circumstances.

END indicates either that the GPIB EOI line has been asserted or that
the EOS byte has been received, if the software is configured to
terminate aread on an EOS byte. If the GPIB board is performing a
shadow handshake as aresult of the i bgt s function, any other
function can return a status word with the END bit set if the END
condition occurs before or during that call. END is cleared when any
I/O operation isinitiated.

Some applications might need to know the exact 1/0O read termination
mode of aread operation—EOI by itself, the EOS character by itself, or
EQI plusthe EOS character. You can usethei bconf i g function
(option | bcEndBI t | sNor rral) to enable amode in which the END
bit is set only when EQI is asserted. Inthismode if the I/O operation
completes because of the EOS character by itself, END isnot set. The
application should check the last byte of the received buffer to seeif it
isthe EOS character.

SRQI indicates that a GPIB device is requesting service. SRQI is set
whenever the GPIB board is CIC, the GPIB SRQ lineis asserted, and
the automatic serial poll capability isdisabled. SRQI iscleared either
when the GPIB board ceases to be the CIC or when the GPIB SRQ line
is unasserted.

NI-488.2M User Manual for Windows 95 A2 © National Instruments Corporation

RQS (dev)

CMPL (dev, brd)

LOK (brd)

REM (brd)

Appendix A Status Word Conditions

RQS appears in the status word only after a device-level cal and
indicates that the device is requesting service. RQS s set whenever bit
6 is asserted in the serial poll status byte of the device. The serial poll
that obtains the status byte can be theresult of acall toi br sp, or the
poll might be automatic if automatic serial polling is enabled. Do not
issueani bwai t on RQS for adevice that does not respond to serial
polls. RQSisclearedwhen an i br sp readsthe seria poll status byte
that caused the RQS.

CMPL indicates the condition of 1/0 operations. It isset whenever an
I/O operation is complete. CMPL is cleared while the I/O operation is
in progress.

LOK indicates whether the board isin alockout state. While LOK is
s, the Enabl eLocal routineori bl oc function isinoperative for
that board. LOK is set whenever the GPIB board detects that the Local
Lockout (LLO) message has been sent either by the GPIB board or by
another Controller. LOK is cleared when the System Controller
unasserts the Remote Enable (REN) GPIB line.

REM indicates whether or not the board isin the remote state. REM is
set whenever the Remote Enable (REN) GPIB lineis asserted and the
GPIB board detects that its listen address has been sent either by the
GPIB board or by another Controller. REM is cleared in the following
situations:

* When REN becomes unasserted

* When the GPIB board as a Listener detects that the Go to Local
(GTL) command has been sent either by the GPIB board or by
another Controller

« Whenthei bl oc functioniscalled whilethe LOK bitisclearedin
the status word

© National Instruments Corporation A3 NI-488.2M User Manual for Windows 95

Appendix A Status Word Conditions

CIC (brd)

ATN (brd)

TACS (brd)

LACS (brd)

DTAS (brd)

CIC indicates whether the GPIB board is the Controller-In-Charge.
CIC is set when the Sendl FC routine or i bsi ¢ function is executed
either while the GPIB board is System Controller or when another
Controller passes control to the GPIB board. CIC is cleared either
when the GPIB board detects Interface Clear (IFC) from the System
Controller or when the GPIB board passes control to another device.

ATN indicates the state of the GPIB Attention (ATN) line. ATN is set
whenever the GPIB ATN lineis asserted, and it is cleared when the
ATN lineis unasserted.

TACS indicates whether the GPIB board is addressed as a Taker.
TACS s set whenever the GPIB board detects that itstalk address (and
secondary address, if enabled) has been sent either by the GPIB board
itself or by another Controller. TACSis cleared whenever the GPIB
board detects the Untalk (UNT) command, its own listen address, atalk
address other than its own talk address, or Interface Clear (IFC).

LACS indicates whether the GPIB board is addressed as a Listener.
LACS s set whenever the GPIB board detects that its listen address
(and secondary address, if enabled) has been sent either by the GPIB
board itself or by another Controller. LACS is also set whenever the
GPIB board shadow handshakes as aresult of thei bgt s function.
LACSis cleared whenever the GPIB board detects the Unlisten (UNL)
command, its own talk address, Interface Clear (IFC), or that the

i bgt s function has been called without shadow handshake.

DTAS indicates whether the GPIB board has detected a device trigger
command. DTAS s set whenever the GPIB board, asaListener,
detects that the Group Execute Trigger (GET) command has been sent
by another Controller. DTAS s cleared on any call immediately
followingani bwai t call, if the DTAShitissetinthe i bwai t mask
parameter.

NI-488.2M User Manual for Windows 95 A4 © National Instruments Corporation

Appendix A Status Word Conditions

DCAS (brd)

DCAS indicates whether the GPIB board has detected a device clear
command. DCASis set whenever the GPIB board detects that the
Device Clear (DCL) command has been sent by another Controller, or
whenever the GPIB board as a Listener detects that the Selected Device
Clear (SDC) command has been sent by another Controller. DCASis
cleared on any call immediately following an i bwai t cdl, if the
DCASbitwassetinthe i bwai t mask parameter. It aso clearson any
call immediately following aread or write.

© National Instruments Corporation A5 NI-488.2M User Manual for Windows 95

Appendix

Error Codes and Solutions

This appendix lists a description of each error, some conditions under
which it might occur, and possible solutions.

The following table lists the GPIB error codes.

Error iberr
Mnemonic | Value M eaning
EDVR 0 System error
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 No Listeners on the GPIB
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument to function call
ESAC 5 GPIB board not System Controller as
required
EABO 6 1/O operation aborted (timeout)
ENEB 7 Nonexistent GPIB board
EDMA 8 DMA error
EQIP 10 Asynchronous I/O in progress
ECAP 11 No capability for operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial poll status byte queue overflow
ESRQ 16 SRQ stuck in ON position
ETAB 20 Table problem

© National Instruments Corporation B1 NI-488.2M User Manual for Windows 95

Appendix B Error Codes and Solutions

EDVR (0)

ECIC (1)

EDVR is returned when the board or device name passed to i bf i nd,
or the board index passed to i bdev , cannot be accessed. The global
variable i bent | contains the system error code 2, File Not Found.
This error occurs when you try to access a board or device that is not
installed or configured properly.

EDVR isalsoreturned if an invalid unit descriptor is passed to any
NI -488 function call.

Solutions
* Usei bdev to open adevice without specifying its symbolic
name.

