
Project Planning and Tracking System
A comparative analysis

Arjan C. Schokking

March 23, 2006

Abstract

The Software Engineering Services Department at Philips Research has been using a new
software development methodology in its organization for four years. This methodology is
called XP@Scrum and is a mix of the Extreme Programming and Scrum agile methodologies.
It focuses on incremental and iterative software development coupled with a well-defined es-
timating and planning framework from the Scrum methodology. It also adds a number of
software best practices such as test driven development, pair programming and refactoring
from the Extreme Programming methodology. Proper application of these techniques leads
to greater flexibility in the software production process and better quality of the developed
software as well as higher customer satisfaction.

Philips uses a tool called the Project Planning and Tracking System (PPTS) to plan and
track their team based software projects. This tool has been in development for a while and as
a consequence has become cluttered with added functionality. This leads to a sub-optimal way
of working in many of its primary functions. To address this issue a review of agile methods
was done to determine the best methods used to do planning and tracking in other tools.

An analysis of PPTS coupled with the review of a number of its competitors and the
information mentioned above leads to a number of suggestions concerning things that should
be implemented in PPTS. These have to do with the user interface but also address some
issues of lacking functionality when compared to similar tools. Also included, are the features
from other tools, which could solve these problems and features, which might otherwise be
useful in PPTS. These weaknesses and their fixes are investigated in the masters thesis that
will be written after this research report.

A short review of which tools from the comparison are best suited for a given project
situation is given too. While this review is not extensive, it does provide a distinction in which
tools are best suited for supporting a certain size project.

Preface

This report details the research I did at the start of my masters’ thesis project at Philips. I will
not say I started this final stretch of my formative years without a little trepidation. However
I am glad that my current 40-hour workweek at Philips is not quite as bad as it seemed from
the safety of my student perspective even when burdened with an overactive imagination.

But to get back to the matter at hand, Field Marshal Helmut Graf von Moltke is credited
with saying: ‘No plan survives contact with the enemy.’ and ‘Planning is everything, plans
are nothing.’ Given this wisdom I can only say that I am extremely grateful to be working on
and with a project planning and tracking system. So that now, after 3 months, I am actually
finishing this report instead of starting it.

Add to this the excellent help and comments I received from my mentors at both the
Technical University of Delft and at the Software Engineering Services department at Philips
Research. Thank you for those: Wouter de Jong at the TUDelft, Frank Welberts and Christ
Vriens at Philips. This has definitely added to both the quality and readability of this report.
Additional thanks go out to my colleagues at Philips not mentioned above, namely: Nicole
Belilos, Pascal Vogels and René Barto. Finally thanks go to Joseph Pelrine for allowing the
use of his planning circle figures.

So without further ado, enjoy.

Eindhoven, December 2005.

1

Contents

1 Introduction 7
1.1 Organization . 7
1.2 Problem statement . 7
1.3 Assignment . 8

1.3.1 Social relevance . 8
1.3.2 Scientific relevance . 8

1.4 Approach . 8
1.5 Planning . 9
1.6 Chapters . 10

2 Agile Explained 11
2.1 Agile software development . 11

2.1.1 History . 11
2.1.2 Philosophy . 12

2.2 Agile concepts explained . 13
2.3 Agile Methodologies . 14
2.4 Extreme Programming (XP) . 15

2.4.1 Extreme programming roles . 15
2.4.2 Extreme Programming values and practices 16
2.4.3 Extreme Programming life cycle . 18

2.5 Scrum . 19
2.5.1 Scrum development phases . 21
2.5.2 Scrum Roles . 22
2.5.3 Scrum Practices . 23
2.5.4 Future Development . 24

2.6 XP@Scrum . 24
2.6.1 XP circles . 25
2.6.2 XP@Scrum . 26

3 Test Data 28
3.1 Introduction . 28
3.2 Structure . 28

3.2.1 Project . 29
3.2.2 Release . 29
3.2.3 Iteration . 29
3.2.4 User stories . 29
3.2.5 Tasks . 29
3.2.6 Users . 30

2

CONTENTS 3

3.3 Assumptions . 30
3.4 Spreadsheet Explained . 30
3.5 Exceptions . 31
3.6 Evaluation Criteria . 31

4 Reference Tool, PPTS 33
4.1 Introduction . 33
4.2 Analysis . 33

4.2.1 General Remarks . 33
4.2.2 Extra Features . 34
4.2.3 Planning . 35
4.2.4 Tracking . 38
4.2.5 Other . 41

4.3 PPTS and Agile Software Development . 42
4.4 Summary . 42

5 Results 44
5.1 Introduction . 44
5.2 XPWeb . 44

5.2.1 General remarks . 44
5.2.2 Planning . 45
5.2.3 Tracking . 46
5.2.4 Interesting to Incorporate . 47

5.3 ExtremePlanner . 47
5.3.1 General Remarks . 47
5.3.2 Planning . 47
5.3.3 Tracking . 48
5.3.4 Interesting to Incorporate . 49

5.4 Rally . 49
5.4.1 General Remarks . 50
5.4.2 Extra features . 50
5.4.3 Planning . 50
5.4.4 Tracking . 51
5.4.5 Interesting to Incorporate . 51

5.5 VersionOne . 52
5.5.1 General Remarks . 52
5.5.2 Extra features . 53
5.5.3 Planning . 53
5.5.4 Tracking . 53
5.5.5 Interesting to Incorporate . 54

5.6 Xplanner . 54
5.6.1 General Remarks . 54
5.6.2 Extra features . 54
5.6.3 Planning . 55
5.6.4 Tracking . 55
5.6.5 Interesting to Incorporate . 55

5.7 TargetProcess . 56
5.7.1 General Remarks . 56
5.7.2 Extra features . 56
5.7.3 Planning . 56

CONTENTS 4

5.7.4 Tracking . 57
5.7.5 Interesting to Incorporate . 58

5.8 Concluding Remarks . 58
5.8.1 General Remarks . 58
5.8.2 Tools for small projects . 58
5.8.3 Tools for medium sized projects . 59
5.8.4 Tools for large projects . 59
5.8.5 Concluding . 60

6 Conclusion 61
6.1 Conclusion . 61
6.2 Additional research . 62

A Compared tools 63

B Tool comparison data set 64

C Tool comparison results 69

D Compared tools extra features summary 73

Bibliography 75

List of Figures

1.1 The PPTS project work flow . 9
1.2 Project schedule . 10

2.1 The Extreme Programming life cycle . 18
2.2 The Scrum process . 22
2.3 Overlap of XP and Scrum practices . 25
2.4 The XP Circles . 26
2.5 XP practices wrapped by Scrum planning and tracking 27

4.1 Backlog page in PPTS . 37
4.2 Work breakdown structure page of PPTS . 38
4.3 PPTS Status report page . 39
4.4 PPTS Burn-down page . 40
4.5 PPTS metrics page . 40

5.1 XPWeb calendar page . 46
5.2 ExtremePlanner iteration status page . 48

5

List of Tables

3.1 Sprint backlog list . 30
3.2 Story tasks list . 31

6

Chapter 1

Introduction

This chapter introduces the organization where this research was done, and the origin and
purpose of the project.

1.1 Organization
Philips is one of the leading electronics companies in the world and the biggest in the Nether-
lands. They produce consumer goods as well as a number of products for the professional
market such as medical equipment.

Philips Research was founded in 1914 in Eindhoven and has become one of the world’s
largest private research organizations. Its research is focused on the areas of health care,
lifestyle and enabling technologies with two thirds of the research geared toward the Product
Design division of Philips and the other third toward more exploratory research.

The System Engineering Services (SES) department at Philips is part of Philips Research
Eindhoven. Philips its research division in Eindhoven, often called Natlab, is one of the five
research centres that Philips has and is located at the High-Tech Campus. It focuses on
developing new technologies by co-operation between various high-tech companies in an envi-
ronment geared toward technological innovation. SES performs software engineering activities
that lead to both prototypes and software. Key value propositions at SES are:

• Knowledge acquisition and anchoring regarding particular Research domains

• Reuse of knowledge/code across group boundaries

• Development of a lightweight iterative and incremental process accompanied with state
of the art development environment and tools, Agile programming

• A mix of permanent staff and contractors offering the right capabilities

Within the SES department this project will be done in the Small Work Assignments Team
(SWAT). SWAT does small projects mostly for clients within Philips but also from external
clients. Both on an individual basis and as small teams.

1.2 Problem statement
SES uses an agile software development methodology. To be more specific they use the
XP@Scrum Method, both agile programming, Extreme programming (XP) and Scrum are

7

1.3 Assignment 8

discussed in Chapter 2. But in short, both are incremental and iterative development method-
ologies that focus on small project teams who deliver potentially shippable software at the end
of each two to four week iteration.

To support these teams Philips has developed the Project Planning and Tracking System
(PPTS)1. PPTS is a web based project planning and tracking tool. However a number of
other solutions 2 both open source and commercial have entered the market during the last
few years. Philips would like to know the position of PPTS compared to these other products.
Then use the comparison results as a starting point for creating a new version of PPTS. The
new version would remove flaws in the current implementation and provide new functionality.
Philips is especially interested in the usability aspects of the project planning and tracking
features. Since the user interface is far from optimal. The main methodology that PPTS
supports is Scrum and Philips would like PPTS to become the premier tool of developers
using this development methodology.

1.3 Assignment
The purpose of this assignment is to assess PPTS and its competitors and analyse their dif-
ferences and similarities. Then to decide which features might best be integrated into PPTS
and determine what can be changed in the current PPTS system to enhance the usability of
current features. Special focus with the latter is on the usability of planning features and the
user interface. Both of these areas need to be improved. A secondary goal is a comparison of
the reviewed packages for general usage by the agile community to provide insight into which
tool best suits a specific situation.

1.3.1 Social relevance
The social relevance of this assignment lies in the fact that SES needs the input that the
research of the various tools will provide for designing changes to the PPTS tool. At the
moment some teams in the SES department are not using the tool any more because of
usability issues. This is a situation that SES would like to change. A necessary first step in
that process is determining what options for change are available.

1.3.2 Scientific relevance
The scientific relevance of this research lies in the fact that there was no detailed analysis of
different agile tooling available at the moment. There have already been a number of requests
from various sources for copies of this report when it becomes available. Both by consultants
dealing with agile methodologies (see chapter 2) and other people doing research in this area.

1.4 Approach
First a thorough analysis of PPTS and its competitors will be done to find out which features
in PPTS are most desirable to implement or to change. To get the most out of this analysis,
agile methodologies in general will be studied and a set of test data will be created for use in
the comparison of the different tools. Using the test data the different tools will be evaluated
and their good and bad points noted. The PPTS tool will also be tested and will serve as

1PPTS is discussed in chapter 4
2See Appendix A

1.5 Planning 9

reference for the other tools. The good points of the other tools combined with the bad points
of PPTS can then be used to determine a list of possible changes for PPTS. This will not be
part of this research thesis but of the following masters thesis. Very important in the analysis
are the usability aspects of the competitors tools compared to those of PPTS. Especially con-
cerning the planning area since it can be improved. For a visual representation of the planned
process see Figure 1.1.

Figure 1.1: The PPTS project work flow

1.5 Planning
PPTS and the software development methodology that is used at SES are based on flexible
estimates and progress projections. Since this system is used to plan this project it is hard to
say exactly when it will be done. The initial analysis effort is planned for 3 2-week iterations.
What will be done after that largely depends on the results of the analysis and how much time
is left. See figure 1.2 for the planned time schedule.

1.6 Chapters 10

September Oktober November December

Chapter 1: Introduction

Chapter 3: Test Data Set

Chapter 4: PPTS Analysis

Chapter 2 : Agile methods

XpWeb

CH:5 Results ExtremePlanner

Rally

VersionOne

ScrumWorks

XPlanner

Conclusion & Recommendations

Interviews

Requirements Document

Research Thesis Master Thesis

Implementation Research

Writing and Revising Research Document

Master Thesis Documentation

Figure 1.2: Project schedule

1.6 Chapters
The Structure of this document is as follows. This first chapter describes the problem and
the approach chosen to analyse it. The second chapter discusses agile methodologies and how
these are used at Philips. The third chapter is about the set of data that will be used in the
comparison of the various tools. In the fourth chapter the tool currently in use by Philips, the
Project Planning and Tracking System, is studied. The fifth chapter discusses the results of
the competitive analysis on a tool-by-tool basis. Finally chapter six contains the conclusion.

Chapter 2

Agile Explained

This Chapter explains the history, philosophy and methods that comprise the agile devel-
opment methodologies. It starts with a review of how agile development came to be, and
what the philosophical foundations of agile development are. A few different methodologies
are described in section 2.3, followed by a detailed description of the methodologies in use at
Philips.

2.1 Agile software development
Agile software development encompasses more then a dozen different agile methodologies.
Each has its own niche and is defined by a separate set of key practices. However the agile
methodologies also have a lot in common. Where these common factors originated and why
agile methodologies are called agile is described in the next sections.

2.1.1 History
Agile software development methodologies have been around for a long time although they
were not called agile until recently. An older and more common description of similar pro-
cesses is iterative and incremental development (IID) [LB03]. One of the first projects where
IID was used in combination with software development is NASA’s project Mercury in the
1960’s. This project resulted in the first United States manned space flight. The software this
project used was developed in half-day iterations with a test first programming practice. Test
first programming means creating tests for the code before actually writing the code itself.
Test first development and working iteratively represent techniques that are incorporated into
today’s agile methodologies. Members of the Mercury project later seeded the IBM Federal
Systems Division (FSD). In the FSD they did a large number of successful IID projects for
the Department of Defence proving the approach had value.

It was not until the 1990’s that Iterative and Incremental Development began to receive
public interest. This attention caused more usage of IID. Which led to the codifying of IID
methods into agile development methodologies. A few of the most well known agile method-
ologies were developed in parallel in the 1990’s. Among them Scrum, which refers to a rugby
scrum, Extreme programming, XP for short, and the Dynamic System Development Method
(DSDM).

Scrum was first applied at the Easel Corporation in 1993 [Sut04] and later developed by
Advanced Development Methods (ADM) and VMARK Software (VMARK), both indepen-

11

2.1 Agile software development 12

dent software vendors [Sch96]. Scrum was formalized during an attempt to explain the lack
of breakthrough productivity in object oriented (OO) projects. The software development
processes of successful independent software vendors (ISV’s) were analysed in an attempt to
identify and share high performance practices with customers and other developers.

Extreme programming matured during the time that Kent Beck participated in the Chrysler
C3 payroll project [ABB+98]. It was further inspired by the work of Ward Cunningham and
Ron Jeffries, both software developers and consultants. It is one of the most extreme forms of
agile methodologies. It focuses almost solely on engineering practices as is explained in section
2.2.1. This has gained it fans, and a certain amount of derision by critics who consider it
nothing more then formalized hacking.

The Dynamic System Development Method (DSDM) was the result of an effort by 16
developers working with Rapid Application Development (RAD). They were trying to define
a standard iterative process to support RAD at a RAD users conference. Inspired by James
Martin’s work on RAD and its time-boxing features the results of the conference led to DSDM.

In addition to these agile methodologies there are a dozen-plus others, each with its own
speciality. Agile software development is not a solution to all software development problems.
But it has advantages when used in the right circumstances. Most of the agile methodologies
focus on an environment which features rapidly changing requirements because they support
the ability to adapt to change as needed.

2.1.2 Philosophy
What is agile software development? As stated before it deals with incremental and iterative
development and includes a number of other practices, which will be detailed later. The
philosophy behind agile software development is stated in the agile manifesto [CF01]. The
manifesto was created during a meeting of 17 top software developers representing a myriad
of different agile methodologies. The text of the manifesto, which is short enough to quote,
follows:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

Most of the methodologies that fall under the header agile were first defined as lightweight
or low overhead processes. Dissatisfaction with those names was one of the reasons that
prompted the informal conference, which led to the manifesto. At this moment processes that
follow the principles stated in the agile manifesto are denoted as agile, although there is a lot
of discussion over whether some methodologies belong there or not. A selection of established
agile methodologies is described in section 2.3.

What can be deduced from the agile manifesto is a shift from rigid thinking to flexibility
and interaction. It has also been said that following the manifesto moves power back from
management to developers. This should not come as a surprise since the authors of the
manifesto were mainly developers themselves. Whether this also leads to a larger number of
successful projects as opposed to projects using standard software development methodologies,

2.2 Agile concepts explained 13

such as the waterfall model, remains the question. Little scientific data is available on agile
project successes when compared to projects using other methods. Some studies are available
about agile practices like pair programming [WU01] but they do not touch upon using the
entire methodologies.

2.2 Agile concepts explained
Before the methodologies are discussed a number of agile terms that are used in the following
sections are explained.

A user story is like a very small use case. It describes a certain piece of functionality in
the system. However a User Story is supplied by the customer and is written down in a few
sentences at most. User stories denote features of varying sizes, which are part of the planned
application.

Tasks describe actions that need to be taken to implement the functionality described in
a user story. This means that user stories are split up in a number of tasks that will provide
the functionality it describes. Tasks are specified by the development team and usually consist
of coding and related activities.

Ideal days and ideal hours are the amount of time that a developer works without any
interruptions or distractions whatsoever. As such it is an abstract time measure and is often
the unit that is used to estimate the size of stories and tasks. A second notion to abstract the
size of some piece of functionality from the time it will take to implement is story points.

Story points are an arbitrary unit for estimating size for a thing relative to something
else. As such 2 story points denote twice as much work as one story point. The benefit of this
notion is that it does not have the reference to time that is inherent in the term ideal day and
ideal hour. Additionally there is a translation from these ideal units to real time. This factor
is called the Load Factor.

The Load factor is the multiplication constant that converts Ideal days and hours to
normal workdays and hours. Where real hours equal the number of Ideal hours times the
Load Factor. Common values for the Load Factor are 1.3 to 1.6, this means that between
thirty and sixty percent of work hours is devoted to other things then tasks directly related to
the project. For instance: meetings, answering mail and coffee breaks.

An equivalent term to load factor for use with story points and the Scrum methodology is
velocity, this term indicates how many story points of work were finished in an iteration or
some other amount of time. the term velocity is sometimes denoted in a percentage instead of
an absolute number, In this case it usually refers to the difference between ideal time and real
time. A velocity of 70% would indicate that 70% of the available time is ideal time, in other
words, time spent solely on project tasks. The other 30% is considered overhead.

The smallest pieces of code that can be tested and used in isolation are referred to as units.
Usually these are a function or procedure. A unit test is the test that provides input to a
unit and checks the output against the expected values that the unit should return.

To explain refactoring martin Fowler is quoted from his book “Refactoring, improving the
design of existing code”

Refactoring involves making changes to the internal structure of software so
it’s easier to understand and cheaper to modify without changing its observable
behaviour

Refactoring is used to keep code easy to understand which helps in extending it later on in a
project.

2.3 Agile Methodologies 14

2.3 Agile Methodologies
As stated in the last section there are a number of different agile methodologies, each of
which incorporates a different set of best practices from the software industry. The factors,
which bind these methodologies together, have been discussed in sections. A list of these
methodologies follows as well as a brief description. For more information see [ASRW02].

• Extreme Programming
Extreme Programming [ABB+98] [Bec00] is explained in section 2.2.1

• Crystal
The Crystal family[Coc04] contains a number of methodologies. Each is geared toward
a different kind of project based on importance and size. These methodologies are
commonly called Crystal followed by a colour code, which can be: Clear, Yellow, Orange
and Red. Where Clear is for small projects and the Red for big projects. At this moment
only the Crystal Clear and Crystal Yellow methodologies are well defined and have been
used in practice. Both of these have a number of common policies. They are:

– Incremental delivery

– Progress tracking by milestones based on software deliveries

– Direct user involvement

– Automated regression testing of delivered functionality

– Two user reviews per release

– Workshops for product and method tuning at the beginning and middle of each
increment

• Scrum
Scrum[SB02] is discussed in section 2.2.2

• Adaptive Software Development
Adaptive Software Development [Hig00] is aimed at the problems encountered when run-
ning large and complex software development efforts. It, like all other methodologies,
advocates iterative development but with a strong prototyping aspect. It aims to pro-
vide a framework, which will provide stability in a project without negative effects on
creativity and emergence.

• Feature Driven Development
Feature Driven Development [PF02] covers only the design and building phases of de-
velopment. It can however incorporate the other activities in a software development
effort. It features iterative development with a number of best practices, which have
been effective in the industry. This methodology emphasizes quality, process monitoring
and frequent, well-defined deliverables.

• Dynamic System Development Method
DSDM [Sta97] is a framework for the Rapid Application Deployment (RAD) software de-
velopment methodology. It focuses on working within fixed time and resource constraints,
and varying the amount of functionality accordingly. DSDM defines five phases. These
are the feasibility study, business study, functional model iteration, design and build
iteration and implementation phase. The last three phases are iterative.

2.4 Extreme Programming (XP) 15

• Additionally there is a methodology called Agile modelling which features an agile ap-
proach to performing modelling activities and Pragmatic programming which is a set of
programming best practices published in ’The pragmatic Programmed’ by Andrew Hunt
and David Thomas.

The next sections will discuss the agile methodologies that are used at Philips on a number
of projects including this one. Since a more in-depth understanding of these methodologies is
needed in the rest of this paper their descriptions will be more thorough.

2.4 Extreme Programming (XP)
Kent Beck and Ward Cunningham developed Extreme programming during a number of
projects they worked on together. It is based on a number of software best practices that
they identified as working well in the projects they did. They bundled these practices and put
them to use a number of times, for example in the Chrysler C3 experiment [ABB+98]. The
practices were formalized into 4 key values and 12 key practices which comprise the Extreme
Programming methodology. Also each member of a project team usually is assigned one of a
number of roles defined in XP. These roles will be discussed before the values and practices.

