USER MANUAL iTrans

FIXED POINT SINGLE OR DUAL GAS MONITOR WITH DUAL ANALOG OUTPUTS

Part Number: 77023554-1

Version: 15.0

Release Date: May 19, 2015

Copyright © 2015 by Oldham S.A.S

All rights reserved. No reproduction of all or part of this document, in any form, is permitted without the written consent of Oldham S.A.S.

ITrans[™] is a trademark of Oldham.

ModBus® is a registered trademark of Schneider Automation Inc.

ModBus® protocol™ is a trademark of Schneider Automation Inc.

All other trademarks and registered trademarks are the property of their respective owners.

All of the information that is provided in this document is accurate to the best of our knowledge.

As a result of continuous research and development, the specifications of this product may be changed without prior notice.

Oldham S.A.S

Rue Orfila

Z.I. Est – CS 20417

F-62027 ARRAS Cedex

Tel.: +33 (0)3 21 60 80 80

Fax: +33 (0) 3 21 60 80 00

CAUTION: Failure to perform certain procedures or note certain conditions may impair the performance of the monitor. For maximum safety and performance, please read and follow the procedures and conditions outlined below.

- Oxygen deficient atmospheres may cause combustible gas readings that use catalytic LEL sensors to be lower than actual concentrations.
- Oxygen enriched atmospheres may cause combustible gas readings that use catalytic LEL sensors to be higher than actual concentrations.
- Calibrate the catalytic combustible gas sensor after each incident where the combustible gas content causes the instrument to enter in the OVER-RANGE alarm condition.
- Silicone compound vapors may affect the catalytic combustible gas sensor and cause readings of combustible gas to be lower than actual gas concentrations. If the sensor has been used in an area where silicone vapors were present, always calibrate the instrument before continued use to ensure accurate measurements.
- Sensor openings must be kept clean. Obstruction of the sensor openings may cause readings to be lower than actual gas concentrations.
- Sudden changes in atmospheric pressure may cause temporary fluctuations in the oxygen readings.
- Alarms relays are non-latching.
- When connecting 4-20 mA outputs to inductive loads, Oldham recommends using an isolation barrier in line with the 4-20 mA signal.
- Interior grounding terminal is to be used for grounding, the exterior terminal is only to be used for bonding
- iTrans Stand-Alone versions with on-board visible alarm are to be installed in ordinary locations only; however, remote sensors can be installed in hazardous locations (Gas dependent. Read Agency Approvals paragraph).

CALIBRATION ALERT: Gas detection instruments are potential life-saving devices. Recognizing this fact, calibration for the toxic and catalytic LEL sensors should be at least at quarterly intervals, while the infrared sensor should be calibrated on an annual basis with function test every 6 months.

Further, Oldham recommends prudent testing and/or includes calibration after a gas alarm. All calibration service to sensors should be recorded and accessible.

CAUTION: For safety reasons, this equipment must be operated and serviced by qualified personnel only.

Table of Contents

CHA	PTER 1: INTRODUCTION	
1.1.	Overview of the ITrans Erreur! Source du renvoi introuvable. Gas Monitor	1-1
1.2.	Specifications	1-1
1.3.	Agency Approvals - CSA	1-3
1.4.	Special Instructions for Safe Use (EU)	1-5
СНА	PTER 2: HARDWARE OVERVIEW	
2.1.	Main Electronics Unit (Housing)	2-1
2.2.	Sensor	
2.3.	Display	
2.4.	Inputs – Intrusive and Non-Intrusive	
2.5.	Electronics Modules	2-4
СНА	PTER 3: INSTALLATION	
3.1.	Introduction	3-1
3.2.	Installation Considerations	3-1
3.3.	Wall Mounting	3-1
3.4.	Column Mounting	3-1
СНА	PTER 4: SYSTEM WIRING	
4.1.	Introduction	4-1
4.2.	Wiring Preparation	4-1
4.3.	Alarm Relay Wiring (J1, J5, and J6)	4-2
4.4.	Power and Output Wiring (J1)	4-3
4.5.	Sensor Wiring (J3)	4-4
4.6.	Digital ModBus RTU Interface Wiring (J1)	4-9
	4.6.1. ModBus Interface Wiring Overview	4-9
	4.6.2. Setting the ModBus Address on the iTrans [™] Erreur! Source du renvoi	
	introuvable.	4-9
	4.6.3. Setting the ModBus Address for Stand-Alone Sensors	4-10
4.7.	Wiring Conclusion	4-12
СНА	PTER 5: OPERATION	
5.1.	Initial Start-up	5-1
5.2.	Warm-up Period	5-1
5.3.	Normal Operating Mode	5-2
5.4.	Programming Mode Overview	5-3
5.5.	Programming Mode – Non-intrusive Operation	5-4
	5.5.1. Introduction	
	5.5.2. Sensor Type	5-5
	5.5.3. Zeroing	5-5
	5.5.4. Calibration	
	5.5.5. Changing Span Gas Concentration	5-7
	5.5.6. Sensor Span Reserve	5-8
5.6.	Programming Mode – Push Button Operation	5-8
	5.6.1. Introduction	
	5.6.2. Entering Programming Mode and Selecting a Channel	5-9

CHAPTER 6: MODBUS INTERFACE 6.1. Introduction 6.2. Sample Gas Reading via ModBus Network 6.3. ModBus Register List 6.4. ModBus Resources 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	5-10
5.6.6. Set System Time – Minute 5.6.7. Set System Time – Hour 5.6.8. Set System Time – Date 5.6.9. Set System Time – Month 5.6.10. Set System Time – Year 5.6.11. Zeroing 5.6.12. Calibration 5.6.13. Changing Span Gas Concentration 5.6.14. Sensor Span Reserve 5.6. Special Notes on Using Broadband Infrared (BBIR) Sensors CHAPTER 6: MODBUS INTERFACE 6.1. Introduction 6.2. Sample Gas Reading via ModBus Network 6.3. ModBus Register List 6.4. ModBus Resources 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	5-10
5.6.6. Set System Time – Minute 5.6.7. Set System Time – Hour 5.6.8. Set System Time – Date 5.6.9. Set System Time – Month 5.6.10. Set System Time – Year 5.6.11. Zeroing 5.6.12. Calibration 5.6.13. Changing Span Gas Concentration 5.6.14. Sensor Span Reserve 5.6. Special Notes on Using Broadband Infrared (BBIR) Sensors CHAPTER 6: MODBUS INTERFACE 6.1. Introduction 6.2. Sample Gas Reading via ModBus Network 6.3. ModBus Register List 6.4. ModBus Resources 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	5-10
5.6.7. Set System Time – Hour	
5.6.9. Set System Time – Month 5.6.10. Set System Time – Year 5.6.11. Zeroing 5.6.12. Calibration 5.6.13. Changing Span Gas Concentration 5.6.14. Sensor Span Reserve 5.6. Special Notes on Using Broadband Infrared (BBIR) Sensors CHAPTER 6: MODBUS INTERFACE 6.1. Introduction 6.2. Sample Gas Reading via ModBus Network 6.3. ModBus Register List 6.4. ModBus Resources 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	
5.6.10. Set System Time – Year	5-12
5.6.11. Zeroing 5.6.12. Calibration 5.6.13. Changing Span Gas Concentration 5.6.14. Sensor Span Reserve 5.6. Special Notes on Using Broadband Infrared (BBIR) Sensors CHAPTER 6: MODBUS INTERFACE 6.1. Introduction 6.2. Sample Gas Reading via ModBus Network 6.3. ModBus Register List 6.4. ModBus Resources 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	5-12
5.6.12. Calibration 5.6.13. Changing Span Gas Concentration 5.6.14. Sensor Span Reserve. 5.6. Special Notes on Using Broadband Infrared (BBIR) Sensors. CHAPTER 6: MODBUS INTERFACE 6.1. Introduction 6.2. Sample Gas Reading via ModBus Network 6.3. ModBus Register List 6.4. ModBus Resources. 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration. CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems. 8.3. Fault Codes. 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty. 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	5-13
5.6.13. Changing Span Gas Concentration 5.6.14. Sensor Span Reserve	5-13
5.6.14. Sensor Span Reserve 5.6. Special Notes on Using Broadband Infrared (BBIR) Sensors CHAPTER 6: MODBUS INTERFACE 6.1. Introduction 6.2. Sample Gas Reading via ModBus Network 6.3. ModBus Register List 6.4. ModBus Resources 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	5-14
5.6. Special Notes on Using Broadband Infrared (BBIR) Sensors. CHAPTER 6: MODBUS INTERFACE 6.1. Introduction. 6.2. Sample Gas Reading via ModBus Network. 6.3. ModBus Register List 6.4. ModBus Resources. 6.5. Termination. CHAPTER 7: MAINTENANCE 7.1. Introduction. 7.2. Sensor Replacement. 7.3. Zero and Calibration. CHAPTER 8: TROUBLESHOOTING 8.1. Introduction. 8.2. Diagnosing Common Problems. 8.3. Fault Codes. 8.4. Function Codes. CHAPTER 9: WARRANTY 9.1. Warranty. 9.2. Limitation of Liability. APPENDIX A: ACRONYMS AND ABBREVIATIONS	5-15
CHAPTER 6: MODBUS INTERFACE 6.1. Introduction 6.2. Sample Gas Reading via ModBus Network 6.3. ModBus Register List 6.4. ModBus Resources 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	5-16
6.1. Introduction 6.2. Sample Gas Reading via ModBus Network 6.3. ModBus Register List 6.4. ModBus Resources 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	5-17
6.2. Sample Gas Reading via ModBus Network 6.3. ModBus Register List 6.4. ModBus Resources 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	
6.3. ModBus Register List 6.4. ModBus Resources. 6.5. Termination	6-1
6.4. ModBus Resources 6.5. Termination CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	6-1
CHAPTER 7: MAINTENANCE 7.1. Introduction 7.2. Sensor Replacement 7.3. Zero and Calibration CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	6-2
CHAPTER 7: MAINTENANCE 7.1. Introduction	6-6
7.1. Introduction	6-6
7.2. Sensor Replacement	
7.3. Zero and Calibration	7-1
CHAPTER 8: TROUBLESHOOTING 8.1. Introduction 8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	7-2
8.1. Introduction	7-2
8.2. Diagnosing Common Problems 8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	
8.3. Fault Codes 8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	8-1
8.4. Function Codes CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	8-1
CHAPTER 9: WARRANTY 9.1. Warranty 9.2. Limitation of Liability APPENDIX A: ACRONYMS AND ABBREVIATIONS	8-2
9.1. Warranty	8-3
9.2. Limitation of Liability	
APPENDIX A: ACRONYMS AND ABBREVIATIONS	9-1
	9-1
APPENDIX B: DECIMAL, BINARY, AND HEXADECIMAL EQUIVALENTS	
APPENDIX C: ORDERING MATRIX	
APPENDIX D: FACTORY DEFAULT SETTINGS	
APPENDIX E: EC DECLARATION OF CONFORMITY CERTIFICATE	
APPENDIX F: INDEX	

INTRODUCTION

Chapter

1.1. Overview of the itrans ERREUR! SOURCE DU RENVOI INTROUVABLE. Gas Monitor

The **itrans ERREUR! SOURCE DU RENVO! INTROUVABLE.** fixed gas monitor is an independent monitor capable of displaying one or two gas concentrations as well as sensor or instrument specific diagnostics.

The itrans ERREUR! SOURCE DU **RENVOI INTROUVABLE** comes standard with independent 4-20 mA outputs for each channel, making it ideal for interfacing to control units. A digital ModBus RTU interface is allowing the iTrans available. **ERREUR! SOURCE DU RENVOI INTROUVABLE.** to interface to digital control systems. The itrans ERREUR! SOURCE DU **RENVOI INTROUVABLE.** is available with an optional relay board, allowing the unit to directly control external devices such as fans, pumps, alarm horns, or warning lights. Two of the relays can be programmed for alarm activation, while the third relay is a fault protection relay.

Figure 1-1. Typical ERREUR! SOURCE DU RENVOI INTROUVABLE. Gas Monitor with Single Gas Sensor (Stainless Steel Option)

Calibration, changing span gas concentration, and checking the instrument's configuration are easily accomplished using the non-intrusive magnetic wand.

The itrans ERREUR! SOURCE DU RENVO! INTROUVABLE. is powered with a 24 VDC (12-28 VDC) power supply and provides a 4-20 mA control signal for each sensor.

1.2. Specifications

Specifications for the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE** gas monitor are listed in Table 1-1.

Table 1-1. Specifications for the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** Monitor

Item	Description			
Enclosure	Cast aluminum, poly-bonded coating or 316 stainless steel. Both are explosion-proof, NEMA 4X, IP66 rated.			
Dimensions	$5.0 \times 6.0 \times 5.0$ inches (127 × 153 × 129 mm)			
Sensors	Combustible Gases: Catalytic bead and/or Non-Dispersive Infrared (NDIR)			
	Oxygen/Toxic Gases: Electrochemical diffusion			
Input Voltage	12-28 VDC operating range (24 VDC typical), 350 mA (nominal) Maximum current draw of 600 mA with 2 LEL sensors installed			
	Toxic Gas/Oxygen		150 mA @ 24 VDC (single gas)	
Innut Cumont	Combustible Gases (Catalytic)		175 mA @ 24 VDC, 0.6 A peak (single gas)	
Input Current (Max)	Combustible Gases (Infrared)		150 mA @ 24 VDC, 0.6 A peak (single gas)	
	Combined Catalytic/Infrared		280 mA @ 24 VDC (two gas)	
Display	Dual-channel split-screen LED display (4-digit, 7-segment arrangement per channel) provides simultaneous display of one or two gases.			
Signal Outputs Digital Three- or four-devices in bus con-board 8-positi		ModBus Three- odevices i on-board	RTU: RS485 digital communication with RTU software protocol system at 9600 baud. or four-wire system accommodates over 200 n bus configuration. Address selection through 8-position DIP switch. NOTE: ModBus is not d for CSA C22.2 No. 152 compliance.	
	Analog	4-20 mA (linear analog)		
Alarm Relays	Quantity	3 alarm relays: Two user-programmable relays, SPST, N.O.; plus one fault relay, SPST, N.C.		

	Contact Capacity	5A @ 30 VDC 5A @ 30 VAC	
Temperature Range	-40° C ~ +75° C (-40° F ~ +167° F) -20° C ~ +50° C (-4° F ~ +122° F) for BBIR only		
Humidity Range	10% - 90% RH (non-condensing), typical		
Pressure	Atmospheric pressure ±10%		

Sensor	Gas	Range/Resolution			
Combustible Gases	LEL	0 -100% LEL	in	1%	increments
Hydrogen	H_2	0 - 999 ppm	in	1 ppm	increments
Oxygen	O_2	0 - 30.0% by vol.	in	0.1%	increments
Ammonia	NH ₃	0 - 500 ppm	in	1 ppm	increments
Carbon Monoxide	СО	0 - 999 ppm	in	1 ppm	increments
Carbon Monoxide/H ₂ Null	СО	0 - 999 ppm	in	1 ppm	increments
Hydrogen Sulfide	H_2S	0 - 500 ppm	in	1 ppm	increments
Sulfur Dioxide	SO_2	0.2 - 99.9 ppm	in	0.1 ppm	increments
Hydrogen Cyanide	HCN	0.2 - 30.0 ppm	in	0.1 ppm	increments
Hydrogen Chloride	HC1	0.2 - 30.0 ppm	in	0.1 ppm	increments
Phosphine	PH ₃	0 - 1.00 ppm	in	0.01 ppm	increments
Nitrogen Dioxide	NO ₂	0.2 - 99.9 ppm	in	0.1 ppm	increments
Nitric Oxide	NO	0 - 999 ppm	in	1 ppm	increments
Chlorine	Cl ₂	0.2 - 99.9 ppm	in	0.1 ppm	increments

Table 1-2. Sensor Ranges

1.3. Agency Approvals

Chlorine Dioxide

The **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** is certified by CSA, a NRTL laboratory, to the following US and Canadian Standards.