» Useonly device or board names that are configured in the GPIB
configuration utility as parametersto the i bf i nd function.

» Usetheunit descriptor returned from i bdev ori bf i nd asthe
first parameter in subsequent NI-488 functions. Examinethe
variable before the failing function to make sure its value has not
been corrupted.

» Refer to the Troubleshooting EDVR Error Conditions section in
Chapter 4, Debugging Your Application, for more information.

ECIC isreturned when one of the following board functions or routines
is called while the board is not CIC:

* Any device-level NI-488 functions that affect the GPIB

* Any board-level NI-488 functions that issue GPIB command bytes:
i bcd, i bcnda,i bl n,andi br pp

e ibcac andibgts

* Any of the NI-488.2 routines that issue GPIB command bytes:
SendCnds, PPol | , Send, and Recei ve

Solutions

 Usei bsi ¢ or Sendl FC to make the GPIB board become CIC on
the GPIB.

e Usei brsc 1 tomake sureyour GPIB board is configured as
System Controller.

NI-488.2M User Manual for Windows 95 B2 © National Instruments Corporation

ENOL (2)

EADR (3)

Appendix B Error Codes and Solutions

* Inmultiple CIC situations, always be certain that the CIC bit
appearsin the statusword i bst a before attempting these calls. If
it does not appear, you can performani bwai t (for CIC) call to
delay further processing until control is passed to the board.

ENOL usually occurs when awrite operation is attempted with no
Listeners addressed. For a device write, ENOL indicates that the GPIB
address configured for that device in the software does not match the
GPIB address of any device connected to the bus, that the GPIB cable
is not connected to the device, or that the deviceis not powered on.

ENOL can occur in situations where the GPIB board is not the CIC and
the Controller asserts ATN before the write call in progress has ended.

Solutions

* Make sure that the GPIB address of your device matches the GPIB
address of the device to which you want to write data.

» Usethe appropriate hex codeini bcnd to address your device.

e Check your cable connections and make sure at |east two-thirds of
your devices are powered on.

e Cdlibpad (oribsad, if necessary) to match the configured
address to the device switch settings.

* Reduce the write byte count to that which is expected by the
Controller.

EADR occurs when the GPIB board is CIC and is not properly
addressing itself before read and write functions. This error is usually
associated with board-level functions.

EADR isalso returned by the functioni bgt s when the

shadow -handshake feature is requested and the GPIB ATN lineis
already unasserted. In this case, the shadow handshake is not possible
and the error is returned to notify you of that fact.

Solutions

* Make sure that the GPIB board is addressed correctly before
calingi brd,i bwt , RcvRespMsg, or SendDat aByt es.

© National Instruments Corporation B3 NI-488.2M User Manual for Windows 95

Appendix B Error Codes and Solutions

EARG (4)

ESAC (5)

EABO (6)

* Avoidcalingi bgt s exceptimmediately after an i bcnd call.
(i bcnd causes ATN to be asserted.)

EARG results when an invalid argument is passed to a function call.
The following are some examples:

e i btno caledwith avauenotintherange0 through 17.

* i beos caled with meaningless bits set in the high byte of the
second parameter.

* ibpad oribsad caled with invalid addresses.
e i bppc caledwithinvalid parallel poll configurations.

* A board-level NI-488 call made with avalid device descriptor, or a
device-level NI -488 call made with a board descriptor.

* AnNI-488.2 routine called with an invalid address.
e PPol | Confi g caledwith aninvalid dataline or sense hit.

Solutions

» Make sure that the parameters passed to the NI-488 function or
NI-488.2 routine are valid.

* Do not use adevice descriptor in aboard function or vice-versa.

ESAC resultswhen i bsi c, i bsre, Sendl FC, or Enabl eRenot e
is called when the GPIB board does not have System Controller

capability.

Solutions

Give the GPIB board System Controller capability by calling
i brsc 1 or by using the GPIB configuration utility to configure that
capability into the software.

EABO indicates that an 1/0O operation has been canceled, usually dueto
atimeout condition. Other causesare calling i bst op or receiving the
Device Clear message from the CIC while performing an /O operation.
Frequently, the 1/O is not progressing (the Listener is not continuing to

NI-488.2M User Manual for Windows 95 B4 © National Instruments Corporation

ENEB (7)

EDMA (8)

Appendix B Error Codes and Solutions

handshake or the Talker has stopped talking), or the byte count in the
call which timed out was more than the other device was expecting.

Solutions

e Usethe correct byte count in input functions or have the Talker use
the END message to signify the end of the transfer.

» Lengthen the timeout period for the I/O operation using i bt no.

* Make sure that you have configured your device to send data
before you request data.

ENEB occurs when no GPIB board exists at the 1/0 address specified
in the configuration program. This problem happens when the board is
not physically plugged into the system, the I/O address specified during
configuration does not match the actual board setting, or thereisa
system conflict with the base 1/0 address.

Solutions

Make sure there is a GPIB board in your computer that is properly
configured both in hardware and software using avalid base I/0
address.

EDMA occurs when an error occurs using DMA for data transfers. If
your computer has more than 16MB of RAM, you are using DMA, the
buffer is above 16 MB, and some error occurs when the driver attempts
to remap the buffer to below 16 MB, the NI-488.2M software returns
EDMA.

Solutions

* You can correct the EDMA problem in the software by using
i bdna to disable DMA.

e You can correct the EDMA problem in the hardware by using the
Device Manager to reconfigure the hardware to not use aDMA
resource.

© National Instruments Corporation B5 NI-488.2M User Manual for Windows 95

Appendix B Error Codes and Solutions

EOIP (10)

ECAP (11)

EFSO (12)

EOIP occurs when an asynchronous 1/0O operation has not finished
before some other call is made. During asynchronous I/O, you can only
uei bstop,ibwait,andibonl or perform other non-GPIB
operations. If any other call is attempted, EOIP is returned.

Once the asynchronous 1/O has begun, further GPIB calls other than
i bstop,ibwait ,oribonl aredrictly limited. If acall might
interfere with the I/O operation in progress, the driver returns EOIP.

Solutions

Resynchronize the driver and the application before making any further
GPIB calls. Resynchronization is accomplished by using one of the
following three functions:

e jbwait If thereturned i bst a contains CMPL then the driver
and application are resynchronized.

e ibstop The I/O is canceled; the driver and application are
resynchronized.

 ibonl The l/O is canceled and the interface is reset; the
driver and application are resynchronized.

