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Abstract: Uncle (Unified NCL Environment) is a toolset for creating dual-rail asynchronous designs 
using NULL Convention Logic (NCL). Both data-driven and control-driven (i.e., Balsa-style) styles are 
supported. The specification level is RTL, which means that the designer is responsible for creating both 
datapath (registers and compute blocks) and control (finite state machines, sequencers). Designs are 
specified in Verilog RTL, and a commercial synthesis tool is used to synthesize to a netlist of D-flip-flops, 
latches, combinational logic, and special gates known by the toolset. The Uncle toolset converts this 
netlist to an NCL netlist by single-rail to dual-rail conversion, and then generates the acknowledge 
network to make the NCL netlist live and safe. The resulting gate level netlist can then be simulated in a 
Verilog simulator or serve as the input netlist to a VLSI environment for transistor level simulation. 
Performance optimization via latch movement to balance data/acks delays is supported. An internal 
simulator is included that reports gate orphans/cycle time and includes NLDM timing. The toolset has a 
regression suite that includes several examples from both design styles. A transistor-level library of all 
gates is included in the release. 
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1 Installation and Requirements 
What do you need to use this toolset? 

• A Linux environment to run the tools 
• A commercial synthesis tool (Synopsys Design Compiler or Cadence RTL is currently supported). 
• A Verilog simulator (the gate level models have been tested with Modelsim (both Linux and 

Windows), Cadence ncsim, and Synopsys SCS). 

What is provided in the toolset? 

• Linux 32-bit/64-bit binaries of the tools 
• Verilog gate level models of the NCL gates (functional only, unit timing) and other support gates 
• Sample designs with self-checking testbenches 
• A user manual with tutorial examples 

What are the usage restrictions? 

At this time, there are no usage restrictions, the toolset can be used for research, educational, or 
commercial purposes. It is requested that you give appropriate credit for any published designs created 
using this toolset. Be aware that there are patent issues regarding commercialization of NCL designs (see 
Camgian Microsystems, Wave Semiconductor).  

Level of NULL Convention Logic (NCL) knowledge required? 

This document assumes that that reader has a working knowledge of NCL, which is a threshold logic 
design style used by Theseus Logic in the 1995-2005 (approximately) time frame for several ASICs. Some 
background references for NCL are [1][2][3]. An excellent introduction to NCL design is found at [4]. 

Is the code source available? 

Source code is available to collaborators for toolset improvement. 

How do I install the toolset? 

The compressed tar archive should be unpacked into the directory that will serve as the final home 
for the tools. The README.txt file at the top level of the archive will have the latest installation 
instructions. 

Why should I even care about asynchronous design? 

Because it is fun? This document makes no attempt to justify this style of asynchronous design or 
asynchronous design in general; either it fulfills a need or it does not. 
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2 Methodology Introduction 
 

2.1 Justification/Goals 
Uncle’s goal is to provide a methodology for RTL specification of complete dual-rail asynchronous 

systems based on NCL with significant tool assistance provided in generation of the final netlist. The 
justification is simple; there is currently no readily available toolset that accomplishes this goal. Clocked 
designers have had support for RTL specification of clocked systems for many years. A well known, 
mature toolset that also generates NCL-based dual-rail asynchronous systems is Balsa [5][6] (Balsa can 
also generate other types of dual-rail logic in addition to systems that use encodings other than dual-
rail). Balsa has both advantages and disadvantages when compared to Uncle. One significant advantage 
is that Balsa’s input specification (a custom language) can be directly simulated before a gate level 
implementation is generated. In Uncle, the RTL specification must first be transformed to a gate-level 
netlist via Uncle’s tool flow before it can be simulated. Balsa is a higher level synthesis tool than Uncle in 
that it generates the control for the user based on the input specification, and also dictates the datapath 
style (control-driven, to be defined later). Balsa users do specify the registers and datapath operations, 
so Balsa synthesis is above RTL but below advanced high-level synthesis tools in the clocked world that 
generate registers/datapath elements to meet a user constraint based on a total number of clock cycles 
for the target computation  

The RTL specification used by Uncle requires the designer to specify both datapath and control (same 
as in the clocked world), giving the designer more freedom, but also more responsibility. The Uncle flow 
does perform significant assistance to the user in terms of automated dual-rail expansion and ack 
network generation, along with performance and area driven optimizations, so it is a non-trival step-up 
from manual netlisting. The extra freedom (and responsibility) in the Uncle RTL specification means that 
a knowledgeable designer can perhaps create higher quality designs in terms of cycle times, transistor 
counts and energy usage than produced by higher level synthesis tool such as Balsa (the author’s 
experience to date is that Uncle generated-netlists can compare favorably in these areas against Balsa 
designs). Using an RTL specification does mean that a designer will have to work harder to produce 
those designs than in a higher level synthesis toolset such as Balsa. However, the designer will 
understand in detail exactly how each register/compute element is used as well as the exact control 
scheme, since the designer has responsibility for specifying all of those elements. A user of a higher level 
synthesis tool may never quite understand the magic netlist that is produced by a higher level synthesis 
toolset, and thus may be at a loss as to how to improve that netlist if there is a shortcoming. The author 
believes this extra freedom given by an RTL specification is an advantage that Uncle has over Balsa, but 
understands that others may assert that this is a step backwards. Another viewpoint is that the Uncle 
RTL specification methodology fills a void for those designers that prefer this level of control over their 
designs. It should be noted that either approach (RTL or higher-level synthesis) also heavily depends 
upon the designer’s skill and expertise with the language/toolset in terms of producing a quality design. 
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A naïve designer can produce low-performing designs using either approach. Balsa is a good toolset that 
offers significant capability to the asynchronous designer, but so does the Uncle toolset, albeit in 
different ways. 

Table 2-1 compares features of both Uncle and Basla as that is another evaluation method for 
selecting a toolset. The toolset choice becomes easy if a designer requires a feature that is not present 
in a particular toolset. 

 

 Uncle Balsa 
Input-language spec 

simulation 
No  Yes (custom simulator 

shipped with toolset) 
Gate-level netlist simulation Via external Verilog 

simulator, and also by internal 
simulator that reports cycle time 
(uses NLDM timing), orphan 
detection, and illegal dual-rail 
assertions.  

Via external Verilog simulator 

Timing model for simulation Internal simulator uses NLDM 
timing (table lookup, input 
transition time/output cap load 
gives output transition time, 
output delay). 

Fixed gate delay 

Gate Level Performance 
optimization 

Automated latch movement 
for data/ack delay balancing 
(data-driven style blocks only). 

Also, automated net 
buffering to meet transition time 
spec. 

None 

Gate level area optimization Relaxation, area-driven None 
Control-driven style support Yes Yes 
Data-driven style support Yes (full support in both 

linear pipelines and FSMs) 
Limited to half-latches in 

combinational blocks  
Automated generation of 

control 
No Yes 

Table 2-1 Uncle versus Balsa Feature Comparison 

 

2.2 Uncle Flow Overview 
Figure 2-1 shows the Uncle tool flow. The flow is controlled by python scripts that invoke the various 

tools in the flow. The input RTL is transformed to a gate level netlist using commercial synthesis tools 
(both Synopsys Design Compiler and Cadence RTL Encounter are supported). The input Verilog RTL file 
contains a mixture of behavioral and gate-level statements that describes a mixture of combinational 
and control logic. The gate-level statements are necessary for instantiating elements that support the 
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asynchronous paradigm and which cannot be inferred from behavioral RTL statements. Parameterized 
modules are available from an Uncle-provided library and are used to reduce the code footprint of these 
constructs, reducing the RTL coding burden on the designer. 

 

Figure 2-1 Uncle Synthesis Flow 

The target library read by the commercial synthesis tool contains and2, xor2, or2, inverter, D-flip-flop 
(DFF), D-latch (DLAT), and other gates that are either black boxes for special use (such as T-,S- elements, 
discussed later), or are complex gates that have been mapped to an optimized NCL implementation (i.e., 
a full adder). These gates have unit delays for timing, and area figures that are relatively proportional to 
their transistor counts. The single-rail netlist is then expanded to a dual-rail netlist with gates and 
registers expanded to their actual dual-rail implementations. The ack network is then generated, at 
which point the gate level netlist is simulation-ready. The steps after this point are optional 
optimizations and checking. The ack checker is a tool that reverse engineers the ack network to 
mechanically check its correctness. This is primarily included as a check for coding errors in the ack 
generation tool when new approaches in ack network generation are tested.  

The various components of this flow will be discussed in more detail in later sections of this 
document. 

2.3 Dual Rail Combinational Logic in NCL 
The asynchronous methodology supported by Uncle is dual-rail, four-phase, with fine-grain gates. 

The combinational logic in the single_rail_netlist.v file of Figure 2-1 contains basic two-input gates such 
as AND2, OR2, XOR2, and INV which are expanded to their dual-rail versions implemented in NCL gates. 
NCL is used instead of some other style such as DIMS as it produces logic with fewer transistors and 
lower delays. For example, a dual-rail AND2 (DRAND2) requires 31 transistors implemented in NCL 
versus 56 transistors in DIMS. Three-input (and higher) basic Boolean gates are not used as their dual-
rail expansions are generally not as efficient as the two-input versions ([7] has a good discussion on 
dual-rail expansion of combinational logic to NCL). The combinational logic also has a few complex gates, 
such the full-adder and mux2, that have direct NCL implementations that are far more efficient than by 
representing these gates as primitive two-input gates and then dual-rail expanding these gates. These 
complex cells are expanded to their NCL implementations during the flow of Figure 2-1. One of the 
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future goals of the Uncle toolset is to offer better logic synthesis in terms of direct NCL implementation 
of complex gates rather than using primitive gates that are later expanded to dual-rail logic. 

A note on the NCL full-adder cell 

The NCL full-adder cell [4] is very efficient implementation in terms of transistor count and speed, 
but it has the property that the carry-out (CO) is not input-complete (its t/f rails do not depend on all of 
the t/f rails of the A, B, CI inputs). However, as long as the CO is used as the carry-input (CI) of another 
full-adder cell, input completeness of the sum bits are preserved. This means that if you want to use the 
most-significant carry-out of a ripple-chain, then you need to use XOR3 gating in order to have an input 
complete output. Sometimes, the Synopsys/Cadence synthesis tools will use a full-adder cell as an XOR3 
gate (only the CO output is used, the SUM output is unconnected). During the mapping process, Uncle 
detects this condition and replaces the full-adder with a dual-rail XOR3. 

2.4 Data-driven vs. Control-driven Design Styles 
A complete digital system also needs registers and a sequencing mechanism in addition to 

combinational logic. Uncle supports two distinct design styles for registers/control: data-driven and 
control-driven (i.e., Balsa-style). These terms are more fully defined in the following sections, but some 
guidelines on the usage of these styles are given here as this is a basic choice that a designer must make 
before implementing their module (or sub-module within a larger design).  

• The data-driven style is the best choice in terms of performance for linear pipelines. For 
transistor count/energy, the better choice (data-driven/control-driven) is design dependent. 

• The data-driven style is generally the best choice in terms of performance for a block that has 
feedback (i.e. accumulators, finite state machine) if ALL registers, ALL ports are read/written 
each compute cycle. This assumes that the block is performance-optimized using the automated 
delay balancing tool available in the tool flow. If minimal energy/transistor count is required, 
then the control-driven style is generally better. 

• The control-driven style is the better choice in terms of transistor count/energy for blocks that 
have registers with conditional read/writes, and/or ports with conditional activity. It can also be 
better in performance than the data-driven implementation, but it depends on the block.  

Uncle supports designs that mix sub-modules that use different styles (the Viterbi example in the 
$UNCLE/designs/ directory is an example of this). The data-driven style currently has more support in 
the Uncle flow in terms of optimizations because the first version of Uncle only supported this style, but 
it is envisioned that future versions of Uncle will also support a variety of optimizations for the control-
driven style. 

2.5 Data-driven Control and Registers 
Figure 2-2a shows a data-driven dual-rail half-latch (the term half-latch is used because in a FIFO 

arrangement, two of these are required for each bit stored in the FIFO). In this system, the acknowledge 
signals ki, ko are at logic 1 when the data rails are at NULL. Because of this, an asynchronous reset signal 
is required in the C-element to force its output to NULL during system reset. This is a reset-to-NULL half-
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latch as both outputs are reset to 0 during a system reset. In Uncle, a dual rail signal has t_/f_ prefixes 
for true/false rails, respectively. The transistor level implementation of the half-latch used in Uncle is 
somewhat different from that shown in Figure 2-2a in that it isolates the t_q/f_q output loads from ko 
signal generation. It does this by using internal signals taken before the final inverter stage in the C-gates 
as inputs to an AND2 gate that then drives the ko output load. This costs four more transistors (34 
transistors versus 30 transistors for the design of Figure 2-2a) but produces a faster ko path when 
t_q/f_q are loaded. 

 

Figure 2-2 Data-driven Half-latch 

Figure 2-2b shows how the acknowledge signals are used to control data transfer between two of 
these half-latches in the familiar micro pipeline arrangement. The ackin (ki) of a bit in latch A is tied to 
the output of a C-element completion tree whose inputs are the B-latch ackouts (ko) of all the 
destinations of that bit. The data sequencing between bits in the registers is controlled by arrival of data 
waves, NULL waves at the half-latch and by the ack network. 

