
US 20070168451A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0168451 A1

Taylor et al. (43) Pub. Date: Jul. 19, 2007

(54) EVENT NOTIFICATION SYSTEM AND Publication Classi?cation
METHOD

(51) Int. Cl.
(76) Inventors: Paulo Taylor, Amsterdam (NL); G06F 15/16 (2006.01)

Jan-Joost Rueb, Amsterdam (NL); (52) US. Cl. 709/207
Onno Bakker, Amsterdam (NL)

Correspondence Address: (57) ABSTRACT
PERKINS COIE LLP

CA 94026 (Us) A technique for user noti?cation involves modifying a title
associated With a process to include information about an

(21) APPL NO: 11/637514 event that calls for user noti?cation. A method according to
the technique may include running a process, processing an

(22) Filed; Dec 11, 2006 event, generating a string of characters that includes infor
mation associated With the event, and displaying the string

Related US, Application Data of characters as a title associated With the process. A system
constructed according to the technique may include a client,

(60) Provisional application No. 60/748,988, ?led on Dec. a title array, an event processing engine, and a title provi
9, 2005. sioning engine.

100 a

116 f 112
' - IM Server

Event Queue... M

M Server
1%

Client Client Client
114-1 114-2 114-N

Patent Application Publication Jul. 19, 2007 Sheet 1 0f 11 US 2007/0168451 A1

lM Server 106 IM Server 106

f- 112 <:> FIG 1

116
Client 114-N Eyent Queue

Client 114-2

Client 114-1

Patent Application Publication Jul. 19, 2007 Sheet 2 0f 11 US 2007/0168451 A1

0 PN 56:0

2-3m 2:20 .650

ma 62mm 950362 S: 650 2-3m 5:25 .650

% E26

Patent Application Publication Jul. 19, 2007 Sheet 3 0f 11 US 2007/0168451 A1

FIG. 3A

Patent Application Publication Jul. 19, 2007 Sheet 4 0f 11 US 2007/0168451 A1

FIG. 3B

Patent Application Publication Jul. 19, 2007 Sheet 5 0f 11 US 2007/0168451 A1

Om .GE

as: a; a ‘$5. E 2.18 . z? +

Patent Application Publication Jul. 19, 2007 Sheet 6 0f 11 US 2007/0168451 A1

Om .QE 334:

‘Grim

Patent Application Publication Jul. 19, 2007 Sheet 7 0f 11 US 2007/0168451 A1

400 a

402
f

Run IM client process

404

Y °

406

. . N

Termlnate IM client?

Yes
408 f.

Terminate IM client process

410
y /

Process event

Modify title associated with IM client
process End

FIG. 4

Patent Application Publication Jul. 19, 2007 Sheet 8 0f 11 US 2007/0168451 A1

500 a

i Start)

502
t K

Open browser

504
V f

Display in association with a browser a title associated with state of the browser 4

506
v f

Receive an event trigger

508
i F

Display in association with a browser a title associated with the event

Yes 2

Continue to display?

514 K.
Close browser

End

FIG. 5

Patent Application Publication Jul. 19, 2007 Sheet 9 0f 11 US 2007/0168451 A1

600 N

lnput Device Output Device
@ _6_Q§

Event ADlsplay C 602?; ter

[v interface I
I 52 ‘- I

l ‘ |
I |

Event Processing Engine
I g I

I l
l _ ' |

Title
I String(s) Title Provisioning Engine Control I

616 I _ |

I _ Client
Control [- 622 I

v

I Titlzf‘grray Title Generator I
Title A; String [0] 92-5 I

I Title Array String [1] I T" I

I > Title String I
I Title Array- String [N] g I

I |

Patent Application Publication Jul. 19, 2007 Sheet 10 0f 11 US 2007/0168451 A1

700 a

1 Start >

702
v f

Process event that calls for user noti?cation

704
r f

Generate a ?rst string of characters associated with the event

706
f

Store the ?rst string of characters in an array

708
v [

Providing the ?rst string of characters from the array to a process

710
v /

Using the ?rst string of characters as a title in association with the process

712
v F

Providing a second string of characters from the array to the process

714
v [

Using the second string of characters as a title in association with the process

End

FIG. 7

Patent Application Publication Jul. 19, 2007 Sheet 11 0f 11 US 2007/0168451 A1

800 N

Computer gL Processor

’ .80_8

' Comm

Interface
m

Memory
m 820

Display
Control
QM

NV Storage
m

l/O Control
&

Display Device
_8_0§

l/O Devices
80A

FIG. 8

US 2007/0168451 A1

EVENT NOTIFICATION SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This Patent Application claims priority to US.
Provisional Patent App. No. 60/748,988, ?led Dec. 9, 2005,
which is incorporated herein by reference. This Patent
Application is related to US. patent application Ser.
Nos. (Attorney Docket No. 63017-8001.US01),
(Attorney Docket No. 63017-8002 .US01), (Attorney Docket
No. 630l7-8003.US01), (Attorney Docket No. 63017
8005.US01), to Taylor, et al., respectively entitled HIGH
LEVEL NETWORK LAYER SYSTEM AND METHOD,
PICTURE PROVISIONING SYSTEM AND METHOD,
MESSAGE HISTORY DISPLAY SYSTEM AND
METHOD, and CONTACT LIST DISPLAY SYSTEM
AND METHOD, ?led concurrently herewith and incorpo
rated by reference herein.