ECAP results when your GPIB board lacks the ability to carry out an
operation or when a particular capability has been disabled in the
software and a call is made that requires the capability.

Solutions

Check the validity of the call, or make sure your GPIB interface board
and the driver both have the needed capability.

EFSO resultswhenan i brdf ori bwrtf call encountersa problem
performing afile operation. Specifically, this error indicates that the
function is unable to open, create, seek, write, or close the file being
accessed. The specific Windows 95 error code for this condition is
containedin i bent .

NI-488.2M User Manual for Windows 95 B6 © National Instruments Corporation

Appendix B Error Codes and Solutions

Solutions

» Make sure the filename, path, and drive that you specified are
correct.

» Make sure that the access mode of thefileis correct.

e Make surethereis enough room on the disk to hold thefile.

EBUS (14)

EBUS results when certain GPIB bus errors occur during device
functions. All device functions send command bytes to perform
addressing and other bus management. Devices are expected to accept
these command bytes within the time limit specified by the default
configuration or the i bt no function. EBUS resultsif atimeout
occurred while sending these command bytes.

Solutions

» Verify that the instrument is operating correctly.

e Check for loose or faulty cabling or severa powered-off
instruments on the GPIB.

» If thetimeout period istoo short for the driver to send command
bytes, increase the timeout period.

ESTB (15)

ESTB isreported only by thei br sp function. ESTB indicates that
one or more seria poll status bytes received from automatic serial polls
have been discarded because of alack of storage space. Several older
status bytes are available; however, the oldest is being returned by the

i brsp cal.

Solutions

e Cdli brsp morefrequently to empty the queue.

» Disable autopolling with thei bconf i g function or the GPIB
configuration utility.

© National Instruments Corporation B7 NI-488.2M User Manual for Windows 95

Appendix B Error Codes and Solutions

ESRQ (16)

ETAB (20)

ESRQ occursonly during thei bwai t function or the Vi t SRQ
routine. ESRQ indicates that await for RQS is not possible because the
GPIB SRQ lineis stuck on. This situation can be caused by the
following events:

» Usualy, adevice unknown to the software is asserting SRQ.
Because the software does not know of this device, it can never
seria poll the device and unassert SRQ.

* A GPIB bustester or similar equipment might be forcing the SRQ
line to be asserted.

e A cable problem might exist involving the SRQ line.

Although the occurrence of ESRQ warns you of a definite GPIB
problem, it does not affect GPIB operations, except that you cannot
depend on the RQS bit while the condition lasts.

Solutions

Check to see if other devices not used by your application are asserting
SRQ. Disconnect them from the GPIB if necessary.

ETAB occurs only during the Fi ndLst n and Fi ndRQS functions.
ETAB indicates that there was some problem with atable used by these
functions.

e Inthecaseof Fi ndLst n, ETAB meansthat the given table did
not have enough room to hold all the addresses of the Listeners
found.

* Inthecaseof Fi ndRQS, ETAB meansthat none of the devicesin
the given table were requesting service.

Solutions

In the case of Fi ndLst n, increase the size of result arrays. Inthe case
of Fi ndRQS, check to seeif other devices not used by your application
are asserting SRQ. Disconnect them from the GPIB if necessary.

NI-488.2M User Manual for Windows 95 B8 © National Instruments Corporation

Appendix

Appendix C
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as aform you can use to comment on
the product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. Inthe U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 am. to

6:00 p.m. (central time). In other countries, contact the nearest branch office. Y ou may fax
guestionsto us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded instructions
on how to use the bulletin board and FTP services and for BBS automated information, call

(512) 795-6990. Y ou can access these services at:

United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop hit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 14865 1559
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet host, f t p. nat i nst . com, asanonymous and use
your Internet address, such asj oesmi t h@nywher e. com, asyour password. The support
files and documents are located in the /suppor t directories.

© National Instruments Corporation G1 NI-488.2M User Manual for Windows 95

+—L raxsack support

FaxBack is a 24-hour information retrieval system containing alibrary of documents on awide
range of technical information. Y ou can access FaxBack from a touch-tone telephone at the
following numbers:

(512) 418-1111 or (800) 329-7177
E-Mail Support (currently U.S. only)

Y ou can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpi b. support @atinst.com
DAQ: dag. support @atinst.com
VXI: VXi . support @atinst.com
LabVIEW: | v. support @ati nst.com
LabWindows: | w. support @ati nst.com
HiQ: hi g. support @ati nst.com
VISA: Vi sa. support @ati nst.com

Fax and Telephone Support

National Instruments has branch offices all over theworld. Usethe list below to find the technical
support number for your country. If thereisno National Instruments office in your country,
contact the source from which you purchased your software to obtain support.

Telephone El Fax

Augtralia 039879 9422 0398799179
Austria 06624579900 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310 519 622 9311
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 4576 26 00 45767111
Finland 90 527 2321 90 502 2930
France 148142424 148142414
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 48301892 02 48301915
Japan 035472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5520 3282
Netherlands 0348 433466 0348 430673
Norway 32848400 32848600
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 087304970 08 73043 70
Switzerland 056 20051 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
UK. 01635 523545 01635 523154

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and
use the completed copy of thisform as areference for your current configuration. Completing this
form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pagesif necessary.

Name

Company

Address

Fax (___) Phone (___)

Computer brand Model Processor
Operating system (include version number)

Clock Speed MHz RAM MB Display adapter
Mouse _yes __ no Otheradaptersinstalled

Harddisk capacity _ MB Brand

Instruments used

Nationa Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problemis

List any error messages

The following steps will reproduce the problem

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our
products. Thisinformation helps us provide quality products to meet your needs.

Title: NI-488.2M™ User Manual for Windows 95
Edition Date: November 1995
Part Number: 321037A-01

Please comment on the compl eteness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications Faxto: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039

Glossary

Glossary

Prefix M eaning Value
n- nano- 10°
- micro- 106
m- milli- 103
k- kilo- 103
M- mega- 108
A
acceptor handshake Listeners use this GPIB interface function to receive data, and all
devices useit to receive commands. See source handshake and
handshake.
access board The GPIB board that controls and communi cates with the devices on
the bus that are attached to it.
ANS| American National Standards Institute.
ASCII American Standard Code for Information Interchange.
asynchronous An action or event that occurs at an unpredictable time with respect to

automatic serial polling

the execution of a program.

Autopolling. A feature of the NI1-488.2M software in which serial polls
are executed automatically by the driver whenever a device asserts the
GPIB SRQ line.

