1 (60)

ALVAR - A Library for Virtual and Augmented Reality

User’s Manual (v.2.0)
Change history
Version | Date Status Author(s) Remarks
(draft/proposal/updated /to be
reviewed/ approved)
0.1 21.11.2011 Draft TTERAK First draft created.
0.2 12.12.2011 Draft TTERAK Background info added to Ch 9.3
0.3 15.12.2011 Draft TTERAK New screen shots from doc,
FAQs, installation step-by-step
0.4,0.5 | 25.01.2012 Draft TTERAK Content to sections 9.3.x
0.6 29.02.2012 Draft TTERAK GNU LGPL license
0.7 25.05.2012 Draft TTERAK Changes caused by the new
ALVAR distribution packages
1.0 30.05.2012 Final TTERAK Screen dumps from v.2.0.0
1.1 13.12.2013 Update ABALAIN Add FAQ entries.
Name Position Date Signatures
Written by | Kari Rainio TK8036 30.05.2012
Reviewed by |Alain Boyer TK8035 30.05.2012
Approved by

m- ALVAR v.2.0 User’s Manual 2(60)

1

2

3

4

5

Contents
T goTo [0 Tod o] o I RSSO P PP 4
1.1 PUrpose Of the DOCUMENTccuiiiiiiiiiieie et 4
1.2 Other DOCUMENTS. .. cuiitiiiietieieie ettt bbbttt b e bbbt bt b e e st e e et b sbesbenbeabenreas 4
1.3 Introduction to Augmented Reality (AR) and VTT AR Teamccoooiiiiiiiiiiiieie e 4
1.4 Introduction to ALVAR — A Library for Virtual and Augmented Realityccccoevviiieinennnne 6
141 ALVAR DESKIOP LICENSE ..ottt bbbt 7
ALV AR FEALUIES ...ttt b ettt b e et enn e e e s e e s se e e b e e s n e e e nn e e nnneeneenneas 7
2.1 Other AR Technologies, NOT in ALVAR (YEL...) cccooiiiiiriiiieieie e 8
ALVAR Packages and REeQUITEMENTScviiieieiie e sie e e ettt ae e sta et naesneeeesneennas 8
3.1 THE 3 ALVAR PACKAGES ..ottt bbb 8
3.2 ALVAR REQUITEMENEScviiieiiieiteeie et ste et e e e te s e sta e tessaestaetessaestaesesseesseenteanaesseeeeannenneeneens 9
IStAlliNG AN USING AIVAT ... bbbttt bbb 9
4.1 Test ALVAR Only (Bin PaCKage)ccveiieiiiieiieie ettt 9
4.2 Basic ALVAR Usage (SAK PACKAGE)cveririiriiiiiisiiiieieiee e 10
4.3 Compiling the Alvar Samples (SAK PACKAGE)covverueeiiiieiesie st 10
4.4 Advanced: Compile the ALVAR Source Code (Src package).........covvrveerieeiinieiencneseseeias 11
A5 ALVAR DITECIOTIES ...eeuviiiiiiteitisiestieieesie ettt sttt a e be st e sbesbesbesbeebeaneese et e nbesbesbeabeanenneas 11
4.6 Installing ALVAR: STEP DY STEP ...ccuiiiiiieiiee e 11
ALVAR SAMPIE COUE ..ottt sttt e st et e e e s be e aeaneesaeenreenneaneeneas 18
5.1 SamMPIECAMCAIID ..o 19
I T 1401 o] (T @AY =TS 1 o= o OSSPSR 19
5.3 SAMPIEFIITET ..ottt b e 20
5.4 SampPlelntegrallMage.ccoveiiiieiicceee et nre e re e 21
5.5 SAMPIELADEIINGceiitiitiiiee et 22
5.6 SAMPIEMArKEICIEALONveeveceieceeceie ettt s ta e sa e e e s b e e te s e e sreesreenee e 23
5.7 SaMPIEMAIKEIDEIECIONeiueiieiteiteiterte ettt bbbttt bbb b sbeeneas 23
5.8 SAMPIEMAIKEIHIGUEocvviiieee ettt esreenre e 24
5.9 SamMPIEMArKerlESSCIEALONc.veiveiiiteitietieiet ettt 25
5.10 SaAMPIEMArKErIESSDEIECIONeiiiciie ettt 25
5.11 SAMPIEMUITTIMIIKET ... bbb 26
5.12 SampleMUltiMarkerBUNGIEovoiiiiicc e 27
5.13 SAMPIEOPTIMIZALION ... bbb bbb 28
5.14 SAMPIEPOINICIOUT ...t re e nre e 28
5.15 SAMPIETTACK ... bbbttt bbbt b 29
Demo Programs: Using ALVAR with OpenSceneGraph.........cccocvevveieiicie e 31
6.1 Demo Programs for ALVAR COre FEALUIEScc.oiiiiiiriieiieiieiesie ettt 31
B.1.1 MOUEIZMATKEL ..ot ettt et st sbe s besbeareeneas 31
TN I |V - Vg = o T L= SRS 32
6.1.3 IMAIKEIFIEIA.ottt sttt 32
6.2 Demo Programs for ALVAR AdVanCed FEatUIeS.........cccvieiiiiieeiie et 33
B.2.1 OSOSTIM ...ttt bbbt ene s 34
LT O 1T | =T 1 o SRR RR 34
6.2.3 OSO3DMAIKEIFIEIAoiviiiiiiiiieiee bbb 35
ALVAR ULHILY PrOgramscoveeiie ittt sttt sttt saaeabeestaeaaaessaeabeeanneanneeas 36
7.1 SamMPIECAMCAIID.EXE ..o 36
Y Y. 114 0] LY T T (O =10 =TSP RPPP 37
ALVAR HTML HEID oottt sttt a et st neeneaneens 39

Bl FHIE LISt e 40

VT

ALVAR v.2.0 User’s Manual

ST O - LT I] SRR
O ALVAR SOUICE COUR ...viiiitieiieiieie sttt sttt ettt bbbttt se e et b e bbbt e e st et et et e b e sbenbeene e
9.1 Code highlights: Most important ALVAR concepts, FAQS ..o
9.1.1 How the capture system (and pluging) WOIKScccovveiiiiieiieiie e
9.1.2 How the marker deteCtion WOIKSoiiiiiiieieiie et
9.1.3 HOW the Margins WOIKcoiiiiiiiie ittt
9.14 How the multimarkers (i.e. marker fieldS) WOrk..........cccooeiiiiiiin i
9.15 Encoding data (integer, text, URL) into ALVAR Markers.........cccoovevveveiivene i,
9.1.6 FAQ: I compiled my ALVAR program with VC++, but | cannot run the program in
ANOTNET COMPULET ...ttt bbbkt b e bbbt b bt e et et et e b bt beeneeneas
9.1.7 FAQ: Using PsaTracker, i.e. motion flow trackingc.ccccoevveviiiiiiiiciicce e,
9.1.8 FAQ: Contents of the ALVAR Sdk distribution package..........c.cceevererirnieenininseeneeene
9.1.9 FAQ: Cannot complete the first steps of doc/compiling.tXtcccevvviiiiieiiiie e
9.1.10 FAQ: Cannot follow the last steps of doc/compPIliNg.tXtccccvrviiiiiiiiiicee s
9.1.11 FAQ: ALVAR sample reports “Could not find any capture plugins”ccceeevvrivernnnne
9.1.12 FAQ: SampleCamCalib reports “Could not initialize the selected capture backend”........
9.1.13 FAQ: SampleCamCalib reports “Could not find any capture devices”..........ccceevrrreernenne
9.1.14 FAQ: ALVAR 0N WINUOWS VISTA/T7eovieiiiiieie et
9.1.15 FAQ: Using ALVAR With DIFeCEXcouiiiiiiieiie et
9.1.16 FAQ: How to get the pose of a detected marker in ALVARccoeviviveiiienenie e
9.1.17 FAQ: How to use text String (aSCii) MArKErsccccvveiieieiieeie e
9.1.18 FAQ: Problems With CVMALccceiiiiiiiiiiieie et
9.1.19 FAQ: ALVAR seems to produce inaccurate results with a widescreen camera.................
9.1.20 FAQ: Optimal set of ALVAR markers (minimize chance of improper detection).............
0.1.21 ALVAR Main COre FEALUIESceeieiiiieiieiiesiisiesieeeeie ettt sae e bbb sne s
9.1.22 ALVAR Main AQVaNCed FEALUIES.........coieiiieeieeiesieesieeiesieesie e siee e enee e esseaneessee e enee e

9.1.23

Appetizer: Features NOt Yet in ALVAR ..o

WT ALVAR v.2.0 User’s Manual 4 (60)

1 Introduction

1.1 Purpose of the Document

This document contains instructions for the users of the ALVAR open-source software
library, published by VTT Technical Research Centre of Finland.

1.2 Other Documents
The VTT AR Team web page: http://www.vtt.fi/multimedia

AR Team web pages contain many useful documents of Augmented Reality in general and
ALVAR in particular:

Description of AR (slide show, pdf),
e Videos of team’s AR applications,
Downloadable AR demo applications,

e PowerPoint presentation of ALVAR, ALVAR User’s Manual (this document),
e ALVAR downloads (bin, sdk, src — see later).

1.3 Introduction to Augmented Reality (AR) and VTT AR Team

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Introduction / AR

Augmented Reality (AR) Related technologies
= Mixes virtual objects with view of real world
= C.f. Virtual Reality (completely virtual worlds)
= Properties: real-time, interactive, 3D

= Augmented Virtuality
= Mediated Reality
= Diminished Reality, ...

= Mixed Reality (MR)

Reality / —> Augmented Virtual Reality /
Video image Reality Computer graphics
 y—
o

In Augmented Reality the user looks at a live video image of reality. The video image is
real-time and interactive, i.e. the user can choose where (s)he looks and move around. Often
head-up displays are employed for this, or tablet PCs (with cameras), or smart mobile

phones.

http://www.vtt.fi/multimedia

WT ALVAR v.2.0 User’s Manual

5 (60)

The live video in analyzed by a computer, which deduces from the image features where the
user is and which way (s)he looks. This way the computer can insert virtual objects to the
scene so that they are displayed in the correct size and angle, i.e. the virtual objects seem to
be “glued” to the reality.

There are lesser forms of Augmented Reality, e.g. displaying informative texts near the real
objects of the scene, but VTT AR team in conserned with the most demanding form of
Augmented Reality, where the goal is to insert virtual 3D objects to the real scene

seamlessly.
pxe_ = [=[@] =]
/‘c‘ Qnugmented Reality Team .
= C A ® vitual.vttfijvirtualproj2/multimedia/ w A

VvITr
Mixed Reality and Visualisation

Augmented Reality

Videos
-Demos

+-Slides
-Publications

Projects

-ALVAR
-ALVAR for Virtools
-Contacts

RSS News

Augmented Reality Team

Augmented Reality (AR) is the technique of superimposing virtual objects in
the user's view of the real world, providing a novel visualisation technology for
awide range of application. YWe, the Augmented Reality Team at VTT, started
wiorking in the AR field in 2000 with the development of virtual advertisements
for live TV broadcast. In the following years we expanded our expertise to
game and entertainment applications.

Currently, our research focuses on applying AR to architecture, building
construction, interior design and industrial applications. While we keep on top
of the very latest AR research in the world, we also do important basic
research ourselves. Ve have mature technology and tools for marker detection
and an emerging toolset for markerless tracking. Furthermore, we are
especially proud of being able to port many complex video processing and AR
concepts to low-level mobile platforms, including camera phones, where the
processing and bandwidth resources are limited.

A general overview of our work can be found in the following slides.

f you can't see menu bar (links) on the left, click here

AR Team web pages (http://www.vtt.fi/multimedia) contain many useful documents of

Augmented Reality:

e Description of AR (slide show, pdf),
e Videos of team’s AR applications, and
e Downloadable AR demo applications.

A large part of the team’s AR know-how (but not all of it) is embodied in the Alvar open-
source AR library: A Library for Virtual and Augmented Reality.

http://www.vtt.fi/multimedia

WT ALVAR v.2.0 User’s Manual 6 (60)

1.4 Introduction to ALVAR — A Library for Virtual and Augmented Reality

ALVAR can be downloaded from the AR Team web pages:
http://www.vtt.fi/multimedia/alvar.html

ALVAR is a software library for creating virtual and augmented reality applications.
ALVAR has been developed by the VTT Technical Research Centre of Finland.

ALVAR Subroutine Library

"A Library for Virtual and Augmented Reality”
= "AR engine” developed by VTT
= Free trial download at www.vtt.fi/multimedia/alvar.html
= Users e.g. Columbia Univ. (Goblin XNA), MIT (6th Sense)

Detecting and tracking 2D markers
= Accurate marker pose estimation, with error concealing
= Marker fields, defined manually, or autocalibrated
= Markerless tracking

Utilities
= Camera calibration; Correcting lense undistortions; Optical

flow tracking; Several basic filters and Kalman library;
Hiding of markers, etc.

Coming up
= Rendering module
= Mabile phones (Symbian, Maemo, ...)

The current version of the library mainly supports marker-based augmented reality
applications, but also includes tools for markerless augmented reality.

ALVAR is designed to be as flexible as possible. It offers high-level tools and methods for
creating augmented reality applications with just a few lines of code. The library also
includes interfaces for all of the low-level tools and methods, which makes it possible for the
user to develop their own solutions using alternative approaches or completely new
algorithms.

ALVAR is currently provided on Windows and Linux operating systems and requires only
one third party library (OpenCV). ALVAR is independent of any graphical libraries and can
be easily integrated.

On the other hand, this implies that ALVAR itself contains no support for 3D graphics or 3D
models — these must be implemented using other software libraries.

There are separate demo programs (binaries and source code) that use OpenSceneGraph for
3D graphics.

http://www.vtt.fi/multimedia/alvar.html

VT

ALVAR v.2.0 User’s Manual 7(60)

— “ [=l&] %]

/ @ Augmented Reality Team

& C N ® virtualvttfifvirtualiprojz/mulimedia/akvar.html w N\
Example programs

vIr These example programs illustrate using basic ALVAR features with
Mixed Reality and Visualisation OpenSceneGraph. Please note that these examples are kept as simple as
. possible, i.e. there is no error handling for missing cameras etc. Compiling these
Augmented Reality examples require you to obtain ALVAR library
Videos .)
Déifine Example programs are‘curr»entlybavallable for:
— Windows XP 32-bit binaries with source code.
Slides — Linwx 32-bit binaries with source code.
Publications — Linux 64-bit binaries with source code.
Projects
ALVAR * Model2Marker — Identifies
ALVAR for Virtools tWo
Contacts independent
markers and |F
E) RSS News renders
simple OSG
model on
top of both
markers. v

1.4.1 ALVAR Desktop License

ALVAR Desktop license is GNU LGPL v.2.1. Thus ALVAR Desktop is free for both
commercial and non-commercial use.

