
Internet Merchant Payment Solution
Secure Payment Form V2

Cyberbit A/S Development Resource Guide – Secure Payment Form V2

Internet Merchant Payment Solution

 © Copyright 2009 Cyberbit A/S. All rights reserved. Page 1 of 18

Internet Merchant Payment Solution
Secure Payment Form V2

Change Register

Version Description Author Date
V 1.0 Document Created Jimmi Kristensen 23-01-2008
V 1.1 Document Update Jimmi Kristensen 01-09-2009
V 1.2 Updated parameter list Jimmi Kristensen 12-10-2009

Contact Details

General Product Support
support@cyberbit.eu

Phone: +45 7027 0585

Technical Support / Questions
support@cyberbit.eu

Phone: +45 7027 0585

 © Copyright 2009 Cyberbit A/S. All rights reserved. Page 2 of 18

Internet Merchant Payment Solution
Secure Payment Form V2

Table of Contents

1 Introduction ... 4

1.1 Requirements ... 4

2 Sending Transactions .. 6

2.1 Implementing the Methods .. 8

2.2 Callback from Payment Gateway .. 9

2.3 Validating Transaction Data ... 10

2.4 Finishing the Payment Process ... 11

3 Transaction Status Codes ... 12

4 State Codes ... 13

5 PHP Code Example ... 15

6 XML Example .. 18

 © Copyright 2009 Cyberbit A/S. All rights reserved. Page 3 of 18

1 Introduction
Cyberbit’s Secure Payment Form (SPF) is an easily integrated solution, which permits secure and
trusted transactions over the Internet. The following document describes how to integrate the
payment solution into a merchant’s website. The document will guide a developer through the
integration process required to use Cyberbit’s Secure Payment Form. To make the integration even
easier, this guide also provides code examples for the various development requirements.

Secure connectivity is obtained over the Internet by establishing an SSL encrypted connection
between the merchant’s website and the Cyberbit Payment Gateway. To integrate a merchant’s
website with Cyberbit using the SPF, a developer must be able to provide client side security for
receiving information. This is done by connecting to Cyberbit using the HTTPS protocol so as to
pass this information using SSL.

This document provides information on how to implement the following e-commerce transaction
types:

 Authorization Only.
 Authorization and Capture.

1.1 Requirements
Before the merchant will be able to start testing, a few things have to be in place. The merchant
must have received a test account with the following information:

MerchantId Unique ID assigned to merchants.
Password Password used to login to the payment gateway backend.
Secret Code Unique code sent with every transaction.
Hashing Code Secret hashing code used to validate transaction data. This code must only be

known by the merchant and Cyberbit A/S.

System Overview

Card Holder

Cyberbit Payment Gateway

#1: Start Payment

#
2:

 P
a

ym
en

t
R

e
qu

es
t

Merchant’s Website

#3: Open the SPF

#4: Send Credit Card Information

#
5:

 P
a

ym
en

t
S

ta
tu

s

#6: Payment Status Page

#7: Receipt Page

The diagram above shows the payment process when using Cyberbit’s SPF.

1. When the cardholder have selected the goods he/she wants to buy and have filled a form, on
merchant’s website, stating his/hers name, address, shipping info, etc., the cardholder
presses a link/button to start the payment.

2. Merchant’s website opens a payment window linked to Cyberbit’s SPF. For further details
see the chapter “Implementing the Methods”.

3. The cardholder is presented with the SPF located on a Cyberbit web server.
4. The cardholder fills the SPF with the needed credit card information, and sends payment

information to Cyberbit’s Payment Gateway.
5. Payment status is sent to the merchant’s web server to ensure that the transaction/order is

registered at the merchant’s website. For further details please see the chapter “Callback
from the Payment Gateway”.

6. A payment status is sent back to the cardholder, this status page displays if the transaction
was a success.

7. Cardholder is directed back to merchant’s website to get his/hers receipt.

2 Sending Transactions
This chapter will describe the procedures and parameters to send the different types of transactions
to the SPF. All transactions will be made through a HTTPS POST as described below.