BACKGROUND

[0002] Instant messaging requires the use of a client
program that hooks up an instant messaging service and
differs from e-mail in that conversations are then able to
happen in real time. Most services offer a presence infor
mation feature, indicating whether people on one’s list of
contacts are currently online and available to chat. This may
be called a contact list. In early instant messaging programs,
each letter appeared as it was typed, and when letters were
deleted to correct typos this was also seen in real time. This
made it more like a telephone conversation than exchanging
letters. In modern instant messaging programs, the other
party in the conversation generally only sees each line of text
right after a new line is started. Most instant messaging
applications also include the ability to set a status message,
roughly analogous to the message on a telephone answering
machine.

[0003] Popular instant messaging services on the public
Internet include .NET Messenger Service, MSN Messenger,
AOL Instant Messenger, Excite/Pal, Gadu-Gadu, Google
Talk, iChat, ICQ, Jabber, Qnext, QQ, Meetro, Skype, Tril
lian and Yahoo! Messenger. These services owe many ideas
to an older (and still popular) online chat medium known as
Internet Relay Chat (IRC).

[0004] The foregoing examples of the related art and
limitations related therewith are intended to be illustrative
and not exclusive. Other limitations of the related art will
become apparent to those of skill in the art upon a reading
of the speci?cation and a study of the drawings.

SUMMARY

[0005] The following embodiments and aspects thereof
are described and illustrated in conjunction with systems,
tools, and methods that are meant to be exemplary and
illustrative, not limiting in scope. In various embodiments,
one or more of the above-described problems have been
reduced or eliminated, while other embodiments are directed
to other improvements.

[0006] A technique for user noti?cation involves modify
ing a title associated with a process to include information
about an event that calls for user noti?cation. A method
according to the technique may include running a process,

Jul. 19, 2007

such as, by way of example but not limitation, an IM client
process, a browser, or some other process that has a title
associated therewith. The method may further include pro
cessing an event, such as by way of example but not
limitation, a new mail event, a new instant message event,
a reminder event, a calendar event, or some other event, and
generating a string of characters that includes information
associated with the event. The method may further include
displaying the string of characters as a title associated with
the process. A system constructed according to the technique
may include a client, a title array, an event processing
engine, and a title provisioning engine.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Embodiments of the inventions are illustrated in
the ?gures. However, the embodiments and ?gures are
illustrative rather than limiting; they provide examples of the
invention.

[0008] FIG. 1 depicts an example of a system for provid
ing instant messages to clients via a web interface.

[0009] FIG. 2 depicts an example ofa system for display
ing content from an IM client at an alternative IM client.

[0010] FIGS. 3A-3D depict examples of screenshots with
IM noti?cation functionality.

[0011] FIG. 4 depicts a ?owchart of an example of a
method for changing a title associated with a titlebar.

[0012] FIG. 5 depicts a ?owchart of an example of a
method for displaying an event-related title.

[0013] FIG. 6 depicts an example of a system for pro
grammed text event-speci?c title provisioning.

[0014] FIG. 7 depicts a ?owchart of an example of a
method for displaying programmed text ?les.

[0015] FIG. 8 depicts a computer system suitable for
implementation of the techniques described above with
reference to FIGS. 1-7.

DETAILED DESCRIPTION

[0016] In the following description, several speci?c details
are presented to provide a thorough understanding of
embodiments of the invention. One skilled in the relevant art
will recogniZe, however, that the invention can be practiced
without one or more of the speci?c details, or in combination
with other components, etc. In other instances, well-known
implementations or operations are not shown or described in
detail to avoid obscuring aspects of various embodiments, of
the invention.

[0017] FIG. 1 depicts an example of a system 100 for
providing instant messages to clients via a web interface. In
the example of FIG. 1, the system 100 includes a network
102, a server 104, and an Instant Messenger (IM) server 106,
and an IM network 108. The server 104 is coupled to the
network at least by way of port 80. The two way commu
nication via port 80 is represented in the example of FIG. 1
as an arrow 110. The server 104 is coupled to the IM server
106 via one or more other ports. The two way communica
tion via the other ports is represented in the example of FIG.
1 as an arrow 112. The IM server 106 is coupled to the IM
network 108 via any known or convenient mechanism.
Indeed, the IM server 106 may be thought of as part of the

US 2007/0168451 A1

IM network 108. The network 102 couples a plurality of
clients 114-1 to 114-N (referred to collectively as clients
114) to the server 104. In the example of FIG. 1, the server
104 includes an event queue 116.

[0018] The netWork 102 may include by Way of example
but not limitation LAN, WAN, VLAN, WLAN, Internet,
cellular netWork, phone netWork, radio netWork, or some
other knoWn or convenient netWork. The term “Intemet” as
used herein refers to a netWork of netWorks that uses certain
protocols, such as TCP/IP, and possibly other protocols such
as the hypertext transfer protocol (HTTP) for hypertext
markup language (HTML) documents that make up the
World Wide Web (the Web). The physical connections of the
Internet and the protocols and communication procedures
are Well knoWn, but any convenient physical connections or
protocols could be used.

[0019] The server 104 may include a multiple servers.
Indeed, it may be desirable, depending upon details of a
particular implementation, to install several servers to cope
With the number of simultaneous users the system 100
supports. It may further be desirable, depending upon details
of a particular implementation, for the server 104 to have a
high CPU throughput, together With large amounts of RAM,
to handle a large number of users. It may further be
desirable, depending upon details of a particular implemen
tation, to accomplish resource sharing via thread handling
Where a pool of threads is shared and used by one or more
of the clients 114 for client-server communication and
betWeen the server 104 and the IM server 106.