2.4.1 Extreme programming roles
Each member in an XP team can have one or more roles, these are defined as follows:

• Tracker :
The tracker keeps track of the progress of the developers and takes action if things start
to go wrong. This may include setting up a meeting about the problem, contacting the
customer or asking someone else for help. It is like a stripped down Scrum Master role,
see the description of Scrum roles in section 2.2.2

• The customer :
The customer writes user stories and specifies functional tests. The customer also decides
what will be implemented at the iteration planning and provides more information about
specifics if needed.

• The Programmer :
The programmer writes tasks, estimates both stories and tasks, writes the unit tests then
implements the user stories.

• The coach :
The coach’s task is primarily to watch everything and make sure that the project adheres
to the XP discipline.

• The Tester :
The tester is responsible for running the functional tests, processing the results and
taking action on those results.

• Doomsayer :
Points out when the sky is falling down and the team is probably about to die or the
project to fail, also known as the critic. This is not an entirely official role but such a
person crops up in almost all teams and can be a valuable indicator of trouble spots in
a project.

2.4 Extreme Programming (XP) 16

• The Manager :
The manager schedules meetings, makes sure they proceed according to plan, writes the
minutes and does other management related tasks. He does however not tell the team
what to do since it is self-managing.

Not all of these roles are present in every project, nor will they always be done by separate
people. Usually, however, most of them will be represented in a project team in one form or
another.

2.4.2 Extreme Programming values and practices
The four values of XP are communication, feedback, simplicity and courage. The 12 key
practices embody these key values and are discussed below with a description of each since
they are used in a number of SES projects as a part of their XP@Scrum methodology.

Kent Beck published a book called ’Extreme Programming Explained’ [Bec00] in 2000,
which detailed these key practices and how they could be implemented in software development.
Following is a brief discussion of these practices and what they entail.

1. The Planning Game:
This practice originated with another agile methodology namely Scrum but is used in a
number of agile methodologies. Scrums version is however slightly more detailed since
Scrum focuses more on planning.

The planning game is played on two levels, the release and the iteration level. It involves
a close interaction between the customer and the developers. In the release planning
game the customer starts by defining a number of user stories that have to be in the
release. These are usually written down on cards. When the customer has specified all
the user stories that he can think of at that moment the developers estimate the size
of each user story. The customer then prioritises the user stories according to business
value and he decides what scope the release will have. This estimation coupled with the
load factor that the team uses leads to an initial time estimation on the first release.
This will be a rough estimate. But after a few iterations the team will have a better
understanding of how many stories they can complete during an iteration and as a result
the estimates will become more accurate.

On the iteration level the customer and developer choose a number of stories from the
release to work on in the next iteration. The developers then break each story up into
the tasks and estimate how many ideal hours each task will take. Then the team checks
how many ideal hours there are planned in the iteration and multiply this by the load
factor to see if the team has enough resources available to finish the stories. If there are
not enough resources or too many, stories get added or removed until the iteration is
full.

2. Small Releases:
XP works with small releases. Typically one release every 2 months. This makes it easier
to steer and control a project, especially in conjunction with the planning game. It also
allows for more frequent and better feedback about a functioning system even if it does
not incorporate all of the functionality yet.

3. Metaphor:
XP uses a metaphor for the project. This is a word or phrase that describes the project

2.4 Extreme Programming (XP) 17

and is shared by the customer and developers. It should be a concept, which both
parties can relate to. An example would be ’Desktop’ or ’Peer-to-Peer’ to describe either
operating system functionality or file sharing between two equal entities.

4. Simple design:
XP emphasizes designing the simplest solution that still fulfils the functional require-
ments. Unnecessary complexity, extended functionality and gold plating are removed as
soon as they are found. This keeps the system simple, flexible and easy to re-factor. All
of this makes it easy to add new code to the system.

5. Testing:
XP uses test driven development. This means that before any production code is made
there should be unit tests available which test all normal situations and any boundary
conditions. Once a working test set is created the actual production code is written.
Unit tests are used to verify the production codes correctness and the code is updated if
any bugs are discovered.

6. Refactoring:
XP works best with clean, simple and easy to understand code. To attain this goal it
requires refactoring of any code which does not meet these standards whenever possible.

7. Pair programming:
Pair programming means that two people are working on the same computer. One will
be typing, that user is typically called the ’driver’ and the other will be watching for
mistakes and what needs to be done where, that user is called the ’navigator’. While
two people working on the same computer may seem a waste of manpower, research
[WU01] has shown that the code produced is typically almost bug free and of a much
higher quality then code created by a single programmer. The time saved on debugging
and other such activities mean that in total, practised pair programmers are very time
efficient. Pair programming also leads to dissemination of knowledge minimizing the risk
of project delays when people leave the project and take critical know-how with them.

8. Collective code ownership:
This means that the code is collectively owned, which means that anyone can change
any piece of code at any time. This can lead to concurrency issues and it requires a good
code management system to implement.

9. Continuous integration:
Any new code is integrated into the code base as soon as it is ready. This means that
there will usually be multiple builds each day. With new functionality being regression
tested and added to the code base on a regular basis.

10. No overtime:
XP prescribes a 40-hour workweek, in principle no overtime is allowed. If overtime is
necessary two weeks in a row it is noted as a bad project smell indicating a problem. The
40-hour workweek is used because after 5 or 6 hours people start to make more errors
and because overwork is not viewed as a productive or fun activity, thus lowering the
team’s morale.

11. On-site customer:
In an optimal situation a representative from the customer is on the development team
to guide the development and answer any questions that they have. This representative
is also responsible for creating user stories and accepting any changes that need to be

2.4 Extreme Programming (XP) 18

made during development. If an on-site customer is not available a proxy is the next
best solution. This practice is considered a vital part of the XP method even if it rarely
happens because of time constraints on the customer. Not having a customer in the
team longer communication lines. This leads to slower development and a product that
will diverge more from what the customer really wants.

12. Coding standards:
Coding guidelines should exist and be used consequently throughout the development of
the product. These guidelines help keep the code understandable and easy to read.

Having explained the basic XP practices it must be stated that these are theoretical and
that no documented XP project has implemented all the above practices. Usually a number
of the above practices are implemented that fit in the current development methodology or
ideology of an organization. There is little statistical data available on the number of projects
that have succeeded or failed using this approach. Although the first indications regarding the
use of XP seem positive.

2.4.3 Extreme Programming life cycle
The XP life cycle is divided into five phases. They are called the exploration, planning, iter-
ation to release, finalizing and the maintenance and death phase. A visual representation of
the life cycle is given in figure 2.1.

Exploration
Phase

Regular
Updates

User
Stories

Priorities

Effort
Estimates

User
Stories
for the

next
iteration

Planning
Phase

Iterations to Release Phase

Pair Programming

Collective
Code-BaseTests

Feedback

Continuous
Integration

Analysis Design
Planning

for
Testing

Testing

Continuous
Reviews

Finalizing
Phase

Small
Release

Maintenance and
Death Phase

Death

Final
Release

Updates
Releases

Customer Approval

Customer Approval

Figure 2.1: The Extreme Programming life cycle

2.5 Scrum 19

In the exploration phase the customer writes down the user stories that they want to include
in the first release. Meanwhile the developers research the technologies needed to implement
the project. They also test the architecture and technology by building a small prototype of
the system.

In the planning phase the user stories are estimated and it is decided what stories will be
in the initial release of the system.

In the iteration phase iterations are run until the first release of the system is ready or in
other words until all the user stories are completed and accepted by the customer. The scope
of the release can be varied during this phase as long as it is understood that this impacts the
release date.

In the finalizing phase the product is readied for release to the customer. Issues that remain
unfinished are documented and any last problems are resolved before the system is released.

After release to the customer the project enters the maintenance phase. It consists of con-
tinued production of a new release and providing customer support for the current release. It is
presumed that dedicated people will be used for customer support since using the development
team for this task can seriously affect the speed of further development.

The death phase starts when there are no more user stories left to implement and the final
system is made ready for release to the customer. Additional tasks like writing documentation
and other support tasks are usually done at this time. Death can also happen if the project is
cancelled due to an unsatisfied customer or through a lack of budget or other resource needed
to continue development.

2.5 Scrum
Since Scrum is one of the main methodologies that PPTS supports, if not the main methodol-
ogy, it receives additional attention. The information below is mostly from “Controlled Chaos
software development” and “Controlled Chaos: Living on the Edge” by ADM both reports
[Met] [Sch96] can be studied for further details.

As stated in the history section, Scrum emerged from an attempt to identify why object
oriented (OO) projects where not showing good results in many cases. This research was done
by independent software developers most notably Advanced Development Methods (ADM)
and VMARK software. These companies believed that writing good software is an art guided
by rules of thumb, tips and techniques. In essence that writing software is a creative pro-
cess. They began to research what made their software development more productive then
that of comparable vendors who used Capability Maturity Model (CMM) certified processes.
They asked scientist at the DuPont Chemical Advanced Research Facility, chemical process
specialists, to review their system development process. These specialists had a large body of
knowledge about processes and process automation. They concluded that software develop-
ment contained many processes that were undefined and unrepeatable instead of well-defined,
repeatable and predictable processes[Bro87].

Software development efforts had, in their eyes, more in common with empirical processes
then defined ones. A defined process is one that has no unknown elements and which can be
repeated an unlimited number of times yielding the same results each time. Therefore a defined
process can be fully automated. An empirical process is a black box. With no knowledge of
the inner working of the process only its inputs and outputs can be observed. From those
inputs and outputs it is sometimes possible to derive a model. Empirical processes, like those

2.5 Scrum 20

in the chemical industry, are tightly controlled keeping input values between certain bounds
to make sure nothing goes wrong.

The final recommendation of the scientists was that a number of tight measurement and
control processes be defined to keep track of the software projects parameters. ADM and
VMARK software then studied the software development processes in a few highly chaotic
development environments, for example at Microsoft [Cus98]. This study led to a number of
requirements with which a software development effort would have to comply. A system must:

• Be tolerant of chaos and be able to respond in a flexible manner to expected unpredictable
events

• Be constantly measured and refocused with controls

• Assume the product is continually evolving, or in other words non-static, as the knowl-
edge, comprehension and thus the requirements of the owners and users evolve

• Maximize communication and information sharing.

• Create the best possible software while dealing with requirements, quality, timetable and
resource constraints

Scrum establishes controls over software projects to insure that these requirements are met.
The controls a Scrum project uses to achieve this are the following:

• The Backlog:
A list of all requirements, which should be fulfilled in the completed product based on
the customer’s current knowledge. The items on a backlog are user stories

• Objects and Components:
Self-contained reusable things

• Packets:
A group of objects within which a story will be implemented. Coherence between objects
in a packet is high but coherence between individual packets is low

• Problems:
Things that need to be resolved by the team to implement a story within one or multiple
objects, this can include bugs

• Issues:
Concerns that must be resolved before a story is assigned to a packet or before a problem
can be solved by changing a packet

• Solutions:
Answer to a problem or an issue

• Changes:
Activities that lead to a problem or an issue being resolved

• Risks:
Risks associated with a story, problem or issue.

2.5 Scrum 21

2.5.1 Scrum development phases
Of all the controls the Backlog and the risks associated with stories are the most crucial. How
the Scrum process measures and tracks these controls will be explained next. The Scrum
process is divided into three phases:

The first phase is called the pre-game or planning phase. It contains 2 sub-phases: Planning
and architecture.

In the planning sub-phase the user stories, which describe the functionality of the system,
are created by the customer and estimated by the development team. These estimates and the
backlog of stories are continually updated throughout the project as additional information
becomes available. The team members are selected and other resources like tools are acquired.
Risk assessments, control issues and training are also part of the planning phase.

In the architecture sub-phase the high level design of the system is planned based on the
user stories that are currently on the product backlog. This activity can be done in a sprint,
the term for an iteration in scrum, or be done outside the process. It is not depicted as a
separate phase in Figure 2.2. Plans for the initial content of the first release are also made in
this sub-phase.

The development phase is usually the longest phase in a project. This phase is treated like
the black box in an empirical process with its controls, inputs and outputs. Development is
done in sprints, which is the Scrum term for an iteration. At the end of each sprint the product
is incremented with the produced functionality. The sprint is then reviewed in the sprint
review. System design and architecture evolve during sprints as does the product backlog.
The customer can always add or remove stories from the backlog. Consecutive sprints are run
until the product owner is happy with the functionality in the product. The final phase, which
is often called the post-game or implementation phase, is then started.

In the post-game phase the product is prepared for release. Anything that still needs to
be done, like final integrations and documentation ,is done. When the product is ready it is
released to the customer. Preparing a release, like the architecture definition, is usually done
in a separate sprint and as such also is not depicted separately in figure 2.2. A picture of the
Scrum process is shown figure 2.2.

2.5 Scrum 22

30 Day Sprint

Requirements

Product
Backlog

List

Sprint
Planning
Meeting

Sprint
Backlog

List

Daily Scrum
Meetings

Standards
Conventions
Technology
Resources

Architecture

Sprint
Review

Meeting

Executable
Product

Increment

Effort
Estimations

Back to Start

The Scrum Process

Finalize
Product

Phase 1

Phase 2

Phase 3

Architecture
and High Level
Design

Figure 2.2: The Scrum process

2.5.2 Scrum Roles
Scrum has three well-defined roles and three key stakeholders. The three roles are: The Scrum
master, product owner and Scrum team. The key stakeholders are: The customer, the users
and management. The roles in Scrum are better defined then the ones in XP because Scrum
focuses on management and control where XP focuses on engineering practices. This focus is
why a person will usually have a single role and no roles are left out in a typical project. If
they were it is likely that the project will run without the necessary controls to keep it heading
toward the proper goal

• The Scrum master:
The Scrum master is responsible for the application of the Scrum methodology in the
project. The Scrum master confers with the team, customer and management. He is
responsible for removing obstacles so the team can work at peak efficiency. The Scrum
master is also responsible for keeping track of projects progress.

• The product owner:
The product owner is officially responsible for the project. He is in charge of the product
backlog and is appointed by the Scrum master together with the customer and manage-
ment.

2.5 Scrum 23

• The Scrum team:
The Scrum team is the project team responsible for achieving the goals of each sprint.
The team is self-organized and helps with planning, estimation and the creation of the
functionality.

• The users:
Users are people who are going to use the system under development. Their commit-
ment to the project in collaboration with the customer is important to guarantee that
implemented features meet the users needs.

• The customer:
The customer represents the person or company who ordered the product. the customer
is involved in creating the Products Backlog.

• Management:
Management makes the final decisions about the project and defines what standards it
will use. Management tracks progress and help select the product owner among other
things.

2.5.3 Scrum Practices
Scrum practices refer to management practices. The main practices in Scrum are:

• The product backlog:
This is the backlog for the entire product, or as much of it as is known at a certain time.
It consists of a list of user stories that have been defined by the customer.

• Effort estimating:
The estimation of initial effort required to implement each user story in the backlog.
This is also done on a task level at the start of a sprint. Where the tasks in each of the
stories in the sprint are defined and estimated.

• The sprint:
A sprint is the Scrum term for an iteration. The management tools used in a sprint are:
the sprint planning meeting, the sprint backlog and the daily Scrum meeting.

– The sprint-planning meeting:
This is a two-phase meeting. In the first phase all participants of the project decide
the goal and scope of the sprint. In the second phase the development team plans
the product increment decided upon in phase one.

– The sprint backlog:
A backlog with user stories that have to be completed in the sprint.

– The daily Scrum meeting:
A stand-up meeting at the start of each day in which each member of the team
answers the following questions: What did you finish yesterday?, what problems
did you encounter? and what are you planning to do today? This allows the team
to keep track of what’s going. The meeting also helps detect and solve problems
before they can delay development.

• The sprint review meeting:
The results of the sprint are demonstrated in this meeting. Decisions about the next
sprint are made, and any changes to the product backlog are discussed and implemented.

2.6 XP@Scrum 24

These practices are the core of the Scrum methodology. They can help manage and control
chaotic software development processes and they provide excellent information about the status
of a project. The development practices of XP when combined with the management processes
of Scrum are called XP@Scrum. XP@Scrum is a popular way of working with agile methods.
How these two methodologies overlap is discussed in the next section.

2.5.4 Future Development
The development of scrum is not standing still and while the cutting edge of scrum, which
deals with overlapping iterations and other measures to increase efficiency, is beyond the scope
of this report. Readers can view the last presentation by Jeff Sutherland on Scrum [Sut05] for
more information.

2.6 XP@Scrum
As explained in the previous sections XP emphasizes programming practices. XP emerged
from the coding patterns movement and it addresses issues with code quality and readability.
On the other hand Scrum emerged, at least originally, from Japanese product development
processes and focuses on managing the delivery cycle. Luckily both methods complement each
other very well. Extreme programming practices can address the lack of methods for dealing
with low-level issues in Scrum. Scrum management practices can in turn be used to solve high
level planning issues in XP. The only overlap between the two methodologies is the planning
game, which was directly taken from Scrum by XP to give it a rudimentary estimation and
tracking ability. This overlap causes no problems since its implementation is the same in both
methodologies. All the other practices the two methodologies have are not present in the
other. All Scrum and XP practices are shown in Figure 2.3. The red circle describes XP with
its practices listed to the right. The blue circle depicts Scrum with its practices to the left.
The purple section is the overlap and as described above only holds the planning game.

2.6 XP@Scrum 25

XPSCRUMSprint
Sprint Planning
End of Sprint Review
Daily Scrum
Product Owner
Scrum Master
Product Backlog
Sprint Backlog

Small Releases
On-Site Customer
Simple Design
System Metaphor
40 Hour Week
Continuous Integration
Coding Standards
Collective Code Ownership
Testing
Refactoring
Pair-Programming

The Planning Game

Figure 2.3: Overlap of XP and Scrum practices

The Software Engineering Services department of Philips uses the XP@Scrum approach to
facilitate their software development efforts. As with most real world implementations they
do not follow XP to the letter, but use those pieces that best fit the organization. Planning
and tracking in SES is however entirely based on Scrum. Although with a number of extra
procedures, which are needed to retain the Capability Maturity Model level 2 certification.
There are some features in PPTS that deal with resource planning within Philips and are not
in XP or Scrum. These will be highlighted in chapter 3. How Scrum and XP work together is
detailed in the next section.

2.6.1 XP circles
As seen in figure 2.4 the XP practices can be arranged in a number of concentric circles 1 rep-
resenting different domains within which the XP practices fall. This is a useful representation
when thinking about how Scrum and XP work together. The four circles, from inner to outer,
are called the coding, team, and process and product circle. Each denotes the area within
which the practices in that circle apply. The coding circle comprises the testing, refactoring
and pair programming best practices. The team circle contains continuous integration, coding
standards and the collective ownership of the code base. The process circle with the 40-hour
workweek, simple design and the system metaphor practices. Finally the last circle, called the
Product circle, contains the planning game, on-site customers and small incremental releases

1Joseph Pelrine, Copyright 2003, MetaProg GMBH

2.6 XP@Scrum 26

practices.

XP Circles

Planning Game

On-Site Custom
er Sm

al
l R

el
ea

se
s

40 Hour Week

Sim
ple

 D
esig

n

System
 M

etaphor

Continuous Integration

Collective

Code O
w

nership

Codin
g Sta

ndard
s

Pairing

Te
sti

ng Refactoring

Product Circle

Process Circle

Team Circle

Coding Circle

Figure 2.4: The XP Circles

A Scrum project runs a number of sprints, which incrementally deliver software. It also
has a daily cycle for producing that software. Now as stated in chapter 2, XP@Scrum are
XP practices wrapped with a Scrum project planning and estimating approach. In the next
section this practice will be visualized and explained for the Scrum life cycle figure.

2.6.2 XP@Scrum
Scrum and XP do not really overlap except when it comes to the planning game as was ex-
plained at the start of this section. This fact allows for an easy representation of how Scrum
wraps the XP practices. A number of the XP practices are wrapped by Scrum practices,
which have to do with the daily work that is done each day of an iteration. These practices
are depicted in figure 2.5 as the smaller circles at the top of the figure. The inner circles de-
pict the XP coding and team circles from figure 2.4. The outer blue circle stands for the daily
Scrum. On the other hand the XP practices in the larger circles have more to do with practices
regarding the iteration are wrapped by the Scrum practices which encompass planning and
tracking for a sprint. This is shown by depicting the product and process circles from figure
2.4 inside the bigger blue circle at the bottom of figure 2.5, which represents a Scrum sprint.
This way the XP engineering practices are combined with Scrum planning and tracking, the
former represented as the inner circles the latter as the encompassing blue circles.

2.6 XP@Scrum 27

Sprint

Daily Scrum SCRUM

XP Product Circle

XP Process Circle

XP Team Circle

XP Coding Circle

Te
st

in
g

Re
fa

ct
or

in
g

pairing
Code

In
te

gr
at

io
n

St
an

da
rd

s
Sim

ple
 D

esig
n System Metaphor

40 Hour W
eek

Planning Game
Small Releases

O
n-Site Cutom

er

Backlog
CODE

Figure 2.5: XP practices wrapped by Scrum planning and tracking

Chapter 3

Test Data

This chapter discusses the test data that is used in the analysis of the various tools. The basis
of the test data and the evaluation criteria that were used are also explained.

3.1 Introduction
To make the comparison, a set of data in the form of user stories1, their associated tasks,
and estimates is needed. This data is needed because user stories and tasks form the basis of
projects using the Scrum and Extreme programming (XP) agile methodologies. Stories and
tasks are the main things that are estimated and tracked in agile projects. They are also the
main objects that all the tools that were analysed use to define and track projects. That is
why the data set has user stories and tasks as its basic units. Time keeping and estimations
are done in hours.

Since this test data is used to analyse the functionality that each tool offers. It should be
as similar to data from an actual project as possible. This allows for an accurate comparison
then would occur when using fictional test data. With that in mind, the test data was based
on four iterations from the project which initially created the PPTS tool. To start with, only
two iterations of the project are used. If more data is needed for proper analysis the latter 2
iterations can be used as well.