A finite state machine with feedback requires a different form of latch element. If the C-element of 
Figure 2-2a that drives the t_q output is replaced with a C-element that resets to 1, then this becomes a 
reset-to-DATA1 (drlats) half-latch (the latch outputs have a dual-rail DATA1 at system reset). Conversely, 
a reset-to-DATA0 (drlatr) half-latch is formed by replacing the C-element driving the f_q output with a C-
element that resets to 1. Figure 2-3 shows a finite state machine implementation with state registers 
implemented as three half-latches, with the middle half-latch containing initial data. This forms a three 
half-latch ring which is the minimum required for data cycling [4], and the initial data in the middle half-
latch is required in order to insert a data token on this loop. This register type is expensive in terms of 
transistors (and associated energy), requiring 3*34 = 102 transistors per bit. This register type is termed 
a dual-rail data-driven register in this document.  
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Figure 2-3 Finite State Machine 

This document refers to a system using this style of registers/control as data-driven, since there is no 
separate control network other than the ack network. In this data-driven style, all ports and all registers 
are read and written every compute cycle (port/register activity can be further restricted in a data-
driven design, but requires extra effort in terms of additional gates; examples are given later in this 
document). 

2.6 Control-driven Control and Registers 
Conversely, this paper refers to a control-driven system as one that has registers with selective 

read/writes and a control network that is separate from the datapath such as that implemented by 
Balsa. Figure 2-4a shows a dual-rail register based on an SR-latch (this register has a low-true ko; Balsa 
uses a register with high-true ko). Any number of read ports can be easily added to the register by 
placing AND2 gates on the dual-rail outputs, with each port enabled by a single-rail control signal as 
shown in Figure 2-4b. A write operation is triggered by data arrival, while a read is triggered by assertion 
of the associated read line with a port. This provides a selective read/write control capability for the 
register. With one readport, the register in Figure 2-4a requires only 28 transistors per bit, compared 
with the 102 registers per bit of the register in Figure 2-3 or the 34 transistors per bit for the half-latch of 
Figure 2-2a. Generally, control-driven designs will have lower transistor counts and lower energy than 
data-driven designs. Note that the register of Figure 2-2a has no initialization capability; Uncle provides 
reset-to-0 and reset-to-1 versions as well. 
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Figure 2-4 Dual-rail register based on an SR latch. 

Balsa uses handshaking modules known as S-elements and T-elements [9] to implement the separate 
control channel for control-driven transfers. These elements have elegant implementations that are 
small and fast; the signal transition graphs for these two elements are shown in Figure 2-5. Typical use is 
to connect a chain of these elements to form a sequencer, with the la output of one element connected 
to the lr input of the next element. The Or output is typically used to trigger a read on one or more 
registers, with the Oa input connected to the output of the ack network for the destination registers. 
The T-element offers more concurrency than the S-element as it asserts la+ (starts next sequencer 
element) when Oa+ occurs, thus beginning the next datapath action while the current datapath action is 
returning to NULL. Balsa uses clever configurations of these elements with additional gating to 
accomplish various control structures such a loop-while, if-else, etc. Example usage of these elements in 
Uncle designs are provided later in this document.  

 

 

Figure 2-5 S-element, T-element STGs. 

 

3 Data-driven Examples 
This section gives examples of data-driven designs; all examples are available in the designs/ 

subdirectory of the Uncle distribution. 
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3.1 RTL Constructs 
All behavorial RTL examples in this document are given in Verilog. The native Uncle tools themselves 

can only parse Verilog gate-level netlists (named port association only), and rely on a commercial 
synthesis tool such Synopsys Design Compiler or Cadence RTL Compiler to synthesize behavioral RTL to 
the gate-level netlist that enters the Uncle tool flow. You could also use VHDL as the initial RTL, as long 
as the final gate netlist was in Verilog. Regression test examples in the Uncle toolset are all in Verilog 
RTL, and the majority have been tested with both Synopsys and Cadence.  

Combinational logic in Uncle designs are specified using standard Verilog constructs. For arithmetic 
blocks, RTL operators such as ‘+’, ‘<’ etc. can be used, but Uncle examples often used parameterized 
modules that directly instantiate complex gates such as a full-adder to give full control over the 
structure used for the arithmetic operator instead of relying on the synthesis tool’s choice. An important 
file in the Uncle distribution is: 

$UNCLE/mapping/tech/models/verilog/src/gatelib/parm_modules.v 

This file contains numerous parameterized macros that are used in several examples. This file is only 
used for synthesis purposes, and is automatically read by the scripts used for Synopsys/Cadence 
synthesis. We will point out the use of these macros as the examples are discussed. 

Figure 3-1a shows how to infer a half-latch from a behavioral Verilog statement. The behavioral 
Verilog generates a D-latch in the single-rail gate-level netlist, which is transformed during the mapping 
process into a dual rail half latch (a drlatn cell, which is a reset-to-NULL half-latch). Note that a clock 
signal needs to be present in the module’s interface in order to infer this latch; this signal is dropped 
during the mapping process. Figure 3-1b shows how to infer a DATA0 register from a behavioral Verilog 
statement. This infers a DFF (D-flip-flop) with a low-true reset in the single-rail gate-level netlist, which is 
transformed to the three half-latch structure (data-driven register) during the mapping process. Note 
that the middle latch is a reset-to-DATA0 half-latch. If the statement q<=0 is replaced with q<=1 then 
the middle half-latch becomes a reset-to-DATA1 half-latch. If the always block of Figure 3-1b is modified 
to drop the asynchronous reset, then the DFF that is generated in the single rail netlist will not have a 
reset input. However, this DFF will still be mapped to the structure of Figure 3-1b during dual-rail 
expansion and a default reset input added, as all data-driven registers are assumed to have initial data.  
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Figure 3-1 Data-driven half-latch/register inference from RTL. 

 

3.2 RTL Restrictions 
There are a few restrictions on the RTL that can be used for Uncle designs: 

• Clock signal: For the flattened top-level module, all input to output paths must go through at 
least a half-latch; there can be no combinational-through paths. This also implies that in a data-
driven design, the top-level design must have a clock signal in order to infer DFFs/D-latches. A 
control-driven design does not require a clock signal as these registers are manually instantiated 
by the user. There can be no gating logic on the clock signal. 

• Asynchronous reset:  An asynchronous reset line is not required in a data-driven netlist but all 
final NCL netlists will have one, so a low-true asynchronous reset with a default name is 
generated if one is not specified. Control-driven RTL is required to have a low-true asynchronous 
reset at the top-level module as one of the required gates needs this input. There can be no 
gating other than buffers/inverters on the asynchronous reset, and the asynchronous reset can 
only be used as the reset for DFFs or latches, and not in general logic. Buffering to meet a user-
specified transition constraint is added to the asynchronous reset network during the mapping 
process; this is discussed later. 

3.3 First example: clk_up_counter.v to ncl_up_counter.v walkthrough 
The first example is clk_up_counter.v and is found in:  

$UNCLE/designs/regress/syn/rtl/clk_up_counter.v  
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Uncle’s example directory structure uses the convention that commercial synthesis is done in the 
syn/ directory, NCL netlist mapping in the map/ directory, and Verilog simulation in the sim/ directory. 
For the rest of this example, many directory references are relative to $UNCLE/designs/regress/. 

The Verilog code is shown in (this example was grabbed off the web from a popular Verilog tutorial 
site). It is a standard up counter with an asynchronous low-true reset, and synchronous enable, clr 
signals. 

 

Figure 3-2 clk_up_counter.v RTL 

The author’s naming conventions for examples tends to stray somewhat, but generally ‘clk_’, 
‘clkspec_’ or no prefix is used on input RTL, with ‘ncl_’ or ‘uncle_’ prefix used for verilog files that result 
from the mapping process. In this particular case, you can simulate this clocked RTL and you will get the 
same inputs/outputs on a compute cycle basis as you will get from the mapped NCL netlist. So this is a 
case where the input RTL can be simulated before mapping. However, for many other examples 
(including all of the control-driven style examples), this will not be possible. The top-level module name 
has to match the name of the input file without the .v extension.  

To run the complete synthesis/mapping process for this example, execute the following command in 
the $UNCLE/designs/regress directory (this assumes that Cadence RTL Encounter and the Cadence 
Verilog simulator is on your path): 
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python doregress.py up_counter cadence default.ini -syntool cadence 

This runs the complete flow including a regression test simulation. However, the design is typically 
created in three major steps:  a) RTL-to-single-rail netlist synthesis, b) single-rail netlist to NCL netlist 
mapping, c) simulation of the NCL netlist. This corresponds to the syn/, map/, and sim/ subdirectories 
under the $UNCLE/designs/regress directory. The rest of this section discusses how to run these 
separate steps (more information on the regression script can be found in the appendix). 

RTL Synthesis to gate-level single-rail netlist 

To perform the RTL-to-single-rail netlist synthesis, change to the $UNCLE/designs/regress/syn 
directory and execute the command: 

synrc_design.py default_cadence.template %TOP%=clk_up_counter 

This synthesizes the syn/rtl/clk_up_counter.v file to a gate-level netlist stored in file 
syn/andor2_rc/clk_up_counter.v using Cadence RTL Encounter. This file is shown in Figure 3-3; observe 
that the combinational gates are primitive two-input gates.  

The default_cadence.template file is a synthesis template script that synthesizes for a minimum area 
constraint and is contained in the $UNCLE/mapping/tech/cadence directory. The 
mindelay_cadence.template file synthesizes for a minimum delay constraint and may result in a faster 
design for designs with complex combinational blocks (or it may not, since longest path delays in 
asynchronous dual-rail netlists can be data-dependent, and furthermore, the gate-delays specified in the 
.lib file used for synthesis only contains unit-delays. This is an area that needs further improvement). A 
current limitation is that the mindelay_cadence.template file can only be used for data-driven designs 
and not for control-driven designs because how the script is written to look for dff/Dlatch-to-dff/Dlatch 
paths (this restriction will be removed in a future release). 

Use the following command if you wish to use Synopsys dc_shell for synthesis: 

syndc_design.py default_synopsys.template %TOP%=clk_up_counter 

The resulting gate-level netlist is placed in the syn/andor2_dc/clk_up_counter.v file. 
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Figure 3-3 clk_up_counter.v single-rail netlist 

Gate-level single-rail netlist to NCL netlist mapping 

For NCL mapping, first copy the syn/andor2_rc/clk_up_counter.v netlist to the map/ directory. Then, 
edit the clk_up_counter.v file and change the module name from clk_up_counter to ncl_up_counter. 
This is needed as this module name is passed to the Uncle tool as the top-level module, and it also forms 
the basis for the output file name. If you do many of these designs, you will probably write a script to 
automate this step to your personal preferences (as is done automatically during the doregress.py 
regression script). CHANGE version 2.6:  With version 2.6 and later, it is no longer necessary to edit the 
Verilog file and manually change the module name – the top module name of the Uncle Verilog file will 
be the second argument passed on the Uncle command line. 

Execute the following command in the map/ directory to map the netlist to an NCL netlist: 
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 uncle clk_up_counter.v ncl_up_counter default.ini 

After many lines of status output is produced, the NCL netlist is written to ncl_up_counter.v. The 
uncle command is a python script that expects three arguments : 1) input file name, 2) top module 
name, and 3) options file. The default.ini file is an options file the executes the default flow (see the 
chapter on technology files for an explanation of some of the options in a .ini file, these reside in the 
$UNCLE/mapping/tech directory). The only performance optimization in the default flow is a net-
buffering step, that buffers heavily loaded nets to meet a global transition time constraint (see the net-
buffering section later in this document). The only area optimization performed in the default flow is a 
cell merging step that merges adjacent cells with no fanout to more complex gates.  

During the mapping process, several intermediate netlists are produced in the tmp/ subdirectory. 
Some of these files are (the entire tmp/ directory can be deleted after mapping if desired): 

• modname_dr0.v – after dual-rail expansion. 
• modname_dr1.v – after inverter removal (inverters are replaced by assignment statements that 

swap the rails). 
• modname_dr2.v – after netlist flattening of dual-rail gates to threshold gates. 
• modname_safe0.v – after ack network generation. This is a complete NCL implementation, and 

is a good file to use for detailed debugging as the DFFs have not yet been flattened to three half-
latch implementations, and so there are fewer signals to deal with. Also, simulate this file if you 
suspect a problem due to either relaxation or merging.  

• modname_safe1.v – DFFs flattened to half-latch implementations. 
• modname_nbuf0.v – the netlist after net buffering has been done. 
• modname_merge1.v – after gate merging – this can cause nets to be deleted.  
• modname_cleanup0.v – a cleaned up version of the netlist with dead gates removed. This is the 

netlist that is used by the acknetwork checker that checks for structural correctness of the ack 
network. 

•  modname.v –  This is the final netlist, and is written to the current directory. This netlist has 
been cleaned of all verilog attributes that have been added during various stages of the 
transformation process. 

 
Files produced in the current working directory other than the final netlist of modname.v are: 
• modname_stats.txt – netlist statistics at the various transformation stages (the only one that 

you are generally interested in is the total_area statistic at the end of the file that is the total 
number of transistors, and the output_cycle_average_time if the uncle_sim tool has been run). 

• modname_acks.txt – information on the acknowledgement networks that are generated, useful 
if your final netlist does not cycle and you are trying to debug it. 

A portion of the ncl_up_counter.v netlist is shown in Figure 3-4. Note that the port names now have 
‘t_’ and ‘f_’ as prefixes except for the asynchronous reset, and new ports named ackout, ackin have 
been added. Any gates with cgateN instance names are part of the ack network. Any gates with instance 
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names of cmrg_N names have been merged by the cell merger. Any gates with instance names of 
buffcomp_N names have been added during net buffering. 