[0020] The server 104 may include one or more of an

application server, database server, Web server, banners
server, and content server, or any combination thereof. To
make the mo st of the techniques described herein, the server
104 should, though is not required to, include at least one
application server. The other servers can have supporting
roles in, by Way of example but not limitation, serving static
content or advertising (e.g., banners), storing usage data, or
ful?lling some other knoWn or convenient function.

[0021] The server 104 may act as a proxy server betWeen
the clients 114 and the IM server 106. The server 104
receives communications from the clients 114 on http port
80, and responds to the clients 114 on http port 80. Com
munications from the clients 114 that are bound for the IM
netWork 108, hoWever, must also come through http port 80
to the server 104, and are then forWarded to the IM server
106. In this Way, the server 104 acts as a carrier of the data
from users to the IM netWork 108 using a mechanism that
controls and manages the data (e.g., text messages, display
images, emotions, audio/video streams, etc.) sent betWeen
one of the clients 114 and the server 104, and vice versa.

[0022] The IM server 106 may be any knoWn or conve
nient IM server that is compatible With IM. Events, mes
sages, or other appropriate data from the IM server 106 are
collected in the event queue 116 of the server 104. The
events may be collected in association With a variety of
protocols including by Way of example but not limitation
port 1863, port 5050, port 5222, port 5190, etc.

[0023] The IM netWork 108 may include one or a com
bination of netWorks selected from MSN Messenger, Yahoo!
Messenger, AIM AOL, ICQ, QQ, Jabber, Google Talk, IRC,
or some other knoWn or convenient IM netWork.

Jul. 19, 2007

[0024] The clients 114 may include any knoWn or conve
nient device, including by Way of example but not limita
tion, a Web broWser, mobile client, PDA, game console, TV
box, native application, etc. The clients poll the server 104
for events. The events can be removed from the event queue
116 and translated into text, JavaScript, XML, or some other
knoWn or convenient format that one or more of the clients
114 need or expect in order to process data associated With
the event.

[0025] To interact With the IM netWork 108, the clients
114 send data to the server 104. The data, Which may include
commands, is processed and translated into corresponding
data that Will be sent to the appropriate IM netWork. In an
embodiment, the appropriate IM netWork may be determin
able based upon the protocol encoded in a message.

[0026] Messages or actions from the clients 114 are col
lected over netWork protocols such as, by Way of example
but not limitation, HTTP or plain socket connections. The
messages or actions are transformed to an appropriate pro
tocol format to be sent over a compliant port from the clients
114 to the server 104, With the IM protocol on the applica
tion side. In a non-limiting embodiment, the compliant port
is http port 80. HoWever, any port having similar character
istics to those of a typical port 80 could be used.

[0027] The latest available broWsers, as of December
2005, enable the use of a technique called AJAX (Asyn
chronous JavaScript And XML). With AJAX, appropriately
con?gured clients 114 can execute actions and poll for
messages or events using only JavaScript. The method is
based on using an XMLHttpRequest object to make HTTP
requests to the server 104. The server 104 may reply With
messages taken from the queue of the corresponding session
in XML (or another) format that are parsed and displayed
according to the message content.

[0028] For clients 114 that include a broWser, When
accessing the server 104 the broWser typically uses hidden
HTML frames to update information on visible frames. The
visible frames display appropriate information While the
hidden frames are reloaded in short periods of time. In each
refresh that hits the server 104, the broWser identi?es the
current messaging session and checks if neW events or
messages associated With the session are in the event queue
116. When neW information arrives and needs to be dis
played in some form, the broWser makes use of, for example,
JavaScript code to update the visible frames and WindoWs
With neW messages or events keeping the information up to
date in the screen. In this Way, automatic refreshing can take
place in a hidden frame.

[0029] In another embodiment, certain of the clients 114
With broWsers may not make use of refreshes. For example,
a form of updating the screen Without using a refresh
technique is to keep one single HTTP socket request alive
for the Whole period of a messaging session Without actually
closing the socket connection. In this example, information
is initially loaded and displayed in one single visible frame.
While events and messages are being received by the server
104, JavaScript code can be injected into the HTML docu
ment through the same HTTP socket kept alive and managed
by the server 104. For each event or message, the broWser
can interpret the JavaScript code injected and the corre
sponding parts of the HTML document and WindoWs Will be
updated.

US 2007/0168451 A1

[0030] In another embodiment, certain of the clients 114
with browsers may make use of manual refreshes. Some
relatively unsophisticated browsers, such as WAP and
XHTML browsers often available on mobile phones, do not
support hidden frames and/ or JavaScript (and others may be
con?gured such that they do not support hidden frames
and/or JavaScript). In such cases, the information displayed
has to be updated manually by the user. Manual updating
enables any mobile phone, PDA, TV Set or any device with
a browser to connect to the server 104 and use the messaging
platforms made available by the server 104 assuring the
communication between the clients 114 and the IM server
106.

