
 

 

ABSTRACT 

 

BUTLER, COLIN GRANT.  Exploring Bimanual Tool-Based Interaction in a Drawing 

Environment.  (Under the direction of Robert A. St. Amant.) 

 In this document, I will present HabilisDraw DT, a drawing environment in which 

bimanual direct manipulation and a strong tool-use metaphor are supported via the 

DiamondTouch input device from Mitsubishi Electronics Research Lab.  The goal of this 

research is to explore the viability of the various contributions of HabilisDraw DT in the 

development of future interfaces.  The principles upon which HabilisDraw DT have been 

built include persistent tools that embody intuitive aspects of their physical counterparts and 

an approach to interface learnability that capitalizes on the user’s inherent ability to use tools 

both separately and in conjunction with other tools.  In addition to these principles, 

HabilisDraw DT extends the physical-virtual tool correlation with bimanual input via the 

MERL DiamondTouch input device and a close adherence to the direct manipulation 

interaction model.  This paper presents background work in novel interaction and an 

overview of the HabilisDraw interface, then explores the benefits of a desktop metaphor that 

closely mimics the behavior of tools and objects in a two-dimensional drawing environment 

and argues for the applicability of the system’s fundamental principles for improving 

interface usability in the future. 

 

 



EXPLORING BIMANUAL TOOL-BASED INTERACTION IN A DRAWING 

ENVIRONMENT 

 

by 

COLIN BUTLER 

 

 

A thesis submitted to the Graduate Faculty of 

North Carolina State University 

in partial fulfillment of the 

requirements for the Degree of 

Master of Science 

 

 

COMPUTER SCIENCE 

 

Raleigh 

2004 

 

 

APPROVED BY: 

___________________________________  ___________________________________ 

___________________________________ 
Chair of Advisory Committee



Biography 

Colin Grant Butler was born in Beaumont, Texas on November 25, 1980.  His family moved 

to Springfield, Missouri in 1986 and then to Clemmons, North Carolina in 1993.  After four 

years at West Forsyth High School, he decided that he wanted to study Computer Science at 

North Carolina State University in Raleigh. 

 

Colin spent four years earning a Bachelor of Science degree in Computer Science with a 

minor in English, graduating Magna Cum Laude in May 2002.  He has spent the past two 

years researching applications of tool use in novel user interfaces for his Master’s Degree at 

NCSU under Dr. Robert St. Amant. 

 

Upon completion of the requirements of his degree, Colin intends to move to Durham, North 

Carolina and seek a job in the Raleigh-Durham area developing software. 

ii



Table of Contents 
LIST OF TABLES 
LIST OF FIGURES 
1. INTRODUCTION 
2. RELATED WORK 

2.1. Bimanual interaction 
2.2. Tool use 

3. SYSTEM DESIGN 
3.1. Theory 

a. Direct manipulation 
b. Bimanual interaction 
c. Tool use 

i. A tool taxonomy 
ii. Characteristics of tool use 

3.2. History 
a. HabilisDraw v1.0 
b. HabilisDraw v2.0 

3.3. Hardware 
3.4. Software 

a. Conceptual overview 
b. Class structure 
c. Implementation notes 

4. EXPERIMENT 
5. RESULTS 

5.1. Action observations 
5.2. Object observations 
5.3. Interface observations 
5.4. Approach observations 

6. ANALYSIS 
7. CONCLUSION 
8. REFERENCE MATERIALS 
 
Appendices 
A. Study Questionnaire 
B. Questionnaire Responses 

iv  
v 
1 
3 
3 
3 
5 
5 
5 
6 
7 
7 
9 

15 
16 
19 
21 
23 
23 
29 
31 
33 
36 
37 
39 
40 
42 
44 
49 
52 

 
 

54 
56

 
 

 

 

iii



LIST OF TABLES 

Table 1: A qualitative comparison between drawing environment 

interactions in HabilisDraw DT and standard direct manipulation 

interfaces. 

Table 2:  Quantitative overview of survey demographics and responses 

 

 

44 

49 

iv



LIST OF FIGURES

Figure 1: The Xerox Star interface. 

Figure 2: The tools of HabilisDraw v1.0 

Figure 3: A composite tool for creating spirals. 

Figure 4: The default HabilisDraw DT desktop. 

Figure 5: Holding an object (in this case, a pen) shows a transparent “iconic 

display” of the object in hand 

Figure 6: An expert drawing done with HabilisDraw DT. 

Figure 7: A user performing a pattern matching task in HabilisDraw DT. 

Figure 8: A user creating a house in HabilisDraw DT. 

Figure 9: The selection of experiment patterns. 

1 

17 

19 

25 

 

29 

33 

34 

35 

36

v



 

Figure 1: The Xerox Star interface. 

 

1. INTRODUCTION 

In 1981, Xerox released the Star interface to the public [Johnston, et al., 1989].  With 

this release, Xerox pioneered bitmapped interfaces and the desktop metaphor, setting into 

motion the evolution of consumer user interfaces for the next two decades.  Its influences 

were immediately visible in the Macintosh operating system, released in 1984, and 

Microsoft’s Windows operating system, along with many other less-popular systems in 

following years, such as GEOS, released in 1986 for the Commodore 64 and BeOS, released 

in 1998 for x86 systems.  The wildfire spread of the desktop metaphor demonstrates the 

power of familiarity in user interfaces.  By designing the interface of this new kind of 

operating system around the natural interactions with a desktop, users unfamiliar with the 

concept of a bitmapped user interface could better understand many aspects of its operation 

1



without consulting a user manual and learning by rote.  Since then, research has continued to 

search for ways of improving usability and learnability in user interfaces.  Even very strictly 

limited subsets of a human’s output capabilities far surpass the ability of most interfaces to 

capture and interpret input.  If interface designers can capitalize on this strength, the 

conceptual and practical domain of user interaction could very well extend far beyond the 

limitations of current mouse and keyboard methods. 

Humans are tool-using creatures.  The application of a tool to a desired end is an 

ability long developed in our evolution as a species, providing a method by which our 

impressive manual dexterity and advanced intellect can act on physical objects and principles 

to increase the efficiency, magnitude, or speed of an operation beyond our own physical 

limitations.  In this paper, I will describe the HabilisDraw DT system I have developed over 

the course of my graduate studies.  HabilisDraw DT is designed around a set of fundamental 

principles regarding the use of physical tools with the intent of exploring the effects of 

presenting a common computing task, i.e. drawing, as a tool use problem.  The intent behind 

casting the drawing task as a tool using task is to exploit user familiarity with the use of tools 

as functional enablers to improve learnability and usability within a limited domain with the 

potential to extend the more beneficial principles to other applications.  Examining user 

interactions with this task should help provide insights regarding which aspects of the model 

serve this purpose better than others and how we might be able to better implement the 

principles that can or do provide significant benefits. 

 

 

 

2



2. RELATED WORK 

2.1 Bimanual Interaction 

 The most familiar work on bimanual interaction is probably due to Xerox PARC, in 

the Toolglass™ and Magic Lenses™ system [Bier, et al., 1993].  The design of this system 

uses a trackball for the non-dominant hand, controlling a transparent tool palette; and a 

mouse for the dominant hand, controlling the primary cursor.  The palette can be configured 

to provide one of many functionalities, either active (e.g. click-through tool functionality) or 

passive (e.g. Magic Lenses™).  By selecting a tool for the palette and positioning it over the 

object of interest with one hand and clicking “through” the palette with the other hand, many 

of the inefficiencies of a modal interface are streamlined into an intuitive bimanual interface.  

Alternatively, the palette can be configured to act as a “Magic Lens™,” representing some 

alternative mode of display for all objects beneath it. 

In other bimanual interaction related work, Cutler et al. developed a system called the 

Responsive Workbench [Cutler, et al., 1997], for which they developed a two-handed three-

dimensional user interface for medical training and automotive design applications.  Both 

hands are used to manipulate both the user’s perspective and the virtual objects on a 3D 

tabletop display.  The system supports a set of unimanual actions and sets of both bimanual 

symmetric and asymmetric actions.  The various actions are represented as tools in a toolbox, 

where the user can choose an operation and apply it via hand gestures.   

 

2.2 Tool Use 

In the area of tool-based interaction, one well-known related system is Bederson et 

al.’s KidPad [Bederson, et al., 1996], in which tools are first class objects that can be picked 

3



up and manipulated like other objects in the interface, in contrast to more common menu- or 

palette-based “tool mode” designs.  The system uses multiple mice to provide a collaborative 

storytelling interface where children can use Bederson’s own “local tools” to develop stories 

comprised of images, text, and spatial arrangement.   

Later, I will discuss another tool-based project, the original HabilisDraw [St. Amant 

and Horton, 2002], which is a tool-based 2D drawing program developed by Robert St. 

Amant and Thomas Horton upon which HabilisDraw DT is based. 