Format Values Key:
A = Alphabetical (a-z, A-Z)
N = Numeric (0-9)
AN = Alpha-Numeric (a-z, A-Z, 0-9)
URL = Uniform Resource Locator

Presence Values Key:
R = Required
O = Optional
C = Conditional

Parameter Name Format Presence Description
TransType N(3) R 1 = Authorize only

3 = Authorize and Capture
259 = Recurring Transaction

Secret A(40) R Transaction secret provided by Cyberbit A/S
AcceptURL URL R URL to return the customer to when a

successful transaction have been made. To see
an example of an accept page written in PHP,
go to “PHP code example”.

MerchantId AN(10) R Merchant ID provided by Cyberbit A/S
InternalOrderID AN(22) C Order ID supplied by the merchant.

If the Terminal parameter is set this parameter
is ignored and does not have to be set.

CurrencyCode N(3) R Currency code according to ISO-4217
AmountCleared N(11) R Total amount of purchase. Amount is given in

the smallest amount (Example: if the currency is
USD then an amount of 100 will be equal to 1
Dollar)

Terminal Terminal O If Terminal is set the Cyberbit Payment
Gateway will automatically generate an order id
for the order being processed. This means
instead of using an order id generated by the
merchant the Payment Gateway will generate an
order id and return this id to the callback URL
and the accept URL.

If the Terminal parameter is set the OrderId
parameter will be ignored and can be left out.

If you need this functionality, set this value to
“Terminal”.

OwnerEmail AN(100) C Cardholder’s email address
OwnerAddress AN(50) C Cardholder’s address
OwnerAddressNumber N(20) C Cardholder’s address number
OwnerCity AN(50) C Cardholder’s city
OwnerCountry A(2) C ISO-3166-1 alpha-2 code of the cardholder

country (Example: if the cardholder is from the

United Kingdom the country code will be GB)
OwnerState A(2) C Cardholder’s state, for a list of valid states see

“State Codes”
OwnerFirstName A(20) R Cardholder’s first name
OwnerLastName A(20) R Cardholder’s last name
OwnerZIP AN(10) C Cardholder’s ZIP/Postal code
OwnerPhone AN(20) C Cardholder’s phone number
OwnerDayOfBirth N(2) C Cardholder’s day of birth (DD)
OwnerMonthOfBirth N(2) C Cardholder’s month of birth (MM)
OwnerYearOfBirth N(4) C Cardholder’s year of birth (YYYY)
ShippingFirstName A(20) O First name of the person who receives the goods
ShippingLastName A(20) O Last name of the person who receives the goods
ShippingAddress AN(50) O The shipping address
ShippingAddressNumber N(20) O The house number of the shipping address
ShippingCity AN(50) O The shipping city
ShippingCountry A(2) O ISO-3166-1 alpha-2 code of the shipping

country (Example: if the shipping country is the
United Kingdom the country code will be GB)

ShippingState A(2) O Shipping state, for a list of valid states see
“State Codes”

ShippingZIP AN(10) O The shipping ZIP/Postal code
ShippingEmail AN(100) O The E-Mail of the person who receives the

goods
ShippingPhone AN(20) O The phone number of the person who receives

the goods
CreditCardType A(10) O This is the type of credit card selected by the

cardholder.

Valid Options:
Option Description
Visa Visa
Visaelec Visa Electron
Mastercard MasterCard
Maestro Maestro
Amex American Express
Dinersclub Diners Club
Discover Discover
Jcb JCB
Solo Solo
Bleue Bleue
Visadan Visa/Dankort
Edankort eDankort
Elv ELV
Giropay GiroPay

Hash AN(40) R To be sure the that the transaction data is not
altered, a SHA1 hash has to be generated and
sent to the Payment Gateway. Please look at par
2.3 Validating Data to see how this is done.

SubscriptionID N(11) C Subscription ID used with recurring
transactions.
The subscription ID is assigned when creating a

new subscription.

To know more about recurring transaction read
the manual (Cyberbit User Manual - Recurring)

The parameters above are the only data required to make a transactions. The parameters below are
all optional, and will be shown on the SPF. The table below shows the fields that should be sent in
the POST message to display order information to the customer. An example of this is shown in the
part 2.1 of this chapter. Examples can also be found in the examples.html you have received
together with this manual.

