

 1 (60)

ALVAR – A Library for Virtual and Augmented Reality

User’s Manual (v.2.0)

Change history

Version Date Status
(draft/proposal/updated /to be
reviewed/ approved)

Author(s) Remarks

0.1 21.11.2011 Draft TTERAK First draft created.

0.2 12.12.2011 Draft TTERAK Background info added to Ch 9.3

0.3 15.12.2011 Draft TTERAK New screen shots from doc,

FAQs, installation step-by-step

0.4, 0.5 25.01.2012 Draft TTERAK Content to sections 9.3.x

0.6 29.02.2012 Draft TTERAK GNU LGPL license

0.7 25.05.2012 Draft TTERAK Changes caused by the new

ALVAR distribution packages

1.0 30.05.2012 Final TTERAK Screen dumps from v.2.0.0

1.1 13.12.2013 Update ABALAIN Add FAQ entries.

 Name Position Date Signatures

Written by Kari Rainio TK8036 30.05.2012

Reviewed by Alain Boyer TK8035 30.05.2012

Approved by

 ALVAR v.2.0 User’s Manual
 2 (60)

Contents

1 Introduction ... 4
1.1 Purpose of the Document ... 4

1.2 Other Documents .. 4
1.3 Introduction to Augmented Reality (AR) and VTT AR Team .. 4
1.4 Introduction to ALVAR – A Library for Virtual and Augmented Reality 6

1.4.1 ALVAR Desktop License ... 7
2 ALVAR Features .. 7

2.1 Other AR Technologies, NOT in ALVAR (yet…) .. 8
3 ALVAR Packages and Requirements ... 8

3.1 The 3 ALVAR Packages .. 8
3.2 ALVAR Requirements ... 9

4 Istalling and Using Alvar .. 9
4.1 Test ALVAR Only (Bin package) .. 9
4.2 Basic ALVAR Usage (Sdk package) ... 10

4.3 Compiling the Alvar Samples (Sdk package) .. 10
4.4 Advanced: Compile the ALVAR Source Code (Src package) ... 11

4.5 ALVAR Directories ... 11
4.6 Installing ALVAR: Step by Step .. 11

5 ALVAR Sample Code .. 18
5.1 SampleCamCalib .. 19
5.2 SampleCvTestbed ... 19

5.3 SampleFilter ... 20
5.4 SampleIntegralImage .. 21

5.5 SampleLabeling .. 22

5.6 SampleMarkerCreator .. 23

5.7 SampleMarkerDetector .. 23
5.8 SampleMarkerHide .. 24

5.9 SampleMarkerlessCreator .. 25
5.10 SampleMarkerlessDetector ... 25
5.11 SampleMultiMarker .. 26

5.12 SampleMultiMarkerBundle .. 27
5.13 SampleOptimization ... 28

5.14 SamplePointcloud ... 28
5.15 SampleTrack ... 29

6 Demo Programs: Using ALVAR with OpenSceneGraph ... 31

6.1 Demo Programs for ALVAR Core Features .. 31
6.1.1 Model2Marker .. 31

6.1.2 MarkerHide ... 32
6.1.3 MarkerField ... 32

6.2 Demo Programs for ALVAR Advanced Features .. 33
6.2.1 OsgSfM ... 34
6.2.2 OsgFern ... 34
6.2.3 Osg3DMarkerField ... 35

7 ALVAR Utility Programs ... 36
7.1 SampleCamCalib.exe ... 36
7.2 SampleMarkerCreator.exe .. 37

8 ALVAR HTML Help .. 39

8.1 File List ... 40

 ALVAR v.2.0 User’s Manual
 3 (60)

8.2 Class List .. 42

9 ALVAR Source Code ... 45
9.1 Code highlights: Most important ALVAR concepts, FAQs .. 45

9.1.1 How the capture system (and plugins) works ... 45
9.1.2 How the marker detection works .. 45

9.1.3 How the margins work .. 46
9.1.4 How the multimarkers (i.e. marker fields) work ... 46
9.1.5 Encoding data (integer, text, URL) into ALVAR markers ... 46
9.1.6 FAQ: I compiled my ALVAR program with VC++, but I cannot run the program in

another computer ... 47
9.1.7 FAQ: Using PsaTracker, i.e. motion flow tracking .. 47

9.1.8 FAQ: Contents of the ALVAR Sdk distribution package ... 48
9.1.9 FAQ: Cannot complete the first steps of doc/compiling.txt ... 49
9.1.10 FAQ: Cannot follow the last steps of doc/compiling.txt .. 49

9.1.11 FAQ: ALVAR sample reports “Could not find any capture plugins” 50
9.1.12 FAQ: SampleCamCalib reports “Could not initialize the selected capture backend” 51
9.1.13 FAQ: SampleCamCalib reports “Could not find any capture devices” 51
9.1.14 FAQ: ALVAR on Windows Vista/7 ... 51

9.1.15 FAQ: Using ALVAR with DirectX .. 51

9.1.16 FAQ: How to get the pose of a detected marker in ALVAR .. 52
9.1.17 FAQ: How to use text string (ascii) markers .. 52
9.1.18 FAQ: Problems with CvMat ... 53

9.1.19 FAQ: ALVAR seems to produce inaccurate results with a widescreen camera 53
9.1.20 FAQ: Optimal set of ALVAR markers (minimize chance of improper detection)............. 54

9.1.21 ALVAR Main Core Features .. 54
9.1.22 ALVAR Main Advanced Features .. 59
9.1.23 Appetizer: Features Not Yet in ALVAR ... 60

 ALVAR v.2.0 User’s Manual
 4 (60)

1 Introduction

1.1 Purpose of the Document

This document contains instructions for the users of the ALVAR open-source software

library, published by VTT Technical Research Centre of Finland.

1.2 Other Documents

The VTT AR Team web page: http://www.vtt.fi/multimedia

AR Team web pages contain many useful documents of Augmented Reality in general and

ALVAR in particular:

 Description of AR (slide show, pdf),

 Videos of team’s AR applications,

 Downloadable AR demo applications,

 PowerPoint presentation of ALVAR, ALVAR User’s Manual (this document),

 ALVAR downloads (bin, sdk, src – see later).

1.3 Introduction to Augmented Reality (AR) and VTT AR Team

In Augmented Reality the user looks at a live video image of reality. The video image is

real-time and interactive, i.e. the user can choose where (s)he looks and move around. Often

head-up displays are employed for this, or tablet PCs (with cameras), or smart mobile

phones.

http://www.vtt.fi/multimedia

 ALVAR v.2.0 User’s Manual
 5 (60)

The live video in analyzed by a computer, which deduces from the image features where the

user is and which way (s)he looks. This way the computer can insert virtual objects to the

scene so that they are displayed in the correct size and angle, i.e. the virtual objects seem to

be “glued” to the reality.

There are lesser forms of Augmented Reality, e.g. displaying informative texts near the real

objects of the scene, but VTT AR team in conserned with the most demanding form of

Augmented Reality, where the goal is to insert virtual 3D objects to the real scene

seamlessly.

AR Team web pages (http://www.vtt.fi/multimedia) contain many useful documents of

Augmented Reality:

 Description of AR (slide show, pdf),

 Videos of team’s AR applications, and

 Downloadable AR demo applications.

A large part of the team’s AR know-how (but not all of it) is embodied in the Alvar open-

source AR library: A Library for Virtual and Augmented Reality.

http://www.vtt.fi/multimedia

 ALVAR v.2.0 User’s Manual
 6 (60)

1.4 Introduction to ALVAR – A Library for Virtual and Augmented Reality

ALVAR can be downloaded from the AR Team web pages:

http://www.vtt.fi/multimedia/alvar.html

ALVAR is a software library for creating virtual and augmented reality applications.

ALVAR has been developed by the VTT Technical Research Centre of Finland.

The current version of the library mainly supports marker-based augmented reality

applications, but also includes tools for markerless augmented reality.

ALVAR is designed to be as flexible as possible. It offers high-level tools and methods for

creating augmented reality applications with just a few lines of code. The library also

includes interfaces for all of the low-level tools and methods, which makes it possible for the

user to develop their own solutions using alternative approaches or completely new

algorithms.

ALVAR is currently provided on Windows and Linux operating systems and requires only

one third party library (OpenCV). ALVAR is independent of any graphical libraries and can

be easily integrated.