 

 There are several projects that focus on bimanual interaction, and a limited number of 

these projects use tools, but there are very few projects that use tool-based bimanual 

interfaces.  The Toolglass project previously mentioned is arguably tool-based, but also bears 

several characteristics of a standard interface with a special tool provided for the non-

dominant hand.  Roope Raisamo’s alignment stick project [Raisamo, 1999] is one project 

that currently supports bimanual interaction in a specifically tool-based environment.  

Raisamo’s system allows users to create drawings by manipulating a set of tools in the form 

of various types of stick.  The primary difference between Raisamo’s interface and the 

HabilisDraw DT interface is that the HabilisDraw DT system uses the MERL 

DiamondTouch to provide interaction through direct contact.   

 Additionally, Patten et al. have developed a hardware system called Sensetable 

[Patten, et al., 2001], which electromagnetically tracks tangible interface objects on a 

tabletop and projects relevant information directly onto the tools themselves.  Their system 

supports direct bimanual manipulation of interface tools with no mediation or indirection 

4



whatsoever.  This approach easily and effectively addresses the formidable issue of capturing 

a user’s natural ability to operate upon multiple degrees of freedom concurrently. 

 

3. SYSTEM DESIGN 

3.1 Theory 

3.1.1 Direct Manipulation 

 In 1983, Ben Shneiderman [Shneiderman, 1983] outlined a new interaction model for 

what he called “direct manipulation.”  The principle of direct manipulation is somewhat self-

explanatory: it values direct interaction and locality over abstraction and obfuscation.  The 

three fundamental properties of a direct manipulation system are as follows: 

1. Continuous representation of the object of interest 

2. Physical actions or labeled button presses instead of complex syntax 

3. Rapid incremental reversible operations whose impact on the object of interest is 

immediately visible. 

By defining this new model, Shneiderman provided a set of principles by which users 

could easily associate objects with their states and actions with their effects.  Since then, 

direct manipulation has been one of the dominant models in interface design. 

Shneiderman claims several benefits to applying direct manipulation to an interface.  

For instance: learnability is improved, operational concepts are better retained, error 

messages are required less often, and users are better informed of the status of their active 

tasks.  While exact efficiency depends on both the user and the domain and design of the 

interface beyond just its interaction model, building upon the direct manipulation concepts 

provides a basis by which very functional user-friendly interfaces can be designed. 

5



 

3.1.2 Bimanual Interaction 

In a paper written for the CHI human-computer interaction conference in 1986, 

Buxton and Myers [Buxton and Myers, 1986] performed a study in which they showed that 

two-handed input provides at the very least an improvement in efficiency for users 

performing a set of continuous tasks representative of CAD and office informational work.  

The experiments involved the use of either one or both hands for one of two tasks.  In the 

first experiment, users were asked to position and scale a square bracket to match a provided 

example.  This experiment was performed bimanually by all subjects, using a treadmill-like 

slider in the left hand for scaling and a puck in the right hand for positioning the object.  The 

second experiment involved a document scrolling and selection task, dividing users into 

single-handed and two-handed groups where the single-handed users scrolled using the puck 

and a classic scrollbar and two-handed users used a touchpad with their left hands.  Users 

were asked to scroll to a specified line in the document and highlight one of the three words 

(“left,” “middle,” or “right”) on the line.  The results of the experiment showed that in 

experts, two-handed operation improved performance by 15% and in novices, two-handed 

operation improved performance by 25%.  In one-handed experiments, experts out-

performed novices by 85%, while in two-handed experiments, the difference was only 32%.  

For any given subject, the best performance was always on a two-handed trial.  All of the 

data support the claim that the ability to use both hands, even when the capabilities of each 

hand are asymmetric and strictly limited to a subset of actions, provides a significant 

advantage over using only one hand. 

6



Soon after Buxton and Myers’ study, Yves Guiard wrote a paper in 1987 [Guiard, 

1987] proposing a new theory of bimanual action, in which the non-dominant hand is 

regarded as a lower-ranking motor in the kinematic chain of action, ranking directly below 

the dominant hand and performing supporting actions that are temporally and spatially 

precedent as well as relatively spatially coarse with respect to the higher ranking motor that 

is the dominant hand.  In forming a basis for this proposition, Guiard argues that defending 

the claim that any human manual action is executed entirely by one hand with no role 

whatsoever performed by the other is difficult, if not impossible.  The claim effectively 

reduces the classification of manual tasks from unimanual, bimanual symmetric, or bimanual 

asymmetric to a simple distinction between symmetric and asymmetric, where actions 

formerly classed as unimanual are assigned to the class of bimanual asymmetric actions, 

assuming that the non-dominant hand plays some sort of subtle balancing, supporting, or 

positioning role in the task at hand. 

 

3.1.3 Tool Use 

3.1.3.1 Tool Taxonomy 

 In a paper on tool-based direct manipulation environments [St. Amant and Horton, 

2004], Robert St. Amant and Thomas Horton outline a domain-dependent taxonomy of tools 

that is applicable to both physical tools and software interaction methodologies.  Tools in this 

taxonomy are divided into four groups according to the intended function to which they are 

applied.  Because of this, a tool may be categorized under one group by default for its 

intended function, but then be applied as a different type of tool on an ad hoc basis.  For 

example, a ruler may act as an instrument by providing spatial information about its 

7



environment, but then act as a compensating tool when one constrains a pencil line against its 

edge. 

• Effective tools.  An effective tool is a tool that produces a persistent effect on 

another entity within the environment, including the environment itself.  This 

category includes many of the most popular physical tools such as hammers, 

saws, screwdrivers, and any other tool designed to facilitate an action or 

magnify an applied force. 

• Instruments.  The category of instruments includes any tool whose purpose is 

to provide information about the environment that might otherwise be less 

available or less reliable.  Measuring tools, magnifying tools, finders, and 

diagnostic equipment fall under this category. 

• Compensating tools.  Tools which aid in the application of effective tools by 

constraining motion or limiting the application of an effective tool are called 

compensating tools.  The class of compensating tools encompasses clamps, 

stencils, guides, and supports.  St. Amant also points out that many tools have 

an inherent compensation factored into their design.  A handsaw, for instance, 

cuts a long groove into which the blade fits in repeated strokes.  This groove 

maintains the angle and consistency of the cut’s progress, thus compensating 

for any instability that might otherwise yield a change in the direction of the 

cut.  In saws designed to accommodate changes in the direction of the cut, the 

blade is much narrower, relaxing the constraint. 

• Demarcating tools.  These tools are designed to mark or differentiate between 

elements or areas in the environment which may otherwise be difficult to 

8



distinguish or navigate.  Demarcating tools are categorized separately from 

effective tools because all tools in the set do not necessarily leave a permanent 

mark, but the goal of demarcation is common across the entire set.  Grease 

pencils, flags, and marked or graduated surfaces all belong to the set of 

demarcating tools. 

3.1.3.2 Characteristics of Tool Use 

 Applying a conceptual tool use model to an interface can be managed in many cases 

with a relatively shallow model.  In the design of most direct manipulation interfaces, tools 

simply act the part of an action translation interface between the user’s input and a virtual 

domain-specific effect.  Selecting the pencil tool in Adobe Photoshop causes a click-and-drag 

motion to translate to a simulated pencil mark along the line of motion, for example.  For 

HabilisDraw DT, however, more consideration was put into developing tools that act as 

persistent entities within the environment instead of an intermediary between the user and the 

simulated environment.  Using an object as a tool in HabilisDraw DT is not a matter of 

applying its effect to the environment or the mode of the cursor; instead, it is an action 

executed by the user on or with the tool object.  In many cases, these actions are 

compositionally complex: the user can pick up a pen and execute a drawing action with the 

pen on the paper while constrained by the ruler.  Tools have function both as a result of their 

status as an object, in that all objects mask pen marks against objects underneath them, and as 

a result of special functional attributes provided by their status as a specific tool class.  These 

special traits are generally the implementation of the tool’s designated purpose, such as the 

tape dispenser’s ability to join pieces of paper together.   

9



 Besides modeling how the tools act, a fully tool-based interface must model how the 

user interacts with the tools in the general case.  For this purpose, St. Amant describes a set 

of characteristics of tool use that define user interactions with tools and tool interactions with 

other objects in the environment.  Applying this set of characteristics to HabilisDraw DT 

ensures a user experience that is markedly more consistent with the use of tools in the real 

world than most interfaces.  The following list describes each characteristic and how 

HabilisDraw DT attempts to implement it in a virtual environment. 

• Object status and manipulability.  All entities in HabilisDraw DT (except for 

indicators of left- and right-hand contents) are physically manifest objects, 

and as such are manipulable in most cases.  The only non-manipulable object 

is the trash can, which is locked in place and cannot be used or affected by 

other objects. 

• Affordance.  Gibson [Gibson, 1979] and Norman [Norman, 1999] have 

described affordances roughly as indicators of how an object can be used.  

Handled objects exhibit affordances for grasping via the dimensions of the 

handle being a suitable spatial match for a closed hand.  Since representing 

affordances visually with respect to the spatial dimensions of the HabilisDraw 

DT inputs (i.e. four one-dimensional points with two translational degrees of 

freedom each) would be difficult and unintuitive, indications of a tool’s 

function must be represented in another way.  By designing all tools to 

roughly match the appearance of their physical counterparts and designing 

interaction gestures with the system that mimic physical actions, the user’s 

10



familiarity with the physical versions of the tools and the affordances 

associated with each can be used in place of direct input-to-object affordances. 