 

 

Figure 3-4 Part of ncl_up_counter.v 

NCL netlist simulation using uncle_sim 

Before using an external Verilog simulator to verify the netlist, you can use the internal Uncle 
simulator to do some basic checking (this is done in the regression test). Execute the following command 
line to apply random inputs for 100 output cycles: 

uncle_sim ncl_up_counter.v default.ini -top ncl_up_counter -maxcycles 100 

Stats given at the end of this simulation is (time is in picoseconds): 

Finish time: 534076, Number of data output cycles: 100, Average output cycle 
time: 5340, Transitions per cycle: 179, Switched capacitance per cycle: 
3.658548e-13, 

By default, the internal simulator reads NLDM characterization information from the file (this file 
specified by an option in the default.ini file): 

$UNCLE/mapping/tech/timing65nm.def 

This timing characterization data was produced from pre-layout transistor-level gate models using 
Cadence Ultrasim, with transistor models from a commercial 65nm process. Transistor-level simulations 
using Cadence Ultrasim of the final NCL netlists have shown about a 5% agreement with predicted cycle 
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time. The Uncle simulator is an event-driven simulator that supports ‘0’, ‘1’, and ‘X’ values. The 
simulator uses the function property in the Uncle cell definition files for evaluating generic Boolean and 
NCL combinational gates. Special purpose gates such the mutex and various register cells have custom 
models built into the simulator, with the ncl_func cell property used to identify the type of cell to the 
simulator. 

The Uncle simulator also reports three unusual/failure conditions (a waveform file named 
module_name.vcd is produced by the simulator and can be viewed by the freely-available Linux tool 
gtkwave to help debug these conditions): 

• Failure to cycle: An error is reported if the netlist fails to cycle. This can either be due to designer 
error in the original RTL or because of incorrect netlist generation due to a tool error. See the 
debugging chapter for hints on debugging dead netlists. 

• ‘X’ values after reset: Unclesim holds reset asserted with primary inputs at NULL until the netlist 
is settled, then releases reset and either applies random inputs or user-specified stimulus. An 
error is reported and the simulator is exited if any ‘X’ (unknown) values are detected on gate 
outputs once reset is settled. Check the .vcd waveform file to determine the cause of these ‘X’ 
nets.  

• Orphan or glitch detected: This is a warning, and means that a net transition that fanned out to 
at least one NCL gate did not cause a corresponding transition in at least one of the fanout 
gates. In general, the dual-rail expansion methodology used in Uncle does not cause gate 
orphans in combinational logic, and the ack generation strives to not generate gate orphans. 
Long chains of gate orphans may cause timing problems in NCL. It is possible that something the 
designer has done using demux or merge gates can cause orphans. Orphans are an unusual 
condition, and should be checked by the designer. The –ignore_orphan netname option can be 
specified to the simulator to specifically ignore orphans that the design knows are ‘safe’. 
Generally speaking, the netlists produced by Uncle should be orphan free. Obviously, the 
orphan/glitch detection is only valid for the random vectors produced during the simulation run, 
and does not guarantee that your design is orphan-free for all possible input vectors. Note: 
some definitions of the term gate orphan use a timing constraint that do not report orphaned 
signal transitions unless they have the potential to cause a logic error by persisting long enough 
so that it collides with the next data wave. The Uncle simulator does not do any timing analysis 
for the orphan/glitches that are reported.  

• Simultaneous assertion of dual-rail nets:  This indicates that both rails of a dual-rail net have 
been simultaneously asserted, and always indicates some serious error with the netlist. This 
condition should never occur, and indicates either a tool error during the mapping process, or a 
designer error in the original RTL. These should always be investigated.  

 

The uncle simulator can also read external vector files instead of using random vectors; look at the 
file: 

$UNCLE/design/regress/map/gcdsimple.vecs 
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for an example of the input format, and the regression test labeled as gcdsimple_t2 in the 
$UNCLE/design/regress/doregress.py file for command line options needed for uncle_sim. Because the 
input vector format is a primitive one, it is best to have the external verilog simulator testbench produce 
this file during its testing, as the following Verilog testbench does: 

$UNCLE/design/regress/sim/src/uncle_gcdsimple/tb_uncle_gcdsimple.v 

NCL netlist simulation using an external Verilog simulator 

An external verilog simulator is required to fully test the NCL gate level design. The regression tests in 
the distribution have Makefiles that are compatible with Synopsys, Cadence, and Mentor (modelsim) 
simulators. The gate-level models are in $UNCLE/mapping/tech/models/verilog/src/gatelib and use unit 
delays (the Uncle simulator with its NLDM timing model is intended for more accurate prediction of 
netlist performance). 

During mapping, a skeleton testbench file is also created named tb_modname.v (i.e., 
tb_ncl_up_counter.v). The testbench structure is shown in Figure 3-5. All input vectors are supplied as 
single-rail vectors using the original single-rail port names via code placed in the initial process; a helper 
process translates these to dual-rail signals. A helper task named ncl_clk is used to assert i_clk to apply 
the data wave, waits for the falling edge of ackout that indicates the data wave was consumed, negates 
i_clk to apply the null wave, and then waits for the rising edge of ackout that indicates the NCL block is 
ready for new data.  

 

Figure 3-5 NCL Testbench structure 

A snippet of Verilog testbench code for the initial process is shown in Figure 3-6. Lines 40-45 initialize 
input signals and applies reset. Lines 49-53 is a loop that enables the counter, and then lets the counter 
count for 511 data/null waves. Lines 53-56 disables the counters for a few data/null waves, and then 
lines 57-58 clears the counter. 
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Figure 3-6 Part of the initial process. 

Figure 3-7 shows a portion of the output capture process that captures the true rails of the output 
once they are ready and prints the value to the console. 

 

Figure 3-7 Testbench output capture/display. 

Simulation is done in the sim/src directory. Once the map/ncl_up_counter.v file is produced, copy it 
to the sim/src/ncl_up_counter directory (this directory already contains the fleshed-out testbench just 
discussed). Compile the ncl_up_counter directory by executing: 

 gmake –f ncl_up_counter/Makefile TOOLSET=simchoice 

where simchoice is either qhdl (Mentor modelsim), cadence (Cadence/ncsim) or synopsys 
(Synopsys/vcs). To simulate, execute: 

 gmake –f ncl_up_counter/Makefile TOOLSET=simchoice  dosim 

The dosim target in the Makefile runs the simulation in batch mode for the default SIMTIME specified 
in the Makefile, with simulator output logged to sim/src/ncl_up_counter/sim.log.  

A portion of the simulator output is shown in Figure 3-8. The counter is enabled for lines 535-540, 
held in lines 541-544, cleared 545-547 (clr takes precedence), and enabled in lines 548-551. 
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Figure 3-8 A portion of the simulator output. 

 

3.4 Second Example: GCD16 (clkspec_gcdsimple.v) 
The file $UNCLE/designs/regress/syn/rtl/clkspec_gcdsimple.v implements the GCD algorithm shown 

in Figure 3-9 using 16-bit values. 

 

Figure 3-9 GCD using successive subtraction. 

Two different regression tests are available in $UNCLE/designs/regress/doregress.py for this design 
using the command lines shown below executed from the $UNCLE/designs/regress directory (these 
command lines omit the synthesis step). The gcdsimple_t1 test runs Unclesim with random vectors, 
while the gcdsimple_t2 runs runs Unclesim with a user specified vector file. 

python doregress.py gcdsimple_t1 cadence default.ini  

python doregress.py gcdsimple_t2 cadence default.ini 

The datapath and finite state machine (FSM) for the gcdsimple example are shown Figure 3-10. There 
is no attempt at power savings, all muxes are Boolean. The GCD block has the property that it should 
only accept new input when it requires new input, which is during state S0. The rport box is a read port 
module, and is used to control input port activity to meet this requirement. Similary, the DOUT output 
port should only be active when output value is ready, which is during state S2. The wport box is a write 
port module, and is used to control output port activity in this manner. In a data-driven design, having 
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conditional port activity costs extra gates in terms of read port/write port wrappers. These will be 
explained in more detail later in this section. 

 

Figure 3-10 GCD Datapath/FSM. 

Code excerpts will be shown from clkspec_gcdsimple.v to illustrate how the elements of Figure 3-10 
are implemented in RTL. Figure 3-11 shows RTL that implements the computational and mux elements 
of the datapath. Even though you can use arithmetic operators such as ‘<’, ‘==’, ‘-‘, etc., this code uses 
parameterized modules from parm_modules.v to ensure user-controlled architectures for these 
operations. The use of the mux2_n parameterized module is important as the mux2 cell has a very 
efficient NCL implementation. 

 

Figure 3-11 Datapath RTL. 
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Figure 3-12 shows the RTL that implements the registers and FSM logic; this is written in essentially 
the same manner as for a clocked system. State S0 activates the read port, state S1 performs the 
iterative computation, and state S2 activates the write port. 

 

Figure 3-12 Register/FSM RTL. 

Read port operation 

The rport box of Figure 3-10 is a read port, and is used to conditionally provide data to a data-driven 
design. A data-driven design requires data/null waves every compute cycle, and the read port’s function 
is to provide data from an external port when its read line is asserted, and provides dummy data when 
its read line is negated. Figure 3-13a shows the RTL implementation of the read port macro. The input 
port goes to a D-latch, whose output goes to a black-box component named demux2_half1_noack. A 
black-box component has no logic function defined in the Cadence/Synopsys .lib file, and so the 
synthesis tool simply keeps it unchanged in the netlist. Black-box components in Uncle are used to 
implement either special gating that implements an asynchronous capability, or serves as virtual 
annotation in the netlist that causes the mapping process to manipulate this portion of the netlist in 
some manner. The output of the demux2_half1_noack gate goes to a merge gate, whose other input is 
from a demux2_half0_noack gate that is fed by a constant 0 (this is the dummy data when the readport 
is not selected). Both noack gates have select lines; one can view the half1_noack output as having 
active data when its select input is logic 1, and the half0_noack output as having active data when its 
select line is logic 0. The merge gate is also a black box component, that maps in the dual rail netlist to 
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an OR2 gate that ORs the false rails together, and an OR2 gate that ORs the true rails together (this is 
typically called an asynchronous mux, and only one of the true/false rail pairs are assumed to have 
active data in any cycle). Note that select inputs of the half_noack components is tied to a line named rd 
(read) from the FSM; when rd=1 the external port data is gated to the FSM/datapath, when rd=0 the 
dummy data is gated to the FSM/datapath. 

 

Figure 3-13 Read port details. 

Figure 3-13b shows how the RTL is translated to gates in the final netlist by the mapping process. The 
half_noack components act as virtual instructions to the ack network generator, and the ack generator 
creates a gated ack network as shown. Note the ki (ackin) input to the drlatn cell is only a ‘1’ (request-
for-data) if rd=1 (t_rd is asserted). Similarly, the ki input to the dual-rail logic 0 generator is only a ‘1’ 
(request-for-data) if rd=0 (f_rd is asserted). The C-gates connected to the t_rd/f_rd signals are reset-to-
null C-gates since during reset, the t_rd/f_rd signals will both be null, while the ko (ackout) of the 
FSM/datapath will be a ‘1’, thus requiring a C-gate with a reset line.  

The RTL for instantiating the read ports in the RTL for the GCD design is given below: 

 readport_n  #(.WIDTH(16)) rp_x (.clk(clk),.d(a),.q(ad), .rd(rd)); 
  readport_n  #(.WIDTH(16)) rp_y (.clk(clk),.d(b),.q(bd), .rd(rd)); 

Write port operation 

The wport box of Figure 3-10 is a write port, and is used to conditionally provide data to the output 
port of data-driven design. Figure 3-14a shows that the RTL view of a write port is just a demux2 black-
box component with the y0 output unconnected. The y0 port of a demux2 copies the input data if the 
select line is false, and the y1 port copies the input data if the select line is true as shown in Figure 3-14c. 
The purpose of the unconnected output port of the demux2 is to consume the output data by providing 
a self-ack for this port as shown in Figure 3-14b. If your design is such that you know that the 
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FSM/datapath output will always be consumed by some destination (that is, an ack will be provided), 
then the demux2 component can be replaced by a demux2_half1 component that only implements the 
y1 output (this saves the cost of the self-ack gating). 

 

Figure 3-14 Write port details. 

The RTL for instantiating the read ports in the RTL for the GCD design is given below: 

writeport_n  #(.WIDTH(16)) wp0 (.d(bq),.q(dout), .wr(wr)); 
 

4 Control-driven Examples 
This section gives examples of control-driven designs; all examples are available in the designs/ 

subdirectory of the Uncle distribution. The control-driven design methodology is taken from the Balsa 
synthesis toolset by examination of the Balsa generated netlists and through published articles on Balsa 
control; the author’s contribution is to make this methodology available in a Verilog RTL form and to 
provide some optimizations to it such as C-gate sharing in ack networks. 

 

4.1 First control-driven example: up_counter.v to ncl_up_counter.v 
The first control-driven example is up_counter.v and is found in:  

$UNCLE/designs/regress_dreg/syn/rtl/up_counter.v  

The regression test for this example can be run in the $UNCLE/designs/regress_dreg/ directory using 
the command: 

python doregress.py up_counter cadence default.ini -syntool cadence 
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Control-driven designs requires more designer effort at the RTL level than data-driven designs, as 
each register in data driven RTL (a DFF) most probably needs to be split into master/slave latches in the 
control-driven RTL, with each latch accessed in a different state of the control-driven sequencer. The 
control logic has to be instantiated manually as a network of S/T elements. There are some modules in 
the parm_modules.v file that can somewhat reduce the RTL overhead of specifying a control-driven 
sequencer; these will be discussed when encountered in example designs. 

Figure 4-1 shows the RTL view of the control-driven up_counter example. The register is 
implemented as separate master, slave latches that are controlled by a two-state sequencer. State S0 
gates the external inputs, reads the slave register, and updates the master register with the new counter 
value base on the slave register value and the external inputs. State S1 writes the slave register, and 
places the counter value on the out terminals. The vrport black box component is a virtual read port 
(module name is vreadport) used by control-driven designs for conditional access of external inputs. It 
differs from the read port module previously discussed in that it does not provide dummy values when 
its select line is false, and it does not actually contain a register. It serves as a virtual instruction to the 
ack network generator and causes a gated ack network to be placed on the ackout primary output in the 
final netlist (see Figure 4-2). 