The set of user stories that comprise the test data has been edited for clarity. Two items,
which did not directly relate to the project, were removed. This concerns user stories for doc-
umentation of an internship and a user story used to keep track of hours marked as overhead.
Since neither of these provided any functionality to PPTS they were removed. Note, as was
explained in chapter 2, that all user stories should describe features specified by the customer.
In reality however user stories are sometimes created to keep track of additional overhead tasks
in a project. These are the ones that were removed to create a data set, which is as close to
an ideal situation as possible.

3.2 Structure
In this section a brief overview of the basic hierarchy of work items in an agile software project
is given for the XP@Scrum methodology in use at Philips. This is a generally accepted hierar-
chical representation of items for this methodology and applies to most other methodologies as

1The terms user story and task are explained in chapter 2.

28

3.2 Structure 29

well. The basic project layout is dictated more by how software development works in the real
world then by the methods used to develop it and thus is pretty universal. The hierarchical
representation of work described below is often called the Work Breakdown Structure (WBS)
and functions as the main input of the tools.

3.2.1 Project
A project features a description of the system that is being built and acts as the top-level
container for other work items. It is the most top-level description available in tools and
usually only has a title and a description as properties. A project generally comprises a
number of releases.

3.2.2 Release
By release a software release is meant. This is a fully functional piece of software, which
implements a certain of amount of the functionality that is desired by the customer for a
project. Releases are usually the highest level at witch planning and tracking for a project
occurs. Releases consist of a number of iterations, which incrementally add to the code base
of a release, ultimately resulting in a running system. The average time between two releases
in an agile environment is between three and six months. The functionality in a release is
specified as a number of user stories. This list of user stories is called the release backlog.

3.2.3 Iteration
Iterations were discussed in Chapter 2. Each iteration implements a number of stories from
the release backlog. Iterations are the second level on which planning and tracking is done
for a project. Iterations last between one and 4 weeks, usually the duration depends on the
amount of time between two releases. The length of an iteration should be balanced between
giving the development team the time to develop a part of the functionality, and allowing the
customer to make changes in between iterations. Iterations continue until the release backlog
has been implemented or the owner decides enough has been implemented for the current
release. The customer is free to add and remove user stories from the release backlog at any
time. But the customer is not allowed to change the user stories in an iteration during that
iteration.

3.2.4 User stories
User stories denote pieces if functionality that the customer want to have implemented. They
are estimated in ideal hours or story points. Both units are abstract notions that denote
relative size. In other words a user story with an estimate of 2 is twice as hard as a user story
with an estimate of 1 and a story with an estimate of 4 is twice as hard again. While these
units should be an abstract notion of size, in reality this is not that easy. People tend to think
about hours of effort they spend on something and not in abstract measures.

3.2.5 Tasks
For each use story in the data set there are a number of tasks which implement the functionality
that the user story describes. These tasks all have estimates in ideal hours. The addition of
these separate estimates for tasks leads to a more precise estimate for each user story. When
all tasks in a story are completed, that story is marked as completed. Tasks usually have an

3.3 Assumptions 30

entry for the how many hours were spent on them and an entry for how many hours the task
is still expected to take. The latter measure is referred to as the number of hours to go or, in
shorthand, Togo.

3.2.6 Users
There are a number of users, performing different roles, assigned to each project. Some tools
allow the user to create teams. However, usually this is done implicitly by adding a number
of users to some project. Users have roles in projects. These are defined along the lines of the
roles discussed in Chapter 2.

3.3 Assumptions
For testing purposes the assumption is made that 2 people will be working on the project.
Both of them will spend 40 hours per week on the project. They are both developers and
have the same set of skills plus comparable expertise. The iteration length is set at two weeks.
There is one spokesperson for the customer in this project who is always reachable for the
development team. To summarize:

• Two people will be working on the project, where each has 40 hours a week to spend on
it

• The iteration length will be 2 weeks

• The Test will run over 2 iterations initially, subject to change if it is apparent that more
or less iterations are needed to demonstrate the functionality of the tool.

Estimation methods from Mike Cohn new book “Agile Estimation and Planning” [Coh05]
will be used if applicable. All other planning and estimation practices will also be used as
described in this book.

3.4 Spreadsheet Explained
The complete list of the test data can be found in appendix B. This data contains four itera-
tions. Each iteration has about a dozen stories and two dozen tasks. Usually, while testing,
only one project and one release will be created since a release is the highest level of plan-
ning available in all the tools. In the following section the contents of the spreadsheet will
be explained via a few short examples taken from the spreadsheet. The terms used here were
explained in chapter 2.

Table 3.1: Sprint backlog list

3.5 Exceptions 31

The top line in the figure 3.1 shows the iteration and the units of measurement, in this case
ideal hours. Following that there are a number of user stories, the ones that have the colour
dark orange are not included in the test set because of the reasons stated in section 3.2.4. The
estimation header indicates the initial estimate made for a story. The total initial effort is the
estimate gained by summing the estimates for each task belonging to a story. Total used hours
denotes the hours actually spent on the story and finally the ToGo describes the number of
hours still needed to complete the story. Since this is historical data this number will always
be zero. The final column is called CA, which stands for customer acceptance. This means
that the customer has seen and approved the work product, in this case a finished user story.

Table 3.2: Story tasks list

This second set of entries in the spreadsheet lists each story with its tasks, where the
numbers, from left to right, are the initial estimate of each task and the amount of time
actually spent on it. Finally, totals are included for both the story estimates and the task
estimates. These estimates tend to be different since the estimate on a task basis is more
accurate then those based on user stories. This follows from the fact that tasks are smaller
then user stories and thus, in general, easier to estimate accurately. When an estimate derived
from tasks is available it is used instead of the estimate based on stories.

3.5 Exceptions
There are a number of tools, most notably Rally and VersionOne, which are hosted solutions
usable only with a guest account that provides limited functionality. In these cases the given
projects and stories will be used to evaluate the tools. Both Rally and VersionOne use test
projects based on past real world projects or projects that are comparable enough that it does
not make any difference. Readers should be aware however that in these cases other data
then the defined test data was used in the comparison of these two tools. If this impacts the
analysis it will be noted in the results section.

3.6 Evaluation Criteria
Finally the criteria for the analysis need to be defined. In other words what aspects of the
different tools will be looked at and evaluated. First the general aspects are discussed and later
on the more specific issues to do with usability, planning and tracking. Any tool which claims
to support agile development methodologies will have a certain amount of features related to
the different aspects of agile software development projects. Reiterated from chapter 2, those
main features are:

• Projects

• Releases

• Iterations

• Stories

3.6 Evaluation Criteria 32

• Tasks

• User Management

Each of these features is related to certain pieces of functionality. They are create actions,
delete actions and similar items, which are fundamental to the use of any tool. In addition
different tools may have functionality which is unique, and therefore, interesting.

There are also a number of abstract aspects related to planning and tracking, which are very
important because planning and tracking are the activities which the tools need to support.
Planning is done on the level of releases and iterations. Release planning is the normal activity
of planning releases by adding a number of iteration to them and then planning the iterations.
The planning of iterations is done by adding user stories to them until the amount of effort
they require to implement equals the resources available in an iteration.

The somewhat more abstract aspects that will be evaluated are:

• Planning

– Implementation

– Metrics

• Tracking

– Release and Iteration based.

– Metrics

• Usability

– Installation of the tool

– help features / documentation

– responsiveness

– layout / UI

Most important to Philips is the usability and implementation of planning and tracking
features in the current system. To see where these usability aspects can be improved the basic
tasks that are common to all agile projects need to be evaluated. The basic tasks described
here are from Mike Cohn’s book on agile planning. These are aspects that will be highlighted
in the analysis according to how they are accomplished in the different tools. A last aspect,
but not an unimportant one, are features that cannot be placed in any of these categories but
do add value to the tool. These features will be discussed separately in the results section of
the tool they belong to.

After analysing all the tools, and comparing each tool to PPTS, a determination must be
made whether each tool:

1. has features that are not in PPTS, and if so, if those features are useful

2. has features, which provide the same basic functionality but are better implemented

3. has some features, which are badly implemented or useless and should be avoided

It will be interesting to see how closely each tool follows a pure agile methodology or whether
they have been changed significantly to accommodate practical usage issues or quality bounds
like a CMM certification.

Chapter 4

Reference Tool, PPTS

The system in use at Philips is called the Project Planning and Tracking System (PPTS). It
will be discussed in this chapter.

4.1 Introduction
The System Engineering Services (SES) department at Philips Research has developed the
Project Planning and Tracking System (PPTS). PPTS is used to plan and track software
development projects. It has a lot of different features. Some features support the agile
methodology at its core, while others stem from the fact that SES is CMM level 2 certified.
Others add functionality specific to Philips. The latter two types of features necessitate a
number of changes in the tool from one devoted solely to agile methodologies. These changes
will be discussed in the analysis.

4.2 Analysis
This thesis is being planned with the PPTS system. That data will be used in the evaluation
of PPTS. The main reason behind this is that PPTS does the burn-down graph calculations
and its timekeeping on the server side, which makes it hard to simulate a running project.
Thus the data from the thesis project itself will be used since it has a similar set-up to the test
case. Which means a small project with, in this case, one researcher and the same boundary
conditions.

This review of PPTS and the features it offers will be along the lines of the reviews of the
other tools in chapter 5, although the analysis will be more extensive. A number of general
remarks will be discussed followed by some extra features that do not pertain to planning and
tracking. Next, features about planning will be discussed followed by the tools project tracking
features. These sections will be subdivided according to the hierarchy of an agile project. Sub-
optimal implementation of features is the main point of attention since this signifies trouble
spots. These coupled with the well-implemented features from the tool comparison will lead
to a number of recommendations for change at the end of this thesis.

4.2.1 General Remarks
It should be noted that, while PPTS is an open source tool, its primary purpose is to support
projects within Philips research. Thus it has a large number of features that are specific to this

33

4.2 Analysis 34

purpose, such as budgeting, room reservations, expertise and course overviews, and a number
of other management related items. These are less useful for external use of PPTS. Since the
focus of this research is on planning and tracking section of the tool. These extra features
will not be evaluated unless they touch upon the planning and tracking. A number of these
features are actually helpful when doing planning and tracking, these will be discussed in the
next section.

The installation of PPTS is pretty straightforward since it is a dynamic website. As long as
there is an internet server and a MySQL database, nothing should go wrong if the instructions
in the installation guide are followed. Initialising the database might be a bit difficult for users
without any MySQL knowledge and it could be automated.

4.2.2 Extra Features
PPTS has a lot of extra features that are used in Philips and some of those add value to or are
used by the planning and tracking sections of the tool. However there are also features, which
do not directly relate to either planning or tracking. These features will not be discussed at
length, but they are listed below so the reader has an idea of what is included in the tool.

• Unit Tests : Allows the user to run the unit tests for PPTS to see if any additions broke
the code

• Quality Assurance Checklist : Allows the user define checklists for different kinds of
Q&A. This feature is needed for CMM Level 2 certification

• Rooms : Allows the user to add rooms that can be reserved for meetings and reserve the
room at a specific date and time for a certain period

• Detailed resource allocation : Shows for how much time each employee is booked on
which project

• Detailed project overview : Shows details on all projects currently running

• Competences overview : Shows the competences of all employees

• Q&A overview for all projects : shows Q&A issues for all current projects

• Full Time Equivalent of all projects : Shows how many FTE employees are assigned to
a project

• Course cost overview : Shows how much each employee has spent on training courses

• Agencies : A list of all agencies that Philips Research works with and or hires employees
from, this includes contact data

• Risk Overview : Risk overview for a project

• Budget Overview : Budget overview of a project

• Project Status Report overview : List of project status reports made for a project

Next to these items there are a few extra features, which do interact with planning or
tracking aspects of the tool. These will be discussed in more detail next.

4.2 Analysis 35

• Absents :
The absents page lets the user indicate days when they will not be at work, due to
sickness, holidays or any other reasons. This is a good way to keep track of who will be
available for projects, excluding really unexpected events. The system also keeps track
of the time that a user is absent during each iteration. Then adjusts the time available
to that user to complete tasks in the iteration. This means that PPTS calculates the
actual time each user has to spend on tasks that leads to a more accurate planning. It
also leads to better tracking during the project since it is easy to look up why someone
is not at work. This does of course assume that users will diligently fill in their absences.

• Workload :
This page shows the workload for people on a project by comparing the amount of work
assigned to them to their realizable effort based on historical velocity data of previous
iterations. This can be a helpful tool during an iteration to see if someone is shouldering
too much, or not enough, work. Discrepancies here are usually the result of inexperience
with estimating how much time a certain task will take.

• Resource Allocation :
The resource allocation graph shows how much of each employees time is dedicated to
projects. this allows users to see, at a glance, which people still have hours available,
which can be assigned to other projects. Coupled with the overview of competences,
discussed next, this gives the project leader a very powerful tool to plan new projects.
The project leader can see who will become available when and who is available now and
for how many hours.

• Competences :
This page shows the different competences each employee has in a matrix view. It
includes knowledge the user has about: Programming languages, operating systems,
problem domains and methodologies they know. This data, in combination with how
many unassigned hours employees have left, is very useful when checking if the right mix
of talent is available in a project team.

Most of the things listed above relate to initial project planning and project resource
management. This is the first stage of planning a project. These features can also be very
helpful in signalling changes in resources such as the amount available. Unfortunately this
signalling function is not currently clearly integrated into the PPTS user interface.

4.2.3 Planning
This section will highlight the planning features of the current PPTS implementation. This
analysis is structured by the manner in which the planning process proceeds. Starting at the
creation of a project, creation of the backlog and finally creating an iteration with backlog
items and tasks. Another important item in addition to the functionality in the program is
the usability and feedback that the program gives a user. This will be discussed too.

Project

Defining a project, and assigning people to work on it, starts a project. These are the base
requirements of doing anything in PPTS. An administrator can create a new project on the
projects page. The user who creates a project can then fill in all necessary details. A PPTS
project allows the user to fill in a lot of customer and date related information. The rest of the

4.2 Analysis 36

information is mostly concerned with project contacts, dates and descriptions of the project,
exact information about the fields can be found in the product comparison matrix in appendix
C.

When a project has been created users can be assigned to it. This happens on the users
page where each user is displayed with a button labelled ’assignments’, which can be used to
view and alter the projects a user is assigned to. When assigning users to projects information
is needed about who has unassigned hours remaining. This information can be gained from the
resource allocation page. This is a separate page, which shows an overview of how many hours
each user still has available for allocation to projects. When the administrator has selected
the users to work on the new project he then goes back to the users page. There users can
be assigned by clicking their assignments button which opens another page that allows and
administrator to add project assignments to that person and enter the number of hours they
are going to spend on the project.

This process is a bit roundabout, especially since the user needs 3 different pages to actually
find and assign users to a project. This action will be relatively rare since new projects are
not started that often inside a department and it will be done by the department head who
has most of the information he needs memorized. However neither of these things makes the
implementation less cumbersome. They just make its impact less.

Another way to accomplish this task, and one that is more logical, would be to have an
assign users button on the project page. This would open a window which shows people that
are less then 100% assigned to other projects or are about to become available, and how much
time they have available. The user can then select them by drag and drop, select box, or what-
ever other method has been implemented. After that the administrator can fill in the number
of hours the selected user will spend on the project and save the changes. Some solution along
these lines would certainly make the project planning process easier. But since it is not used
much it has a low priority.

There are a number of pages that provide information about projects in PPTS. The first
is the main projects page. This shows the selected project, some basic information about it
like, start date, end date, the customer and all the users assigned to the project. This page
also allows the user to create a new project or modify the selected one. The second project
related page in PPTS is an overview page. It provides an overview of all projects, current,
planned or previous ones. It also contains some basic information that is limited to people
assigned, description and dates. Finally there is a page to which project status reports can
be submitted, these are just filled in templates that give the status of the project at a given
time. The overviews are limited to the first two pages, this leads to the question why there
is no page, which gives a status for each project since there is enough data available in the
database, and it is a common feature in other tools. The fact that the data is in the database
is deduced from the information available in other parts of the PPTS tool. This information
is certainly interesting for project tracking if not especially planning. Therefore, it will be
discussed further in the tracking section of this chapter.

Backlog

The Backlog page in PPTS is where the user stories for a project are added, see Figure 4.1.
User stories can also be added directly to and iteration but for planning purposes we focus on
the Backlog page. Each user story added shows up with an estimate and name. They can be
added to any defined iteration and the user can set the priority of stories by switching stories
in the list. The position of a story on the list denotes its priority, where closer to the top

4.2 Analysis 37

indicates a higher priority.

Figure 4.1: Backlog page in PPTS

The what-if option on this page is of especial interest for planning, especially on larger
projects. This option calculates how many iterations will be needed to complete the estimated
stories in the backlog based on the number of hours available and projected velocity. This
provides an easy way to figure out how many iterations need to be planned for a project. It is
annoying that the user needs to input a number of these values. Since they are available in the
database. Especially the number of hours that people are available each week. This argument
does not hold for velocity, since it is assumed that at the start of a project no historical velocity
information is available.

Releases

Releases are at this moment not supported by PPTS, this means that iterations fall directly
under a project. It also means that releases can’t be used as milestones in a project. This is an
issue when planning long-term projects that might have multiple releases. For small projects
however releases are usually not necessary. Releases add an additional level of planning and
tracking suited to long term projects, this would be a valuable addition to PPTS.

Iteration

Iteration planning in PPTS is rather confusing, mainly because the user needs to access a lot
of pages to get feedback and move stories into an iteration. User stories can be moved into an
iteration either from the backlog page or from iteration planning page. Unfortunately if it is
done from the iteration page the user has to switch between a list of stories in the iteration
and the list of backlog items. The user can’t view both at once and move stories between the
two in an easy way.

When stories are added to an iteration the only metric on the page shows how many
hours the stories are estimated at and the total number of estimated hours. This information
is useless if the user can’t see how many resources, in person hours, are available for the
iteration. To see this information the user needs to switch to either the burn-down page or
the metrics page. both pages give an overview of the available resources per iteration.

4.2 Analysis 38

Stories and Tasks

PPTS works with user stories as described in the chapter 2, these stories denote pieces of
functionality and are subdivided into tasks. Tasks describe the steps needed to implement
the functionality described in a user story. In PPTS user stories can be added on the backlog
page, see figure 4.2, or the work breakdown structure (WBS) page. When a user creates a
user story on WBS page, it is possible to choose whether to place it in any existing iteration
or on the backlog. User stories created on the backlog page can only be added to the backlog
and have to be added to an iteration afterward.

Figure 4.2: Work breakdown structure page of PPTS

Also interesting to note is that user stories can only be prioritised on the backlog. This
is correct according to the Scrum methodology but does constrain users in what they can do
with the system. On the subject of planning the only thing to be noted here is that tasks have
their own estimates, which are usually better then estimates of user stories. Tasks are smaller
pieces of work and thus, usually, easier to estimate. The rest of the functionality in PPTS
regarding tasks belongs in the tracking section of this chapter, and will be discussed there.

4.2.4 Tracking
Tracking allows developers and managers to see how projects are progressing and is very
important in agile methodologies. This is because, with few preconceptions about how a
project will turn out, there is a need to control the course of the project as it develops. To do
so people need to know what is going on in a project. This is where project tracking comes in.

Projects

In PPTS there is no tracking of anything larger then an iteration. This means that neither
projects nor releases can be tracked effectively. As explained before PPTS has at this time no

4.2 Analysis 39

way to define releases. This is a definite lack in the tool and adding release tracking should
be a primary consideration.

Iterations

The tracking features of PPTS centre on the iteration. There are a number of pages that can
be used to assess the status of an iteration. The first is the WBS, the page where an iteration
is planned but the information here is not very easy to interpret since its in a numerical format
and not very concise. A better page is the status report page shown in figure 4.3.

Figure 4.3: PPTS Status report page

On this page all user stories are shown for the selected iteration and all tasks per user story.
A numerical indicator and a progress bar depict how much of a user story has been completed.
This gives a basic, but good, overview of how a iteration is progressing. However the time is
only shown on a weekly basis so the time scale is small. A more detailed view of the progress
of the iteration is given on the burn-down page. This holds the burn-down graph, which shows
the work remaining for each day in the iteration. For these numbers the estimates of tasks are
used.

4.2 Analysis 40

Figure 4.4: PPTS Burn-down page

This graph, shown in figure 4.4, shows if an iteration is going to finish on time and if there is
too much or too little work planned for the iteration. In either situation corrective steps can
be taken in consultation with the customer. Adding or removing stories can change the total
amount of work for an iteration. On the metrics page, shown in figure 4.5, some more numbers
are given that relate to the velocity of the previous iteration and the numerical representation
of the burn down graph. It does not add much in addition to the burn-down graph and could
be incorporated into the graph page.

Figure 4.5: PPTS metrics page

4.2 Analysis 41

Stories and Tasks

User stories are more important to planning then they are to tracking. Since user stories are
the main unit in which work is defined for planning but tasks are the most accurate level at
which tracking occurs. However, on the status report page, there is an overview of how all
stories and tasks are progressing. Unfortunately this is not linked to how much time remains
in an iteration. While it can be concluded that a story is not finished yet, how much time it
will take to finish is harder to determine.

The main unit of tracking and estimation is the task. The estimates of hours spent on a
task, and of how much more time a task is going to take are the main units on which progress
is defined and tracked. Thus, it is essential that developers fill in their hours on the personal
page regularly. If users do not do this regularly the team’s information about the status of
the project will be based on inaccurate or incomplete data. There exists a tension between
providing current up to date data and flexibility in filling in the work done on tasks. Whether
the user should be forced to fill in their hours each day by some mechanism is outside the
scope of this report and is up to Philips. Some form of feedback that the user still needs to
fill in their hours would be a recommendation though.

4.2.5 Other
There are a few items that do not fit into the above categories and still need to be mentioned.
They are discussed here.