• Specialized action.  This denotes a link between the spatial characteristics of 

the object and the action required to use it.  Given the limited scope of 

motions available on a two-dimensional surface, HabilisDraw DT attempts to 

support specialized action for all manipulable tools.  The set of motions a 

single finger can execute is limited to: initiating contact, terminating contact, 

and moving in two dimensions.  If we consider initiating and terminating 

contact to be opposing motions on the z axis, then many basic three-

dimensional physical actions can be approximated.  For a tool such as the 

cutting arm, the executing action is a motion on the z axis, so it is activated by 

initiating contact.  For tape, the executing action is a motion between objects.  

In HabilisDraw DT, all objects are situated on the x-y plane, so motion on that 

plane between two or more objects operates the tape. 

• Open-loop versus closed-loop action.  Closed-loop actions are actions in 

which the feedback is incorporated into mental operations to refine the action 

for future use.  Taking “practice swings” in golf or with a hammer are 

examples of closed-loop actions.  Open loop actions occur post-calibration, 

when the output of the action is the desired effect.  This equates to the final 

stroke in which the user hits the golf ball or strikes the nail into the board. 

• Effect locality.  Physical objects cannot affect objects that do not share contact 

with them.  In the case of air hoses, torches and other indirect tools, a chain of 

interactions between intermediate molecules in contact with each other leads 

11



eventually to a local interaction at the target.  These cases are potentially 

visually deceptive (with no other cues, objects pushed by air give little 

indication of the cause of their motion), so HabilisDraw DT ignores this case.  

For most tools, the tool itself must come in direct contact with its target to 

have an effect.  If swinging a hammer through the air would drive a nail into a 

board in another room, tool use would be a difficult task for nearly anyone.  

Many interfaces ignore the concept of effect locality, letting dialog boxes alter 

the properties of an object whose location is completely independent of the 

dialog’s location.  HabilisDraw DT respects locality by letting objects only 

affect objects that are in contact with each other.  This requires the assumption 

that when an object is “picked up,” its location is instantaneously associated 

with the index finger contact of the hand that is holding it. 

• Iteration.  Due to locality, many actions must be repeated for iterative 

progress or multiple targets.  A hammer cannot hit every nail in a board at the 

same time without being unrealistically large.  HabilisDraw DT, in supporting 

locality, supports iteration as well. 

• Material consolidation.  Sometimes it is beneficial to consolidate materials as 

the combined target of a single action instead of repeating the action once for 

each material.  Doing so can improve efficiency as well as accuracy when an 

unreliable motion could create errors between the successive outcomes of 

iterative actions.  By simulating two dimensional space and allowing for 

overlapping objects, HabilisDraw DT supports material consolidation in tasks 

12



such as cutting multiple sheets of paper to equal lengths and marking across 

multiple sheets of paper. 

• Variation and duplication.  Using a magnetic screwdriver with 

interchangeable bits can save space in a workshop, but having a set of non-

configurable screwdrivers can be considerably more efficient than changing 

bits every time a different size of screw is encountered.  In the case of a large 

or messy workshop, having multiple sets of screwdrivers would further 

improve efficiency by providing more instances of each screwdriver and thus 

making it easier to find the screwdriver needed for the task at hand.  In 

HabilisDraw DT, pens, paper and inkwells all support variation and 

duplication.  All of these can be varied in color, and multiple instances of each 

are provided; in the case of the paper, a limitless supply is available to the 

user. 

• Adjustability and composability.  Composability can be expressed both by 

compound tools created by combining simpler components and by augmented 

tools wherein a tool’s basic functionality is improved by the extension of its 

functional principles.  A makeshift compass made from string tied to a 

pushpin at one end and a pencil at the other is an example of a compound tool.  

A plane or scraper can be struck with a hammer to augment the blade’s cutting 

ability when it becomes difficult to push by hand.  HabilisDraw DT supports 

compound tools in a limited capacity by allowing users to tape paper together 

to form complex stencil masks.  HabilisDraw DT’s support for tool 

13



augmentation has been demonstrated in an observational study by the 

alignment of a ruler with the cutting arm to improve the accuracy of cuts. 

 

One result of designing a fully tool-based interface is an inclination towards non-

modal operation.  In the case of a graphics package such as Adobe Photoshop, tools are 

designated by buttons that alter the user’s interaction mode.  By clicking the marquee tool, 

the mouse cursor becomes a selection tool and the command set provided by the keyboard 

and menus is configured to support the selection task.  When operating in the selection-

creation mode initiated by selecting the marquee tool, for example, clicking and dragging 

creates a new selection and the shift key can be used to constrain the aspect ratio of the 

selection to 1:1.  Upon selecting a region, the interaction mode changes to a selection-

manipulation mode, at which point clicking and dragging creates a new selection that 

replaces the existing selection and the shift key can now be used to select a Boolean union of 

the existing selection.  Each mode change immediately annuls the effects of the previous 

mode.  Since a tool represents nothing more than a mode change, no interaction at all is 

supported between tools. 

In a tool-based system such as HabilisDraw or HabilisDraw DT, tools are persistent 

and the user’s input is modeless.  Any time the user chooses to perform a particular gesture 

with respect to a tool, object, or configuration of objects, the result is the same, assuming 

only that the user is “holding” the same tool or object while performing the gesture.  While it 

is true that the modality of many user interfaces is designed to mimic the concept of holding 

a tool, the need for increased complexity in many such interfaces has overwhelmed this 

intention and layered a number of additional modal interactions on top of the basic 

14



application of the tool, leading to a style of interaction more closely mimicking a global 

mode change rather than the selection of a single non-modal tool.  The design of 

HabilisDraw attempts to compensate for the loss of complexity suffered in providing non-

modal tools by supporting parallelism through bimanual interaction as well as tool 

composability. 

As we will see later, there are many benefits and disadvantages to applying a strict 

tool-based approach to interface design.  However, by doing so, we can isolate the effects of 

tool use from the idiosyncrasies of an interface and determine how we can improve future 

interfaces through the intelligent application of some of the principles inherent to tool-based 

designs.   

 

3.2 History 

 HabilisDraw DT is derived from the original HabilisDraw system, designed and 

implemented by Dr. Robert St. Amant and Thomas E. Horton.  The original HabilisDraw is a 

two-dimensional drawing environment that uses mouse input to operate a set of persistent 

tools on a “paper” background.  It was designed to explore the tool use metaphor in human-

computer interaction in an attempt to better define the concept of tool use with respect to 

software functionality and to develop a better understanding of the potential benefits of 

applying the tool use metaphor to the design of future interfaces.  In these respects, the 

DiamondTouch variant of HabilisDraw discussed in this paper is very similar in purpose to 

the original HabilisDraw project.  In this section, I will describe the first two iterations of the 

original HabilisDraw system, simply known as HabilisDraw v1.0 and v2.0. 

 

15



3.2.1 HabilisDraw v1.0 

Version 1.0 of HabilisDraw provides the user with a set of tools and a drawing 

environment in which he or she can create, position, and use these tools.  Using a pen, the 

user can draw a freehand line.  By positioning a ruler in the workspace, the pen can be 

constrained to draw along the edge of the ruler.  Such actions demonstrate the interaction 

between tools in the system, defying hierarchical or subdivided classification of the available 

tools.  The user can interact with a tool in a relatively non-modal context (picking up a tool 

could technically be considered modal and mouse-down effects could similarly be seen as 

modal, but actions are generally effected via a non-modal “hand”) and the tools can interact 

with each other to produce complex behavior.  Tools do not necessarily need to be 

“activated” to have an effect on other elements of the system (e.g. a ruler acts as a 

straightedge without requiring activation), but effective tools can be moved and positioned 

freely without interacting with the environment accidentally. 

All of the tools originally incorporated into HabilisDraw mimic a real world drawing 

tool in title and function.  The representation of each tool, shown in Figure 2, is not 

necessarily tied directly to the physical appearance of the tool due to either a difference in the 

function of the tool or an inherent difficulty in applying some representations (e.g. a 

compass, which extends into the z axis when in use) to a 2D drawing environment.  In cases 

such as these, tool graphics were designed to convey their intended use visually and in an 

easy to understand manner.  Note that in the following list, tools are described as they appear 

in the original HabilisDraw system.  In version 2.0 of the system, some aspects of various 

tools were altered. 

 

16



 

 

Figure 2: The tools of HabilisDraw v1.0 

 

• Pens.  When activated over the drawing surface, a pen in HabilisDraw will leave a 

mark in its specified ink color.  When used in conjunction with a ruler or a compass, 

the pencil’s motion can be constrained to a straight line or either a circle or an arc, 

respectively.  By activating the pen over an inkwell, the pen can be “dipped” to 

acquire the color of the ink in the well, and multiple instances of different colors of 

the pen tool can be left on the workspace, but only one can be activated at a time.  