ALVAR 2.0 is distributed under the terms of the GNU Lesser General Public License
(LGPL) version 2.1 or later. See http://www.gnu.org/licenses/old-licenses/Igpl-2.1.html for
the license terms. By downloading Alvar 2.0, you agree to be bound by the terms of the
GNU LGPL version 2.1 or later.

Other versions of ALVAR (e.g. ALVAR Mobile) are commercial.

2 ALVAR Features

Detecting and tracking 2D markers. Currently two types of square matrix markers are
supported. Custom marker types can easily be added. ALVAR keeps the marker pose
estimation as accurate as possible. Furthermore, ALVAR uses some tracking heuristics to
identify markers that are "too far" and to recover from occlusions in the multimarker case for
example.

Using a setup of multiple markers for pose detection. The marker setup coordinates can be
set manually or they can be automatically deduced using various methods.

Tools for calibrating a camera. Distorting and undistorting points, projecting points and
finding exterior orientation using point-sets.

Hiding markers from the view.

Several basic filters: average, median, running average, double exponential smoothing.
Kalman filters for sensor fusion: Kalman filter, extended Kalman filter and unscented
Kalman filter.

Several methods for tracking using optical flow.

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

m- ALVAR v.2.0 User’s Manual 8 (60)

Markerless tracking using the SfM and Fern’s algorithms.

Summary of ALVAR main core features:

e Capture video from USB camera, Firewire camera or AV file (using plugins).
o Detecting Markers and predefined MultiMarkers. Marker types: ALVAR,
ARToolkit, custom
Filters for data sequences
Tracking image features
Camera/Homography methods: Calibrate, Distort, Undistort,
CalcExteriorQOrientation, ProjectPoints
e Further utils: Threads, Mutex, Histogram, Serialization, Image Labeling, Drawing,
HideTexture, ...
e Types: Point, Line, Rotation, Pose, Bitset

Summary of ALVAR main advanced features:

e Methods to deduce/optimize MultiMarker setups

e SimpleSfM: Structure for motion to use features in addition to markers. Pose update
optimization.

e External container versions of several methods

¢ Non-linear optimization using Gauss-Newton, Levenberg-Marquardt and Tukey m-
estimator

o Kalman filter, EKF, Unscented Kalman filter
More methods for tracking image features

e Further utils: Container3d, Ransac, TrifocalTensor, Integrallmage, IntegralGradient,

e Fern’s classification framework to enable markerless tracking

2.1 Other AR Technologies, NOT in ALVAR (yet...)
Other Demonstrations of the AR Team (not yet in ALVAR):

3D-model based tracking

Image database e.g. for tracking init/recovery
Photorealistic rendering

Plugin interface for external sensors

(e.g. inertial measurement unit).

3 ALVAR Packages and Requirements

3.1 The 3 ALVAR Packages
There are three different ALVAR distribution packages, which all can be freely downloaded:
= Bin - for those who only want to test AR and ALVAR; contains precompiled binary

versions of the ALVAR samples and OSG demos; no C++ compiler nor 3"-party libraries
are required

m- ALVAR v.2.0 User’s Manual 9 (60)

= Sdk - for those who want to build their own AR applications using ALVAR; contains
ALVAR header files, precompiled ALVAR libraries, and HTML documentation; a C++
compiler and 3"-party libraries are required

= Src - for those who want to compile ALVAR themselves; contains the raw source code
of ALVAR; a C++ compiler and 3"-party libraries are required

Please note that the 3 distributions are NOT subsets of each other, e.g. HTML
documentation is in the Sdk distribution only. The ALVAR Presentation and the User’s
Manual (this document) must be downloaded separately.

3.2 ALVAR Requirements

ALVAR has been tested with the following environments: Windows XP 32-bit, Microsoft
Visual Studio 2005, 2008 and 2010 (versions 8, 9 and 10). Linux

ALVAR core library requires the following 3rd party library: OpenCV 2.4.0
ALVAR sample code requires: GLUT 3.7.6, CMake 2.8.3

The separate demo programs require: OpenSceneGraph 2.8.4

4 Istalling and Using Alvar

& Augmented Reality Team - Windows Internet Explorer [B=x]
G0 S = i
Yo Favortes | Augmented Reaity Team Gv B () @ v pses Sferye Todse @

For more information, please see our ALVAR Brochure

vIr
Mixed Reality and Visualisation Features
Augmented Real « Marker based tracking

o accurate marker pose estimation

Videos o two types of square matrix markers

Demos o future marker types are easy to add
Slides o recovering from acclusions
Publications « Using muttiple markers for pose detection
Projects o the marker setup coordinates can be set manually
ALVAR o or they can be automatically deduced by autacalibration
ALVAR for Virtools « Markerless fracking
Press Releases o feature-based (tracking features from the environment)
Contacts o template-based (matching against predefined images or objects)
Other
~ o hiding markers from view
B RSS News o tools for calibrating cameras

o several methods for fracking optical flow

o distoring/undistorting points, projecting points
o finding exterior orientation using point-sets

o Kalman library and several other filters

Download
To download the ALVAR library, please fill out the registration form
Contact

For additional information or any other questions, please contact us using the alvar.info@uttfi mailing list.

5
S
&

Copyright © 2008-2012 VTT, Finland

If you can't see menu bar (links) on the lef, click here

% Local intranet Ya - H100% v

4.1 Test ALVAR Only (Bin package)

If you only want to find out what AR and ALVAR is all about, download and install the Bin
distribution package for your operating system. You can execute the binary versions of the
ALVAR Samples and Demos without having to compile anything.

m- ALVAR v.2.0 User’s Manual 10 (60)

4.2 Basic ALVAR Usage (Sdk package)

Those users who want to develop their own C++ applications using the ALVAR libraries
should download and install the ALVAR Sdk distribution package.

Ensure that you have a suitable development environment. Currently the library has been
used with the following.

e Microsoft Visual Studio 2005, 2008 and 2010
e Linux 32-bit and 64-bit; gcc versions 4.3, 4.4 and 4.5

Install the required 3rd party libraries: OpenCV 2.4.0, CMake 2.8.3, GLUT 3.7.6 (needed
only in Samples), OSG 2.8.4 (needed only in Demos).

Install the ALVAR library (Sdk package).

Develop your application. Include the needed ALVAR headers in your source directory and
link to the ALVAR library matching your development environment (e.g.
bin/msvc90/alvar.lib).

Copy the OpenCV (and GLUT) runtime libraries where your application can find them (e.g.
the exe-directory).

4.3 Compiling the Alvar Samples (Sdk package)

The most up-to-date instructions of how to compile ALVAR applications are in the
‘compiling.txt’ file in the doc folder. Please refer to that file for more thorough instructions,
this section presents just a brief summary.

Ensure that you have a suitable development environment.

Install the required 3rd party libraries: OpenCV, GLUT, CMake.

Install the ALVAR library.

Note that the CMake binary directory must be in your system’s PATH environment variable.

Generate the development environment to build the samples by running the generate-script
of your choice (e.g. build/msvc90/generate.bat).

Fill in the missing information for CMake (e.g. GLUT_ROOT_PATH).
Do NOT change the *where to build binaries’ directory.
Use the generated development environment to compile the samples.

(The Demo programs using OpenSceneGraph for 3D graphics are compiled the same way,
but in addition OSG 2.8.4 must be downloaded.)

VT

ALVAR v.2.0 User’s Manual

11 (60)

4.4 Advanced: Compile the ALVAR Source Code (Src package)

For those (advanced) users who want to compile the ALVAR source code themselves there
is the Src distribution package. The HTML Help is generated from the source code using the
Doxygen 3"-party tool.

45 ALVAR Directories

bin - The compiled binaries will appear in a subdirectory matching the selected build
subdirectory

build - The building environment is in a matching subdirectory. See the
‘compiling.txt’ file in the doc folder.

data — Data files used by some of the Samples and Demos (however, the markers are
in the Alvar.pdf file, which is in the doc directory).

demo — Demo applications using OpenSceneGraph for 3D graphics.

doc - Documentation. Generated using Doxygen (e.g. "make doc™). Also contains
sample markers in the Alvar.pdf file.

include - contains the ALVAR C++ header files (Sdk package only).
sample - Samples that demonstrate how to use the library.
src - Sources for the ALVAR library (Src package only). Note that Alvar.h is

different from the others; it is generated separately for each build environment based
on Alvar.h.cmake.

4.6 Installing ALVAR: Step by Step
The installation package alvar-2.0.0-sdk-win32-vs2008.exe was executed.

First there is a welcome screen, then a license acceptance screen, and then the user is
prompted for installation location:

WT ALVAR v.2.0 User’s Manual 12 (60)

(77 ALVAR 2.0.0 sdk win32 vs2008 Setup (=)
Choosze Install Location
A L VA R Choose the fFolder in which toinstall ALYAR 2.0,0 sdk win32
w2003,

Setup will inskall ALVAR 2,00 sdk win32 +s2008 in the Following Folder, To install in a different
folder, click Browse and select another Folder. Click Mext to continue.

Destination Falder

CiiProgram FilesiaLYAR 2,000 sdk wind2 vs2008|

Space required: 9.5MB
Space available: 45.2GE

< Back " [ext = l [Cancel]

(-7 ALVAR 2.0.0 sdk win32 vs2008 Setup (=)

Choose Start Menu Folder
Choose a Start Menu folder for the ALYAR 2.0.0 sdk win32
ws2008 shortcuts,

Select the Start Menu Folder in which you would like to create the program's shortcuts, You
can also enker a name to create a new Folder,

ALVAR 2.0.0 sdk win32 stEIEIBl

30YIA -~
30W%1A Shape B
Accessaries

Administrative Tools

Alvar 1,3.0

Alvar 1.5,0 win32 vs2008

ALVAR 2,0.0 sdk win32 ws2008

AlvarSamples 1.5.0

Application Yerifier

Buildar)
CamStudio el

|:| Do not create shorbcuts

<= Back “ Install l [Cancel

In the following screen dumps, the Destination Folder of the installation was set to:
D:\Tools\ALVAR 2.0.0 sdk win32 vs2008

In subfolder build the script generate_vs2008.bat was executed.

WT ALVAR v.2.0 User’s Manual 13 (60)

File Edit Wiew Faworites Tools Help

eBack - O @ ’OSearch v

o

Address |IE:| D ToolsbALYAR 2.0.0 sdk win32 vs2008)build

Faolders x Mame Size | Type
= 153 Tools [Chcmake Folder
= 03 ALYAR 2.0.0 sdk win32 vs2008 [E] CMakeLists. bxt 2ZKE Text Document
) bin [] Elgenerate bat 4KE MS-DOS Batch File
=9 buid i 1KE M5-DOS Batch File
[5) data
) demo
5 doc
() indlude

[5) sample

| Date Modified
30,5.2012 12:00
29.5,2012 18:11
29.5,2012 18:11
29.5,2012 18:11

< I | (%] 1l

Twpe: M3-D03 Batch File Dake Modified: 29.5,2012 18:11 Size: 47 bykes 47 byvkes | i Py Compuker

The *.bat starts the CMake 2.8 program. The user must enter the proper paths. The initial

values are usually good, so the first thing to do is to press the button Configure.

(111} SaKwWIniZ vs m uild_vs _release

File Tools Options Help

Where is the source code: |D:J‘Tnn|s,|’nL\u'AR 2.0.0 sdk win3z vs2008]| | [Brnwsa SOUrce. .]
Where to build the binaries: | [Toolsfalvar 2.0.0 sdk win32 vs2008/buldfbuld_vs2008 _releass [Browse Build. ..]
search: | [[] arouped Advanced 9 Remove Entry

Mame | value |

Press Configure to update and display new values in red, then press Generate to generate selected build files,

Current Generatar: Yisual Studio 9 2008 I

14 (60)

VT

ALVAR v.2.0 User’s Manual

The following sceen dumps of this section were generated with an earlier VTT internal
development version called 2.0.0.794e832. This ALVAR version used earlier versions of the
3"-party libraries, namely CMake 2.8, OpenCV 2.3, GLUT 3.7, and OpenSceneGraph 2.8.0.

The example PC had Windows XP operating system, MS Visual Studio 2008 SP1. CMake
2.8, OpenCV 2.3, GLUT 3.7, and OpenSceneGraph 2.8.0 had been installed earlier.

Also the Destination Folder of the installation was different, it was set to:
D:\Projects\Alvar 2.0.0

(Please remember that the current version of the 3"-party libraries are: CMake 2.8.3,
OpenCV 2.4.0, GLUT 3.7.6, and OpenSceneGraph 2.8.4.)

A CMake 2.8.6 - D:/Projects/Alvar 2.0.0/build/build_vs2008_release

=1

File Tools ©ptions Help

‘Where is the source code: | Dn/Projects/Alvar 2.0.0

‘“Where to build the binaries: | Dt fProjects/alvar 2,0.0/buildfbuild_vs2005_release

Search:

Mame

CMAKE_CONFIGURATION_TYFES
CMAKE_CX¥_COMPILER
CMAKE_CX¥_FLAGS
CMAKE_CX¥_FLAGS_DEEUG
CMAKE_CX%_FLAGS_MINSIZEREL
CMAKE_CX%_FLAGS_RELEASE
CMAKE_CX¥_FLAGS_RELWITHDEBINFO
CMAKE_CXY_STANDARD _LIERARIES
CMAKE_C_COMPILER

CMAKE_C_FLAGS
CMAKE_C_FLAGS_DEBUG
CMAKE_C_FLAGS_MINSIZEREL
CMAKE_C_FLAGS_RELEASE
CMAKE_C_FLAGS_RELWITHDEBINFO
CMAKE_C_STANDARD_LIBRARIES
CMAKE_ERE_LINKER _FLAGS
CMAKE_EXE_LINKER _FLAGS_DEELIG
CMAKE_ERE_LINKER _FLAGS_MINSIZEREL
CMAKE_ERE_LINKER _FLAGS_RELEASE
CMAKE_ERE_LINKER _FLAGS_RELWITHDEBINFO
CMAKE_INSTALL_PREFIX

CMAKE_LINKER
CMAKE_MAKE_PROGRAM
CMAKE_MODULE_LIMKER_FLAGS
CMAKE_MODULE_LIMKER_FLAGS_DEBUG

CMAKE_MODULE_LINKER_FLAGS_MINSIZEREL

(CMAKE_MODULE_LINKER_FLAGS_RELEASE

CMAKE_MODULE_LIMKER_FLAGS_RELWITHDEBINFC
CMAKE_RC_COMPILER

CMAKE_RC_FLAGS

CMAKE_SHARED _LIMKER_FLAGS
CMAKE_SHARED _LIMKER_FLAGS_DEELIG
CMAKE_SHARED _LIMKER_FLAGS_MINSIZEREL
CMAKE_SHARED_LIMKER_FLAGS_RELEASE
CMAKE_SHARED_LIMKER_FLAGS_RELWITHDEBINFO
CMAKE_SKIP_RPATH
CMAKE_LUSE_RELATIVE_PATHS
CMAKE_YERBOSE_MAKEFILE
GLUT_INCLUDE_DIR

GLUT_ROOT_PATH

GLUT_glut_LTBRARY

OPEMGL_gl_LIBRARY

OPEMGL_glu_LIERARY

OpenTy_ROOT_DIR
Opency_calb3d_LIERARY_DEEUG
Opency_calb3d_LIERARY_RELEASE
OpenCy_core_LIBRARY _DEBUG
OpenCy_core_LIBRARY _RELEASE
Open’y_features2d_LIBRARY _DEEUG
OpenCy_features2d_LIBRARY _RELEASE
OpencY_highgui_LIBRARY_DEBLIG
Openc¥_highgui_LIBRARY_RELEASE

Openy _mgproc_LIBRARY_DEBIG
DpenCy_imgproc_LIERARY _RELEASE
Opency_video_LIBRARY_DEBUG
Opency_video_LIBRARY_RELEASE

Current Generator: Visual Studio @ 2008

Failing since GLUT support was not turned off wia Alwar NOGLUT

Configuring incomplete, errors occurred!