On the other hand, this implies that ALVAR itself contains no support for 3D graphics or 3D

models – these must be implemented using other software libraries.

There are separate demo programs (binaries and source code) that use OpenSceneGraph for

3D graphics.

http://www.vtt.fi/multimedia/alvar.html

 ALVAR v.2.0 User’s Manual
 7 (60)

1.4.1 ALVAR Desktop License

ALVAR Desktop license is GNU LGPL v.2.1. Thus ALVAR Desktop is free for both

commercial and non-commercial use.

ALVAR 2.0 is distributed under the terms of the GNU Lesser General Public License

(LGPL) version 2.1 or later. See http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html for

the license terms. By downloading Alvar 2.0, you agree to be bound by the terms of the

GNU LGPL version 2.1 or later.

Other versions of ALVAR (e.g. ALVAR Mobile) are commercial.

2 ALVAR Features

Detecting and tracking 2D markers. Currently two types of square matrix markers are

supported. Custom marker types can easily be added. ALVAR keeps the marker pose

estimation as accurate as possible. Furthermore, ALVAR uses some tracking heuristics to

identify markers that are "too far" and to recover from occlusions in the multimarker case for

example.

Using a setup of multiple markers for pose detection. The marker setup coordinates can be

set manually or they can be automatically deduced using various methods.

Tools for calibrating a camera. Distorting and undistorting points, projecting points and

finding exterior orientation using point-sets.

Hiding markers from the view.

Several basic filters: average, median, running average, double exponential smoothing.

Kalman filters for sensor fusion: Kalman filter, extended Kalman filter and unscented

Kalman filter.

Several methods for tracking using optical flow.

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

 ALVAR v.2.0 User’s Manual
 8 (60)

Markerless tracking using the SfM and Fern’s algorithms.

Summary of ALVAR main core features:

 Capture video from USB camera, Firewire camera or AVI file (using plugins).

 Detecting Markers and predefined MultiMarkers. Marker types: ALVAR,

ARToolkit, custom

 Filters for data sequences

 Tracking image features

 Camera/Homography methods: Calibrate, Distort, Undistort,

CalcExteriorOrientation, ProjectPoints

 Further utils: Threads, Mutex, Histogram, Serialization, Image Labeling, Drawing,

HideTexture, …

 Types: Point, Line, Rotation, Pose, Bitset

Summary of ALVAR main advanced features:

 Methods to deduce/optimize MultiMarker setups

 SimpleSfM: Structure for motion to use features in addition to markers. Pose update

optimization.

 External container versions of several methods

 Non-linear optimization using Gauss-Newton, Levenberg-Marquardt and Tukey m-

estimator

 Kalman filter, EKF, Unscented Kalman filter

 More methods for tracking image features

 Further utils: Container3d, Ransac, TrifocalTensor, IntegralImage, IntegralGradient,

…

 Fern’s classification framework to enable markerless tracking

2.1 Other AR Technologies, NOT in ALVAR (yet…)

Other Demonstrations of the AR Team (not yet in ALVAR):

 3D-model based tracking

 Image database e.g. for tracking init/recovery

 Photorealistic rendering

 Plugin interface for external sensors

(e.g. inertial measurement unit).

3 ALVAR Packages and Requirements

3.1 The 3 ALVAR Packages

There are three different ALVAR distribution packages, which all can be freely downloaded:

 Bin – for those who only want to test AR and ALVAR; contains precompiled binary

versions of the ALVAR samples and OSG demos; no C++ compiler nor 3
rd

-party libraries

are required

 ALVAR v.2.0 User’s Manual
 9 (60)

 Sdk – for those who want to build their own AR applications using ALVAR; contains

ALVAR header files, precompiled ALVAR libraries, and HTML documentation; a C++

compiler and 3
rd

-party libraries are required

 Src – for those who want to compile ALVAR themselves; contains the raw source code

of ALVAR; a C++ compiler and 3
rd

-party libraries are required

Please note that the 3 distributions are NOT subsets of each other, e.g. HTML

documentation is in the Sdk distribution only. The ALVAR Presentation and the User’s

Manual (this document) must be downloaded separately.

3.2 ALVAR Requirements

ALVAR has been tested with the following environments: Windows XP 32-bit, Microsoft

Visual Studio 2005, 2008 and 2010 (versions 8, 9 and 10). Linux

ALVAR core library requires the following 3rd party library: OpenCV 2.4.0

ALVAR sample code requires: GLUT 3.7.6, CMake 2.8.3

The separate demo programs require: OpenSceneGraph 2.8.4

4 Istalling and Using Alvar

4.1 Test ALVAR Only (Bin package)

If you only want to find out what AR and ALVAR is all about, download and install the Bin

distribution package for your operating system. You can execute the binary versions of the

ALVAR Samples and Demos without having to compile anything.

 ALVAR v.2.0 User’s Manual
 10 (60)

4.2 Basic ALVAR Usage (Sdk package)

Those users who want to develop their own C++ applications using the ALVAR libraries

should download and install the ALVAR Sdk distribution package.

Ensure that you have a suitable development environment. Currently the library has been

used with the following.

 Microsoft Visual Studio 2005, 2008 and 2010

 Linux 32-bit and 64-bit; gcc versions 4.3, 4.4 and 4.5

Install the required 3rd party libraries: OpenCV 2.4.0, CMake 2.8.3, GLUT 3.7.6 (needed

only in Samples), OSG 2.8.4 (needed only in Demos).

Install the ALVAR library (Sdk package).

Develop your application. Include the needed ALVAR headers in your source directory and

link to the ALVAR library matching your development environment (e.g.

bin/msvc90/alvar.lib).

Copy the OpenCV (and GLUT) runtime libraries where your application can find them (e.g.

the exe-directory).

4.3 Compiling the Alvar Samples (Sdk package)

The most up-to-date instructions of how to compile ALVAR applications are in the

‘compiling.txt’ file in the doc folder. Please refer to that file for more thorough instructions,

this section presents just a brief summary.

Ensure that you have a suitable development environment.

Install the required 3rd party libraries: OpenCV, GLUT, CMake.

Install the ALVAR library.

Note that the CMake binary directory must be in your system’s PATH environment variable.

Generate the development environment to build the samples by running the generate-script

of your choice (e.g. build/msvc90/generate.bat).

Fill in the missing information for CMake (e.g. GLUT_ROOT_PATH).

Do NOT change the ’where to build binaries’ directory.

Use the generated development environment to compile the samples.

(The Demo programs using OpenSceneGraph for 3D graphics are compiled the same way,

but in addition OSG 2.8.4 must be downloaded.)

 ALVAR v.2.0 User’s Manual
 11 (60)

4.4 Advanced: Compile the ALVAR Source Code (Src package)

For those (advanced) users who want to compile the ALVAR source code themselves there

is the Src distribution package. The HTML Help is generated from the source code using the

Doxygen 3
rd

-party tool.

4.5 ALVAR Directories

 bin - The compiled binaries will appear in a subdirectory matching the selected build

subdirectory

 build - The building environment is in a matching subdirectory. See the

‘compiling.txt’ file in the doc folder.

 data – Data files used by some of the Samples and Demos (however, the markers are

in the Alvar.pdf file, which is in the doc directory).

 demo – Demo applications using OpenSceneGraph for 3D graphics.

 doc - Documentation. Generated using Doxygen (e.g. "make doc"). Also contains

sample markers in the Alvar.pdf file.

 include - contains the ALVAR C++ header files (Sdk package only).

 sample - Samples that demonstrate how to use the library.

 src - Sources for the ALVAR library (Src package only). Note that Alvar.h is

different from the others; it is generated separately for each build environment based

on Alvar.h.cmake.

4.6 Installing ALVAR: Step by Step

The installation package alvar-2.0.0-sdk-win32-vs2008.exe was executed.

First there is a welcome screen, then a license acceptance screen, and then the user is

prompted for installation location:

 ALVAR v.2.0 User’s Manual
 12 (60)

In the following screen dumps, the Destination Folder of the installation was set to:

D:\Tools\ALVAR 2.0.0 sdk win32 vs2008

In subfolder build the script generate_vs2008.bat was executed.

 ALVAR v.2.0 User’s Manual
 13 (60)

The *.bat starts the CMake 2.8 program. The user must enter the proper paths. The initial

values are usually good, so the first thing to do is to press the button Configure.