Transparency

The PPTS tool is easy to understand if the basics of Scrum and extreme programming are
known. If they are not, there is no user manual or other guide that will help the user understand
the program. While a good understanding of agile programming methodologies and Scrum
in particular will allow a user to work with PPTS, the complete lack of documentation other
then the installation guide is a big problem. This is especially true if there is no one around
to answer questions about PPTS.

The transparency of the tool in regards to normal usage and how different parts of it
interact, or in other words: ”what is happening” is confusing at first. This is mainly due to
information being on more then one page and the need to jump between pages to accomplish
common tasks. In this aspect the tools transparency is bad.

Help features and documentation

Documentation for PPTS is almost non-existent. There is a brief installation guide, which
explains the steps the user needs to go through to get the software running. But anything
other then this does not exist. A partial solution to such a problem could be in the use of tool
tip help, unfortunately that is not included in the system either which leads to the occasional
guess as to what an unlabelled button will do. Because of this it is important to have either
someone explain the system or have a good working knowledge of agile processes to enable
educated guesses. Of course good documentation would be a lot better then guesswork though.

The metrics side of the system is better documented with clear labels on the burn down
graph and a tool tips showing additional information for each day in the graph. But it must
be concluded that the system is badly documented and should have at least a quick tutorial
and an explanation of the basic functionality.

4.3 PPTS and Agile Software Development 42

Responsiveness

Responsiveness of PPTS is good with a notable exceptions having to do with the generation
of big graphs. Such as the Resource Allocation graphs. This is due to an inefficient implemen-
tation of the graph building, which causes a heavy load on the SQL server due to too many
queries. The issue is being worked on however and the new versions of PPTS that have been
released during this study are much better then the first one was. However since PPTS is a
web application there always are problems associated with that architecture.

Bug reporting

PPTS has no inherent bug tracking mechanism. It does link with either a Mantis or Bugzilla
database and lets the user import bugs into the system as stories or tasks. This is not an
optimal solution since interface issues are always present when working with outside programs.
But it is better then nothing.

4.3 PPTS and Agile Software Development
PPTS supports the agile development practices at SES.

Though SES uses the XP@Scrum methodology, which is a combination of both agile
methodologies. XP is more concerned with engineering practices and Scrum deals more with
management and organizational issues. PPTS focuses more on the aspect of Scrum from
XP@Scrum then on the engineering practices embodied in XP. This is logical since it is a
project planning and tracking tool.

4.4 Summary
Here follows a quick summary of the main points in PPTS that need attention. This provides
a focus for the review of other tools. Since it is worthwhile to look for solutions to these
problems in how other tools have implemented these features in comparison to PPTS. The
main points in PPTS that deserve attention are:

• Planning :
As stated in the planning chapter, the planning of projects and especially the addition
of users to projects can be improved upon. The complete lack of release planning should
also be addressed if it is needed in Philips. Iteration planning should also be changed
since it is too cumbersome in it’s current implementation.

• Tracking :
More tracking on a higher level of abstraction, either project or release based would
be an improvement. However, release features would have to be added to PPTS first.
Displaying more of the information that is available in the database in a clearer fashion
would be useful if it is possible.

• Usability and transparency : If the items mentioned above are changed, disregarding for
the moment what form that implementation should take, both usability and transparency
could be increased. Since a clear and simple way to plan and track projects would lead
to a better intuitive understanding of what is happening in the tool and thus, a higher
degree of transparency. The addition of the extra level of planning provided by including
releases could also improve both these factors especially in large projects.

4.4 Summary 43

• Documentation : Good tools should have good documentation. Since this tool is mostly
used inside Philips it is not hard to ask someone what something does. But having a
clear and descriptive manual for PPTS would save everyone time and effort since the time
needed to clarify features would be less. If the tool should find more use outside Philips
itself and if it need to be deployed further inside the company then more documentation
would be necessary.

Chapter 5

Results

This chapter details the results of the comparison between the different tools. The list of basic
functionality in each tool, compared to the others, is given in a product comparison matrix
included in appendix C. In this chapter the features that were not easy to include in the
comparison matrix are explained in more detail. This list was created to identify interesting
features, both good and bad, which could lead to improvements in PPTS. As such this list is
not complete for all features in the tools. Only the features, which are interesting for further
review, are included. Some tools will have the same interesting features to incorporate. These
will only be mentioned the first time they are encountered.

5.1 Introduction
The following section, which discusses the individual tools, is quite extensive. A short overview
of good and bad features for each tool is included in appendix D. For a quick overview it is
recommended to read this first and then look up any specifics in this chapter.

5.2 XPWeb
XPWeb is an open source tool for enabling the agile development process. It is based mainly
on the Extreme Programming agile methodology (see chapter 2). XPWeb’s main features
can be viewed in the product comparison matrix in appendix C. The good and bad points in
XPWeb, which fall outside the scope of the comparison matrix, follow.

5.2.1 General remarks
The next section details some general remarks about XPWeb.

Good

XPWeb is a LAMP (Linux, Apache, MySQL, PHP) application, and as such relatively easy to
install on a number of different platforms. XPWeb also allows the user to initialise its database
from the WWW interface, which is easier then configuring it manually with MySQL. This is
a nice feature, although not very consequential.

The help section of the XPWeb is excellent and explains everything the user needs to know
about using the tool. This is one of the better features of XPWeb. The help functionality is

44

5.2 XPWeb 45

fully integrated in the interface and provides explanations on both agile methodologies and
XPWeb’s functions. The help functionality is structured so that each page in the tool has an
accompanying help page. This structure is very intuitive.

bad

A lot of functionality in the tested release of XPWeb was broken. The sort feature as well as
the calculation of end dates for iterations did not demonstrate expected behaviour. In fact
both seemed broken.

All basic functionality that can be expected from an Extreme Programming perspective is
in the tool. Although, whether it is well implemented is open for debate, this is discussed in
the next section. The only thing missing in XPWeb is release planning.

5.2.2 Planning
XPWeb includes a calendar, see figure 5.1, which shows the start and end dates of each task.
It is assumed this is why tasks have start and end dates. Since a task is usually only described
by a title, an estimate and the number of hours left till the task is completed. The calendar
view might be useful for micro management of tasks but quickly becomes confusing when a
large number of tasks are displayed. Each task is also assigned a random colour, assigning a
colour to a task according to which story it belongs too seems more reasonable. The function-
ality that the calendar provides seems to support that XPWeb is a tool for monitoring project
slippage. However, burn-down charts are a much clearer way of visualizing this.

5.2 XPWeb 46

Figure 5.1: XPWeb calendar page

5.2.3 Tracking
To effectively use a planning tool for agile development a user must be able to keep track of
the time spend on a project, and the time the user still needs to finish the project. Since
this is the most basic task in many tools, it is important that this task is properly facilitated.
However the number of actions needed to do this in XPWeb, namely: Open the project page,
open an iteration, open a story, open a task, click modify, fill in the numbers and finally hit
save, is excessive for performing a common activity.

The question, why start and end dates for tasks were included at all, was asked before. In
an iteration a developer start working on a story performing its tasks in sequence and marking
them done when they are completed. Only the hours spend on the task and the time still
needed until it is completed are important. These two figures allow the developer to estimate
whether the story will be completed on time or whether it will slip. The most logical reason
for the inclusion of start- and end dates for tasks is that they were needed to implement the
calendar page.

5.3 ExtremePlanner 47

5.2.4 Interesting to Incorporate
Below is a short list of features that are interesting to incorporate in PPTS.

• Integrated help functionality in the form of a help button on every page, which auto-
matically sends the user to the section in the manual, which covers the currently active,
item or page.

• While the installation is done manually, XPWeb uses an automated script when a user
logs in for the first time to initialise the database. This feature might be nice to put in
PPTS, but it becomes more complex as more databases need to be supported.

5.3 ExtremePlanner
ExtremePlanner (EP)is a commercial tool and it is easy to install since it comes with a windows
installer. The tool does not follow a specific methodology but is a general agile planning tool
with elements of XP and Scrum. By including releases ExtremePlanners scope is slightly larger
then that of XPWeb. However, the extra features added with the inclusion of a release are
minor. They include setting a date for a release and adding user stories to a release. The
user cannot assign iterations to a release. This seems contradictory since an iteration is the
highest hierarchical item next to a release. In other words: User stories should be coupled
to an iteration and iterations should belong to a release. The method ExtremePlanner has
chosen, which ties user stories to a release, seems counter intuitive.

5.3.1 General Remarks
ExtremePlanner has a number of nice features, which are worth discussing. The ones that
don’t fall under tracking or planning will be discussed in this section.

Good

One interesting feature is the ability to import stories and export stories and tasks from and to
Excel. This is useful when working with spreadsheets or when entering historical data into the
system. However, when importing stories it creates extra work when compared to inputting
the user stories directly. The export feature is more useful. It allows the user to make printable
documents to show to management or the customer when no computer or Internet connection
is available.

ExtremePlanner has extensive sorting features. The tool can sort stories and tasks by
almost all common characteristics of an agile project including: Releases, iterations, priority,
risk, value, name and more. EP also allows the user to save a custom setting as a default sort
when viewing a page that contains a list of items.

The interface is very clean. However, in some cases it can become a bit cluttered when
there are long lists of stories or tasks on a page.

5.3.2 Planning
Good

EP allows the user to perform all the expected actions, like creating user stories, iterations
and tasks. It also allows the user to track the status of projects by entering estimates and

5.3 ExtremePlanner 48

the times spend on tasks. Although the following section contains a few remarks on how this
functionality is implemented.

Bad

How the release functionality is used in this tool can be questioned. ExtremePlanner only
allows the user to set a date for a release and assign stories to a release. No additional func-
tionality is included to do anything other then these two things. Release planning options, an
overview of what iterations and user stories are in a release and a visual representation of the
progress in a release would be needed to make this feature useful.

EP provides little help to the user when planning a project. There is an overview of the
total number of hours in a certain selection of tasks or stories. However, there is no velocity
figure or historical data to help the user select a starting velocity. There is an overview of
velocity with as unit the number of user stories completed in a given interval. But without
data about the size of each use story in ideal hours this information is meaningless.

The illogical placement of editing options becomes apparent when planning. For example:
A user cannot add or remove user stories from the iteration page or the edit iteration page.
It can only be done from the modify story page, which is very counter intuitive. There are
a number of these fallacies in the program. They do not cripple the program but are very
annoying and make the tool unpleasant to work with.

5.3.3 Tracking
Good

The iteration overview page, see figure 5.2, is excellent. It gives the user a clean overview of
what is done and what is in progress or not started yet on a story-by-story basis for each task
in each story.

Figure 5.2: ExtremePlanner iteration status page

Extreme planner also features a summary page, which serves as the entry point of the tool.
It has a short overview of the tasks and stories completed on a release, iteration and user basis.

5.4 Rally 49

The metrics included in the tool are a project burn-down graph, which shows how each
iteration went, and an task estimation accuracy graph. This is a bare minimum and more
useful graphs were present in other tools.

Bad

On the iteration overview page it can be debated if ExtremePlanner uses the best way to
start a task. EP gives a task the status of started the moment a developer is assigned to the
task, even if the developer has spend no time on it yet. If the starting point of a task is a
compromise between when a developer is assigned, and when time is booked on the task. It
would be closer to reality. The same sort of problem occurs when a task is completed. This
is done by manually setting a flag for the task to completed. A more natural option would be
to have EP set a task to completed when the Togo of the task reaches zero hours. This is a
more intuitive method and it requires less user interaction.

The iteration overview should be compact. This is not the case in EP, since in a typical
project where an iteration might have a dozen or so stories the overview can become a very
long list. This defeats the purpose of having a overview that is understandable at a glance,
since the user needs to scroll up and down all the time.

5.3.4 Interesting to Incorporate
• Some improvements to the iteration overview page. Proposed is something like the

ExtremePlanner version but more compact with some other criteria for which column a
task is in, and more information included on the page

• Releases and release based metrics like the burn-down graph. Preferably with a more
stable unit of measurement

• Sorting features and sorting profiles for all work items like tasks and user stories. The
user should also be able to set a sorting template

• Start at a comprehensive project summary page when a user logs in. Such a page would
need more information on it and better links to other sections of the tool then is the case
in ExtremePlanner

5.4 Rally
Before starting with the results of Rally there are some things that are different from the
other tools and they will be discussed first. Rally is a hosted solution with a restricted preview
feature. This made it hard to use the data set described in chapter 3. Therefore, this tool was
tested with the data that was available in the Rally trial. Since Rally includes a full project
in its preview, which seems to be similar to a normal IT software project, and the testing is
based on the features and functionality of Rally this should have no impact on the analysis.

Rally and VersionOne, the tools discussed in the next sections, are commercial tools and
are geared to facilitate larger projects then the other tools that were analysed. They adhere
to a stricter path through the tool when planning and estimating projects, which is especially
true in VersionOne. This leads to a number of extra features and functionality, which are not
directly related to the Scrum or XP methodologies. These additional features are not included
in the comparison matrix but will be discussed briefly.

5.4 Rally 50

5.4.1 General Remarks
Rally is a tool that allows the user a lot of freedom and options to plan projects. Unfortunately
it seems that the developers of Rally wanted to include too much in the tool, which led to a
unclear and too complicated structure of internal work items and deliverables. Some of the
names that are used by Rally don’t match the ones used in agile methodologies either. This
makes the tool a lot less intuitive to use then it could have been. A more detailed explanation
of these problems follows in the next sections.

5.4.2 Extra features
Rally has a somewhat different structure concerning the break down of work then the previous
tools. Rally does have projects, releases, iterations, story cards (user stories) and tasks. But
it also has a secondary structure which Rally calls the feature breakdown structure. The top
level of this hierarchy is called the workspace. This contains features and defects. Features
contain use cases, requirements (functional and non-functional), test cases with their results
and defects. This parallel breakdown structure maps onto the breakdown structure that was
mentioned first by using story cards to schedule pieces of work. These story cards then usually
link to a feature or requirement or a defect.

Features, use cases, requirements, test cases and defects are of course well known terms
in software development, and there is something to be said for including them in the tool.
It allows the tracking of bugs and defects to be handled in the tool instead of in a separate
program. It also gives the user more levels of details on which to describe work items.

However, on the other hand it complicates the structure of the program and leads to
unexpected behaviour compared to what the user would expect from the basic Scrum hierarchy.
This can be confusing and leads to a steep learning curve for the program. Since this is a
comparison in which the time spent on studying each tool is limited it is impossible to say
whether the structure used by Rally is as confusing as it seems at first or whether the added
complexity is outweighed by the extra functionality it offers. However it is possible to conclude
that the start-up costs of this tool will be higher then with the earlier tools due to the higher
complexity.

Rally also has a general search feature, which lets the user search all work products for a
certain keyword. This is useful when a user needs to find a specific story or something else in
a large project.

5.4.3 Planning
The Rally tool allows for a extensive amount of planning to be done beforehand. Although
the logical steps in the planning process are not especially clear from the interface. The tool
supports planning of multiple projects. Each containing iterations, stories, tasks and defects
and tests. Guidance on how to run through the planning process is given in the documentation
and a number of tutorial movies.

Good

Rally has planning features on the level of releases and iterations. Both feature a drag and drop
interface, which lets the user drag stories and features to an iteration or release. Rally also has
indicators, which show the remaining amount of resources for an iteration, and the balance of
planned work versus resources. This gives the user real-time feedback on the planning process
so that the right amount of work can be planned for each iteration. Additionally, the user is

5.4 Rally 51

able to move any number of stories and features from one iteration or release to another via
select boxes.

Bad

Releases are planned using features, use cases and requirements. Iterations are planned using
story cards, which the tool generates automatically for each feature that is added to the
backlog. This is a bit confusing for users who are not completely familiar with the program
yet. The previous tools, which only used the standard work breakdown structure as described
in the extra features section of the Rally tool, are a lot more intuitive in this aspect.

A more logical workflow in the planning process would also be better. The pages where
the planning is done are named intuitively but they are not arranged in a fashion that clearly
indicates a start to finish planning process. This especially noticeable when the user starts
planning a project or iteration.

5.4.4 Tracking
Rally let’s users track just about everything in a project. Most of the tracking information is
displayed in text and numbers complemented with a number of graphs.

Good

Rally features overview of iterations, releases, stories, defects and tests. There are also lists of
all requirements, features and use cases that have been specified. All of them can be sorted
by all their attributes. Stories and tasks have a graphical status-indicator, which indicates
whether they have started, been completed and accepted, or are blocked in one of these stages.

Rally produces quite a few separate overview pages. This does allow the user to view all
the relevant information, even if some of it might appear in several places.

Other nice features are the cumulative workflow graph and the burn-down graphs. The
latter are available for both Iterations and Releases. Both show, in addition to the normal
information they contain, which parts of the work are being: planned, worked on, or accepted.
this gives an additional level of detail to the graphs. The downside of these additional details
is, that they make the graphs more complex. But this is not a serious problem.

Tracking on a individual level is implemented on the personal home page that a user starts
on when he logs in. This personal homepage shows the users currently assigned tasks and any
open defects. It also provides a list of any work items that have changed since they last logged
in and if those changes impact any work that is assigned to the user.

Finally, there is a chart, which shows a time-line for the project. It includes releases and
iterations and is very useful for getting up-to-date quickly on the projects status.

Bad

As was already stated in the section above, the various reports are scattered over a number of
pages. Having them more centralized for easy viewing could be a better approach.

5.4.5 Interesting to Incorporate
• A graph of the projects burn-down and one of the acceptance of user stories

5.5 VersionOne 52

• A personal starting page for each user that shows up when users log in. It should have
relevant information like: tasks assigned to a user, bugs assigned to a user, and changes
by other team members, which impact a users tasks

• A better and clearer planning interface

• A planning status for iterations and releases, which states: resources remaining, described
in person hours coupled with velocity. This velocity can be based on historical data or
a best guess if there is no historical data available. This page should also include the
balance between resources and work that has been planned. Furthermore, it should
automatically update as stories are added, removed or moved to another iteration or
release.

• The ability to split user stories when in the iteration planning phase of a project, and
the ability to move part of the split story to another iteration.

• Releases and release planning features, these should work the same way that the iteration
planning interface does.

• Move to a slightly smaller font to increase the available space on the screen.

• A better page layout.

• Horizontal tabs for menu items instead of vertical drop-down menus.

• The feedback on most of the users actions should happen on the screen where the action
was initiated. This stops the need to look at multiple screens to see what effect some
action had.

5.5 VersionOne
VersionOne is the second large commercial project planning and tracking tool that was eval-
uated. Like Rally, its set-up is structured in a better manner then that of the first two tools
that were discussed. This makes planning projects in a coherent fashion easier. The users also
need to have less knowledge of the tool beforehand.

5.5.1 General Remarks
The number of pages in VersionOne is markedly smaller then the number of pages in Rally.
They also provide a better overview of what information can be found where. Finding the
correct information was sometimes bothersome in the Rally tool.

VersionOne has a nice and clean menu layout, with the four main items: Projects, my
home, reports and administration. These menu items are always available at the top of each
page. The rest of the menu items are displayed below this top-level menu. The only obvious
implementation flaw was: that a number of charts and overviews are linked to their objects,
like iteration and release burn-downs. These overviews cannot be directly accessed via the
reports section, which is the most obvious place for the charts and graphs. Once the location
of these views is known it is less of an issue. However, it would be better if this information
was also accessible from the reports section even if it is only through some extra links.

5.5 VersionOne 53

5.5.2 Extra features
VersionOne can be used both as a service hosted by VersionOne and as a stand-alone site that
is run on a local web server. This provides more flexibility when compared to Rally, which
only runs as a hosted service. Of course this could be an issue for projects that deal with
sensitive information or technology. In principle a hosted solution would allow the hosting
company access to all the project data. With the amount of corporate espionage around in
the world, especially in research environments, a lot of companies might be reluctant to store
data anywhere but on their own servers.

5.5.3 Planning
Here the planning features in VersionOne are discussed.

Good

VersionOne has a very structured way of walking the user through the set-up of a new project.
It guides the user in creating a project, release and some iterations, so they end up with a
planned project. This is especially useful for newcomers to the tool and to agile methodologies.
After these basic steps, the next entries in the menu deal with filling the backlog and planning
the iterations and sprints. However, there should be a better link between the last step of the
set-up process and the start of the planning process.

The structured way of working mentioned above is entirely supported through the layout
of the menu. If a user has already worked with the tool they can do the project set-up in
almost any order they like. So, in addition to the structured set-up, advanced users can use
the program as they see fit.

Bad

VersionOne does not give a lot of feedback in the planning process. No historical data or the
ability to set the expected velocity, and see how much time some user story is going to take, is
present. Neither are resources, coupled with a velocity, used to predict an acceptable workload
for an iteration. This is something that should be present in a program that is as professional
as this one. What information the tool does provide is on other pages, which means skipping
back and forth during the planning process. While it is not a disaster, it is annoying.

All linkages between releases and iterations in VersionOne seem to be implemented on the
user story level, which means that iterations are not directly attached to a specific release.
This seems contradictory but was probably done due to implementation issues. There is a
possible opportunity here for automation of time planning tasks such as planning iterations
in a release and what-if analysis. A what-if analysis can be based on the current backlog
estimates, the iteration length, release length and available resources.

5.5.4 Tracking
In this section the good and bad highlight of the tracking features in VersionOne are reviewed.

Good

VersionOne has a lot of tracking graphs and metrics, which show the projects current status.
On the start page of VersionOne is an overview of current projects and how they are pro-
gressing. This is a progress bar, which indicates the percentage of the backlog that is finished.

5.6 Xplanner 54

From the start page the user can access a number of graphical metrics about the project.
Additionally, almost every page has numerical metrics about the progress of the its contents.
For example: on the sprint tracking page the sprint and task estimates and the done and Todo
numbers are shown.

Bad

There is a lot of tracking data in the tool, and it is available almost everywhere. This can lead
to not seeing the forest for the trees. Having the tracking data summarized on one page and
reduced on other pages might be a better idea.