Press Canfigure ko update and display new walues in red, then press Generate to generate selected build Files.

| | Browse Build. ..
[Grouped Advanced | g Add Entry

Bemove Enkry

Value
Debug;Release; MinSizeRel;RelwithDebInfo
|

[d

JDWINGZ (D _WINDOWS W3 [Zm1000 [EHsc fGR
JD_DEBUG [MDd [Zi fOb0 fod [RTCL

MO }o1 Job1 /D MOEBUG

MD Jo2 Jobz /D NDEBUG

™MD JZi fo2 fobi | NDEBUG

kernel32.lib user32.lib gdiz2.lib winspoal lib shell32.lib ale32.lib aleaut32 lib uid.lib comdlg3z. ...
o

JDWINGZ [D_WINDOWS %3 Zm1000

JD_DEBUS (MDd (Zi fOk0 fod RTCL

MO }01 fobl /D MDEBUG

IMD }o2 Jobz (D MOEEUG

MO JZi joz jobi [D NDEBUG

kernel32.lib user3z.lib gdiz2.lib winspoal lib shell32.lib ale32.lib aleaut32.lib uuid.lib comdlg3z. ..
JSTACK: 10000000 /rachine: %56

jdebug JINCREMENTAL:VES

JIMCREMEMTAL MO

JIMCREMEMNTAL MO

jdebug JINCREMENTAL:YES

D:fProjects/akar 2.0.0/buld/buid_vws2008_releasef..[..J
CMAKE_LINKER-MOTFOURD

C/PROGR A~ fMICROS~ 1, 0fCommon? JIDE devery, com
JSTACK:10000000 jmachine: £86

jdebug JINCREMENTAL:VES

JINCREMEMTAL MO

JINCREMEMTAL MO

idebug TMCREMENTAL:YES

tc

JSTACK: 10000000 fmachine: X856
Idebug TNCREMENTAL YES
JINCREMEMTAL MO
JINCREMEMTAL MO

Jdebug [INCREMENTAL:YES

GLUT_INCLUDE_DIR-NOTFCUND

GLUT_glut_LIBRARY-MOTFOLUMD

opengl32

glu3z

D/ Taols/OpenCy-2.3.0

[/ Taols/OpenCy-2.3.0/lbjopency _calib3dz30d.ib

[/ Taols/OpenCy-2.3.0/libjopency _calib3d230.5ib

[/ Taols/OpenCy-2.3.0/lbjopency_core230d.lib

[/ Taols/OpenCy-2.3.0/libjopency_care230.lib

[/ Taols/OpenCy-2.3.0/lbjopency _features2d230d.lib
[/ Taols/OpenCy-2.3.0/libjopency_features2d230.0ib
[/ Taols/OpenCy-2.3.0/libjopency_highguiz30d.lib

[/ Taols/OpenCy-2.3.0/libjopency_highgui230. lib

[/ Taols/OpenCy-2.3.0/libjopency_imgproc230d.lib
[/ Tools/OpenCy-2.3.0/libjopency_imgprocz30.lb

[/ Tools/Opency-2.3.0/libjopency_video230d.lib

D/ Tools/OpenCy-2.3.0/lbjopency _videoz30.lib

n_
—v
WT ALVAR v.2.0 User’s Manual 15 (60)

GLUT 3.7 path had to be entered (search for entries ...-NOTFOUND in the right-hand
column). The entries were clicked and the proper paths were entered. After that a new click
of button Configure.

A CMake 2.8.6 - D:/Projects/Alvar 2.0.0/build/build_vs2008_release o (||| m
File Tools Options Help
‘where is the source code: |D:,|’Pr0]ects,mlvar z.0.0 | [Browse Source,]
‘Where ta build the binaries: |D:,|’Prnjectsfnlvar 2.0.0/build/build_vs2008_release M [Browse Build. ..]
Search: | [] Grouped Advanced % Remove Entry
Mame Yalue [

CMAKE_CONFIGURATION_TYPES Debug;Release;MinSizeRel; RelwithDebInfo
CMAKE_Cix_COMPILER ul
CMAKE_CR3_FLAGS DWINGZ JD_WINDOWS (W3 /Zm1000 (EHsc [GR
CMAKE_CXY_FLAGS_DEEUG JD_DEBUG (MDd [Zi JOb0 JOd (RTC fwdd251 jwd4275
CMAKE_C¥_FLAGS_MINSIZEREL JMD f01 JOb1 /D NDEBUG fwd4251 fwd4275
CMAKE_Ck¥_FLAGS_RELEASE JMD f02Z JOb2 /D NDEBUG fwd4251 fwd4275
CMAKE_CH%_FLAGS_RELWITHDEBINFC WD J7i }o2 Jobl |D NDEBUG jwd4251 fwd4275
CMAKE_Cx¥_STANDARD_LIERARIES kernel3z2.lib user32.lib gdiz2.lib winspoal lib shell32 lib ole32.lb oleaut32.Ib wuid.ib comdlg...
CMAKE_C_COMPILER o
CMAKE_C_FLAGS JDWINGZ JD_WINDOWS (W3 [Zm1000
CMAKE_C_FLAGS_DEBUG JD_DEEUG (MDd [Zi JOb0 fod [RTCL wd4251 fwddz75
CMAKE_C_FLAGS_MINSIZEREL WD 01 jOb1 {D MDEBUG jwd4251 fwdd275 =
CMAKE_C_FLAGS_RELEASE WD 02 JObZ [D NDEBUG fwd4251 fwdd275
CMAKE_C_FLAGS_RELWITHDEBINFO MO 120 {02 J0b1 D NDEEUG fwd4251 jwd4275
CMAKE_C_STANDARD_LIBRARIES kernel3z.lib user32.lib gdi32 lib winspool lib shell32 lib ole32.lib oleaut32.)b uuid.lib comdlg...
CMAKE_EXE_LINKER._FLAGS JSTACK: 10000000 fmachine: K56
CMAKE_EXE_LINKER_FLAGS_DEBLIG Jdebug JINCREMENTAL:YES
CMAKE_EXE_LINKER _FLAGS_MIMSIZEREL JIMCREMEMNTAL:MO
CMAKE_EXE_LINKER_FLAGS_RELEASE JIMCREMEMNTAL:MNG
CMAKE_EXE_LINKER_FLAGS_RELWITHDEBIMFO Jdebug JINCREMENTAL:YES
CMAKE_IMSTALL_PREFIX D:/Projecks/alvar 2,0.0/buildfbuild_vs2005_release/. /. [

CMAKE_LINKER CMAKE_LINKER-MOTFOURND
CMAKE_MAKE_PROGRAM C:PROGRA1MICROS~1,0/Common7 {IDE devent, com
CMAKE_MODULE_LIMKER_FLAGS JSTACK: 10000000 [machine: X586
CMAKE_MODULE_LINKER_FLAGS_DEBUG Jdebug /INCREMENTAL YES
CMAKE_MODULE_LIMKER_FLAGS_MINSIZEREL JINCREMEMTAL::NG
CMAKE_MODULE_LIMKER_FLAGS_RELEASE JINCREMEMTAL:NG
CMAKE_MODULE_LINKER._FLAGS_REUWITHDEEINFC Jdebug [INCREMENTAL:YES
CMAKE_RC_COMPILER. rc
CMAKE_RC_FLAGS
CMAKE_SHARED _LIMKER,_FLAGS JSTACK: 10000000 [machine: X686
CMAKE_SHARED_LINKER_FLAGS_DEBUS Jdebug JINCREMENTAL:YES
CMAKE_SHARED_LINKER._FLAGS_MIMSIZEREL JIMCREMENTAL:MNG
CMAKE_SHARED _LIMKER_FLAGS_RELEASE JIMCREMENTAL:NG
CMAKE_SHARED _LINKER_FLAGS_REIMITHDEEIMFC Jdebug JINCREMENTAL:YES L
CMAKE_SKIP_RPATH
CMAKE_USE_RELATIVE_PATHS
CMAKE_VERBOSE_MAKEFILE
GLUT_INCLUDE_DIR DifTaols/glut_3.7
GLUT_ROOT_PATH
GLUT_glut_LIBRARY D:fTaolsiglut_3.7/glut32.lb
OPEMGL_gl_LIBRARY opengl32
OPEMGL_glu_LIBRARY gluzz
OpenCy_ROOT_DIR D:fTools OpenCy-2,3.0
OpenCy_calib3d_LIBRARY _DEBLIG D Tools OpenCyi-2, 3. 0/libfopency_calib3d230d.lib A

Press Configure ko update and display new values in red, then press Generate to generate selected build files.

Current Generator: Yisual Studio 9 2003 []
Found OpenGL A~
Found GLUT: U
Found Alwar: D:/Projects/hlwar Z.0.0 =
Configuring done [

And now we are this far, the Alvar installation folder was detected correctly. So now the
button Generate can be pressed.

A new subfolder to folder build was generated: build_vs2008_release

/=
M 2/

ALVAR v.2.0 User’s Manual 16 (60)

a B:mro]ectsu[\mr !.B.B‘hmld Laﬂm
Fil= Edit Wiew Favorites Tools Help #
e Back ~ |) @ p Search % Folders '

Address |@ [:\Projectsialvar 2,0,040build
Folders x Mame = Size | Type | Date Modified

[Previous_PC [Shcmake Falder 15.12,2011 9:21
= I3 Prajects r_éj CMakeLists, bxt 1KB Text Document 31.5.2011 1001
) 30_Maasta [Flgenerate bat 4KB M3-DOS Batch File 31.5.2011 10028
) Ad_AnimEdit [Fgenerate_vs2008.bat 1KB M3-DOS Batch File 27.5.2011 153
= 3 Avar 2.0.0 Folder 15.12. 201 9:37
E:' bin r_Ej generate.log 2FKB Text Document 15,12.2011 937
(5 build
I3 doc
1) include
1) sample
1 objects selected | | 9 My Computer J

In this subfolder there is the batch file Alvar.sin.bat, which is used to start Visual Studio
2008. Do not start Alvar.sin directly, or the correct environment variables are not set up.

\Projects\hlvar 2.0.0\bui uild_vs _release
File Edit ‘iew Favorites Tools Help #
6 Back * |) l@ p Search @_— Folders '
address |E[| D:\Projectsialvar 2,0, 00buildibuild_vs2008_release v
Falders X Mame - Size | Type | Date Modified fad
) Previous_PC [Cbuid Folder 15.12,2011 9:37
= [3) Projects [CICMakeFiles Folder 15,12.2011 9:37
) 30_Maasto E [C)sample Falder 15.12,2011 9:37
[AA_AnimEdit (ZAaLL_BULLD. veproj R 15122011 9:37 | =
a Elabvar.sin Size: 263 K 15.12.2011 9:37
= () Alvar 2.0.0 & Folders: CMakeFiles)
I3 bin - Files: cmake_install.cmake, INSTALL, wcproj, ... 15.12.2011 3:37
= (3 build cmake_install.cmake 15.12.2011 9:37 0 |
2 build_vs2008_release I'_ij CMakeCache, bxt 22KB Text Docurment 15,12,2011 9137
2 crnake EAmsETAL veproj 23KE WO+t Project 15.12,2011 9:37
[PR e e e el e i m e e
I3 doc |(| I |
Type: M53-DOS Batch File Date Modified: 15.12.2011 9:37 Size: 231 bytes | 231 bytes | d Ity Computer J

Then enter the menu command Build — Build Solution.

Alvar - Microsoft 'lsud[!tudlo M

Eile Edit Miew Ot Project Build Debug Tools Test Window Help

H - b P R R | Debug > Winzz |4 videocalback
Solution Explorer - ALL_BUILD > 0 X
2]]
m Solution 'Akear' {16 projects)
- 4 aLL_BuUILD
- 2@ TNSTALL

124 samplecamcalib
@ SampleCvTestbed
- |24 sampleFiler
- @ Samplelntegrallmage
@ SampleLabeling
154 SampleMarkerCreator
- @ SampleMarkerDetector
- @ SampleMarkerHide
1‘33 SampleMultiMarker
154 sampleMultiMarkerBundle
- @ SampleCptimization
- @ SamplePaintcloud
- 154 SampleTrack

- ZERC_CHECK
Output
Show output From: Build =zl _"i _%
13:Enbedding mani fest_

l3*Microsoft (B} Windows (R) Resource Compiler Versiom 6.1.6723.1

l3>Copyright (C) Microsoft Corporation. All righvs reserved.

13>Euild log was saved at "file://d:“Prodeces\Alvar 2.0.0\buildibuild vs2008_releaseisenpletSsnpleCanCalib. diriDebugiBuildbog. ben”
l3>ZampleCanCalib - 0 error(s), 0 warning(s)

lds—m--mmm Skipped Build: Project: INSTALL, Configuration: Debug Uin3Z ------

l4>Froject not selected to build for this solution configuration

== Build: 13 succeeded, 0 fsiled, 2 up-to-date, 1 skipped ==

Build succeeded Ln 166 Col1 Chi NS

n_
—v
WT ALVAR v.2.0 User’s Manual 17 (60)

Print markers, try to execute e.g. SampleMarkerHide. In this installation the execution
failed because VS2008 could not find glut32.dll. These DLLs were copied from the GLUT
folder to the Debug folder.