Parameter Name Format Presence Description
Header O The header fields to show in the SPF.
Orderline1 O The first order line to be shown. There can be as

many order lines as desired by incrementing the
number by one for every order line.

Shipping O This field allows you to display shipping costs.
Total O This field allows you to show to total amount to

the customer.

2.1 Implementing the Methods
An authorize or an authorize/capture request is made by sending a HTTPS POST to the Cyberbit
Payment Gateway.

The Cyberbit Payment Gateway is accessible through the following URL:
Test Environment: (URL will be given to you upon account creation)
Live Environment: (URL will be given to you upon account creation)

Below is a code example of how to make the HTTPS POST and start the SPF.

First, prepare the POST. Below is an example on how a POST could look like. The example can
also be found in the example.html:
<form method="POST" action="https://test.xxxxx.xx/xxxx.php">

<input type="hidden" value="1" name="transtype">
<input type="hidden" value="sdf6a6yr3f3df33" name="secret">
<input type="hidden" value="https://www.cyberbit.eu/bjarne_test/accept.php"

name="accepturl">
<input type="hidden" value="CyberTest" name="merchantid">
<input type="hidden" value="test3" name="InternalorderId">
<input type="hidden" value="978" name="currencycode">
<input type="hidden" value="100" name="amountcleared">
<input type="hidden" value="28006f49d5ffc3a60adbe4898594e749ee34b055"

name="hash">
<input type="hidden" value="cardholder@email.com" name="owneremail">
<input type="hidden" value="some street" name="owneraddress">
<input type="hidden" value="123" name="owneraddressnumber">
<input type="hidden" value="London" name="ownercity">
<input type="hidden" value="OO" name="ownerstate">
<input type="hidden" value="GB" name="ownercountry">
<input type="hidden" value="Larry" name="ownerfirstname">
<input type="hidden" value="Smith" name="ownerlastname">
<input type="hidden" value="123456" name="ownerzip">
<input type="hidden" value="+442154856354" name="ownerphone">
<input type="hidden" value='"Item Number";"Item Description";"Amount";"Price"'

name="header">
<input type="hidden" value='"1";"Blue car";"1";"1.000,00"' name="orderline1">
<input type="hidden" value='"2";"Red bike";"2";"250,00"' name="orderline2">
<input type="hidden" value='"Shipping";"150,00"' name="shipping">
<input type="hidden" value='"Total";"1.650,00"' name="total">

<input type="submit" value="Make Payment">
</form>

The example above will create a payment form with the above details. Notice the “header”,
“orderlineX”, “shipping” and “total” fields. These fields will generate a table containing the order
information which will be shown on the SPF if enabled. The example above will create an order
information table like the one below.

2.2 Callback from Payment Gateway
After every transaction the merchant will receive a POST message with status of the transaction.
This POST will be sent to the callback URL defined by the merchant. The merchant’s callback
page will receive four callback parameters:

Parameter Name Description
Fingerprint The SHA1 hash of the transaction, see “Validating Transaction

Data” for further details.
Xml Will return all data sent by the merchant’s website to Cyberbit’s

Payment Gateway in XML format. Besides data from the
merchant’s website, this XML will also hold the transaction data
from the Payment Gateway.

To see an example of a returned XML message, see the chapter
“XML Example”.

The purpose of the callback message is to inform the merchant’s website of the transaction status.
The callback message is sent promptly after a transaction have been made, in this way the
merchant’s website will be able to acknowledge a transaction, even though the cardholder might
close the SPF immediately after a transaction have been made and therefore not getting a receipt
from the merchant’s receipt page.

Important:
It is important that the merchant acknowledges the transaction on the callback URL instead of on
the accept URL. The reason to this is that the cardholder might close the SPF immediately after a
transaction have been made, and therefore never reach the accept page. If this is the case and the
merchant only acknowledges a successful transaction on the accept page, the money will be drawn
from the cardholder’s bank account, but the merchant will never register the transaction, and
therefore will never send the goods. If the transaction is acknowledged on the callback page the
merchant will always be able to acknowledge a transaction, even though the SPF is closed by the
cardholder.

All errors that may happen in a transaction will also be returned to the callback URL. In this way
the merchant is able to log the error message returned by the Payment Gateway.