• Inkwells.  Inkwells can be used in conjunction with pens to change the color of the 

pen as described previously, or to change the color of a shape.  When the user picks 

up and activates an inkwell over a drawn object, the object changes color to that of 

the ink in the well. 

• Pushpins.  Pushpins can be placed on an object to provide handles by which the 

object’s position can be manipulated by hand if the user moves the pushpin itself or 

constrained if the user attempts to move the object under the pushpin. 

• Compasses.  By placing the center of the compass, adjusting the length of the arm and 

using a pen on the end of the arm, the user can draw any arc of a circle by dragging 

17



the pen.  The compass constrains the attached pen to a circle around the compass 

center of the radius specified by the arm length.  By clicking the center of the 

compass, the user can toggle the ability to sweep out filled arc instead of an outline. 

• Rulers.  A ruler in HabilisDraw has two handles, one at either end.  By dragging a 

handle, one end of the ruler will move and the other will remain stationary, allowing 

the user to rotate and adjust the length of the ruler.  If the user drags anywhere on the 

ruler except for the handles, the ruler can be dragged anywhere on the workspace 

without changing its orientation or length.  While moving or stationary, the ruler 

constrains objects against its edge, allowing the user to draw straight lines with a pen 

or align objects by pushing the ruler against them. 

• Lenses.  A lens allows the user to magnify a section of the workspace.  The 

magnification level is user-adjustable and the lens can be freely positioned by hand 

over any part of the workspace. 

 

The selection of tools developed for the original version of HabilisDraw was used as a 

guide by which the set of tools in HabilisDraw DT were chosen.  Over the course of the 

design, however, it became clear that a new approach would be necessary to extend the 

model to a stricter implementation of the principles of direct manipulation.  As a result, 

several new tools and objects were added to the design of HabilisDraw DT in order to 

support these extensions.  At the same time, implementing certain other tools proved 

technically or conceptually prohibitive given the timeline and computational constraints of 

the project.  Thus the final set of tools provided with HabilisDraw DT differs considerably 

18



from the original toolset of HabilisDraw, but there still exist a number of tools shared 

between the two: namely, pens, inkwells, and the ruler. 

 

3.2.2 HabilisDraw v2.0 

 Shortly after the initial development of HabilisDraw v1.0 completed, the project was 

extended by John Daughtry [Daughtry and St. Amant, 2003] to include several new tools 

under the class “power tools,” which improved composability and added a level of 

automation to the original design.  Where version 1.0 of HabilisDraw is mostly limited to 

freehand, straight lines, and arcs all drawn by hand, version 2.0 added the ability to create a 

rigid bar, attach pens to it, and combine it with movers and rotators to automatically draw 

lines according to the motion defined by the attached movers and rotators.  These extensions 

allow for the creation of regular designs, such as spirals, that would otherwise be very 

difficult to create in any drawing environment.  Additionally, by attaching pens to a bar tool 

and manipulating the bar, repetition can be spared when multiple identical markings are 

desired. 

 

 
Figure 3: A composite tool for creating spirals. 

19



• Bar tool.  The bar tool allows the user to draw a line that then becomes an 

object in the environment to which several tools can be attached via pushpins.  

By attaching a pen, the bar can be used as a constraint for that pen.  If multiple 

pens are attached, they are constrained relative to the bar and each other so 

that the user can draw multiple lines in parallel. 

• Bezier bar tool.  Similar to the normal bar tool, the Bezier bar tool can be used 

to create a rigid bar object, except that the bar can be specified as a Bezier 

interpolated curve.  Once defined, it behaves exactly like a regular bar. 

• Mover.  The mover is a tool that can be placed on the work surface and 

configured to move linearly, pushing objects along its way.  By attaching a 

mover to a bar tool, the bar can be made to trace out a straight line across the 

desktop.  In addition, the bar tool can provide a linear impetus to the end of a 

bar, shrinking or enlarging it over time. 

• Rotator.  Similar to the mover, the rotator can be used to set other tools in 

motion.  A rotator attached to a bar tool can provide an automated method for 

drawing circles.  Adding a mover to the end of the bar to change its length as 

it rotates allows the user to create spirals, which are otherwise extremely 

difficult to create. 

 

One of the main focuses of HabilisDraw v2.0’s design was extending and 

empowering the tool-based metaphor by providing tools that encourage composition and a 

hands-off approach to more complex tasks.  The addition of “power tools” served to explore 

ways of bridging the gap between the simpler but more intuitive interface of the original 

20



HabilisDraw and the more complicated functionality of commercial graphics packages.  

HabilisDraw DT’s design does not take power tools into account, taking a step back from a 

functionality-oriented design to explore some of the more fundamental concepts advanced by 

version 1.0 of the system, but adding an additional layer of interactivity through a more 

literal simulation of a desktop workspace.  By examining the application of these novel 

interaction principles, I hope to provide some degree of insight for future research on the best 

way to begin increasing the power and complexity of the tool set. 

 

3.3 Hardware 

Tracking multiple inputs on a computer can be extremely difficult.  Multiple pointers 

are often distracting and hard to track and controlling these pointers with mice or trackballs 

requires a large amount of space in addition to the display.  In 2001, Mitsubishi Electronics 

Research Lab released a paper and prototype for the DiamondTouch multi-user collaborative 

input device [Dietz and Leigh, 2001].  The design provided a touch-sensitive display surface 

that supports input from multiple users simultaneously.  Since then, the device has been 

developed into a release state and has seen limited distribution.  The current form of the 

device comes in two models: DT88 and DT108, with 88cm and 108cm diagonal 

measurements respectively.  Display is provided by an overhead-mounted projector aimed 

(or reflected) at the reflective white input surface, allowing users to operate an interface by 

simply touching various components directly. 

The DiamondTouch detects user contact via capacitive coupling between the user an 

array of antennas under the surface.  In order to form the capacitive circuit, the device must 

pass a low-power electrical signal through each user, encoding a unique “spreading code” 

21



that allows that user’s contact to be distinguished from another’s.  This signal is typically 

applied by having the users sit on specially designed chair mats.  For HabilisDraw DT’s 

purposes, however, this is insufficient.  HabilisDraw DT requires two distinct, unambiguous 

points of contact for each hand and while all aspects of the interface are operable with a 

single hand, the benefits of bimanual interaction cannot be explored without at least two 

hands of two contact points each.  Since the DiamondTouch hardware has support for eight 

inputs, this means that HabilisDraw DT can feasibly be extended to accommodate two users 

simultaneously. 

The primary difficulty in designing and implementing an interface that supports 

bimanual direct manipulation with three degrees of freedom (translation on x and y axes, 

rotation in x-y plane) was allowing one user to provide four unambiguous contact points on 

the DiamondTouch surface.  The DiamondTouch uses two one-dimensional antenna arrays to 

return capacitive couplings that exceed a user-configurable threshold.  This approach allows 

the user to register a single unambiguous point or a range of ambiguous x and y values.  An 

application could attempt to match each significant x value with the appropriate y value by 

considering a combination of contact time and changes in reported signal power, but there 

are certain situations that could be ambiguous with respect to the number or location of 

contacts.  Additionally, multiple contacts in close proximity on one axis could lead to a loss 

of precision in locating each point.  Because of these difficulties, a pair of gloves was 

designed by which a single user can user two inputs per hand: one on the thumb and one on 

the index finger.   

The gloves consist of contacts sewn into white cotton gloves with a junction box 

riveted to the back, where wires running from the contacts are joined to a pair of standard 

22



RCA female jacks.  The DiamondTouch device also uses RCA female jacks for inputs, so a 

simple RCA stereo cable or mono audio/video cable can be used to connect the gloves to it.  

Because the fingertip contacts require a certain amount of flexibility as well as electrical 

conductivity, aluminum foil is used for the contact surface.  The foil can wear out with 

repeated use, so the fingertip contacts are held under a sleeve where they can be removed and 

replaced easily. 

 

3.4 Software 

3.4.1 Conceptual Overview 

 HabilisDraw DT provides users with the classic desktop metaphor, but with a twist.  

The interface is a strict interpretation of the desktop even to the extent of being textured with 

a wooden desktop pattern.  Physical interaction with the interface is a strict interpretation of 

desktop interactions as well, modeling bimanual gestural manipulation of nearly every object 

with two degrees of translational freedom and one degree of rotational freedom.  In addition, 

objects can be “picked up” off the desktop surface and used or put back down.  Interactions 

such as pen drawing and cutting act realistically according to the rules of physical interaction 

whenever it is not impractical to obey such rules.  Stacked paper can be cut simultaneously, 

pens can mark on any of a number of objects in any orientation while respecting depth 

ordering, and pieces of paper can mask objects below them from pen markings.  It is on this 

interpretation of the metaphor that I will make observations concerning the feasibility of 

applying the concepts of bimanual gestural interaction and the use of familiar virtual tools on 

the design of future interfaces. 