The two-state sequencer is implemented using three modules from parm_modules.v: loopen, 
seqelem_kib, and seqdum_kib. The loopen component implements the logic shown, and is used to form 
a repeated sequence of actions. State S0 is implemented with the seqelem_kib component (an S-
element), with the terminals of Figure 2-5 renamed as start == lr, y == Or, kib == Oa (+ inverter), done == 
la. The kib terminal is typically tied to the auto-generated ack network. The letter b in kib is used to 
indicate that this comes from a low-true ack network such as generated by the data registers, and has to 
be inverted inside of the seqelem_kib component (there is also available a seqelem component that 
expects a high-true ack, and has a terminal named ki). In the RTL, the kib terminal is tied to logic ‘0’ as 
Uncle expects all inputs to components in the starting netlist to be connected; during the mapping 
process this is replaced by the auto-generated ack network. Typically, ackin/ackout terminals are not 
exposed on black-box modules used in RTL, but they are in the case of S/T-elements as there is a need to 
manually connect these in some cases (to be discussed later). The seqdum_kib is simply wires and one 
inverter as shown Figure 4-1; the last S/T element in a loop can be replaced by wires instead of using 
gating. 
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Figure 4-1 RTL view of the control-driven up_counter example. 

Figure 4-2 shows the final gate-level view of the up_counter example. Note that a gated ack network 
is generated for the ackout signal, and that the ack inputs of the two sequencer elements have been 
connected to the appropriate ack networks. There is also one other important difference in this netlist 
when compared to the data-driven netlist – not all RTL signals have been expanded to dual-rail signals. 
Control-driven RTL has both single-rail and dual-rail components. Sequencer elements are single-rail 
components, and thus all signals connected to them all single-rail signals. Usage of single/dual rail 
signals will be expanded on in later examples. 

 

Figure 4-2 Gate-level view of the control-driven up_counter example. 

Figure 4-3 shows the datapath RTL that instantiates the virtual read ports, the latches, and the 
compute block. Modules for control-driven registers are contained parm_modules.v with versions that 
have 1, 2, 3 read ports and also a variable number of read ports.  
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Figure 4-3 Datapath RTL for up_counter example. 

Figure 4-4 shows the RTL that implements the sequencer; this is a straight-forward instantiation of 
the logic shown in Figure 4-1. 

 

Figure 4-4 Control RTL for up_counter example. 

Figure 4-5 shows a simulation for the final netlist. Because synthesis does not always preserve net 
names used in the RTL, the mapping of gate-level net names to RTL names is given at the top of the 
timing simulation. This simulation uses the same test bench as used for the data-driven up counter 
example, which is as it should be, as data-driven versus control-driven should not change the module’s 
interface. The time marked as point A shows the ack assertion (after the internal inverter in the 
seqelement_kib component) in response to the S0 assertion; note that this causes S0 to be negated, 
which then triggers the ack negation. Observe that s1_start assertion occurs after the S0 ack is negated. 
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Figure 4-5 Timing for up_counter done using Balsa style components (uses an S-element). 

Figure 4-6 shows a simulation for the up counter in which the S-element has been replaced with a T-
element (this example can be found in $UNCLE/designs/regress/syn/rtl/clk_up_counterv2.v). Observe 
that the s1_start assertion is now triggered by the S0 ack assertion and not by its negation. This overlaps 
the return-to-null action of S0 with the data wave of S1, resulting in a faster cycle time.  

 

Figure 4-6 Timing for up_counter done using Balsa style components (uses a T-element). 

 

4.2 While-loops, choice 
The previous example had a two-state sequencer with no conditional execution. Figure 4-7 shows a 

sequencer with a while-loop. State S0 reads external ports, followed by states in the dotted box that 
compute a flag, then test flag the flag, with states S1, S2 executed if the flag test is true. State S3 is 
executed on loop exit, which returns back to S0 on completion. 
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Figure 4-7 Sequencer with while loop. 

Figure 4-8 gives the RTL view of the control for the sequencer of Figure 4-7. The key component is 
the whileloop2step component, which is a module that is available in parm_modules.v. The 
whileloop2step module first computes the flag that is used to control the loop execution, then 
reads/test the flag, and conditionally executes the loop body. All of the signals connected to the 
whileloop2 module are single-rail signals, except for the flag signal, which is dual-rail. It is assumed that 
the compute_flag signal is used to compute the flag that is written to a single bit latch, whose read port 
is connected to the rd_flag signal, and whose output is connected to the flag input. The tseqelem 
components are just place holders and can be replaced by S/T elements as desired. 

 

Figure 4-8 RTL view of control for sequencer with while loop. 

Figure 4-9 gives the whileloop2step module implementation details. A seqelem component is used to 
control a two-state sequencer that implements the compute flag and read flag steps. The drexpand 
module is a black box component that is used to access the individual t_/f_ rails of a dual-rail signal at 
the RTL level. The input to a drexpand component is a dual-rail signal, while the two output signals are 
both single rail, making them suitable for connection to sequencer component inputs. Observe that the 
f_flag signal is connected to the ki input of the seqelem component. This is an example of requiring a 
control element with a non-inverted ki input, and also a case where the designer provides the net 
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connection for the ki input instead being connected during the mapping process to an ack network. In 
terms of operation the two-state sequencer remains operational as long as the t_flag signal is asserted 
during the flag read state. 

 

Figure 4-9 whileloop2step module details. 

An optimization can be applied to this while loop if the while body only has one state. This implies 
that the while-body will be implemented with a wired-sequential element, a seqdum component, which 
also means that the last tseqelem element of Figure 4-9 can be replaced with a seqdum component as 
well. 

Figure 4-10 shows a sequencer with choice. State S2 is executed if the flag is false, else State S3 is 
executed. 

Write flag S0

S1

flagS2 10 S3

 

Figure 4-10 Sequencer with choice. 

Figure 4-12 shows one method of implementing the control of Figure 4-10 using sequencer elements. 
Sequencer element U1 implements state S0 (writes the flag), while element U2 implements state S1 
(reads the flag). The t_/f_ rails of the flag are used to trigger sequencer elements that control states 
S3/S2 respectively. The sror2 black-box component is a single-rail OR2; since only one sequencer 
element (U3 or U4) is activated, this gate combines the done signals of these two components to a 
single done signal that is then used as the ack for sequencer element U2. 
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Figure 4-11 One way to implement choice. 

Figure 4-12 shows the control of Figure 4-10 implemented using the choice module available in 
parm_modules.v. Depending on the application, this can be more efficient than the implementation of 
Figure 4-11. The choice module has a hidden ackout (ko) terminal that is low-true (like all Uncle ackout  
terminals) that will be automatically connected during mapping. Because the choice ko terminal is low-
true, sequencer that gates the flag to choice element must have a low-true ackin. The exposed ackin 
terminals (kib0, kib1) on the choice element are also low-true, and are expected to come from 
completion networks tied to datapath elements.  

 

Figure 4-12 Using the choice component. 

The implementation of the choice component is shown in Figure 4-13. The flag signal is a dual-rail 
signal, expanded internally to t_/f_ rails within the choice module. All ackins/ackout are low-true. The 
choice component can be used to implement if{}/else{} within a sequencer. Also shown in Figure 4-13 is 
a choice1 module, which is useful for implementing an if{} capability within a sequencer. 
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Figure 4-13 Implementation details for the choice/choice1 components. 

The ability to expand a dual-rail signal to its single rail t_/f_ component signals at the RTL level along 
with exposure of all terminals of S/T elements gives a designer quite a bit of freedom in designing 
sequencers for control-driven designs. Other single-rail components that are available for instantiation 
in RTL code are srand2 (AND2), srnor2 (NOR2), srinv (inverter), and cgate2/3/4 (C-elements).  

 

4.3 GCD control-driven example: gcd16bit.v to uncle_gcd16bit.v 
Two different versions of the GCD16 problem of Figure 3-9 implemented in control-driven style are 

found in:  

$UNCLE/designs/regress_dreg/syn/rtl/gcd16bit.v 
$UNCLE/designs/regress_dreg/syn/rtl/gcd16bitfast.v 
 

The gcd16bit.v version uses the approach in [10] in that the ‘==’ and ‘>’ are computed in each loop 
iteration, with either ‘a-b’ or ‘b-a’ conditionally computed. The gcd16bitfast.v version computes ‘a-b’, ‘b-
a’ in parallel with ‘==’ and ‘>’ to get a faster design at the cost of more energy. This section only 
discusses the gcd16bit.v version. 

Figure 4-14 shows the FSM for the control-driven GCD. The RTL that implements this FSM uses the 
whileloop2step and choice modules discussed in the previous section. State S0 reads the external a, b 
ports and writes these to the master latches for a, b. State S1 reads the master latches, and computes 
the a!=b, a>b flags as well as writing the slave latches with these a, b values. If the a!=b flag is true, then 
the while loop body is executed. The loop body either executes state S3 (if a>b is true) or state S3 (if a>b 
is false). State S3 computes a-b and writes the result to the a master latch, while state S4 computes b-a 
and writes the result to the b master latch. State S5 is executed on loop exit, and gates the b master 
latch value to the external dout port. 
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Figure 4-14 FSM for control-driven GCD. 

Figure 4-15 shows the datapath for the GCD example. When designing a datpath and control, the 
designer should have an understanding of where acks will be generated from for each state even though 
the mapping process generates those ack networks for the designer. In this case, the acks for each state 
are: 

• State S0 ack:  The ack generator traces the s0 signal, and discovers that the destinations are the 
two master latches. This means the ack for the sequential element implementing state S0 will be 
tied to the acks provided by the master latches.  

• Primary inputs ack: Tracing through the primary inputs leads to the master latches, so the 
external ackout signal will be an ack network provide by the master latches. However, since the 
primary inputs go through virtual read ports, this ack network will be gated by the S0 signal. 

• State S1 ack: The ack generator traces the s1 signal, and discovers that the destinations are the 
two slave latches and two flag bits (when tracing a signal that goes to a register read port, the 
tracing enters the register via the rd terminal and exits through the register q output). Thus, this 
ack network is composed of acks from those registers. 

• State S2 ack: The s2 signal gates the agtb flag, which terminates on a choice module. The ack for 
this state then comes from the choice module.  

• State S3 ack: Tracing the S3 signal yields the a master latch as the destination, so the ack for this 
state comes from the a master latch. 

• State S4 ack: Tracing the S4 signal yields the b master latch as the destination, so the ack for this 
state comes from the b master latch. 

• State S5 ack: Tracking the S5 signal yields the primary output dout as the destination, so the ack 
for this state comes from the external ackin input.  
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Figure 4-15 Datapath for control-driven GCD. 

The transistor level simulation for this design compared to the fastest data-driven version (used net 
buffering and latch balancing which is discussed later) showed about the same performance, but the 
transistor count, energy usage for the data-driven designs were 2.8X, 4.9X greater than the control-
driven design. Clearly, a control-driven approach is the best choice for this particular problem. 

 

4.4 Control-driven divider circuit – two methods  (contrib. by Ryan A. Taylor) 
The file $UNCLE/designs/regress/syn/rtl/clkspec_div32_16.v is a simple implementation of a divider 

circuit with a 32-bit dividend, dd, and a 16-bit divisor, dv. The outputs are 16-bits wide and are named qt 
and rm, appropriately. There also exists one asynchronous active-low reset signal named reset. Shown in 
Figure 4-16, below, is the FSM for the original clocked design. The relevant Verilog code is shown in this 
figure as well. The FSM is not complex. It has only one decision, and that decision only loops back to the 
current state. In order to optimize this code for a control-driven asynchronous design, some alterations 
will have to be made to the general layout of the FSM. State s0 will remain the same in the 
asynchronous implementation. However, a whileloop2step element will need to be used to implement 
the looping decision. Therefore, state s1 will be implemented as a part of the flag generation network to 
make use of the compute_flag and read_flag signals. The body of this looping element won’t be used, so 
states s2 and s3 will be implemented as states immediately following the whileloop2step element. 

It can be noticed in the code in state s1 that there are multiple if-then statements. Traditionally, in 
the clocked world, these could be implemented in a design as Boolean multiplexors. In the two 
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asynchronous designs that are implemented in this section, these multiplexors will be the main subject 
of the optimization. 

s0

s1

s2

s3

 

Figure 4-16 FSM and relevant Verilog code for clkspec_div32_16.v. 

This system has been implemented in two different ways in the following files. 

$UNCLE/designs/regress_dreg/syn/rtl/uncle_div32_16.v 
 $UNCLE/designs/regress_dreg_syn/rtl/uncle_div32_16_lowpower.v 

Figure 4-17, below, shows the control path for the uncle_div32_16 and the 
uncle_div32_16_lowpower systems. It should be noticed in this control path that there exists one fewer 
state than the original system, clkspec_div32_16. This is because the state that is labeled state s1 in the 
original design is implemented as a part of the whileloop2step element’s flag circuitry. The circuitry for 
the flag is implemented as a part of the datapath in both systems because of this usage. 
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Figure 4-17 Control path for uncle_div32_16 and uncle_div32_16_lowpower. 
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The datapath for the uncle_div32_16 is shown below, in Figure 4-18. There are multiple items that 
should be specially noted in this design that may be of interest to the reader. First, the element 
srtodrconst1 is an element that expands a single-rail logic signal into a dual-rail logic signal. In the case of 
this system, the signals kreg and cbit must be initialized to values of 1 and 0, respectively, upon system 
reset. If these signals are driven by constant values, the ack network will fail to generate properly. For 
similar reasoning as the justification for the vrport elements on the main inputs to the system, a 
srtodrconst1 element must be used to generate inputs for constant values. For full disclosure, note that 
the output of this element is concatenated to a 4-bit value before entering the merge gate in the kreg 
branch of the system. Secondly, the reader should note the use of two multiplexors to generate the 
signals to be used as the signal diff in the clkspec_div32_16 design. Based on the value of cbit, and the 
current state, the signal diff, and diff_s1, will be calculated differently. This means that both inputs to 
the multiplexors, which include at least three 16-bit adder/subtractors, will be in use each cycle, even 
though only one of these branches is necessary. This will push the power budget far beyond the 
required limits for this application. This issue is rectified in the uncle_div32_16_lowpower version of the 
system. 
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Figure 4-18 Datapath for uncle_div32_16. 
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Figure 4-19 Datapath for uncle_div32_16_lowpower. 