[0031] Message history can be stored by most IM clients
on a local computer. For alternative web and mobile-based
clients local storage may not be possible. In a non-limiting
embodiment, the server 104, may have the capability to store
message history from IM conversations done via one or
more of the clients 114. The message history can be accessed
and searched at any time via the server 104 by one or more
of the clients 114

[0032] FIG. 2 depicts an example of a system 200 for
displaying content from an IM client at an alternative IM
client. In the example of FIG. 2, the system 200 includes a
client 202, an IM network 204, a server 206, an IM network
208, a client 210, other IM networks 212-1 to 212-N
(referred to collectively as other IM networks 212), and
other clients 214-1 to 214-N (referred to collectively as other
clients 214).

[0033] For illustrative purposes, it is assumed that the
client 202 has content that is compatible with the IM
network 204. However, the client 210 is capable of reading
content formatted to be compatible with the IM network
208. Thus, in operation, the server 206 collects content from
the client 202 (either through the IM network 204, as shown
in FIG. 2, or directly from the client 202, such as is shown
by way of example in FIG. 1). The server 206 then formats
the content as appropriate for use on the IM network 208.
Once the content is properly formatted, it can be made
available to the client 210 (either through the IM network
208, as shown in FIG. 2, or directly to the client 210, such
as is shown by way of example in FIG. 1). Depending upon
the embodiment and/or implementation, the content may
also be formatted as appropriate for one or more of the other
IM networks 212, to be made available for one or more of
the other clients 214.

[0034] As is well-understood, different devices provide
different functionality. For example, a desktop typically
provides greater storage, greater display area, and greater
power than a cell phone. Thus, at best, an IM client must
work under the constraints imposed by a particular device.
Depending upon the device, certain functionality may be
more useful. For example, a device may have inferior
capabilities with respect to notifying a user when a message
is received.

[0035] The device capabilities may limit the way in which
a user can be noti?ed when a message is received. The
environment in which a user operates may provide another
limitation. For example, a user at work may not want to play
a noise or have a popup window show up every time a
message is received. Similarly, a user who gets lots of
messages may not want to hear the noise or see the popup

Jul. 19, 2007

windows because of the great frequency with which it
occurs. Advantageously, noti?cation can take place in a
titlebar, which is great for devices that have inferior noti?
cation functionality, and great for users who want a subtle
noti?cation.

[0036] FIGS. 3A-3D depict examples of screenshots 300
with IM noti?cation functionality. The bar may be a titlebar,
a taskbar, or some other menu or display item. In the
example of FIG. 3A, the taskbar includes a process identi
?ed by the taskbar item 302. For illustrative purposes, the
process is a Firefox® web browser that is at the site
www.ebuddy.com. The screenshot appears as a conventional
screen might look. However, when a new message arrives,
the taskbar changes.

[0037] In the example of FIG. 3B, the taskbar includes the
Firefox® web browser process, but the taskbar item 304
appears di?ferently. Speci?cally, rather than depicting the
site www.ebuddy.com, the taskbar item 304 now indicates
that a new message is available. The IM noti?cation func
tionality may be cool on a desktop, but can be particularly
useful in other implementations.

[0038] For example, notifying a user when new messages
arrive or events happen can gracefully be done by a native
IM application. However, for alternative web clients this is
more di?icult given the nature of control from within a
browser to the Operating System. There is less control for
alerts like ?ashing windows etc. from browsers. In such
cases, it may be particularly advantageous for a server to be
able to provide a user with alerts for new messages or events
using the title bar, task bar, or other display area of a
browser.

[0039] In the example of FIG. 3C, the Firefox® browser
is open, and the taskbar item 306 indicates the current site
is www.ebuddv.com. The titlebar 308 includes similar infor
mation. If a new message is received, then both the titlebar
and the taskbar can be changed.

[0040] In the example of FIG. 3D, the taskbar includes the
Firefox® web browser with a changed taskbar item 310. The
titlebar 312 is also changed to indicate a new message has
been received. The exact information in a titlebar, taskbar, or
other display area is implementation speci?c. Thus, the
titlebar 312 is simply illustrative. When an event, message,
or other data is available to the client, the titlebar 312 may
change to show information about the event. If properly
con?gured, the taskbar item 310 and the titlebar 312 could
even display different information (though in a typical
implementation the text is identical, albeit often necessarily
shortened on the taskbar).

[0041] The title can be used to notify users of certain
events by changing the title of the IM client. The changing
of the text in the taskbar and/or titlebar may stand out from
other taskbars and/or with ?xed texts.

[0042] FIG. 4 depicts a ?owchart 400 of an example ofa
method for changing a title associated with a titlebar (and an
associated taskbar item, if applicable). In the example of
FIG. 4, the ?owchart 400 starts at module 402 where an IM
client process is running. The IM client process may include,
by way of example but not limitation, a browser.

[0043] In the example of FIG. 4, the ?owchart 400 con
tinues to decision point 404 where it is determined whether

US 2007/0168451 A1

an event has been received. If it is determined that an event
has not been received (404-N), then the ?owchart 400
continues to decision point 406 where it is determined
whether to terminate the IM client process. If it is deter
mined that the IM client process is to be terminated (406-Y),
then the ?owchart 400 continues to module 408 where the
IM client process is terminated, and the ?owchart 400 ends.
If, on the other hand, it is determined that the IM client
process is not to be terminated (406-N) then the ?owchart
400 loops back to decision point 404, as described above.

[0044] In the example of FIG. 4, eventually, assuming the
IM client process is not terminated (408), it is determined
that an event has been received (404-Y), and the ?owchart
400 continues to module 410 where the event is processed.
Events are processed in a known or convenient manner.