23



 One of the key assertions made in HabilisDraw DT’s design is that what are 

commonly referred to as “tools” and what commonly act as objects of these tools belong in 

the same classification.  The reasoning behind this is that humans have a natural inclination 

towards opportunistic tool use.  Tool use is where one approaches a task aided by the 

application of some object to increase his or her own effectiveness.  Opportunistic tool use is 

when that object is chosen as a tool based solely on the affordances it provides rather than its 

classification as a tool suited for the purpose to which it is applied.  For example, a person 

may need to drive a screw, but lacking the ability to drive it effectively by hand, improves his 

or her effectiveness by inserting a dime into the head of the screw to increase the torque 

behind the turning motion.  The dime is used as a tool for driving the screw, but a dime is not 

explicitly a screwdriver.  It simply has a limited grasping affordance and a symmetry with the 

slot on the head of the screw that inform the user of its potential to be used as a tool for this 

particular task.  HabilisDraw DT attempts to encourage this sort of opportunistic tool use by 

starting all objects off with the same basic physical attributes and behaviors, by which the 

user can form his or her own conceptual model and apply the objects to whatever end he or 

she desires.  Special “tools” that behave according to a particular design, such as pens and 

tape, are extended from the basic object model with functional attributes that enable the 

tool’s specific behavior. 

 The set of objects and “tools” provided by HabilisDraw DT are specially selected to 

represent a combination of the basic tool set provided by HabilisDraw v1.0 and the tool set 

one might expect on an average desktop during a drawing task.  The tools’ positions are 

marked in Figure 4 to show their locations on the desktop at startup. 

 

24



 

Figure 4: The default HabilisDraw DT desktop. 

 

1. Two pens, blue and black – Pens can mark on any object designated as “drawable.”  

Objects that can reasonably be expected to receive a mark from a pen are marked as 

drawable: desktop, paper, ruler, etc.  Pens have an outline around them that shows the 

color of the ink they contain. 

2. Ruler – The ruler can be positioned freely around the desktop.  When in place, it 

constrains pen lines to its edges if the line started from off the ruler.  If the line starts 

on the ruler, the user is free to make marks on its face. 

3. Cutting arm (fixed) – The cutting arm is fixed in place on the right of the workspace.  

When the handle is pressed, any pieces of paper spanning the vertical line traced by 

the arm are bisected along that line. 

4. Eight inkwells of different colors – The inkwells at the right of the desktop represent 

eight common colors: red, green, blue, yellow, purple, orange, black, and white.  

Inkwells can be used to change the color of paper or the color of ink in a pen or 

another inkwell.  Using an inkwell on the trash will empty its contents. 

25



5. Two empty inkwells – These inkwells are provided for the user to fill and alter at will.  

The only difference between the empty inkwells and the filled inkwells is that they 

begin empty.  Filled inkwells can be emptied at the user’s discretion. 

6. Trash can (fixed) – The trash can can be used to destroy any piece(s) of paper or to 

empty inkwells. 

7. Stack of paper – The stack of paper represents an infinite supply of rectangular sheets 

of white paper.  By dragging off the top of the stack, the user can spawn a new sheet 

of paper quickly and easily. 

8. Tape dispenser – When the user picks up the tape dispenser and uses it in a line 

across the desktop, all pieces of paper under the line are instantly joined together and 

their relative orientations are fixed.  Thus when two sheets of paper are taped together 

and one is rotated, the other rotates with it.  

The object class in HabilisDraw DT provides a certain level of functionality for every 

object unless it is specifically disallowed by the specification of the object.  For example, 

most objects can be moved and rotated unless they are marked otherwise.  The general set of 

actions allowed by the interface is as follows: 

• Moving an object – The user can move an object by simply placing any thumb or 

forefinger down on an object and sliding it along the desktop.  The orientation of the 

object is not affected by this movement; only its position changes. 

• Rotating an object – The user can rotate an object by placing both the thumb and 

forefinger of one hand or the forefinger from each hand on the object and rotating the 

contact points.  Coupling a rotation action with a movement action is trivial, as the 

26



object positions itself to best match the relative positioning of the two points, given 

any movement. 

o Aligning an object – By dragging an object that allows rotation to the edge of 

the desktop, the face that comes into contact with the edge can be aligned 

against it.  This action is provided as a convenience to the user.  The action is 

not an expected capability of the interface, but it is somewhat afforded by the 

fact that the display surface of the DiamondTouch device is lowered from the 

frame, leaving a raised edge against which objects could be aligned.  To 

prevent clutter, once an object is aligned against the edge of the display, it is 

allowed to slide past the boundary. 

• Picking up an object – By placing both contact points of one hand down and bringing 

them closer to each other, the topmost object between the two points is then picked up 

by that hand.  Early trials showed that users often forgot whether or not they held an 

object, so an unobtrusive semi-transparent display of what each hand holds appears 

when an object is picked up (Figure 5). 

• Dropping an object – By placing the thumb onto the surface followed by the 

forefinger, a held object can be placed back onto the desktop without invoking its 

action (in the case of pens, tape, etc.).  Lifting the fingers immediately will only pick 

the object back up, but if the user spreads his or her fingers in the reverse of the 

picking up motion, the object will be dropped back onto the desktop. 

• Using an object – Due to the variety of objects represented and the different ways one 

might use each object, there are three classes of object use supported by HabilisDraw 

DT: 

27



o Pick up and use – This involves picking up an object, such as a pen, and using 

it by placing the forefinger of the hand which holds the object down onto the 

surface.  For a pen, this draws a line.  For the tape, it marks a green line 

between the start of the motion and the end of the motion, under which all 

intersecting objects are joined.  For an inkwell, this “adds ink” to the target 

object, which affects different objects accordingly: paper is colored 

completely, pens change their ink color, empty inkwells are filled with ink, 

and filled inkwells change colors gradually to simulate mixing inks. 

o Touch – Touching some tools causes an action to be performed.  The cutting 

arm cuts all paper intersecting its blade when touched.  In the case of an 

inkwell, touching it with a pen in hand will change the pen’s ink color, 

simulating dipping the pen.  For the stack of paper, touching it will instantiate 

a new sheet of paper, simulating dragging a sheet off the top of a limitless 

stack.  Finally, holding a piece of paper or inkwell and touching it to the trash 

can will dispose of the paper or empty the inkwell, respecitvely. 

o Drag onto – Dragging is only supported by the trash can.  Dragging a piece of 

paper onto the trash can will throw the paper away. 

28



 

 

 Figure 5: Holding an object (in this case, a pen) shows a  

transparent “iconic display” of the object in hand. 

 

3.4.2 Code Structure 

 The software side of HabilisDraw DT is coded in C++, using OpenGL, Microsoft 

Windows API, and DirectInput along with the MERL DiamondTouch SDK v1.2 for display 

and input.  No code was recycled from prior projects or external libraries.  The class structure 

is minimally hierarchical, taking more of an interface layer approach.  The structure of the 

major functional classes in the application is described in the following outline. 

 Top-level object classes 

• Renderer – The renderer class handles displaying objects and information.  It 

additionally provides certain functions that affect the global object set. 

o Overlay – The overlay class is a subclass of the renderer, which allows 

for the display of information on top of the object environment.  It is 

responsible for displaying text and other informational overlays. 

29



• DiamondTouch – The DiamondTouch class packages input from the 

DiamondTouch device into a data structure that can be polled from other 

classes. 

• DirectInput – The DirectInput class wraps Microsoft’s DirectInput interface to 

provide support for basic keystroke input.  When the DiamondTouch is not 

functioning properly, it also provides debug mouse input. 

• Hand – The hand class links to the renderer and input classes to provide and 

interpret gestural input into commands for the objects and renderer. 

• Object2D – The 2D object class represents a single instance of an object in the 

environment.  An important note is that this class encompasses both 

environment objects as well as objects that would be classified as “tools.”  

Object2D methods encompass most of the functions that affect a single object.  

Using the copyObject() function, a 2D object can generate an exact replica of 

itself, down to the custom edit texture. 

Helper objects 

• Matrix, Vector, and Point3/Point2 – The matrix, vector, and point classes 

serve simply to provide storage and mathematical operators for various data 

structures. 

• Font – The font class wraps an OpenGL texture, style parameters, and font 

metrics into a general package for drawing 2D texture-mapped fonts to the 

overlay.  Once a font is created, other fonts can “borrow” its texture to provide 

an instance of a font with different parameters that uses the same texture map 

to save on memory usage. 

30



• Monitor – Used for debug purposes, the monitor class contains a position in 

2D, a pointer to a font, and a void pointer and pointer type to designate a value 

in memory to monitor.  Once instantiated and registered with the overlay, a 

monitor displays the current value of the data to which it points. 

• CoordList – The coordinate list class stores and maintains a list of 2D points.  

Every 2D object maintains a list of its vertices stored in a coordinate list in 

order of right-hand winding (counter-clockwise). 

• Timer – The timer class keeps an instance of the Microsoft Windows 

millisecond timer and helps maintain current and delta values for timing 

calculations. 