Figure 4-19 shows the datapath for the uncle_div32_16_lowpower version of the design. A few 
differences can be found. It can first be noticed that the srtodrconst1 element is used in the same 
fashion as in the uncle_div32_16 version fo the design. The kreg branch of the design is left unchanged 
from the previous implementation. Then, it can be easily seen that there are several differences 
between the two systems shown in Figures 4-17 and 4-18. However, they are all related to alleviating 
the problem stemming from using the two diff multiplexors causes: a major overuse of power. 

For the cbit branch of the system, some minor changes are made that will affect the remainder of the 
system in a large way. The signals cbit and cbit_s1 are fed into two elements of type drexpand. These 
signals now have a signal_t component signal and a signal_f component signal. These signals will be 
used in the remainder of the system. 

For the dvreg and ireg branches of the design, the master dreg elements are no longer triggered by 
compute_flag or state signals; they are now triggered by the dual-rail expanded component signals of 
cbit_f, cbit_t, and cbit_s1_f. Since these component signals are generated with a trigger of the 
compute_flag signal, the same general order of events occurs. Since the system now has three versions 
of both the dvreg and the ireg signals, there is no longer a need for any multiplexors in the design. Only 
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one of the four branches of the merge network will be active, thus saving exponential amounts of power 
on each cycle of the system. 

Using a specified known set of 100 vectors, both of these versions of the divider system were 
simulated using the uncle_sim package. The original version, uncle_div32_16, clocked at 15593 
transitions per cycle and measured an average switching capacitance of 25.6 pF. The reduced-power 
version, uncle_div32_16_lowpower, clocked at 14347 transitions per cycle and measured an average 
switching capacitance of 18.34991 pF. The reduced-power version of this design, therefore, measured 
an improvement of 1246 transitions per cycle (8% improvement) and 7.12 pV (28% improvement) over 
the original design. 

From this data, it is apparent that the goal of these control-driven designs should be to design in such 
a way as to only have necessary logic working at any given time. If it is possible to design in such a way 
as to add more transistors, but decrease the use of a large percentage of transistors at a time, then it 
should be designed that way. 

5 Optimizations 
This section discusses the various area and performance optimizations available in the Uncle flow. 

 

5.1 Net Buffering 
Net buffering is a performance optimization step that reads an external timing data file for the target 

library, where the timing data is non-linear delay model (NLDM) lookup tables for output transition time 
and propagation delay based on input transition time and output capacitive load (the timing data file 
also contains pin capacitance information). The cell library contained in the distribution has pre-layout 
transistor-level spice sub-circuits that were characterized using Cadence Ultrasim using two sets of 
transistor models, 65nm Berkeley PTC models and models from a commercial 65nm process. This timing 
data is found in the files $UNCLE/mapping/tech/timing65nmptc.def, timing65nm.def respectively. The 
following statements in the $UNCLE/mapping/tech/common.ini file selects the timing data file and delay 
model used by net buffering and by the internal Uncle simulator: 

delay_timingfile timing65nm.def 
 delay_timing_model nldm 

The current net buffering implementation is a simple approach that buffers nets to meet a user-
specified transition time (two different times can be specified; one for the global reset net and a default 
one for all other signal nets). The following statements in the $UNCLE/mapping/tech/common.ini file set 
these constraints (time units are picoseconds): 

delay_max_transition_time 100.0e-12  #max transition time for signal nets 
 delay_max_transition_time_reset 200.0e-12 #max tran. time for reset net 

RBR/V0.2.6/June 2013 



41 
 

The signal net target transition time shown above is approximately equivalent to a 1X inverter driving 
four separate 4X inverter loads. During net buffering, if a transition time failure is found, then the 
algorithm first tries to replace it with the smallest gate size (if multiple gate sizes are available for the 
problem gate) that meets the transition time target. If gate variants are not available, then a buffer tree 
using inverters is built. The target library has four drive-strength variants of inverters, three variants of 
AND2, two variants of reset-to-NULL data registers, and two variants of the most commonly used NCL 
gates. The net buffering is unsophisticated in that it does not buffer for performance by tracing critical 
loops. However, for many designs this approach does improve performance, but slowdowns were noted 
for a few designs in the Uncle regression suite. Simulations indicate that the NLDM delay engine in Uncle 
produces results that are typically within 5% of the transistor level simulations using the pre-layout 
transistor models. For silicon fabrication purposes, the NLDM characterization should be for library cells 
with parasitics extracted from cell geometry for more accurate timing. 

Net buffering can disabled via the following line in $UNCLE/mapping/tech/common.ini (the default 
common.ini file has net buffering enabled): 

netbuf_enable 0     #non-zero to enable 

 

5.2 Latch Balancing 
Latch balancing is a performance optimization for the data-driven style that moves half-latches in the 

netlist to balance data delays with ack delays (for the remainder of this section, half-latches are simply 
referred to as latches). In a linear multi-stage pipeline, the stage with the longest delay loop formed by 
the forward data path and the backwards ack path sets the pipeline’s maximum throughput. In the data-
driven finite state machine arrangement of Figure 2-3, the longest loop delay is formed by delay through 
the combination logic plus the backwards delay path of the ack network. Figure 5-1a shows a data-
driven FSM with an unbalanced delay where the data delay is approximately 2X that of the ack delay 
(the length of the delay boxes indicates relative delay). The ack delay is dependent on the number of 
destination points that sets the completion network depth, while the data delay depends on the data 
logic complexity. Figure 5-1b shows the design after delay balancing in which logic has been pushed 
through the L3 latches to reside between the L3 and L2 latches. Observe that the maximum loop delay 
has now decreased. Additional speed up could possibly be obtained by also pushing logic between 
latches L2 and L1, but the initial data on the L2 latches would then mean that the NCL logic between L2 
and L1 would be in an unknown state. This could be solved by forcing the outputs of L2 low (but keep 
the internal state high) or by adding resets to the affected NCL logic. Latch balancing generally results in 
more transistors as the datapath width increases moving towards the source registers requiring more 
latches, with a corresponding increase in the ack network size. 
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Figure 5-1 Latch Balancing. 

The latch balancing algorithm as currently implemented in Uncle supports latch pushing as shown in 
Figure 5-1 as well as latch pushing in linear pipelines. The latch balancing algorithm is an iterative 
heuristic algorithm that proceeds as follows:  

1. Find the longest cycle from every latch output to a destination latch back to its ack input with 
the constraint that the data delay is larger than the ack delay (data delay, ack delay are kept as separate 
components). Ignore cycles that terminate or originate on latches with initial data, or latches that 
terminate on primary outputs (the policy should either not push latches with primary inputs as sources, 
or primary outputs as destinations, in order to avoid additive delays when separate blocks are joined. 
Uncle chooses to ignore latches that source primary outputs).  

2. Separate the latches identified in step 1 into sets that share common destinations, and within 
each set sorted by longest cycle. Once the individual cycles in each set are sorted, sort the sets by the 
longest cycle of each set. Starting with the set with the longest cycle, discover what other sets are 
destinations of this set, and remove them from the set list (we do not want to push logic into one set, 
only to have it pushed out again to a different set in the same iteration, resulting in thrashing). Continue 
this pruning process until there are no sets left to consider. The sets that are left have the property that 
no sets have destination latches that are source latches in any of the remaining sets.  

3. For each set left from step 2, consider each cycle and determine if the destination latch of the 
cycle is a valid push candidate as per the criteria of Figure 5-2a (if accepted, LATj is pushed towards 
LATi). If the latch is a valid push candidate, then add it to a list. Once all cycles in the set have been 
considered, this list contains a list of latches from this set to push, and are sorted by decreasing cycle 
time. Keep only the first k % percent of the latches on this list to push, where k is a user specified 
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variable (higher k values decrease iterations with a possible decrease in quality, the examples in this 
paper used k=30%). Add these latches to the final push list. 

4. The result of step #3 is a list of latches from all sets to push. The ack network is stripped and all 
of these latches are pushed by one gate level. The ack network is regenerated, and net buffering (if 
enabled) is redone and delays are propagated through the netlist. The algorithm then loops back to step 
1. The algorithm terminates when step #3 fails to find any valid latches to push. 

 

 

Figure 5-2 Latch Criteria. 

An iterative algorithm is used instead of trying to push latches into multiple gate levels in one step 
because of the difficulty in predicting delays in the regenerated ack networks. This algorithm works 
appropriately for data-driven FSMs but has a problem with linear pipelines in that latches are pushed in 
one direction only. The algorithm will fail to find any latches to balance if the linear pipeline has a 
longest cycle delay as shown in Figure 5-2b as the destination of the longest cycle terminates on latches 
that source primary outputs (in this case, LATj would need to pushed towards LATk). A workaround for 
this case is for the designer to place another half-latch stage on the output. The algorithm also does not 
automatically insert latch stages to meet a performance target; it works only with existing latch stages. 
These shortcomings will be addressed in future tool revisions. 

Latch balancing options 

The Uncle options file perfopt.ini in the $UNCLE/mapping/tech/ directory can be used to enable the 
latch balancing optimization. If run on a netlist with no half-latch to half-latch paths, then no latch 
balancing is performed. The following options affect latch balancing (default values are shown): 

balance_latch_push_percentage    0.30   

balance_latch_improvement_fail_limit    10 
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The balance_latch_push_percentage option is a float between 0 and 1.0 that determines the 
percentage of latch candidates to push during each iteration. A value of 1.0 pushes all latch candidates; 
the minimum pushed in any iteration is 1. Lower numbers increase the number of iterations, but may 
increase solution quality at the cost of CPU time. The balance_latch_improvement_fail_limit option is an 
integer that is the number of consecutive iterations to allow that fail to improve overall cycle time (the 
best netlist is always saved). Higher numbers may improve solution quality at the cost CPU time. 

Mixed Ack networks 

In the arrangement of Figure 5-1a, the ack networks are such that an ack network either receives all 
of its acks from half-latches with no initial data (ackout initial state is high) or receives all of its acks from 
half-latches with initial data (ackout initial state is low). However, because of latch pushing, it is possible 
to have situations where the ack networks become mixed in that an ack network can receive acks of 
both types. This means that the C-gates in the ack network cannot be initialized properly based on the 
ack inputs. In this case, the ack network generator uses C-gates with reset inputs, and the C-gates are 
initialized to have a low output (request-for-NULL state). 

 

5.3 Relaxation 
Relaxation [7][8] is an optimization that searches for redundant paths between a set of primary 

inputs and a primary output in a combinational netlist. ‘Eager’ gates that have reduced transistor count 
are placed on the redundant paths, with all primary inputs having at least one path to the primary 
output that go through non-eager (i.e., input-complete) gates. The work in [7] implements relaxation for 
combinational networks composed of primitive dual-rail gates, while [8] implements relaxation at a 
block level. The work in both [7] and [8] implement timing-driven and area-driven relaxation. Uncle 
implements area-driven relaxation using the techniques described in [7]. Relaxation can be enabled by 
setting the parameter relax_enable to a non-zero value (it is disabled in the common.ini file shipped in 
the release). The relax.ini script enables relaxation, and the perfopt_relax.ini script does both latch 
balancing and relaxation. A future release will incorporate timing-driven relaxation. 

There are some caveats about the current relaxation implementation: 

• The current relaxation implementation has not been well tested; the implementation will 
probably significantly change when timing-driven relaxation is added. 

• Orphaned net-transitions for ‘relaxed’ gates are not reported by the Uncle simulator since 
these gates are not input incomplete. 

• Relaxation has been more thoroughly tested for data-driven designs than for control-driven 
designs. 

Table 5-1 shows results for different optimizations using the fboundsp_pipe example from the 
$UNCLE/designs/regress directory. Observe that relaxation can reduce the number of transistors and 
also increase design performance. 
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 Transistors Cycle Time (ps) 
default.ini 47663 14729 
relax.ini 42234 13668 
perfopt.ini (latch balancing) 59593 9798 
Perfopt_relax.ini (latch balancing, relaxation) 57765 9392 
Table 5-1 Results of different optimizations for the fboundsp_pipe example 

 

5.4 Cell Merging 
A cell merging step is done in which adjacent gates with no fanout are merged into more complex 

gates. This cell merger is a simpler version of the technology mapper/merging implemented in the ATN 
tool by Nowick/Cheoljoo from Columbia University and discussed in [7]. It performs area-driven merging 
only; it does not implement timing driving merging as in ATN. The following line in 
$UNCLE/mapping/tech/common.ini will disable cell merging. 

merge_enable 0        # cell merging disabled if value is 0 

 

6 Miscellaneous Examples 
This section covers miscellaneous examples that illustrate different features available in the tool set. 

 

6.1 A simple ALU, use of demuxes and merge gates 
This example discusses the use of demuxes and merge gates. Wavefront steering is a technique that 

uses demuxes in order to reduce switching activity. Smith [4] gives an excellent example of wavefront 
steering, which will be paraphrased here. Figure 6-1 shows a four function 16-bit ALU (16x16=32 bit 
multiply, 16-bit add, 16-bit AND, 16-bit OR). Note: this datapath has DFFs for input/output registers but 
they could just be half-latches since there is no loopback path for the DFFs. 
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Figure 6-1 Four function 16-bit ALU. 

The op register specifies the operation. A mux is used to select the MULT/ADD/AND/OR result for the 
lower-16 bits. The upper 16-bits is either the upper 16-bits of the 32-bit product, or zero if the operation 
is not a multiply. Note that all functional units (MULT, ADD, AND, OR) are active for every operation. 