 ALVAR v.2.0 User’s Manual
 14 (60)

The following sceen dumps of this section were generated with an earlier VTT internal

development version called 2.0.0.794e832. This ALVAR version used earlier versions of the

3
rd

-party libraries, namely CMake 2.8, OpenCV 2.3, GLUT 3.7, and OpenSceneGraph 2.8.0.

The example PC had Windows XP operating system, MS Visual Studio 2008 SP1. CMake

2.8, OpenCV 2.3, GLUT 3.7, and OpenSceneGraph 2.8.0 had been installed earlier.

Also the Destination Folder of the installation was different, it was set to:

D:\Projects\Alvar 2.0.0

(Please remember that the current version of the 3
rd

-party libraries are: CMake 2.8.3,

OpenCV 2.4.0, GLUT 3.7.6, and OpenSceneGraph 2.8.4.)

 ALVAR v.2.0 User’s Manual
 15 (60)

GLUT 3.7 path had to be entered (search for entries …-NOTFOUND in the right-hand

column). The entries were clicked and the proper paths were entered. After that a new click

of button Configure.

And now we are this far, the Alvar installation folder was detected correctly. So now the

button Generate can be pressed.

A new subfolder to folder build was generated: build_vs2008_release

 ALVAR v.2.0 User’s Manual
 16 (60)

In this subfolder there is the batch file Alvar.sln.bat, which is used to start Visual Studio

2008. Do not start Alvar.sln directly, or the correct environment variables are not set up.

Then enter the menu command Build – Build Solution.

 ALVAR v.2.0 User’s Manual
 17 (60)

Print markers, try to execute e.g. SampleMarkerHide. In this installation the execution

failed because VS2008 could not find glut32.dll. These DLLs were copied from the GLUT

folder to the Debug folder.

After that the sample executed correctly.

 ALVAR v.2.0 User’s Manual
 18 (60)

5 ALVAR Sample Code

ALVAR sample code requires GLUT 3.7.6 and CMake 2.8.3.

The following table presents a summary of the sample code:

Sample Description

SampleCamCalib
This is an example of how to use ProjPoints and Camera classes to perform
camera calibration using a chessboard pattern.

SampleCvTestbed
This is an example of how to use the CvTestbed, CaptureFactory and Capture
classes in order to make quick OpenCV prototype applications.

SampleFilter
This is an example of how to use various filters: FilterAverage, FilterMedian,
FilterRunningAverage, FilterDoubleExponentialSmoothing, Kalman, KalmanEkf
and FilterArray.

SampleIntegralImage
This is an example of how to use the IntegralImage and IntegralGradient
classes for image gradient analysis.

SampleLabeling
This is an example of how to label images using LabelingCvSeq.

SampleMarkerCreator
This is an example that demonstrates the generation of MarkerData (or
MarkerArtoolkit) markers and saving the image using SaveMarkerImage.

SampleMarkerDetector
This is an example that shows how to detect MarkerData markers and
visualize them using GlutViewer.

SampleMarkerHide
This is an example that shows how to detect MarkerData markers, visualize
them using GlutViewer and hide them with BuildHideTexture and DrawTexture.

SampleMarkerlessCreator

This is an example of how to use the FernImageDetector class to train a Fern
classifier for markerless image-based tracking.

SampleMarkerlessDetector
This is an example of how to use the FernImageDetector and
FernPoseEstimator classes to detect and track an image and visualize it using
GlutViewer.

SampleMultiMarker
This is an example that demonstrates the use of a preconfigured MultiMarker
setup.

SampleMultiMarkerBundle
This is an example that automatically recognises and optimizes MultiMarker
setups using MultiMarkerBundle.

SampleOptimization
This is an example of how to use the Optimization class by fitting curves of
increasing degree to random data.

SamplePointcloud
This is an example showing how to use SimpleSfM for tracking the
environment using features in addition to MultiMarker.

SampleTrack
This is an example that shows how to perform tracking of the optical flow using
TrackerPsa, TrackerPsaRot, TrackerFeatures, TrackerStat or TrackerStatRot.

All 15 sample programs use the header file Shared.h, which defines the functions

outputEnumeratedPlugins (print plugins to console), outputEnumeratedDevices (print

devices to console), and defaultDevice (find index of highgui device). Many of the sample

program projects contain files GlutViewer.h and GlutViewer.cpp, which define the class

Drawable and 20 functions in namespace GlutViewer.

Many of the sample programs also define function videocallback which is called for each

video frame by GLUT. Some sample programs also define function keycallback to handle

the keyboard presses.

The main program of most samples prints the usage instructions, processes the command-

line parameters, sets the videocallback function to be called, enumerates the available

plugins, enumerates the available capture devices (and selects one of them to be used), and

 ALVAR v.2.0 User’s Manual
 19 (60)

initializes the capture. After this the camera calibration is loaded, if available, and the video

processing is started. The simplest sample program demonstrating this structure is

SampleCvTestbed.

Next there is a more thorough presentation of each sample program with screen shots.

5.1 SampleCamCalib

This is an example of how to use ProjPoints and Camera classes to perform camera

calibration using a chessboard pattern. Point the camera to the chessboard calibration pattern

(see Alvar.pdf) from several directions until 50 calibration images are collected. A 'calib.xml'

file that contains the internal parameters of the camera is generated and can be used by other

applications that require a calibrated camera.

Usage:

 samplecamcalib.exe [device]

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

Keyboard Shortcuts:

 q: quit

This application is discussed further in section 7.1.

5.2 SampleCvTestbed

This is an example of how to use the CvTestbed, CaptureFactory and Capture classes in

order to make quick OpenCV prototype applications. The CaptureFactory can create

Capture objects from many different backends (see SampleCvTestbed.cpp). You can also

show/hide the first ten images created using CvTestbed using the number keys. In this

example you can use key '0' to show/hide a grayscale version of the captured image.

 ALVAR v.2.0 User’s Manual
 20 (60)

Usage:

 samplecvtestbed.exe [device]

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

Keyboard Shortcuts:

 0: show/hide grayscale image

 q: quit

5.3 SampleFilter

This is an example of how to use various filters: FilterAverage, FilterMedian,

FilterRunningAverage, FilterDoubleExponentialSmoothing, Kalman, KalmanEkf and

FilterArray. First the example shows unfiltered test data with outliers. The data is then

filtered using the various filters. Press any key to cycle through the filters.

 ALVAR v.2.0 User’s Manual
 21 (60)

Usage:

 samplefilter.exe

Keyboard Shortcuts:

 any key: cycle through filters

 q: quit

5.4 SampleIntegralImage

This is an example of how to use the IntegralImage and IntegralGradient classes for image

gradient analysis. The vertical (green) and horizontal (red) whole image projections are

computed using IntegralImage::GetSubimage and shown in the SampleIntegralImage

window. The gradients of the image edges are shown in the Gradient window. The edges are

detected using the Canny edge detector where t1 and t2 are parameters for the Canny

algorithm. The gradients are drawn in red and their local normals are drawn in blue.

Usage:

 sampleintegralimage.exe [device]

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

 ALVAR v.2.0 User’s Manual
 22 (60)

Keyboard Shortcuts:

 0: show/hide gradient image

 1: show/hide grayscale image

 2: show/hide vertical image

 3: show/hide horizontal image

 4: show/hide canny image

 q: quit

5.5 SampleLabeling

This is an example of how to label images using LabelingCvSeq. Blobs are detected in the

image and if the blobs have four corners, the edges between the corners are visualized.

 ALVAR v.2.0 User’s Manual
 23 (60)

Usage:

 samplelabeling.exe [device]

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

Keyboard Shortcuts:

 +: Increase adaptive threshold block size.

 -: Decrease adaptive threshold block size.

 q: quit

5.6 SampleMarkerCreator

This is an example that demonstrates the generation of MarkerData (or MarkerArtoolkit)

markers and saving the image using SaveMarkerImage. This application can be used to

generate markers and multimarker setups that can be used with SampleMarkerDetector and

SampleMultiMarker.