5.5.5 Interesting to Incorporate
• The planning interface is well implemented and it is worth looking at

• The way the menu structure points a user in the right direction while setting up and
planning a project

• Some way of indicating how far along a sprint is

5.6 Xplanner
Xplanner is another open source tool that is easy to use but has limited functionality. It is
well suited for keeping track of small projects but does have a few weak points, which will be
discussed below

5.6.1 General Remarks
Someone with a good amount of IT knowledge should install this tool. It is not very easy to
get running. Xplanner runs as a web-service under tomcat, a web service server, and needs a
number of other applications installed, in addition to the program itself, to function.

This tool is simple and limited in the features it provides the user to manage projects. This
makes for an easy-to-use program with few difficult options. It also leads to less flexibility then
bigger tools. Mostly smaller sized projects should be planned with Xplanner. In bigger projects
it is useful to have release support, which this tool does not.

The program does not have a back-button, which means users have to use the back button
of the browser itself. This is usually a unwise thing to do since values can get overwritten.

Users can add notes to each of the overview screens to notify other team members of
things that might block progress or other problems. This is a nice feature when working in an
environment where not every team member is readily available.

5.6.2 Extra features
This tool let’s the user set a busy flag while the build is being integrated. It is an interesting
feature that is not present in any of the other programs but whether it is truly useful is unclear.

The tool gives the administrator the ability to send warning emails if developers forget to
fill in their hours. This is a new feature, which was not present in any other tool. It can be
useful when people forget to fill in their hours. Plus, if users do not fill in their hours regularly
the project tracking becomes less accurate.

5.6 Xplanner 55

5.6.3 Planning
Planning in Xplanner is basic. The user creates a project and an iteration, then the user creates
use stories in that iteration. Finally, the user adds tasks to each user story. The system does
not feature any planning metrics or statistics other then showing the total estimate of all the
user stories in an iteration.

Good

The tool is easy-to-use and clear about what items belongs where since projects, iteration,
stories and tasks are displayed in a nested format.

Bad

Xplanner provides no feedback to the user, other then a total estimate, when doing planning.
Xplanner does not display resources or any suggestions about how much work can be planned
for an iteration. Neither is there any way to set an iteration’s velocity.

5.6.4 Tracking
The tracking functionality in Xplanner is more extensive then the planning features. The
tracking section of the tool features charts, metrics and other information about the status
of an iteration. Most of the tracking statistics are based on iterations. Some metrics about
stories and tasks, concerning the amount of work that has been completed and how much
effort is left, are also included.

Good

The information the tool provides to users is easy to find. From the iteration overview page
the user has access to the metrics, charts or accuracy pages.

The metrics page is interesting, it let’s the user view how much work was done singly and
how much was done in pairs, in addition to showing totals. This is quite novel and gives the
user a good idea of how much pair programming is being done.

In accordance with the last section, when a user inputs hours spent on a task it is possible
to choose whether the task was done alone or was worked on with another person. This focus
of Xplanner on pair programming is nice and is lacking in many other tools.

The charts that the tool provides are a basic burn-down and a completion graph.

Bad

Nothing about the tracking in Xplanner seems especially flawed.

5.6.5 Interesting to Incorporate
• Keeping track of pair programming in some fashion.

• Alerting users to the fact that they still need to fill in their used time for tasks

• Adding notes to pages.

5.7 TargetProcess 56

5.7 TargetProcess
TargetProcess is situated between the smaller agile tools and the big ones such as Rally and
VersionOne. This is good since it gives both the benefit of being able to do smaller projects,
while ignoring the functionality that is not used, and being able to handle larger projects.
This is however also true for VersionOne, and, to a lesser extent, for Rally. But both of those
have more upward scalability.

5.7.1 General Remarks
The first thing that is noticeable about this tool is its clean interface. It has few bells and
whistles and provides a very clean overview of the necessary information. However, Target-
Process is not structured very well. This is especially true for the menu layout and overviews.
However, with a bit of practice this should not pose a problem to users. Although it does
detract from the intuitive use of the program.

5.7.2 Extra features
TargetProcess has some nice extra features related to communications. It has a section for
posting files on the system and, and this is pretty unique in the compared tools, there is a
messaging page where developers can relay additional information to the rest of the team.

Another nice feature is the information about the workload per team member, which can
be seen on the team page. This gives a clear picture of how much effort each member of the
team has available in the current iteration, and how much work they have been assigned. It
would be nice if this status report changed along with the current date, or in other words, also
shows the possible effort left. This has however not been implemented possibly because this
status also lets the user set the amount of effort available per week, which is a constant.

5.7.3 Planning
The planning section of TargetProcess works the same way as most agile tools. First the user
defines a number of user stories with initial estimates and creates either a release with some
iterations or just some iterations. Then on a different page the user can assign the user stories
to iterations, and if applicable, a specific developer.

Good

TargetProcess is the first tool that has an automatic iteration-planning feature. It assigns user
stories to iterations using size, risk and business value parameters. A couple of things can be
noted here: First, the way that agile development usually works does not really support this
feature. The customer is the one that decides what user story should be worked on first, and
automatic planning counters this principle. On the other hand if all the parameters are set
correctly it can save the user a lot of work when dealing with a large number of stories and
iterations. The second note with regard to this feature was that it did not seem to work but it
is assumed that the fault in that lies with the testing and not the program since the amount
of testing time available per tool in this project is limited.

Another nice feature, which should be in all tools, is a counter that keeps track of the
planned effort against the available resources in an iteration. The velocity set for the iteration
denotes the available resources and the planned effort is denoted by the sum of the estimates
of planned user stories.

5.7 TargetProcess 57

Bad

Annoying in this tool is the way commands and menus are structured. The menus are not
always logically structured. The sequence of commands that a user expects while planning is
not always clear. There is not enough focus on the control-flow though the planning process.
Also, options to, for example: Add a user story, are located in a sidebar that is always available.
Instead, users expect such a feature to be on the user story page where this action produces a
result. Being able to add stories on almost every page is nice, but having the option available
just where it is expected is much nicer.

The user is able to set the velocity for an iteration. However once the iteration ends
the program does not use the historical information available, the velocity at the end of the
iteration, to determine the velocity for the next iteration. Instead, the tool has the user fill in
the velocity again. While this is not a big problem, it would be nice if the tool determined a
possible velocity for the next iteration based on the past few iterations.

Another thing, is the overwhelming amount of information given in the screen that lets the
user assign user stories to iterations. This is so much that a user story quickly occupies three
to five lines of screen space. If the user must choose some user stories from amongst a dozen
or more this becomes very confusing. The user needs to scroll all over the screen to find the
user stories he needs or wants to add to a given iteration.

5.7.4 Tracking
Tracking in TargetProcess is, compared to the big tools like Rally and VersionOne, pretty
basic. But the basics it has are well done and provide the user with the information they need
about the projects status. Additionally, there is a complete internal implementation of bug
tracking and test planning. Both of which are easy to use and intuitive.

Good

The first nice thing about tracking in TargetProcess is that the iteration status page displays
the amount of effort realized versus the amount of time elapsed in this iteration. If more time,
in percentages, has elapsed then work is completed the indicator indicates bad and if more
work is complete, in percentages, then time has elapsed the iteration status indicated good.

The addition of messaging features helps with tracking as well. It allows the users to com-
municate information about the project, which falls outside the scope of the provided metrics.
It also allows the user to express any additional information that they feel is important, and
is best expressed in natural language. This is a powerful extra tool.

A quick overview, which is given at the bottom of the main page, shows the number of
stories done and bugs closed the previous day. A nice feature, which in the case of a well run
project can be quite motivating when a user starts his workday.

Bad

The different metrics and reports that TargetProcess uses for tracking progress are spread out
through the tool. This can be a good feature when the metrics a user needs are present on the
pages they use most often. But a manager or executive wants all these reports and figures on
one page. This is lacking in TargetProcess.

The way time spent on tasks is recorded is rather cumbersome compared with other tools.
In TargetProcess this works by clicking the add time link in the quick links or on the time
keeping page. This lets the user add an amount of time and a description about what the time
was spent on to a story or task, selected by a drop down box. Better implementations use a

5.8 Concluding Remarks 58

simple field on a story or task overview list, which lets the user, fill in all their time spent for
a day in a single go. The method this tool uses creates too much overhead for this common
task.

5.7.5 Interesting to Incorporate
• A project status

• A figure, which shows the load of the different developers compared to the time that is
available for work.

• The ability to have a messages page per developer, this helps internal and external team
communications.

• An overview of status changes when compared to the previous day. Including: Number
of tasks, stories and bugs closed and or added.

• When planning an iteration show the available and the iteration that is being planned.

5.8 Concluding Remarks
The purpose of this analysis is not to provide a general comparison of the different agile tools
that were analysed. However, during the work on this analysis there has been interest from
the agile community for a comparative review. So, in this last section of the chapter, there are
some concluding remarks about each tool and what kind of use each tool is most suited for.
This is, of course, partially based on a subjective opinion. Since each of the tools mentioned
in this report has a trial available. Anyone that is using this report to make a decision about
which tool to use is encouraged to try out the tools they feel best fit their needs and make a
final decision based upon their own findings.

5.8.1 General Remarks
The reviewed tools can be sorted into three categories, based on the size of the projects that
they are used to plan and track.

5.8.2 Tools for small projects
A lot of agile projects just have one team with a couple of members. These teams do not
need a tool that supports massive development efforts and which offers a lot of unnecessary
functionality. Many small teams actually use the simplest tools of all, cardboard, tape and a
marker. While this work well for planning small projects there is something to be said for a
software tool. If only that it allows the team to save the project history for reference at a later
date.

When small teams do use a software tool. They typically do iteration planning, and use
the tracking features to control the development of the software. With a burn-down graph and
perhaps a velocity graph it is then easy and intuitive to track progress and notice any trouble
before it becomes a real problem.

Most of the tools in the comparison fall into this category, namely:

• XPWeb

• Extreme Planner

5.8 Concluding Remarks 59

• Xplanner

• PPTS

These tools, in most cases, distinguish themselves from their big brothers like Rally and
VersionOne by keeping it simple, at least in concept. Of these tools only Extreme Planner uses
release planning, and in that program its implementation is very marginal. Probably the most
important things when using a tool in a small project environment is a good user interface,
intuitive functions and a clear representation of the data. Especially everyday activities like
entering hours spent on tasks and task assignments should take a minimum of effort.

5.8.3 Tools for medium sized projects
The second set of tools is those, which are appropriate for running medium sized projects.
Perhaps more then one and also using more teams. There is actually only one tool that really
falls into this category and another tool, already mentioned in the small projects section, which
also qualifies. The separator in this case is a tool that has Release tracking but is does not
have much extra functionality. This allows for long-term planning without bogging a project
down with excess functionality, which is never used or is used but turns out to be irrelevant.

The tools that fall into this category are:

• ExtremePlanner

• TargetProcess

ExtremePlanner was also mentioned in the category of small tools and its size is between
that of a small and medium tool. Both of these tools have a simple implementation of release
planning and some extra features. But the release planning is very simple, adding the ability
to define a release milestone and assign stories to it. But the tools lack the extensive planning
and tracking features on release level that the tools suitable for big projects provide. These
two tools are also usable for small projects but are less suited for big multi-team projects. For
those bigger projects the tools discussed in the next section are better suited.

5.8.4 Tools for large projects
Finally there are two commercial tools, which are geared up toward managing larger and
multiple projects, and multiple teams. These two tools are both commercial and as such
have a cost factor associated with them. They do however provide the ability to do extensive
release planning with separate backlogs for each product and release. Also they have good
reporting and metrics included that enable managers to keep an eye on how their projects
are progressing. The fact that these tools have more options and features then their smaller
cousins also means that they have a steeper learning curve and are especially in the case of
Rally harder to navigate. These are the two big tools:

• Rally

• VersionOne

For users who are in big organizations using the smaller tools for cross team projects is not
advisable. They should have a look at the trial versions available at the Rally and VersionOne
websites and determine which one they feel fits their needs the best.

5.8 Concluding Remarks 60

5.8.5 Concluding
The main point in the decision about which tool to use is the scale of the project, the situation
and personal preference. Each of these tools works differently and focuses more on some
aspects of agile methodologies then on others. Since each project probably uses a subset of
agile practices as well, it is useful to match these to the tool as much as possible. For this
purpose the comparison chart in appendix C can be used. With the comparison chart as a
guideline it is strongly advised to test the trial or full version of the tool first before starting
to use it in a larger context.

Chapter 6

Conclusion

This chapter has some final thought about the research thesis and some ideas about additional
research that is of interest to the agile community.

6.1 Conclusion
Agile methodologies are exciting. They are exciting because they promise something better
in the realm of software development then what is currently available. Agile methodologies
might not be a silver bullet for software development, but they codify a number of practices
that work well in specific situations. If the situation and environment are given appropriate
thought in the decision on which methodology to use, these methodologies can be a great asset
for structuring the development effort.

Agile methodologies are a tool. A tool that allows the development of better software. An
extension of that, and the main topic of this thesis, is the tools that are used to support that
development effort. It is often thought that good tooling and a good process lead to good
software. This is a fallacy. Good people make good software, and the framework in they use
to do so is provided by tools and methods.

The problem then becomes: to find the tools that fit the situation and the concluding
remarks in chapter 5 provide some guidance for this choice. If we want to cut a tree in two
we use a saw. In software development you will find a lot of people trying to cut that tree
with a hammer. You might get there eventually, but the results won’t be pretty and it will
take a lot longer then it would when using the saw. The analogy is relevant to choosing a
project planning and tracking tool for a project using an agile methodology. You want to use
the right tool for the right situation. In some cases this will be pen and paper, in others it
will be something extensive like VersionOne.

The challenge lies not so much in using a tool, but in choosing the right one. Unfortunately
that is not a question that can be answered on the basis of this analysis. All the tools that
were looked at have advantages and disadvantages, good points and bad ones. But an actual
decision will have to be based on the situation the team that will use such a tool is in, and
personal preference. An initial selection can of course be based upon the facts stated in this
research, like whether a tool does or does not support release planning. But the main issue
with tools, next to that they do what you want, is how they feel to the user when they are
used. And this is so personal that the only way to find out is to try them out.

To conclude: Use the information in this article to help you decide what agile methodology
best fits an organization and what tool has the features that best support that methodology

61

6.2 Additional research 62

and the size of the projects that will be run with it. Let the team try it out and decide whether
it is something they want to use. Then listen to them.

6.2 Additional research
This research thesis is not a true comparison of the various agile project planning and tracking
tools. Its purpose was to find features in other tools that could point to good solutions for
problems in PPTS. However during the writing of this report it became apparent that there
is a lot of interest in the agile community for a true comparative review of the different agile
planning tools currently available on the market. There are quite a few, many more then
were reviewed in this report. So a further, in-depth, study of these tools and which corporate
environments they best fit could be very interesting and socially relevant. Also a study of how
the practices of each agile methodology map to the different tools could be investigated.

Secondly, there is very little data available on how projects run according to an agile
methodology perform when compared to projects using other methodologies. This was a
source of some frustration during the writing of this report. But it does provide an excellent
opportunity for further study. There are a lot of projects being run in an agile context,
especially in the USA and gathering data on them should not be very difficult. There is
already a lot of data available on how projects perform with more established methods. So
the main task is to gather the data from a significant number of agile projects and then to
compare them to older projects using, for example, a waterfall type approach.

Appendix A

Compared tools

The following is a list of the tools that were included in the analysis, there are many more
tools available but these were selected as those having the most to offer in general.

Open source tools

• Xplanner
Location: http://www.xplanner.org

• XPWeb
Location: http://xpweb.sourceforge.net

Commercial tools

• VersionOne
Location: http://www.versionone.net

• ExtremePlanner
Location: http://www.extremeplanner.com

• Rally
Location: http://www.rallydev.com

• TargetProcess:Suite
Location: http://www.targetprocess.com/

63

Appendix B

Tool comparison data set

The next pages contain the data set that was referred to in chapter 3. This data set was
used in the comparison of most of the agile tools and contains data from a project that ran at
Philips some time ago.

64

Work Breakdown Structure: wk21/22 (hours) (hours) (hours) (hours)

User Story Description Estimation Total Initial Effort Total Used Total Last ToGo CA*

1. Upload user photographs 2 2 2 0 Y

2. Graphical overview of user absents incl. print possibility via PDF file (2) 48 16 16 0 N

3. Quality Assurance wk 21/22 2 0 Y

4. Configuration Management wk 21/22 0 0 Y

5. Indirect hours wk 21/22 3.5 0 Y

6. Solve CR/PRs wk 21/22 18 18 3 0 Y

7. Create PDF for progress report 10 10 0.5 0 Y

8. Allow userstories to be prioritized 12 12 8 0 Y

9. Create a (graphical) resource allocation overview incl. Print possibility via

PDF file with detailed project information 56 55.5 0 N

10. School tasks [Pascal] 16 16 30 0 Y

11. Miscelanious 0 9.5 0 Y

12. Modify Office Closed absent 6 12 11 0 Y

13. Releasing PPTS version 1.0 16 22 11 0 Y

14. Create a project allocation overview incl. print possibility via PDF file (1) 16 21.5 0 N

Total: 128 168 173.5

1. Upload user photographs

Implement uploading of photographs 2 2 0

2. Graphical overview of user absents incl. print possibility via PDF file (2)

Create graph 8 14 0

Include holiday balance table on PDF file (on right side of legend) 6 1.5 0

Remove second filter for holiday balance (use first filter instead) 2 0.5 0

3. Quality Assurance wk 21/22

PMP 0

QA Check 2

Reviews (preparation and meeting) 0

4. Configuration Management wk 21/22

Baseline Audit 0

Build Fixing 0

CCB Activities 0

Release 0

6. Solve CR/PRs wk 21/22

PR #0001110: Tooltips are not displayed on correct position in progress report

page. 2 2.5 0

PR #0001111 Crash when saving togo hours on WBS page. 1 0 0

PR #0001088 Burn down graph is not correct! 8 0 Cancelled

PR #0001108 Entering tasks using 'Save and next' fails the second time. 2 0.5 0

PR #0001101: Personal Report JavaScript code doesn't support negative

and/or float values 1 0 0

PR #0001127: Wrong burn down graph 0 0

7. Create PDF for progress report

Create PDF file for the report 8 0 0

Review code and testcases 2 0.5 0

8. Allow userstories to be prioritized

Spike: Find out how to change order of user stories using java script. 4 8 0

9. Create a (graphical) resource allocation overview incl. Print possibility via

PDF file with detailed project information

Create graph sceleton and legend 16 8 0

Create algorithms for determining assigned hours/week 16 22 0

Create PDF file for graph (incl. dividing it over multiple pages) 16 17.5 0

View total absent days per week (as text overlay) incl. A check box to show or

hide them. 8 8 0

12. Modify Office Closed absent

Also allow Holiday to be selected as Office Closed absent type. 2 3 0

Verify operation of existing absent functions and correct them when

necessary. 10 8 0

13. Releasing PPTS version 1.0

Converting existing production database to new database 12 7 0

Transferring PPTS project from test database to new production database 2 4 0

Check if all important buttons and menu items are protected by access control 4 0 0

Make layout of all forms, reports and overviews etc. uniform. 4 0 0

14. Create a project allocation overview incl. print possibility via PDF file (1)

Create project allocation overview page and add menu entry 2 3.5 0

Create graph or table 6 9 0

Create algorithms for gathering data 4 8 0

Add project number to project properties 4 1 0

Work Breakdown Structure: wk23/24 (hours) (hours) (hours) (hours)

User Story Description Estimation Total Initial Effort Total Used Total Last ToGo CA*

1. Implement a maintenance mode for the website. 3 3 1 0 N

2. Improve burndown graph 9 9 0 0 Y

3. Create backlog page 22 10 0 N

4. Solve CR/PRs wk 23/24 15 5.5 0 N

5. Quality Assurance wk 23/24 0 0 N

6. Configuration Management wk 23/24 0 0 N

7. Indirect hours wk 23/24 1 0 N

8. Create public section of intranetsite for S2P2/EOG department 62 66 0 N

9. Add capabilities and courses 42 34 0 N

10. School tasks [Pascal] wk23/24 24 24 38 0 N

11. Refactor room reservation system 12 12 24 0 N

Total: 48 189 179.5

1. Implement a maintenance mode for the website.

Add menu items to enable/disable maintenance mode 0.5 0.5 0

Add maintenance mode variable in database 0.5 0 0

Prevent users to log in when maintenance mode is enabled 1 0.5 0

Add flag for each user which indicates if they can log in during maintenance

mode 1 0 0

2. Improve burndown graph

Add legend to burndown graph 3 0 0

Add line in burndown graph 6 0 0

3. Create backlog page

Create and discuss proposal for new layout 4 4 0

Implement editing of user story priorities 10 4 0

Spike: Find out how to change order of user stories using java script. 8 2 0

4. Solve CR/PRs wk 23/24

PR #0001135 Copying tasks works not well in all circumstances 5 4 Cancelled

PR #0001037 IterationPeriod should fall within ProjectPeriod. 4 0.5 0

PR #0001141 Allow only currently assigned developers be assigned to a task 2 0.5 0

PR #0001136 When 'copy task to userstory' is selected show iteration of US 4 0.5 Cancelled

5. Quality Assurance wk 23/24

PMP 0 0

QA Check 0 0

Reviews (preparation and meeting) 0 0

6. Configuration Management wk 23/24

Baseline Audit 0 0

Build Fixing 0 0

CCB Activities 0 0

Release 0 0

8. Create public section of intranetsite for S2P2/EOG department

Create index page for public section and make this the default page 8 23 0

Add map of department and contact person info 8 2 0

Add people page 8 5.5 0

Create projects page 6 5.5 0

Refactoring of reused code 16 27 0

Create capabilities page incl. search function 16 3 0

9. Add capabilities and courses

Design and create database tables 6 4 0

Create user capabilities and courses overview page 12 8.5 0

Create capability form 4 5.5 0

Create course form 4 4 0

Create search page for capabilities (detailed/non detailed) 16 12 0

11. Refactor room reservation system

Refactor base class 4 10 Cancelled

Rebuild user interface 8 14 Cancelled

Work Breakdown Structure: wk25/26 (hours) (hours) (hours) (hours)