 

3.4.3 Implementation notes 

 As mentioned before, the graphics in HabilisDraw DT are programmed in OpenGL 

using Windows API for windowing functions.  All visible objects except for informational 

displays are instances of the Object2D class displayed by the Renderer class.  The renderer 

maintains an ordered list of objects from bottom to top, drawn in a painterly fashion to 

obviate the need for depth buffering.  Each object maintains a base texture, specified at 

instantiation, to which it can be reset.  In addition to this, each object specified as “drawable” 

keeps an RGBA “edit texture,” which begins as a copy of the base texture.  This is an 

editable texture which accumulates all ink operations performed on the object.  When the pen 

is used on a drawable object, the object is transformed back to the position (0, 0) with no 

rotation and the pen’s position is transformed to the object’s coordinate space.  All objects 

above the object in question are rendered into the stencil buffer to prevent the pen from 

31



marking underneath an occluding object, and a line is drawn to the object’s edit texture at the 

pen’s transformed location.  The drawing process is then iterated on all objects positioned 

under the pen.  This process allows the pen to draw correctly on any drawable object in any 

orientation and only on the topmost object at any given pixel. 

 The process of maintaining edit textures for all drawable objects and iterating through 

all objects under a given point with the draw operation causes HabilisDraw DT’s pen-

drawing functionality to be very processor- and memory-intensive.  When an object is 

bisected with the cutting arm, the object’s edit texture is copied over to the new object 

resulting from the cut and new texture coordinates are calculated.  Since edit textures are at 

full resolution and textures only support dimensions in powers of two, cutting an 800x600 

pixel would result in a 1024x1024 (210 x 210) 32-bit texture being doubled with each cut.  To 

prevent a geometric climb in texture memory requirements with each cut, the texture copy 

operation is designed to recalculate the next highest power of two for each dimension of the 

new piece of paper and crop the texture to match. 

 

32



 

Figure 6: An expert drawing done with HabilisDraw DT. 

 

4. EXPERIMENT 

 To explore the feasibility of HabilisDraw DT’s design principles, I conducted an 

observational study across twelve participants of varying ages and backgrounds.  Subjects 

were shown the default HabilisDraw DT desktop and the various tools were described 

briefly.  A list of available actions was then provided and remained available to the subject 

for the course of the experiment.  Once the subject was satisfied with the description of the 

system, he or she was put to a series of basic tasks to help acclimate him or her to the basics 

of operating the interface and interacting with the tools.  While performing the tasks, the 

subjects’ behavior was recorded in photographs, text, and screenshots.  When confused or 

lost, users were encouraged to try and find the solution before help was provided.  The 

33



subjects were asked to perform the following tasks, then fill out a questionnaire about their 

performance. 

 

 

Figure 7: A user performing a pattern matching task 
in HabilisDraw DT. 

 

1. Drag a piece of paper off the stack 

2. Pick up a pen in one hand. 

3. Pick up an ink bottle in the other hand. 

4. Make a pen mark on the paper. 

5. Pour ink on the paper. 

6. Fill an empty ink bottle with a color. 

7. Blend the new ink bottle color with another color of ink. 

8. Change the pen color to the new color and test it on the paper. 

9. Empty the new blended ink into the trash. 

10. Rotate the paper 90 degrees, align it with the edge of the desktop, and cut it in 

half with the cutting arm. 

34



11. Rotate one piece of the paper 90 degrees and tape it to the other piece. 

12. Throw away the paper 

13. Drag the ruler down and make a pen mark along its edge. 

 At this point, the program was reset and the user was provided a clean desktop. 

14. Choose two of the provided patterns and copy them as closely as possible.   

The program was reset after each pattern. 

15. Draw or otherwise “create” two of the following images however you choose: 

House 

Sailboat 

Person (Stick figure/humanoid) 

Telephone 

The program was reset after each drawing. 

 

 

Figure 8:A user creating a house in HabilisDraw DT. 

 

35



 The patterns provided for step 14 are shown in Figure 9.  The questionnaire is 

provided in Appendix A and responses are provided in Appendix B.  Subjects generally 

completed the test in 30-60 minutes, though some took longer.  The time spent on the test 

does not tell us anything about the interface, however, because the users that took longest 

spent more time carefully crafting their drawings while the faster users tended to approach 

their tasks with less time and effort spent on details. 

 

 

Figure 9: The selection of experiment patterns. 

 

5. RESULTS 

The study provided many interesting insights into how users approach the drawing 

task using the HabilisDraw DT interface and how the interface might be used or improved in 

the future.  Some of the more pertinent observations made during the experiment will be 

listed in this section.  The observations will be divided into the following categories: 

1. Actions – This section details observations about how users performed the actions 

supported by the interface. 

36



2. Objects – This section details observations about how users dealt with the objects 

and tools in the interface. 

3. Interface – This section details observations about how users interacted with the 

interface itself. 

4. Approaches – This section details observations about how users approached the 

tasks with respect to the interface and environment. 

 

5.1 Action Observations 

• Despite the fact that HabilisDraw DT’s action gestures were designed to be 

familiar and intuitive (e.g. picking up an object by pinching it and lifting the hand 

off the surface), some people confused the pick-up and put-down gestures, trying 

repeatedly to pick up an object with the put-down action, for example. 

• Most subjects used the edge alignment capability sparingly, despite being made 

aware of the ability early in the experiment. 

• Subjects represented both one- and two-handed rotation almost equally, but each 

user tended to prefer one or the other. 

• Of the two methods to dispose of unneeded paper (dragging onto trash, picking up 

and touching to trash), many users either preferred or only discovered one 

approach, but several used both methods interchangeably. 

• However, of the two methods to change a pen’s ink color (dipping in ink, pouring 

ink onto pen), most only used one of the methods throughout the experiment. 

• The method of using the tape (pick up, then drag a line) was unfamiliar to many 

users at the start—several tried tapping the tape on objects before figuring out the 

37



supported method.  Sometimes tapping the tape on an object yielded the desired 

results anyway. 

• Some users discovered supported actions by systematic trial-and-error.  For 

example, to empty an inkwell into the trash, one user tried dragging the inkwell 

onto the trash, then picked up the inkwell and tried to place it on the trash 

repeatedly until he accidentally emptied the ink into the trash by placing his index 

finger down first.  Thus the user “learned” that putting both fingers down on the 

trash while holding the ink seemed to empty the inkwell.  For the next several 

attempts to empty an inkwell, the user would pick up the inkwell and put both 

fingers down on the trash repeatedly until the inkwell emptied.  One such user 

forgot how to empty an inkwell and instead diluted the ink with a different color. 

• Two out of twelve subjects used the cutting arm by pressing down on the handle 

and sliding the index finger up the “blade” until past the target object.  Since the 

gesture began with tapping the cutting arm handle, while sliding up the blade did 

nothing, the action was still successful.  Thus the subjects “learned” this invented 

action and continued to use it for the rest of the experiment. 

• Some subjects tried to capture and transfer ink using only their hands, tapping the 

ink then tapping a pen or paper.  Others tried dragging the ink onto an object. 

• One user mixed ink by tapping rapidly, not realizing that it was a continuous 

process (tap and hold). 

 

 

 

38



5.2 Object Observations 

• Some subjects were frugal about paper use despite the limitless supply, saving 

larger scraps for use later. 

• On the pattern-matching task, two of the subjects took the printed pattern and 

placed it on the display surface as a guide for matching the scale exactly. 

• Several users did not expect the ruler to constrain the pen line, instead using it as 

a guide to draw a straight line freehand. 

• Only one user used the pen as a demarcating tool, using it to mark where to cut a 

piece of paper to make a square.  All other users treated it as an effective tool for 

creating marks or drawings.  

• Two users found that two pieces of similarly-colored paper on top of each other 

were hard to distinguish from each other and used ink as a demarcating tool to 

better differentiate the pieces while they were near or on top of each other.  

• Several users cut a shape out of paper for use as part of a drawing or pattern and 

used the first piece as a guide to cut more shapes like it. 

• During development, the ruler was considered to be borderline unnecessary due to 

expectations that it would only be used as an unwieldy straightedge, but many of 

the more careful users used it regularly for measurement. 

• Several users expected the ink to act as a flood fill, only filling the space outlined 

by pen ink.  This occasionally proved catastrophic after a lengthy drawing 

process.  

39



• No users ever used paper as a mask or stencil.  Paper was used only as an object 

the vast majority of the time, occasionally being used as a guide (or instrument) 

for cutting other shapes. 

 

5.3 Interface Observations 

• After very preliminary testing, it became apparent that users forgot what was 

being held in each hand.  Because of this, semi-transparent iconic displays of 

hand contents were implemented in the lower-left corner of the desktop.  

However, when the icons appeared, despite having “Left hand:” or “Right hand:” 

above the icon and a box around it, some users tried to pick up or perform actions 

on the icons as if they were the real object. 

• Many users, despite the iconic displays, still forgot that they were holding objects 

in hand, trying and failing to manipulate other objects.  In other cases, they would 

forget that the iconic displays existed, then try to empty an inkwell and not know 

if the action was successful or not (despite the iconic display showing an empty 

inkwell in hand). 