53 D:\Tools\glut_3.7

File Edit Wiew Favorites Tools Help

e Back = 'L-) L@ p Search

Address |@ D Toolshalut_3.7

E‘; Folders v

Folders X Mame = |
5 Freeview_Y101 [~ A glutzz.di ‘
5 &t Plgutzzlb o

L D:\Projects\Alvar 2.0.0\build\build_vs2008_release\sample\Debug

File Edit ‘View Favorites Tools Help

@Back o L) IE pSearch IE‘LFoIders '

Address |@ D:\Projectsialear 2,0.0build|build_vs2008_releaselsampleiDebug

Folders x Mame =~
1) AA_animEdit m @samplemarkﬁrh\dad‘ﬂk
= 1) Alvar 2.0.0 & samplemarkerhided. pdb
3 bin [T samplemultimarkerbundled
= £ build ﬂsamplemult\mark&rhund\ad =
1= () build_vs2006_releass @samplemult\mark&rbund\ed R T
[build @] samplemultimarkerbundied
(£ CMakeFies I_ﬁsamplemult\mark&rd.exe
1=) sample é]samplemult\markerd.\db

() ChakeFiles 2] samplemultimarkerd. il
(23 Debug & samplemultimarkerd.pdb
(£ SampleCamCalb. dir M sampleoptimizationd.sx=
[SampleCyTestbed. dir &) sampleoptimizationd.idh
[SampleFilter. dir 2] samplecptimizationd. ik
(22 samplelnkegrallmage. dir & samplecptimizationd. pdb
(3 SampleLabeling.dir Iﬁsaleepmntclnudd.exa
(23 SampleMarkerCreator.dir | samplepointaloudd.idb
(£ SampleMarkerDetectar.dir 2] sampleprintrlondd. ik
(23 SampleMarkerHide. dir] samplepointcloudd.pdb
3 SampleMuitiMarker dir [sampletrackd.exe
(£ SamplemultimarkerBundle. dir] sampletrackd idh
[SampleCptimization.dir =3 sampletrackd ik
(£ samplePointeloud. dir @] sampletrackd pdb
[SampleTrack dir
[cmake [ﬂ 2 166 kE Application Extension 18.5,199G 16:25

<] | B[] (3]

v ® X s

2 ohijects selected 332 KB j My Computer

After that the sample executed correctly.

VT

5 ALVAR Sample Code

ALVAR v.2.0 User’s Manual

18 (60)

ALVAR sample code requires GLUT 3.7.6 and CMake 2.8.3.

The following table presents a summary of the sample code:

Sample Description

SampleCamCalib

This is an example of how to use ProjPoints and Camera classes to perform
camera calibration using a chessboard pattern.

SampleCvTestbed

This is an example of how to use the CvTestbed, CaptureFactory and Capture
classes in order to make quick OpenCV prototype applications.

SampleFilter

This is an example of how to use various filters: FilterAverage, FilterMedian,
FilterRunningAverage, FilterDoubleExponentialSmoothing, Kalman, KalmanEkf
and FilterArray.

Samplelntegrallmage

This is an example of how to use the Integralimage and IntegralGradient
classes for image gradient analysis.

SampleLabeling

This is an example of how to label images using LabelingCvSeq.

SampleMarkerCreator

This is an example that demonstrates the generation of MarkerData (or
MarkerArtoolkit) markers and saving the image using SaveMarkerimage.

SampleMarkerDetector

This is an example that shows how to detect MarkerData markers and
visualize them using GlutViewer.

SampleMarkerHide

This is an example that shows how to detect MarkerData markers, visualize
them using GlutViewer and hide them with BuildHideTexture and DrawTexture.

SampleMarkerlessCreator

This is an example of how to use the FernlmageDetector class to train a Fern
classifier for markerless image-based tracking.

SampleMarkerlessDetector

This is an example of how to use the FernimageDetector and
FernPoseEstimator classes to detect and track an image and visualize it using
GlutViewer.

SampleMultiMarker

This is an example that demonstrates the use of a preconfigured MultiMarker
setup.

SampleMultiMarkerBundle

This is an example that automatically recognises and optimizes MultiMarker
setups using MultiMarkerBundle.

SampleOptimization

This is an example of how to use the Optimization class by fitting curves of
increasing degree to random data.

SamplePointcloud

This is an example showing how to use SimpleSfM for tracking the
environment using features in addition to MultiMarker.

SampleTrack

This is an example that shows how to perform tracking of the optical flow using
TrackerPsa, TrackerPsaRot, TrackerFeatures, TrackerStat or TrackerStatRot.

All 15 sample programs use the header file Shared.h, which defines the functions
outputEnumeratedPlugins (print plugins to console), outputEnumeratedDevices (print
devices to console), and defaultDevice (find index of highgui device). Many of the sample
program projects contain files GlutViewer.h and GlutViewer.cpp, which define the class
Drawable and 20 functions in namespace GlutViewer.

Many of the sample programs also define function videocallback which is called for each
video frame by GLUT. Some sample programs also define function keycallback to handle
the keyboard presses.

The main program of most samples prints the usage instructions, processes the command-
line parameters, sets the videocallback function to be called, enumerates the available
plugins, enumerates the available capture devices (and selects one of them to be used), and

VT

ALVAR v.2.0 User’s Manual 19 (60)

initializes the capture. After this the camera calibration is loaded, if available, and the video

processing is started. The simplest sample program demonstrating this structure is
SampleCvTestbed.

Next there is a more thorough presentation of each sample program with screen shots.

5.1 SampleCamCalib

This is an example of how to use ProjPoints and Camera classes to perform camera
calibration using a chessboard pattern. Point the camera to the chessboard calibration pattern
(see Alvar.pdf) from several directions until 50 calibration images are collected. A ‘calib.xml’

file that contains the internal parameters of the camera is generated and can be used by other
applications that require a calibrated camera.

— SampleCamCalib (highgui)

q“ggmeoaldu‘gs

Usage:
samplecamcalib.exe [device]

device = integer selecting device from enumeration list (default 0); highgui capture
devices are prefered

Keyboard Shortcuts:
g: quit

This application is discussed further in section 7.1.

5.2 SampleCvTestbed

This is an example of how to use the CvTestbed, CaptureFactory and Capture classes in
order to make quick OpenCV prototype applications. The CaptureFactory can create
Capture objects from many different backends (see SampleCvTestbed.cpp). You can also
show/hide the first ten images created using CvTestbed using the number keys. In this
example you can use key '0' to show/hide a grayscale version of the captured image.

n_
~/
WT ALVAR v.2.0 User’s Manual 20 (60)

TJsampleCvTestbed (highgui) =[]

Usage:
samplecvtestbed.exe [device]
device = integer selecting device from enumeration list (default 0); highgui capture
devices are prefered

Keyboard Shortcuts:
0: show/hide grayscale image

g: quit

5.3 SampleFilter

This is an example of how to use various filters: FilterAverage, FilterMedian,
FilterRunningAverage, FilterDoubleExponentialSmoothing, Kalman, KalmanEkf and
FilterArray. First the example shows unfiltered test data with outliers. The data is then
filtered using the various filters. Press any key to cycle through the filters.

m- ALVAR v.2.0 User’s Manual

__ISampleFilter

No filter — Pra

Usage:
samplefilter.exe

Keyboard Shortcuts:
any key: cycle through filters
g: quit

5.4 Samplelntegrallmage

This is an example of how to use the Integralimage and IntegralGradient classes for image
gradient analysis. The vertical (green) and horizontal (red) whole image projections are
computed using Integrallmage::GetSubimage and shown in the Samplelintegralimage
window. The gradients of the image edges are shown in the Gradient window. The edges are

=%

21 (60)

detected using the Canny edge detector where t1 and t2 are parameters for the Canny
algorithm. The gradients are drawn in red and their local normals are drawn in blue.

Usage:
sampleintegralimage.exe [device]

device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

WT ALVAR v.2.0 User’s Manual 22 (60)

_ Gradient E]@
t1:54_J7 12:1927J_

Keyboard Shortcuts:

: show/hide gradient image

: show/hide grayscale image
: show/hide vertical image

: show/hide horizontal image
: show/hide canny image

> quit

o bhOWNPEFEO

5.5 SampleLabeling

This is an example of how to label images using LabelingCvSeq. Blobs are detected in the
image and if the blobs have four corners, the edges between the corners are visualized.

BER

{: SampleLabeling (highgui)

m- ALVAR v.2.0 User’s Manual 23 (60)

Usage:
samplelabeling.exe [device]
device = integer selecting device from enumeration list (default 0); highgui capture
devices are prefered

Keyboard Shortcuts:
+: Increase adaptive threshold block size.
-: Decrease adaptive threshold block size.

g: quit

5.6 SampleMarkerCreator

This is an example that demonstrates the generation of MarkerData (or MarkerArtoolkit)
markers and saving the image using SaveMarkerimage. This application can be used to
generate markers and multimarker setups that can be used with SampleMarkerDetector and
SampleMultiMarker.

Usage:
samplemarkercreator.exe [options] argument

65535 marker with number 65535
-f 65535 force hamming(8,4) encoding
-1 "hello world" marker with string
-2 catalog.xml marker with file reference
-3 www.vit.fi marker with URL
-u 96 use units corresponding to 1.0 unit per 96 pixels
-uin use inches as units (assuming 96 dpi)
-ucm use cm's as units (assuming 96 dpi) <default>
-s5.0 use marker size 5.0x5.0 units (default 9.0x9.0)
-r5 marker content resolution -- 0 uses default
-m 2.0 marker margin resolution -- 0 uses default
-a use ArToolkit style matrix markers
-p prompt marker placements interactively from the user

This application is discussed further in section 7.1.

5.7 SampleMarkerDetector

This is an example that shows how to detect MarkerData markers and visualize them using
GlutViewer. In the SampleMarkerDetector window, various debug information is shown
about the detected markers. The coordinate axes and a virtual cube are superimposed onto
the markers to visualize the detected pose. For each marker, a small image of the marker
content is displayed at the origin and the marker number is displayed at one of the corners.
At the opposing corner, the error estimation percentages ' MARGIN_ERROR' and
'DECODE_ERROR' (red) or TRACK_ERROR' (dark red) are displayed.

In the AR window, squares are drawn over the marker positions using OpenGL. In the VR
window, the squares are drawn with respect to the camera coordinate frame. The viewpoint
can be modified by dragging with the left and right mouse buttons.

WT ALVAR v.2.0 User’s Manual 24 (60)

list (default 8>

Usage:
samplemarkerdetector.exe [devicelfilename]
device = integer selecting device from enumeration list (default 0); highgui capture
devices are prefered
filename = string specifying a media file as input

Keyboard Shortcuts:
g: quit

5.8 SampleMarkerHide

This is an example that shows how to detect MarkerData markers, visualize them using
GlutViewer and hide them with BuildHideTexture and DrawTexture.

Usage:
samplemarkerhide.exe [device]
device = integer selecting device from enumeration list (default 0); highgui capture
devices are prefered

Keyboard Shortcuts:
g: quit

WT ALVAR v.2.0 User’s Manual 25 (60)

1 list (default 8

5.9 SampleMarkerlessCreator

This is an example of how to use the FernimageDetector class to train a Fern classifier for
markerless image-based tracking. The image should contain many unique features and be in
the range of 200x200 to 500x500 pixels. A *.dat' file will be saved in the same directory as
the image and can be used with the SampleMarkerlessDetector sample. Training will take
about one minute with a 200x200 sample.

Usage:
samplemarkerlesscreator filename
filename = filename of image to train

5.10 SampleMarkerlessDetector

This is an example of how to use the FernimageDetector and FernPoseEstimator classes to
detect and track an image and visualize it using GlutViewer. The classification must first be
trained with the SampleMarkerlessCreator sample and the resulting file passed as an
argument to this sample.

For optimal results, a high quality USB camera or a Firewire camera is necessary. It is also
advised to calibrate the camera using the SampleCamCalib sample. It should be noted that
the size of the trained image will affect the optimal distance for detection.

n_
~/
WT ALVAR v.2.0 User’s Manual 26 (60)

Usage:
samplemarkerlessdetector filename [device]
filename = the filename of classifier (.dat)
device = integer selecting device from enumeration list (default 0); highgui capture
devices are prefered

Keyboard Shortcuts:
g: quit

5.11 SampleMultiMarker

This is an example of how to use the MultiMarker class to detect preconfigured multi-marker
setup (see multimarker.pdf). A large cube is drawn over the detected multi-marker even
when only some of the markers are visible.

Usage:
samplemultimarker.exe [device]
device = integer selecting device from enumeration list (default 0); highgui capture
devices are prefered

n_
~/
WT ALVAR v.2.0 User’s Manual 27 (60)

pleMultiMarker (highgui) | E

:-—

Keyboard Shortcuts:
v: switch between three debug visualizations
I: load marker configuration from mmarker.txt
d: toggle the detection of non-readable markers

g: quit

5.12 SampleMultiMarkerBundle

This is an example that automatically recognises and optimizes MultiMarker setups using
MultiMarkerBundle.

I SampleMultiMarkerBundle (highgui) =gl | m

Usage:
samplemultimarkerbundle.exe [device]
device = integer selecting device from enumeration list (default 0); highgui capture
devices are preferred

m- ALVAR v.2.0 User’s Manual 28 (60)

Keyboard Shortcuts:
v: switch between three debug visualizations
I: load marker configuration from mmarker.txt
s: save marker configuration to mmarker.txt
r: reset marker configuration
p: add measurement
0: optimize bundle

g: quit

5.13 SampleOptimization

This is an example of how to use the Optimization class by fitting curves of increasing
degree to random data.

") SampleOptimization E]@

Usage:
sampleoptimization.exe

Keyboard Shortcuts:
any key: cycle through datasets

g: quit

5.14 SamplePointcloud

This is an example showing how to use SimpleSfM for tracking the environment using
features in addition to MultiMarker. To get this example work properly be sure to calibrate
your camera and tune it to have fast framerate without motion blur.

There are two possible approaches: Update() and UpdateRotationsOnly(). By default the
Update() is used but you can easily uncomment the other one if needed.

WT ALVAR v.2.0 User’s Manual 29 (60)

T SamplePointcloud (highgui)

Usage:
samplepointcloud.exe [device]
device = integer selecting device from enumeration list (default 0); highgui capture
devices are prefered

Keyboard Shortcuts:
r: reset

g: quit

5.15 SampleTrack

This is an example that shows how to perform tracking of the optical flow using TrackerPsa,
TrackerPsaRot, TrackerFeatures, TrackerStat or TrackerStatRot.