© National Instruments Corporation Glossary- 1 NI-488.2M User Manual for Windows 95

Glossary

B

base I/0O address
BIOS

board-level function

C

CFE

CFGn

Cic

CPU

D

DAV

DCL

device-level function

DIO1 through DIO8

DLL

DMA

driver

NI-488.2M User Manual for Windows 95

See 1/0 address.
Basic Input/Output System.

A rudimentary function that performs a single operation.

Configuration Enable. The GPIB command which precedes CFGn and
is used to place devices into their configuration mode.

These GPIB commands (CFG1 through CFG15) follow CFE and are
used to configure all devices for the number of meters of cablein the
system so that HS488 transfers occur without errors.

Controller-In-Charge. The device that manages the GPIB by sending
interface messages to other devices.

Central processing unit.

DataValid. One of the three GPIB handshake lines. See handshake.

Device Clear. The GPIB command used to reset the device or internal
functions of all devices. See DC.

A function that combines several rudimentary board operations into one
function so that the user does not have to be concerned with bus
management or other GPIB protocol matters.

The GPIB lines that are used to transmit command or data bytes from
one device to ancther.

Dynamic link library.

Direct memory access. High-speed data transfer between the GPIB
board and memory that is not handled directly by the CPU. Not
available on some systems. See programmed 1/0O.

Device driver software installed within the operating system.

Glossary-2 © National Instruments Corporation

E

END or END Message

EOI

EOS or EOS Byte

EOT

ESB

GET

GPIB

GPIB address

GPIB board

GTL

handshake

© National Instruments Corporation

Glossary

A message that signalsthe end of adata string. END is sent by
asserting the GPIB End or Identify (EOI) line with the last data byte.

A GPIB linethat is used to signal either the last byte of a data message
(END) or the parallel poll Identify (IDY) message.

A 7- or 8-bit end-of-string character that is sent as the last byte of a data
message.

End of transmission.

The Event Status bit is part of the |EEE 488.2-defined status byte
which isreceived from a device responding to a serial poll.

Group Execute Trigger. It isthe GPIB command used to trigger a
device or internal function of an addressed Listener.

General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE Standard
488.1-1987 and ANSI/IEEE Standard 488.2-1987.

The address of a device on the GPIB, composed of aprimary address
(MLA and MTA) and perhaps a secondary address (MSA). The GPIB
board has both a GPIB address and an |/O address.

Refers to the National Instruments family of GPIB interface boards.

Go To Local. Itisthe GPIB command used to place an addressed
Listener in local (front panel) control mode.

The mechanism used to transfer bytes from the Source Handshake
function of one device to the Acceptor Handshake function of another
device. Thethree GPIB lines DAV, NRFD, and NDAC areused in an
interlocked fashion to signal the phases of the transfer, so that bytes can
be sent asynchronously (for example, without a clock) at the speed of
the slowest device.

Glossary-3 NI-488.2M User Manual for Windows 95

Glossary

hex

high-level function

Hz

i bent

i berr

i bsta

|EEE

interface message

I/0

1/0 address

i st

KB

NI-488.2M User Manual for Windows 95

For more information about handshaking, refer to the ANSI/IEEE
Standard 488.1-1987.

Hexadecimal; a number represented in base 16. For example, decimal
16 = hex 10.

See device-level function.

Hertz.

After each NI-488 1/0 function, this global variable contains the actual
number of bytes transmitted.

A global variable that contains the specific error code associated with a
function call that failed.

At the end of each function call, this global variable (status word)
contains status information.

Ingtitute of Electrical and Electronic Engineers.

A broadcast message sent from the Controller to all devices and used to
manage the GPIB.

Input/Output. In the context of this manual, the transmission of
commands or messages between the computer via the GPIB board and
other devices on the GPIB.

The address of the GPIB board from the point of view of the CPU, as
opposed to the GPIB address of the GPIB board. Also called port
address or board address.

An Individual Status hit of the status byte used in the Parallel Poll
Configure function.

Kilobytes.

Glossary-4 © National Instruments Corporation

L
LAD

language interface

Listener

LLO

low-level function

MAV

MB
memory-resident

MLA

MSA

MTA

multitasking

© National Instruments Corporation Glossary-5

Glossary

Listen address. See MLA.

Code that enables an application program that uses NI-488 functions or
NI-488.2 routines to access the driver.

A GPIB device that receives data messages from a Talker.

Local Lockout. The GPIB command used to tell al devicesthat they
may or should ignore remote (GPIB) data messages or local (front
panel) controls, depending on whether the deviceisin local or remote
program mode.

A rudimentary board or device function that performs asingle
operation.

Meters.

The Message Available bit is part of the | EEE 488.2-defined status byte
which isreceived from a device responding to a serial poll.

Megabytes.
Resident in RAM.

My Listen Address. A GPIB command used to address a device to be a
Listener. It can be any one of the 31 primary addresses.

My Secondary Address. The GPIB command used to address a device
to be aListener or a Talker when extended (two byte) addressing is
used. The complete addressisaMLA or MTA address followed by an
MSA address. There are 31 secondary addresses for atotal of 961
distinct listen or talk addresses for devices.

My Talk Address. A GPIB command used to address adeviceto be a
Talker. It can be any one of the 31 primary addresses.

The concurrent processing of more than one program or task.

NI-488.2M User Manual for Windows 95

Glossary

N

NDAC Not Data Accepted. One of the three GPIB handshake lines. See
handshake.

NRFD Not Ready For Data. One of the three GPIB handshake lines. See
handshake.

P

parallel poll The process of polling al configured devices at once and reading a
composite poll response. See serial poll .

PIO See programmed 1/0.

PPC Parallel Poll Configure. It isthe GPIB command used to configure an
addressed Listener to participate in palls.

PPD Parallel Poll Disable. It isthe GPIB command used to disable a
configured device from participating in polls. There are 16 PPD
commands.

PPE Parallel Poll Enable. It isthe GPIB command used to enable a
configured device to participate in polls and to assign a DIO response
line. There are 16 PPE commands.

PPU Parallel Poll Unconfigure. It isthe GPIB command used to disable any
device from participating in polls.

programmed |/O L ow-speed data transfer between the GPIB board and memory in which
the CPU moves each data byte according to program instructions. See
DMA.

R

RAM Random-access memory.

resynchronize The NI-488.2M software and the user application must resynchronize
after asynchronous 1/0O operations have compl eted.