• Several users tried using their middle fingers to move and rotate objects despite 

being told that their only effective contacts were on the thumb and index finger of 

each hand. 

• One user, likening the interface to finger painting, remarked, “I feel like a little 

kid.”   

40



• One user, after first manipulating sheets of paper, expressed his approval of the 

interface, saying, “It’s intuitive,” and, “It’s great when a program does what you 

want it to.” 

• One user lamented the lack of some common tools, saying, “You’ve got no tools 

to make shapes.” 

• One user placed a sheet of paper on top of the cutting arm handle and became 

confused about how to cut the paper since the handle was obscured. 

• One user expressed a preference for keeping the desktop clear of unnecessary 

objects.  Most users were only concerned with keeping an “active area,” in which 

construction or drawing was taking place, clear from debris and obstruction. 

• Some users were unsure of whether or not the cutting arm had cut the paper when 

they pressed the handle.  Several tried cutting several times, expecting some sort 

of feedback, before checking by hand if the paper had been cut. 

• Many subjects first expected tools to behave as they do in mouse-driven 

interfaces, with simple click or click-and-drag motions.  Some tried picking up 

and putting down by tapping an index finger on an object.  One user tried double-

tapping when other actions failed. 

• Picking up pens and inkwells occasionally proved difficult for many users due to 

the awkward posturing of the gesture while reaching across the surface. 

 

 

 

 

41



5.4 Approach Observations 

• A small number of users favored one hand tremendously, only using a second 

hand when instructed to do so.  This occasionally led to needless and highly 

inefficient serialization of tasks. 

• Conversely, some subjects used both hands even when unnecessary.  There are 

two common examples of this behavior: moving an object with both hands 

without needing or intending to rotate it, and providing a stabilizing context with 

the non-dominant hand to support the dominant hand, usually by holding a ruler 

while drawing against it.  The latter example clearly supports Guiard’s kinematic 

chain theory.  Unfortunately, HabilisDraw DT cannot support this approach well, 

since hardware imprecision causes “stabilized” objects to jitter.  The only way to 

ensure an object will remain stable is to leave it on the desktop and not touch it.  

In cases where the object that needs to be stable is being acted on by some other 

object, this is often counter-intuitive. 

• Some users used spatial partitioning to differentiate objects.  For example, one 

user had particular difficulty mixing an inkwell, so he moved it to the side when it 

was mixed to satisfaction so he would not accidentally change its color later. 

• Several subjects positioned the ruler perpendicular to the cutting arm for precise 

measurement of cuts.  This could be considered a type of composition. 

• Some users optimized tasks by serializing in order of action.  For example, one 

user cut a strip, cut the strip rapidly into blocks, then inked all of the blocks in 

quick succession. 

42



• A popular approach taken by users was to select and master a subset of tools and 

actions and rely almost exclusively on them.  For example, one user never used 

the cutting arm except when instructed to do so. 

• One user devised a unique approach to creating round objects: he “lathed” a circle 

by rapidly tapping the cutting arm handle while rotating the paper and positioning 

it under the arm.  The effect was of a constantly-cutting boundary against which 

paper could be “shaped,” much like Raisamo’s shaping stick. 

• After “lathing” out a circle, the user consolidated the clean-up task by taping all 

of the shredded debris together before picking it up and throwing it away. 

• One subject drew the patterns out with pens.  All other subjects composed them 

with paper. 

• Several subjects preserved their work’s intermediate states by taping everything 

together periodically. 

• About half of the subjects completed the final drawing task by constructing the 

objects out of paper.  About a third of the subjects drew the objects on paper.  The 

remaining subjects constructed the objects out of paper, but added details with the 

pen. 

• Some users drew directly on the desktop when they reached the edge of the paper 

on which they were drawing. 

• One user prefabricated patterns by creating the necessary parts, then positioning 

them. 

  

 

43



6. ANALYSIS 

Table 1: A qualitative evaluation drawing environment interactions in HabilisDraw DT 
with respect to standard direct manipulation interfaces. 

 
 
Technique/Procedure 
 

 
Interface Support 

 
Visibility 

 
Efficiency 

• Moving an object * 
 

++ ++ 

• Rotating an object ++ ++ ++ 

• Picking up a tool/object - * - 

• Putting down a tool - * - 

• Using a tool - * * 

• Drawing a freehand line * * * 

• Drawing a straight line - - -- 

• Cutting an object - + ++ 

• Filling an object with one color * * * 

• Selecting a color * + * 

• Editing a color * + - 

• Joining two or more objects * + + 

• Deleting an object * ++ * 

 
Legend:  

-- 
- 
* 
+ 

++ 

: Significantly lower 
: Slightly lower 
: Minimal difference 
: Slightly higher 
: Significantly higher 

 

44



From the observations made in this experiment, it becomes apparent that in some 

ways, the tool use model can improve both learnability and the efficiency of interaction.  

Table 1 shows a list of the actions supported by HabilisDraw DT along with a qualitative 

evaluation of its performance with respect to standard direct manipulation interfaces (i.e. 

paint programs) in three categories: interface support, visibility, and efficiency.  Interface 

support evaluates the actual physical interface’s ability to support the action and whatever 

user interactions are required to execute it.  Rotating an object scores highly in this field 

because most paint programs lack the degree of input required to rotate intuitively, while 

many actions differ minimally because using a tool by tapping a finger or clicking a mouse 

are effectively equivalent.  Visibility describes the interface’s ability to intuitively convey the 

required procedure to perform the action.  High visibility implies ease of learning an action.  

Drawing a straight line is ranked lower than the standard interface because in HabilisDraw 

DT, it requires tool composition while most programs have a specialized line tool.  Finally, 

efficiency describes how quickly the user can satisfactorily perform the action.  Actions that 

would otherwise require navigation through menus or use of composite or specialized tools 

rank low with respect to efficiency.  As the table shows, HabilisDraw DT fares well in 

visibility and is fairly balanced in efficiency, but generally lacks good interface support due 

to the mapping from three-dimensional physical interactions to a two-dimensional input 

device.  There are numerous benefits stemming from the application of the tool use metaphor 

to the drawing environment, but there are also several drawbacks to a tool-based model as 

well as one very important caveat concerning the implementation of such a model. 

 One of the greatest benefits of HabilisDraw DT’s interaction model is that users are 

naturally comfortable with spatial consistency, and most users acclimate well to the 

45



interface’s respect for physical rules such as persistence, visible object status, manipulability, 

and locality.  Most users quickly adapted to the ability to partition tools and objects spatially.  

When tools respect the principle of locality, the user can rely on an object’s distanced 

position to have an appropriate effect towards preserving that object’s state; that is, when an 

object is set aside, it is relatively safe from accidental changes caused by actions outside of 

its locality.  Many users also adjusted well to the dangers inherent to physical manipulability, 

preserving desired relative object orientations by taping them together as an intermediate step 

in the creation process.  These actions are all completely consistent with real world behavior, 

supporting the claim that developing a strong physical-virtual interaction correlation can 

produce a relatively shallow learning curve, at least for actions that sufficiently parallel 

common real world interactions. 

 By establishing a mental model parallel to the user’s concept of real world actions, 

support for basic tool composition and task iteration proves to be relatively intuitive for most 

users.  Use of the ruler as an instrument was commonplace in user trials, as one might expect 

with a real world drawing task, and combining the ruler with the cutting arm to perform 

guided cuts came naturally to several users.  In fact, for many, the virtual composition of 

ruler and cutting arm surpassed the convenience of doing so in the real world when users 

found that they could place the ruler under the cutting arm and use it to guide the cutting 

process without damaging the virtual ruler.  Some users even combined the virtual and real 

models by using the printed patterns as tangible tools in the interface, placing the paper 

printout on the DiamondTouch surface and using it as a guide for measurement and color 

matching. 

46



While supporting tool affordances provides many clues that help users learn how to 

operate tools, it can yield both good and bad effects with respect to novice user interactions.  

Support for visual affordances, when handled properly, makes an interface far more usable 

and intuitive.  When an object can be held, it is naturally best to represent it in a fashion that 

implies an affordance for being picked up.  Similarly, tools that operate with certain 

constraints are best represented with some indication of these constraints; for example, a 

square compass or a cutting arm with a misleading portrayal of the blade (or no such 

portrayal at all) would only be confusing and difficult to understand.  As long as all 

affordances are valid and fully supported, they increase the amount of information about the 

interface and its operation that the user can gather visually.  HabilisDraw DT’s trash can is an 

example of a well-supported set of affordances.  Users can pick up a piece of paper and “use” 

it on the trash can to throw it away or they can simply drag paper onto the trash can and 

release it to throw it away.  The other side of the coin, however, is that not all affordances are 

intentional or fully supported in an interface.  In fact, sometimes fully supporting all 

affordances is either implausible, inconsistent, or contrary to the system’s design.  While the 

ideal interface should never result in an attempted action that fails to accomplish its goal, 

there are times it cannot be avoided.  Since HabilisDraw DT is a digital interface, some users 

carry over perceived affordances from the set of digital tools provided by a paint program.  