0.02 - 1.00 ppm

in

0.01 ppm increments

- UL Std No. 916-Energy Management Equipment
- UL Std No. 1203-Explosion-Proof and Dust-Ignition-Proof

 ClO_2

- o Electrical Equipment for Use in Hazardous (Classified) Locations
- UL Std No. 1604-Division 2 Hazardous Location Electrical Equipment
- ISA S12.13 Part I-2000-Performance Requirements, Combustible Gas Detectors (catalytic sensors only)
- CSA Std C22.2 No.30-M1986-Explosion-Proof Enclosures for Use in Class I Hazardous Locations
- CSA Std C22.2 No.142-M1987-Process Control Equipment

- CSA Std C22.2 No. 152-M1984-Combustible Gas Detection Instruments (catalytic sensors only)
- CSA Std C22.2 No. 213-M1987-Non-incendive Electrical Equipment for Use in Class I, Division 2 Hazardous Locations

Marking: Class I, Div 1, Groups B, C, D – AEx d IIB + H2 T5

Sensor_(gas dependent) (1) Class I, Div 1, Groups B, C, D – AEx d IIB + H2 T5

 $^{(2)}$ Class I, Div 2, Groups A, B, C, D – AEx d IIB + H2 T5

Ambient for Model 7701-5857 Fixed IR sensor (BBIR) is -20C to +55C. Ambient for all other devices is -40C to +75C.

The itrans ERREUR! SOURCE DU RENVOI INTROUVABLE. is certified under the IECEx scheme to:

IEC 60079-0:2007 - Electrical apparatus for potentially explosive atmospheres—General requirements.

- IEC 60079-1:2003 Electrical apparatus for potentially explosive atmospheres—Flameproof enclosures 'd'.
- IEC 60079-15:2005 Electrical apparatus for explosive gas atmospheres. Type of protection "n".

Marking: Transmitter Ex d IIB+H2 T5; IP66; Ta (-40°C to +75°C)

 $Sensor_{(gas\ dependent)} \qquad \qquad ^{(1)}\ Ex\ d\ IIB+H2\ T5\ ;\ IP66\ ;\ Ta\ (-40^{\circ}C\ to\ +75^{\circ}C)$

(2) Ex nA II T5; Ta (-40°C to +75°C)

The **itrans ERREUR! SOURCE DU RENVO! INTROUVABLE.** complies with relevant provisions, per listed standards, of European ATEX Directive 94/9/EC and EMC Directive 89/336/EEC, amended by Directives 92/31/EEC and 93/68/EEC, and is constructed with reference to published standards of Directive 72/23/EEC, to eliminate electrical risks and fulfill 1.2.7 of Annex II of Directive 94/9/EC.

- EN 60079-0:2004 Electrical apparatus for potentially explosive atmospheres General requirements.
- EN 60079-1:2004 Electrical apparatus for potentially explosive atmospheres Flameproof enclosures 'd'.

- EN 60079-15:2003 Electrical apparatus for explosive gas atmospheres. Type of protection "n".
- EN 50270: Electromagnetic compatibility Electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen (for Type 2 [Industrial] Apparatus).

•

The **itrans Erreur! Source DU RENVOI INTROUVABLE.** EC type examination certificate is KEMA 04 ATEX 2216X, with

Marking code: Transmitter Ex d IIB+H2 T5; Ta (-40°C to +75°C)

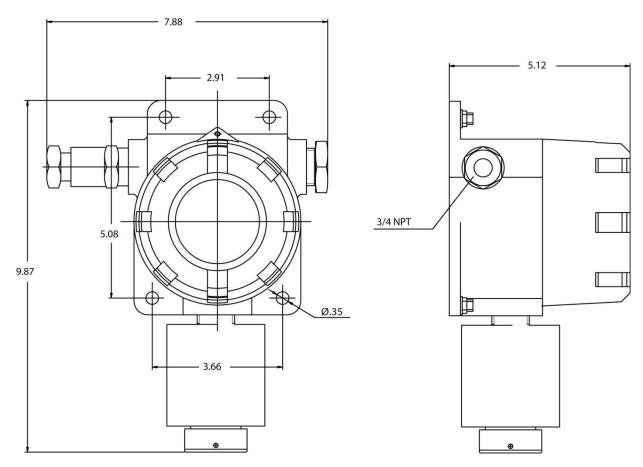
 $Sensor_{(gas\; dependent)} \quad ^{(1)} \;\; Ex\; d\; IIB+H2\; T5 \; ; \; Ta \; (-40^{\circ}C \; to \; +75^{\circ}C)$

⁽²⁾ Ex nA II T5; Ta (-40°C to +75°C)

- (1) LEL, H₂, O₂, CO, H₂S, SO₂, HCN, PH₃, NO₂, NO, CO₂
- ⁽²⁾ Cl₂, HCl, NH₃, ClO₂

1.4. Special Instructions for Safe Use (EU)

- <u>Cable connection:</u> The cable entry device shall be of a certified flameproof type, suitable for the conditions of use and correctly installed.
- <u>Conduit Connection:</u> An Ex d certified sealing device, such as, a conduit seal with setting compound, suitable for the conditions of use, and correctly installed, shall be provided immediately to the entrance of the housing.
- <u>Unused openings</u>: Unused openings shall be closed with suitable Ex d certified closing elements.
- <u>Dual Onboard</u>: The "Y" adapter parts used to assemble dual onboard configurations do not have Atex approval. Consult factory for dual onboard Atex options.


#

HARDWARE OVERVIEW

Chapter

2.1. Main Electronics Unit (Housing)

The **itrans ERREUR! SOURCE DU RENVO! INTROUVABLE.** body is a cast aluminum housing that contains the electronics of the gas monitor. Details of a single-gas housing are shown in Figure 2-1.

NOTE: Dimensions are in inches.

Figure 2-1. Details of a Single-Gas **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** Gas Monitor

2.2. Sensor

Table 2-3. Sensor Specifications

Item	Descriptions				
rtem	Catalytic and Toxics	Infrared (BBIR)			
Sensor Housing Material	Aluminum, Anodized Explosion-proof: Class I, Divisions 1 and 2, Groups B, C, D and Ex d IIB +H2 T5 (ATEX and IECEx), Ex d IICT6 Gb (China) Aluminum, Anodized w/Gore-Tex Membrane: Class I, Division 2, Groups A, B, C, D and Ex nA IIC T5 (IECEx) and Ex nA II T5 (ATEX).	Stainless Steel Explosion-proof: Class I, Divisions 1 and 2 Groups B, C, D, and Ex d IIB +H2 T4 (Europe), Ex d IIC T4 or IIC T6 (China)			
Dimensions	3.0×3.0 inches (76 × 76 mm)	3.5×3.0 inches (89 × 76 mm)			
Accuracy	< ± 3% Toxic and Oxygen	< ± 5% Combustibles			
Protection Class	IP 66 or NEMA4X				

2.3. Display

The itrans Erreur! Source Du Renvol introuvable gas monitor has a 4-digit, 7-segment LED display for each of 2 channels. A dual-gas itrans Erreur! Source Du Renvol introuvable sensor and sample display are shown in Figure 2-2.

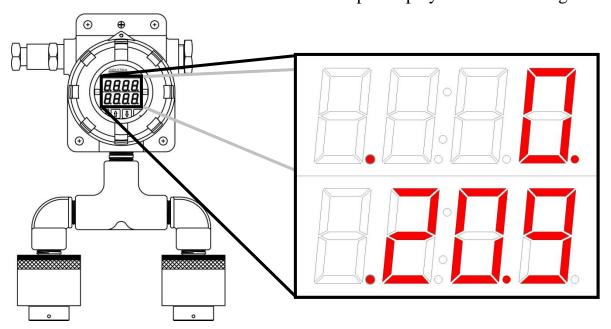


Figure 2-2. The **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE**. Display (Dual-Gas Monitor Shown)

2.4. Inputs – Intrusive and Non-Intrusive

The **itrans Erreur! Source DU RENVO! INTROUVABLE.** gas monitor can be configured using intrusive and non-intrusive means. Both methods of configuration are accomplished through physical inputs that are visible behind the glass panel of the gas monitor.

A set of four keys are used when intrusive programming is appropriate (i.e., when the enclosure can be removed and when the keys can be manually pressed). These keys are the mode, increment (+), decrement (-), and enter keys. Refer to Figure 2-3.

For applications that require non-intrusive manipulation, two magnetically-activated reed switches are used to accomplish programming without removing the cover. A magnetic wand is positioned over the appropriate reed switch (above the glass face plate) without the wand physically touching the reed switches. The locations of the reed switches are shown in Figure 2-3.

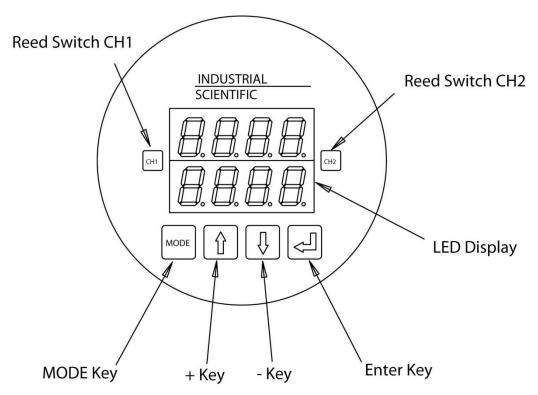


Figure 2-3. Locations of **iTrams ERREUR! SOURCE DU RENVOI INTROUVABLE**. Input Keys and Reed Switches

Programming the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** gas monitor in both intrusive and non-intrusive modes is explained in detail in Chapter 5: Operation.

2.5. Electronics Modules

The electronics module of the **itrans ERREUR I SOURCE DU RENVOI INTROUVABLE.** gas monitor contains connectors and jumpers for wiring and configuring the device. The electronics module for a main **itrans ERREUR I SOURCE DU RENVOI INTROUVABLE.** unit is shown in Figure 2-4. The electronics module for a remote unit is shown in Figure 2-5. Wiring details are explained in Chapter 4: System Wiring.

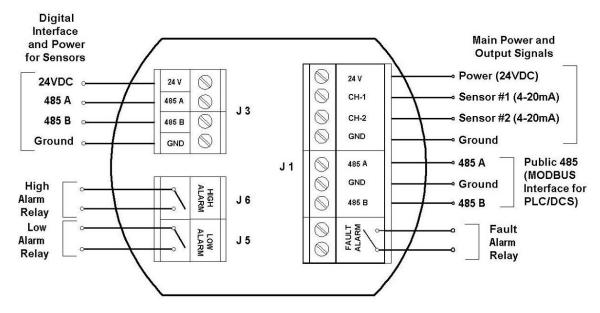


Figure 2-4. Electronics Module for **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** (Main Unit)

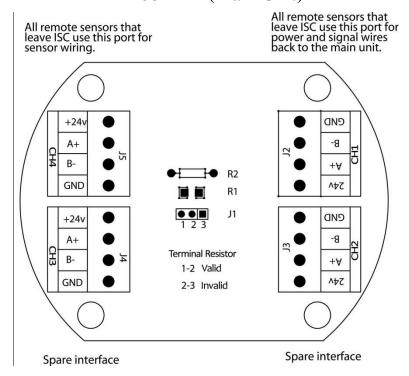


Figure 2-5. Electronics Board for **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** Remote Sensor

#

INSTALLATION

Chapter 3

3.1. Introduction

The itrans Erreur I source Du renvoi introuvable can be mounted in one of two ways. The unit can be wall-mounted using the wall mounting holes in the enclosure, or it can be mounted onto a column using U-bolts. Each of these options is discussed in this chapter. Be sure to review the installation considerations before mounting the itrans Erreur! Source Du renvoi introuvable gas monitor.

3.2. Installation Considerations

Regardless of the installation type (wall mounting or column mounting), the **ITrams ERREUR I SOURCE DU RENVOI INTROUVABLE.** should be installed at or near the location of a possible leak or the source of emissions. Installation height depends on the density of the gas being monitored. Moreover, speed and direction of air flow, and relative position to potential leaking points should also be considered.

IMPORTANT: The **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** gas monitor must not be installed on vibrating or heat generating sources.

3.3. Wall Mounting

If your application is best addressed using a wall-mounted gas monitor, then use the four 8 mm mounting holes in the enclosure to secure the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** to an appropriate location on the wall. Refer to Figure 3-1.

3.4. Column Mounting

If your application is best addressed using a column-mounted gas monitor, then use the four 8 mm mounting holes and two U-bolts to secure the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** to an appropriately located segment of a target pipe or conduit. Refer to Figure 3-2.

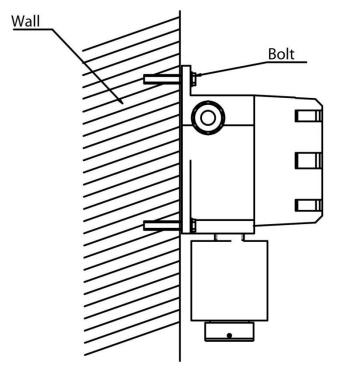


Figure 3-1. Mounting the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** Gas Monitor on a Wall

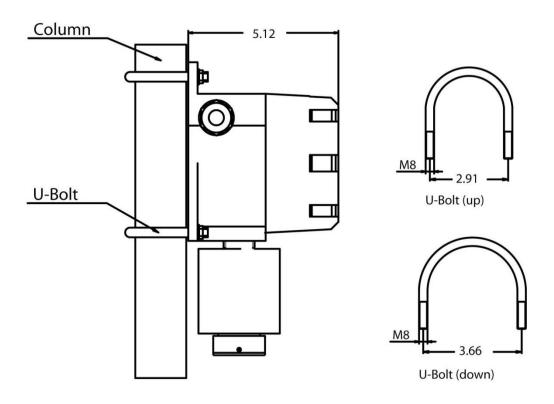


Figure 3-2. Mounting the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** Gas Monitor on a Column Using U-Bolts

#

SYSTEM WIRING

Chapter

4

4.1. Introduction

This chapter outlines the steps required for wiring the **ITrans ERREUR! SOURCE DU RENVO! INTROUVABLE** gas monitor. These steps include the following:

- Wiring Preparation
- Alarm Relay Wiring
- ModBus Interface Wiring.
- Sensor Wiring
- Power and Output Wiring

Each of these steps is outlined in the sections that follow.

IMPORTANT: Perform all wiring in accordance with local electrical codes and local authorities having jurisdiction.

IMPORTANT: DC signal and AC power should not be run in the same conduit.

NOTE: All field wiring colors are arbitrary (unless provided by Oldham).

4.2. Wiring Preparation

- 1. Collect the appropriate types and lengths of wire.
 - For control wire, use #18 AWG insulated, shielded cable.
 - For signal and power wire, use three-conductor (or four-conductor for dual channel) #18 AWG insulated and shielded cable.
 - For digital ModBus signal and power, use a minimum of five-conductor #18 AWG insulated and shielded cable.
- 2. Power down the unit.
- 3. Unthread the windowed top from the housing.
- 4. Gently pull out the electronics module and place it safely to the side of the unit.
- 5. Thread control, signal, and power wires into the transmitter housing.