2.3 Validating Transaction Data
When the account information is received you will receive a unique hashing key along with your
other account information. This key is used in the data validation process to make sure the data has
not been altered in any way.

Hashing before the transaction is sent:
Before a transaction is sent to the payment gateway a hash has to be generated to make sure that the
data has not been altered. When this hash has been generated it is sent in the post along with the
other required information.

The following fields are used to create the hash value:
MerchantId + Transtype + InternalOrderId + Currency + Amount + SubscriptionId + HashKey

Example:
MerchantId = CyberTest
Transtype = 1
InternalOrderId = test1
Currency = 978
Amount = 100
SubscriptionId =
HashCode = 123

String = CyberTest1test1978100123
Hash = sha1(CyberTest1test1978100123)
Hash = bdfcd17a913e26b1966539d76c748b6c8ca08af9

Validating data sent to the accept page:
It is also possible to validate the data sent to the accept page, and example is provided below.

Statuscode + Statustext + OrderId + Time + HashKey

Statuscode = 000
Statustext = Success From Processer
Order Id = test1
Time = 20080125153955
HashCode = 123

String = 000Success From Processertest120080125153955123
Hash = sha1(000Success From Processertest120080125153955123)
Hash = ac7a7f4503180f226260377406c19e5bc8f9f3c5

Validating data sent to the callback URL:
It is very important that the data sent to the callback URL is validated to ensure that the transaction
result is coming from the Payment Gateway and have not been altered. If the hash is NOT validated

anybody knowing the callback URL and what the data sent to it looks like could forge a false
transaction result and maybe fooling the system to think that a valid transaction has been made.

Only the XML containing the transaction data and the fingerprint is sent to the callback URL. To
validate if the data is valid, first generate a hash our of the XML and your unique hashing key:

Sha1(XML + HashKey)

And hold the resulting SHA1 hashing value up against the fingerprint. If those two values matches,
then the data is valid.

Below is an example if the SHA1 creation written in PHP:

$fingerprint = sha1($xml.$hashkey);

Note that the unique key is in the end of the XML message. When the SHA1 hashing has been
made, compare this value to the value received in the fingerprint parameter of the callback message.

IMPORTANT: The unique key is only known by Cyberbit A/S and the merchant; make sure the
key is never shown on the merchant’s website.

2.4 Finishing the Payment Process
When a successful transaction has been made, the cardholder will be directed back to the
merchant’s website. Because of the cross-domain policies in the mozilla browser, the merchant’s
accept page will be shown in the payment window. Because of this it is recommended that the
merchant’s accept page takes the parameters from the POST given to the accept page, send the data
to a receipt page on the merchant’s website and closes the payment window. In this way the
cardholder will be directed back to the merchant’s website showing a receipt page. For a PHP
example of a possible accept page, see “PHP Code Example”.

For a complete “Copy/Paste” example of the entire payment process written in PHP see “PHP Code
Example”.

3 Transaction Status Codes
Status Codes Status Text

-1 In correct Matching Code
-2 Couldn’t connect to MySQL Server
-3 Couldn’t select MySQL Database
-5 TransType not valid
-8 No Authorization to Capture
-9 Capture Error
-10 No Capture To Refund
-11 Refund Error
-12 Duplicated OrderID
-13 Invalid Credit Card Number
-14 Too Many transactions from the same card within 24 hours
-15 Too much money cleared from the same card within 24 hours
-16 Amount cleared exceeds the max ticket price
000 Status Code Text
001 Missing or wrong MerchantId
002 Redirection not active
003 No Clearing URL specified
004 Wrong or Empty SecretCode
005 No Processing Available.
006 Access Error! Restricted by Ip-Address.
007 Illegal characters in InputField
008 OwnerCountry is not valid. Should have a compatible ISO 3166 Value
009 TransType are not supported by this Clearing-Gateway
010 Error From Processor
011 HTTP_GET are not supported use. HTTP_POST instead
012 OwnerState is not valid. Hint use OO for outsite USA/Canada.
013 Error in our Perl-Gateway Software. Critical Error.
014 Your are currently not Online
015 The AmountCleared should be at least 100 !!
016 Hello I’m Online PHP.
017 Hello I’m Online Perl.
018 CashServer Developer Breakpoint. (internal only).
019 Cashserver is down for maintainment.
020 Required Fields.
021 Missing InternalOrderId.
022 The Character backslash detected in (Field). Invalid input.
023 Cannot find at Authorize/Capture to process.
024 Terminal Unique Id Failure
025 Terminal Security Issue. Wrong Harddisc serial Number
026 Aquirer UserId is not valid
027 Invalid ChargeBack Code
028 Invalid XML code from Acquirer
029 The creditcard expiredate is not valid
030 CurrencyCode is not valid
031 Illegal Currency
032 Illegal Internal Currency
033 Currency Convertion Failed
034 CurrencyConvert (PHP)
035 ShowCurrencies
036 Length of InternalOrderId may not exceed ($number) characters
037 PerlLink does not Match
038 Aquirer ClearingCard MID is not valid
039 TestCard Number not allowed on Live System
040 ShowAcquireCodes
041 CreditCardCVC code is required
042 RefundLimit is exceeded