As a result, some users attempted to activate a tool’s functionality in HabilisDraw DT by 

tapping, dragging, or even “double-clicking” it.  The perceived affordance is for various 

mouse actions, but when these are not supported by the interface (and for good reason), they 

only lead to confusion. 

47



 Besides false affordances, there are other aspects of the tool-based model that do not 

necessarily translate well to a virtual drawing environment.  Due to the necessity of 

projecting the interface on a two-dimensional display, it is extremely difficult to input or 

output any information in the missing third dimension.  This limitation creates difficulties in 

providing adequate feedback and necessitates approximated actions for such tasks as picking 

objects up, putting objects down, taping, and operating the cutting arm.  As a result, several 

users had difficulty learning to use the cutting arm and mastering picking up and putting 

down objects. 

 Most of the inadequacies of HabilisDraw DT’s application of the tool-based 

interaction model can be summarized as one very important caveat for those who intend to 

apply a similar tool use model to any interface: consistency is paramount.  Violations of the 

underlying model principles are often the source of the greatest impediments to learnability 

and ease of use.  One of the most common problems for subjects from non-technical 

backgrounds was confusion about the iconic displays of hand contents.  These were added as 

a response to a lack of feedback about the user’s status, but in exchange for providing this 

feedback, the principles of locality, object status, and manipulability were violated.  Since the 

rest of the system behaved according to these principles, a significant number of users saw 

the icons as manipulable objects and as such, tried to perform such actions as inking the icon 

of a pen or dipping a pen in the icon of an inkwell.  The icons have no status as objects and 

as such are not manipulable, but in violation of the model, they are displayed similarly to 

objects without manifesting any of the attributes of an object. 

 

 

48



Table 2: Quantitative overview of survey demographics and responses 
 

Demographics 

Male/Female ratio 

Average age 

Right/Left hand ratio 

Computer experience range 

Average computer usage per week 

7 Male / 5 Female = 1.4:1 

24.7 years old 

9 Right / 3 Left = 3:1 

4-25 years 

46.9 hours per week 

Responses 

Had artistic background 

Considered bimanual input helpful 

Used non-dominant hand significantly 

Had notable difficulty with software interface 

Attempted unsupported actions 

Found some tools unnecessary 

Satisfied with performance 

Satisfied with overall system 

5/12 = 41.7% 

11/12 = 91.7% 

5/12 = 41.7% 

6/12 = 50% 

8/12 = 66.7% 

3/12 = 25% 

11/12 = 91.7% 

12/12 = 100% 

 

7. CONCLUSION 

 In this paper, I have described in detail the background for the fundamental design 

concepts of HabilisDraw DT, the history of the system, and the hardware on which it was 

built.  I have outlined the structure and concept of the software and described an 

observational study and the results thereof.  HabilisDraw DT’s application of the principles 

of tool use to a simulated drawing environment have shown some of the potential benefits of 

49



a tool-based interaction model with respect to direct manipulation interfaces and simulations 

of real world environments.  The results of the observational study urge further exploration 

of the benefits of a persistent, physically consistent user space in which objects respect the 

characteristics of tool use outlined in this paper.  Additionally, the study shows some of the 

drawbacks and difficulties of applying the model to an interface. 

With respect to the learnability and usability of an interface, HabilisDraw DT shows 

that careful application of a tool use model can help novice users develop skills within the 

interface quickly and naturally.  This is consistent with the trend towards perfect simulation 

of an environment in that, given a theoretical system that emulates an environment perfectly 

and supports all physical interactions within that environment, any virtual task within that 

system is effectively reduced to the corresponding physical task and the time spent learning 

the interface is zero.  As the tools and environment are simulated more and more realistically, 

the time required for a user to learn how to use those tools decreases and the user’s 

interaction style tends more towards the already familiar real world interaction style with 

which he or she is comfortable. 

However, in implementing such principles, there are several drawbacks.  As the 

simulated environment tends towards complete simulation of its physical counterpart, the 

benefits of having developed the system in the first place diminish.  A perfect replica of the 

drawing task has no support for such physically unsupported as undo, saving images, printing 

images, copying images and objects, etc.  One of the reasons graphic artists use Adobe 

Photoshop and similar programs instead of drawing on physical media and scanning the 

results is that programs that do not strive to simulate the drawing task can extend beyond the 

50



drawing task and provide functionality only available in a virtual domain.  This functionality 

is entirely incompatible with direct simulation. 

If a system does intend to simulate tool interactions, then it is important to enforce 

strict adherence to the principles implemented in the system.  A violation of these basic 

principles can do more harm than good at times, such as the iconic displays in HabilisDraw 

DT that led many users to believe they could interact with the icon of objects in hand.  

Unfortunately, due to the nature of the tool model, this can limit the functionality of a given 

tool, depending on the style and strictness of simulation. 

In conclusion, HabilisDraw DT shows that there are benefits to applying a tool-based 

metaphor to simulated environments such as the drawing scenario implemented here.  

Learnability and usability can be improved and supporting rich user interaction via bimanual 

support and a direct manipulation model can help in mapping natural real world interactions 

to virtual tools.  The extent to which the model is implemented in HabilisDraw DT is 

unrealistic for practical purposes, but in doing so, the system shows the drawbacks inherent 

in an overuse of the metaphor: that is, a need for strict adherence to the principles of the 

model and a tendency to lose support for the benefits of using a digital representation in the 

first place.  In the future, HabilisDraw DT could be extended and refined much like the 

original HabilisDraw into a more powerful and less strictly tool-based version 2.0, which 

may very well serve to bridge the gap between an impractical experimental interface and a 

fully viable novel interface. 

 

51



8. REFERENCE MATERIALS 

 

1.  Beaudouin-Lafon, M. (2000). Instrumental Interaction: An interaction model for 

designing post-WIMP user interfaces. Proceedings of the ACM Conference on 

Human Factors in Computing Systems (CHI '00), pp. 446-453, 2000. 

2.  B. B. Bederson, J. D. Hollan, A. Druin, J. Stewart, D. Rogers, and D. Proft (1996). Local 

tools: an alternative to tool palettes. In Proceedings of the 9th annual ACM 

symposium on User Interface Software and Technology, pp. 169-170. New York: 

ACM Press, 1996. 

3.  Bier, E., Stone, M., Pier, K., Buxton, W., and DeRose, T. (1993). Toolglass and Magic 

Lenses: The See-Through Interface.  Proceedings of Computer Graphics, (August 

1993), pp. 73-80. 

4.  Buxton, W. and Myers, B. (1986).  A study in two-handed input.  Proceedings of the 

ACM Conference on Human Factors in Computing Systems (CHI '86), pp. 321-326. 

5.  Cutler, L., Fröhlich, B. and Hanrahan, P. (1997).  Two-Handed Direct Manipulation on 

the Responsive Workbench.  Proceedings of the Symposium on Interactive 3D 

Graphics, (April, 1997, Providence, RI). 

6.  Daughtry, J. M., & St. Amant, R. (2003). Power tools and composite tools: Integrating 

automation into direct manipulation interfaces. In Proceedings of the Ninth 

International Conference on Intelligent User Interfaces, pp. 233–235. 

7.  Dietz, P. and Leigh, D. (2001). DiamondTouch: A Multi-user Touch Technology. In 

Proceedings of UIST '01, ACM Press, pp. 219-226.

8.  Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Houghton Mifflin. 

52



9.  Guiard, Y. (1987).  Asymmetric division of labor in human skilled bimanual action: The 

kinematic chain as a model.  Journal of Motor Behavior, 19(4):486-517. 

10.  Johnston J., Roberts T. L., Verplank W., Smith D. C., Irby C. H., Beard M., Mackey K. 

(1989). Xerox Star: A Retrospective. IEEE Computer, vol. 22, no. 9, pp. 11-29.

11.  Norman, D. A. (1999). Affordance, conventions, and design. interactions, 6(3), pp. 38–

43. 

12.  Patten, J., Ishii, H., Hines, J., and Pangaro, G.  (2001).  Sensetable:  A wireless object 

tracking platform for tangible user interfaces.  Proceedings of Conference on Human 

Factors in Computing Systems (CHI '01), pp. 253-260. 

13.  Raisamo, R.  (1999). An alternative way of drawing.  Proceedings of Conference on 

Human Factors in Computing Systems (CHI ’99), pp. 175-182. 

14.  Schneiderman, B. (1983).  Direct manipulation: A step beyond programming languages.  

IEEE Computer, vol. 16(8), pp. 57-69, August. 

15.  St. Amant, R., and Horton, T. E. (2002). A tool-based interactive drawing environment.  

Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI 

‘02) Extended Abstracts, pp. 762-763, 2002. 

16.  St. Amant, R., and Horton, T. E. (2004). Tool-Based Direct Manipulation Environments.  

Under review. 

 

53



APPENDIX A: Study Questionnaire 

 

54



 

 

55



APPENDIX B:  QuestionnaireiResponses 

56



57



58



59



60



61



62



63



64



65



66



67



68



69



70



71



72



73



74



75



76



77



78



 

79