6. Shielding from either the controller or remote sensors should be bonded to the enclosure screw located inside the **ITTAINS ERREUR! SOURCE DU RENVOI INTROUVABLE**.

IMPORTANT: Use of this product in areas where it may be subject to large amounts of electromagnetic interference may affect the reliable operation of this device and should be avoided.

WARNING: Supply wire with a minimum rating of 90°C must be used for interconnection to the **ITrans ERREUR! SOURCE DU RENVO! INTROUVABLE.**

NOTE: For classified locations, a "poured" wire seal must be installed within 18 inches of the main unit for both power entry and remote sensors.

NOTE: Remove power from the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** before making any wiring connections.

4.3. Alarm Relay Wiring (J1, J5, and J6)

To connect the **itrams ERREUR I SOURCE DU RENVOI INTROUVABLE.** control wires to the three relay terminals on the relay board, wire the unit to the connectors shown in Figure 2-4. The **low alarm relay** is activated when the low alarm threshold is met. This is a non-latching, Normally Open (NO) contact. The **high alarm relay** is activated when the high alarm threshold is met. This is a non-latching, Normally Open (NO) contact. The **fault alarm relay** is activated upon power-up of the **itrams ERREUR I SOURCE DU RENVOI INTROUVABLE**. When the fault condition is met, the circuit opens. This is an Electronically closed (NO) contact. See Figure 4-1 for relay wiring.

NOTE: It is recommended that on-board relays should not be used to drive loads directly. On-board relays should be used to drive a secondary, higher-power relay which is connected to the control device (e.g., strobe, siren, exhaust fan, etc.).

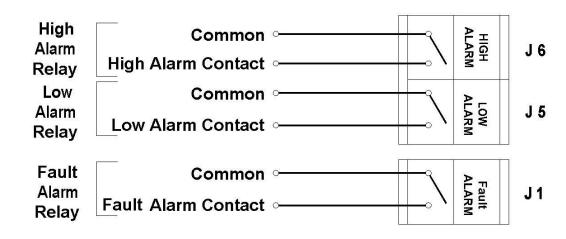


Figure 4-1. Alarm Relay Connectors J6, J5 and J1

4.4. Power and Output Wiring (J1)

Connect the **itrans Erreur! Source Du Renvol introuvable** power and signal wires to the appropriate wiring terminals as follows.

24 V: Connect 24 VDC (12-28 VDC) supply power

CH 1: Channel 1, 4-20 mA output signal

CH 2: Channel 2, 4-20 mA output signal

GND: DC return

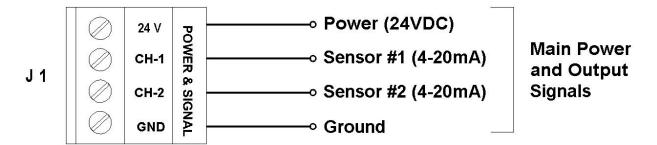


Figure 4-2. Power and Signal Connector J1 on the **iTrans ERREUR!SOURCE DU RENVOI INTROUVABLE**.

NOTE: Use supplied green conductor for enclosure ground. Public 485 GND is to be used for ModBus digital ground.

NOTE: The **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** is a 3- or 4-wire 4-20 mA device. For dual sensor configuration you must have a second 4-20 mA signal wire pulled to the unit.

NOTE: When not using 4-20 mA outputs, use the supplied resistors to connect CH-1 and CH-2 to GND. If these resistors are not connected and the 4-20 mA outputs are not used, a "P" will appear on the display, indicating an open loop condition.

4.5. Sensor Wiring (J3)

Connect the **itrans ERREUR I SOURCE DU RENVOI INTROUVABLE.** sensor wires (for onboard, remote or stand-alone) to the appropriate wiring terminals as follows.

24 V:	Red wire from sensor head	(Red wire on BBIR)
485A:	Yellow wire from sensor head	(White wire on BBIR)
485B:	Black wire from sensor head	(Green wire on BBIR)
GND :	Green wire from sensor head	(Black wire on BBIR)

NOTE: Shielding from either the controller or remote sensors should be bonded to the enclosure screw located inside the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE**.

NOTE: The 24 V terminal supplies 24 VDC to the sensor for power. This terminal should not be connected to the output of a 24 VDC power supply.

Digital Interface and Power for Sensors

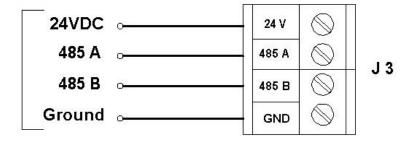


Figure 4-3. Sensor Connector J3 on the itrans ERREUR! SOURCE DU RENVOI INTROUVABLE.

NOTE: For dual-sensor configurations, place both of the same colored wires in the appropriate terminal block and firmly tighten.

NOTE: Use #18 AWG shielded cable for remote sensors. Maximum distance is 200 meters (BBIR maximum distance is 300 feet with #18 AWG wire).

NOTE: When wiring remote sensors to the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE**, "485 B" on J3 should be connected to "B-" in the remote sensor enclosure, and "485 A" on J3 should be connected to "A+" in the remote sensor enclosure.

NOTE: For remote or standalone sensors, there are four terminal blocks located in the remote sensor housing. These terminal blocks are all tied together and follow the same wiring scheme mentioned above.

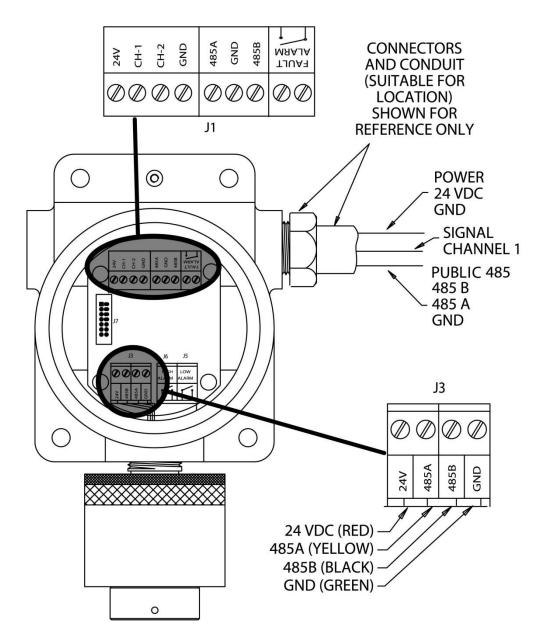


Figure 4-4. Wiring Diagram for a Single On-board Sensor

Figure 4-5. Wiring Diagram for a Remote Sensor (Stand Alone)

NOTE: When the remote sensor is at distances of 200 meters or further, and the sensor is not communicating, the jumper may need to be moved to terminals 1-2.

NOTE: If using remote sensors and the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE** does not recognize the sensor upon power up (displays a sensor fault), check the placement of this jumper. If the jumper is on terminals 1-2, move the jumper to terminals 2-3.

For digital ModBus signal and power use a minimum of 4 conductors #18 AWG insulated and **shielded** cable.

Shielding from either the controller or remote sensors should be bonded to the enclosure screw located inside the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE**.

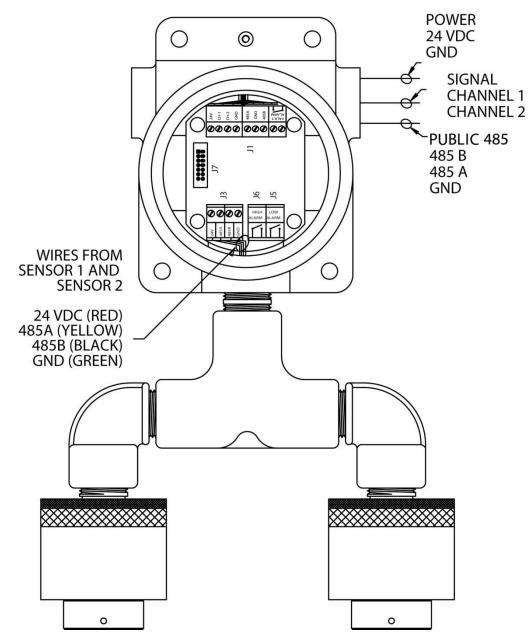


Figure 4-6. Wiring Diagram for Dual On-board Sensors

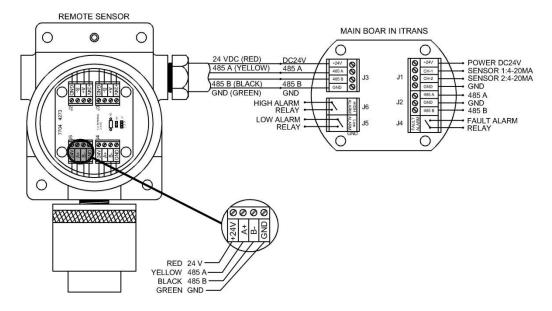


Figure 4-7. Wiring Remote Sensors Back to **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE**.

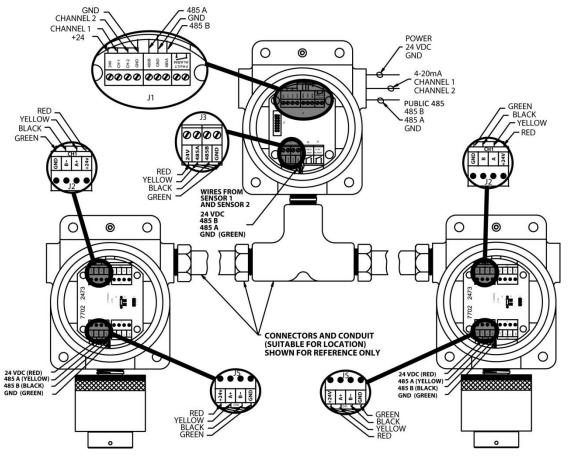


Figure 4-8. Wiring Dual Remote Sensors

4.6. Digital ModBus RTU Interface Wiring (J1)

4.6.1. ModBus Interface Wiring Overview

To interface the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** to a digital controller, PLC, or HMI, connect the power and ground to the appropriate terminals mentioned above. The digital signals are wired into the **RS485A** and **RS485B** terminals on the board. See Figure 4-9.

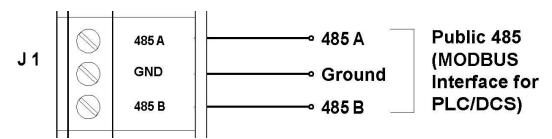


Figure 4-9. Wiring Diagram for the ModBus Interface

4.6.2. Setting the ModBus Address on the **ITrans** ERREUR! SOURCE DU RENVOI INTROUVABLE.

Located on the back of the electronics module is an 8-position DIP switch. This switch bank is used to set the ModBus Slave Address for the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** unit. The address can be set from 1 to 255. Use the DIP switches to set the binary representation of the desired address. 1 is bit zero, and 8 is bit 7. ON represents a 1, and OFF represents zero. Refer to Appendix B for hex-to-decimal equivalents.

Figure 4-10. Switch Bank for Setting ModBus Slave Address

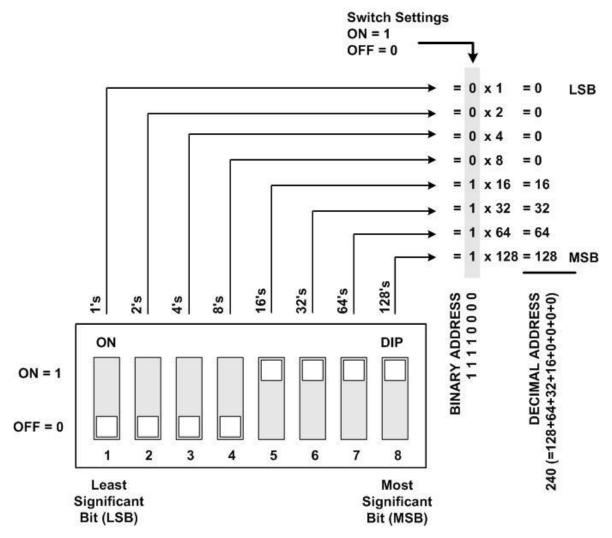


Figure 4-11. Setting the ModBus Address (Example Address of 240 Decimal)

4.6.3. Setting the ModBus Address for Stand-Alone Sensors

NOTE: This section is only necessary if you are connecting a sensor directly to a ModBus controller, PLC, or digital system.

For stand-alone sensor heads used in a ModBus network, the address is set in the same manner. Once the aluminum sensor head is removed with the sensor board, the sensor electronics module is exposed. On the back of the sensor electronics module is a small 8-position DIP switch. The address can be set from 1 to 255 in a similar manner as setting the ModBus address on the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE** except pin 8 on the sensor's 8-position DIP switch is the least significant bit, and pin 1 is the most significant bit.

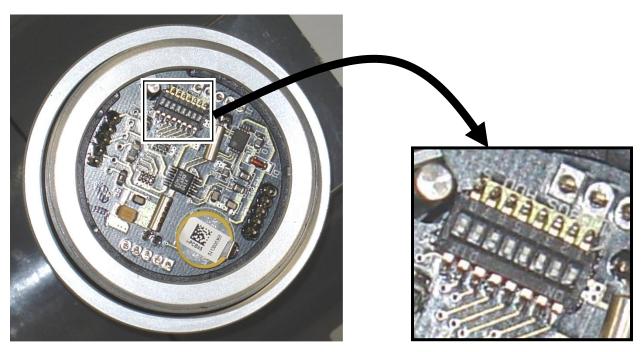


Figure 4-12. Location of Address DIP Switch on Sensor Electronics Module

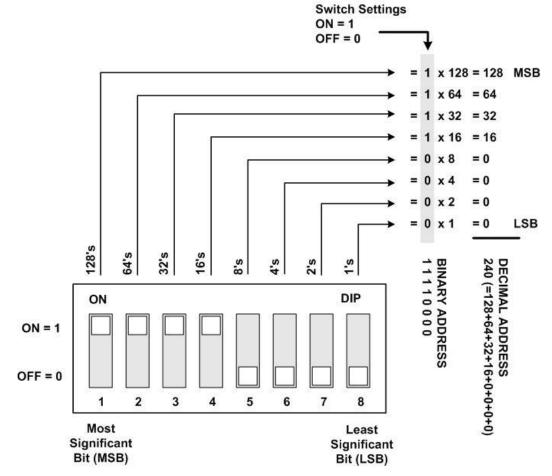


Figure 4-13. Setting the ModBus Address for a Stand-Alone Sensor

NOTE: If adding a second sensor to an existing module, set the ModBus address to $\uparrow\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\downarrow$ which represents 11110000 binary (and 240 decimal). See Chapter 6 for more information on the ModBus interface. (Note that DIP switches are pre-set at the factory for all dual-sensor units).

4.7. Wiring Conclusion

Once wiring is complete, place the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** electronics module back in the housing by pressing the standoff banana jacks into the mating plugs. Be careful not to pinch any of the wiring. After the module is in place, secure the windowed top back on the housing and power up the unit.

#

OPERATION

Chapter

5.1. Initial Start-up

Once power is applied (12-28 VDC), the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** is operational. The LED display powers up, and the system enters a start-up period. During this start-up period, the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** identifies the sensors that are connected and then enters a three minute warm-up period.

NOTE: Upon initial power up, broadband infrared (BBIR) sensors do not store or transmit the default values for Low Alarm, High Alarm, and 4-20 mA range to the **ITrans ERREUR I SOURCE DU RENVOI INTROUVABLE** unit. These values are set to zero, and must be set following the procedures outlined later in this manual.