Usage:

 samplemarkercreator.exe [options] argument

 65535 marker with number 65535

 -f 65535 force hamming(8,4) encoding

 -1 "hello world" marker with string

 -2 catalog.xml marker with file reference

 -3 www.vtt.fi marker with URL

 -u 96 use units corresponding to 1.0 unit per 96 pixels

 -uin use inches as units (assuming 96 dpi)

 -ucm use cm's as units (assuming 96 dpi) <default>

 -s 5.0 use marker size 5.0x5.0 units (default 9.0x9.0)

 -r 5 marker content resolution -- 0 uses default

 -m 2.0 marker margin resolution -- 0 uses default

 -a use ArToolkit style matrix markers

 -p prompt marker placements interactively from the user

This application is discussed further in section 7.1.

5.7 SampleMarkerDetector

This is an example that shows how to detect MarkerData markers and visualize them using

GlutViewer. In the SampleMarkerDetector window, various debug information is shown

about the detected markers. The coordinate axes and a virtual cube are superimposed onto

the markers to visualize the detected pose. For each marker, a small image of the marker

content is displayed at the origin and the marker number is displayed at one of the corners.

At the opposing corner, the error estimation percentages 'MARGIN_ERROR' and

'DECODE_ERROR' (red) or 'TRACK_ERROR' (dark red) are displayed.

In the AR window, squares are drawn over the marker positions using OpenGL. In the VR

window, the squares are drawn with respect to the camera coordinate frame. The viewpoint

can be modified by dragging with the left and right mouse buttons.

 ALVAR v.2.0 User’s Manual
 24 (60)

Usage:

 samplemarkerdetector.exe [device|filename]

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

 filename = string specifying a media file as input

Keyboard Shortcuts:

 q: quit

5.8 SampleMarkerHide

This is an example that shows how to detect MarkerData markers, visualize them using

GlutViewer and hide them with BuildHideTexture and DrawTexture.

Usage:

 samplemarkerhide.exe [device]

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

Keyboard Shortcuts:

 q: quit

 ALVAR v.2.0 User’s Manual
 25 (60)

5.9 SampleMarkerlessCreator

This is an example of how to use the FernImageDetector class to train a Fern classifier for

markerless image-based tracking. The image should contain many unique features and be in

the range of 200x200 to 500x500 pixels. A '*.dat' file will be saved in the same directory as

the image and can be used with the SampleMarkerlessDetector sample. Training will take

about one minute with a 200x200 sample.

Usage:

 samplemarkerlesscreator filename

 filename = filename of image to train

5.10 SampleMarkerlessDetector

This is an example of how to use the FernImageDetector and FernPoseEstimator classes to

detect and track an image and visualize it using GlutViewer. The classification must first be

trained with the SampleMarkerlessCreator sample and the resulting file passed as an

argument to this sample.

For optimal results, a high quality USB camera or a Firewire camera is necessary. It is also

advised to calibrate the camera using the SampleCamCalib sample. It should be noted that

the size of the trained image will affect the optimal distance for detection.

 ALVAR v.2.0 User’s Manual
 26 (60)

Usage:

 samplemarkerlessdetector filename [device]

 filename = the filename of classifier (.dat)

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

Keyboard Shortcuts:

 q: quit

5.11 SampleMultiMarker

This is an example of how to use the MultiMarker class to detect preconfigured multi-marker

setup (see multimarker.pdf). A large cube is drawn over the detected multi-marker even

when only some of the markers are visible.

Usage:

 samplemultimarker.exe [device]

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

 ALVAR v.2.0 User’s Manual
 27 (60)

Keyboard Shortcuts:

 v: switch between three debug visualizations

 l: load marker configuration from mmarker.txt

 d: toggle the detection of non-readable markers

 q: quit

5.12 SampleMultiMarkerBundle

This is an example that automatically recognises and optimizes MultiMarker setups using

MultiMarkerBundle.

Usage:

 samplemultimarkerbundle.exe [device]

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are preferred

 ALVAR v.2.0 User’s Manual
 28 (60)

Keyboard Shortcuts:

 v: switch between three debug visualizations

 l: load marker configuration from mmarker.txt

 s: save marker configuration to mmarker.txt

 r: reset marker configuration

 p: add measurement

 o: optimize bundle

 q: quit

5.13 SampleOptimization

This is an example of how to use the Optimization class by fitting curves of increasing

degree to random data.

Usage:

 sampleoptimization.exe

Keyboard Shortcuts:

 any key: cycle through datasets

 q: quit

5.14 SamplePointcloud

This is an example showing how to use SimpleSfM for tracking the environment using

features in addition to MultiMarker. To get this example work properly be sure to calibrate

your camera and tune it to have fast framerate without motion blur.

There are two possible approaches: Update() and UpdateRotationsOnly(). By default the

Update() is used but you can easily uncomment the other one if needed.

 ALVAR v.2.0 User’s Manual
 29 (60)

Usage:

 samplepointcloud.exe [device]

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

Keyboard Shortcuts:

 r: reset

 q: quit

5.15 SampleTrack

This is an example that shows how to perform tracking of the optical flow using TrackerPsa,

TrackerPsaRot, TrackerFeatures, TrackerStat or TrackerStatRot.

Usage:

 sampletrack.exe [device]

 device = integer selecting device from enumeration list (default 0); highgui capture

devices are prefered

 ALVAR v.2.0 User’s Manual
 30 (60)

Keyboard Shortcuts:

 r,t: reset tracker

 n,space: cycle through tracking algorithms

 q: quit

 ALVAR v.2.0 User’s Manual
 31 (60)

6 Demo Programs: Using ALVAR with OpenSceneGraph

ALVAR Sdk distribution package contains C++ source code only, the users must compile

their own programs.

ALVAR itself contains no support for 3D graphics or 3D models.

There are separate demo programs, which use OpenSceneGraph for 3D graphics.

There are three demo programs that demonstrate the core ALVAR features, and three

demonstaring the advanced features.

The core demos use only HighGui for acquisition and refer to hard-coded data files (no

command-line parameters).

The advanced demos use all installed acquisition plug-ins, and while they also refer to hard-

coded data file names, some settings can be overridden with command-line parameters.

The command-line parameters of the advanced demos are: webcam index, camera

calibration file, and app-specific option.

6.1 Demo Programs for ALVAR Core Features

With all three programs, if file ‘calib.xml’ is found, it is used as your camera calibration.

This file can be created with the utility program ‘SampleCamCalib.exe’.

All three core demo programs use the class CVideoBG (defined in header file

CommonUtils.h), which draws the current video frame (i.e. the picture from the webcam) as

the background, so the desired OSG 3D model(s) can be drawn (i.e. augmented) on top of it.

In the main program of each demo the OSG render loop is entered. And for each frame the

program calls the ALVAR image acquisition (to get a new video frame) and checks whether

the tracked markers are detected. If they are, the marker pose (i.e. position and orientation) is

computed for each marker, and the corresponding OSG model is set to the same pose and

drawn; this way the OSG models are augmented to the video frame on top of the

corresponding markers. However, if a tracked marker is not detected, the corresponding

OSG model is hidden.

6.1.1 Model2Marker

Identifies two independent markers and renders simple OSG model on top of both markers.

 ALVAR v.2.0 User’s Manual
 32 (60)

Print markers 5 and 10 in the Alvar.pdf file in the doc directory and show them to your

webcam.

6.1.2 MarkerHide

Identifies two independent markers, renders simple OSG model on top of both markers and

hides one of the markers using ALVAR hide-texture generation.

Print markers 5 and 10 in the Alvar.pdf file in the doc directory and show them to your

webcam.

6.1.3 MarkerField

Identifies a set of markers in predefined configuration and renders a single OSG model as

long as any one of the markers is visible.

 ALVAR v.2.0 User’s Manual
 33 (60)

Print the multimarker in the Alvar.pdf file in the doc directory and show it to your webcam.

6.2 Demo Programs for ALVAR Advanced Features

With all three programs, if file ‘calib.xml’ is found, it is used as your camera calibration.

This file can be created with the utility program ‘SampleCamCalib.exe’.

All three advanced demo programs use the class ViewWithBackGroundImage (defined in

header file CommonUtils.h), which draws the current video frame (i.e. the picture from the

webcam) as the background, so the desired OSG 3D model(s) can be drawn (i.e. augmented)

on top of it.