The RTL (without the port declarations) that implements the ALU is shown The RTL is straight-
forward. 
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Figure 6-2 RTL for ALU without wavefront steering. 

Figure 6-3 shows the datapath of an ALU that uses demuxes to reduce netlist activity. In the clocked 
system, the non-selected demux outputs are zero, causing no net transitions in their associated 
functional units. The merge unit is actually an OR gate in the clocked system, and is used to combine the 
outputs of the functional units (Yupper has different behavior in this system than from the previous ALU, 
a somewhat arbitrary change when this RTL was written). 
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Figure 6-3 ALU with wavefront steering. 

Assuming that demux implementations are Boolean demuxes, and the merge gates are OR gates, the 
translation process of this design to NCL would NOT result in less netlist activity. This is because DATA0 
data values cause transitions on the false rails, and propagating DATA0 values through non-selected 
functions units will still cause considerable netlist activity in those units. What is really needed is for the 
signal rails going to non-selected functional units to remain at NULL while a data wave is propagating 
through the selected functional unit. 

To accomplish this, the demuxes cannot be Boolean demuxes. Instead, the demuxes are 
implemented as shown in Figure 6-4. The demux data input is a, demux select is s, and demux output is 
y0, y1, etc. For the 1-2 demux, observe that when s=0, that only the false rail of s (f_s) will be asserted, 
and so only t_y0/f_y0 will contain a data wave. The other demux output rails (t_y1/f_y1) will remain at 
NULL. The 1-4 demux works similarly. 

 

Figure 6-4 Details of 1-4 demux, 1-2 demux structures used for wavefront steering. 

The merge block in Figure 6-3 is implemented as a black-box in Synopsys synthesis, but during the 
mapping process, is replaced by single-rail OR gates that simply OR the false rails together and true rails 
together. In asynchronous terminology, this is typically called a mux when four-phase logic paths are 
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combined in this way. However, the term merge gate is used to avoid a clash with Boolean muxes that 
may be present in the target library. 

The RTL (minus the ports) for the design of Figure 6-3 is shown in Figure 6-5 and can be found in the 
$UNCLE/designs/regress/syn/rtl directory. The prefix clkspec_ is typically used for RTL code in which 
special gates such as the demuxes of Figure 6-5 or merge gates are used which means there is no longer 
a one-to-one correspondence between how an equivalent clocked design would be implemented and 
the NCL design. Observe that the demuxes are implemented using a parameterized module named 
demux4_n, and the merge gates using a parameterized module named merge4_n. These parameterized 
modules are intended for synthesis purposes only and can be found in the file: 

$UNCLE/mapping/tech/models/verilog/src/gatelib/parm_modules.v 

Implementing demuxes/merge gates requires the designer to use gate-level instantiations as these 
cannot be inferred correctly from a behavioral RTL construct. The parameterized modules are a method 
of reducing the code footprint of these gate-level instantiations so that the RTL file contains mostly 
behavioral RTL and some gate-level instantiations. 
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Figure 6-5 RTL for ALU with wavefront steering (clkspec_alulp.v). 

 

6.2 Multi-block Design: clkspec_gcd16_16.v, clkspec_mod16_16.v 
This is an example taken from Uncle version 0.1.xx whose primary purpose is to show how to 

compose multiple blocks produced by separate mapping runs where there is a requirement to have 
different ack signals associated with different primary inputs/outputs. The design is a two block system, 
with both blocks using a data-driven style, and each block produced in a separate mapping run. You 
could always do this same example in one mapping run (multiple Verilog modules, but all modules 
synthesized into a single gate-level netlist), negating the need for the features discussed here, but this 
shows how to compose blocks produced by separate mapping runs. 

This example implements the greatest common divisor (GCD) algorithm shown in Figure 6-6, which 
uses a modulo operation. Our strategy will be to use a data-driven block for modulo implementation, 
which will be used (‘called’) by our GCD block that is also data driven. 
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Figure 6-6 GCD algorithm in Python. 

A block diagram of the final NCL implementation is shown in Figure 6-7; we will work backwards from 
this. The ncl_mod16_16 block is a simple modification of the clkspec_div32_16 data-driven RTL; the RTL 
code is found in $UNCLE/regress/syn/rtl/clkspec_mod16_16.v and is not discussed further. 

 

 

Figure 6-7 GCD NCL block diagram. 

The RTL for ncl_gcd16_16 is found in $UNCLE/regress/syn/rtl/clkspec_gcd16_16.v. The 
clkspec_gcd16_16 datapath is shown in Figure 6-8. The rd_subin/wr_subin signals are used to control 
read/write transfers to the mod16_16 modulo block, while the rd_din/wr_dout signals are used for 
external port control. The combinational block at the front of the datapath swaps the values of a/b if a is 
less than b. 
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Figure 6-8 clkspec_gcd16_16 datapath. 

 

The ASM for the clkspec_gcd16_16 FSM is shown in Figure 6-9. State S0 is used to read the a,b 
inputs. State S1 writes the current areg/breg values to the modulo block via the dd/dv write ports, and 
then state S2 reads the rm modulo result which is written to areg. In state S3, if the modulo result is 
non-zero then a jump is made to state S4 in which the breg value is transferred to areg, breg is loaded 
with the modulo result, and then a jump is made back to state S1. In state S3 if the modulo result is zero, 
then the GCD result is ready and a jump is made to state S5, which writes the result to the dout bus and 
then jumps back to state S0 to process the next input. 

 

Figure 6-9 ASM for clkspec_gcd16_16 FSM. 
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Figure 6-10 shows the input latches (lines 47-51) and the combinational swap logic (lines 54-59) that 
ensures that a is greater or equal to b when these are passed to the datapath. 

 

Figure 6-10 Input latches and combinational swap block. 

The read/write ports (lines 66-79), zero test (line 82) for the modulo result, and datapath registers 
(lines 85-103) are shown Figure 6-11. 
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Figure 6-11 Read/write ports, modulo zero test, and datapath registers for clkspec_gcd16_16. 

To close out the clkspec_gcd16_16 RTL, the combinational logic for the FSM is shown in Figure 6-12. 
It is a straight-forward implementation of the ASM of Figure 6-9. 
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Figure 6-12 FSM combinational logic code for clkspec_gcd16_16. 

Port grouping for multiple ackin/ackout groups 

The ncl_gcd16_16 block of Figure 6-7 requires separate ackin/ackout pins for the dd/dv/rm port 
group and for the a/b/dout port group. This information is communicated to Uncle via a port group file, 
which is shown in Figure 6-13. 

 

Figure 6-13 Port group file for clkspec_gcd16_16 (gcd_ports.ini). 

Each line of a port group file is formatted as: 

 igroup|ogroup groupName portName; 

The groupName is user defined while the portName must match a port on the module. All input 
ports assigned to the same input group (igroup) will share an ackout pin named ackout_groupName. All 
output ports assigned to the same output group (ogroup) will share an ackin pin named 
ackin_groupName. The port group file is specified as an argument to the –pfile option to the uncle 
script: 

 uncle clkspec_gcd16_16 ncl_gcd16_16 relax.ini –pfile gcd_ports.ini 
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If a port file is used, then all ports must be assigned to either an input group or an output port.  

Top level netlist 

The top-level netlist that ties the ncl_gcd16_16 block to the ncl_mod16_16 block must be created by 
the user. For this example, the netlist name is ncl_gcd16_16_top.v and can be found in the 
$UNCLE/regress/sim/src/ncl_gcd16_16 directory. 

Simulation 

Figure 6-14 through Figure 6-17 show simulation of ncl_gcd16_16_top.v netlist. Warning, different 
zoom levels are used in these figures. The gate models are functional models with unit delays, so the 
time units are whatever were chosen by the simulator (Mentor modelsim in this case). The simulation 
flow is:  

1. Figure 6-14 shows the application of the first vector, a=42568, b=4528. 
2. Because of the extra latch stage at the front the initial swap block in clkspec_gcd16_16, the 

datapath is immediately able to accept another input vector (a=27141, b=17164) as shown in 
Figure 6-15. This figure also shows the operands of the first modulo operation (dd=42568, dv = 
4528) being passed. 

3. Figure 6-16 shows the first modulo operation result 42568 % 4528 = 1816, and kickoff of the 
next modulo operation. 

4. Figure 6-17 shows when the modulo operation returns 0 indicating that the GCD result of 8 for 
42568, b=4528 is ready and is sent to the dout port. The figure also shows the application of the 
third input vector a=48410, b=28511, and the initial modulo operation for the second input 
vector a= 27141, b=17164. 

 

 

Figure 6-14 Application of vector a=42568, b=4528 (cursor 1).  
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Figure 6-15 Application of vector a=27141, b=17164 (cursor 1), and passing of dd=42568, dv = 4528 to the modulo 
operator for the first modulo operation (cursor 2).  

 

 

Figure 6-16 First modulo operation result 42568 % 4528 = 1816 (cursor 1), kickoff of next modulo operation (cursor 2). 
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Figure 6-17 Modulo operation returns 0 (cursor 1), GCD result is 8 for 42568, b=4528 (cursor 2), application of third input 
vector a=48410, b=28511 (cursor 3), first modulo operation for vector a= 27141, b=17164 (cursor 4). 

 

6.3 A simple CPU, use of register files 
This example discusses a simple CPU that has sixteen 8-bit registers. Both data-driven and control-

driven designs are given. The data-driven design can operate faster but is factors larger on energy usage 
and transistor count. Both examples are found in the $UNCLE/designs/cpu8 directory. The CPU has a 16-
bit instruction word and five instructions as shown in Figure 6-18. 

 

 

Figure 6-18 A simple instruction set architecture. 

The datapath for data-driven example is shown Figure 6-19 and the RTL is found in 
$UNCLE/designs/cpu8/syn/rtl/clk_cpu8.v (the RTL is straight forward and will not be discussed). All logic 
is Boolean (the demux in the figure is a boolean demux), there is no attempt at wavefront steering or 
other power saving features. The regression test for this design exercises all instructions using several 
registers. The main problem with a data-driven register file is that all registers are read/written every 
compute cycle, which is a large energy penalty. It is possible to wrap some logic around the register file 
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to prevent this, but a better solution is simply to do a control-driven register file since that gives you 
selective read/write registers. 

 

Figure 6-19 Register file and datapath for data-driven example. 

The RTL for the control driven CPU is found in $UNCLE/designs/cpu8/syn/rtl/cpu8_bstyle.v. The 
datapath and FSM is given in Figure 6-20. A three-state sequencer is used as follows: 

• S0: read the external instruction, write to instruction register 
• S1: read the operands from the register file, compute new result, write to destreg temporary 

register 
• S2: read dest temporary register, write to destination register in register file 

The demux16vec module is available from parm_modules.v, and implements a C-gate-based demux. 
Only one output channel is active, based on the select input. Each register in the register file has two 
read ports, one for each read port. 
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Figure 6-20 Datapath and FSM for control-driven CPU. 

Table 6-1 compares the different CPU implementations (cycle time, switched cap reported by 
Unclesim, all designs had net buffering applied). The data-driven register files designed in this manner 
are impractical from transistor count, energy viewpoints when compared to the control-driven 
implementation. The latch balancing optimization does produce the fastest implementation, but with 
extremely high costs in transistors and energy usage. 

 Transistors Cycle Time (ps) Switched cap/cycle (pf) 
Data-driven 50407 10449 10 
Data-driven, latch balanced 130975 8165 40 
Control-driven 21217 11865 2.7 
Table 6-1 CPU implementation comparisons 

 

6.4 Viterbi Decoder, mixing of control-driven and data-driven styles 
A Verterbi decoder based on the Balsa description found in [14] is contained in the directory 

$UNCLE/designs/viterbi. This design is interesting in that it has three distinct parts, each presenting a 
different design problem. The three parts Branch Metric Unit: BMU, Path Metric Unit: PMU, and History 
Unit: HU. The final Viterbi encoder used a mixture of data-driven and control-driven design styles. 

Branch metric Unit 

The BMU is simply combinational logic, and a data-driven style was used for this block (a half-latch 
was placed at the BMU output for ack generation). Figure 6-21 shows a python description of the BMU. 
The RTL is found in $UNCLE/designs/viterbi/syn/rtl/clk_bmu.v and is straight-forward, so it is not 
discussed further. 
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Figure 6-21 Python description of the BMU. 

 

Path metric Unit 

The path metric unit consists of four parallel accumulators as shown in the RTL view of Figure 6-22. 
All ports, all registers are active every compute cycle, making it naturally suited for a data-driven design 
style. The RTL for the datapath path of Figure 6-22 is found in 
$UNCLE/designs/viterbi/syn/rtl/{clk_pmu.v, pmu_common.v}. The trellis block is simply wires; the 
acsunit contains some adder, comparison, and mux logic. The reduction block finds the smallest of the 
four inputs and subtracts from all inputs to produce the four outputs. The checkwinner block has some 
simple comparison logic. When latch balancing optimization was performed on this netlist, the results 
were disappointing. In examining the algorithm performance, it was discovered that the placement of 
the primary outputs was limiting latch movement. The RTL was modified to add another latch stage to 
the primary outputs, and a half-latch stage was placed in the acsunit (final RTL is found in 
$UNCLE/designs/viterbi/syn/rtl/{clk_pmuv3.v, pmu_common.v}. These extra half latch stages provided 
more freedom for latch movement and allowed latch balancing to give a significant performance 
improvement when applied. 
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Figure 6-22 PMU RTL view. 

Table 6-1 compares the different PMU implementations (cycle time, switched cap reported by 
Unclesim, all designs had net buffering applied). The pmu RTL did not have the extra latch stages added, 
it is seen that latch-balancing did not perform well in this design. The pmuv3 RTL had the extra latch 
stages and latch balancing resulted in a significant performance improvement. A control-driven version 
was done and it had the lowest transistor count and switched cap numbers as would be expected. The 
pmuv3 RTL was used in the final Viterbi decoder. 