Usage:
sampletrack.exe [device]

device = integer selecting device from enumeration list (default 0); highgui capture
devices are prefered

WT ALVAR v.2.0 User’s Manual 30 (60)

—_SampleTrack (highgui) B@

TrackerPsaRot

Keyboard Shortcuts:
r,t: reset tracker
n,space: cycle through tracking algorithms

g: quit

m- ALVAR v.2.0 User’s Manual 31 (60)

6 Demo Programs: Using ALVAR with OpenSceneGraph

ALVAR Sdk distribution package contains C++ source code only, the users must compile
their own programs.

ALVAR itself contains no support for 3D graphics or 3D models.
There are separate demo programs, which use OpenSceneGraph for 3D graphics.

There are three demo programs that demonstrate the core ALVAR features, and three
demonstaring the advanced features.

The core demos use only HighGui for acquisition and refer to hard-coded data files (no
command-line parameters).

The advanced demos use all installed acquisition plug-ins, and while they also refer to hard-
coded data file names, some settings can be overridden with command-line parameters.

The command-line parameters of the advanced demos are: webcam index, camera
calibration file, and app-specific option.

6.1 Demo Programs for ALVAR Core Features

With all three programs, if file ‘calib.xml’ is found, it is used as your camera calibration.
This file can be created with the utility program ‘SampleCamCalib.exe’.

All three core demo programs use the class CVideoBG (defined in header file
CommonUtils.h), which draws the current video frame (i.e. the picture from the webcam) as
the background, so the desired OSG 3D model(s) can be drawn (i.e. augmented) on top of it.

In the main program of each demo the OSG render loop is entered. And for each frame the
program calls the ALVAR image acquisition (to get a new video frame) and checks whether
the tracked markers are detected. If they are, the marker pose (i.e. position and orientation) is
computed for each marker, and the corresponding OSG model is set to the same pose and
drawn; this way the OSG models are augmented to the video frame on top of the
corresponding markers. However, if a tracked marker is not detected, the corresponding
OSG model is hidden.

6.1.1 Model2Marker
Identifies two independent markers and renders simple OSG model on top of both markers.

WT ALVAR v.2.0 User’s Manual 32 (60)

Print markers 5 and 10 in the Alvar.pdf file in the doc directory and show them to your
webcam.

6.1.2 MarkerHide

Identifies two independent markers, renders simple OSG model on top of both markers and
hides one of the markers using ALVAR hide-texture generation.

Print markers 5 and 10 in the Alvar.pdf file in the doc directory and show them to your
webcam.

6.1.3 MarkerField

Identifies a set of markers in predefined configuration and renders a single OSG model as
long as any one of the markers is visible.

m- ALVAR v.2.0 User’s Manual 33 (60)

B L

5

-

Print the multimarker in the Alvar.pdf file in the doc directory and show it to your webcam.

6.2 Demo Programs for ALVAR Advanced Features

With all three programs, if file ‘calib.xml’ is found, it is used as your camera calibration.
This file can be created with the utility program ‘SampleCamCalib.exe’.

All three advanced demo programs use the class ViewWithBackGroundimage (defined in
header file CommonUtils.h), which draws the current video frame (i.e. the picture from the
webcam) as the background, so the desired OSG 3D model(s) can be drawn (i.e. augmented)
on top of it.

All three advanced demo programs also define functions PickHandler (to handle keyboard
commands), InitVideoCapture (to initialize video capture), Initimages (to allocate memory
for one RGB image and one grayscale image), InitOSG (to initialize OSG and to create a
ViewWithBackGroundimage object), CleanUp (to free memory allocated for the RGB and
grayscale images and stop capture at program end), and Process (to process each captured
video frame). Besides, each of the three advanced demo programs has a function that is
specific to that program: InitALVAR, InitFernClassifier, or GetMultiMarkerPose.

The main program of each demo prints the usage instructions, processes the command-line
parameters, and calls the Init* functions. If the initializations succeed, the Process function is
called, which captures a video frame, calls the relevant ALVAR functions, and calls the
OSG rendering function “viewer->frame()”. Before the OSG rendering the return values of
the relevant ALVAR functions have determined whether the OSG model should be hidden
or shown; and if shown, what is the correct pose of the OSG model so that it is correctly
augmented to the video frame.

The markers used by these programs are in the Alvar.pdf file in the doc subdirectory; other
data files that these programs use are in the data subdirectory of the ALVAR installation
directory.

m- ALVAR v.2.0 User’s Manual 34 (60)

6.2.1 OsgSftM

Identifies a predefined marker configuration and renders an OSG model. Reconstructs
features with two alternative methods for tracking in the surroundings.

The default multimarker to be tracked is in file ‘mmarker.xml’ (3 cmd-line parameter can
be used to override this), which refers to multimarker in the Alvar.pdf file. Some keyboard
commands are available, see the command window.

6.2.2 OsgFern

Uses an image as a marker and renders an OSG model. Uses the Fern’s algorithm.

o existing cla

m- ALVAR v.2.0 User’s Manual 35 (60)

The default image file to be tracked is in ‘AlvarSlide.jpg’. Use the 3" cmd-line parameter to
enter some other image to be used as a marker, its size should be about 200x200 pixels.

First time the program is executed for a new image, it must train the Fern classifier. This
takes about one minute, after which the program saves the classifier training results. For
subsequent executions the program uses the results data file, so no training period is needed.

6.2.3 Osg3DMarkerField

Deduces the spatial configuration of a 3D marker field, then renders an OSG model on top of
the selected marker in this 3D marker field.

(=) [OJEd | @ pemo3DMarkerField

Keyboard Shortcuts (these work only when AR window is selected):
o quit
r: reset

Enumerated Capture Devices:
% 0: highgui_@

Using manual multimarker approach with MultiMarkerInitializer and
MultiMarkerBundle. Point the camera towards the markers B-11
(marker @ is required, others are optionald.
20 frames will be acquired.
Adding measurement... (1,28
Adding measurement... (2/28)>
Adding measurement... (3/28)
Adding measurement... (4/28)>
Ndding measurement... (5/28)
- |l#Adding measurement... (6,28
Adding measurement... (7/28)
Adding measurement... (8,/28)
Adding measurement... (9/28)
Adding measurement... (18,28
Adding measurement... (11,28
Adding measurement... €(12,/20>
Adding measurement... (13,28
Adding measurement... <(14,/20>
Adding measurement... {15,/28)>
Adding measurement... {16/20>
Adding measurement... (17/28>
Adding measurement... <18,28>
Adding measurement... <19/28)
i asurement... <28,/28>
ing optimization...

G
take more than a minute, please wait...)

g with 20 keyframes and 6 markers
imization error per corner: 14.6105
imizing done

Create a 3D marker field using Alvar markers 0 - 11. Marker O is required (its pose is
reported as the marker field pose), others are optional. Enter another marker index (1-11) as
the 3" cmd-line parameter to use another pose marker. The size of all the used markers 0 —
11 should be the same.

m- ALVAR v.2.0 User’s Manual 36 (60)

7 ALVAR Utility Programs

In the Bin distribution package of Alvar you’ll find two ALVAR utilities:
SampleCamcCalib.exe and SampleMarkerCreator.exe.

Actually, SampleCamCalib.exe is the SampleCamCalib sample of ALVAR library, while
SampleMarkerCreator.exe is the SampleMarkerCreator sample of ALVAR library.

SampleCamcCalib.exe is used to calibrate your webcam, using the chessboard pattern.

SampleMarkerCreator.exe is used to create marker image files which you can print. It can
also create multimarkers, i.e. 2D marker fields.

7.1 SampleCamCalib.exe

B8 SampleCamCalib =l

ALUAR 2_.8.8 — A Library for Uirtual and Augmented Reality
Copyright 28087-2812 UTT Technical Research Centre of Finland
Licenzed under the GNU Lesser General Public Licensze

Built on 2812-85-2? for Windows 6.1 xB6

SampleCamCalihb

This is an example of how to use the 'Gamera’ and ‘ProjPoints® classes
to perform camera calibration. Point the camera to the chesshoard
calibration pattern (see ALUAR.pdf> from several directions uwuntil 58
calibration images are collected. A *calib.xml’ file that contains the
internal parameters of the camera is generated and can be used by other
applications that reguire a calibrated camera.

Uzage =
samplecamcalib.exe [devicel

device integer selecting device from enumeration list <(default @>
highgui capture devices are prefered

Kevboard Shortcuts:
g: guit

Available Plugins: file. highgui

Enumerated Capture Devices:
* B: highgui_#

SampleCamCalib.exe is used to calibrate your webcam, using the chessboard pattern (in the
Alvar.pdf file in the doc directory).

Print the slide containing the chessboard pattern. Attach the print to a level surface.

Start the program, and show the chessboard pattern to your webcam in different positions,
distances, and orientations.

The program acquires 50 samples, about once a second. When a sample is acquired (the
chessboard pattern is visible), the found pattern is shortly shown in red.

Calibration result is written to file ’calib.xml’.

By default, SampleCamCalib.exe calibrates the default camera using the default resolution.
However, if either of these is not the one you intend to use, enter command-line argument

VT

ALVAR v.2.0 User’s Manual 37 (60)

“1” for your first camera (resolution and other options will be prompted), “2” for your 2nd
camera, etc.

7.2 SampleMarkerCreator.exe

B SampleMarkerCreator -3 ﬂ

ALUAR 2.8.8 — A Library for Uirtual and Augmented Reality
Copyright 2087-20812 UTT Technical Research Centre of Finland
Licensed wnder the GHMU Lesser General Public License

Built on 2812-85-2%9 for Windows 6.1 xBb

SampleMarkerCreator

This i= an exanple of how to use the *‘MarkerData’ and 'Markerfrtoolkit’
classes to generate marker images. This application can be used to
generate markers and multimarker setups that can be used with
SampleMarkerDetector and SampleMultiMarker.

Uzage =
zamplemarkercreator.exe [optionz] argument

65535 marker with number 65535
—f 65535 force hamming<8.4> encoding
-1 "hello world"” marker with string
—2 catalog.xml marker with file reference
-3 wuw.vtt. fi marker with URL
-u 76 use units corresponding to 1.8 wnit per 26 pixels
—uin usze inches as units <assuming 26 dpi>
uze cm’'s as wunits (assuming 96 dpi) <default’>
use marker zize 5.8x5.08 units (default 7.8x7_@>
marker content resolution — B uses default
marker margin resolution — B uses default
use ArToolkit style matrix markers
prompt marker placements interactively from the user

marker placements interactively
units: 1 cm B.323781 inches
marker side: 9 units
marker id (use —1 to end> [B]1:

SampleMarkerCreator.exe is used to create marker image files which you can print. It can
also create multimarkers, i.e. 2D marker fields.

To create an image file containing a single marker, enter the marker number (=ID) as a
command-line parameter.

If no command-line parameters are entered, the program goes to the interactive mode; in this
mode you can enter the IDs and relative positions of several markers, creating a multimarker.
Defaults are sensible, so you can just keep pressing <Enter> until your multimarker is big
enough.

The output image of the program is written into file ‘markerdata_0.png’ (where O is replaced
with the marker id). Default marker size is 9x9 cm.

The output image of a multimarker employing e.g. markers 0, 1, 2, and 3 is written into file
‘markerdata_0_1 2 3.png’, whereas the XML definition of this multimarker is written into
‘markerdata_0_1 2 3.xml’ (very long file names are truncated).

SampleMarkerCreator.exe usage options and additional instructions:

e The program prompts for marker id and its position in the used units (3 questions per
marker). The default unit is ‘cm' and the default marker size is 9x9 cm

m- ALVAR v.2.0 User’s Manual 38 (60)

e If the user just presses <Enter> to all prompts, the program creates a square marker
field which keeps growing (2x2 => ... =>3x3 => ... => 4x4 etc.)

e When enough markers have been added to the marker field, the user should enter -1
for the ID of the next marker, which ends the prompting

e |f the user wishes to use other units or a different marker size, these can be entered as
command-line parameters before the interactive mode, e.g.:

> samplemarkercreator.exe -uin -s 1.0 —p

o If the user wishes to enter a marker field design into a separate text file, it is also
possible (contents of ‘test.txt” is shown to the right):

> samplemarkercreator.exe -p < test.txt

e |f the user wishes to use markers of different sizes, the data for all the markers must
be entered as command-line parameters:

> samplemarkercreator.exe -s 18 -xy -36 0 255 -xy -36 -36 254 -xy 0 -36 253 -s 9
P

e This example sets 18x18 cm markers 255, 254 and 253 to the left, up-left, and up
from the origin. Then the program enters the interactive mode to prompt for
additional 9x9 cm markers.

WT ALVAR v.2.0 User’s Manual 39 (60)

8 ALVAR HTML Help

This chapter presents a summary of ALVAR HTML Help, which have been generated
automatically from the source code comments using Doxygen. The documentation entry is
the file \doc\ntm\index.html, there should be a shortcut for this in the Start menu.

The most important locations in the ALVAR HTML Help are the Classes list (click text
‘Classes’) and the header Files list (click text ‘Files”). In both the Classes list and Files list
you can get more detailed information by clicking the class/header file name. Through the
detailed information you can navigate from a class name to the corresponding header file and
from a header file to the class(es) defined in that file.

/€ ALVAR: ALVAR 2.0.0 - Windows Internet Explorer [[f=15<
273 £ | Di\Tools\alvar 2,0.0 sdk win32 ws201 Didocihtmilindes:, html V | X b 2|~
File Edit View Favorites Tools Help # -

5y Favorites (& ALYAR: ALVAR 2.0.0 G- 8 ‘| e v Page v Safety v Tools - (@ »

Namespaces | Classes | Files | Examples

ALVAR 2.0.0

Introduction

ALVAR is a software library for creating virtual and augmented reality (AR) applications. ALVAR has been developed by the VTT Technical Research Centre of
Finland. ALVAR is released under the terms of the GNU Lesser General Public License, version 2.1, or (at your option) any later version.

Alvar is designed to be as flexible as possible. It offers high-level tools and methods for creating augmented reality applications with just a few lines of code. The
library also includes interfaces for all of the low-level tools and methods, which makes it possible for the user to develop their own solutions using alternative
approaches or completely new algorithms.

Alvar is currently provided on Windows and Linux operating systems and only depends on one third party library (OpenCV). Alvar is independent of any graphical
libraries and can be easily integrated into existing applications. The sample applications use GLUT and the demo application use OpenSceneGraph.