5.2. Warm-up Period

During this warm-up period, the 4-20 mA outputs are limited to 3 mA (16 mA for oxygen). After the three minute warm-up, the unit will enter the Normal Operating Mode. If during the warm-up period, the unit fails a self test, the display will show a fault code, and the fault relay will be activated. Fault codes are located in Chapter 8.

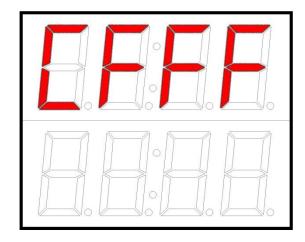


Figure 5-1. Sample Fault Code Display

5.3. Normal Operating Mode

In Normal Operating Mode, the **ITrans** Erreur! Source du renvoi introuvable. gas monitor will display the instantaneous readings for each sensor wired into the unit. The top of the **ITrans** Erreur! Source du renvoi introuvable. display shows the gas reading for Sensor 1. Sensor 1 should have the internal dip switches set to 00 hex or 0F hex. The bottom row of the **ITrans** Erreur! Source du renvoi introuvable. display shows the gas reading for Sensor 2. Sensor 2 should have the internal dip switches set to F0 hex.

As gas concentrations increase, the respective channel's readings will respond accordingly. If low or high alarm levels are exceeded, an alarm indication will appear in the first digit of the display. An "L" indicates a low alarm while an "H" indicates a high alarm. If a 4-20 mA fault occurs, either a "P" indicating an open loop, or an "U" indicating 4-20 over-range will be present.

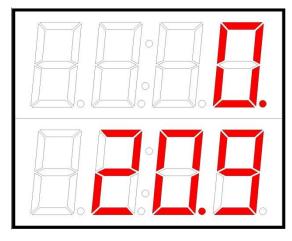


Figure 5-2. Sample Dual-Sensor Display

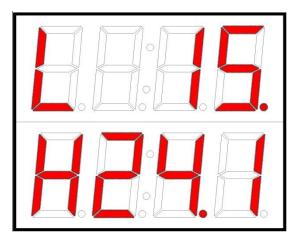


Figure 5-3. Sample Low and High Alarm Displays

From the Normal Operating Mode, the **itrans ERREUR! SOURCE DU RENVO! INTROUVABLE** can enter into the program mode in one of two ways. To enter the Program Mode without opening the enclosure, pass over the embedded reed switch located under CH1 with the magnetic wand (see Figure 5-4). This will enter you into the non-intrusive program mode.

In this mode you can check sensor type, zero the unit, calibrate the unit, change the span gas value, and view sensor span. With the enclosure top removed, Program Mode can be entered using the "MODE" key. The available functions are listed in Chapter 8: Troubleshooting.

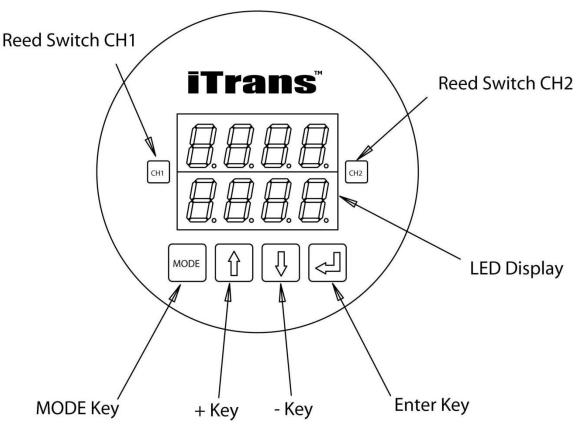


Figure 5-4. Locations of Reed Switches and Push Buttons

5.4. Programming Mode Overview

NOTE: Zeroing and calibrating the instrument can be accomplished one of two ways via programming mode. Zeroing and calibrating (as well as other programming options) can be entered either from the keypad or non-intrusively using the magnetic wand. Refer to the sections and subsections within this chapter for detailed information.

When in the Programming Mode, either via the magnetic wand or keypad operation, the top line of the main display area shows a status bit and three data bits. The bottom line of the display shows the timers (see Figure 5-5). The decimals on the far right of each line of the display are channel indicators. The top decimal indicates channel 1 is being programmed, and the bottom decimal indicates channel 2.

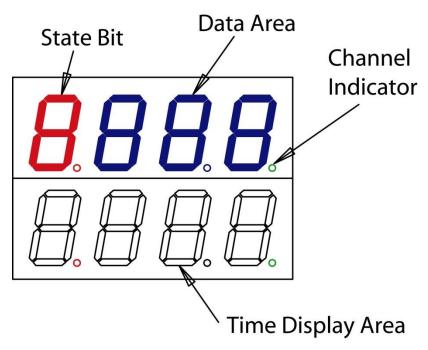


Figure 5-5. Components of the Display

5.5. Programming Mode – Non-intrusive Operation

5.5.1. Introduction

Non-intrusive calibration and programming is accomplished using a magnetic wand that comes with the **itrans ERREUR! SOURCE DU RENVO! INTROUVABLE.** unit. Placing the magnetic wand over the embedded reed switches located under the CH1 and CH2 designations (see Figure 5-4) of the faceplate will allow you to scroll through menus and enter the desired function. The functions available through non-intrusive operation are as follows.

- Sensor Type
- Zero
- Calibration
- Span Gas Value
- Span Reserve (in this order).

NOTE: Please see the Chapter 8 for a complete list of functions and function codes.

5.5.2. Sensor Type

To enter non-intrusive operation during the Normal Operating Mode, place the magnetic wand over the CH1 designation. The **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** will display the sensor type for channel 1 for 5 seconds then enter in the Zero Menu.

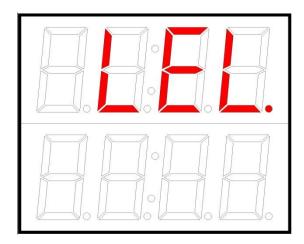


Figure 5-6. Sample Display Entering Non-Intrusive Mode

NOTE: If you want to operate channel 2, place the magnetic wand on CH2 first to enter the setup menu.

Once non-intrusive mode is entered, placing the magnetic wand over CH1, will allow scrolling through all of the functions that are available. Once the desired function is reached, a 10-second timer will appear on the bottom row of the LED display. During this 10-second time out, if the magnetic wand is placed over CH2, that function is entered. Once a function is entered, a new timer will appear.

5.5.3. Zeroing

Zeroing is the first option in the setup menu. A "0" is displayed in the status bit of the display to designate this function. A 10 second timer is displayed on the bottom line of the LED display. To initiate zeroing, place the magnetic wand over CH2 during the 10-second countdown. If you do not initiate zeroing during the 10-second countdown, the **ITTANS**" **ERREUR! SOURCE DU RENVOI INTROUVABLE.** will return to the Normal Operating Mode. To abrot zeroing at any time, place the magnatic wand over CH1.

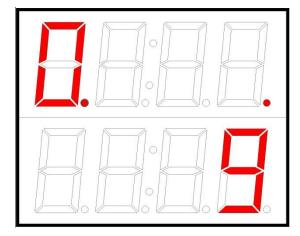


Figure 5-7. Sample Zeroing Display

If you initiate zeroing, the status bit will start to flash. Once zeroing is complete, the unit will return to the Normal Operating Mode.

5.5.4. Calibration

Calibration is the next available option. Calibration is designated with a "C" in the status bit. A 10 second timer is displayed on the bottom line of the LED display. To initiate calibration, place the magnetic wand over CH2 during the 10-second If you do not initiate countdown. during calibration the 10-second countdown. the iTrans[™] ERREUR! SOURCE DU RENVOI INTROUVABLE. will return to the Normal Operating Mode. If you initiate calibration, the status bit will start to flash and the iTrans **ERREUR! SOURCE DU RENVOI INTROUVABLE.** will enter the zeroing process.

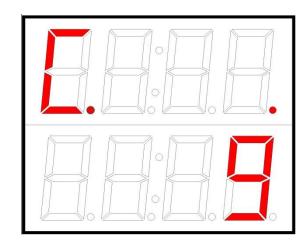


Figure 5-8. Sample Calibration Display

NOTE: Before the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** will calibrate, the unit will enter the zeroing process. Please make sure that you apply Zero Air to the instrument while it is zeroing.

The itrans ERREUR! SOURCE DU RENVOI INTROUVABLE will automatically zero before calibration. Zeroing is designated with a flashing "0" in the status bit. Once zeroing is complete, the itrans ERREUR! SOURCE DU RENVOI INTROUVABLE will automatically enter the calibration routine. Calibration is designated with a flashing "C" in the status bit.

ERREUR I SOURCE DU RENVOI INTROUVABLE is ready to calibrate. When the flashing "C" appears on the display, apply calibration gas. As the itrans ERREUR I SOURCE DU RENVOI INTROUVABLE responds to the gas, the current reading will be displayed on the top line of the LED display. To abort calibration at any time, place the magnetic wand over CH1.

NOTE: Check and verify span setting before starting a calibration.

NOTE: See Appendix D for a complete list of factory default span gases.

NOTE: Flow rate for calibration is 0.5 liter per minute (LPM) except for NH₃, ClO₂, Cl₂, NO₂, SO₂, and HCl which require 1.0 LPM.

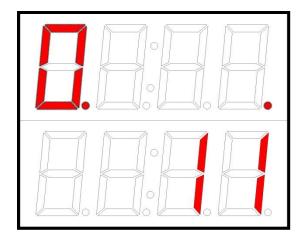


Figure 5-9. Sample Zeroing Display

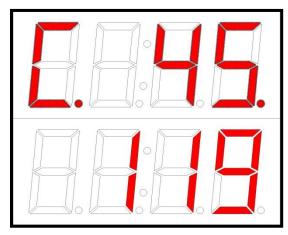


Figure 5-10. Apply CalGas Display

5.5.5. Changing Span Gas Concentration

The option after calibration is Span Gas Concentration. The span option is designated with a flashing "S" in the status bit with the current span value next to it. To change the span value, place the magnetic wand over CH2 during the 10-second countdown. you do not place the magnet over CH1 during the 10-second countdown, the itrans ERREUR! SOURCE DU RENVOI **INTROUVABLE.** will return to the Normal Operating Mode. If you initiate the change span option, the status bit will flash and the iTrans start to SOURCE ERREUR! **INTROUVABLE** span value can now be changed.

The current span value is displayed on the top line of the LED display. To increment the span value, pass the magnetic wand over CH1. When the desired value is reached, pass the magnetic wand over CH2 to accept and save changes. Passing over CH1 or letting the timer count down to zero without saving the new value, will take you back into the Programming Mode.

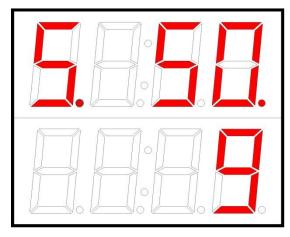


Figure 5-11. Sample Span Gas Concentration Display

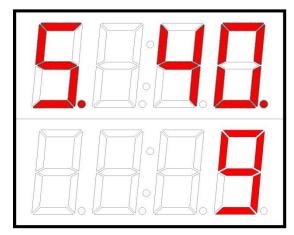


Figure 5-12. Flashing Status Bit

NOTE: Span Gas Concentration for combustibles can be set from 0% to 100% LEL. For the sake of resolution, the Span Gas Concentration should be set above 20% LEL.

5.5.6. Sensor Span Reserve

The last option available is viewing the sensor span reserve. The span reserve option is designated with an "r" in the status bit. The current span reserve is displayed on the top line of the LED display.

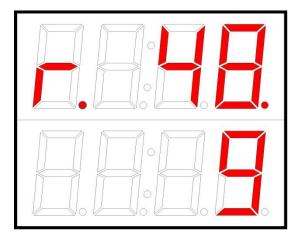


Figure 5-13. Sample Span Reserve Display

5.6. Programming Mode – Push Button Operation

5.6.1. Introduction

In a safe environment where the windowed top of the transmitter can be removed, there are more programming options available. These programming options include all of the functions available in the non-intrusive mode as well as a few others. These items are password protected. To enter the programming options, press the "Mode" key. The access code is "Mode", "Up", "Down", "Up", "Enter".

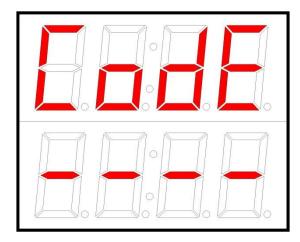


Figure 5-14. Sample Code Entry Display

Once the correct password has been entered, the user will have to select a channel for programming. But in case of wrong password or time out (10 second) the display will revert back to Normal Operating Mode.

NOTE: If display shows "iNet" confirm setting is "0" to ensure proper function of onboard relay.

NOTE: Please see Chapter 8 for a complete list of functions and function codes.

5.6.2. Entering Programming Mode and Selecting a Channel

On entering the correct password, the channel selection screen will be displayed on the LED display. Press the "Mode" button to switch between the available channels then press the ""," button to confirm the channel selection.

Once a channel is selected, the gas type for that sensor is displayed on the top row of the LED display for 5-7 second. After that the LED display will show the list of available functions. Use the arrow keys to scroll through the list of functions available.

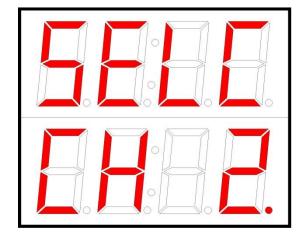


Figure 5-15. Sample Channel Selection Display

NOTE: If you have a dual-sensor unit, use the "Mode" button to switch between the channel.

5.6.3. Set Low Alarm

The low alarm setpoint is designated with an "L" displayed in the status bit and current low alarm value displayed next to it. To change the low alarm setpoint, press the ""," button during the 10-second countdown. If you do not press ""," during the 10-second countdown, the **ITrans**" **ERREUR! SOURCE DU RENVOI INTROUVABLE** will return to the Normal Operating Mode. If you initiate the low alarm option, the status bit will start to flash and the **ITrans**" **ERREUR! SOURCE DU RENVOI INTROUVABLE** low alarm setpoint can be changed by

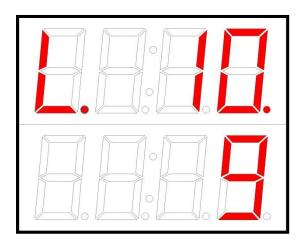


Figure 5-16. Sample Low Alarm Setpoint Display

using the "\tau" and "\dagger" keys. When the desired value is reached, press the "\dagger" key to accept and save the new value. If the value is not saved before the time-out, the

ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE. will go back to the Programming Mode.

5.6.4. Set High Alarm

The high alarm setpoint is designated with an "H" displayed in the status bit and the current high alarm value displayed next to it. To change the high alarm setpoint, press the "\]" button during the 10-second countdown. If you do not press "\]" during the 10-second countdown, the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** will return to the Normal Operating Mode. If you initiate the high alarm option, the status bit will start to flash and the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** high alarm setpoint can be changed by using the "\" and "\" keys.

When the desired value is reached, press the "" key to accept and save the new value. If the value is not saved before the time-out, the **ITrans ERREUR! SOURCE DU RENVO! INTROUVABLE.** will go back to the Programming Mode.

5.6.5. 4-20 mA Analog Output Range

The range of 4-20 mA analog output is set to full range as factory default. For full range values, see Appendix D. If the user desires to change the output scaling of the 4-20 mA analog signal, they can do so.

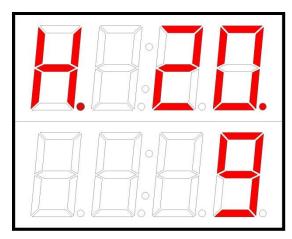


Figure 5-17. Sample High Alarm Setpoint Display

NOTE: Only the upper end range can be changed. The low end is always set for 4 mA.