[0045] In the example of FIG. 4, the ?owchart 400 con
tinues to decision point 412 where it is determined whether
noti?cation is called for. Events may or may not result in
noti?cation of a user, depending upon the event, embodi
ment, implementation, device limitations, and/or user’s IM
client con?guration. If it is determined that user noti?cation
is called for (412-Y), then the ?owchart 400 continues to
module 414 where a title associated with the IM client
process is modi?ed. If, on the other hand, it is determined
that user noti?cation is not called for (412-N), or in any case
after module 414, the ?owchart 400 loops back to decision
point 406, as described above.

[0046] Modifying the title (414) presumably modi?es the
display in the applicable titlebar and/or the display in the
applicable taskbar item. Conventional browsers typically do
not allow setting a title in a titlebar that is different from the
corresponding taskbar item. However, a display area could
display information different from that of the title, if con
?gured appropriately. Moreover, future browsers may
include functionality that allows displaying di?‘erent titles in
the titlebar and the taskbar.

[0047] The title of the application may or may not keep the
changed value until the user takes some action (e.g., clicking
on the taskbar item associated with the IM client process).
For example, the original title could be displayed after a
certain amount of time has passed (e.g., a “new message”
title could last for 10 seconds before reverting to the original
title). FIG. 5 depicts a ?owchart 500 of an example of a
method for displaying an event-related title. In the example
of FIG. 5, the ?owchart 500 starts at module 502 where a
browser is opened.

[0048] In the example of FIG. 5, the ?owchart 500 con
tinues to module 504 a title associated with state of a
browser is displayed in association with the browser. The
state of the browser may include, for example, a current site
for which the browser is displaying a page, as is shown in
FIGS. 3A and 3C. In general, the title associated with state
of the browser includes any title that would normally be
displayed in association therewith prior to updating the title
in response to an event noti?cation.

[0049] In the example of FIG. 5, the ?owchart 500 con
tinues to module 506 where an event trigger is received. The
event trigger is associated with an event that calls for
notifying a user. For example, the event trigger may include
receipt of a new instant message.

[0050] In the example of FIG. 5, the ?owchart 500 con
tinues to module 508 where a title associated with the event

Jul. 19, 2007

is displayed in association with the browser. Thus, the title
associated with the state of the browser is replaced by the
title associated with the event. Moreover, in a non-limiting
embodiment, the state of the browser is unchanged (other
than the title, of course).

[0051] In the example of FIG. 5, the ?owchart 500 con
tinues to decision point 510 where it is determined whether
to close the browser. If the browser is not to be closed
(510-N), then the ?owchart 500 continues to decision point
512 where it is determined whether to continue to display the
title associated with the event. If so (512-Y), then the
?owchart 500 loops back to module 508, as described
previously. If not (512-N), then the ?owchart 500 loops back
to module 504, as described previously. The determination
as to whether to continue to display the title associated with
the event may be based upon, by way of example but not
limitation, a noti?cation timer, an event-speci?c timer, a user
action, or some other action that is su?icient to indicate that
the title associated with the event should not longer be
displayed. If, on the other hand, the browser is to be closed
(510-Y), then the ?owchart 500 continues to module 514
where the browser is closed, and the ?owchart 500 ends.

[0052] The title of, e.g., a window shows up in both the
titlebar of a window and in the taskbar. Advantageously,
users can be noti?ed of events in the taskbar, while they are
using another application. The changing taskbar would
bene?t clients on devices using a desktop system that allows
multiple applications to run at the same time, eg Mail
client, Browser, IM, etc. While users are switching between
various applications and an IM client they may not be aware
of new messages/events that have arrived. The alternating
messages can be seen in a taskbar even if, for example, the
browser window is minimiZed or behind other application or
browser windows (as in FIGS. 3A, 3B).

[0053] Advantageously, in an embodiment, a title associ
ated with an event can include programmed text effects. FIG.
6 depicts an example of a system 600 for programmed text
event-speci?c title provisioning. The system 600 includes an
input device 602, a network 604, an output device 606, and
a computer 610. The input device 602 may be any known or
convenient device that is capable of generating or forward
ing events to the computer 610. In a typical implementation,
events will be received at the computer 610 via the network
604. Most computers include output devices for on which a
variety of output is displayed.

[0054] The computer 610 includes an interface 612, an
event processing engine 614, a title provisioning engine 616,
a title array 618, a multiplexer 620, and a client 622. The
interface 612 may include an implementation-speci?c num
ber of different kinds of known or convenient interfaces. The
input device 602, the network 604, and the output device 606
are coupled to the computer 610 using the interface 612.

[0055] An event received on the interface 612 (from either
the input device 602 or the network 604) is provided to the
event processing engine 614 for processing in a known or
convenient manner. The event processing engine 614 may be
embodied in a computer-readable medium. If user noti?ca
tion is desired for the event, the user can be noti?ed in any
known or convenient manner.

[0056] Advantageously, data associated with the event can
also (or in the alternative) be provided to the title provision

US 2007/0168451 A1

ing engine 616. The title provisioning engine 616 may be
embodied in a computer-readable medium. In the example
of FIG. 6, the title provisioning engine 616 inputs title
strings, which are strings of characters, to the title array 618.
The title array 618 includes N-1 title array strings, embodied
in a computer-readable medium, which are referenced (for
illustrative purposes) as title array string [0] to title array
string

[0057] A given event may cause the title provisioning
engine 616 to rewrite the entire title array 618 with title
strings associated with the most recent events. Alternatively,
a given event may cause the title provisioning engine 616 to
append title strings to the end of the title array 618. In a
non-limiting embodiment, the title provisioning engine 616
updates the current title array 618 by adding new data
associated with an event, excluding redundant data (e.g.,
data that is already represented in the title array 618).