043
CreditCards from $country is Blocked

044 This acquirer does not support recurring transactions
045 Billing interval must be -5 or higher, check merchant guide for more info

046
Transtype Authorize or Sale after Authorize is not allowed here. Use Transtype 3 or 8
Instead

047 IP and Credit Card is not from same country

4 State Codes
US/Canadian State Codes State

OO Outside US or Canada
AL Alabama
AK Alaska
AZ Arizona
AR Arkansas
CA California
CO Colorado
CT Connecticut
DC District of Columbia
DE Delaware
FL Florida
GA Georgia
HI Hawaii
ID Idaho
IL Illinois
IN Indiana
IA Iowa
KS Kansas
KY Kentucky
LA Louisiana
ME Maine
MD Maryland
MA Massachusetts
MI Michigan
MN Minnesota
MS Mississippi
MO Missouri
MT Montana
NE Nebraska
NV Nevada
NH New Hampshire
NJ New Jersey
NM New Mexico
NY New York
NC North Carolina
ND North Dakota
OH Ohio
OK Oklahoma
OR Oregon
PA Pennsylvania
PR Puerto Rico
RI Rhode Island
SC South Carolina
SD South Dakota
TN Tennessee
TX Texas
UT Utah
VT Vermont
VA Virginia
WA Washington
WV West Virginia
WI Wisconsin
WY Wyoming
AB Alberta
BC British Columbia
MB Manitoba
NB New Brunswick
NF New Foundland
NT Northwest Territories
NS Nova Scotia
NT Nunavut
ON Ontario
PE Prince Edward Island
QC Quebec

SK Saskatchewan
YT Yukon

5 PHP Code Example
This chapter will show examples in PHP of the entire payment process.

The payment page. Below is an example of the form that starts the payment. When the “Make
Payment” button is pressed, the SPF will start and the cardholder can start the payment. Further
examples can be found in examples.html
<html>
<head>
<title>Test Payment</title>
</head>
<body>

<form method="POST" action="https://test.com/spfv2/spfv2.php">
<input type="hidden" value="1" name="transtype">
<input type="hidden" value="sdf6a6yr3f3df33" name="secret">
<input type="hidden" value="https://www.cyberbit.eu/bjarne_test/accept.php"

name="accepturl">
<input type="hidden" value="CyberTest" name="merchantid">
<input type="hidden" value="test3" name="InternalorderId">
<input type="hidden" value="978" name="currencycode">
<input type="hidden" value="100" name="amountcleared">
<input type="hidden" value="28006f49d5ffc3a60adbe4898594e749ee34b055"

name="hash">
<input type="hidden" value="cardholder@email.com" name="owneremail">
<input type="hidden" value="some street" name="owneraddress">
<input type="hidden" value="123" name="owneraddressnumber">
<input type="hidden" value="London" name="ownercity">
<input type="hidden" value="OO" name="ownerstate">
<input type="hidden" value="GB" name="ownercountry">
<input type="hidden" value="Larry" name="ownerfirstname">
<input type="hidden" value="Smith" name="ownerlastname">
<input type="hidden" value="123456" name="ownerzip">
<input type="hidden" value="+442154856354" name="ownerphone">
<input type="hidden" value='"Item Number";"Item Description";"Amount";"Price"'

name="header">
<input type="hidden" value='"1";"Blue car";"1";"1.000,00"' name="orderline1">
<input type="hidden" value='"2";"Red bike";"2";"250,00"' name="orderline2">
<input type="hidden" value='"Shipping";"150,00"' name="shipping">
<input type="hidden" value='"Total";"1.650,00"' name="total">
<input type="submit" value="Make Payment">