The 4-20 mA setpoint is designated with a "4" displayed in status bit and the current high end range next to it. To change the range, press the "→" the button during 10-second countdown. If you do not press "→" during the 10-second countdown, the itrans ERREUR! SOURCE DU RENVOI **INTROUVABLE.** will return to the Normal Operating Mode. If you initiate the 4-20 mA range option, the status bit will start to flash and the iTrans™ ERREUR ! SOURCE RENVOI INTROUVABLE range setpoint can be changed by using the "↑" and "↓" keys.

When the desired value is reached, press the "" key. If the value is not saved before the time-out, the **ITrans**" **ERREUR! SOURCE DU RENVO! INTROUVABLE.** will go back to the Programming Mode.

Figure 5-18. Changing the Analog Output Upper Value

5.6.6. Set System Time – Minute

The system's clock minute setting is designated with a "1" in the status bit and current value next to it. To change the minutes, press the "→" 10-second button during the countdown. If you do not press "→" during the 10-second countdown, the iTrans[™] ERREUR! SOURCE **RENVOI INTROUVABLE.** will return to the Normal Operating Mode. If you initiate the minutes option, the status bit will start to flash and iTrans" ERREUR!

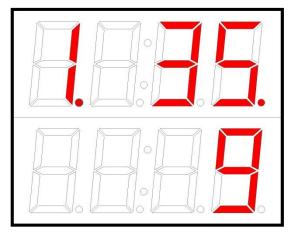


Figure 5-19. Setting System Time (Minutes)

RENVOI INTROUVABLE. minute can be changed by using the " \uparrow " and " \downarrow " keys.

When the desired value is reached, press the "\(\dagger" key. If the value is not saved before the time-out, the **ITrans ERREUR! SOURCE DU RENVO! INTROUVABLE.** will go back to the Programming Mode.

5.6.7. Set System Time – Hour

The system's clock hour setting is designated with an "h" in the status bit and current value next to it. To change the hour, press the "→" button during the 10-second countdown. If you do not press "→" during the 10second countdown, the **iTrans** ERREUR! SOURCE INTROUVABLE. will to the return Normal Operating Mode. If you initiate the hours option, the status bit will start to flash and the **iTrans** ERREUR! SOURCE NII **INTROUVABLE.** hour can be changed by using the "↑" and "↓" keys.

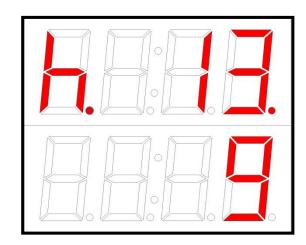
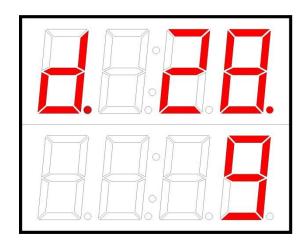



Figure 5-20. Setting System Time (Hour)

When the desired value is reached, press the "\(\pi\)" key. If the value is not saved before the time-out, the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** will go back to the Programming Mode.

5.6.8. Set System Time – Day

The system's day of the month setting is designated with a "d" in the status bit and current value next to it. To change the day, press the "\(\percap\$" button during the 10-second countdown. If you do not press "\(\percap\$" during the 10-second countdown, the ITTANS" ERREUR! SOURCE DU RENVOI INTROUVABLE will return to the Normal Operating Mode. If you initiate the

days option, the status bit will start to flash and the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** day can be changed by using the "↑" and "↓" keys.

Figure 5-21. Setting System Date

When the desired value is reached, press the "\(_\]" key. If the value is not saved before the time-out, the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** will go back to the Programming Mode.

5.6.9. Set System Time – Month

system's month setting designated with an "E" in the status bit and current value next to it. change the month, press the "→" the during 10-second button countdown. If you do not press "→" during the 10-second countdown, the itrans ERREUR! SOURCE DU RENVOI **INTROUVABLE.** will return to the Normal Operating Mode. If you initiate the month option, the status bit will start to flash and the **ITrans ERREUR!** SOURCE RENVOI INTROUVABLE DU month value can be changed by using the "↑" and "↓" keys.

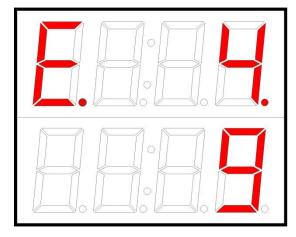


Figure 5-22. Setting System Month

When the desired value is reached, press the "\(_\]" key. If the value is not saved before the time-out, the **Trans ERREUR! SOURCE DU RENVOI INTROUVABLE** will go back to the Programming Mode.

5.6.10. Set System Time – Year

The system's year setting is designated with an "8" in the status bit and current value next to it. To change the year, press the "→" button during the 10-second countdown. If you do not "**↓**" during the 10-second press countdown, the iTrans™ ERREUR! **SOURCE DU RENVOI INTROUVABLE.** Will the Normal Operating return to Mode". If you initiate the year option, the status bit will start to flash and the itrans ERREUR! SOURCE DU RENVOI **INTROUVABLE.** year value can be changed by using the "↑" and "↓" keys.

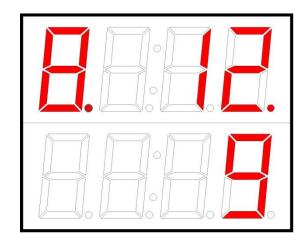


Figure 5-23. Setting System Year

When the desired value is reached, press the "\(\dagger" key. If the value is not saved before the time-out, the **ITrans ERREUR! SOURCE DU RENVO! INTROUVABLE.** will go back to the Programming Mode.

5.6.11. Zeroing

Zeroing is an option available both through the keypad and non-intrusively. A "0" is displayed in the status bit of the display to designate this function. A 10 second timer is displayed on the bottom line of the LED display.

To initiate zeroing, press the "→" key during the 10-second countdown. If you do not initiate zeroing during the 10-second countdown, the **iTrans**** ERREUR! SOURCE DU RENVO **INTROUVABLE.** will return to the Normal Operating Mode. If you initiate zeroing, the status bit will start to flash. Once zeroing is complete, the unit will return to the Normal Operating Mode. To abort zeroing at any time, press the "Mode" key.

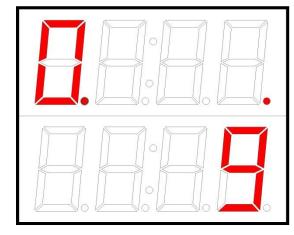


Figure 5-24. Sample Zeroing Display

5.6.12. Calibration

The calibration option is also available through the keypad. Calibration is designated with a "C" in the status bit. A 10 second timer is displayed on the bottom line of the LED display. To initiate calibration, press the "\p"key during the 10-second countdown. If you do not initiate calibration during 10-second countdown. itrans ERREUR! SOURCE DU RENVOI **INTROUVABLE.** will return to the Normal Operating Mode. If you initiate calibration, the status bit will start to and the iTrans ERREUR! flash SOURCE DU RENVOI INTROUVABLE will enter the zeroing process.

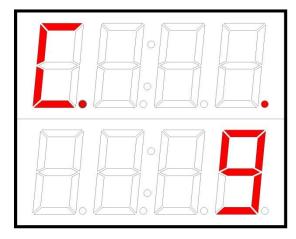


Figure 5-25. Sample Calibration Display

NOTE: Before the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** will calibrate, the unit will enter the zeroing process. Please make sure that you do not apply gas to the instrument while it is zeroing.

The itrans ERREUR! SOURCE DU RENVOI INTROUVABLE will automatically zero before calibration. Zeroing is designated with a flashing "0" in the status bit. Once zeroing is complete, the itrans ERREUR! SOURCE DU RENVOI INTROUVABLE will automatically enter the calibration routine. Calibration is designated with a flashing "C" in the status bit.

After zeroing finishes, the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** is ready to calibrate. When the flashing "C" appears on the display, apply calibration gas. As the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** responds to the gas, the current reading will be displayed on the top line of the LED display. To abort calibration at any time, press the "Mode" key.

NOTE: Check and verify span setting before starting a calibration.

NOTE: Please refer to Appendix D for a complete list of factory default span gases.

NOTE: Flow rate for calibration is 0.5 liter per minute (LPM) except for NH₃, ClO₂, Cl₂, NO₂, SO₂, and HCl which require 1.0 LPM.

5.6.13. Changing Span Gas Concentration

The span option is designated with a flashing "S" in the status bit with the current span value next to it. change the span value, press the "→" key during the 10-second countdown. If you do not press the "→" during the 10-second countdown, the **iTrans**[™] ERREUR! SOURCE NII RENVOI **INTROUVABLE.** will return to the Normal Operating Mode. If you initiate the change span option, the status bit will start to flash and the iTrans SOURCE ERREUR! INTROUVABLE span value can now be changed.

The current span value is displayed on the top line of the LED display. Use the "↑" and "↓" keys to change the span value. When the desired value is reached, press the "¬¬" key to save changes. Pressing the "Mode" key or letting the timer count down to zero without saving the new value, will take you back into the Programming Mode.

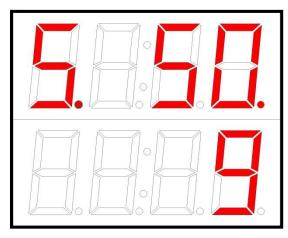


Figure 5-26. Sample Span Gas Concentration Display

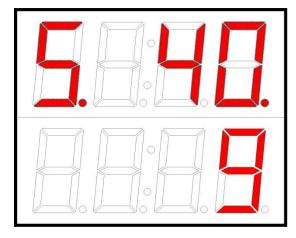


Figure 5-27. Flashing Status Bit

NOTE: If the """ key is not pressed, the new span value will not be saved.

NOTE: Span Gas Concentration for combustibles can be set from 0% to 100% LEL. For the sake of resolution, we suggest that Span Gas Concentration should be set above 20% LEL.

5.6.14. Sensor Span Reserve

The span reserve option is designated with an "r" in the status bit. The current span reserve is displayed on the top line of the LED display.

NOTE: There are a few other options that appear that do not have any function associated with them. These are reserved for future functionality.

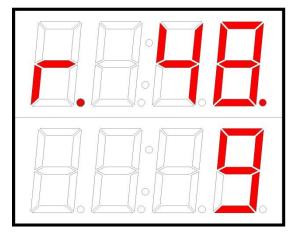


Figure 5-28. Sample Span Reserve Display

5.7. Special Notes on Using Broadband Infrared (BBIR) Sensors

The broadband infrared (BBIR) sensor currently used with the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE**. gas monitor does not fully support or follow all of the functionality or procedures listed within this manual. Differences between the functionality of the BBIR sensor and the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE**. operation explained in this manual are as follows:

- There is no real time clock in the BBIR sensor. When looking at the clock settings, they will be displayed as time and date of initial test. If you set these values, they will not increment.
- Low alarm, high alarm, and 4-20 mA range are factory pre-set to 10, 20, and 100 respectively.
- When calibrating the BBIR sensor, the display will not show the actual
 concentration of gas applied, it will display zero. Once the calibration is
 complete, the display will switch from zero to the actual concentration of gas
 applied.
- The Span Gas Concentration is fixed at 50% LEL and cannot be changed.
- The typical zero time for the BBIR sensor is 3 minutes.
- The typical calibration time for the BBIR sensor is 3 minutes.
- After a calibration, the span reserve for the BBIR sensor is not available to the end user.
- The BBIR sensor's digital address is set at the factory for Channel 1 operation (0x0F) or Channel 2 operation (0xF0). This digital address cannot be changed in the field.

If you have any questions concerning the functionality of the BBIR sensor and the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE**, please contact Oldham at 1-713-559-9280 or americas@oldhamgas.com.

#

MODBUS INTERFACE

Chapter

6.1. Introduction

When programming the ModBus ID address on the **itrans ERREUR I SOURCE DU RENVOI INTROUVABLE.** electronics module or on the smart sensor board, use the binary reference chart on the following page. A "1" represents "ON" on the switch bank, and position 1 of the switch bank represents the right most binary digit (LSB).

ModBus characteristics for the **itrans ERREUR! SOURCE DU RENVO! INTROUVABLE** are listed below.

Table 6-1. ModBus Characteristics for the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE.** Gas Monitor

Characteristic	Description
Hardware	2-wire mode (not 4-wire)
Baud Rate	9600
Electrical Standard	TIA/EIA-485
Transmission Mode	RTU mode (not ASCII)
Message Coding System	8-bit
Start Bits	1
Data Bits	8 (LSB sent first)
Parity Bits	0
Stop Bits	1

Important: When commissioning master and slave units on a ModBus network, it is critical to ensure that every device on the ModBus network must have a unique address. Otherwise, abnormal behavior of the entire serial bus can occur.

6.2. Sample Gas Reading via ModBus Network

To get a gas reading for Channel 1, you must read register 40102. This register holds the gas reading in ppm.

Example: Gas reading of 5 ppm = register value of \$0005.

Example: Gas reading of 20.9% = register value of \$0209.

For Channel 2 you can access the gas reading by looking at register 40202.

For a full list of ModBus commands and registers that are accessible on the **ITrams ERREUR! SOURCE DU RENVOI INTROUVABLE**, refer to the next section or, for the most up-to-date list, contact the Technical Support group of Oldham at 1-713-559-9280.

6.3. ModBus Register List

ModBus register addresses are provided in Table 6-2.

Table 6-2. ModBus Registers

Addr	Inst R/W	Host R/W	Range	Description
40101	R/W	R/W	MSB = \$01 to \$FF	Sensor Type
			LSB = \$01 to \$F7	Holds the sensor instrument type code and ModBus address. The most significant byte (MSB) holds a value indicating the type of instrument (see below). The least significant byte (LSB) holds a value which is the ModBus address of the sensor.
				MSB =Instrument type code \$01 to \$FF \$03 = BBIR (broad band infrared) \$04 = TOX (toxic) \$05 = OXY (oxygen) \$06 = AAW (toxic) \$07 = CAT (catalytic) LSB = MODBUS sensor address \$01 to \$F7 (1 to 247)

Addr	Inst R/W	Host R/W	Range	Description
40102	W	R	\$0000 to \$FFFF	Gas Reading Holds the gas reading in ppm or percent depending upon the sensor in the instrument. The range is from \$0000 to \$FFFF and represents a signed decimal value range from -32768 to +32767. Examples: +5 ppm = register value of 00005 ₁₀ = \$0005 -5 ppm = register value of 65531 ₁₀ = \$FFFB

Addr	Inst R/W	Host R/W	Range		Des	scription
40103	R*	R*	MSB = \$01 to \$FF LSB = \$01 to \$FF	Gas Type Holds the dec	cimal pla	ace holder and the gas type
					_	nificant byte (MSB) holds
						mal places to be used in
						gas. This decimal locator uent values of gas readings
					-	s. This can be read by the
				instrument.		ast significant byte (LSB)
				This can be re		n identifies the gas type.
					•	e holder \$01 to \$FF
				LSB = Gas ty	_	
				\$01	СО	
				\$02	H_2S	Hydrogen Sulfide
				\$03	SO_2	Sulfur Dioxide
				\$04	NO_2	Nitrogen Dioxide
				\$05	Cl_2	Chlorine
				\$06	ClO_2	
				\$07	HCN	Hydrogen Cyanide
				\$08	PH_3	Phosphine
				\$09 \$0C	H_2	Hydrogen Nitric Oxide
				\$0C \$0D	NO NH ₃	Ammonia
				\$0E	HCl	Hydrogen Chloride
				\$14	O_2	Oxygen
				\$15	CH_4	Methane
				\$16	LEL	Lower Explosive Limit
						(Combustible Gases)
				Examples:		
					-	place for gas type HCN
					_	places for gas type H ₂ S
				\$0206 = 2 de	ecimal p	places for ClO ₂

Addr	Inst R/W	Host R/W	Range	Description
40105	W	R/W	\$0000 to \$FFFF	Instrument Mode
				Holds code for current mode of instrument. Possible working modes of instrument are listed below.
				\$0001 Normal
				\$0002 Calibration
				\$0003 Warm-up
				\$0006 Zeroing
				\$0008 Fault
				\$0009 Reset
				Examples:
				Sensor in zero fault = \$0008
				Sensor zeroing = \$0006
40106	W	R	\$0000 to \$FFFF	Status Bits
				Holds 16 bits of status for various parameters in the instrument. A bit value of "1" indicates that the associated fault condition is present.
				Bit 15 = current loop open
				Bit 14 = current loop shorted
				Bit 13 = power fault
				Bit 12 = 5 volt fault
				Bit 11 = missing sensor
				Bit $10 = (not \ defined)$
				:
				Bit $6 = (not \ defined)$
				Bit 5 = zero fault
				Bit 4 = calibration fault
				Bit 3 = over-range
				Bit 2 = failed sensor
				Bit 1 = high alarm
				Bit 0 = low alarm
				Examples: Missing consor — Pit 11 is set — \$0000
				Missing sensor = Bit 11 is set = \$0800 Power fault and
				failed sensor = Bits 13 and 2 set = \$2004
40115	W	R		Last Alarm Date (mmdd)
				Holds the month and day when the instrument had the last alarm.