RQS Request Service.

NI-488.2M User Manual for Windows 95 Glossary-6 © National Instruments Corporation

SDbC

seria poll

service request

source handshake

SPE

SRQ

status byte

status word

synchronous

System Controller

TAD

Taker

© National Instruments Corporation Glossary-7

Glossary

Seconds.

Selected Device Clear. The GPIB command used to reset internal or
device functions of an addressed Listener. See DCL.

The process of polling and reading the status byte of one device at a
time. Seeparalld poll.

See SRQ.

The GPIB interface function that transmits data and commands.
Talkers use this function to send data, and the Controller usesit to send
commands. See acceptor handshake and handshake.

Seria Poll Disable. The GPIB command used to cancel an SPE
command.

Serial Poll Enable. The GPIB command used to enable a specific
deviceto be polled. That device must also be addressed to talk. See
SPD.

Service Request. The GPIB line that a device asserts to notify the CIC
that the device needs servicing.

The | EEE 488.2-defined data byte sent by adevice when it is serially
polled.

See ibsta.

Refers to the relationship between the NI-488.2M driver functions and
a process when executing driver functionsis predictable; the processis
blocked until the driver compl etes the function.

The single designated Controller that can assert control (become CIC of

the GPIB) by sending the Interface Clear (IFC) message. Other devices
can become CIC only by having control passed to them.

Tak Address. See MTA.

A GPIB device that sends data messagesto Listeners.

NI-488.2M User Manual for Windows 95

Glossary

TCT

timeout

TLC

ud

UNL

UNT

Take Control. The GPIB command used to pass control of the bus
from the current Controller to an addressed Talker.

A feature of the NI-488.2M driver that prevents I/O functions from
hanging indefinitely when there is a problem on the GPIB.

An integrated circuit that implements most of the GPIB Talker,
Listener, and Controller functionsin hardware.

Unit descriptor. A variable name and first argument of each function
call that contains the unit descriptor of the GPIB interface board or
other GPIB device that is the object of the function.

Unlisten. The GPIB command used to unaddress any active Listeners.

Untalk. The GPIB command used to unaddress an active Talker.

NI-488.2M User Manual for Windows 95 Glossary-8 © National Instruments Corporation

I ndex

Index

Numbers/Symbols

I (repeat previous function) function, Win32 interactive control, 5-16
$ (execute indirect file) function, Win32 interactive control, 5-17

+ (turn display on) function, Win32 interactive control, 5-16

- (turn display off) function, Win32 interactive control, 5-16

A

active Controller. See Controller-in-Charge (CIC).
addresses, GPIB, 1-2, 4-5, 5-4
AllSpall routine, 6-8, 6-9
Analyzer, GPIB, 7-2
application development. See programming.
asynchronous 1/O application example, 2-6 to 2-7
ATN (attention) line, 1-3
ATN status condition, 3-5, A-4
automatic serial polling, 6-6, 6-7
auxiliary functions, Win32 interactive control
I (repeat previous function), 5-16
$ (execute indirect file), 5-17
+ (turn display on), 5-16
- (turn display off), 5-16
Help (display help information), 5-16
n* (repeat function n times), 5-17
print (display the ASCII string), 5-18
Set (udname or 488.2), 5-15 to 5-16

B

bits
GPIB address, 1-2
status condition, 3-5

NI-488.2M User Manual for Windows 95 Index-1 © National Instruments Corporation

Index

board configuration. See GPIB configuration utility.
board functions. See NI-488 functions.
Borland C/C++

files, 1-7

running applications, 3-21

C

C/C++ programming languages
files, 1-7
running applications, 3-18 to 3-21
cables
GPIB system configuration, 1-4, 1-5to 1-6
setting cable length for high-speed data transfers, 6-2 to 6-3
signal lines, 1-2t0 1-3
CIC. Se Contraller-in-Charge (CIC).
CIC protocal, 6-4, B-3
CIC status condition, 3-5, A-4
clearing and triggering devices
example, 2-4to 2-5
NI-488 functions, 3-9 to 3-10
NI-488.2 routines, 3-15 to 3-17
CMPL status condition, 3-5, A-3
communication with devices. See also Win32 interactive control.
basic communication, 2-2 to 2-3
basic communication with |EEE 488.2 devices, 2-14 to 2-15
commands, 4-6
errors, 4-5
configuration, GPIB system
controlling more than one board, 1-5
effects on H$488, 6-3
linear and star configurations (illustration), 1-4
requirements, 1-5to 1-6
configuration, NI1-488.2M software, 7-1to 7-4. See also GPIB configuration utility; ibconfig
function.
Configure (CFGn) message, 6-3
Configure Enable (CFE) message, 6-3
Controller-in-Charge (CIC)
active Controller asCIC, 1-1to 1-2
CIC protocal, 6-4, B-3
CIC status condition, 3-5, A-4
making GPIB board CIC, 6-4
System Controller as, 1-1to 1-2

© National Instruments Corporation Index-2 NI-488.2M User Manual for Windows 95

Controllers
definition, 1-1
idle Controller, 1-2
monitoring by Talker/Listener applications, 6-5
non-Controller applications, 2-21 to 2-22, 6-5
count, in Win32 interactive control, 5-10
count variables - ibcnt and ibentl, 3-6
customer communication, C-1

D

datalines, 1-2
datatransfers
high-speed (H$488), 6-2 to 6-3
terminating, 6-1 to 6-2
DAV (datavalid) line, 1-3
DCAS status condition, 3-5, A-5
debugging
communication errors, 4-5
configuration errors, 4-4
GPIB error codes, 4-2 to 4-4, B-1to B-8
timing errors, 4-5
with global status variables, 4-2
with GPIB Information utility, 4-1
with Win32 interactive control, 4-2
decl-32.hfile, 1-7, 3-18
device configuration. See GPIB configuration utility.
device functions. See NI-488 functions.
device template configuration, 7-3to 7-4
devices, communication. See communication with devices.
direct accessto NI-488.2M dynamic link library
compiling, linking, and running applications, 3-19 to 3-21
requirements, 3-1
DMA error, B-5
driver. See NI-488.2M software.
DTAS status condition, 3-5, A-4
dynamic link library, GPIB, 3-1

E

EABO error code, 4-3, B-4to B-5
EADR error code, 4-3, B-3
EARG error code, 4-3, B-4
EBUS error code, 4-3, B-7
ECAP error code, 4-3, B-6