User Story Description Estimation Total Initial Effort Total Used Total Last ToGo CA*

1. Change Competences functionality 28 28 33.5 0 Y

2. Change projects overview (public web site) 20 20 8.25 0 Y

3. Show warning when over-assigning people (add/edit assignment) and show

a visual indication on resource allocation graph 12 12 8.5 0 N

4. Quality Assurance wk25/26 0 0 N

5. Graphical overview of user competences (example S2P2) 36 36 27.25 0 N

6. Configuration Management wk25/26 0 0 N

7. Indirect hours wk25/26 18.25 0 N

8. School tasks [Pascal] wk25/26 0 8 8 0 Y

9. Refactoring wk25/26 8 8 0 Y

10. Create room reservation module based on module of old website 12 17 0 N

11. Solve CR/PRs wk25/26 8 12.5 0 Y

Total: 96 132 141.25

1. Change Competences functionality

Show description of level when adding/editing competences (form) and when

viewing competences (overview). 4 2 0

Create forms and handlers for add/edit/delete Categories, Competences and

Levels 16 12 0

Allow to add a competence when adding a course. 8 19.5 0

2. Change projects overview (public web site)

Allow HTML lay-out in customer project description and show this on the

public website 4 0.5 0

Change layout of projects overview on public website 12 5 0

Add optional project property; a URL to the project website 3 2.25 0

Add project property: Show/hide project on public site 1 0.5 0

3. Show warning when over-assigning people (add/edit assignment) and show

a visual indication on resource allocation graph

Implement algorithm for calculating assignment percentage 8 4.5 0

Show warning when over-assigning users while adding/editing assignements. 3 3 0

4. Quality Assurance wk25/26

PMP 0

QA Check 0

Reviews (preparation and meeting) 0

5. Graphical overview of user competences (example S2P2)

Create graph 32 23.25 0

Create PDF file for the graph 4 4 0

6. Configuration Management wk25/26

Baseline Audit 0

Build Fixing 0

CCB Activities 0

Release 0

9. Refactoring wk25/26

Create PDF files the same way everywhere. 8 8 0

10. Create room reservation module based on module of old website

Rebuild user interface 8 10 0

Refactor base class 4 7 0

11. Solve CR/PRs wk25/26

PR #0001142 Velocity is taken from last iteration not from last completed

iteration 4 2.5 0

PR #0001161 After changing priority in BackLog, edit result in editing the

wrong User Story 4 10 0

Work Breakdown Structure: wk27/28 (hours) (hours) (hours) (hours)

User Story Description Estimation Total Initial Effort Total Used Total Last ToGo CA*

1. Quality Assurance wk27/28 0.75 0 N

2. Configuration Management wk27/28 8.5 0 N

3. Indirect hours wk27/28 6 0 N

4. Fix warnings issued when enabling error_reporting option in PHP 24 24 21.5 0 N

5. Allow to switch menu & styles to enable offline use of website. 68 68 59.5 0 N

6. Solve CR/PRs wk27/28 6 6 0 N

7. Fix warning when over-assigning people (add/edit assignment) 6 6 17 0 N

8. Create tool for easy updating of database 16 16 15 0 N

Total: 114 120 134.25

1. Quality Assurance wk27/28

PMP 0

QA Check 0.75

Reviews (preparation and meeting) 0

2. Configuration Management wk27/28

Baseline Audit 0

Build Fixing 0

CCB Activities 0

Release 8.5

4. Fix warnings issued when enabling error_reporting option in PHP

Fix warnings 24 21.5 0

5. Allow to switch menu & styles to enable offline use of website.

Make common CMenu class and specific derived classes 32 30 0

Make common CPageLayout class which handles page layout and use of

style sheets. 32 27 0

Allow to swich between the menu/style sheets via constant in config file. 4 2.5 0

6. Solve CR/PRs wk27/28

PR #0001163 Outlining of pictures and text is wrong 6 6 0

7. Fix warning when over-assigning people (add/edit assignment)

Make the check which is performed working 6 17 0

8. Create tool for easy updating of database

Create php page for updating the database 14 14 0

Create script for current updates 2 1 0

*CA = Customer accepted

Appendix C

Tool comparison results

The following pages contain a print out of the final excel pages with the results of the standard
features for the comparison of the different agile tools.

69

(
F
o
r
L
e
g
e
n
d
 s
e
e
 b
o
tt
o
m
)

X
p
W
e
b

E
x
tr
e
m
e
 P
la
n
n
e
r

R
a
ll
y

V
e
rs
io
n
O
n
e

X
p
la
n
n
e
r

T
a
rg
e
tP
ro
c
e
s
s

P
P
T
S

B
a
s
ic

F
e
a
tu
re
s

P
la

tf
o
rm

In
d
e
p
e
n
d
e
n
t
L
A

M
P

*
s
o
lu

ti
o
n

W
in

d
o
w

s
 N

T
/X

P
In

d
e
p
e
n
d
e
n
t
L
A

M
P

*
s
o
lu

ti
o
n
,
H

o
s
te

d
H

o
s
te

d
 o

r
L
o
c
a
l(
W

in
d
o
w

s
)

W
e
b
-S

e
rv

ic
e

L
A

M
P

 H
o
s
te

d
 o

r
L
o
c
a
l

In
d
e
p
e
n
d
e
n
t
L
A

M
P

*
s
o
lu

ti
o
n

P
ro
je
c
t

N
a
m

e
Y

e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
e

Y
e
s

D
e
s
c
ri
p
ti
o
n

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

O
th

e
r

U
s
e
r
a
s
s
ig

n
m

e
n
t

S
ta

te
,
O

w
n
e
r,
 N

o
te

s
S

ta
te

m
,
O

w
n
e
r,
 S

p
ri
n
t
le

n
g
th

,
D

a
te

s

H
id

d
e
n
,
E

s
c
a
p
e
,
R

e
m

in
d
 D

e
v
e
lo

p
e
r
to

fi
ll

in
 h

o
u
rs

,
W

ik
i
lin

k

S
ta

rt
/E

n
d
 d

a
te

N
u
m

b
e
r,
 D

a
te

 o
f
re

q
u
e
s
t,
 C

u
s
to

m
e
r,

C
o
n
ta

c
ts

,
D

u
ra

ti
o
n
,
S

ta
rt
/E

n
d
 d

a
te

,

R
e
q
u
e
s
t
h
a
n
d
le

r,
 P

re
fe

rr
e
d
 s

ta
rt
/e

n
d

d
a
te

,
W

e
b
s
it
e
 l
in

k
,
c
o
m

m
m

e
n
ts

A
c
ti
o
n
s

C
,D

,M
C

,D
,M

C
,M

C
,D

,M
C

,D
,M

C
,D

,M
C

,D
,M

R
e
le
a
s
e

N
a
m

e
x

Y
e
s

Y
e
s

Y
e
s

x
Y

e
s

x

D
a
te

x
Y

e
s

Y
e
s

Y
e
s

x
Y

e
s

x

O
th

e
r

x
D

e
s
c
ri
p
ti
o
n

S
ta

te
,
V

e
rs

io
n
,
R

e
s
o
u
rc

e
s
(h

o
u
rs

),
N

o
te

s
D

e
s
c
ri
p
ti
o
n
,
O

w
n
e
r,
 T

e
a
m

,
R

e
a
s
o
n

x
G

o
a
l,
 C

re
a
te

 I
te

ra
ti
o
n
s

x

A
c
ti
o
n
s

x
C

,D
,M

C
,D

,M
C

,D
,M

x
C

,D
,M

x

It
e
ra
ti
o
n

N
a
m

e
Y

e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

D
e
s
c
ri
p
ti
o
n

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

S
ta

rt
/E

n
d
 d

a
te

Y
e
s
 /
 Y

e
s

Y
e
s
/Y

e
s

Y
e
s
/Y

e
s

Y
e
s
/Y

e
s

Y
e
s
/Y

e
s

Y
e
s
/I
m

p
lic

it
Y

e
s
/Y

e
s

R
e
a
l
to

 I
d
e
a
l
ti
m

e
 f
a
c
to

r
Y

e
s
,
L
F

N
o

N
o

N
o

N
o

N
o

Y
e
s
,v

e
lo

c
it
y

O
th

e
r

T
h
e
m

e
,
S

ta
te

,
R

e
s
o
u
rc

e
s

O
w

n
e
r

V
e
lo

c
it
y
,
D

u
ra

ti
o
n
,
R

e
le

a
s
e

A
c
ti
o
n
s

C
,D

,D
a
M

,M
C

,D
,M

C
,D

,M
C

,D
,M

C
,D

,M
C

,D
,M

,M
o
v

C
,D

,M

U
s
e
r
S
to
ry

N
a
m

e
Y

e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

D
e
s
c
ri
p
ti
o
n

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

A
c
c
e
p
ta

n
c
e
:
C

ri
te

ri
a
 /
 F

la
g

T
e
x
tf
ie

ld
 /
 N

o
N

o
 /
 N

o
N

o
 /
 Y

e
s

Y
e
s
 /
 Y

e
s

N
o
/Y

e
s

N
o
/N

o
N

o
/Y

e
s

S
iz

e
 e

s
ti
m

a
te

 /
 U

n
it
s

Y
e
s
 /
 W

e
ig

h
t(
1
-1

0
)

Y
e
s
 /
 I
H

Y
e
s
 /
 I
H

Y
e
s
 /
 G

e
n
e
ra

l
Y

e
s
/H

o
u
rs

Y
e
s
/H

o
u
rs

Y
e
s
/I
H

P
ri
o
ri
ty

 s
e
tt
in

g
 (
p
la

n
n
in

g
 ?

)
Y

e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

R
is

k
Y

e
s

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

N
o

O
th

e
r

x
T
o
p
ic

,
T
y
p
e
,
V

a
lu

e
,
S

ta
tu

s
,
R

e
le

a
s
e
,

It
e
ra

ti
o
n
,
R

e
q
u
e
s
te

d
 b

y
,
R

e
fe

re
n
c
e

S
ta

te
,
B

lo
c
k
e
d
,
D

a
te

 A
c
c
e
p
te

d
,
R

e
le

a
s
e
,

It
e
ra

ti
o
n
,
O

w
n
e
r,
 R

a
n
k
,
N

o
te

s

P
a
c
k
a
g
e
,
S

ta
tu

s
,
O

w
n
e
r,
 P

ro
d
.
O

w
n
e
r,

C
a
te

rg
o
ry

,
R

e
fe

re
n
c
e
,
R

e
le

a
s
e
,
S

p
ri
n
t,

T
e
a
m

D
is

p
o
s
it
io

n
,
C

u
s
to

m
e
r,
 T

ra
c
k
e
r,
 S

ta
tu

s
E

ff
o
rt
,
In

it
ia

l
e
s
ti
m

a
te

,
D

e
v
e
lo

p
e
rs

,

It
e
ra

ti
o
n
,
R

e
le

a
s
e
,
D

o
n
e

It
e
ra

ti
o
n

A
c
ti
o
n
s

C
,D

,D
a
M

,M
,M

o
v

C
,D

,M
,M

o
v

C
,D

,M
,M

o
v
,S

C
,D

,M
,M

o
v
,S

C
,D

,M
,M

o
v

C
,D

,M
,M

o
v

C
,D

,M
,M

o
v
,C

o

T
a
s
k

N
a
m

e
Y

e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

D
e
s
c
ri
p
ti
o
n

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

O
w

n
e
r

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

In
it
ia

l
s
iz

e
 (
U

n
it
)

ID
IH

U
n
s
p
e
c
if
ie

d
U

n
s
p
e
c
if
ie

d
IH

IH
IH

D
o
n
e
 (
U

n
it
)

ID
IH

U
n
s
p
e
c
if
ie

d
U

n
s
p
e
c
if
ie

d
IH

IH
IH

T
o
d
o
 (
U

n
it
)

ID
 =

 I
n
it
ia

l
s
iz

e
 -
 D

o
n
e

IH
 =

 E
s
ti
m

a
te

d
 -
 C

o
m

p
le

te
d

U
n
s
p
e
c
if
ie

d
U

n
s
p
e
c
if
ie

d
IH

x
IH

O
th

e
r

E
n
d
/S

ta
rt
 d

a
te

,
P

a
ir
 p

ro
g
ra

m
m

e
r

S
ta

tu
s

S
ta

te
,
B

lo
c
k
e
d
,
S

to
ry

 C
a
rd

,
N

o
te

s
C

a
te

g
o
ry

,
R

e
fe

re
n
c
e

T
y
p
e
,
D

is
p
o
s
it
io

n
,
A

c
c
e
p
to

r
x

A
c
ti
o
n
s

C
,D

,M
,M

o
v

C
,D

,M
C

,D
,M

,M
o
v

C
,D

,M
,M

o
v

C
,D

,M
,M

o
v
,T

C
,D

,M
C

,D
,M

,M
o
v
,C

o
,C

a

U
s
e
rs

N
a
m

e
Y

e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

L
o
g
in

 N
a
m

e
N

o
Y

e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

P
a
s
s
w

o
rd

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

E
m

a
il

N
o

Y
e
s

E
q
u
a
ls

 L
o
g
in

Y
e
s

Y
e
s

Y
e
s

Y
e
s

L
o
g
g
e
d
 i
n
 S

ta
tu

s
Y

e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

O
th

e
r

D
e
s
c
ri
p
ti
o
n

E
n
a
b
le

d
D

is
p
la

y
 n

a
m

e
,
S

e
s
s
io

n
 s

e
tt
in

g
s
,

P
h
o
n
e
,
R

o
le

In
it
ia

l,
 P

h
o
n
e
,
H

id
e
,
S

y
s
te

m
 A

d
m

in
A

c
ro

n
y
m

,
A

d
d
re

s
s
,
P

h
o
n
e
,
D

a
te

 o
f

B
ir
th

,
A

g
e
n
c
y
,
S

ta
rt
/E

n
d
 d

a
te

,
R

o
o
m

,

C
o
u
rs

e
s
,
C

o
m

p
e
te

n
c
e
s

A
c
ti
o
n
s

C
,D

,M
C

,M
C

,D
,M

C
,D

,M
C

,M
C

,N
C

,D
,M

A
c
c
e
s
s
 C
o
n
tr
o
l

R
o
le

/P
ro

fi
le

 B
a
s
e
d

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

C
u
s
to

m
 D

e
fi
n
a
b
le

Y
e
s

N
o

Y
e
s

N
o
,?

N
o

N
o

Y
e
s

A
s
s
ig

n
 u

s
e
r
to

 p
ro

je
c
ts

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

y
e
s

Y
e
s

A
s
s
ig

n
 u

s
e
r
to

 m
u
lt
ip

le
 p

ro
je

c
ts

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

P
la
n
n
in
g

R
e
le
a
s
e
 P
la
n
n
in
g

N
o

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

N
o

D
a
te
 D
ri
v
e
n
 R
e
le
a
s
e
 P
la
n
n
in
g
*

Y
e
s

Y
e
s

Y
e
s

Y
e
s

A
u
to

m
a
ti
c
 p

la
n
n
in

g
N

o
N

o
N

o
Y

e
s

W
h
a
t
if
 a

n
a
ly

s
is

N
o

N
o

N
o

N
o

M
a
n
u
a
l

Y
e
s

Y
e
s

Y
e
s

Y
e
s

F
e
a
tu
re
 d
ri
v
e
n
 r
e
le
a
s
e
 p
la
n
n
in
g
*

N
o

N
o

N
o

N
o

It
e
ra
ti
o
n
 P
la
n
n
in
g

S
to

ri
e
s
 i
n
to

 I
te

ra
ti
o
n
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

T
a
s
k
s
 i
n
to

 S
to

ri
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

x
Y

e
s

V
e
lo

c
it
y

N
o

N
o

N
o

N
o
,
is

 i
n
 g

ra
p
h

N
o

Y
e
s

Y
e
s

B
a
c
k
lo
g

Im
p
le

m
e
n
te

d
 H

o
w

s
e
p
a
ra

te
 U

n
a
s
s
ig

n
e
d
 s

to
ri
e
s
 l
is

t
U

n
a
s
s
ig

n
e
d
 s

to
ri
e
s
 i
n
 s

to
ry

 l
is

t
U

n
s
c
h
e
d
u
le

d
 s

to
ry

 c
a
rd

 l
is

t
B

a
c
k
lo

g
N

o
S

to
ry

 l
is

t
B

a
c
k
lo

g

S
o
rt
e
d
 b

y
b
ro

k
e
n

A
ll

A
ll

A
ll

x
A

ll
x

P
la
n
n
in
g
 M
e
tr
ic
s

V
e
lo

c
it
y

Y
e
s

N
o

N
o

N
o

N
o

Y
e
s

Y
e
s

H
is

to
ry

 b
a
s
e
d
?

Y
e
s

N
o

N
o

N
o

N
o

N
o

Y
e
s

U
n
it
s

S
P

,
ID

,
R

D
n
/a

n
/a

n
/a

n
/a

IH
p
e
rc

e
n
a
ta

g
e
,
1
/L

F

W
h
a
t

T
o
ta

l
e
ff
o
rt

E
s
ti
m

a
te

d
 e

ff
ic

ie
n
c
y

R
e
s
o
u
rc

e
s

T
o
ta

l
e
ff
o
rt
 (
B

a
c
k
lo

g
)

T
o
ta

l
e
s
ti
m

a
te

A
s
s
ig

n
e
d
/p

o
s
s
ib

le
 e

ff
o
rt
 p

e
r

d
e
v
e
lo

p
e
r

T
o
ta

l
e
s
ti
m

a
te

U
n
it
s

ID
E

s
ti
m

a
te

d
 /
 A

c
tu

a
l
H

o
u
rs

ID
U

n
s
p
e
c
if
ie

d
IH

IH
IH

V
is

u
a
liz

a
ti
o
n
s

N
u
m

e
ri
c
a
l

B
a
r
c
h
a
rt

N
u
m

e
ri
c
a
l

N
u
m

e
ri
c
a
l

N
u
m

e
ri
c
a
l

N
u
m

e
ri
c
a
l

N
u
m

e
ri
c
a
l

W
h
a
t

E
s
ti
m

a
te

d
 h

o
u
rs

P
la

n
n
e
d
 e

s
ti
m

a
te

s
T
o
ta

l
e
ff
o
rt
 (
T
a
s
k
s
)

P
la

n
n
e
d
/A

v
a
ila

b
le

 h
o
u
rs

 i
n
 i
te

ra
ti
o
n

U
n
it
s

IH
ID

U
n
s
p
e
c
if
ie

d
IH

V
is

u
a
liz

a
ti
o
n
s

N
u
m

e
ri
c
a
l

N
u
m

e
ri
c
a
l

N
u
m

e
ri
c
a
l

N
u
m

e
ri
c
a
l

W
h
a
t

A
v
a
ila

b
le

U
n
it
s

ID
,
R

e
s
o
u
rc

e
s
 -
 e

s
ti
m

a
te

s

V
is

u
a
liz

a
ti
o
n
s

N
u
m

e
ri
c
a
l

T
ra
c
k
in
g

H
o
w

 d
o
e
s
 t
h
e
 t
o
o
l
s
u
p
p
o
rt
 t
h
e
 t
ra

c
k
in

g
 !
!