[0058] In the example of FIG. 6, the multiplexer 620
selects one of the title array strings for provisioning to the
client 622. The multiplexer 620 receives a control signal
from the title provisioning engine 616 to accomplish this
task. The multiplexer 620 is a conceptual construct that is
intended to illustrate selecting one of the title array strings
using an index to the title array 618. Thus, the multiplexer
620 may or may not be embodied in a computer-readable
medium. It should be noted that the multiplexer 620, in at
least one embodiment, is not a hardware MUX, though it
could conceivably be implemented as such.

[0059] In the example of FIG. 6, the client 622 includes a
title string 624 and a title generator 626. The client 622 may
include, by way of example but not limitation, an IM client,
an email client, a VolP client, or some other communica
tions-related client. The client 622 may include a window,
panel, or some other display that includes a title. The title
generator 626 generates a title for the display in a known or
convenient manner.

[0060] However, in a non-limiting embodiment, the title
provisioning engine 616 controls the title generator 626 to
either generate a title in the usual way (e.g., using the state
of the client 622 to determine an appropriate title), or to not
generate a title because a title string is available from the
title array 618. Thus, title string 624, which is embodied in
a computer-readable medium in association with the display,
will include either a title generated in accordance with the
state of the client 622 or a title string from the title array 618
(speci?cally, the title array string selected by the multiplexer
620). The display (e.g., a window including the title string
624) is provided to the interface 612 for display on the
output device 606.

[0061] Advantageously, although the title string 624 is
likely to have display limitations associated with the client
622, the operating system, the output device 606, or other
factors, creative control of the title array 618 can yield
interesting title display characteristics. For example, the title
can appear to have scrolling text, blinking, alternating upper
and lower case, etc.

[0062] Scrolling text may be accomplished by cycling
through the title array 618 over time. After the title array
string [N] is displayed, the title array 618 can start over at
title array string [0], or allow the title generator 626 to
generate a title instead. The scrolling text could include the

Jul. 19, 2007

actual message of an IM message, displayed in the title over
time, the scrolling text could scroll through a list of senders
of email that has not yet been checked. Blinking can be
accomplished by, conceptually, making every other title
array string blank. Alternatively, a NULL string could be
periodically provided instead of a title array string. The
number of programmed text effects available to those of
ordinary skill in the art of computer programming, with this
teaching before them, are practically impossible to list
exhaustively so no effort is made to do so herein.

[0063] FIG. 7 depicts a ?owchart 700 of an example ofa
method for displaying programmed text titles. In the
example of FIG. 7, the ?owchart 700 starts at module 702
where an event that calls for user noti?cation is processed.
It may be noted that whether the event calls for user
noti?cation may or may not be known until after the event
is processed.

[0064] In the example of FIG. 7, the ?owchart 700 con
tinues to module 704 where a ?rst string of characters
associated with the event is generated. There may or may not
be a second, third, etc. string of characters associated with
the event generated, as well.

[0065] In the example of FIG. 7, the ?owchart 700 con
tinues to module 706 where the ?rst string of characters is
stored in an array. The array may include other strings of
characters associated with other events, or the ?rst string of
characters (and second, third, etc. string of characters)
associated with the event may replace all current characters
strings of the array.

[0066] In the example of FIG. 7, the ?owchart 700 con
tinues to module 708 where the ?rst string of characters is
provided from the array to a process. The process may
include, by way of example but not limitation, an IM client
operating in a Windows® environment.

[0067] In the example of FIG. 7, the ?owchart 700 con
tinues to module 710 where the ?rst string of characters is
used as a title in association with the process. For example,
if the process is an IM client operating in a Windows®
environment, the ?rst string of characters could be used such
that the window associated with the IM client includes the
?rst string of characters (or at least the ?rst subset of the ?rst
string of characters, if the window is too small to display the
entire string) in the titlebar. Similarly, in this speci?c
example, the ?rst string of characters could be displayed in
a taskbar item associated with the IM client.

[0068] In the example of FIG. 7, the ?owchart 700 con
tinues to module 712 where a second string of characters is
provided from the array to the process. The second string of
characters could be associated with the same event as the
?rst string of characters, an earlier event (where the second
string remains in the array), or a later event (where the
second string replaces or is in addition to strings associated
with the last processed event). The second string of charac
ters could also be unassociated with an event. For example,
the second string of characters could be a NULL string that
has the effect of causing the ?rst string of characters (if
provided before and after the second string of characters) to
blink or ?ash.

[0069] In the example of FIG. 7, the ?owchart 700 con
tinues to module 714 where the second string of characters
is used as a title in association with the process. Then the

US 2007/0168451 A1

?owchart 700 ends. It should be noted that the ?owchart 700
simply illustrates a ?rst and second string of characters from
the array being used as a title, and then ends. Of course, the
?owchart could continue with modules (not shown) where
the ?rst string of characters is repeated as a title, another
event is processed, a third string of characters is provided, or
with some other applicable module or sequence of modules.