ECIC error code, 4-3, B-2

NI-488.2M User Manual for Windows 95 Index-3

Index

© National Instruments Corporation

Index

EDMA, 4-3, B-5
EDVR error code, 4-3 to 4-4, B-2
EFSO error code, 4-3, B-6 to B-7
end-of-string character. See EOS.
END status condition, 3-5, A-2
ENEB error code, 4-3, B-5
ENOL error code, 4-3, B-3
EOQI (end or identify) line, 1-3, 6-1to 6-2
EOIP error code, 4-3, B-6
EOS
configuring EOS mode, 6-1 to 6-2
end-of-string mode application example, 2-8 to 2-9
ERR status condition, 3-5, A-2
error codes and solutions
EABO, B-4
EADR, B-3
EARG, B-4
EBUS, B-7
ECAP, B-6
ECIC, B-2
EDMA, B-5
EDVR, 4-3t0 4-4, B-2
EFSO, B-6
ENEB, B-5
ENOL, B-3
EQIP, B-6
ESAC, B-4
ESRQ, B-8
ESTB, B-7
ETAB, B-8
GPIB error codes (table), 4-3
error conditions
communication errors, 4-5
configuration errors, 4-4
ERR hit asindicator, 3-5, 4-2
specified in iberr, 3-5to 3-6
timing errors, 4-5
Win32 interactive control errors, 5-9
error variable - iberr, 3-5to0 3-6
ESAC error code, 4-3, B-4
ESRQ error code, 4-3, B-8
ESTB error code, 4-3, B-7
ETAB error code, 4-3, B-8
execute indirect file ($) function, Win32 interactive control, 5-17

© National Instruments Corporation Index-4 NI-488.2M User Manual for Windows 95

F

fax technical support, C-1
functions. See NI-488 functions; NI1-488.2 routines.

G

General Purpose Interface Bus. See GPIB.
global variables, 3-3to0 3-6
count variables - ibcnt and ibentl, 3-6
debugging applications, 4-2
error variable - iberr, 3-5
status word - ibsta, 3-4 to 3-5
GPIB
addresses, 1-2, 4-5, 5-4
Anayzer, 7-2
Controllers, 1-1to 1-2
lines, 1-2t0 1-3
Listeners, 1-1
overview, 1-1
sending messages across, 1-2 to 1-3

Index

system configuration, 1-4 to 1-6. See also GPIB configuration utility.

controlling more than one board, 1-5

linear and star system configuration (illustration), 1-4

requirements, 1-5to 1-6

signals, 1-2to 1-3

Talkers, 1-1
GPIB configuration utility

configuring device templates, 7-3to 7-4

configuring a GPIB interface, 7-2to 7-3

online help, 7-1

overview, 7-1

using ibconfig function instead, 7-1
gpib-32.dll file, 1-6, 1-8 to 1-9, 3-1, 3-19to 3-20
gpib-32.0bj file, 1-7, 3-19
gpib32ft.dll file, 1-7, 1-9, 3-22
gpib.dll file, 1-7, 1-8, 3-22. See also NI-488.2M DLL.
GPIB Information utility, 1-7, 4-1

H

handshake lines, 1-3
Help function, Win32 interactive control, 5-16
high-speed data transfers (H$488), 6-2 to 6-3

NI-488.2M User Manual for Windows 95 Index-5

© National Instruments Corporation

Index

ibclr function, 3-9

ibent and ibentl variables, 3-6

ibconfig function
configuring GPIB board as CIC, 6-4
configuring GPIB driver, 4-5, 7-1
determining assertion of EQI line, 6-2
enabling autopolling, 6-6
enabling high-speed data transfers, 6-2

ibdev function, 3-9, 5-11 to 5-12

ibeos function, 6-1

ibeot function, 6-1

iberr error variable, 3-5to 3-6

ibfind function, 5-10

ibonl function, 3-11, 3-18

ibppc function, 6-10, 6-11

ibrd function, 3-11, 5-13

ibrpp function, 6-11

ibrsp function, 6-6, 6-7

ibsta. See status word conditions.

ibtrg function, 3-10

ibwait function, 3-10, 5-3, 6-4, 6-5, 6-7

ibwrt function, 3-9, 5-12

IFC (interface clear) ling, 1-3

interactive control. See Win32 interactive control.

interface management lines, 1-3

interrupts and autopolling, 6-7

L

LACS status condition, 3-5, A-4
linking applications, 3-18 to 3-21
listen address, 1-2

Listeners, GPIB, 1-1

LOK status condition, 3-5, A-3

M

Message Available (MAV) bit, 6-6
messages, sending across GPIB, 1-2 to 1-3
Microsoft Visual C/C++. See Visual C/C++.

© National Instruments Corporation Index-6

NI-488.2M User Manual for Windows 95

Index

N

n* (repeat function n times) function, Win32 interactive control, 5-17
NDAC (not data accepted) line, 1-3
NI-488 applications, programming
examples, 2-2 to 2-13, 2-21to 2-22
steps, 3-7t0 3-11
NI-488 functions
advantages of using, 3-2
board functions, 3-2 to 3-3
choosing between functions and routines, 3-1 to 3-3
device functions, 3-2, 6-4
parallel polling, 6-10 to 6-11
serial polling, 6-7
using in Win32 interactive control, 5-5 to 5-7, 5-10 to 5-13
NI-488.2 applications, programming
examples, 2-14 to 2-20
steps, 3-12t0 3-18
NI-488.2 routines
advantages of using, 3-3
choosing between functions and routines, 3-1 to 3-3
parallel polling, 6-12
serial polling, 6-8
using in Win32 interactive control, 5-8 to 5-9, 5-13t0 5-14
NI-488.2M DLL, 3-1
NI-488.2M software. See also NI-488 functions; NI-488.2 routines.
16-bit Windows support files, 1-7
configuration, 7-1to 7-4
configuration errors, 4-4
driver and driver utility files, 1-6 to 1-7
interaction with Windows 95, 1-8 to 1-9
language interfacefiles, 1-7
uninstalling, 1-11to 1-12
non-Controller applications, 2-21 to 2-22, 6-5
NRFD (not ready for data) line, 1-3
number syntax in Win32 interactive control, 5-4

P

parallel polling
application example, 2-18 to 2-19
implementing, 6-10 to 6-12
PPoall routine, 6-12
PPollConfig routine, 6-12
PPollUnconfig routine, 6-12