All three advanced demo programs also define functions PickHandler (to handle keyboard

commands), InitVideoCapture (to initialize video capture), InitImages (to allocate memory

for one RGB image and one grayscale image), InitOSG (to initialize OSG and to create a

ViewWithBackGroundImage object), CleanUp (to free memory allocated for the RGB and

grayscale images and stop capture at program end), and Process (to process each captured

video frame). Besides, each of the three advanced demo programs has a function that is

specific to that program: InitALVAR, InitFernClassifier, or GetMultiMarkerPose.

The main program of each demo prints the usage instructions, processes the command-line

parameters, and calls the Init* functions. If the initializations succeed, the Process function is

called, which captures a video frame, calls the relevant ALVAR functions, and calls the

OSG rendering function “viewer->frame()”. Before the OSG rendering the return values of

the relevant ALVAR functions have determined whether the OSG model should be hidden

or shown; and if shown, what is the correct pose of the OSG model so that it is correctly

augmented to the video frame.

The markers used by these programs are in the Alvar.pdf file in the doc subdirectory; other

data files that these programs use are in the data subdirectory of the ALVAR installation

directory.

 ALVAR v.2.0 User’s Manual
 34 (60)

6.2.1 OsgSfM

Identifies a predefined marker configuration and renders an OSG model. Reconstructs

features with two alternative methods for tracking in the surroundings.

The default multimarker to be tracked is in file ‘mmarker.xml’ (3
rd

 cmd-line parameter can

be used to override this), which refers to multimarker in the Alvar.pdf file. Some keyboard

commands are available, see the command window.

6.2.2 OsgFern

Uses an image as a marker and renders an OSG model. Uses the Fern’s algorithm.

 ALVAR v.2.0 User’s Manual
 35 (60)

The default image file to be tracked is in ‘AlvarSlide.jpg’. Use the 3
rd

 cmd-line parameter to

enter some other image to be used as a marker, its size should be about 200x200 pixels.

First time the program is executed for a new image, it must train the Fern classifier. This

takes about one minute, after which the program saves the classifier training results. For

subsequent executions the program uses the results data file, so no training period is needed.

6.2.3 Osg3DMarkerField

Deduces the spatial configuration of a 3D marker field, then renders an OSG model on top of

the selected marker in this 3D marker field.

Create a 3D marker field using Alvar markers 0 - 11. Marker 0 is required (its pose is

reported as the marker field pose), others are optional. Enter another marker index (1-11) as

the 3
rd

 cmd-line parameter to use another pose marker. The size of all the used markers 0 –

11 should be the same.

 ALVAR v.2.0 User’s Manual
 36 (60)

7 ALVAR Utility Programs

In the Bin distribution package of Alvar you’ll find two ALVAR utilities:

SampleCamCalib.exe and SampleMarkerCreator.exe.

Actually, SampleCamCalib.exe is the SampleCamCalib sample of ALVAR library, while

SampleMarkerCreator.exe is the SampleMarkerCreator sample of ALVAR library.

SampleCamCalib.exe is used to calibrate your webcam, using the chessboard pattern.

SampleMarkerCreator.exe is used to create marker image files which you can print. It can

also create multimarkers, i.e. 2D marker fields.

7.1 SampleCamCalib.exe

SampleCamCalib.exe is used to calibrate your webcam, using the chessboard pattern (in the

Alvar.pdf file in the doc directory).

Print the slide containing the chessboard pattern. Attach the print to a level surface.

Start the program, and show the chessboard pattern to your webcam in different positions,

distances, and orientations.

The program acquires 50 samples, about once a second. When a sample is acquired (the

chessboard pattern is visible), the found pattern is shortly shown in red.

Calibration result is written to file ’calib.xml’.

By default, SampleCamCalib.exe calibrates the default camera using the default resolution.

However, if either of these is not the one you intend to use, enter command-line argument

 ALVAR v.2.0 User’s Manual
 37 (60)

“1” for your first camera (resolution and other options will be prompted), “2” for your 2nd

camera, etc.

7.2 SampleMarkerCreator.exe

SampleMarkerCreator.exe is used to create marker image files which you can print. It can

also create multimarkers, i.e. 2D marker fields.

To create an image file containing a single marker, enter the marker number (=ID) as a

command-line parameter.

If no command-line parameters are entered, the program goes to the interactive mode; in this

mode you can enter the IDs and relative positions of several markers, creating a multimarker.

Defaults are sensible, so you can just keep pressing <Enter> until your multimarker is big

enough.

The output image of the program is written into file ‘markerdata_0.png’ (where 0 is replaced

with the marker id). Default marker size is 9x9 cm.

The output image of a multimarker employing e.g. markers 0, 1, 2, and 3 is written into file

‘markerdata_0_1_2_3.png’, whereas the XML definition of this multimarker is written into

‘markerdata_0_1_2_3.xml’ (very long file names are truncated).

SampleMarkerCreator.exe usage options and additional instructions:

 The program prompts for marker id and its position in the used units (3 questions per

marker). The default unit is 'cm' and the default marker size is 9x9 cm

 ALVAR v.2.0 User’s Manual
 38 (60)

 If the user just presses <Enter> to all prompts, the program creates a square marker

field which keeps growing (2x2 => … => 3x3 => … => 4x4 etc.)

 When enough markers have been added to the marker field, the user should enter -1

for the ID of the next marker, which ends the prompting

 If the user wishes to use other units or a different marker size, these can be entered as

command-line parameters before the interactive mode, e.g.:

> samplemarkercreator.exe -uin -s 1.0 –p

 If the user wishes to enter a marker field design into a separate text file, it is also

possible (contents of ‘test.txt’ is shown to the right):

> samplemarkercreator.exe -p < test.txt

 If the user wishes to use markers of different sizes, the data for all the markers must

be entered as command-line parameters:

> samplemarkercreator.exe -s 18 -xy -36 0 255 -xy -36 -36 254 -xy 0 -36 253 -s 9

–p

 This example sets 18x18 cm markers 255, 254 and 253 to the left, up-left, and up

from the origin. Then the program enters the interactive mode to prompt for

additional 9x9 cm markers.

 ALVAR v.2.0 User’s Manual
 39 (60)

8 ALVAR HTML Help

This chapter presents a summary of ALVAR HTML Help, which have been generated

automatically from the source code comments using Doxygen. The documentation entry is

the file \doc\html\index.html, there should be a shortcut for this in the Start menu.

The most important locations in the ALVAR HTML Help are the Classes list (click text

‘Classes’) and the header Files list (click text ‘Files’). In both the Classes list and Files list

you can get more detailed information by clicking the class/header file name. Through the

detailed information you can navigate from a class name to the corresponding header file and

from a header file to the class(es) defined in that file.

 ALVAR v.2.0 User’s Manual
 40 (60)

8.1 File List

For easy reference, this section presents the header Files list (click text ‘Files’) of the

ALVAR HTML Help, while the next section presents the Classes list (click text ‘Classes’).

 ALVAR v.2.0 User’s Manual
 41 (60)

 ALVAR v.2.0 User’s Manual
 42 (60)

8.2 Class List

For easy reference, this section presents the Classes list (click text ‘Classes’) of the ALVAR

HTML Help, while the previous section presented the header Files list (click text ‘Files’).

 ALVAR v.2.0 User’s Manual
 43 (60)

 ALVAR v.2.0 User’s Manual
 44 (60)

 ALVAR v.2.0 User’s Manual
 45 (60)

9 ALVAR Source Code

This chapter presents a summary of ALVAR source code. The source code files were listed

in section 8.1, and the ALVAR classes in section 8.2. In this chapter some of the most

important classes and concepts are presented in more detail, as well as some Frequently

Asked Questions.

9.1 Code highlights: Most important ALVAR concepts, FAQs

Please note that the best way to learn ALVAR is to examine the ALVAR Sample Code

(chapter 5) and the ALVAR Demo Programs (chapter 6). The remaining sections should be

read only after those sections.

9.1.1 How the capture system (and plugins) works

ALVAR uses the services of OpenCV libraries for video capture. OpenCV in turn contains

three alternative capture libraries: HighGui, CvCam, and CMU. Not all webcams can be

accessed with all 3 libraries, and the 3 different libraries have different advantages and

disadvantages, so therefore this “embarrassment of riches”. HighGui is the easiest to use, so

if your webcam can be accessed using HighGui, we recommend using it.

After your webcam has captured a video frame, the captured image data is stored into an

image in computer memory. This image is accessed by ALVAR libraries (to determine the

poses of the visible markers, for example), and this image is usually used as the background,

when the augmented content is drawn.