Features

* Detecting and tracking 2D markers (MarkerDetector). Currently two types of square matrix markers are supported (MarkerData and MarkerArtoolkit). Future
marker types can easily be added. Alvar keeps the Marker Pose estimation as accurate as possible. Furthermore, Alvar uses some tracking heuristics to

identify markers that are "too far" and to recover from occlusions in the multimarker case for example.

Using a setup of multiple markers for pose detection (MultiMarker). The marker setup coordinates can be set manually or they can be automatically deduced |=
using various methods (MultiMarkerFiltered and MultiMarkerBundle).

* Tools for calibrating Camera. Distorting and undistorting points, projecting points and finding exterior orientation using point-sets.
* Hiding markers from the view (BuildHideTexture and DrawTexture).
+ Several basic filters: FilterAverage, FilterMedian, FilterRunningAverage, FilterDoubleExponentialSmoothing.
* Kalman filters for sensor fusion: Kalman Filter, Extended Kalman Filter and Unscented Kalman Filter (KalmanSensor, KalmanSensorEkf, Kalmangkf,
UnscentedKalman).
+ Several methods for tracking using optical flow: TrackerPsa , TrackerPsaRot , TrackerFeatures and TrackerStat.
* etc...
Platforms

ALVAR is officially supported and tested on the following platforms.

* Windows XP 32-bit, Microsoft Visual Studio 2005 (8.0), 2008 (2.0) and 2010 (10.0)
* Linux 32-bit, GCC 4.2 and 4.4
* Linux 64-bit, GCC 4.3 and 4.4

Dependencies
The ALVAR library depends on the following libraries.
* OpenCV 2.4.0
The ALVAR samples depend on the following libraries and tools.

* GLUT 3.7.6
* CMake 2.8.3

The ALVAR demos depend on the following libraries and tools.

* OpenSceneGraph 2.8.4
* CMake 2.8.3

Usage

Please see the instructions in doc/Compiling.txt for more information.

Done -JMyComputer dg v Moo -

VT

8.1

ALVAR v.2.0 User’s Manual

File List

40 (60)

For easy reference, this section presents the header Files list (click text ‘Files’) of the
ALVAR HTML Help, while the next section presents the Classes list (click text ‘Classes’).

/€ ALVAR: File List - Windows Internet Explorer

M=%

@ & A |§, D\ Toolshalvar 2,0.0,b1,F3F99F8 sdk win32 vs2010%docthtmlifiles, html

Molxom ok

File Edit Yiew Favorites Tools Help

x B -

S Favorites | (@ ALVAR: File List

| @ + Page = Safety ~ Tools = .@.-

3

ALVAR

Main Page | Namespaces | Classes m Examples |

File List

Here is a list of all documented files with brief descriptions:

Alvar.h [code]
AlvarException.h [code]
Bitset.h [code]
Camera.h [code]
Capture.h [code]
CaptureDevice.h [code]

CaptureFactory.h [code]

CapturePlugin.h [code]
CapturePluginCmu.h [code]
CapturePluginFile.h [code]

CapturePluginHighgui.h [code]

ConnectedComponents.h [code]

Container3d.h [code]
DirectoryIterator.h [code]
Draw.h [code]

EC.h [code]
FernImageDetector.h [code]
FernPoseEstimator.h [code]
FileFormat.h [code]
FileFormatUtils.h [code]
Filter.h [code]
Integrallmage.h [code]
Kalman.h [code]

Line.h [code]

Lock.h [code]

Marker.h [code]
MarkerDetector.h [code]
MultiMarker.h [code]
MultiMarkerBundle.h [code]
MultiMarkerFiltered.h [code]
MultiMarkerInitializer.h [code]
Mutex.h [code]

This file defines library export definitions, version numbers and build information

This file implements the ALVAR exception class

This file implements bit set handling

This file implements a camera used for projecting points and computing homographies
This file implements a capture interface

This file implements a capture device to hold camera information

This file implements a capture factory with a plugin interface to allow for different capture backends to be loaded at
runtime if the platform supports them

This file implements a capture plugin interface

This file implements a capture plugin based on Cmu

This file implements a capture plugin based on File

This file implements a capture plugin based on Highgui

This file implements connected component labeling

This file implements a generic container to store data in 3D
This file implements a directory iterator

This file implements a collection of functions that are used to visualize lines, contours and corners for debugging
purposes

This file implements a collection of External Container (EC) versions of many Alvar classes
This file implements a Fern-based image detector

This file implements a pose estimator for the Fern-based image detector

This file defines various file formats

This file implements utilities that assist in reading and writing files

This file implements multiple filters

This file implements integral image and integral gradient computations

This file implements a versatile Kalman filter

This file implements a parametrized line

This file implements a lock to simplify mutex handling

This file implements a marker interface as well as ALVAR markers and ARToolKit markers
This file implements a generic marker detector

This file implements a multi-marker

This file implements an algorithm to create a multi-marker field configuration

This file implements an approximation algorithm to create a multi-marker field configuration
This file implements a initialization algorithm to create a multi-marker field configuration

This file implements a mutex

4 My Computer v v Hi0w -

/=
M 2/

ALVAR v.2.0 User’s Manual

41 (60)

/€ ALVAR: File List - Windows Internet Explorer

okl

@‘:—-;r - |g, DA Toolsalvar 2.0.0,b1.F3F29F8 sdk win32 vs2010docihtmlifiles. html

Molx o 12

File Edit Wiew Favorites Tools Help

< ®

. Favorites | (& ALvAR: File List

fi - B

= @ ~ Page ~ Safety » Tools = @v i

Mutex.h [code]
Optimization.h [code]
Platform.h [code]

Plugin.h [code]

Pose.h [code]

Ransac.h [code]
Rotation.h [code]

SfM.h [code]

Threads.h [code]

Timer.h [code]

Tracker.h [code]
TrackerFeatures.h [code]
TrackerOrientation.h [code]
TrackerPsa.h [code]
TrackerStat.h [code]
TrifocalTensor.h [code]
Uncopyable.h [code]
UnscentedKalman.h [code]

util.h [code]

This file
This file
This file
This file
This file
This file
This file
This file
This file
This file
This file
This file
This file
This file
This file
This file
This file
This file
This file

implements
implements
implements
implements
implements
implements
implements
implements
implements
implements
implements
implements
implements
implements
implements
implements
implements
implements

implements

a mutex

several optimization algorithms

generic platform specific methods

a loader for plugins as dynamic libraries

a pose
a generic RANSAC algorithm
a parametrized rotation
structure from motion

a threads vector

a timer

a tracking interface

a feature tracker

an orientation tracker

a PSA tracker

a statistical tracker

a trifocal tensor

an uncopyable interface

an unscented Kalman filter

generic utility functions and a serialization interface

o]

Generated on Thu May 24 2012 20:43:09 for ALVAR by d@)ﬁ\ﬁge 1.8.0 z

HMyComputer v v H100% -

VT

8.2 Class List

ALVAR v.2.0 User’s Manual

42 (60)

For easy reference, this section presents the Classes list (click text ‘Classes’) of the ALVAR
HTML Help, while the previous section presented the header Files list (click text ‘Files’).

/€ ALVAR: Class List - Windows Internet Explorer

=X

@ wy L4 |§, D: Tools\alvar 2,0.0,b1,F3f99F8 sdk win32 vs2010\docihtmiiannotated. html

][] [@5 |[2]-

File Edit Wiew Favorites Tools Help X -

S Favories | (@ ALvaR: Class List

fi- 8

=1 géa * Page » Safety + Tools = I@Iv i

ALVAR

~

Main Page | Namespaces Files | Examples
Class Index | Class Hierarchy | Class Members |

Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AlvarException

Bitset

BitsetExt

Camera

CameraEC

Capture

CaptureCmu
CaptureDevice
CaptureFactory
CaptureFile
CaptureHighgui
CapturePlugin
CapturePluginCmu
CapturePluginFile
CapturePluginHighgui
Container3d<T >
Container3dLimitDist< T >
Container3dSortDist< T >
Container3dSortSize< T >
DirectoryIterator
DoEraseTest< T >
DoHandleTest< T >
ExternalContainer
SimpleSfM::Feature
FernClassifierWrapper
FernImageDetector
FernPoseEstimator
FileFormatuUtils

Filter

FilterArray< F >
FilterAverage
FilterDoubleExponentialSmoothing

FilterMedian

Alvar exception class

Bitset is a basic class for handling bit sequences

An extended Bitset (BitsetExt) for handling e.g. Hamming encoding/decoding
Simple Camera class for calculating distortions, orientation or projections with pre-calibrated camera
Version of Camera using external container

Capture interface that plugins must implement

Implementation of Capture interface for Cmu plugin

CaptureDevice holder for camera information

CaptureFactory for creating Capture classes

Implementation of Capture interface for File plugin

Implementation of Capture interface for Highgui plugin

CapturePlugin interface that plugins must implement

Implementation of CapturePlugin interface for Cmu plugin

Implementation of CapturePlugin interface for File plugin

Implementation of CapturePlugin interface for Highgui plugin

Generic container to store any information in 3D (features, photos, ...)

Functor class for Container3d Limit() to limit the search space with distance
Functor class for Container3d Sort() to sort the search base using distance to specified origin
Functor class for Container3d Sort() to sort the search base using content size
DirectoryIterator for iterating over files and directories

This is default functor for testing which items in the container should be erased
This is a default functor for testing which items in the container should be handled by each method
Basic structure to be usable with EC methods

Extended version of ExternalContainer structure used internally in SimpleSfM
FernClassifier subclass that implements binary reading and writting

Image detector based on a Fern classifier

Pose estimation class for FernlImageDetector

Utility functions for file reading / writing

Filter is pure virtual class describing the basic virtual interface for all filters

Class for handling an array of filtered values

FilterAverage provides an average filter

FilterDoubleExponentialSmoothing provides an weighted running average filter

FilterMedian provides an median filter

4 My Computer v v Hi00% -

VT

ALVAR v.2.0 User’s Manual

43 (60)

‘€ ALVAR: Class List - Windows Internet Explorer

M=%

@ ey L |@, D\ ToolsAalvar 2.0.0.b1.F3F99F8 sdk win32 vs2010docihtmliannotated, html

Molxlom ok

File Edit Miew Favorites Tools Help X oo

n - ¥

5l Favortes | @ ALYAR: Class List M- B [= - Page~ Safety - Took - (@~
FilterMedian FilterMedian provides an median filter b]

FilterRunningAverage
Histogram
HistogramSubpixel
Homography

Index

IndexRansac< MODEL >
IntegralGradient
Integrallmage

IntIndex

Container3d< T >::Iterator
Kalman

KalmanCore

KalmanEkf
KalmanSensor
KalmanSensorCore
KalmanSensorEkf
KalmanVisualize
Labeling

LabelingCvSeq

Line

Lock

Marker

MarkerArtoolkit
MarkerData
MarkerDetector< M >
MarkerDetectorEC< M >
MarkerDetectorImpl
MarkerIterator
MarkerIteratorImpl< T >
MultiMarkerInitializer::MarkerMeasurement
MultiMarker
MultiMarkerBundle
MultiMarkerEC
MultiMarkerFiltered

MultiMarkerInitializer
Mutex

Optimization

Plugin
Point< C, D >

FilterRunningAverage provides an weighted running average filter

Class for N-dimensional Histograms

N-dimensional Histograms calculating also the subpixel average for max bin

Simple Homography class for finding and projecting points between two planes
Class for N-dimensional index to be used e.g. with STL maps

Implementation of a general RANdom SAmple Consensus algorithm with implicit parameters
IntegralGradient is used for calculating rectangular image gradients rapidly
Integrallmage is used for calculating rectangular image sums and averages rapidly
Class for calculating "evenly spaced" integer indices for data sequence

Iterator for going through the items in Container3d in the specified order

Kalman implementation

Core implementation for Kalman

Extended Kalman Filter (EKF) implementation

Kalman sensor implementation

Core implementation for Kalman sensor

Extended Kalman Filter (EKF) sensor implementation

Class for visualizing Kalman filter

Base class for labeling connected components from binary image

Labeling class that uses OpenCV routines to find connected components

Struct representing a line. The line is parametrized by its center and direction vector
Lock for simplifying mutex handling

Basic 2D Marker functionality

MarkerArtoolkit for using matrix markers similar with the ones used in ARToolkit
MarkerData contains matrix of Hamming encoded data

MarkerDetector for detecting markers of type M

Version of MarkerDetector using external container

Templateless version of MarkerDetector. Please use MarkerDetector instead
Iterator type for traversing templated Marker vector without the template

Iterator implementation for traversing templated Marker vector without the template

MarkerMeasurement that holds the maker id

Base class for using MultiMarker
Multi marker that uses bundle adjustment to refine the 3D positions of the markers (point cloud)
Version of MulftiMarker using external container

Multi marker that is constructed by first calculating the marker poses directly relative to base marker and
then filtering the results using e.g. median filter

Initializes multi marker by estimating their relative positions from one or more images
Mutex for synchronizing multiple threads

MNon-linear optimization routines. There are three methods implemented that include Gauss-Newton,
Levenberg-Marquardt and Tukey m-estimator

Plugin for loading dynamic libraries

Simple Point class meant to be inherited from OpenCV point-classes. For example: Point<CvPoint2D64f> u
b

n

4 My Computer v v H100% -

n_
~/
WT ALVAR v.2.0 User’s Manual 44 (60)

-
/€ ALVAR: Class List - Windows Internet Explorer ‘._Hg]ﬁ
ﬁ,} = [&) DiTadsiabvar 2.0.0.bL.F3f99F5 sdk win32 vs2010idacitmilannatated html [¥][*2]| %] 8 |l
Elle Edit Wiew Favorites Tools Help | X Hgi -
5 Favorites |@ALVAR: Class List |_| N- B8 [v Pagew Safety » Toos - (- >
Point< C, D > Simple Point class meant to be inherited from OpenCV point-classes. For example: Point<CvPoint2D64f> bl
P
Pose Pose representation derived from the Rotation class
ProjPoints Simple structure for collecting 2D and 3D points e.g. for camera calibration
Ransac< MODEL, PARAMETER > Implementation of a general RANdom SAample Consensus algorithm
RansacImpl Internal implementation of RANSAC. Please use Ransac or IndexRansac
Rotation Rotation structure and transformations between different parameterizations
Serialization Class for serializing class content to/from file or std::iostream
SimpleSfM Simple structure from motion implementation using CameraEC , MarkerDetectorEC and
TrackerFeaturesEC
Threads Threads vector for handling multiple threads
Timer Timer for measuring execution time
Tracker Pure virtual base class for tracking optical flow
TrackerFeatures TrackerFeatures tracks features using OpenCV's cvGoodFeaturesToTrack and cvCalcOpticalFlowPyrLkK
TrackerFeaturesEC Version of TrackerFeatures using external container
TrackerOrientation Track orientation based only on features in the image plane
TrackerPsa TrackerPsa implements a very simple PSA tracker
TrackerPsaRot TrackerPsaRot implements a slightly extended version of a TrackerPsa which can also detect sideways
rotation
TrackerStat TrackerStat deduces the optical flow based on tracked features using Seppo Valli's statistical tracking
TrackerStatRot TrackerStatRot implements a slightly extended version of TrackerStat which can also detect sideways
rotation
TrifocalTensor Trifocal tensor works for three images like a fundamental matrix works for two images
Uncopyable Uncopyable for preventing object copies
UnscentedKalman Implementation of unscented kalman filter (UKF) for filtering non-linear processes L
UnscentedObservation Observation model for an unscented kalman filter
UnscentedProcess Process model for an unscented kalman filter
Generated on Thu May 24 2012 20:43:08 for ALVAR by 1.8.0 =
d My Computet i3 v H100% <

m- ALVAR v.2.0 User’s Manual 45 (60)

9 ALVAR Source Code

This chapter presents a summary of ALVAR source code. The source code files were listed
in section 8.1, and the ALVAR classes in section 8.2. In this chapter some of the most
important classes and concepts are presented in more detail, as well as some Frequently
Asked Questions.