 Transistors Cycle Time (ps) Switched cap/cycle (pf) 
Data-driven (pmu) 20184 14737 4.6 
Data-driven (pmu, latch-balanced) 21778 14743 5.0 
Data-driven (pmuv3) 21357 13754 4.8 
Data-driven, latch balanced (pmuv3)  25365 7543  5.7  
Control-driven (pmu_bstyle) 18838  14312  4.4  
Table 6-2 CPU implementation comparisons 
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History Unit 

The History unit is considerably more complex than the BMU/PMU from a control standpoint, in that 
it has three 16-entry register files (4-bit, 2-bit, and 1-bit). A control-driven style was used for this module 
as it was obvious that a data-driven style would not be competitive in terms of transistor count and 
energy because of the register files. The HU control consists of an outer loop (shown in Figure 6-23) and 
an inner loop (shown in Figure 6-24). The RTL for the history unit is found in 
$UNCLE/designs/viterbi/syn/rtl/huv2_bstyle.v. 

 

Figure 6-23 HU FSM outer loop. 
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Figure 6-24 HU FSM inner loop. 

Figure 6-25 shows a portion of the HU control that illustrates a performance optimization. The 
register files are written during S0, and then read during the conditional inner loop. The register file 
write during S0 must return to NULL before the register file read during the inner loop, which would 
normally mean an S-element would need to be used for S0 to guarantee that the register file has 
returned to NULL before the conditional inner loop is started. However, this wait for return-to-NULL 
after the register file is written is wasted time if the conditional inner loop is not executed. The logic of 
Figure 6-25 implements S0 but using a paralleled S-element (U1_a0) and T-element (U1_b). The done 
output of the T-element (s0_done) starts the S1 state, which reads the doloop flag that controls the 
inner loop execution. If the doloop flag is false, then the outer loop continues execution and the return-
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to-NULL of the register file writes in S0 are paralleled with the S1, S2, S3 states. If the doloop flag is true, 
then req1 output of the choice1 component is asserted, but this is combined via C-gate with the 
s0_done_b signal from the paralleled S-element (U1_a) used in S0. This means that the conditional inner 
loop does not begin execution until the register file writes of S0 have returned to NULL, this wait time 
penalty is not paid if the conditional loop is skipped. This optimization causes s0_done_b to be reported 
as a gate orphan by the Unclesim simulator since it toggles without being consumed by the C-element if 
the conditional loop is not executed. This orphaned transition does not cause a timing error, since it is 
clear that it will return to NULL before S0 is asserted again. As such, the regression test for the Viterbi 
implementation that uses this control RTL includes an –ignore_orphan option passed to Unclesim for 
this particular net. 

 

Figure 6-25 HU Control optimization. 

Complete Viterbi decoder 

The complete Uncle Viterbi decoder RTL is found in 
$UNCLE/designs/viterbi/syn/rtl/clk_viterbi_perfopt.v and should be run with the perfopt.ini script so 
that latch balancing is done to benefit the PMU. The Uncle Viterbi decoder was compared to the Balsa-
generated Viterbi decoder, and the Balsa decoder had ~50% more transistors, was ~25% slower, and 
used ~40% more energy for a stream of random vectors. 

7 Arbitration 
The section discusses how Uncle supports designs that require arbitration capabilities. Note: 

Unclesim does not currently support control-driven netlists that have arbiters, this will be corrected in a 
later release. These examples are found in the $UNCLE/designs/regress/syn/rtl directory. These 
examples come from the first release of Uncle and so have all data-driven examples. A later document 
update will include some control-driven examples. 
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7.1 Arbitration support in Uncle 
Arbitration is required in a design when the order of data arrival from multiple senders is not known, 

and you wish to processs each data arrival separately from the others. A two-input arbiter (arb2) black-
box component is supported in Uncle; the single-rail and dual-rail interfaces are shown in Figure 7-1. 

 

Figure 7-1 RTL-version, dual-rail exanded versions of the two-input arbiter special component. 

The implementation of the dual-rail arbiter is shown in Figure 7-2 and is based on a design found in 
[11]. During reset, data inputs (f_r0/t_r0, t_r1/f_r1) are logic 0 since all data lines that feed logic 
elements are assumed reset-to-null, and the ack input (ki) is logic 1 (request-for-data). The reset forces 
the internal C-gate outputs (Cs) to logic 1, which means the ackout pins (ko0/ko1) are forced to logic 1 
(request-for-data). The mutex outputs are logic 0 since the input data rails are logic 0, so both inputs to 
the internal C-gates become logic 1 during reset, and the arbiter is stable when reset is released. The 
mutex (mutual exclusion) component [12] asserts y0 if r0 is asserted, y1 if r1 is asserted, and one of 
y0/y1 if r0/r1 are simultaneously asserted depending on the mutex implementation (the mutex 
component is a primitive gate-component from an Uncle perspective). The dual rail r{t/f} request output 
is the winning request. The dual-rail s0{t/f} , s1{t/f} outputs are used for datapath mux control and are 
discussed later. Typically, an arbiter is a single rail component in asynchronous designs but is 
represented as a dual-rail component in Uncle to be compatible with dual-rail signals generated by FSM 
control in data-driven designs (a single rail signal in a control-driven netlist can be converted to a dual-
rail signal by using the srtodr black-box component). As such, the false rails of the outputs are actually 
not required and are tied to logic 0. Similarly, the false rails of the request inputs are typically not 
required either, but are included here to provide a self-ack in the case that a false request is sent to the 
arbiter (in the example designs that follow, we will see that the false rail for a request is never asserted 
due the example design structure, and thus these self-acks could be removed, but they are included for 
completeness).  
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Figure 7-2 RTL-version, dual-rail exanded versions of the two-input arbiter special component. 

 

7.2 Arbiter Example: clkspec_arbtst_2shared.v, clkspec_arbtst_client.v 
A synthetic example is used to demonstrate arbitration support in Uncle (other examples will be 

variations of this example). A shared resource (clkspec_arbtst_2shared.v ) uses arbitration to accept a 
pair of operands a/b from two clients, sums the operands, and then returns the sum. The datapath and 
ASM for the shared resource is shown in Figure 7-3. The arb2 component is used to handle the request 
lines from the two clients. The operands (a0/b0 from client0, a1/b1 from client1) are merged and then 
read ports are used to gate them into the datapath. State S0 waits for a request; state S1 reads the 
winning operands and computes the result, and state S2 outputs the result. 

 

Figure 7-3 Shared resource datapath. 

Figure 7-4shows the use of the arb2 component in the RTL for the shared resource; the arb2 s0/s1 
outputs are not used in this example (they will be used in a later example). 
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Figure 7-4 Use of arb2 component in shared resource. 

Figure 7-5 shows the RTL for the shared resource FSM. In state S0, the arbiter output is used to 
transition to state S1. This test is not logically necessary since a transition to state S1 will be made once 
a request arrives since the arrival of data will trigger the state transition. However, if the read port 
output is not used, then synthesis will remove some gates in the read port structure since the output is 
not used anywhere. So, this is done to force the synthesis tool to keep these gates. 

 

Figure 7-5 FSM RTL for the shared resource. 

Figure 7-6 gives the datapath and ASM for the client. The states are: 

• S0: read operands from the testbench 
• S1: make request to shared resource 
• S2: write operands to shared resource 
• S3: read result from shared resource 
• S4: write result to the testbench 

The client RTL is not shown as it is straight-forward. 
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Figure 7-6 Datapath and FSM for the client. 

The top-level netlist ($UNCLE/designs/regress/sim/src/ncl_arbts2/ncl_arbts2.v) is shown in Figure 
7-7; this netlist must be manually created. The ncl_arbtst_client.v and ncl_arbtst_2shared.v netlists are 
both Uncle-generated; port grouping files are used to generate the acks shown. 

 

Figure 7-7 Top-level netist for arbitration example. 

The testbench ($UNCLE/designs/regress/sim/src/ncl_arbts2/tb_ncl_arbtst2.v) generates random 
vectors for the two clients and forces contention between the clients for the shared resource. The 
contention is randomized so that sometimes client0 leads client1, and sometimes client0 lags client1. 
Figure 7-8 shows simulation output for tb_ncl_arbtst2.v (view this in electronic format, and use zoom to 
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see the figure). Only true-rails are included in the screenshot. The simulation shows a complete 
transaction as follows (the timing units are not relevant; all delays are unit delays): 

• Cursor 1, 1608 ns, signals t_a0/t_b0, t_a1/t_b1 : client0 receives a=8/b=5, client1 a=12/b=13 
from the testbench. 

• Cursor 2, 1636 ns, signals t_req0, t_req1 : requests from client0 and client1 are asserted 
• Cursor 3, 1643 ns, signal ackout_r0_ack : Client0 wins request as evidenced by the ack. 
• Cursor 4, 1668 ns, signals t_aout0, t_bout0 : Client0 sends operands to shared resource 
• Cursor 5, 1702 ns, signal t_yin : Shared resource returns sum of 13. 
• Cursor 6, 1732 ns, signal t_y0 : Client0 returns the sum of 13 to the testbench. 

 

 

Figure 7-8 Simulation of ncl_arbtst2 for one contested request. 

Figure 7-9 shows multiple contested requests, with sometimes client0 being serviced first (2040 ns, 
2839 ns) and sometimes client1 being serviced first (2437 ns, 3240 ns, 3629 ns). 
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Figure 7-9 Simulation of ncl_arbtst2 for multiple contested requests. 

 

Handling more than two clients 

A tree of arbiters for the requests and a merge tree for the datapath is needed for more than two 
clients as shown in Figure 7-10. The file $UNCLE/designs/regress/syn/rtl/clkspec_arbtst_4shared.v is the 
shared resource modified to handle four clients. 

The four-client simulation is found in $UNCLE/designs/regress/sim/src/ncl_arbtst4 and is not 
discussed further. 

 

Figure 7-10 Arbiter tree for four clients. 
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7.3 Arbiter Example: clkspec_v2arbtst_2shared.v, clkspec_v2arbtst_client.v 
In the previous example, the shared resource received the request in one compute cycle, then the 

operands in the next compute cycle. It is more efficient in this example to receive the operands with the 
request. To do this in Uncle requires use of a special component named arb2_muxmrg as shown in 
Figure 7-11 that uses the s0/s1 outputs of the arb2 component. 

 

Figure 7-11 arb2_muxmrg special component. 

The modified shared resource (clkspec_v2arbtst_2shared.v) datapath and ASM is shown in Figure 
7-12. The use of arb2_muxmrg components saves one state in the ASM. State S0 reads the winning 
request/operands and computes the result; State S1 writes the result. 

 

Figure 7-12 Modifed shared resource that uses the arb2_muxmrg component. 

Figure 7-13 shows use of the arb2, arb2_muxmrg components in the clkspec_v2arbtst_2shared.v file 
(the parameterized macro arb2_muxmrg_n uses the arb2_muxmrg component). 
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Figure 7-13 Use of arb2, arb2_muxmrg components. 

Figure 7-14 shows the FSM code for the new shared resource implementation. Because data is now 
sent with the request in a data-driven manner, state S0 now simply transitions to state S1 once that 
request arrives. 

 

Figure 7-14 FSM code for the new shared resource. 

Figure 7-15 shows the revised client datapath and FSM. The FSM has one less state than the FSM of 
Figure 7-6 because the data is now sent with the request. 

 

Figure 7-15 Revised client datapath/FSM. 

Figure 7-16 shows the top level netlist (ncl_v2arbtst2.v) for the revised arbitration example. The 
difference between this netlist and the one in Figure 7-7 is that the ackout_r0/ackout_r1 signals are now 
used to ack both the request and the data since the data is sent with the request. 
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Figure 7-16 Top level netlist for revised arbitration example. 

The arb2_muxmrg component has a special property on it that causes the ack generation algorithm 
to only trace ack nets through the s0/s1 paths, ensuring that the acknowledge network traces back 
through the arb2 component as shown in Figure 7-17. 

 

Figure 7-17 Ack network tracing for arb2_muxmrg components. 

Figure 7-18 shows simulation output for ncl_v2arbtst2 for a contested request. 

• Cursor 1, 200 ns, signals t_a0/t_b0, t_a1/t_b1 : client0 receives a=9/b=3, client1 a=4/b=1 from 
the testbench. 
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• Cursor 2, 230 ns, signals t_req0, t_aout0, t_bout0, t_req1, t_aout1, t_bout0 : request/data 
from client0 and client1 are asserted. 

• Cursor 3, 241 ns, signal ackout_r0_ack : Client0 wins request as evidenced by the ack. 
• Cursor 4, 267 ns, signal t_yin : Shared resource returns sum of 12. 
• Cursor 5, 295 ns, signal t_y0 : Client0 returns the sum of 13 to the testbench. 

 

Figure 7-18 Simulation output of ncl_v2arbtst2 for a contested request. 

Handling more than two clients 

A tree of arb2/arb2_muxmrg components is use to handle multiple clients. The RTL 
$UNCLE/designs/regress/syn/rtl/clkspec_v2arbtst_4shared.v is the shared resource modified to handle 
four clients. The corresponding four-client simulation is found in 
$UNCLE/designs/regress/sim/src/ncl_v2arbtst4 and is not discussed further. 

7.4 Arbiter Example: clkspec_forktst.v 
In the previous two arbitration examples, the top-level netlist contained instantiations of two clients, 

the shared resource, and an and2 gate that low-true OR’ed the ackouts of the clients back to the shared 
resource. The client and shared resource were specified in separate Verilog files. Port .ini files were used 
to specify how the acks were generated for the external ports of the clients and shared resource.  