[0070] FIG. 8 depicts a computer system 800 suitable for
implementation of the techniques described above with
reference to FIGS. 1-7. The computer system 800 includes
a computer 802, I/O devices 804, and a display device 806.
The computer 802 includes a processor 808, a communica
tions interface 810, memory 812, display controller 814,
non-volatile storage 816, and I/O controller 818. The com
puter 802 may be coupled to or include the I/O devices 804
and display device 806.

[0071] The computer 802 interfaces to external systems
through the communications interface 810, which may
include a modem or network interface. The communications
interface 810 can be considered to be part of the computer
system 800 or a part of the computer 802. The communi
cations interface 810 can be an analog modem, ISDN
modem, cable modem, token ring interface, satellite trans
mission interface (e.g. “direct PC”), or other interfaces for
coupling a computer system to other computer systems.
Although conventional computers typically include a com
munications interface of some type, it is possible to create a
computer that does not include one, thereby making the
communications interface 810 optional in the strictest sense
of the word.

[0072] The processor 808 may include, by way of example
but not limitation, a conventional microprocessor such as an
Intel Pentium microprocessor or Motorola power PC micro
processor. While the processor 808 is a critical component of
all conventional computers, any applicable known or con
venient processor could be used for the purposes of imple
menting the techniques described herein. The memory 812
is coupled to the processor 808 by a bus 820. The memory
812, which may be referred to as “primary memory,” can
include Dynamic Random Access Memory (DRAM) and
can also include Static RAM (SRAM). The bus 820 couples
the processor 808 to the memory 812, and also to the
non-volatile storage 816, to the display controller 814, and
to the I/O controller 818.

[0073] The I/O devices 804 can include a keyboard, disk
drives, printers, a scanner, and other input and output
devices, including a mouse or other pointing device. For
illustrative purposes, at least one of the I/O devices is
assumed to be a block-based media device, such as a DVD
player. The display controller 814 may control, in a known
or convenient manner, a display on the display device 806,
which can be, for example, a cathode ray tube (CRT) or
liquid crystal display (LCD).
[0074] The display controller 814 and I/O controller 818
may include device drivers. A device driver is a speci?c type
of computer software developed to allow interaction with
hardware devices. Typically this constitutes an interface for
communicating with the device, through a bus or commu
nications subsystem that the hardware is connected to,
providing commands to and/or receiving data from the
device, and on the other end, the requisite interfaces to the
OS and software applications.

Jul. 19, 2007

[0075] The device driver may include a hardware-depen
dent computer program that is also OS-speci?c. The com
puter program enables another program, typically an OS or
applications software package or computer program running
under the OS kernel, to interact transparently with a hard
ware device, and usually provides the requisite interrupt
handling necessary for any necessary asynchronous time
dependent hardware interfacing needs.

[0076] The non-volatile storage 816, which may be
referred to as “secondary memory,” is often a magnetic hard
disk, an optical disk, or another form of storage for large
amounts of data. Some of this data is often written, by a
direct memory access process, into memory 812 during
execution of software in the computer 802. The non-volatile
storage 816 may include a block-based media device. The
terms “machine-readable medium” or “computer-readable
medium” include any known or convenient storage device
that is accessible by the processor 808 and also encompasses
a carrier wave that encodes a data signal.

[0077] The computer system 800 is one example of many
possible computer systems which have different architec
tures. For example, personal computers based on an Intel
microprocessor often have multiple buses, one of which can
be an I/O bus for the peripherals and one that directly
connects the processor 808 and the memory 812 (often
referred to as a memory bus). The buses are connected
together through bridge components that perform any nec
essary translation due to differing bus protocols.

[0078] Network computers are another type of computer
system that can be used in conjunction with the teachings
provided herein. Network computers do not usually include
a hard disk or other mass storage, and the executable
programs are loaded from a network connection into the
memory 812 for execution by the processor 808. A Web TV
system, which is known in the art, is also considered to be
a computer system, but it may lack some of the features
shown in FIG. 8, such as certain input or output devices. A
typical computer system will usually include at least a
processor, memory, and a bus coupling the memory to the
processor.

[0079] The computer system 800 may be controlled by an
operating system (OS). An OS is a software programiused
on most, but not all, computer systemsithat manages the
hardware and software resources of a computer. Typically,
the OS performs basic tasks such as controlling and allo
cating memory, prioritizing system requests, controlling
input and output devices, facilitating networking, and man
aging ?les. Examples of operating systems for personal
computers include Microsoft Windows®, Linux, and Mac
OS®. Delineating between the OS and application software
is sometimes rather di?icult. Fortunately, delineation is not
necessary to understand the techniques described herein,
since any reasonable delineation should su?ice.

[0080] As used herein, algorithmic descriptions and sym
bolic representations of operations on data bits within a
computer memory are believed to most effectively convey
the techniques to others skilled in the art. An algorithm is
here, and generally, conceived to be a self-consistent
sequence of operations leading to a desired result. The
operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals

US 2007/0168451 A1

capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like.

[0081] It should be borne in mind, hoWever, that all of
these and similar terms are to be associated With the appro
priate physical quantities and are merely convenient labels
applied to these quantities. Unless speci?cally stated other
Wise as apparent from the folloWing discussion, it is appre
ciated that throughout the description, discussions utiliZing
terms such as “processing” or “computing” or “calculating”
or “determining” or “displaying” or the like, refer to the
action and processes of a computer that manipulates and
transforms data represented as physical (electronic) quanti
ties Within the computer system’s registers and memories
into other data similarly represented as physical quantities
Within the computer system memories or registers or other
such information storage, transmission or display devices.