9.1 Code highlights: Most important ALVAR concepts, FAQs

Please note that the best way to learn ALVAR is to examine the ALVAR Sample Code
(chapter 5) and the ALVAR Demo Programs (chapter 6). The remaining sections should be
read only after those sections.

9.1.1 How the capture system (and plugins) works

ALVAR uses the services of OpenCV libraries for video capture. OpenCV in turn contains
three alternative capture libraries: HighGui, CvCam, and CMU. Not all webcams can be
accessed with all 3 libraries, and the 3 different libraries have different advantages and
disadvantages, so therefore this “embarrassment of riches”. HighGui is the easiest to use, so
if your webcam can be accessed using HighGui, we recommend using it.

After your webcam has captured a video frame, the captured image data is stored into an
image in computer memory. This image is accessed by ALVAR libraries (to determine the
poses of the visible markers, for example), and this image is usually used as the background,
when the augmented content is drawn.

OpenCYV callback functions are often used for video frame acquisition and image processing.
The beginning of chapter 5 explains the callback function structure of sample code, whereas
sections 6.1 and 6.2 explain the callback functions of the demo programs.

9.1.2 How the marker detection works

Here we assume that a video frame has been captured and stored into a memory image as
described in the previous subsection.

First the color image is converted into a grayscale image. Then this image is converted into a
bitonal (only two colors: black and white) image using an adaptive threshold. From this
image edges are searched, producing a number of lines. Then sets of four intersecting lines
(i.e. quadrangles) are searched, and these are potential markers. Then it is verified that the
outside of the quadrangle is white, and the inside is black (i.e. we are indeed seeing the
border stripe of a marker). And finally the inside of the marker borders can be interpreted as
bits, and the bit pattern is a valid marker. From the four corner points of the detected marker
the program can compute the pose (i.e. location and orientation) of the marker in camera
coordinates.

The best position accuracy is achieved when the marker is close to the camera, because then
the relative error caused by one pixel inaccurary in the image is smaller. However, the
detection algorithm has some built-in limits, so very large targets (i.e. markers very close to

m- ALVAR v.2.0 User’s Manual 46 (60)

the camera) are eliminated, i.e. not detected at all. And conversely, very small targets (i.e.
markers very far from the camera) are also eliminated.

The best orientation accuracy is achieved when the marker plane is in a 45 degree angle with
the camera line of sight. When the marker plane normal is parallel with the camera line of
sight the orientation accuracy is lower, because small marker angle changes do not cause
significant changes in the detected marker image. And when the marker plane normal is
almost perpendicular with the camera line of sight the orientation accuracy is lower, because
some of the marker corners are seen in almost same position of the image.

For further background information about this subject one can turn to ARToolkit
documentation. The detection principles of ARToolkit are similar than that of ALVAR, so
many descriptions of ARToolkit principles apply to ALVAR also. A web search of
“ARToolkit marker detection” is a good place to start. Here are a few links that this web
search produces:

http://www.hitl.washington.edu/artoolkit/Papers/ART02-Tutorial.pdf
http://www.hitl.washington.edu/artoolkit/documentation/

http://www.artoolworks.com/support/library/Category: ARToolKit Professional

9.1.3 How the margins work

There must be enough white (paper) around the black marker edges, so edges can be
detected in the beginning of the algorithm.

9.1.4 How the multimarkers (i.e. marker fields) work

Several markers working together. Pose can be computed even if only one of the markers is
visible.

2D multimarkers: a XML file is required, which specifies the relative positions and sizes of
the component markers; the component markers can have different sizes, but they must all
be in the same plane.

3D multimarkers: relative positions and orientations of the component markers are
automatically computed, when the configuration has been seen from various angles. All
component markers must have the same size.

The advantage of the 3D multimarker over the 2D is that it is more robust: there is a higher
probability that at least one of the component markers is seen in an advantageous angle (i.e.
high orientation accuracy, close to 45 degrees with the camera line of sight). The
disadvantage is that a separate initialization stage is needed, and the camera must be moved
around during this stage.

9.1.5 Encoding data (integer, text, URL) into ALVAR markers

A number of bits are available in the ALVAR markers depending on the size of the marker.
The larger the marker size, the more bits it can contain, but the more unreliable the detection

http://www.hitl.washington.edu/artoolkit/Papers/ART02-Tutorial.pdf
http://www.hitl.washington.edu/artoolkit/documentation/
http://www.artoolworks.com/support/library/Category:ARToolKit_Professional

m- ALVAR v.2.0 User’s Manual 47 (60)

(i.e. distinguishing between the different markers) becomes. Some bits must be fixed, so that
marker orientation can be deduced, but other bits can be used for any purpose.

Usually the bits are interpreted as numbers, but this is not necessary. E.g. groups of seven
bits can be used to encode ASCII characters, and groups of eight bits can be used to encode
the extended ASCII character set. If there is no need for punctuation, numbers or uppercase
letters, five bits are sufficient for all English letters.

See also subsection 9.3.16.

9.1.6 FAQ: I compiled my ALVAR program with VC++, but | cannot run the program in
another computer

All recent versions of VC++ require that the run-time libraries (specifit to that version of
VC++) are installed in the system directory. Otherwise the programs compiled with VC++
will not run. Naturally the Visual Studio installation program installs these libraries; for
computers without Visual Studio one must run the so-called "Microsoft Visual C++
<version> Redistributable Package (x86)", which installs the required libraries. This is true
for ALVAR also.

So if you are using Visual Studio 2008 SP1 for example, do a web search of “visual c++
2008 sp1 redistributable package”, which should take you to a Microsoft web page, where
you can download the Redistributable Package. Download the program and execute it once
in the computer you intend to use your ALVAR program. Then your program should work.

Also if you use a newer version of Visual Studio than what ALVAR 2.0 supports, you may
be able to compile your ALVAR programs with the new version of VS, but you must first
install the Redistributable Package of the VS version that was used to compile the ALVAR
DLLs.

9.1.7 FAQ: Using PsaTracker, i.e. motion flow tracking

First, we are basically talking about image plane tracking. That is the movement of the
image in the horizontal and vertical directions. We can use this image plane tracking to
implement some quick hacks that produce a better experience when doing AR.

When is this needed?

The image plane tracking is meant to kick in when the marker is not detected for a few
frames or when the marker starts to move out of the field of view of the camera (moves to
the edge of the image when panning). Usually, you have two options: leave the model where
it is or stop rendering it completely. This leads to flickering and weird behaviour when the
marker moves out of the view of the camera. This motion flow tracking solves this.

How is it done?

The hard part is already done. You can find the TrackerPsa class in ALVAR that implements
image plane tracking. To see how to use this class, you can look at the SampleTrack sample.
Now the tricky part is using the horizontal and vertical motion to update the pose of the
marker. | will describe how this is done using pseudo code.

VT

ALVAR v.2.0 User’s Manual 48 (60)

Camera camera;
camera.SetCalib(...);

MarkerDetector markerDetector;
// markerDetector initialization

TrackerPsa trackerPsa;
// no initialization required

double fovX = camera.GetFovX();
double fovY = camera.GetFovY();

IplImage *frame;
// get a new frame from the camera

Pose pose;
// this pose must persist across frames, make it a class member

markerDetector.Detect (frame, camera, ...);
// iterate over markers, when id matches update the pose

trackerPsa.Track (frame) ;

// only update the pose with the image plane movement when no marker is
found

if (numberOfMarkersDetected == 0) {
double x = -trackerPsa.xd * fovX / frame->width;
double y = -trackerPsa.yd * fovY / frame->height;
CvMat *p;
CvMat *r;

// create p and r, 3x3

pose.GetMatrix (p) ;

// initialize r as a rotation matrix with x rotation around x-axis and y
rotation around y-axis

// p=1r*p

pose.SetMatrix (p);

// release p and r

}

// render model using pose as usual

9.1.8 FAQ: Contents of the ALVAR Sdk distribution package

The ALVAR Sdk library is distributed in binary form only. This means that the source files
of the library (files in src directory) are not distributed. Only the binary libraries (DLLS in
bin directory) are distributed, along with the headers (files in include directory).

In order to compile the sample applications, you must follow each of the steps in
doc/Compiling.txt.

m- ALVAR v.2.0 User’s Manual 49 (60)

ALVAR Sdk installation is organized in the following way:

* bin — The compiled binaries appear in a subdirectory matching the selected build
environment (e.g. /bin/msvc80).

* build — The build environment tools, also in a matching subdirectory.

* data — Data files used by some of the Sample and Demo applications.

* demo — Demo applications that demonstrate how to use the library with OSG.
* doc — Documentation as well as APl Reference, sample markers in Alvar.pdf.
* include — Headers for the Alvar, AlvarPlatform and AlvarPro libraries.

* sample — Sample applications that demonstrate how to use the library.

This directory is not present in binary
distributions

This directory is not present in
binary distributions

This directory is not present in binary
distributions

9.1.9 FAQ: Cannot complete the first steps of doc/compiling.txt
Question:

The generate.bat file in the msvc90 folder doesn't seem to do anything special for me. | have
installed opencv, glut, cmake and alvar. Also, cmake is located in the system's path
environment variable.

Answer:

Check the generate.log file that is generated when you run the generate.bat script. It should
be located in the same directory. (C:\program files\alvar 2.0.0\build\msvc90\generate.log).

Also verify the paths in Cmakegui. They should be set correctly by default and not be
changed.

Where is the source code:

C:/Program Files/Alvar 2.0.0

Where to build the binaries:

C:/Program Files/Alvar 2.0.0/build/msvc90/build

9.1.10 FAQ: Cannot follow the last steps of doc/compiling.txt
Question:

m- ALVAR v.2.0 User’s Manual 50 (60)

| completed the 6 steps of compiling.text file but I cannot understand the following step.
7. Open ./build/[target]/build/Alvar.sln.bat and build the solution.

The batch file will ensure that paths to DLLs are properly configured.

If it shows the the ALVAR path then there is no such folders and solution file. My path is
C:\Program Files\ Alvar 2.0.0\build and it has no Alvar.sIn.bat file.

Answer:

You need to go down into a few more directories. For example, if you used
/build/msvc90/generate.bat to generate the project files, then the solution batch file will be
in ./build/msvc90/build/Alvar.sIn.bat.

You need to replace [target] (in the instructions) by the platform that you have selected. You
can select either msvc, msvc80 or msvc90 depending on the compiler you are using.

To recap, if you used:
[1] C:\Program Files\Alvar 2.0.0\build\msvc90\generate.bat
to generate the project, then the solution batch file will be in:
[2] C:\Program Files \Alvar 2.0.0\build\msvc90\build\Alvar.sln.bat

You can then double click on [2] and then build the solution in debug or release mode.

Step 8 requires step 7 do be done. When you have the visual studio solution opened, you can
right click on the INSTALL project and select '‘Build'. This will install all of the samples and
dependencies in:

[3] C:\Program Files\Alvar 2.0.0\bin\msvc90\

Then you can run the samples by double-clicking on them in the Explorer.

9.1.11 FAQ: ALVAR sample reports “Could not find any capture plugins”

This error message means that ALVAR can't find the capture plugins. These are the DLLS
found at the following location (assuming default installation folder):

C:\Program Files\Alvar 2.0.0\bin\alvarplugins

If you are running the sample from inside Visual Studio (via F5), you need to make sure that
you have launched VS with Alvar.sin.bat (notice the 'bat' extension). This sets up the paths
properly so that VS can find the plugins.

If you are running the sample from the command line, make sure that alvarplugins is in the
same directory as the executable.

You can also force the search path for the plugins by setting the following environment
variable:

set ALVAR PLUGIN PATH=C:\Program Files\Alvar 2.0.0\bin\alvarplugins

m- ALVAR v.2.0 User’s Manual 51 (60)

9.1.12 FAQ: SampleCamcCalib reports “Could not initialize the selected capture backend”
That error message can mean a few things.

1. No compatible camera is attached to the computer.
2. The camera capture system failed to initialize a connection to the camera.

3. The camera does not support accessing image data but provides a video stream.

9.1.13 FAQ: SampleCamcCalib reports “Could not find any capture devices”
Check the following things.

1. Do the other samples that require a camera work? For example, does SampleCvTestbed
work for you?

2. Does your camera provide access to the raw pixel data? Some cameras only provide an
encoded video stream that Alvar can not process.

3. Make sure that the alvarplugins directory is located in the directory that contains the main
ALVAR dynamic libraries (DLL). This should be the case if running the samples from
within Visual Studio.

9.1.14 FAQ: ALVAR on Windows Vista/7
Although ALVAR is not officially supported on Windows Vista/7, it should work on these
platforms.

If there are any problems, they are most likely file access permission problems. The easy
solution is to install ALVAR in your user directory. The ALVAR team has tried that on a
Windows 7 machine and everything worked as expected, after following the instructions in
doc/Compiling.txt

9.1.15 FAQ: Using ALVAR with DirectX

Unfortunately, ALVAR does not support DirectX and nobody on ALVAR team is familiar
with the particularities of the DirectX platform. We can only offer some insight as follows.

Source: http://www.toymaker.info/Games/html/matrices.html

There are three matrix used by Direct3D to transform your 3D models into the final 2D
image you see on the screen. They are the World Matrix, the View Matrix and the Projection
Matrix. Note: If you are coming from an OpenGL background OpenGL combines the first
two together.

Also, the coordinate systems are different.