</body>
</html>

Page linked to the Callback URL. The code below is for test purpose only to see what data is
returned. It writes all callback data to a file. In a “Live” situation this page should be where the
order is acknowledged and reserved for the cardholder.

OBS: Be sure the chante ($hashingKey = "xxxxxxx";) with the hashing code provided by
Cyberbit A/S.
<?
// This PHP example writes all callback data to a file called callback.txt

$hashingKey = "xxxxxxx";
$fingerprint= trim($_POST['fingerprint']);
$xml = trim($_POST['xml']);

// Check if fingerprint matches
if (sha1($xml.$hashingKey) == $fingerprint) {

$string.= "FINGERPRINT: " . $fingerprint . "\n\n";
$string.= $statuscode;

} else {
$string = "Fingerprint did not match";

}

$handle = fopen("callback.txt","w");
fwrite($handle, $string);
fclose($handle);
?>

Accept page. This is the accept page the cardholder will be returned to when a payment is done.
Because if the cross-domain policies in mozilla, as described earlier, this page will be shown in the
payment window. The example below will take the data returned by the Payment Gateway and
direct the cardholder and the data to a receipt page on the merchant’s website.
<?php

$hashingKey = "xxxxxxx";
echo "<h1>Accept</h1>";

$tmp = array();
foreach($_GET as $key => $value) {

$tmp[strtoupper($key)] = $value;
}

$str = $tmp['STATUSCODE'];
$str .= $tmp['STATUSTEXT'];
$str .= $tmp['ORDERID'];
$str .= $tmp['TIME'];
$_GET['MyHash'] = sha1($str.$hashingKey);

echo "<pre>";
print_r($_GET);
echo "</pre>";
?>

XML Parser. As mentioned earlier the transaction result is sent to the callback URL, but before the
data can be used the XML has to be parsed. Below is an example on how to parse the transaction
XML using PHP.
<?
$xml = trim($_POST['xml']);

$p = xml_parser_create();
xml_parse_into_struct($p, $xml, $vals, $index);
xml_parser_free($p);

for ($i = 0; $i < count($vals); $i++) {
if ($vals[$i][type] == 'complete') {

print $vals[$i][tag] . " - " . $vals[$i][value];
}

}
?>

6 XML Example
The example below is how an XML message could look. The information in the top, the
<Response> tag, is information specific from the Payment Gateway and the information in the
lower part, the <ReturnInfo> is information received from the merchant’s website.
<ECCPro>
 <Response>
 <StatusCode>000</StatusCode>
 <StatusText>Success From Processor</StatusText>
 <MethodCall>POST</MethodCall>
 <SiteURL>test.xxxxx.xx</SiteURL>
 <IpAddress>xxx.xxx.xxx.xxx</IpAddress>
 <ProcessDate>2007-03-29 16:16:34</ProcessDate>
 <ProcessUsedTime>1.3863520622253</ProcessUsedTime>
 <MerchantId>xxxxxxxx</MerchantId>
 <ProcessStatus>0</ProcessStatus>
 <ProcessStatusText>Transaction OK</ProcessStatusText>
 <AcquireCode>0</AcquireCode>
 <AcquireText>Transaction OK</AcquireText>
 <OrderID>test1234</OrderID>
 <AuthResponse>422666</AuthResponse>
 <ProcessOrderID>C381600117517779515367_422666</ProcessOrderID>
 </Response>
</ECCPro>

	1 Introduction
	1.1 Requirements

	2 Sending Transactions
	2.1 Implementing the Methods
	2.2 Callback from Payment Gateway
	2.3 Validating Transaction Data
	2.4 Finishing the Payment Process

	3 Transaction Status Codes
	4 State Codes
	5 PHP Code Example
	6 XML Example