R
e
le

a
s
e

N
u
m

e
ri
c

N
o

Y
e
s

Y
e
s

N
o

Y
e
s

N
o

V
is

u
a
l

Y
e
s

Y
e
s

Y
e
s

N
o

Y
e
s

N
o

It
e
ra

ti
o
n

N
u
m

e
ri
c

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

V
is

u
a
l

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

T
ra
c
k
in
g
 M
e
tr
ic
s

R
e
le
a
s
e

W
h
a
t

O
p
e
n
 S

to
ri
e
s
 /
 I
te

ra
ti
o
n

 A
c
c
e
p
te

d
 a

n
d
 S

c
h
e
d
u
le

d
 *

1
B

a
c
k
lo

g
,
D

o
n
e
 v

s
 T

o
d
o

%
 D

o
n
e
 v

s
 T

im
e
 e

la
p
s
e
d
 *

1

U
n
it
s

S
to

ri
e
s

S
to

ry
 C

a
rd

s
E

s
ti
m

a
te

s
,
s
to

ri
e
s

p
e
rc

e
n
ta

g
e

R
e
p
re

s
e
n
ta

ti
o
n

B
u
rn

 D
o
w

n
N

u
m

e
ri
c
a
l

B
a
r
C

h
a
rt

N
u
m

e
ri
c
a
l

W
h
a
t

F
in

is
h
e
d
 S

to
ri
e
s

P
a
s
s
in

g
 a

n
d
 T

o
ta

l
*2

B
a
c
k
lo

g
,
D

o
n
e
 v

s
 T

o
d
o

R
e
le

a
s
e
 s

ta
tu

s
 *

2

U
n
it
s

S
to

ri
e
s

T
e
s
t
c
a
s
e
s

E
s
ti
m

a
te

s
,
T
a
s
k
s

G
o
o
d
,
N

o
rm

a
l,
 B

a
d

R
e
p
re

s
e
n
ta

ti
o
n

N
u
m

e
ri
c
a
l

N
u
m

e
ri
c
a
l

B
a
r
C

h
a
rt

C
o
lo

r

W
h
a
t

A
c
ti
v
e
 a

n
d
 T

o
ta

l
*3

M
e
m

b
e
r
W

o
rk

lo
a
d

S
to

ri
e
s
 D

o
n
e
 *

3

U
n
it
s

D
e
fe

c
ts

T
a
s
k
 e

s
ti
m

a
te

s
S

to
ri
e
s

R
e
p
re

s
e
n
ta

ti
o
n

N
u
m

e
ri
c
a
l

H
o
ri
z
o
n
ta

l
B

a
rs

N
u
m

e
ri
c
a
l

W
h
a
t

R
e
le

a
s
e
 C

u
m

u
la

ti
v
e
 F

lo
w

 C
h
a
rt

V
e
lo

c
it
y

O
p
e
n
 /
 R

e
s
o
lv

e
d
 b

u
g
s
 *

4

U
n
it
s

P
o
in

ts
 (
g
e
n
e
ra

l
u
n
it
)

U
n
s
p
e
c
if
ie

d
B

u
g
s

R
e
p
re

s
e
n
ta

ti
o
n

B
a
r
c
h
a
rt

B
a
r
c
h
a
rt

N
u
m

e
ri
c
a
l

W
h
a
t

R
e
le

a
s
e
 B

u
rn

 D
o
w

n
 C

h
a
rt

T
e
s
t
c
a
s
e
s
 p

a
s
s
e
d

U
n
it
s

P
o
in

ts
 (
g
e
n
e
ra

l
u
n
it
)

P
a
s
s
/f
a
ils

R
e
p
re

s
e
n
ta

ti
o
n

B
a
r
c
h
a
rt

B
a
r
c
h
a
rt

It
e
ra
ti
o
n

W
h
a
t

T
o
ta

l
C

o
m

p
le

ti
o
n

T
o
ta

l
C

o
m

p
le

ti
o
n

*1
,
*2

,
*3

 A
s
 a

b
o
v
e

B
a
c
k
lo

g
,
D

o
n
e
 v

s
 T

o
d
o

H
o
u
rs

,
E

s
ti
m

a
te

d
 /
 A

c
tu

a
l
/
R

e
a
m

in
in

g
1
,2

,3
,4

 a
s
 a

b
o
v
e
 f
o
r
it
e
ra

ti
o
n
s

It
e
ra

ti
o
n
 B

u
rn

 D
o
w

n
 C

h
a
rt

U
n
it
s

S
P

,I
H

,
S

T
,
P

e
rc

e
n
ta

g
e

S
T
,
T
a

S
a
m

e
 a

s
 a

b
o
v
e

E
s
ti
m

a
te

s
,
s
to

ri
e
s

IH
a
s
 i
n
 R

e
le

a
s
e

H
o
u
rs

R
e
p
re

s
e
n
ta

ti
o
n

N
u
m

e
ri
c
a
l,
 P

ro
g
re

s
s
 B

a
r,
 N

u
m

,
N

u
m

N
u
m

e
ri
c
a
l

N
u
m

b
e
rs

B
a
r
C

h
a
rt

N
u
m

e
ri
c
a
l

a
s
 i
n
 R

e
le

a
s
e

B
a
r
c
h
a
rt

W
h
a
t

T
o
ta

l
ti
m

e
 n

e
e
d
e
d

S
ta

tu
s
 o

f
ta

s
k
s
:
 t
o
d
o
,
a
c
ti
v
e
,
c
o
m

p
le

te
d

It
e
ra

ti
o
n
 C

u
m

u
la

ti
v
e
 F

lo
w

 C
h
a
rt

B
a
c
k
lo

g
,
D

o
n
e
 v

s
 T

o
d
o

It
e
ra

ti
o
n
 P

ro
g
re

s
s

It
e
ra

ti
o
n
 B

u
rn

 D
o
w

n
 C

h
a
rt

It
e
ra

ti
o
n
 B

u
rn

 D
o
w

n
 D

a
ta

U
n
it
s

ID
T
a

P
o
in

ts
 (
g
e
n
e
ra

l
u
n
it
)

E
s
ti
m

a
te

s
,
ta

s
k
s

E
s
ti
m

a
te

d
 /
 A

c
tu

a
l
H

o
u
rs

H
o
u
rs

H
o
u
rs

R
e
p
re

s
e
n
ta

ti
o
n

N
u
m

e
ri
c
a
l

G
ra

p
h
ic

a
l
o
v
e
rv

ie
w

B
a
r
c
h
a
rt

B
a
r
C

h
a
rt

C
h
a
rt

B
a
r
c
h
a
rt

N
u
m

e
ri
c
a
l

W
h
a
t

It
e
ra

ti
o
n
 B

u
rn

 D
o
w

n
 C

h
a
rt

E
s
ti
m

a
ti
o
n
 C

h
a
n
g
e

It
e
ra

ti
o
n
 B

u
rn

 D
o
w

n
 C

h
a
rt

B
u
g
s
 p

ro
g
re

s
s
 c

h
a
rt

U
n
it
s

P
o
in

ts
 (
g
e
n
e
ra

l
u
n
it
)

s
to

ry
 e

s
ti
m

a
te

H
o
u
rs

O
p
e
n
/C

lo
s
e
d
 b

u
g
s
 p

e
r
it
e
ra

ti
o
n

R
e
p
re

s
e
n
ta

ti
o
n

B
a
r
c
h
a
rt

N
u
m

e
ri
c
a
l

B
a
r
c
h
a
rt

lin
e
 c

h
a
rt

W
h
a
t

D
a
ily

 B
u
rn

 d
o
w

n
C

o
m

p
le

te
d
 e

s
ti
m

a
te

d
 H

o
u
rs

V
e
lo

c
it
y

U
n
it
s

T
a
s
k
 e

s
ti
m

a
te

s
IH

H
o
u
rs

R
e
p
re

s
e
n
ta

ti
o
n

B
u
rn

-d
o
w

n
,
lin

e
 b

a
s
e
d

P
ie

-c
h
a
rt

L
in

e
 c

h
a
rt

W
h
a
t

T
a
s
k
 T

re
n
d
 l
in

e
s

C
o
m

p
le

te
d
 a

c
tu

a
l
H

o
u
rs

E
s
ti
m

a
ti
o
n
 a

c
c
u
ra

c
y

U
n
it
s

D
o
n
e
 /
 T

o
d
o
,
T
h
is

 /
 P

re
v
 s

p
ri
n
t

IH
%

R
e
p
re

s
e
n
ta

ti
o
n

L
in

e
 c

h
a
rt

P
ie

-c
h
a
rt

L
in

e
 c

h
a
rt

W
h
a
t

D
a
ily

 B
a
c
k
lo

g
 T

re
n
d

T
e
s
t
c
a
s
e
s
 p

a
s
s
e
d

U
n
it
s

U
n
s
p
c
if
ie

d
,
T
h
is

 /
 L

a
s
t
It
e
ra

ti
o
n

P
a
s
s
/f
a
ils

R
e
p
re

s
e
n
ta

ti
o
n

L
in

e
 c

h
a
rt

B
a
r
c
h
a
rt

S
to
ry

W
h
a
t

T
o
ta

l
C

o
m

p
le

ti
o
n

T
o
ta

l
C

o
m

p
le

ti
o
n

S
ta

tu
s

S
ta

tu
s

P
ro

g
re

s
s

P
ro

g
re

s
s

P
ro

g
re

s
s

U
n
it
s

P
e
rc

e
n
ta

g
e

T
a
,
P

e
rc

e
n
ta

g
e

B
a
c
k
lo

g
,
D

e
fi
n
e
d
,
In

-P
ro

g
re

s
s
,
C

o
m

p
le

te
d
,

A
c
c
e
p
te

d
,
B

lo
c
k
e
d
 i
n
 a

n
y
 o

f
th

e
 p

re
v
io

u
s
 5

p
h
a
s
e
s

P
la

n
n
e
d
,
In

 p
ro

g
re

s
s
,
C

o
m

p
le

te
d

IH
%

%

R
e
p
re

s
e
n
ta

ti
o
n

P
ro

g
re

s
s
 B

a
r

N
u
m

e
ri
c
a
l,
 P

ro
g
re

s
s
 b

a
r

G
ra

p
h
ic

a
l
Ic

o
n
s

S
e
le

c
t
b
o
x

P
ro

g
re

s
s
 B

a
r

N
u
m

e
ri
c
a
l

P
ro

g
re

s
s
 b

a
r

T
a
s
k

W
h
a
t

T
o
ta

l
C

o
m

p
le

ti
o
n

T
o
ta

l
C

o
m

p
le

ti
o
n

S
ta

tu
s

P
ro

g
re

s
s

P
ro

g
re

s
s

U
n
it
s

P
e
rc

e
n
ta

g
e

IH
,P

e
rc

e
n
ta

g
e

D
e
fi
n
e
d
,
In

-P
ro

g
re

s
s
,
C

o
m

p
le

te
d
 o

r
B

lo
c
k
e
d

IH
%

R
e
p
re

s
e
n
ta

ti
o
n

P
ro

g
re

s
s
 B

a
r

N
u
m

e
ri
c
a
l,
 P

ro
g
re

s
s
 b

a
r

G
ra

p
h
ic

a
l
Ic

o
n
s

P
ro

g
re

s
s
 B

a
r

P
ro

g
re

s
s
 B

a
r

U
s
a
b
il
it
y
 /
 U
s
e
r
In
te
rf
a
c
e

In
te
ra
c
ti
o
n

M
u
lt
ip

le
 i
te

m
 m

o
v
e
/d

e
le

te
N

o
Y

e
s
 o

n
 d

e
le

te
,
N

o
 o

n
 m

o
v
e

Y
e
s
,
M

o
v
e

N
o

N
o

N
o

Y
e
s
,
m

o
v
e
 a

n
d
 c

o
p
y

D
ra

g
 a

n
d
 D

ro
p

N
o

N
o

Y
e
s

Y
e
s

N
o

N
o

N
o

T
o
o
lt
ip

s
N

o
N

o
Y

e
s

Y
e
s
,
in

 r
e
p
o
rt
 s

e
c
ti
o
n

N
o

N
o

N
o

P
o
p
u
p
 C

a
le

n
d
e
r
d
a
ta

 s
e
le

c
ti
o
n

B
ro

k
e
n

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

In
tu

it
iv

e
 I
n
te

rf
a
c
e

o
o

o
+

o
o

o

T
o
o
l

R
e
s
p
o
n
s
iv

e
n
e
s
s

+
+
+

o
+

+
+

o
o

E
a
s
e
 o

f
u
s
e

o
+

+
+

+
+

-

In
s
ta

lla
ti
o
n

o
+

+
+

+
+

--
+

o

U
p
g
ra

d
in

g
-

o
+
+

+
+

x
x

o

S
o
rt
in

g
+

+
+
+

+
+

+
+

-

O
v
e
rv
ie
w
s

P
ro

je
c
t
o
v
e
rv

ie
w

+
,
P

r
+
',
 P

r,
 I
t,
 T

a
-'
,
u
n
c
le

a
r

+
',
 P

r,
 R

e
,
It

-'
,
It

o
,
S

t
o
,
P

r

R
e
le

a
s
e
 o

v
e
rv

ie
w

n
/a

-
+
',
 g

ra
p
h
ic

a
l
ti
m

e
lin

e
+

x
-'
,
R

e
n
/a

It
e
ra

ti
o
n
 o

v
e
rv

ie
w

o
,
It
,
S

t,
 T

a
Y

e
s
,
G

ra
p
h
ic

a
l
o
v
e
r
v
ie

w
 o

f
o
n
e
 i
te

ra
ti
o
n

s
h
o
w

in
g
 a

ll
s
to

ri
e
s
 a

n
d
 t
a
s
k
s
 a

n
d
 t
h
e
ir

s
ta

tu
s
.
+
+
**

*

o
,
S

t,
 T

a
+
',
 S

t
+
',
 I
t

o
,
It

"+
 ,
 S

t,
 T

a
"

S
to

ri
e
s
 o

v
e
rv

ie
w

o
+

o
+
',
 S

t,
 T

a
 (
c
o
lla

p
s
ib

le
)

+
'',
 S

t'
+
'''
',
 S

t'
',
 T

a
o

T
a
s
k
s
 o

v
e
rv

ie
w

o
+

+
+

+
x

o

E
x
tr
a
 f
e
a
tu
re
s

G
e
n
e
ra
l

C
o
d
e
 V

e
rs

io
n
 C

o
n
tr
o
l
S

y
s
te

m

Y
e
s
,
lin

k
e
d

N
o

N
o

N
o

N
o

N
o

N
o

B
u
g
 T

ra
c
k
e
r

N
o

N
o

Y
e
s
,
In

te
g
ra

te
d

N
o

N
o

Y
e
s

N
o

U
s
e
r
D

o
c
u
m

e
n
ta

ti
o
n

D
o
c
s
,
J
a
v
a
d
o
c
s
,
D

e
s
ig

n
 d

o
c
s
,
U

n
it
 T

e
s
ts

,

a
ll

L
in

k
e
d
.

D
o
c
s
 c

a
n
 b

e
 l
in

k
e
d
 t
o
 s

to
ri
e
s

Y
e
s
,
A

tt
a
c
h
m

e
n
ts

N
o

N
o

Y
e
s

N
o

P
ro

je
c
t
W

e
b
s
it
e

Y
e
s
,
lin

k
e
d

N
o

N
o

N
o

Y
e
s
,
W

ik
i
lin

k
N

o
Y

e
s

A
d
d
it
io

n
a
l

M
e
ta

p
h
o
rs

 l
is

t
H

is
to

ry
 o

f
a
ll

u
s
e
r
a
c
ti
o
n
s

S
e
e
 R

e
p
o
rt

H
is

to
ry

In
te

g
ra

ti
o
n
,
H

is
to

ry
B

lo
g
,
N

o
te

s
,
F
ile

s
A

b
s
e
n
ts

,
R

o
o
m

 r
e
s
e
rv

a
ti
o
n
,
W

o
rk

lo
a
d
s
,

B
u
g
e
ts

,
R

is
k
s
,
C

o
m

p
e
te

n
c
e
s

Im
p
o
rt
/e

x
p
o
rt
 e

x
c
e
l

N
o

Y
e
s

Y
e
s
,
X

M
L
 t
o
o

Y
e
s

Y
e
s

Y
e
s

N
o

H
e
lp
 /
 D
o
c
u
m
e
n
ta
ti
o
n

H
e
lp

 D
o
c
u
m

e
n
ta

ti
o
n

Y
e
s
,
W

e
b
-b

a
s
e
d
,
in

te
g
ra

te
d
,
V

e
ry

G
o
o
d
**

*

Y
e
s
,
L
in

k
 t
o
 b

a
s
ic

 u
s
e
r
m

a
n
u
a
l

Y
e
s
,
U

s
e
r
m

a
n
u
a
l,
 t
u
to

ri
a
ls

,
to

o
lt
ip

s
 a

n
d
 i
n
-s

it
e

Y
e
s
,
U

s
e
r
M

a
n
u
a
l

Y
e
s
,
D

o
c
u
m

e
n
ta

ti
o
n

Y
e
s

N
o

In
s
ta

lla
ti
o
n
 D

o
c
s

Y
e
s
,
o
n
 w

e
b
s
it
e

Y
e
s
,
o
n
 w

e
b
s
it
e

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

N
o
te
s
:

L
o
ts

 o
f
b
u
g
s
,
s
o
rt
in

g
 d

o
e
s
n
't
 w

o
rk

 a
n
d

n
e
it
h
e
r
d
o
e
s
 m

o
v
in

g
 s

to
ri
e
s
 w

h
e
n
 y

o
u

d
e
le

te
 t
h
e
m

N
o
 b

u
g
s
 s

e
e
n

N
o
 b

u
g
s
 s

e
e
n

N
o
 b

u
g
s
 s

e
e
n

N
o
 b

u
g
s
 s

e
e
n

N
o
 b

u
g
s
 s

e
e
n

H
a
s
 a

 c
a
le

n
d
e
r
w

h
ic

h
 s

h
o
w

s
 a

ll
ta

s
k
s
,

c
ro

w
d
e
d
 p

ic
tu

re
 a

n
d
 s

e
e
m

s
 t
e
 b

e
 n

o
t
v
e
ry

u
s
e
fu

ll.

R
e
le

a
s
e
 f
e
a
tu

re
 s

e
e
m

s
 u

s
e
le

s
s
 e

x
c
e
p
t
th

a
t

it
 e

x
is

ts

O
v
e
rv

ie
w

s
 c

a
n
 b

e
 a

b
it
 a

n
n
o
y
in

g
 a

t
ti
m

e
s
,

b
e
c
a
u
s
e
 t
h
e
re

 a
re

 a
 l
o
t
o
f
th

e
m

.
A

ls
o
 a

 l
o
t
o
f

n
u
m

b
e
rs

 a
n
d
 n

o
t
th

a
t
m

a
n
y
 b

a
rs

 a
n
d

c
o
m

p
le

ti
o
n
 b

a
rs

 w
h
ic

h
 a

re
 e

a
s
ie

r
to

u
n
d
e
rs

ta
n
d

S
im

p
le

 p
ro

g
ra

m
,
e
a
s
y
 t
o
 u

s
e
 e

x
c
e
p
t
o
fr

a
d
d
in

g
 u

s
e
rs

 t
o
 p

ro
je

c
ts

 w
h
ic

h
 s

e
e
m

s

e
it
h
e
r
b
ro

k
e
n
 o

r
s
tr
a
n
g
e
ly

im
p
le

m
e
n
te

d
.

M
id

 w
e
ig

h
t
p
ro

g
ra

m
,
e
a
s
y
 t
o
 u

s
e

b
u
t
la

y
o
u
t
o
f
m

e
n
u
's

 a
n
d
 i
te

m
s

c
o
u
ld

 b
e
 b

e
tt
e
r
a
n
d
 n

e
e
d
s
 b

e
tt
e
r

o
v
e
rv

ie
w

s

N
u
m

b
e
rs

 o
n
 i
te

ra
ti
o
n
s
,
s
to

ri
e
s
 a

n
d
 t
a
s
k
s

is
 n

o
t
c
o
n
s
is

ta
n
t
w

h
e
n
 y

o
u
 d

e
le

te
 i
te

m
s

P
ro

g
ra

m
 h

a
s
 a

 m
o
re

 r
ig

id
 a

p
p
ro

a
c
h
 t
o
 t
h
e

d
e
v
e
lo

p
m

e
n
t
p
ro

c
e
s
s
 w

it
h
 a

 d
e
fi
n
it
e
 a

n
d

s
p
e
c
if
ic

 w
o
rk

fl
o
w

.

C
a
lc

u
la

te
d
 e

n
d
 d

a
ta

 i
s
 n

o
t
c
o
n
s
is

te
n
t

w
h
e
n
 y

o
u
 c

h
a
n
g
e
 t
h
e
 s

ta
rt
 d

a
te

,
le

a
d
s
 t
o

e
ro

n
e
o
u
s
 b

e
h
a
v
io

u
r.

H
a
s
 e

x
tr
a
 m

e
a
n
s
 o

f
d
e
s
c
ri
b
in

g
 c

o
n
te

n
t,
 s

u
c
h

a
s
 r
e
q
u
ir
e
m

e
n
ts

,
fe

a
tu

re
s
,
n
o
n
-f
u
n
c
ti
o
n
a
l

re
q
u
ir
e
m

e
n
ts

,
u
s
e
 c

a
s
e
s
,
d
e
fe

c
ts

 a
n
d
 d

e
fe

c
t

tr
a
c
k
in

g
.

*T
o
p
ic

 =
 G

e
n
e
ra

l
c
a
te

g
o
ry

 o
f
th

e
 s

to
ry

fo
r
s
e
a
rc

h
 p

u
rp

o
s
e
s
.

*L
A

M
P

 =
 s

e
t
o
f
fr
e
e
 s

o
ft
w

a
re

 p
ro

g
ra

m
s

u
s
e
d
 t
o
 r
u
n
 d

y
n
a
m

ic
 w

e
b
s
it
e
s
.
U

s
u
a
lly

re
fe

rs
 t
o
 L

in
u
x
,
A

p
a
c
h
e
,
M

y
s
q
l,
 P

e
rl
 /
 P

h
P

/
P

y
th

o
n
.

*D
a
te

 d
ri
v
e
n
 r
e
le

a
s
e
 p

la
n
n
in

g
 =

 R
e
le

a
s
e
 i
s

a
 s

e
t
ti
m

e
b
o
x
,
e
.a

.
h
a
rd

 d
e
a
d
lin

e
,
s
o

a
m

o
u
n
t
o
f
fu

n
c
ti
o
n
a
lit

y
 i
n
 a

 r
e
le

a
s
e
 c

a
n

s
h
if
t
b
u
t
n
o
t
th

e
 d

a
te

*F
e
a
tu

re
 d

ri
v
e
n
 r
e
le

a
s
e
 p

la
n
n
in

g
 =

 R
e
le

a
s
e
 i
s

d
e
fi
n
e
d
 a

s
 a

 s
e
t
o
f
fu

n
c
ti
o
n
a
lit

y
,
th

is
 s

e
t
if
 f
ix

e
d

s
o
 i
f
s
tu

ff
 t
a
k
e
s
 l
o
n
g
e
r
th

e
 r
e
le

a
s
e
 d

a
te

 s
lip

s
.

*E
O

I
=
 E

n
d
 o

f
it
e
ra

ti
o
n

R
r
=
 P

ro
je

c
t

S
c
a
le

A
C

T
IO

N
S

*S
P

 =
 S

to
ry

 P
o
in

ts
R

e
 =

 R
e
le

a
s
e

*I
D

 =
 I
d
e
a
l
D

a
y
s

It
 =

 I
te

ra
ti
o
n

V
e
ry

 G
o
o
d
 =

 +
+

C
R

E
A

T
E

C

*I
H

 =
 I
d
e
a
l
H

o
u
rs

S
t
=
 S

to
ry

G
o
o
d
 =

 +
D

E
L
E

T
E

D

*R
D

 =
 R

e
a
l
(a

c
tu

a
l)
 D

a
y
s

T
a
 =

 T
a
s
k

N
e
u
tr
a
l
=
 o

D
E

L
E

T
E

 A
N

D
 M

O
V

E
 (
m

o
v
e
 t
o
 s

o
m

e
w

h
e
re

w
h
e
n
 d

e
le

te
d
)

D
a
M

*R
H

 =
 R

e
a
l
(a

c
tu

a
l)
 H

o
u
rs

B
a
d
 =

 -
M

O
D

IF
Y

M

**
/*

**
 =

 i
n
te

re
s
ti
n
g
 f
e
a
tu

re
T
e
rr

ib
le

 =
 -
-

M
O

V
E

M
o
v

C
O

P
Y

C
o

M
E

R
G

E
M

e
r

S
P

L
IT

S

S
e
t
A

c
ti
v
e

S
A

S
e
t
H

id
d
e
n

C
a
n
c
e
l

C
a

T
S

e
t
T
im

e
d

Appendix D

Compared tools extra features
summary

The next page contains a short summary of the extra features found in the compared tools
which could be of use in deciding what must be changed in PPTS. This is an extract of the
Results in chapter 5.