OpenCV callback functions are often used for video frame acquisition and image processing.

The beginning of chapter 5 explains the callback function structure of sample code, whereas

sections 6.1 and 6.2 explain the callback functions of the demo programs.

9.1.2 How the marker detection works

Here we assume that a video frame has been captured and stored into a memory image as

described in the previous subsection.

First the color image is converted into a grayscale image. Then this image is converted into a

bitonal (only two colors: black and white) image using an adaptive threshold. From this

image edges are searched, producing a number of lines. Then sets of four intersecting lines

(i.e. quadrangles) are searched, and these are potential markers. Then it is verified that the

outside of the quadrangle is white, and the inside is black (i.e. we are indeed seeing the

border stripe of a marker). And finally the inside of the marker borders can be interpreted as

bits, and the bit pattern is a valid marker. From the four corner points of the detected marker

the program can compute the pose (i.e. location and orientation) of the marker in camera

coordinates.

The best position accuracy is achieved when the marker is close to the camera, because then

the relative error caused by one pixel inaccurary in the image is smaller. However, the

detection algorithm has some built-in limits, so very large targets (i.e. markers very close to

 ALVAR v.2.0 User’s Manual
 46 (60)

the camera) are eliminated, i.e. not detected at all. And conversely, very small targets (i.e.

markers very far from the camera) are also eliminated.

The best orientation accuracy is achieved when the marker plane is in a 45 degree angle with

the camera line of sight. When the marker plane normal is parallel with the camera line of

sight the orientation accuracy is lower, because small marker angle changes do not cause

significant changes in the detected marker image. And when the marker plane normal is

almost perpendicular with the camera line of sight the orientation accuracy is lower, because

some of the marker corners are seen in almost same position of the image.

For further background information about this subject one can turn to ARToolkit

documentation. The detection principles of ARToolkit are similar than that of ALVAR, so

many descriptions of ARToolkit principles apply to ALVAR also. A web search of

“ARToolkit marker detection” is a good place to start. Here are a few links that this web

search produces:

http://www.hitl.washington.edu/artoolkit/Papers/ART02-Tutorial.pdf

http://www.hitl.washington.edu/artoolkit/documentation/

http://www.artoolworks.com/support/library/Category:ARToolKit_Professional

9.1.3 How the margins work

There must be enough white (paper) around the black marker edges, so edges can be

detected in the beginning of the algorithm.

9.1.4 How the multimarkers (i.e. marker fields) work

Several markers working together. Pose can be computed even if only one of the markers is

visible.

2D multimarkers: a XML file is required, which specifies the relative positions and sizes of

the component markers; the component markers can have different sizes, but they must all

be in the same plane.

3D multimarkers: relative positions and orientations of the component markers are

automatically computed, when the configuration has been seen from various angles. All

component markers must have the same size.

The advantage of the 3D multimarker over the 2D is that it is more robust: there is a higher

probability that at least one of the component markers is seen in an advantageous angle (i.e.

high orientation accuracy, close to 45 degrees with the camera line of sight). The

disadvantage is that a separate initialization stage is needed, and the camera must be moved

around during this stage.

9.1.5 Encoding data (integer, text, URL) into ALVAR markers

A number of bits are available in the ALVAR markers depending on the size of the marker.

The larger the marker size, the more bits it can contain, but the more unreliable the detection

http://www.hitl.washington.edu/artoolkit/Papers/ART02-Tutorial.pdf
http://www.hitl.washington.edu/artoolkit/documentation/
http://www.artoolworks.com/support/library/Category:ARToolKit_Professional

 ALVAR v.2.0 User’s Manual
 47 (60)

(i.e. distinguishing between the different markers) becomes. Some bits must be fixed, so that

marker orientation can be deduced, but other bits can be used for any purpose.

Usually the bits are interpreted as numbers, but this is not necessary. E.g. groups of seven

bits can be used to encode ASCII characters, and groups of eight bits can be used to encode

the extended ASCII character set. If there is no need for punctuation, numbers or uppercase

letters, five bits are sufficient for all English letters.

See also subsection 9.3.16.

9.1.6 FAQ: I compiled my ALVAR program with VC++, but I cannot run the program in

another computer

All recent versions of VC++ require that the run-time libraries (specifit to that version of

VC++) are installed in the system directory. Otherwise the programs compiled with VC++

will not run. Naturally the Visual Studio installation program installs these libraries; for

computers without Visual Studio one must run the so-called "Microsoft Visual C++

<version> Redistributable Package (x86)", which installs the required libraries. This is true

for ALVAR also.

So if you are using Visual Studio 2008 SP1 for example, do a web search of “visual c++

2008 sp1 redistributable package”, which should take you to a Microsoft web page, where

you can download the Redistributable Package. Download the program and execute it once

in the computer you intend to use your ALVAR program. Then your program should work.

Also if you use a newer version of Visual Studio than what ALVAR 2.0 supports, you may

be able to compile your ALVAR programs with the new version of VS, but you must first

install the Redistributable Package of the VS version that was used to compile the ALVAR

DLLs.

9.1.7 FAQ: Using PsaTracker, i.e. motion flow tracking

First, we are basically talking about image plane tracking. That is the movement of the

image in the horizontal and vertical directions. We can use this image plane tracking to

implement some quick hacks that produce a better experience when doing AR.

When is this needed?

The image plane tracking is meant to kick in when the marker is not detected for a few

frames or when the marker starts to move out of the field of view of the camera (moves to

the edge of the image when panning). Usually, you have two options: leave the model where

it is or stop rendering it completely. This leads to flickering and weird behaviour when the

marker moves out of the view of the camera. This motion flow tracking solves this.

How is it done?

The hard part is already done. You can find the TrackerPsa class in ALVAR that implements

image plane tracking. To see how to use this class, you can look at the SampleTrack sample.

Now the tricky part is using the horizontal and vertical motion to update the pose of the

marker. I will describe how this is done using pseudo code.

 ALVAR v.2.0 User’s Manual
 48 (60)

Camera camera;

camera.SetCalib(...);

MarkerDetector markerDetector;

// markerDetector initialization

TrackerPsa trackerPsa;

// no initialization required

double fovX = camera.GetFovX();

double fovY = camera.GetFovY();

...

IplImage *frame;

// get a new frame from the camera

Pose pose;

// this pose must persist across frames, make it a class member

markerDetector.Detect(frame, camera, ...);

// iterate over markers, when id matches update the pose

trackerPsa.Track(frame);

// only update the pose with the image plane movement when no marker is

found

if (numberOfMarkersDetected == 0) {

 double x = -trackerPsa.xd * fovX / frame->width;

 double y = -trackerPsa.yd * fovY / frame->height;

 CvMat *p;

 CvMat *r;

 // create p and r, 3x3

 pose.GetMatrix(p);

 // initialize r as a rotation matrix with x rotation around x-axis and y

rotation around y-axis

 // p = r * p

 pose.SetMatrix(p);

 // release p and r

}

...

// render model using pose as usual

9.1.8 FAQ: Contents of the ALVAR Sdk distribution package

The ALVAR Sdk library is distributed in binary form only. This means that the source files

of the library (files in src directory) are not distributed. Only the binary libraries (DLLs in

bin directory) are distributed, along with the headers (files in include directory).

In order to compile the sample applications, you must follow each of the steps in

doc/Compiling.txt.

 ALVAR v.2.0 User’s Manual
 49 (60)

ALVAR Sdk installation is organized in the following way:

 * bin – The compiled binaries appear in a subdirectory matching the selected build

environment (e.g. /bin/msvc80).

 * build – The build environment tools, also in a matching subdirectory.

 * data – Data files used by some of the Sample and Demo applications.

 * demo – Demo applications that demonstrate how to use the library with OSG.

 * doc – Documentation as well as API Reference, sample markers in Alvar.pdf.

 * include – Headers for the Alvar, AlvarPlatform and AlvarPro libraries.

 * sample – Sample applications that demonstrate how to use the library.

 * src – Sources for the Alvar core library (This directory is not present in binary

distributions).

 * src/platform – Sources for the AlvarPlatform library (This directory is not present in

binary distributions).

 * src/pro – Sources for the AlvarPro library (This directory is not present in binary

distributions).