Addr	Inst R/W	Host R/W	Range	Description
				High byte = \$01 to \$0C
				Low byte = $$01$ to $$1F$
				Examples:
				Dec 25 is represented as \$0C19
				June 31 is represented as \$061F
40116	W	R		Last Alarm Date (00yy)
				Holds the last two digits of the year when the instrument was last in alarm. The first two digits are assumed to be "20". High byte = \$00, Low byte = \$02 to \$63 Examples: 2002 is represented by \$02
				2099 is represented by \$63
40117	R	R/W	MSB=\$01 to \$0C, LSB=\$01 to \$1F	RTC Month and Day Holds the month and day to which the real time clock (RTC) calendar should be set. The most significant byte (MSB) represents the month from \$01 to \$0C (1-12). The least significant byte (LSB) represents the day of the month from \$01 to \$1F (1-31).
				Examples:
				December 25 = \$0C19
				June 31 = \$061F
40118	R	R/W	\$0002 to \$0063	RTC Year (00yy) Holds the year to which the real time clock (RTC) should be set. The most significant byte (MSB) is always \$00. The least significant byte (LSB) represents the two-digit year (within the 21 st century), from \$02 (which represents 2002) to \$063 (which represents 2099). Examples:
				2002 = 02 (+ base year of 2000) = \$0002
				2010 = 10 (+ base year of 2000) = \$000A 2099 = 99 (+ base year of 2000) = \$0063
40119	R	R/W	MSB=\$00 to \$18,	RTC Hours and Minutes
			LSB=\$00 to \$3C	Holds the hours and minutes to which the RTC should be set. The most significant byte (MSB) represents the hour from \$00 to \$18 (00-24). The least significant byte (LSB) represents the

Addr	Inst R/W	Host R/W	Range	Description
				minutes from \$00 to \$3C (00 to 60). Note that the seconds default to zero (\$00) each time the hours and minutes are set. Examples: 13:05 = \$0D05 24:00 = \$1800
40124	R	R/W	\$0000 to \$FFFF	Low Alarm Display Setting Holds the value of the gas reading at which the low alarm display will activate.
40125	R	R/W	\$0000 to \$FFFF	High Alarm Display Setting Holds the value of the gas reading at which the high alarm display will activate.
40126	R	R/W	\$0000 to \$03E8	Cal Gas Value Holds the value of the calibration gas to be used on the instrument. The range is from \$0000 to \$03E8 (0 to 1000 ₁₀).
40127	R/W	R	\$0000 to \$FFFF	Loop High Scaling Holds a value which indicates the gas reading represented by a 20 mA loop output signal. The range is from \$0000 to \$FFFF.
440102	R	R	\$0000 to \$FFFF	WX Scaled Reading Use with WX series controller.

NOTE: To get the ModBus reading, register 40103 must be read as well as register 40102. Register 40103 specifies where the decimal should be placed.

6.4. ModBus Resources

ModBus is a public protocol that can be freely adopted by any developer or manufacturer desiring to implement it. While a detailed discussion of ModBus protocol is beyond the scope of this manual, there are a number of up-to-date resources available on the internet for those wishing to investigate ModBus further. The most complete resource is www.modbus.org.

6.5. Termination

When putting devices on the ModBus network, a terminating resistor may be required for the last device on the network (please see www.modbus.org for more details). The **ITrans ERREUR I SOURCE DU RENVOI INTROUVABLE**. has a blue jumper on the "public" jumper that can be used to jumper in a 120-Ohm terminating resistor. By default, this jumper is not in place. Oldham does not recommend changing the placement of any of the other jumpers on this board.

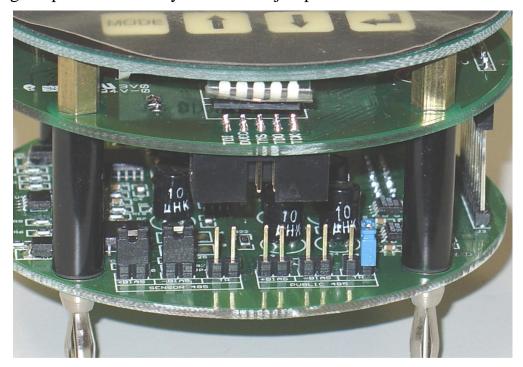


Figure 6-1. Location of Jumpers
#

MAINTENANCE

Chapter

7.1. Introduction

Sensors have a variable life dependent on the sensor and the environment in which they operate. Oxygen sensor life is about 2 years and toxic gas sensor life is normally 2 years or greater. The catalytic combustible gas sensors normally operate in excess of 3 years, while the infrared sensor carries a 5-year warranty with an anticipated life of 7 or more years.

Sensors have baseline drift and their characteristics change with time. Thus, the **ITrams ERREUR! SOURCE DU RENVOI INTROUVABLE.** must be calibrated on a regular basis. Gas detection instruments are potential life-saving devices. In recognition of this fact, calibration for the toxic and catalytic LEL sensors should be at least at quarterly intervals, while the Infrared sensor should be calibrated on an annual basis with functional tests every 6 months.

Further, Oldham recommends prudent testing and/or calibration after a gas alarm. All calibration/service to the sensors should be recorded and accessible.

NOTE: Other than regular calibrations, the **itrans ERREUR! SOURCE DU RENVOI INTROUVABLE** require no other routine maintenance.

NOTE: Take special care with handling and storing sensors. They are delicate and can be damaged by storage in environments outside the specified temperature, pressure, and humidity limits.

NOTE: Sensors are susceptible to damage from high pressure or low pressure, especially if the change is sudden. Also, sensors should not be operated at pressures that are 10% above or below atmospheric pressure.

NOTE: If sensors and the surrounding environment must be washed down at any time, cover the opening of the sensor housing to protect it from water or excess moisture. Remove cover when wash down is complete. An optional splashguard is available for continuous protection.

7.2. Sensor Replacement

Sensor replacement must be done by qualified personnel. To replace the sensor, shut down power to the unit. Un-thread the sensor-housing cap from the sensor housing. There is a set screw that secures the cap to the housing. Once the cap is removed, remove the old sensor and sensor board. When installing the new sensor/sensor board make sure you line up the notch in the board with the alignment pin. After the new sensor is in place, screw the sensor cap back on to the housing and secure the set screw.

Once the new sensor is in place and has time to settle out, it should be zeroed and calibrated for accuracy.

7.3. Zero and Calibration

Zeroing and calibrating the instrument can be accomplished one of two ways. These routines can be entered either from the keypad or non-intrusively using the magnetic wand. See Chapter 5: Operation for step-by-step procedures for zeroing and calibrating the **ITrans ERREUR I SOURCE DU RENVOI INTROUVABLE.** using the magnetic wand. Chapter 5 also contains information on keypad zeroing and calibration.

#

TROUBLESHOOTING

8.1. Introduction

This chapter provides troubleshooting information for the **ITrans ERREUR! SOURCE DU RENVOI INTROUVABLE** gas monitor.

8.2. Diagnosing Common Problems

Table 8-1. Common Problems

Symptom	Problem	Solution
LED display does not light up.	Input voltage is too low Electronics module has failed	Check for presence of input voltage.
Output outside 4-20 mA range	Unit in calibration mode Electronics module has failed	Exit calibration mode. Replace electronics module.
Output does not change when gas concentration changes	Electronics module has failed	Replace electronics module.
Cannot calibrate SPAN	Sensor has failed Electronics module has failed	Replace sensor and calibrate. Replace electronics module

Symptom	Problem	Solution
Reading drifts by 10 counts over a short	Sensor has failed	Replace sensor and calibrate.
time period (in a stable temperature environment)	Electronics module has failed	Replace electronics module and calibrate.
In calibration, LED	Sensor has failed	Replace sensor and calibrate.
displays wrong value.	Electronics module has failed	Replace electronics module and calibrate.
Reed Switch does not work	Electronics module has failed	Replace electronics module and calibrate.
	Reed Switch is damaged	Replace the reed switch.
"P" appears on the display	Open loop on a 4-20 mA channel	Place a 100-Ohm load resistor from the mA output pin to ground.
"U" appears on the display	4-20 mA signal is in over range	Ensure the sensor is working properly and the 4-20 mA is scaled correctly.

8.3. Fault Codes

Table 8-2. Fault Codes

Fault Code	LED Display	Status Bit	4-20 mA Output	Description
0FFF	0.	Flashing	1 mA	Zeroing error – Recover after calibrating
CFFF	C.	Flashing	1 mA	Calibration error – Recover after calibrating or replacing the sensor
1FFF	1.	Flashing	1 mA	SMART sensor error
2FFF	2.	Flashing	1 mA	Sensor error

8.4. Function Codes

Table 8-3. Function Codes

Evenation		LED Display			
Function Code	Status Bit	Data Area	Description		
L	L.	Low Alarm	Set the relay low alarm value		
Н	H.	High Alarm	Set the relay high alarm value		
4	4.	Range of 4-20 mA	Set the range of 4-20 mA output		
1	1.	Minute	Set system time – minute		
Н	h.	Hour	Set system time – hour		
D	d.	Date	Set system time – date		
Е	E.	Month	Set system time – month		
8	8.	Year	Set system time – year		
0	0.		Zeroing		
С	C.		Calibration		
S	S.	Span Gas Concentration	Set span gas concentration		
R	r.	Sensor Span Reserve	Check the span reserve		
2	2.	Date	The latest alarm time-date		
3	3.	Month	The latest alarm time-month		
6	6.	Date	The latest calibration time-date		
7	7.	Month	The latest calibration time- month		
9	9.	Year	The latest calibration time-year		

WARRANTY

Chapter

9.1. Warranty

Oldham fixed system products are warranted to be free from defects in material and workmanship for a period of eighteen (18) months from the date of shipment, or one (1) year from the date of first use, whichever occurs first, except where otherwise stated in writing in Oldham literature accompanying the product.

The above warranty does not include sensors, pumps, or filters, all of which are warranted to be free from defects in material and workmanship for one year from the date of shipment, except where otherwise stated in writing in Oldham literature accompanying the product. In addition, Oldham warrants the Infrared sensor used to monitor LEL Methane Propane to be free from defects in material and workmanship for a period of sixty-six (66) months from the date of shipment, or five (5) years from the date of first use, whichever occurs first, except where otherwise stated in writing in Oldham literature accompanying the product.

9.2. Limitation of Liability

Oldham makes no other warranties, either expressed or implied, including, but not limited to the warranties of merchantability or fitness for particular purpose.

Should the product fail to conform to the above warranty, buyer's only remedy and Oldham's only obligation shall be, at Oldham's sole option, replacement or repair of such non-conforming goods or refund of the original purchase price of the non-conforming goods. In no event will Oldham be liable for any other special, incidental or consequential damages, including loss of profit or loss of use, arising out of the sale, manufacture or use of any products sold hereunder whether such claim is pleaded in contract or in tort, including strict liability in tort.

It shall be an express condition to Oldham's warranty that all products be carefully inspected for damage by buyer upon receipt, be properly calibrated for buyer's particular use, and be used, repaired, and maintained in strict accordance with the instructions set forth in Oldham's product literature. Repair or maintenance by non-qualified personnel will invalidate the warranty, as will the use of non-

approved consumables or spare parts. As with any other sophisticated product, it is essential and a condition of Oldham's warranty that all personnel using the products be fully acquainted with their use, capabilities and limitations as set forth in the applicable product literature. Buyer acknowledges that it alone has determined the intended purpose and suitability of the goods purchased. It is expressly agreed by the parties that any technical or other advice given by Oldham with respect to the use of the goods or services is given without charge and at buyer's risk; therefore, Oldham assumes no obligation or liability for the advice given or results obtained.

SPECIFICATIONS SUBJECT TO CHANGE

ACRONYMS AND ABBREVIATIONS

Appendix

This appendix contains acronyms and abbreviations that are used within this document.

Table A-1. Acronyms and Abbreviations

Abbr	Definition
A	Ampere
ABS	acrylonitrile butadiene styrene
ASCII	American Standard Code for Information Interchange
BBIR	broadband infrared
bit	binary digit
bps	bits per second
С	centigrade
CALI	calibration
CAT	catalytic
Ch	channel
CH ₄	methane
chem	chemical
Cl ₂	chlorine
ClO ₂	chlorine dioxide
CO	carbon monoxide
CSA	Canadian Standards Association
DC	direct current
DCS	distributed control system
DIP	dual in-line package
DISP	display
F	Fahrenheit
FAQ	frequently asked questions
FAUL	fault
FIFO	first-in-first-out
GND	ground

Abbr	Definition
H_2	hydrogen
H ₂ S	hydrogen sulfide
HCl	hydrogen chloride
HCN	hydrogen cyanide
LED	light emitting diode
LEL	lower explosive limit (combustible gases)
LSB	least significant bit
mA	milliampere
mm	millimeter
MSB	most significant bit
NC	normally closed
NDIR	non-dispersive infrared
NEMA	National Electrical Manufacturers Association
NH ₃	ammonia
NO	normally open, Nitric Oxide
NO_2	nitrogen dioxide
NOR	normal mode
NRTL	nationally recognized testing laboratory
O_2	oxygen
OXY	oxygen
PH ₃	phosphine
PLC	programmable logic controller
ppm	parts per million
REST	restart
RH	relative humidity
RTC	real time clock
RTU	remote terminal unit
SO_2	sulfur dioxide
SPST	single-pole, single-throw
TOX	toxic
V	Volts

DECIMAL, BINARY, AND HEXADECIMAL EQUIVALENTS

Appendix |

This appendix lists the hexadecimal and binary equivalents of decimal numbers. ModBus device addresses are entered in hexadecimal format. This table provides a cross reference if only decimal addresses are known. Hexadecimal numbers are shown in 0x00 format on the left. Decimal equivalents are shown on the right. Refer to Table B-1. Decimal and binary equivalents are shown in Table B-2.