NI-488.2M User Manual for Windows 95 Index-7 © National Instruments Corporation

Index

primary GPIB address, 1-2
print (display the ASCII string) function, Win32 interactive control, 5-18
problem solving. See debugging.
programming. See also debugging.
accessing the NI-488.2M DLL, 3-1
choosing between NI-488 functions and NI-488.2 routines, 3-1 to 3-3
compiling and linking applications, 3-18 to 3-21
examples
asynchronous 1/O, 2-6 to 2-7
basic communication, 2-2 to 2-3
basic communication with |EEE 488.2-compliant devices, 2-14 to 2-15
clearing and triggering devices, 2-4to 2-5
end-of-string mode, 2-8 to 2-9
non-controller example, 2-21 to 2-22
paralel polls, 2-18 to 2-20
serial polls using NI-488.2 routines, 2-16 to 2-17
service requests, 2-10to 2-13
source codefiles, 2-1
global variablesfor checking status
count variables - ibcnt and ibentl, 3-6
error variable - iberr, 3-5
status word - ibsta, 3-4
interactive communication with devices, 3-6
NI-488 applications
examples, 2-2 to 2-13, 2-21 to 2-22, 3-9t0 3-11
steps, 3-7t0 3-11
writing, 3-7
NI-488.2 applications
examples, 2-14 to 2-20, 3-14 to 3-18
steps, 3-13t0 3-18
writing, 3-12
running applications, 3-18 to 3-22
steps
NI-488 applications, 3-8 to 3-11
NI-488.2 applications, 3-13 to 3-18
techniques
device-leve calls and bus management, 6-4
high-speed data transfers, 6-2 to 6-3
parallel polling, 6-10 to 6-12
serial polling, 6-5to 6-9
Talker/Listener applications, 6-5
termination of data transfers, 6-1 to 6-2
waiting for GPIB conditions, 6-4

© National Instruments Corporation Index-8 NI-488.2M User Manual for Windows 95

Index

R

readme.txt file, 1-6, 1-7
ReadStatusByte routine, 6-8
Receive routine
reading measurements, 3-15, 3-18
using in Win32 interactive control, 5-14
REM status condition, 3-5, A-3
REN (remote enable) line, 1-3
repeat addressing, 4-5
repeat function n times (n*) function, Win32 interactive control, 5-17
repeat previous function (!) function, Win32 interactive control, 5-16
requesting service. See service requests.
routines. See NI-488.2 routines.
RQS status condition, 3-5, A-3
running applications, 3-18 to 3-22

S

secondary GPIB address, 1-2
Send routine
configuring instruments, 3-15, 3-16
using in Win32 interactive control, 5-13
SendCmds function, 6-3
SendIFC routine, 3-14
SendList routine, 5-13
serial polling, 6-5 to 6-9
application example using NI-488.2 routines, 2-16 to 2-17
automatic serial polling, 6-6 to 6-7
service reguests and serial polling, 6-5 to 6-6
SRQ and seria polling, 6-7 to 6-8
service requests
application examples, 2-10 to 2-13
serial polling, 6-5 to 6-6
stuck SRQ state, 6-7
set 488.2 command, Win32 interactive control, 5-13
Set (udname or 488.2) function, Win32 interactive control, 5-15 to 5-16
setting up your system. See configuration, GPIB system.
software. See NI-488.2M software.
SRQ (service request) line
application examples, 2-10 to 2-13
purpose, 1-3
serial polling, 6-7 to 6-8
stuck SRQ state, 6-7
SRQI status condition, 3-5, A-2
status variables, global, 3-4 to 3-6

NI-488.2M User Manual for Windows 95 Index-9 © National Instruments Corporation

Index

status word conditions
ATN, A-4
CIC, A4
CMPL, A-3
contained in ibsta, 3-3t0 3-4
DCAS, A-5
debugging with, 4-2
DTAS, A-4
END, A-2
ERR, A-2
example in Win32 interactive control, 5-9
LACS, A-4
LOK, A-3
REM, A-3
RQS, A-3
SRQI, A-2
status word layout, 3-4
TACS, A-4
TIMO, A-2
string syntax in Win32 interactive control, 5-4
System Controller, 1-1, 1-2, A-4, B-4

T

TACS status condition, 3-5, A-4

talk address, setting, 1-2

Talker/Listener applications, 6-5

Talkers, 1-1

technical support, C-1

termination methods, errors caused by, 4-5

termination of datatransfers, 6-1 to 6-2

TestSRQ routine, 6-8

timeout errors, A-2, B-4to B-5

timing errors, 4-5

TIMO status condition, 3-5, A-2

triggering devices, 2-4 to 2-5, 3-10, 3-16 to 3-17
troubleshooting. See debugging.

turn display off (-) function, Win32 interactive control, 5-16
turn display on (+) function, Win32 interactive control, 5-16

U
uninstalling the GPIB hardware and software, 1-9 to 1-12

© National Instruments Corporation Index-10

NI-488.2M User Manual for Windows 95

V

variables, global. Seeglobal variables.
Visual Basic

files, 1-7

running applications, 3-19
Visual C/C++

files, 1-7

running applications, 3-18 to 3-19, 3-21

W

waiting for GPIB events, 3-10, 3-17, 5-3, 6-4
WaitSRQ routine, 3-17, 6-8
Win32 interactive control utility
auxiliary functions, 5-15to 5-18
count, 5-10
debugging applications, 4-2
developing application with, 3-6 to 3-7
error information, 5-9
example session, 5-1 to 5-4
NI-488 functions, 5-1to 5-4, 5-10to 5-13
NI-488.2 routines, 5-8 to 5-9, 5-13t0 5-14
overview, 5-1
status conditions, 5-9
syntax, 5-4 to 5-9
Windows (16-bit) GPIB applications, 3-22
Windows 16-bit support files, 1-7
Windows 95, 1-8 to 1-9

NI-488.2M User Manual for Windows 95 Index-11

Index

© National Instruments Corporation

	NI-488.2M ™ User Manual for Windows 95
	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Table of Contents
	About This Manual
	How to Use the Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	GPIB Overview
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages Across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines
	Setting Up and Configuring Your System
	Controlling More Than One Board
	Configuration Requirements
	The NI-488.2M Software Components
	NI-488.2M Driver and Driver Utilities
	16-bit Windows Support Files
	Microsoft C/C++ Language Interface Files
	Microsoft Visual Basic Language Interface Files
	Sample Application Files
	How the NI-488.2M Software Works with Windows 95
	Uninstalling the Plug and Play GPIB Hardware
	Uninstalling the Plug and Play GPIB Software