9.1.9 FAQ: Cannot complete the first steps of doc/compiling.txt

Question:

The generate.bat file in the msvc90 folder doesn't seem to do anything special for me. I have

installed opencv, glut, cmake and alvar. Also, cmake is located in the system's path

environment variable.

Answer:

Check the generate.log file that is generated when you run the generate.bat script. It should

be located in the same directory. (C:\program files\alvar 2.0.0\build\msvc90\generate.log).

Also verify the paths in Cmakegui. They should be set correctly by default and not be

changed.

Where is the source code:

C:/Program Files/Alvar 2.0.0

Where to build the binaries:

C:/Program Files/Alvar 2.0.0/build/msvc90/build

9.1.10 FAQ: Cannot follow the last steps of doc/compiling.txt

Question:

 ALVAR v.2.0 User’s Manual
 50 (60)

I completed the 6 steps of compiling.text file but I cannot understand the following step.

7. Open ./build/[target]/build/Alvar.sln.bat and build the solution.

 The batch file will ensure that paths to DLLs are properly configured.

If it shows the the ALVAR path then there is no such folders and solution file. My path is

C:\Program Files\ Alvar 2.0.0\build and it has no Alvar.sln.bat file.

Answer:

You need to go down into a few more directories. For example, if you used

./build/msvc90/generate.bat to generate the project files, then the solution batch file will be

in ./build/msvc90/build/Alvar.sln.bat.

You need to replace [target] (in the instructions) by the platform that you have selected. You

can select either msvc, msvc80 or msvc90 depending on the compiler you are using.

To recap, if you used:

 [1] C:\Program Files\Alvar 2.0.0\build\msvc90\generate.bat

to generate the project, then the solution batch file will be in:

 [2] C:\Program Files \Alvar 2.0.0\build\msvc90\build\Alvar.sln.bat

You can then double click on [2] and then build the solution in debug or release mode.

Step 8 requires step 7 do be done. When you have the visual studio solution opened, you can

right click on the INSTALL project and select 'Build'. This will install all of the samples and

dependencies in:

 [3] C:\Program Files\Alvar 2.0.0\bin\msvc90\

Then you can run the samples by double-clicking on them in the Explorer.

9.1.11 FAQ: ALVAR sample reports “Could not find any capture plugins”

This error message means that ALVAR can't find the capture plugins. These are the DLLs

found at the following location (assuming default installation folder):

 C:\Program Files\Alvar 2.0.0\bin\alvarplugins

If you are running the sample from inside Visual Studio (via F5), you need to make sure that

you have launched VS with Alvar.sln.bat (notice the 'bat' extension). This sets up the paths

properly so that VS can find the plugins.

If you are running the sample from the command line, make sure that alvarplugins is in the

same directory as the executable.

You can also force the search path for the plugins by setting the following environment

variable:

 set ALVAR_PLUGIN_PATH=C:\Program Files\Alvar 2.0.0\bin\alvarplugins

 ALVAR v.2.0 User’s Manual
 51 (60)

9.1.12 FAQ: SampleCamCalib reports “Could not initialize the selected capture backend”

That error message can mean a few things.

1. No compatible camera is attached to the computer.

2. The camera capture system failed to initialize a connection to the camera.

3. The camera does not support accessing image data but provides a video stream.

9.1.13 FAQ: SampleCamCalib reports “Could not find any capture devices”

Check the following things.

1. Do the other samples that require a camera work? For example, does SampleCvTestbed

work for you?

2. Does your camera provide access to the raw pixel data? Some cameras only provide an

encoded video stream that Alvar can not process.

3. Make sure that the alvarplugins directory is located in the directory that contains the main

ALVAR dynamic libraries (DLL). This should be the case if running the samples from

within Visual Studio.

9.1.14 FAQ: ALVAR on Windows Vista/7

Although ALVAR is not officially supported on Windows Vista/7, it should work on these

platforms.

If there are any problems, they are most likely file access permission problems. The easy

solution is to install ALVAR in your user directory. The ALVAR team has tried that on a

Windows 7 machine and everything worked as expected, after following the instructions in

doc/Compiling.txt

9.1.15 FAQ: Using ALVAR with DirectX

Unfortunately, ALVAR does not support DirectX and nobody on ALVAR team is familiar

with the particularities of the DirectX platform. We can only offer some insight as follows.

Source: http://www.toymaker.info/Games/html/matrices.html

There are three matrix used by Direct3D to transform your 3D models into the final 2D

image you see on the screen. They are the World Matrix, the View Matrix and the Projection

Matrix. Note: If you are coming from an OpenGL background OpenGL combines the first

two together.

Also, the coordinate systems are different.

 - OpenGL: X to the right, Y to the top and Z to the back.

http://www.toymaker.info/Games/html/matrices.html

 ALVAR v.2.0 User’s Manual
 52 (60)

 - DirectX: X to the right, Y to the bottom and Z to the front.

The projection matrix comes from camera.GetOpenglProjectionMatrix(...) and needs

to be converted to the DirectX coordinate system.

The pose matrix comes from marker.pose.GetMatrixGL(...). It needs to be converted to

the DirectX coordinate system and then decomposed into view and world matrices. How to

do this, we are not sure at the moment.

We can also direct you to the ALVAR OSG demo programs which show how to use

OpenSceneGraph to display actual models on top of markers.

9.1.16 FAQ: How to get the pose of a detected marker in ALVAR

Question:

I would like to extract the position of the marker in several values. The values are X, Y, Z,

A, B, C, where X = Translation in X direction, Y = Translation in Y direction, Z =

Translation in Z direction; and A = Rotation around Z axis, B = Rotation around Y axis, C =

Rotation around X axis. Is it possible ?

Answer:

The information you are looking for is available in the alvar::Pose class. In the marker

detector sample, alvar::MarkerDetector is used to find an alvar::Marker which

contains an alvar::Pose.

 Pose p = (*(marker_detector.markers))[i].pose;

The alvar::Pose class contains a translation vector and a quaternion. The translation vector

will give you X, Y and Z. The rotation will give you the angles. However, there are many

conventions for rotation angles, for example Tait-Bryan vs Euler angles. You will need to

interpret the quaternion depending on your conventions.

 http://en.wikipedia.org/wiki/Euler_angles#Conventions

The alvar::Pose class can also give you a 4x4 homogenous transformation matrix using

the GetMatrix() method.

 http://en.wikipedia.org/wiki/Transformation_matrix#Uses

9.1.17 FAQ: How to use text string (ascii) markers

Question:

I would like to know which function extract the const char used to create the marker in order

to modify it before to display it. I used Ascii to generate the marker and I want it back in

hexadecimal.

http://en.wikipedia.org/wiki/Euler_angles%23Conventions
http://en.wikipedia.org/wiki/Transformation_matrix%23Uses

 ALVAR v.2.0 User’s Manual
 53 (60)

Answer:

In order to detect markers created using strings (ascii), you must specify the resolution of the

marker since the default resolution in the detector is set to 5. You can do this using

Marker::SetMarkerSize(). The size auto-detection works fine here.

// detect markers of resolution 11

marker_detector.SetMarkerSize(marker_size, 11);

// auto-detect resolution

marker_detector.SetMarkerSize(marker_size, 0);

To extract the string, simply use the data member.

std::cout << (*(marker_detector.markers))[i].data.str << std::endl;

9.1.18 FAQ: Problems with CvMat

Question:

Code like this causes an access violation:

CvMat rotation;

p.GetEuler(&rotation);

Answer:

When using CvMat, you must initialize the matrix before using it. Since you have not

initialized it, you are getting invalid pointer errors.

 CvMat *euler = cvCreateMat(3, 1, CV_64FC1);

 p.GetEuler(euler);

 cvReleaseMat(&euler);

 CvMat *quaternion = cvCreateMat(4, 1, CV_64FC1);

 p.GetQuaternion(quaternion);

 cvReleaseMat(&quaternion);

 CvMat *rodriques = cvCreateMat(3, 1, CV_64FC1);

 p.GetRodriques(rodriques);

 cvReleaseMat(&rodriques);

9.1.19 FAQ: ALVAR seems to produce inaccurate results with a widescreen camera

First, make sure you calibrate your camera. This means that you should run the

SampleCamCalib application and use the calibration when you are detecting markers. This

will ensure that you have a correct model-view matrix.

Second, you need to make sure that you are properly setting up your projection matrix. This

should take into account the width and height of the camera as well as the camera calibration

from the previous step.