Table B-1. Hexadecimal and Decimal Equivalents

0x00 = 000	0x20 = 032	0x40 = 064	0x60 = 096	0x80 = 128	0xA0 = 160	0xC0 = 192	0xE0 = 224
0x01 = 001	0x21 = 033	0x41 = 065	0x61 = 097	0x81 = 129	0xA1 = 161	0xC1 = 193	0xE1 = 225
0x02 = 002	0x22 = 034	0x42 = 066	0x62 = 098	0x82 = 130	0xA2 = 162	0xC2 = 194	0xE2 = 226
0x03 = 003	0x23 = 035	0x43 = 067	0x63 = 099	0x83 = 131	0xA3 = 163	0xC3 = 195	0xE3 = 227
0x04 = 004	0x24 = 036	0x44 = 068	0x64 = 100	0x84 = 132	0xA4 = 164	0xC4 = 196	0xE4 = 228
0x05 = 005	0x25 = 037	0x45 = 069	0x65 = 101	0x85 = 133	0xA5 = 165	0xC5 = 197	0xE5 = 229
0x06 = 006	0x26 = 038	0x46 = 070	0x66 = 102	0x86 = 134	0xA6 = 166	0xC6 = 198	0xE6 = 230
0x07 = 007	0x27 = 039	0x47 = 071	0x67 = 103	0x87 = 135	0xA7 = 167	0xC7 = 199	0xE7 = 231
0x08 = 008	0x28 = 040	0x48 = 072	0x68 = 104	0x88 = 136	0xA8 = 168	0xC8 = 200	0xE8 = 232
0x09 = 009	0x29 = 041	0x49 = 073	0x69 = 105	0x89 = 137	0xA9 = 169	0xC9 = 201	0xE9 = 233
0x0A = 010	0x2A = 042	0x4A = 074	0x6A = 106	0x8A = 138	0xAA = 170	0xCA = 202	0xEA = 234
0x0B = 011	0x2B = 043	0x4B = 075	0x6B = 107	0x8B = 139	0xAB = 171	0xCB = 203	0xEB = 235
0x0C = 012	0x2C = 044	0x4C = 076	0x6C = 108	0x8C = 140	0xAC = 172	0xCC = 204	0xEC = 236
0x0D = 013	0x2D = 045	0x4D = 077	0x6D = 109	0x8D = 141	0xAD = 173	0xCD = 205	0xED = 237
0x0E = 014	0x2E = 046	0x4E = 078	0x6E = 110	0x8E = 142	0xAE = 174	0xCE = 206	0xEE = 238
0x0F = 015	0x2F = 047	0x4F = 079	0x6F = 111	0x8F = 143	0xAF = 175	0xCF = 207	0xEF = 239
0x10 = 016	0x30 = 048	0x50 = 080	0x70 = 112	0x90 = 144	0xB0 = 176	0xD0 = 208	0xF0 = 240
0x11 = 017	0x31 = 049	0x51 = 081	0x71 = 113	0x91 = 145	0xB1 = 177	0xD1 = 209	0xF1 = 241
0x12 = 018	0x32 = 050	0x52 = 082	0x72 = 114	0x92 = 146	0xB2 = 178	0xD2 = 210	0xF2 = 242
0x13 = 019	0x33 = 051	0x53 = 083	0x73 = 115	0x93 = 147	0xB3 = 179	0xD3 = 211	0xF3 = 243
0x14 = 020	0x34 = 052	0x54 = 084	0x74 = 116	0x94 = 148	0xB4 = 180	0xD4 = 212	0xF4 = 244
0x15 = 021	0x35 = 053	0x55 = 085	0x75 = 117	0x95 = 149	0xB5 = 181	0xD5 = 213	0xF5 = 245
0x16 = 022	0x36 = 054	0x56 = 086	0x76 = 118	0x96 = 150	0xB6 = 182	0xD6 = 214	0xF6 = 246
0x17 = 023	0x37 = 055	0x57 = 087	0x77 = 119	0x97 = 151	0xB7 = 183	0xD7 = 215	0xF7 = 247
0x18 = 024	0x38 = 056	0x58 = 088	0x78 = 120	0x98 = 152	0xB8 = 184	0xD8 = 216	0xF8 = 248
0x19 = 025	0x39 = 057	0x59 = 089	0x79 = 121	0x99 = 153	0xB9 = 185	0xD9 = 217	0xF9 = 249
0x1A = 026	0x3A = 058	0x5A = 090	0x7A = 122	0x9A = 154	0xBA = 186	0xDA = 218	0xFA = 250
0x1B = 027	0x3B = 059	0x5B = 091	0x7B = 123	0x9B = 155	0xBB = 187	0xDB = 219	0xFB = 251
0x1C = 028	0x3C = 060	0x5C = 092	0x7C = 124	0x9C = 156	0xBC = 188	0xDC = 220	0xFC = 252
0x1D = 029	0x3D = 061	0x5D = 093	0x7D = 125	0x9D = 157	0xBD = 189	0xDD = 221	0xFD = 253
0x1E = 030	0x3E = 062	0x5E = 094	0x7E = 126	0x9E = 158	0xBE = 190	0xDE = 222	0xFE = 254
0x1F = 031	0x3F = 063	0x5F = 095	0x7F = 127	0x9F = 159	0xBF = 191	0xDF = 223	0xFF = 255

Table B-2. Decimal and Binary Equivalents

Dec 0 1 2 3 4 5 6 6 7 8 9 10 11 12 13	Binary 00000000 00000001 00000010 00000011 00000100 00000101 00000111 00000111 00001000 00001001	64 65 66 67 68 69 70 71	Binary 01000000 01000001 01000010 01000011 01000100 01000101	128 129 130 131 132	Binary 10000000 10000001 10000010 10000011 10000100	192 193 194 195	Binary 11000000 11000001 11000010 11000011
1 2 3 4 5 6 7 8 9 10 11 12	00000001 00000010 00000011 00000100 00000101 00000110 00000111 00001000 00001001	65 66 67 68 69 70 71	01000001 01000010 01000011 01000100 01000101	129 130 131 132	10000001 10000010 10000011	193 194 195	11000001 11000010 11000011
2 3 4 5 6 7 8 9 10 11 12	00000010 00000011 00000100 00000101 00000110 00000111 00001000 00001001	66 67 68 69 70 71	01000010 01000011 01000100 01000101	130 131 132	10000010 10000011	194 195	11000010 11000011
3 4 5 6 7 8 9 10 11 12	00000011 00000100 00000101 00000110 00000111 00001000 00001001	67 68 69 70 71	01000011 01000100 01000101	131 132	10000011	195	11000011
4 5 6 7 8 9 10 11 12	00000100 00000101 00000110 00000111 00001000 00001001	68 69 70 71	01000100 01000101	132			
5 6 7 8 9 10 11 12	00000101 00000110 00000111 00001000 00001001	69 70 71	01000101			196	11000100
6 7 8 9 10 11 12	00000110 00000111 00001000 00001001	70 71		133	10000101	197	11000101
7 8 9 10 11 12 13	00000111 00001000 00001001	71	UTUUUTTU	134	10000110	198	11000110
9 10 11 12 13	00001000 00001001		01000111	135	10000111	199	11000111
10 11 12 13		72	01001000	136	10001000	200	11001000
10 11 12 13		73	01001001	137	10001001	201	11001001
12 13		74	01001010	138	10001010	202	11001010
13	00001011	75	01001011	139	10001011	203	11001011
	00001100	76	01001100	140	10001100	204	11001100
	00001101	77	01001101	141	10001101	205	11001101
14	00001110	78	01001110	142	10001110	206	11001110
15	00001111	79	01001111	143	10001111	207	11001111
16	00010000	80	01010000	144	10010000	208	11010000
17	00010001	81	01010001	145	10010001	209	11010001
18	00010010	82	01010010	146	10010010	210	11010010
19	00010011	83	01010011	147	10010011	211	11010011
20	00010100	84	01010100	148	10010100	212	11010100
21	00010101	85	01010101	149	10010101	213	11010101
22	00010110	86	01010110	150	10010110	214	11010110
23	00010111	87	01010111	151	10010111	215	11010111
24	00011000	88	01011000	152	10011000	216	11011000
25	00011001	89	01011001	153	10011001	217	11011001
26	00011010	90	01011010	154	10011010	218	11011010
27	00011011	91	01011011	155	10011011	219	11011011
28	00011100	92	01011100	156	10011100	220	11011100
29	00011101	93	01011101	157	10011101	221	11011101
30	00011110	94	01011110	158	10011110	222	11011110
31	00011111	95	01011111	159	10011111	223	11011111
32	00100000	96	01100000	160	10100000	224	11100000
33	00100001	97	01100001	161	10100001	225	11100001
34	00100010	98	01100010	162	10100010	226	11100010
35	00100011	99	01100011	163	10100011	227	11100011
36 37	00100100	100 101	01100100	164	10100100	228	11100100
38	00100101 00100110	101	01100101 01100110	165 166	10100101 10100110	229 230	11100101 11100110
39	00100110	102	01100110	167	10100110	231	11100110
40	0010111	104	01101111	168	10101111	232	11101000
41	00101000	105	01101000	169	10101000	233	11101000
42	00101001	106	01101001	170	10101010	234	11101001
43	00101010	107	01101010	171	10101011	235	11101010
44	00101011	108	01101110	172	10101100	236	11101110
45	00101100	109	01101101	173	10101100	237	11101101
46	00101101	110	01101101	174	10101101	238	11101110
47	00101111	111	01101111	175	10101110	239	11101111
48	00110000	112	01110000	176	10110000	240	11110000
49	00110001	113	01110001	177	10110001	241	11110001
50	00110001	114	01110010	178	10110001	242	11110010
51	00110011	115	01110011	179	10110011	243	11110011
52	00110111	116	01110100	180	10110100	244	11110100
53	00110101	117	01110101	181	10110101	245	11110101
54	00110110	118	01110110	182	10110110	246	11110110
55	00110111	119	01110111	183	10110111	247	11110111
56	00111000	120	01111000	184	10111000	248	11111000
57	00111001	121	01111001	185	10111001	249	11111001
58	00111010	122	01111010	186	10111010	250	11111010
59	00111011	123	01111011	187	10111011	251	11111011
60	00111100	124	01111100	188	10111100	252	11111100
61	00111101	125	01111101	189	10111101	253	11111101
62	00111110	126	01111110	190	10111110	254	11111110
	00111111	127	01111111	191	10111111	255	11111111

ORDERING MATRIX

This appendix provides an ordering matrix for the **itrans ERREUR! SOURCE DU RENVO! INTROUVABLE** gas monitor.

ITrans ERREUR I SOURCE DU RENVOI INTROUVABLE. Base part number 7814635-ABCDEFG

Single or dual on-board or remote toxic, combustible and oxygen sensors with dual 4-20 mA outputs (one per sensor) or ModBus RTU outputs. Remote sensor capable of operation up to 200 meters from main transmitter. Operating temperature range -20°C to +50°C.

Example: 7814635-1C21241 = On-board LEL (4-20 mA scale 0-100) and remote mount H_2S (4-20 mA scale 0-500) with relays

A = Sensor 1 Configuration	E = Sensor 2 Configuration
B = Gas sensor 1	F = Gas sensor 2
C = 4-20 mA output scale for sensor 1	G = 4-20 mA output scale for sensor 2
D - Ontional on board relava	

A - Sensor 1	E – Sensor 2
	0 = No sensor
1 = Explosion Proof / On-board	1 = Explosion Proof / On-board
2 = Explosion Proof / Remote	2 = Explosion Proof / Remote
3 = Non-hazardous Remote/Duct Mount	3 = Non-hazardous Remote/Duct Mount
4 = Explosion Proof / On-board with Splash Guard	4 = Explosion Proof / On-board with Splash Guard
5 = Explosion Proof / Remote with Splash Guard	5 = Explosion Proof / Remote with Splash Guard
6 = Stainless Steel / On-board	7 = Stainless Steel / Remote
7 = Stainless Steel / Remote	

B - Gas sensor 1	F - Gas sensor 2
1 = Carbon Monoxide (CO)	1 = Carbon Monoxide (CO)
2 = Nitric Oxide (NO)	2 = Nitric Oxide (NO)
3 = Ammonia (NH ₃)	3 = Ammonia (NH ₃)
4 = Hydrogen Sulfide (H ₂ S)	4 = Hydrogen Sulfide (H ₂ S)
5 = Sulfur Dioxide (SO2)	5 = Sulfur Dioxide (SO ₂)
6 = Nitrogen Dioxide (NO ₂)	6 = Nitrogen Dioxide (NO ₂)
7 = Chlorine (Cl2)	7 = Chlorine (Cl ₂)
8 = Chlorine Dioxide (CIO ₂)	8 = Chlorine Dioxide (CIO ₂)
9 = Hydrogen Cyanide (HCN)	9 = Hydrogen Cyanide (HCN)
$A = Oxygen (O_2)$	$A = Oxygen (O_2)$
B = LEL Infrared (obsolete)	B = LEL Infrared (obsolete)

C = LEL Catalytic Plug-In (factory Pentane calibration)	C = LEL Catalytic Plug-In (factory Pentane calibration)
D = Carbon Monoxide - Hydrogen Null (CO -H2)	D = Carbon Monoxide - Hydrogen Null (CO -H2)
F = Hydrogen Chloride (HCI)	F = Hydrogen Chloride (HCI)
G = LEL Infrared Propane (obsolete)	G = LEL Infrared Propane (obsolete)
K = Phosphine (PH ₃)	K = Phosphine (PH ₃)
L = Hydrogen (H ₂)	L = Hydrogen (H ₂)
C = 4-20 mA output scale for sensor 1	G = 4-20 mA output scale for sensor 2
0 = 0 - 999	0 = 0 - 999
1 = 0 - 500	1 = 0 - 500
2 = 0 - 100	2 = 0 - 100
3 = 0 - 50	3 = 0 - 50
4 = 0 - 30	4 = 0 - 30
5 = 0 - 10	5 = 0 - 10
6 = 0 - 2	6 = 0 - 2
7 = 0 - 1	7 = 0 - 1
8 = 0 - 20	8 = 0 - 20
9 = 0 - 200	9 = 0 - 200
D – Optional On-board Relays	
0 = No Relay Module	
1 = With Optional On-board Relays	

FACTORY DEFAULT SETTINGS

Appendix

This appendix lists factory default **itrans ERREUR I SOURCE DU RENVOI INTROUVABLE.** settings based on the individual sensor(s) used. Refer to Table D-1.