	Chapter 2 Application Examples
	Example 1: Basic Communication
	Example 2: Clearing and Triggering Devices
	Example 3: Asynchronous I/O
	Example 4: End-of-String Mode
	Example 5: Service Requests
	Example 6: Basic Communication with IEEE 488.2-Compliant Devices
	Example 7: Serial Polls Using NI-488.2 Routines
	Example 8: Parallel Polls
	Example 9: Non-Controller Example

	Chapter 3 Developing Your Application
	Choosing How to Access gpib-32.dll
	Choosing Between NI-488 Functions and NI-488.2 Routines
	Using NI-488 Functions: One Device for Each Board
	NI-488 Device Functions
	NI-488 Board Functions
	Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices
	Checking Status with Global Variables
	Status Word – ibsta
	Error Variable – iberr
	Count Variables – ibcnt and ibcntl
	Using Win32 Interactive Control to Communicate with Devices
	Writing Your NI-488 Application
	Items to Include
	NI-488 Program Shell
	General Program Steps and Examples
	Step 1. Open a Device
	Step 2. Clear the Device
	Step 3. Configure the Device
	Step 4. Trigger the Device
	Step 5. Wait for the Measurement
	Step 6. Read the Measurement
	Step 7. Process the Data
	Step 8. Place the Device Offline
	Writing Your NI-488.2 Application
	Items to Include
	NI-488.2 Program Shell
	General Program Steps and Examples
	Step 1. Initialization
	Step 2. Find All Listeners
	Step 3. Identify the Instrument
	Step 4. Initialize the Instrument
	Step 5. Configure the Instrument
	Step 6. Trigger the Instrument
	Step 7. Wait for the Measurement
	Step 8. Read the Measurement
	Step 9. Process the Data
	Step 10. Place the Board Offline
	Compiling, Linking, and Running Your GPIB Win32 Application
	Microsoft Visual C/C++
	Visual Basic
	Direct Entry with C
	Microsoft Visual C/C++
	Borland C/C++
	Running Existing Win16 GPIB Applications

	Chapter 4 Debugging Your Application
	Running GPIB Information
	Debugging with the Global Status Variables
	Debugging with Win32 Interactive Control
	GPIB Error Codes
	Troubleshooting EDVR Error Conditions
	EDVR Error with ibcntl Set to 0xE028002C
	EDVR Error with ibcntl Set to 0xE0140025
	EDVR Error with ibcntl Set to 0xE0140035
	EDVR Error with ibcntl Set to 0xE0320029
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method
	Common Questions

	Chapter 5 Win32 Interactive Control Utility
	Overview
	Example Using NI-488 Functions
	Win32 Interactive Control Syntax
	Number Syntax
	String Syntax
	Address Syntax
	Win32 Interactive Control Syntax for NI-488 Functions
	Win32 Interactive Control Syntax for NI-488.2 Routines
	Status Word
	Error Information
	Count
	Common NI-488 Functions
	ibfind
	ibdev
	ibwrt
	ibrd
	Common NI-488.2 Routines in Win32 Interactive Control
	Set 488.2
	Send and SendList
	Receive
	Auxiliary Functions
	Set (udname or 488.2)
	Help (Display Help Information)
	! (Repeat Previous Function)
	- (Turn Display Off) and + (Turn Display On)
	n* (Repeat Function n Times)
	$ (Execute Indirect File)
	Print (Display the ASCII String)

	Chapter 6 GPIB Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488
	Waiting for GPIB Conditions
	Device-Level Calls and Bus Management
	Talker/Listener Applications
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts
	SRQ and Serial Polling with NI-488 Device Functions
	SRQ and Serial Polling with NI-488.2 Routines
	Example 1: Using FindRQS
	Example 2: Using AllSpoll
	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with NI-488 Functions
	Parallel Polling with NI-488.2 Routines

	Chapter 7 GPIB Configuration Utility
	Overview
	Configure the NI-488.2M Software

	Appendix A Status Word Conditions
	ERR (dev, brd)
	TIMO (dev, brd)
	END (dev, brd)
	SRQI (brd)
	RQS (dev)
	CMPL (dev, brd)
	LOK (brd)
	REM (brd)
	CIC (brd)
	ATN (brd)
	TACS (brd)
	LACS (brd)
	DTAS (brd)
	DCAS (brd)

	Appendix B Error Codes and Solutions
	EDVR (0)
	ECIC (1)
	ENOL (2)
	EADR (3)
	EARG (4)
	ESAC (5)
	EABO (6)
	ENEB (7)
	EDMA (8)
	EOIP (10)
	ECAP (11)
	EFSO (12)
	EBUS (14)
	ESTB (15)
	ESRQ (16)
	ETAB (20)

	Appendix C Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. GPIB Address Bits
	Figure 1-2. Linear and Star System Configuration
	Figure 1-3. Example of Multiboard System Setup
	Figure 1-4. How the NI-488.2M Software Works with Windows 95
	Figure 1-5. Selecting an Interface to Remove
	Figure 1-6. Add/Remove Programs Properties Dialog Box
	Figure 1-7. Uninstallation Results
	Figure 2-1. Program Flowchart for Example 1
	Figure 2-2. Program Flowchart for Example 2
	Figure 2-3. Program Flowchart for Example 3
	Figure 2-4. Program Flowchart for Example 4
	Figure 2-5. Program Flowchart for Example 5
	Figure 2-6. Program Flowchart for Example 6
	Figure 2-7. Program Flowchart for Example 7
	Figure 2-8. Program Flowchart for Example 8
	Figure 2-9. Program Flowchart for Example 9
	Figure 3-1. General Program Shell Using NI-488 Device Functions
	Figure 3-2. General Program Shell Using NI-488.2 Routines
	Figure 7-1. NI-488.2M Settings Tab for the AT-GPIB/TNT (PnP)
	Figure 7-2. Device Templates Tab for the Logical Device Templates

	Tables
	Table 1-1. GPIB Handshake Lines
	Table 1-2. GPIB Interface Management Lines
	Table 3-1. Status Word Layout
	Table 4-1. GPIB Error Codes
	Table 5-1. Syntax for Device-Level NI-488 Functions in Win32 Interactive Control
	Table 5-2. Syntax for Board-Level NI-488 Functions in Win32 Interactive Control
	Table 5-3. Syntax for NI-488.2 Routines in Win32 Interactive Control
	Table 5-4. Auxiliary Functions in Win32 Interactive Control