[0082] An apparatus for performing techniques described
herein may be specially constructed for the required pur
poses, or it may comprise a general purpose computer
selectively activated or recon?gured by a computer program
stored in the computer. Such a computer program may be
stored in a computer readable storage medium, such as, by
Way of example but not limitation, read-only memories
(ROMs), RAMs, EPROMs, EEPROMs, magnetic or optical
cards, any type of disk including ?oppy disks, optical disks,
CD-ROMs, DVDs, and magnetic-optical disks, or any
knoWn or convenient type of media suitable for storing
electronic instructions.

[0083] The algorithms and displays presented herein are
not inherently related to any particular computer architec
ture. The techniques may be implemented using any knoWn
or convenient programming language, Whether high level
(e.g., C/C++) or loW level (e.g., assembly language), and
Whether interpreted (e.g., Perl), compiled (e.g., C/C++), or
Just-ln-Time (JIT) compiled from bytecode (e. g., Java). Any
knoWn or convenient computer, regardless of architecture,
should be capable of executing machine code compiled or
otherWise assembled from any language into machine code
that is compatible With the computer’s architecture.

[0084] As used herein, the term “embodiment” means an
embodiment that serves to illustrate by Way of example but
not limitation.

[0085] It Will be appreciated to those skilled in the art that
the preceding examples and embodiments are exemplary
and not limiting to the scope of the present invention. It is
intended that all permutations, enhancements, equivalents,
and improvements thereto that are apparent to those skilled
in the art upon a reading of the speci?cation and a study of
the draWings are included Within the true spirit and scope of
the present invention. It is therefore intended that the fol
loWing appended claims include all such modi?cations,
permutations and equivalents as fall Within the true spirit
and scope of the present invention.

1. A method comprising:

running a client process;

processing an event;

Jul. 19, 2007

generating a string of characters that includes information
associated With the event;

displaying the string of characters as a title associated
With the client process.

2. The method of claim 1, Wherein the client process
includes a broWser.

3. The method of claim 1, Wherein the event is receiving
a neW instant message.

4. The method of claim 1, Wherein the string of characters
is a second string of characters, further comprising:

generating a ?rst string of characters according to a state
of the client process;

displaying the ?rst string of characters as the title asso
ciated With the client process.

5. The method of claim 1, Wherein the string of characters
is a ?rst string of characters, further comprising:

deciding Whether to cease displaying the ?rst string of
characters as the title associated With the client process;

displaying a second string of characters if it is decided to
cease to display the ?rst string of characters.

6. A system comprising:

a client, including a title string embodied in a computer
readable medium;

a title array, embodied in a computer readable medium,
that includes a plurality of character strings for provi
sioning to the title string of the client;

an interface, coupled to the client, for receiving an event
and for sending a display associated With the client to
a display device;

an event processing engine, embodied in a computer
readable medium and coupled to the interface, for
processing the event;

a title provisioning engine, embodied in a computer
readable medium and coupled to the event processing
engine, for maintaining the title array and controlling
Which character string of the plurality of character
strings to provide to the client.

7. The system of claim 6, further comprising a netWork
through Which the event is sent to the interface.

8. The system of claim 6, further comprising an input
device from Which the event is sent to the interface.

9. The system of claim 6, further comprising an output
device, including the display device, to Which a display is
sent from the interface, Wherein a title associated With at
least a portion of the display includes at least a portion of the
character string of the plurality of characters strings.

10. The system of claim 6, further comprising a title
generator that generates a title for the client according to
state of the client, Wherein the title provisioning engine
controls the title generator to alloW for the character string
of the plurality of character strings to be used instead of the
title generated according ot the state of the client.

11. A method comprising:

processing an event that calls for user noti?cation;

generating a ?rst string of characters associated With the
event;

storing the ?rst string of characters in an array;

US 2007/0168451 A1

providing the ?rst string of characters from the array to a
process;

using the ?rst string of characters as a title in association
With the process;

providing a second string of characters from the array to
the process;

using the second string of characters as a title in associa
tion With the process.

12. The method of claim 11, further comprising:

generating the second string of characters, Wherein the
second string of characters is associated With the event;

storing the second string of characters in the array.
13. The method of claim 11, Wherein the event is a ?rst

event, further comprising:

processing a second event that calls for user noti?cation;

generating the second string of characters associated With
the second event;

storing the second string of characters in the array.
14. The method of claim 11, further comprising altemat

ing using the ?rst string of characters as a title in association
With the process With using a NULL string.

Jul. 19, 2007

15. The method of claim 11, further comprising generat
ing the second string of characters as a NULL string.

16. The method of claim 11, further comprising alternat
ing using the ?rst string of characters as a title in association
With the process With a variation of the ?rst string of
characters.

17. The method of claim 11, further comprising generat
ing the second string of characters as a variation of the ?rst
string of characters.

18. The method of claim 11, further comprising:

receiving af?rmation that user noti?cation Was successful;

clearing the array.
19. The method of claim 11, further comprising repeti

tively using the ?rst string of characters as a title in asso
ciation With the process.

20. The method of claim 11, further comprising:

using the ?rst string of characters as a title in association
With the process one or more times;

removing the ?rst string of characters from the array.