Table D-1. Factory Default Settings

Sensor Name	Range	Resolution	Cal Gas	Default Low Alarm	Default High Alarm
CO	0-999 ppm	1 ppm	100 ppm	35 ppm	70 ppm
H_2S	0-500 ppm	1 ppm	25 ppm	10 ppm	20 ppm
SO_2	0-99.9 ppm	0.1 ppm	5 ppm	2.0 ppm	4.0 ppm
NO ₂	0-99.9 ppm	0.1 ppm	5 ppm	1.0 ppm	2.0 ppm
Cl ₂	0-99.9 ppm	0.1 ppm	10 ppm	0.5 ppm	1.0 ppm
ClO ₂	0-1.00 ppm	0.01 ppm	0.90 ppm	0.30 ppm	0.50 ppm
HCN	0-30.0 ppm	0.1 ppm	10 ppm	5.0 ppm	10.0 ppm
PH ₃	0-1.00 ppm	0.01 ppm	1.0 ppm	0.30 ppm	0.60 ppm
CO/H ₂ NULL	0-999 ppm	1 ppm	100 ppm	35 ppm	70 ppm
NO	0-999 ppm	1 ppm	25 ppm	25 ppm	50 ppm
NH ₃	0-500 ppm	1 ppm	25 ppm	25 ppm	50 ppm
HCl	0-30.0 ppm	0.1 ppm	10 ppm	5.0 ppm	10.0 ppm
H_2	0-999 ppm	1 ppm	100 ppm	50 ppm	100 ppm
O_2	0-30% Vol.	0.1% Vol.	20.9%	19.5%	23.5%
Infrared, LEL	0-100% LEL	1% LEL	50% LEL	10%LEL	20%LEL
Combustible, LEL	0-100% LEL	1% LEL	25% LEL	10%LEL	20%LEL

EC DECLARATION OF CONFORMITY CERTIFICATE

Appendix

MANUFACTURER DECLARATION OF CONFORMITY

The company **Oldham S.A.S.**, Z.I. Est, 62000 Arras France, declares that the following new material intended for use in Explosive Atmospheres:

Gas Detector type iTrans

complies with the requirements of the following European Directives:

I) The European Directive ATEX 94/9/CE dated from 23/03/94 : Explosives Atmospheres Explosives

EC Type Examination Certificate number

Issued by the Notified Body #0344

Reference European Standards

Rules of construction

Category

KEMA 04ATEX2216X

KEMA Quality B.V., Utrechtseweg 310, 6812 AR Arnhem, The Netherlands

EN 60079-0, EN 60079-1, EN 60079-15

Y II 2 G

Ex d IIB + H₂T5, T_{amb} -40°C to +75°C

(x3)

) II 3 G Ex nA II T5, T_{amb} -40°C to +75°C

Production Quality Assurance Notification Number

Issued by the Notified Body #1725

FM13ATEXQ0051

FM Approvals Ltd. 1 Windsor Dials, Windsor, Berkshire, UK. SL4 1RS

II) The European Directive EMC 89/336/CEE dated from 03/05/89: Electromagnetic Compatibility

Harmonised Applied Standard

EN 50270 (Type 2 - Industrial Apparatus)

Arras, 12 June 2013

ISO 9001:2008
CERTIFIÉ

ISO 14001:2004
CERTIFIÉ

Oldham S.A.S. Z.I EST - C.S 20417 62027 ARRAS Cedex - FRANCE Tel.: +33(0)3 21 60 80 80 www.oldhamgas.com Michael Mobley
Mirond May

Certification Project Engineer

CE_ATEX_iTrans_ind B

INDEX

Appendix

Index

Locator page numbers appear in regular type faces for standard index references (e.g., 3-7). Boldface index references (e.g., 3-3) correspond to information found in photos or illustrations. Italic index references (e.g., 3-3) correspond to information found in tables.

Numbers	capacity 1-2
W40 1777	wiring (J1, J5, J6)4-2
#18 AWG4-1, 4-4, 4-7, 5-17	aluminum1-2, 2-1, 4-10
120-Ohm terminating resistor 6-7	ammonia 1-3, C-1
4-20 mA output(s)iii, 1-1, 1-2, 4-3 , 5-1,, 5-11, 5-16,	analog signal 5-10
8-1, 8-2, 8-3, C-1, C-2	anticipated life
changing upper range5-10	apply calibration gas
fault5-2	arrow keys
fixed lower range5-10	atmospheric pressureiii, 1-2, 7-1
not using4-4	atmospheric pressure
	$\boldsymbol{\mathit{B}}$
$oldsymbol{A}$	
abbreviations	banana jacks
access code	baud rate 6-1
	BBIR4-4, 5-1, 5-16, 5-17, 6-2, A-1
accuracyii, 2-2	address 5-17
acronyms	calibrating 5-16
address	calibration time 5-16, 5-17
selection 1-2	span reserve 5-17
setting4-9	zero time5-16, 5-17
unique 6-1	binary4-9, A-1
agency approvals1-3	blue jumper
air flow	broadband infrared5-1, 5-16, 5-17, A-1
alarm(s)	1,0 10,0 17,111
activation1-1	
conditioniii	
date5-4	
horns 1-1	\boldsymbol{C}
indication 5-2	ashla anteri davias
month5-4	cable entry device
over-range alarmiii	calibration 1-1, 5-4, 5-6 , 5-7, 5-14 , <i>5-17</i> , 6-4, 6-6, 7-1, 7-2, 8-1, 8-2, A-3, B-1
relays	aborting 5-6

after alarmsiii	Directive 72/23/EEC1-4
BBIR sensor 5-16	Directive 92/31/EEC1-4
flow rate5-6, 5-15	Directive 93/68/EEC1-4
frequencyiii	Directive 94/9/EC 1-4
span setting5-6, 5-15	display 1-2, 2-3, 5-1, 5-2, 5-3, 5-5, 5-6, 5-13, 5-14, 5
time 5-17	16, 6-6, 8-2, A-1
BBIR 5-16	specifications1-2
zeroing before5-14	Distributed Control System (DCS) A-:
carbon monoxide1-3, 6-4, A-1,B-1	driving loads from relays 4-2
catalytic combustible gas sensorsiii,2-2, B-1	dual-sensor4-4, 4-12, 5-9
CH ₄ A-1	dust-ignition-proof1-3
change span 5-15	r
initiating 5-7	$oldsymbol{E}$
channel indicators 5-3, 5-4	EC Declaration of Conformity Certificate E-:
chlorine	electrical risks 1-4
chlorine dioxide 1-3, 6-4, B-1	electrochemical diffusion
Cl ₂ A-1	electromagnetic compatibility1
class I hazardous locations 1-3	electromagnetic interference
classified locations4-2	electronics module 2-4, 2-5 , 4-1, 4-9, 4-10, 4-12, 8-1
ClO ₂ A-1	8-2
clock settings 5-16, 5-17	EMC Directive 89/336/EEC 1-4
closing elements2-5	emissions
CO A-1	EN 50014
column mounting	EN 50018
combustible gases 2-3, A-2	EN 50270
commissioning6-1	enclosure
common problems8-1	ground
conduit seal 2-5	screw
configuration1-1, 2-3	shielding
dual sensor	Energy Management Equipment
Conformity Certificate, EC DeclarationE-1	enter key2-
connectors2-4	European ATEX Directive 94/9/EC 1-4
control signal1-1	excess moisture
control wire4-1	exhaust fan 4-2
countdown5-5, 5-6, 5-7, 5-9, 5,10, 5-11, 5-12, 5-13,	explosion-proof
5-14, 5-15	Саріозіон-ріоот
CSA approvals 1-3	$oldsymbol{F}$
C22.2 No. 152 compliance	C . 1 C 1
Std C22.2 No. 152-M1984 1-3	factory default
Std C22.2 No. 213-M1987 1-4	fans
Std C22.2 No. 142-M1987 1-3	fault code
Std C22.2 No. 30-M1986 1-3	fault protection relay
current draw1-2	fault relay
_	flashing5-6, 5-7, 5-12, 5-13, 5-14, 5-13
D	flow rate
data bits5-3, 5-4 , <i>6-1</i>	four keys
decimals	function codes
Declaration of Conformity CertificateE-1	function test, frequencyii
· · · · · · · · · · · · · · · · · · ·	functions, available5-4, 5-8, 5-9
decrement key	future functionality 5-10
	\boldsymbol{G}
digital ground	
digital ground	gas concentrationsiii, 1-1, 5-2
dimensions	lower than normal readingsii
DIP switch1-2, 4-9, 4-10, 4-12	gas reading6-1, 6-2, 6-6
location	gas sensor, combustibleii
setting addresses4-10	

GND A-1	setpoint
green conductor	threshold 4-2
ground4-3, 4-9, 8-2, A-1	low pressure
ground 13, 17, 02, 11 1	Lower Explosive Limit (LEL)
H	
H ₂ A-2	M
H ₂ S	magnetic wand1-1, 2-3, 5-2, 5-3, 5-4, 5-5, 5-6,
heat generating sources	5-7, 7-2
hexadecimal format	main electronics unit2-1
high alarm5-1, 5-2, 5-16, 6-6, 8-3, D-1	maintenance
relay4-2, 5-4, 6-6, 8-3	routine7-1
setpoint	master 6-1
threshold 4-2	message coding system6-1
high pressure7-1	methane
higher-power relay4-2	ModBus 6-1, A-1
HMI4-9	address switch bank location 4-9
housing 1-5, 2-1, 4-5, 4-12, 7-2	baud rate1-2, 6-1
humidity7-1	characteristics 6-1
range 1-2	commands 6-2
hydrogen 1-3, 6-4, A-2, B-1	configuration1-2
hydrogen chloride 1-3	data bits6-1
hydrogen cyanide	digital ground4-3
hydrogen sulfide A-2	electrical standard 6-1
I	message coding system6-1
1	number of devices 1-2
increment key2-3	parity bits 6-1
infrared 1-2, 1-4, 2-2, 7-1, 9-1, D-1	power wire
calibration frequencyiii	registers
input current, maximum1-2	resources
input keys2-4	RTU1-1, <i>1-2</i> , 4-9, B-1
input voltage1-2, 8-1	signal wire
installation 3-1	slave address
intrusive programming2-4	software protocol
four keys2-3	start bits
ISA S12.13 Part I-2000 1-3	stop bits 6-1
J	terminating resistor
	mode key
jumpers2-4, 6-7	mounting
K	holes
N	pipe or conduit
KEMA 04 ATEX 2216X 1-4	pipe of conduit
keypad5-13, 5-14, 7-2	N
keys2-3, 2-4	NDIR
L	network 6-1
$oldsymbol{L}$	nitric oxide
LED display1-2, 2-3, 5-1, 5-5, 5-6, 5-7, 5-8,	nitrogen dioxide
5-9, 5-13, 5-14, 5-15, 5-16, 8-1	NO ₂
LEL sensors iii, 1-2, 1-4, 5-8,	non-intrusive1-1, 2-3, 2-4, 5-2, 5-4, 5-5, 5-8
5-16, 6-3, 7-1, 9-1, C-1	available functions
life spaniii, iv, 7-1	non-latching
limitation of liability9-1	normal mode
local authorities4-1	Normal Operating Mode5-1, 5-2, 5-5, 5-6, 5-7, 5-9,
low alarm5-1, 5-16, 6-6,	5-10, 5-11, 5-12, 5-13, 5-14, 5-15
8-3	Normally Closed (NC) contact
relay4-2, 6-4, 6-6, 8-3	• • • • • • • • • • • • • • • • • • • •

Normally Open (NO) contact 4-2	non-latching	4-2
NRTL laboratory 1-3	user-programmable	
	remote sensor	4-5, 4-6
0	Remote Terminal Unit (RTU)	6-1, A-2
O ₂ A-2	remote unit	
open loop condition	replacing sensors	7-2
operating range1-2	resistors	4-4
ordering matrix	resolution	5-10
output wiring, J1	span gas concentration	5-8
outputs	restart	A-2
over-range	routine maintenance	
alarm iii	RS485	
condition	a	
oxygeniii, 1-2, 1-3, 2-2, 6-3,	S	
7-1, A-2, B-2	safety	iv
, 1, 11 2, 5 2	sealing device	
\boldsymbol{P}	secondary higher-power relay	
manitus bita	self test	
parity bits	sensor(s)	
password	5-17, 7-1, 7-2, 9-1	,, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,
phosphine	ATEX-certified	1_4
PLC4-9	board	
poured wire seal	calibration service to	
power1-1, 4-1, 4-2, 4-3, 4-4, 4-7, 4-9,	catalytic	
4-12, 5-1, 5-16, 6-4, 7-2	error	
AC and DC in same conduit4-1	handling	
supply1-1, 4-4	head	
wire recommendations	maximum distance	
wiring, J14-3	openings	
pressure	ranges	
range 1-2	remote	
program mode		
Programmable Logic Controller (PLC) A-2	replacement	
programming	span	
access code5-8	specifications	
mode5-3, 5-4, 5-7, 5-10,	storing	
5-11, 5-12, 5-13, 5-15	type	
protection class	wiring, J3	4-4
protocol	serial bus	
public 485 GND4-3	abnormal behavior	
pumps 1-1, 9-1	setpoint	
push button operation 5-8	setting compound	
0	setup menu	
\mathcal{Q}	shielded cable	
qualified personneliv, 9-2	shielding	
	screw	
R	signal outputs	
real time clock5-16, 5-17, 6-5, A-2	signal wire	
reed switch2-3, 2-4, 5-2, 5-4, 8-2	recommendations	
location	silicone compound vapors	
register 40102	silicone vapors	
register 40102	siren	
relay board	slave address	
	slave units	
relaysiii, 1-1, <i>1</i> -2, B-1 contact capacity	SMART sensor	
	error	
driving loads 4-2	SO ₂	A-2

span gas 1-1, 5-2, 5-6, 5-15, 8-3	troubleshooting 8-3
concentration1-1, 5-7 , 5-8, 5-15 , 5-16, 8-3	* 7
option5-7, 5-15	$oldsymbol{U}$
value 5-4	U-bolts
span reserve 5-8 , 5-16, <i>5-17</i> , 7-3, 8-4	UL Std No. 1203
BBIR5-17	UL Std No. 1604
span setting 5-6, 5-15	UL Std No. 916
span value5-7, 5-15	user-programmable relays
aborting5-16	user-programmatic relays 1-2
changing5-7	V
specifications1-1, <i>1-2</i>	
sensors	vibrating sources
splashguard7-2	$oldsymbol{W}$
SPST relays 1-2, A-2	
stainless steel	wall mounting3-1, 3- 2
standards	warm-up period5-1
Canadian 1-3	warning lights1-1
US1-3	warranty9-1
start bits	water
start-up5-1	windowed top4-1, 4-12, 5-8
status bit 5-3, 5-4 , 5-5, 5-6, 5-7, 5-8, 5-9, 5-10, 5-11,	wiring2-4, 4-1, 4-2, 4-5, 4-12
5-12, 5-13, 5-14, 5-15, 5-16	chassis ground4-1
flashing5-6, 5-7	colors4-1
stop bits	input sensors4-1
strobe	supply power4-1
sulfur dioxide	terminals4-3, 4-4
switch bank	wiring diagrams
location	dual on-board sensors4-7
setting addresses	dual remote sensors4-8
	ModBus interface4-9
T	remote sensor4-6
tachnical summent	remote sensors back to iTrans4-8
technical support	single on-board sensor 4-5
temperature	www.modbus.org6-6, 6-7
range	
terminal blocks	\mathbf{Z}
terminating resistor	zero time
TIA/EIA-485	BBIR 5-16
time, setting	zero air
timers5-3, 5-5, 5-6, 5-7, 5-13, 5-14, 5-15	zeroing 5-2, 5-3, 5-5 , 5-6 , 5-13 , 5-14 , 7-2, 8-3
toxic	error
transmission mode	two methods
transmitter4-1, 5-8, B-1	two memous

EUROPEAN PLANT AND OFFICES

Z.I. Est – rue Orfila CS 20417 – 62027 Arras Cedex FRANCE Tel: +33 (0)3 21 60 80 80 – Fax: +33 (0)3 21 60 80 00 Website: <u>http://www.oldhamgas.com</u>

AMERICAS Tel: +1-713-559-9280 Fax: +1-281-292-2860 americas@oldhamgas.com ASIA PACIFIC Tel: +86-21-3127-6373 Fax: +86-21-3127-6365 sales@oldhamgas.com EUROPE Tel: +33-321-608-080 Fax: +33-321-608-000 info@oldhamgas.com