 ALVAR v.2.0 User’s Manual
 54 (60)

9.1.20 FAQ: Optimal set of ALVAR markers (minimize chance of improper detection)

ALVAR markers have built-in error correction and in most cases, there should be no

problems with mismatches. However, if you are paranoid about robustness and reliability,

please read the following explanation.

This question seems to be asked many times. Is there a set of ALVAR markers that minimize

the chance of improper detection? This is usually asked when we are choosing markers for a

particular large scale application (ex: not a demo). In these cases, we also want "pretty"

markers. The following explains how to select markers that meet these requirements.

When talking about markers, beauty is often equated with symmetry. The following is a list

of all symmetric 5x5 ALVAR markers.

000 - 00000000

004 - 00000100

011 - 00001011

015 - 00001111

064 - 01000000

068 - 01000100

075 - 01001011

079 - 01001111

176 - 10110000

180 - 10110100

187 - 10111011

191 - 10111111

240 - 11110000

244 - 11110100

251 - 11111011

255 - 11111111

From this set, we can extract a subset of marker ids that minimize the chance of improper

detection. The simplest approach is to select ids that differ by 2 or more bits. The optimal

subset is as follows.

000 - 00000000

011 - 00001011

068 - 01000100

079 - 01001111

176 - 10110000

187 - 10111011

255 – 11111111

9.1.21 FAQ: How to interpret a pose

Question:

 ALVAR v.2.0 User’s Manual
 55 (60)

When the ALVAR library calculates the position of the markers, it also calculates the pose.

As a result, a matrix is returned with a whole lot of information. Problem is that we do not

know how to interpret the data in this matrix or the way to use it. Is there any documentation

on this matrix and how to use it? Or can you supply me more detailed information?

Answer:

You say that when ALVAR computes the position of a marker it also computes a pose.

Those two are the same thing. A pose contains a translation (position and direction) as well

as an orientation (rotation). These are the two members of the Pose class. Although you have

access to these two member via GetTranslation() and GetQuaternion(), it is typical to return

a "3d transformation matrix" [1] via GetMatrix(). This matrix essentially contains a

translation and a rotation in homogeneous coordinates [2]. A 3d transformation matrix can

be decomposed into the following, where P is a 4x4 transformation matrix, R is a 3x3

rotation matrix, T is a 3x1 translation matrix and the 1 is for the homogeneous coordinate.

This allows you to easily project points in the marker coordinate frame to the image plane. If

X is a 3D point in marker coordinates and x is a 2D point in image plane coordinates.

[1] http://en.wikipedia.org/wiki/Transformation_matrix

[2] http://en.wikipedia.org/wiki/Homogeneous_coordinates

9.1.22 FAQ: Marker position in image coordinates

Question:

How I can get the real position of the marker in my image?

Answer:

If you want the position of the marker in image coordinates, you have to project the origin of

the marker into the camera reference frame using the given pose. Here is the code.

CvPoint2D64f imagePoint;

camera.ProjectPoint(cvPoint3D64f(0, 0, 0), &pose, imagePoint);

The values in imagePoint will be in pixels and correspond to the center of the marker in the

image coordinates.

You can also access the pixel locations of the four corners of the marker directly from the

marker object. They can be found in the Marker::marker_corners_img vector.

http://en.wikipedia.org/wiki/Transformation_matrix
http://en.wikipedia.org/wiki/Homogeneous_coordinates

 ALVAR v.2.0 User’s Manual
 56 (60)

9.1.23 FAQ: ALVAR and multithreading

The MarkerDetector class in ALVAR is re-entrant and not thread-safe. This means that you

can safely call methods of the class from multiple threads as long as each thread uses a

different instance of the class. To put it in other words, you should be fine if you have two

threads that each have their own instance of a MarkerDetector class.

9.1.24 FAQ: FernImageDetector does not track very well

Question:

I am using ALVAR to track a planar object, but the system doesn't track very well when the

camera is far from the object.

I tried to tune some of the parameters as well, but the result does not improve very much.

Basically the tracking is very robust when the camera is close, but it deeply decreases when

the frame planar object takes up ~1/4 of the image area.

Answer:

I'm assuming that you are using the FernImageDetector to track a natural feature image and

not a fiducial marker. If you are seeing these problems with MarkerDetector then we have a

bug or you are not using the library correctly since marker detection in ALVAR is very

robust even at farther distances (within reason).

The markerless tracking support is based on a Ferns classifier. The way this works is the

classifier must be trained beforehand. During the training phase, the parameters essentially

determine a working volume (distance and angle) around the image. During the tracking

phase, if the camera moves outside this training volume, then the tracking basically fails to

work reliably.

The classifier data is already quite large, so increasing the working volume is probably not

the best approach. A nicer approach would be to use the Ferns classifier for initialization and

recovery but then rely on feature-based tracking or structure from motion to track the camera

pose after the initial detection.

9.1.25 FAQ: Using another version of OpenCV

It is possible to use the version provided by the OpenCV project. In some cases, you have to

tell CMake where to find it. You can do this by setting the root path of the OpenCV

installation directory to the "OpenCV_ROOT_DIR" CMake variable. This can be done using

the CMake GUI (cmakegui) or on the command line.

mkdir build

cd build

cmake -DOpenCV_ROOT_DIR=c:\path\to\opencv ..\

 ALVAR v.2.0 User’s Manual
 57 (60)

9.1.26 FAQ: Marker detection speed benchmark

ALVAR 2.0 has been benchmarked on a 4 year old workstation (Intel Xeon X5550, 4 cores,

2.67GHz, 3Gb). SampleMarkerDetector ran at 30 frames per second with 30-40% utilization

rate of 1 core. This was for images of 320x240 and 640x480 resolutions. Higher resolutions

are most likely not suitable for real-time processing. The framerate was capped at 30 frames

per second since the capture classes are blocking and the camera only produces 30 frames

every second.

Of course, the more visually cluttered the scene, the more time it takes to analyze all of the

detected blobs. Depending on your setup, you can increase the blob size threshold and only

process the larger blobs.

9.1.27 FAQ: Marker detection distance benchmark

ALVAR can detect small markers or markers that are far away from the camera. However,

the resolution of the image has a lot to do with the limits of marker detection. In practice, the

markers in the image should have a diagonal size of over 25px for accurate and robust

detection.

Image Resolution

(px)

Marker Size (cm) Distance (m) Diagonal Marker

Resolution (px)

320x240 2.5 0.4 21-22

320x240 5.0 0.8 21-22

320x240 10.0 1.5 23-24

640x480 2.5 0.8 21-22

640x480 5.0 1.5 21-22

640x480 10.0 2.8 23-24

9.1.28 FAQ: Explanation of simple calibration

Question:

In the SetSimpleCalib(int _x_res, int _y_res, double f_fac=1.)

method, is the specified focal length in millimeters or pixels?

Answer:

The f_fac parameter represents a focal length factor. This factor is defined as "half of the

normalized focal length" where the normalization is done with respect to the image width.

 : x resolution or width

 : focal length factor

 ALVAR v.2.0 User’s Manual
 58 (60)

 : focal length in pixels

 : noramlized focal length (projective geometry normalizes with respect to xres / 2)

 in

This focal length factor is probably not the best API for this method, but the above describes

what is currently implemented in ALVAR.

9.1.29 FAQ: Z-axis flip

Question:

When the z-axis of the detected marker is close to the perpendicular of the screen plane, it

keeps changing signal very fast (flips from point forward to point backwards and vice-versa).

Answer:

It is not that the Z axis is flipping from pointing forwards to backwards, but rather that it

flips between angled to the left of the normal and angled to the right of the normal. This is a

known problem with the marker detection algorithm and has to do with finding a local

minimum when running the optimization routine for the pose estimation.

The above is a bit hard to explain without drawing some pictures. The following paper

discusses the issue and provides a solution.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1717461&tag=1

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1717461&tag=1

 ALVAR v.2.0 User’s Manual
 59 (60)

9.1.30 ALVAR Main Core Features

9.1.31 ALVAR Main Advanced Features

 ALVAR v.2.0 User’s Manual
 60 (60)

9.1.32 Appetizer: Features Not Yet in ALVAR

These techniques have been demonstrated by VTT AR Team, but they have not yet been

incorporated into ALVAR...