- OpenGL.: X to the right, Y to the top and Z to the back.

http://www.toymaker.info/Games/html/matrices.html

m- ALVAR v.2.0 User’s Manual 52 (60)

- DirectX: X to the right, Y to the bottom and Z to the front.

The projection matrix comes from camera.GetOpenglProjectionMatrix (...) and needs
to be converted to the DirectX coordinate system.

The pose matrix comes from marker.pose.GetMatrixGL (. ..). It needs to be converted to
the DirectX coordinate system and then decomposed into view and world matrices. How to
do this, we are not sure at the moment.

We can also direct you to the ALVAR OSG demo programs which show how to use
OpenSceneGraph to display actual models on top of markers.

9.1.16 FAQ: How to get the pose of a detected marker in ALVAR
Question:

I would like to extract the position of the marker in several values. The values are X, Y, Z,
A, B, C, where X = Translation in X direction, Y = Translation in Y direction, Z =
Translation in Z direction; and A = Rotation around Z axis, B = Rotation around Y axis, C =
Rotation around X axis. Is it possible ?

Answer:

The information you are looking for is available in the a1var: : Pose class. In the marker
detector sample, alvar: :MarkerDetector IS USed to find an alvar: :Marker Which
contains an alvar: : Pose.

Pose p = (* (marker detector.markers)) [i].pose;

The a1var: : Pose class contains a translation vector and a quaternion. The translation vector
will give you X, Y and Z. The rotation will give you the angles. However, there are many
conventions for rotation angles, for example Tait-Bryan vs Euler angles. You will need to
interpret the quaternion depending on your conventions.

http://en.wikipedia.org/wiki/Euler angles#Conventions

The a1var: : Pose class can also give you a 4x4 homogenous transformation matrix using
the GetMatrix () method.

http://en.wikipedia.org/wiki/Transformation matrix#Uses

9.1.17 FAQ: How to use text string (ascii) markers
Question:
I would like to know which function extract the const char used to create the marker in order

to modify it before to display it. | used Ascii to generate the marker and | want it back in
hexadecimal.

http://en.wikipedia.org/wiki/Euler_angles%23Conventions
http://en.wikipedia.org/wiki/Transformation_matrix%23Uses

VT

ALVAR v.2.0 User’s Manual 53 (60)

Answer:

In order to detect markers created using strings (ascii), you must specify the resolution of the
marker since the default resolution in the detector is set to 5. You can do this using
Marker::SetMarkerSize (). The size auto-detection works fine here.

// detect markers of resolution 11
marker detector.SetMarkerSize (marker size, 11);

// auto-detect resolution
marker detector.SetMarkerSize (marker size, 0);

To extract the string, simply use the data member.

std::cout << (* (marker detector.markers)) [i].data.str << std::endl;

9.1.18 FAQ: Problems with CvMat

Question:

Code like this causes an access violation:

CvMat rotation;
p.GetEuler (&rotation) ;

Answer:

When using cvMat, you must initialize the matrix before using it. Since you have not
initialized it, you are getting invalid pointer errors.

CvMat *euler = cvCreateMat (3, 1, CV_64FCl);
p.GetEuler (euler) ;
cvReleaseMat (&euler) ;

CvMat *quaternion = cvCreateMat (4, 1, CV_64FCl);
p.GetQuaternion (quaternion) ;
cvReleaseMat (&quaternion) ;

CvMat *rodriques = cvCreateMat (3, 1, CV_64FCl);
p.GetRodriques (rodriques) ;
cvReleaseMat (&rodriques) ;

9.1.19 FAQ: ALVAR seems to produce inaccurate results with a widescreen camera

First, make sure you calibrate your camera. This means that you should run the
SampleCamCalib application and use the calibration when you are detecting markers. This
will ensure that you have a correct model-view matrix.

Second, you need to make sure that you are properly setting up your projection matrix. This
should take into account the width and height of the camera as well as the camera calibration
from the previous step.

VT

ALVAR v.2.0 User’s Manual 54 (60)

9.1.20 FAQ: Optimal set of ALVAR markers (minimize chance of improper detection)

ALVAR markers have built-in error correction and in most cases, there should be no
problems with mismatches. However, if you are paranoid about robustness and reliability,
please read the following explanation.

This question seems to be asked many times. Is there a set of ALVAR markers that minimize
the chance of improper detection? This is usually asked when we are choosing markers for a
particular large scale application (ex: not a demo). In these cases, we also want "pretty"
markers. The following explains how to select markers that meet these requirements.

When talking about markers, beauty is often equated with symmetry. The following is a list
of all symmetric 5x5 ALVAR markers.

000
004
011
015
064
068
075
079
176
180
187
191
240
244
251
255

00000000
00000100
00001011
00001111
01000000
01000100
01001011
01001111
10110000
10110100
10111011
10111111
11110000
11110100
11111011
11111111

From this set, we can extract a subset of marker ids that minimize the chance of improper
detection. The simplest approach is to select ids that differ by 2 or more bits. The optimal
subset is as follows.

000
011
068
079
176
187
255

00000000
00001011
01000100
01001111
10110000
10111011
11111111

9.1.21 FAQ: How to interpret a pose
Question:

m- ALVAR v.2.0 User’s Manual 55 (60)

When the ALVAR library calculates the position of the markers, it also calculates the pose.
As a result, a matrix is returned with a whole lot of information. Problem is that we do not
know how to interpret the data in this matrix or the way to use it. Is there any documentation
on this matrix and how to use it? Or can you supply me more detailed information?

Answer:

You say that when ALVAR computes the position of a marker it also computes a pose.
Those two are the same thing. A pose contains a translation (position and direction) as well
as an orientation (rotation). These are the two members of the Pose class. Although you have
access to these two member via GetTranslation() and GetQuaternion(), it is typical to return
a "3d transformation matrix" [1] via GetMatrix(). This matrix essentially contains a
translation and a rotation in homogeneous coordinates [2]. A 3d transformation matrix can
be decomposed into the following, where P is a 4x4 transformation matrix, R is a 3x3
rotation matrix, T is a 3x1 translation matrix and the 1 is for the homogeneous coordinate.

R T

P="9 1

This allows you to easily project points in the marker coordinate frame to the image plane. If
X is a 3D point in marker coordinates and x is a 2D point in image plane coordinates.

tx lx

t i i, I
X= 7 x= 7 x = PX x'=*7

tz i, Ly ly

1 1

[1] http://en.wikipedia.org/wiki/Transformation_matrix

[2] http://en.wikipedia.org/wiki/Homogeneous_coordinates

9.1.22 FAQ: Marker position in image coordinates
Question:

How I can get the real position of the marker in my image?
Answer:

If you want the position of the marker in image coordinates, you have to project the origin of
the marker into the camera reference frame using the given pose. Here is the code.

CvPoint2D64f imagePoint;
camera.ProjectPoint (cvPoint3D64£f (0, 0, 0), &pose, imagePoint);

The values in imagePoint will be in pixels and correspond to the center of the marker in the
image coordinates.

You can also access the pixel locations of the four corners of the marker directly from the
marker object. They can be found in the Marker: :marker corners_img vector.

http://en.wikipedia.org/wiki/Transformation_matrix
http://en.wikipedia.org/wiki/Homogeneous_coordinates

m- ALVAR v.2.0 User’s Manual 56 (60)

9.1.23 FAQ: ALVAR and multithreading

The MarkerDetector class in ALVAR is re-entrant and not thread-safe. This means that you
can safely call methods of the class from multiple threads as long as each thread uses a
different instance of the class. To put it in other words, you should be fine if you have two
threads that each have their own instance of a MarkerDetector class.

9.1.24 FAQ: FernlmageDetector does not track very well
Question:

| am using ALVAR to track a planar object, but the system doesn't track very well when the
camera is far from the object.

| tried to tune some of the parameters as well, but the result does not improve very much.
Basically the tracking is very robust when the camera is close, but it deeply decreases when
the frame planar object takes up ~1/4 of the image area.

Answer:

I'm assuming that you are using the FernimageDetector to track a natural feature image and
not a fiducial marker. If you are seeing these problems with MarkerDetector then we have a
bug or you are not using the library correctly since marker detection in ALVAR is very
robust even at farther distances (within reason).

The markerless tracking support is based on a Ferns classifier. The way this works is the
classifier must be trained beforehand. During the training phase, the parameters essentially
determine a working volume (distance and angle) around the image. During the tracking
phase, if the camera moves outside this training volume, then the tracking basically fails to
work reliably.

The classifier data is already quite large, so increasing the working volume is probably not
the best approach. A nicer approach would be to use the Ferns classifier for initialization and
recovery but then rely on feature-based tracking or structure from motion to track the camera
pose after the initial detection.

9.1.25 FAQ: Using another version of OpenCV

It is possible to use the version provided by the OpenCV project. In some cases, you have to
tell CMake where to find it. You can do this by setting the root path of the OpenCV
installation directory to the "OpenCV_ROOT_DIR" CMake variable. This can be done using
the CMake GUI (cmakegui) or on the command line.

mkdir build
cd build
cmake -DOpenCV_ROOT DIR=c:\path\to\opencv ..\

m- ALVAR v.2.0 User’s Manual 57 (60)

9.1.26 FAQ: Marker detection speed benchmark

ALVAR 2.0 has been benchmarked on a 4 year old workstation (Intel Xeon X5550, 4 cores,
2.67GHz, 3Gb). SampleMarkerDetector ran at 30 frames per second with 30-40% utilization
rate of 1 core. This was for images of 320x240 and 640x480 resolutions. Higher resolutions
are most likely not suitable for real-time processing. The framerate was capped at 30 frames
per second since the capture classes are blocking and the camera only produces 30 frames
every second.

Of course, the more visually cluttered the scene, the more time it takes to analyze all of the
detected blobs. Depending on your setup, you can increase the blob size threshold and only
process the larger blobs.

9.1.27 FAQ: Marker detection distance benchmark

ALVAR can detect small markers or markers that are far away from the camera. However,
the resolution of the image has a lot to do with the limits of marker detection. In practice, the
markers in the image should have a diagonal size of over 25px for accurate and robust

detection.

Image Resolution Marker Size (cm) Distance (m) Diagonal Marker
(PX) Resolution (px)
320x240 2.5 0.4 21-22

320x240 5.0 0.8 21-22

320x240 10.0 15 23-24

640x480 2.5 0.8 21-22

640x480 5.0 15 21-22

640x480 10.0 2.8 23-24

9.1.28 FAQ: Explanation of simple calibration
Question:

Inthe SetSimpleCalib (int X res, int y res, double f fac=1.)
method, is the specified focal length in millimeters or pixels?

Answer:

The f_fac parameter represents a focal length factor. This factor is defined as "half of the
normalized focal length™ where the normalization is done with respect to the image width.

Xres - X resolution or width
frac « focal length factor

m- ALVAR v.2.0 User’s Manual 58 (60)

fp - focal length in pixels
fr - noramlized focal length (projective geometry normalizes with respect to xres / 2)

fp = Xres” ffac

fp =2'fp

fn B xres 2 xres
fo N fr
2" X
£ = 2 Xres " frac _ . frae
xres
f
ffac = ?n

This focal length factor is probably not the best API for this method, but the above describes
what is currently implemented in ALVAR.

9.1.29 FAQ: Z-axis flip
Question:

When the z-axis of the detected marker is close to the perpendicular of the screen plane, it
keeps changing signal very fast (flips from point forward to point backwards and vice-versa).

Answer:

It is not that the Z axis is flipping from pointing forwards to backwards, but rather that it
flips between angled to the left of the normal and angled to the right of the normal. This is a
known problem with the marker detection algorithm and has to do with finding a local
minimum when running the optimization routine for the pose estimation.

The above is a bit hard to explain without drawing some pictures. The following paper
discusses the issue and provides a solution.

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1717461&tag=1

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1717461&tag=1

n_
T
WT ALVAR v.2.0 User’s Manual 59 (60)

9.1.30 ALVAR Main Core Features

WTT TECHNICAL RESEARCH CENTRE OF FINLAND

Alvar: Main Core Features

v Capture video from WSE camera, Firewire

svar Marteratectors W = | | slvar Marerdnooit | | sivar Maneats |

camera or AV file (using plugins). L
u Eﬂetlﬁﬂin Marmerskan% predtﬂlined
ultiMarkers. Marker types: Alvar, e
ARToolkit, custom
v Filters for data sequences

» Trackingimage features
v Camera/Homography methods: Calibrate,

abvmr Capture] 334 abvar Capuresv ahvar-CaptureCvian | | avar-Captureighgu |

Distort, Undistort, CalcExteriorQrientation, [avarFaar |
ProjectPoints : i :
: alvar Fiarsvarage akvar FBarFyrningsvarags

= Further utils: Threads, Mutex, Histogram,

Serialization, Image Labeling, Drawing, e e R TR |

HideTexture, ... ' o '
» Types: Point, Ling, Rotation, Pose, Bitset

[svarTracr |
[var-TrackarF astures | | abvarTrckersial |

9.1.31 ALVAR Main Advanced Features

WTT TECHHNICAL RESEARCH CENTRE OF FINLAND

Alvar: Main Advanced Features

: I I | 1)
aharWuBMartyBnds abar MUBMartiEC aharMuBMarterF e | [alar Musiartemiaze

» Methodsto deduce/optimize MultiMarker

setups | sivar KamancCare| | sivar KalmanSensoran |
= SimpleSfM: Structure formotionto use

features in additionto markers. Pose update T R |

optimization. ' S)
. r?;;rgglscnntainerversiuns ofseveral [| [avarsamansanares |

Mon-linear optimization using Gauss-
Mewton, Levenberg-Marquardt and Tukey
m-estimator

Kalman filter, EKF, Unscented Kalman filter
More methodsfortrackingimage features
Further utils: Container3d, Ransac,
TrifocalTensar, Integrallmage,
IntegralGradient, ...

Fern's classification framework to enable

markerlesstracking

| wvar-TrackaFestures alvar TrackerC rigniabon abear- TrackePsa abvar Trackersi

T I

[svar TrackarF asturmec sivar TrackaFfot svar-TrackarStatfot |
Y

n_
—v
WT ALVAR v.2.0 User’s Manual 60 (60)

9.1.32 Appetizer: Features Not Yet in ALVAR

These techniques have been demonstrated by VTT AR Team, but they have not yet been
incorporated into ALVAR...

VIT TECHMICAL RESEARCH CENTRE OF FINLAND

Other Demonstrations of the AR Team
(not yetin Alvar)

= 3D-model based tracking
= Image database e.g. fortracking init/recovery
* Photorealistic rendering

* Plugin interface for external sensors
(e.g. inertial measurement unit)