73

T
o
o
l
:

X
p
W
e
b

E
x
tr
e
m
e
 P
la
n
n
e
r

R
a
ll
y

V
e
rs
io
n
O
n
e

X
p
la
n
n
e
r

T
a
rg
e
tP
ro
c
e
s
s

G
o
o
d
 F
e
a
tu
re
s

L
A
M
P
 s
o
lu
ti
o
n
 s
o
 w
ill
 r
u
n
 o
n
 m
o
s
t

o
p
e
ra
ti
n
g
 s
y
s
te
m
s
.

H
a
s
 a
 w
in
d
o
w
s
 i
n
s
ta
lle
r,
 e
a
s
y
 t
o
 u
s
e
 b
u
t
n
o
t

m
u
lt
i-
p
la
tf
o
rm

.

U
s
e
fu
l
fo
r
m
a
n
a
g
in
g
 l
a
rg
e
r
p
ro
je
c
ts

C
le
a
re
r
th
e
n
 R
a
lly
 d
u
e
 t
o
 l
e
s
s
 p
a
g
e
s

a
n
d
 c
le
a
re
r
m
e
n
u
 i
n
te
rf
a
c
e

S
im
p
le
 t
o
o
l
w
it
h
 l
im
it
e
d
 f
u
n
c
ti
o
n
a
lil
ty
.

C
le
a
n
 i
n
te
rf
a
c
e
,
b
u
t
d
o
e
s
 n
o
t

h
a
v
e
 t
h
e
 m
o
s
t
lo
g
ic
a
l
s
e
tu
p
.

E
x
c
e
lle
n
t
h
e
lp
 f
u
n
c
ti
o
n
a
lit
y

R
e
le
a
s
e
s
 s
u
p
p
o
rt
e
d
 a
lt
h
o
u
g
h
 i
n
 a
 m
in
im
a
l

fa
s
h
io
n
.

In
te
g
ra
te
d
 d
e
fe
c
t
tr
a
c
k
in
g
 a
n
d
 t
e
s
t
c
a
s
e
s
.

G
o
o
d
 i
n
tu
it
iv
e
 p
ro
je
c
t
s
e
tu
p
 g
u
id
e

w
o
rk
e
d
 i
n
to
 t
h
e
 m
e
n
y
 s
tr
u
c
tu
re
.

E
a
s
y
 t
o
 u
s
e
 d
u
e
 t
o
 i
t'
s
 l
im
it
e
d
 s
c
a
le
 a
n
d

a
 s
m
a
ll
le
a
rn
in
g
 c
u
rv
e

A
llo
w
s
 d
e
v
e
lo
p
e
rs
 t
o
 b
lo
g

m
e
s
s
a
g
e
s
,
th
e
s
e
 a
re
 s
h
o
w
n
 i
n
 a

b
a
r
o
n
 t
h
e
 l
e
ft
 o
n
 m
o
s
t
p
a
g
e
s
.

A
u
to
m
a
te
d
 d
a
ta
b
a
s
e
 i
n
it
ia
liz
a
ti
o
n
 f
ro
m

th
e
 w
e
b
 i
n
te
rf
a
c
e
 o
f
X
P
W
e
b

Im
p
o
rt
 a
n
d
 E
x
p
o
rt
 s
to
ri
e
s
 t
o
 a
n
d
 f
ro
m

M
ic
ro
s
o
ft
 E
x
c
e
l

G
e
n
e
ra
l
s
e
a
rc
h
 f
u
n
c
ti
o
n
 f
o
r
lo
c
a
ti
n
g
 s
to
ri
e
s
,
d
e
fe
c
ts

o
r
ta
s
k
s
 i
n
 t
h
e
 p
ro
je
c
t.
 V
e
ry
 u
s
e
fu
ll
in
 l
a
rg
e
 p
ro
je
c
ts

w
it
h
 h
u
n
d
re
d
s
 o
f
s
to
ri
e
s
.

C
a
n
 b
e
 r
u
n
 h
o
s
te
d
 o
r
lo
c
a
l
a
s
 a
 l
a
m
p

s
o
lu
ti
o
n
,
s
o
 c
ro
s
s
 p
la
tf
o
rm

 a
n
d
 a
b
ili
ty

to
 c
h
o
o
s
e
 d
e
p
e
n
d
in
g
 o
n
 t
h
e
 s
it
u
a
ti
o
n
.

A
b
ili
ty
 t
o
 a
d
d
 n
o
te
s
 t
o
 m
o
s
t
o
f
th
e

s
c
re
e
n
s
 f
o
r
in
te
r
te
a
m
 o
r
o
th
e
r

c
o
m
m
u
n
ic
a
ti
o
n

A
ls
o
 a
llo
w
s
 t
h
e
 p
o
s
ti
n
g
 o
f
fi
le
s

o
n
 a
 k
in
d
 o
f
b
u
lli
ti
n
 b
o
a
rd
.

E
x
te
n
s
iv
e
 s
o
rt
in
g
 f
u
n
c
ti
o
n
a
lit
y
 i
n
c
lu
d
in
g

c
u
s
to
m
 d
e
fa
u
lt
 s
o
rt
in
g
 m
e
th
o
d
.

H
e
lp
fu
l
m
o
v
ie
s
 a
n
d
 g
u
id
e
s
 t
o
 h
e
lp
 i
n
 g
e
tt
in
g
 s
ta
rt
e
d

w
it
h
 t
h
e
 t
o
o
l.
 G
o
o
d
 s
in
c
e
 t
h
e
 i
n
te
rf
a
c
e
 i
s
 n
o
t
v
e
ry

in
tu
it
iv
e
.

C
le
a
r
a
n
d
 i
n
tu
it
iv
e
 u
s
e
r
in
te
rf
a
c
e
 f
o
r

th
e
 m
o
s
t
p
a
rt
.

H
a
s
 w
a
rn
in
in
g
 f
e
a
tu
re
s
 f
o
r
p
e
o
p
le
 w
h
o

d
id
 n
o
t
fi
ll
in
 t
h
e
ir
 h
o
u
rs
 y
e
t
b
y
 t
h
e
 e
n
d
 o
f

th
e
 d
a
y
.

V
e
ry
 g
o
o
d
 r
e
s
o
u
rc
e

m
a
n
a
g
e
m
e
n
t
in
c
lu
d
in
g
 w
o
rk
 l
o
a
d

p
e
r
te
a
m
 m
e
m
b
e
r.

C
le
a
n
 i
n
te
rf
a
c
e
.

E
a
s
y
 p
la
n
n
in
g
 o
f
R
e
le
a
s
e
s
 a
n
d
 I
te
ra
ti
o
n
s
 v
ia
 d
ra
g

a
n
d
 d
ro
p
 f
u
n
c
ti
o
n
a
lit
y
 a
n
d
 t
h
e
 o
p
ti
o
n
s
 t
o
 m
o
v
e

m
u
lt
ip
le
 s
to
ri
e
s
 o
r
ta
s
k
s
.

L
o
ts
 o
f
m
e
tr
ic
s
 b
o
th
 n
u
m
e
ri
c
a
l
a
n
d

g
rp
a
h
s
 t
h
a
t
s
h
o
w
 h
o
w
 t
h
e
 p
ro
je
c
ts
 i
s

d
o
in
g
 i
n
 t
im
e
.

S
im
p
le
 a
n
d
 c
le
a
r
p
ro
je
c
t
h
ie
ra
rc
h
y

A
u
to
-i
te
ra
ti
o
n
 p
la
n
n
in
g
 f
e
a
tu
re
.

E
x
c
e
lle
n
t
it
e
ra
ti
o
n
 o
v
e
rv
ie
w
 p
a
g
e
,
th
o
u
g
h
 i
t

b
e
c
o
m
e
s
 c
lu
tt
e
re
d
 w
it
h
 a
 l
o
t
o
f
s
to
ri
e
s
 i
n
 a
n

it
e
ra
ti
o
n
.

V
e
ry
 e
x
te
n
s
iv
e
 t
ra
c
k
in
g
 f
e
a
tu
re
s
 b
o
th
 n
u
m
e
ri
c
a
l
a
n
d

g
ra
p
h
ic
a
l
fo
r
b
o
th
 i
te
ra
ti
o
n
s
 a
n
d
 r
e
le
a
s
e
s
.

U
s
e
fu
l
fo
r
la
rg
e
 p
ro
je
c
ts
 b
u
t
v
a
n
 a
ls
o

b
e
 u
s
e
d
 f
o
r
s
m
a
lle
r
o
n
e
s
.

G
o
o
d
 m
e
tr
c
is
 f
o
r
th
e
 s
c
o
p
e
 o
f
th
e
 t
o
o
l

w
it
h
 a
 s
p
e
c
ia
l
fo
c
u
s
 o
n
 p
a
ir

p
ro
g
ra
m
m
in
g
.

In
d
ic
a
to
r
o
f
p
la
n
n
e
d
 e
ff
o
rt
 i
n
 a
n

it
e
ra
ti
o
n
 a
g
a
in
s
t
a
v
a
ila
b
le

re
s
o
u
rc
e
s
.

S
im
p
le
 p
ro
je
c
t
s
ta
tu
s
 o
v
e
rv
ie
w
 p
a
g
e
 w
h
e
n

th
e
 u
s
e
r
lo
g
s
 i
n
.

F
ir
s
t
to
o
l
th
a
t
h
a
s
 i
n
d
ic
a
to
rs
 w
h
ic
h
 s
h
o
w
 h
o
w
 m
u
c
h

s
p
a
c
e
 r
e
m
a
in
s
 i
n
 a
n
 i
te
ra
ti
o
n
 w
h
ile
 p
la
n
n
in
g
.

in
d
ic
a
to
r
o
f
e
ff
o
rt
 d
o
n
e
 a
g
a
in
s
t

ti
m
e
 e
la
p
s
e
d
 i
n
 a
n
 i
te
ra
ti
o
n
.

B
ru
n
-d
o
w
n
 g
ra
p
h
 t
o
 v
is
u
a
liz
e
 i
te
ra
ti
o
n
 s
ta
tu
s
.
T
ra
c
k
in
g
 o
f
in
d
iv
id
u
a
l
e
ff
o
rt
 a
n
d
 a
s
s
ig
n
e
d
 t
a
s
k
s
 v
ia

a
 s
o
rt
 o
f
h
o
m
e
 p
a
g
e
 p
e
r
u
s
e
r.

T
im
e
-l
in
e
 c
h
a
rt
 f
o
r
th
e
 e
n
ti
re
 p
ro
je
c
t
g
iv
e
s
 a
 n
ic
e

o
v
e
rv
ie
w
 o
f
a
ll
p
la
n
n
e
d
 a
c
ti
v
it
ie
s
.

A
c
ti
o
n
s
 a
n
d
 t
h
e
ir
 f
e
e
d
b
a
c
k
 i
s
 u
s
u
a
lly
 o
n
 t
h
e
 s
a
m
e

p
a
g
e
.

B
a
d
 F
e
a
tu
re
s

L
o
ts
 o
f
b
u
g
s
,
s
o
rt
in
g
 a
n
d
 c
a
le
n
d
a
r

s
e
e
m
 b
ro
k
e
n
 i
n
 t
 h
is
 v
e
rs
io
n
.

R
e
le
a
s
e
 f
u
n
c
ti
o
n
a
lit
y
 i
n
c
lu
d
e
d
 i
s
 v
e
ry
 l
im
it
e
d
,

n
a
m
e
ly
 t
o
 a
 r
e
le
a
s
e
 d
a
te
 a
n
d
 a
d
d
in
g
 s
to
ri
e
s
.

B
u
t
th
e
re
 a
re
 n
o
 u
s
e
fu
ll
m
e
tr
ic
s
 a
n
d
 t
ra
c
k
in
g

to
o
ls
 f
o
r
re
le
a
s
e
s
.

R
a
lly
's
 i
n
te
rn
a
l
s
tr
u
c
tu
re
 f
o
r
re
p
re
s
e
n
ti
n
g
 p
ro
je
c
ts
 i
s

q
u
it
e
 c
o
m
p
le
x
 a
n
d
 a
s
 s
u
c
h
 m
a
k
e
s
 w
o
rk
in
g
 w
it
h
 t
h
e

to
o
l
m
o
re
 d
if
fi
c
u
lt
.
T
h
is
 a
ls
o
 r
e
s
u
lt
s
 i
n
 a
 l
o
n
g
e
r

le
a
rn
in
in
g
 c
u
rv
e
.

C
h
a
rt
s
 a
n
d
 r
e
p
o
rt
s
 a
re
 l
in
k
e
d
 t
o
 t
h
e
ir

s
u
b
je
c
t
a
n
d
 n
o
t
a
ll
v
ie
w
a
b
le
 f
ro
m
 o
n
e

p
a
g
e
,
n
o
t
th
a
t
b
a
d
 b
u
t
c
a
n
 b
e

a
n
n
o
y
in
g
.

E
x
tr
e
m
e
ly
 u
n
fr
ie
n
d
ly
 t
o
 i
n
s
ta
ll,
 s
h
o
u
ld

o
n
ly
 b
e
 d
o
n
e
 b
y
 a
n
 I
T
 p
ro
fe
s
s
io
n
a
l.

A
u
to
m
a
ti
c
 i
te
ra
ti
o
n
 p
la
n
n
in
g
 i
s

n
o
t
v
e
ry
 c
o
n
s
is
te
n
t
w
it
h
 t
e
a
m

e
m
p
o
w
e
rm

e
n
t
a
n
d
 a
g
ile

m
e
th
o
d
o
lo
g
ie
s
 i
n
 g
e
n
e
ra
l.

N
o
 r
e
le
a
s
e
 p
la
n
n
in
g
.

N
o
 v
is
u
a
l
o
r
o
th
e
r
h
e
lp
 i
n
 p
la
n
n
ig
 a
 i
te
ra
ti
o
n

o
r
re
le
a
s
e
,
s
u
c
h
 a
s
 r
e
s
o
u
rc
e
s
 u
s
e
d
.

In
te
rf
a
c
e
 i
s
 n
o
t
in
tu
it
iv
e
 i
n
 p
la
n
n
in
g
 a
 p
ro
je
c
ts
,

a
lt
h
o
u
g
h
 t
h
e
 t
o
o
l
d
o
e
s
 a
llo
w
 f
o
r
g
re
a
t
u
p
-f
ro
n
t

p
la
n
n
in
g
.

N
o
t
to
o
 m
u
c
h
 f
e
e
d
b
a
c
k
 i
n
 t
h
e
 p
la
n
n
in
g

c
y
c
le
.

N
o
 r
e
le
a
s
e
 s
u
p
p
o
rt
,
s
h
o
u
ld
 t
h
u
s
 n
o
t
b
e

u
s
e
d
 f
o
r
o
v
e
rl
y
 l
a
rg
e
 p
ro
je
c
ts

In
te
rf
a
c
e
 i
s
 n
o
t
v
e
ry
 i
n
tu
it
iv
e
ly

s
tr
c
u
tu
re
d
.

T
o
o
 m
a
n
y
 a
c
ti
o
n
s
 i
n
v
o
lv
e
d
 i
n
 b
a
s
ic

ta
s
k
s
 l
ik
e
 b
o
o
k
in
g
 t
im
e
 o
n
 t
a
s
k
s
.

A
 n
u
m
b
e
r
o
f
e
d
it
in
g
 o
p
ti
o
n
s
 a
re
 c
o
u
n
te
r

in
tu
it
iv
e
ly
 p
la
c
e
d
 a
n
d
 a
s
 s
u
c
h
 m
is
le
a
d
in
g
.

R
e
le
a
s
e
s
 a
n
d
 I
te
ra
ti
o
n
s
 a
re
 p
la
n
n
e
d
 u
s
in
g
 d
if
fe
re
n
t

e
n
ti
ti
e
s
,
th
is
 i
s
 n
e
e
d
le
s
s
ly
 c
o
n
fu
s
in
g
,

V
e
ry
 l
it
tl
e
 f
e
e
d
b
a
c
k
 o
n
 p
la
n
n
in
g
.

U
s
e
rs
 c
a
n
 s
e
t
v
e
lo
c
it
y
 b
u
t
th
is

d
o
e
s
 n
o
t
s
e
e
m
 t
o
 b
e
 d
y
n
a
m
ic
 o
r

h
is
to
ry
 b
a
s
e
d
 a
ft
e
r
it
 i
s
 s
e
t.

C
h
o
ic
e
 o
f
s
ta
rt
in
g
 a
 t
a
s
k
 w
h
e
n
 a
 d
e
v
e
lo
p
e
r
is

a
s
s
ig
n
e
d
 i
n
s
te
a
d
 o
f
w
h
e
n
 a
c
tu
a
l
h
o
u
rs
 a
re

b
o
o
k
e
d
 i
s
 d
e
b
a
ta
b
le

T
ra
c
k
in
g
 i
n
fo
rm

a
ti
o
n
 i
s
 d
it
ri
b
u
te
d
 o
v
e
r
a
 n
u
m
b
e
r
o
f

p
a
g
e
s
 w
it
h
o
u
t
o
n
e
 c
e
n
tr
a
l
o
v
e
rv
ie
w
.

U
s
e
r
s
to
ri
e
s
 l
is
t
p
a
g
e
 t
a
k
e
s
 w
a
y

to
o
 m
u
c
h
 s
p
a
c
e
 w
h
ic
h
 l
e
a
d
s
 t
o
 a

lo
t
o
f
s
c
ro
lli
n
g
 a
n
d
 a
 b
a
d

o
v
e
rv
ie
w
.

It
e
ra
ti
o
n
 o
v
e
rv
ie
w
 g
e
ts
 c
lu
tt
e
re
d
 e
a
s
ily
,

n
e
e
d
s
 t
o
 b
e
 m
a
d
e
 m
o
re
 c
o
m
p
a
c
t.

M
e
tr
c
is
 a
re
 s
p
re
a
d
 o
u
t
o
v
e
r
th
e

to
o
l
w
it
h
o
u
t
a
 c
e
n
tr
a
l
o
v
e
rv
ie
w
.

C
u
m
b
e
rs
o
m
e
 m
a
n
n
e
r
o
f
fi
lli
n
g
 i
n

ti
m
e
 s
p
e
n
t
o
n
 t
a
s
k
s
.

Bibliography

[ABB+98] A. Anderson, R. Beattie, K. Beck, D. Bryant, M. DeArment, M. Fowler,
M. Franczak, R. Garzaniti, D. Gore, B. Hacker, C. Hendrickson, R. Jeffries, Doug
Joppie, D. Kim, P. Kowalsky, D. Mueller, T. Murasky, R. Nutter, A. Pantea, and
D. Thomas, Chrysler goes to extremes, Distributed Computing 1 (1998), no. 10,
25–28.

[ASRW02] P. Abrahamsson, O. Salo, J. Ronkainen, and J Warsta, Agile software
development methods, review and anlysis, Online, 2002, Available at :
http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf.

[Bec00] Kent Beck, Extreme programming explained, embrace change, Addison-Wesley,
2000.

[Bro87] F. Brooks, No silver bullet: Essence and accidents of software engineering, Com-
puter (1987), 10–19.

[CF01] Ward Cunningham and Martin Fowler, The agile manifesto, Online, 2001, Available
at : http://www.agilemanifesto.org/.

[Coc04] Alistair Cockburn, Crystal clear : A human-powered methodology for small teams,
Addison-Wesley, 2004.

[Coh05] Mike Cohn, Agile estimating and planning, Prentice Hall PTR, 2005.

[Cus98] Michael A. Cusumano, Microsoft secrets: How the world’s most powerful software
company creates technology, shapes markets and manages people, Free Press, 1998.

[Hig00] J. Highsmith, Adaptive software developmenadaptive software development - a col-
laborative approach to managing complex systems, Dorste House Publishing, 2000.

[LB03] Craig Larman and Victor R. Basili, Iterative and incremental development: A brief
history, Computer 36 (2003).

[Met] Advanced Development Methods, Controlled-chaos software development, Online,
Available at : http://www.controlchaos.com/download/Controlled-Chaosnt.pdf.

[PF02] S.R. Palmer and J.M. Felsing, A practical guide to feature-driven development,
Prentice Hall, 2002.

[SB02] K. Schwaber and Beedle, Agile software development with scrum, Prentice Hall,
2002.

[Sch96] Ken Schwaber, Conctrolled choas: Living on the edge, Cutter IT Journal 9 (1996),
no. 3.

75

BIBLIOGRAPHY 76

[Sta97] J. Stapleton, Dsdm: Dynamic systems development method, the method in practice,
Addison-Wesley, 1997.

[Sut04] Dr Jeff Sutherland, Agile development: Lessons learned from the first scrum, Cutter
Agile Project Management Advisory Service, Executive Update 5 (2004), no. 20.

[Sut05] Jeff Sutherland, The roots of scrum: How japanese lean manufacturing
changed global software development practices, Online, 2005, Available at :
http://jeffsutherland.com/scrum/RootsofScrumJAOO28Sep2005.pdf.

[WU01] Laurie Williams and Richard L. Upchurch, In support of student pair-programming,
ACM SIGCSE Bulletin 33 (2001).