But what if the clients and shared resources were all in one Verilog file, as shown in Figure 7-19? This 
design is based on the previous example (request sent with data), and the ack generation algorithm can 
handle the ack generation for the client request/operands without any user assistance. However, user 
assistance is required in order to generate the AND gate used in Figure 7-19 to combine the two acks 
from the clients for the shared result bus yin. This user assistance is the form of a arb_fork2 special 
component on the yin shared bus as shown in Figure 7-19. The arb_fork2 gate is like the *_noack 
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component in that it is a gate-level instruction to the toolset that causes a specific action during ack 
generation. 

 

Figure 7-19 Two clients, shared resource in one file. 

 

8 Ack Network Generation 
This section discusses the ack network generation approach used in the toolset. 

 

8.1 Basic algorithm 
For the final asynchronous netlist to be live and safe, at a minimum each latch in a data-driven netlist 

must receive an acknowledgement from each destination latch of its output (or each control element, in 
a control-driven netlist that gates data, must receive an ack from each destination latch). One approach 
is to generate an individual C-gate network for each ack (with sharing of common C-gates between the 
networks if possible). This promotes bit-level pipelining at the probable cost of a larger 
acknowledgement network. A merged approach for ack generation merges acknowledgements for a 
group of latches to produce an ack that is used for all latches in the group. This generally reduces the 
size of the acknowledgement network at the cost of more synchronization in the design. Uncle supports 
both approaches, with merged acks as the default choice (see the section titled ‘bit-acks’ for information 
on generating non-merged acks). 
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The merging algorithm used is simple; any latches that have at least one common destination have 
their ack networks merged. Common C-gate sub-networks between ack networks are extracted for 
additional transistor savings.  

 

8.2 Complications (demux and merge gates) 
Use of demuxes complicates the ack generation algorithm of the previous section since destination 

latches that provide acks may not be active during a compute cycle. Uncle uses the following heuristic 
rules in generating acks for paths that involve demuxes with multiple outputs (no special rules are used 
for half-demuxes). 

1. Demux with one or more unconnected outputs 

If path tracing detects a demux with one or more unconnected outputs (such as the demux used in a 
write port, Figure 3-14a), then a self-ack is generated for all unconnected outputs (Figure 3-14b). 
Additionally, a virtual dlatch (dlatvirt black box component, has same pins as a dlat component except 
for the clock pin, which is excluded) is automatically placed immediately after the demux on all 
connected outputs during the dual-rail expansion phase, and is removed after the ack network is 
generated. The virtual dlatch serves to partition the ack network generation at this point in the netlist, 
since the acks for the demux outputs must be low-true OR’ed back to the sources of the demux select 
and data inputs. As such, the virtual dlatches causes ack path tracing to terminate just after demux (at 
the virtual latch input) and begin again at the virtual latch output. This causes the ack networks before 
and after the virtual dlatches to be separate, and provides a convenient point for the low-true OR 
operation. When the virtual dlatch is removed, the ackin and ackout nets of the virtual dlatch are 
connected, joining the ack networks (as an aside, because virtual latches can be used in places other 
than with demuxes, an ack optimization phase attempts to optimize ack networks that have been 
divided by virtual latches and connected in this manner, but in the case of demuxes, no optimization is 
done). 

2. Demux with outputs all connected, and demux destinations tracing does not detect a merge gate 

If all demux outputs are connected, path tracing is done to detect if a merge gate is found on an 
output. If a merge gate is not detected, then the acks for the demux output channels are assumed to be 
independent and are to be low-true OR’ed together at the demux gate. As such, virtual dlatches are 
placed on all demux outputs as with the case of a demux with unconnected outputs. 

3. Demux with outputs all connected, and demux destinations tracing detects a merge gate 

If all demux outputs are connected, and path tracing detects a merge gate on a path, then it assumed 
that all demux output paths are merged (as in the ALU example of Figure 6-3), and the acks for the 
demux outputs are NOT low-true OR’ed together. This heuristic can be fooled if a merge gate is found 
via path tracing of a demux output, but the acks for the demux channels are supposed to be 
independent (i.e, the acks for the demux channels should be low-true OR’ed). In this case, the user must 
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assist Uncle in ack generation by including virtual dlatches (dlatvirt component) on all of the demux 
outputs in the RTL. These virtual dlatches will be removed after ack generation and are only used as user 
‘hints’ to Uncle about ack generation. 

8.3 Illegal Topologies 
One of the final steps in the mapping flow is a topology check on the ack network check to ensure 

that each data source receives an ACK from a destination. However, even if this check passes, it is still 
possible for the user to create a gate topology that does not cycle (which will not be detected by Uncle 
in its current version). For example, the gate topology in Figure 8-1 does not cycle. Only one path from 
the demux will be active during any compute cycle. However, the FSM a/b outputs go through logic to 
both latA and latB, and thus the acks from latA and latB will be combined through a C-gate back to the 
FSM. Since only one of the latA/latB acks will be active during a compute cycle, the ack back to the FSM 
for signals a/b will be stuck. To be a legal topology, the FSM a/b outputs would also have to go through 
a demux gated by the s select signal. 

 

Figure 8-1 Invalid Topology. 

If a design fails to cycle after mapping, it is generally because of an illegal topology. See the appendix 
for tips on debugging NCL simulations. The Uncle simulator can be used to detect a dead netlist before 
attempting a full Verilog simulation. 

 

8.4 Early Completion Ack Network 
Version 2.6 and later supports early completion ack networks as documented in [15]. Use of an early 

completion network in Uncle requires a linear pipeline design that uses latches, and the 
early_completion.ini options file should be used.  Early completion has been shown in some cases to 
produce faster throughput.  Figure 8-2 shows the early completion pipeline approach implemented by 
Uncle.  The registers used in an early completion pipeline generate the ACK from the latch inputs, not 
from the latch output.  See the designs/regress_mtncl directory for examples. 
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Figure 8-2 Early Completion Pipeline. 

 

8.5 Multi-threshold NCL (MTNCL), aka Sleep Convention Logic (SCL) 
Version 2.6 and later supports MTNCL networks as documented in [4] and [16]. Use of an early 

completion network in Uncle requires a linear pipeline design (minimum of three stages) that uses 
latches, and the mtncl.ini options file should be used. MTNCL pipelines save power by sleeping the logic, 
registers and ack networks (optional) between computations. Two different MTNCL ack approaches can 
be generated by Uncle via the safe_mtncl_arch option (either ‘slow’ or ‘fast’). Figure 8-3 shows the ‘fast’ 
MTNCL architecture as originally documented in [16]. This architecture has delay sensitivities in the 
buffering of the sleep network, and the netbuf_enable option must be 0 if you wish to simulate this with 
unit delays. The delay sensitivity arises from sleeping the previous stage concurrently with latching of 
the current stage’s result. 

 

 

Figure 8-3 MTNCL ‘fast’ architecture. 

Figure 8-4 shows the ‘slow’ MTNCL architecture; this waits until the current stage has latched its 
result before sleeping the previous stage. This has slower throughput than the ‘fast’ architecture, but 
has less delay sensitivity than the ‘fast’ architecture (this is the default option). 
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Figure 8-4 MTNCL ‘slow’ architecture. 

The safe_sleep_acklogic option can be used to enable or disable sleeping of the ack logic.  See the 
designs/regress_mtncl directory for MTNCL examples. 

9 Transistor-level Simulation, Gate Characterization 
The transistor level simulation/characterization described in this section uses Cadence 

Spectre/Ultrasim. If you do not have these tools, or if you already have a transistor-level simulation 
and/or gate-characterization methodology, then the only file that may be of interest to you is the one 
that contains the transistor-level cell definitions: 

$UNCLE/mapping/tech/models/transistor/spectre_lib/ncl_lib.scs 

 

9.1 Transistor-level Simulation 
The directory $UNCLE/mapping/tech/models/transistor/design_tests contains an example of 

simulating the gcd16bit example from $UNCLE/designs/regress_dreg. This is strictly the author’s 
methodology and there are undoubtedly MANY better ways to accomplish this. The methodology uses a 
Verilog VAMS testbench to stimulate a spectre-level netlist, with Cadence Ultrasim used as the 
simulator. The steps in this methodology are described in the following subsections.  

Conversion of Verilog gate-level netlist to Spice netlist 

The author wrote a simple tool that converts Verilog gate-level netlists produced by Uncle to a 
spectre netlist (this only works for netlists produced by Uncle!). A sample command line for running this 
tool to convert the uncle_gcdsimple.v file uncle_gcdsimple.scs is given below: 

ver2spice –ifile uncle_gcdsimple.v –ofile uncle_gcdsimple.scs –ini 
default.ini –top uncle_gcdsimple 

In the uncle_gcdsimple.scs file, assignment statements in the Verilog netlist are replaced by low-
valued resistors and each module instantiation by a spectre sub-circuit call. The terminals on the spectre 
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sub-circuit call are arranged in alphabetical order (inputs first, then outputs, each in alpha order), so it is 
important that the spectre subciruits from transistor/spectre_lib/ncl_lib.scs have terminals in that order. 
Names are changed when appropriate to be spectre-compatible. 

Once the uncle_gcdsimple.scs file was created, it was placed in the transistor/design_tests/sources 
directory and the following edits were made: 

• Added the line include "./tech.scs" to top of file (includes the transistor technology file). 
• Added the my_vdd terminal as the first terminal in the module list. This is the Vdd terminal for 

the design, supplied by the testbench. 
• Added the following line as the first line in the subcircuit (connects the my_vdd terminal to the 

global vdd terminal).  

rvdd_assign ( my_vdd vdd) resistor r = 0.000001 

VAMS Testbench 

The designs/regress_dreg/sim/src/uncle_gcd16bit/tb_uncle_gcd16bit.v was copied to the 
transistor/design_tests/source directory and renamed to tb_uncle_gcd16bit.vams. The following 
changes were made to it: 

1. Added the line: `include "disciplines.vams" to the top of the file. 
2. Added the following lines near the DUT instantiation: 

reg do_energy_average; 
   electrical gnd, my_vdd; 
   ground gnd; 
   pmeasv2 u0 (my_vdd,gnd, o_rdy,do_energy_average); 

These lines instantiate a Vdd supply of 1.0V for the DUT, using the Verilog-AMS model in 
transistor/spectre_lib/pmeasv2.vams. This model reports energy from the last time the o_rdy signal 
when high, and if the do_energy_average signal is high, keeps a running average of the energy used. 

3. Modified the terminals passed to the DUT to match the order found in the uncle_gcdsimple.scs 
file. 

4. The reset time was lengthened. 
5. A couple of other changes involving the do_energy_average signal were made, you can search 

the file how this is used. 

VAMS Simulation via Cadence Ultrasim 

Before running the Ultrasim simulation from the transistor/design_tests two things were done: 

1. A connection rules library was defined for this design. When a VAMS module uses a spectre 
module, connect rules have to be defined that describe how digital signals communicate with 
analog signals and vice-versa. The author took an easy way out and modified an existing 
connection rules from the Cadence installation (ConnRules_18V_full) and compiled it to a local 
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library named transistor/design_tests/myconnect (the cds.lib file defines this library). The 
command line used to compile this library was: 

ncvlog -ams -MESSAGES -work myconnect connectLib/ConnRules_18V_full/connect/verilog.vams 

This only has to be done once. The author used a 1.0V supply testing using 65nm transistor models. 

2. A file named tb_uncle_gcd16bit.cfg was created, this defines how the uncle_gcd16bit.scs file is 
mapped to a VAMS module (look at the internals of this file to see the format needed). 
 

The following command line was used to run the Ultrasim simulation with no gui from the 
transistor/design_tests/ directory: 

python run_vams64_sim.py tb_uncle_gcd16bit 

The .tran statement in the acf.scs file defines the length of the simulation. The tech.scs file includes 
the 65nm Berkeley PTC transistor models from the transistor/spectre_lib directory as well as the gate 
level spice subcircuits defined in transistor/spectre_lib/ncl_lib.scs. These transistor models were used to 
produce the characterization data found in $UNCLE/mapping/tech/timing65nmptc.def. The 
characterization data in $UNCLE/mapping/tech/timing65nm.def used some commercial transistor 
models. 

9.2 Gate Characterization 
This section describes the methodology used to produce the NLDM timing found 

$UNCLE/mapping/tech/timing65nmptc.def. This is a homebrew methodology and any commercial 
characterization tool will do a better job. This section just describes the steps needed to recreate the 
data; if you want to add gates then examine the python scripts and the directory structure as it is 
straight forward. 

All commands are executed from the transistor/timing directory, and Ultrasim is used to do the 
timing characterization since Ultrasim is used to do the final transistor-level simulations of completed 
designs (Note: if you use Spectre for characterization, and Ultrasim for final transistor-level simulation, 
then expect larger percent disagreement between cycle times reported by Unclesim and those from 
Ultrasim transistor-level simulation). 

The following command line is used to do all pin capacitance characterization: 

do_cap_meas.py cap_gate_list.txt ../spectre_lib/ncl_lib.scs gate_timing/cap.def 

The pin capacitance info is placed in the gate_timing/cap.def file.  

The following command line is used to do all gate timing characterization: 

do_delay_meas.py ALL 

The ALL parameter can be replaced by a gate name to do characterization for only one gate. Gate 
timing information is placed in the gate_timing/gate_name directory, organized by output pin.  
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To consolidate all pin capacitance, timing information in one file that can be used by the toolset, do: 

cat gate_timing/template.def gate_timing/cap.def gate_timing/*/*/timing.def > 
timing65nmptc.def 

The delay_timingfile parameter in the $UNCLE/mapping/tech/common.ini file specifies the timing 
data file used for all delay calculations made during the mapping process and by the simulator. 

 

10 Tech Files 
This is a short summary of the files that are used to define a technology mapping. All pathnames are 

relative to $UNCLE/mapping/tech. 

• synopsys/andor2.lib – this is the target library for RTL synthesis. The various demux flavors and 
merge gates are defined as black boxes. Also, the synopsys/default_synopsys.template uses the 
–incremental_mapping option during synthesis so that Synpsys does not modify any gate-level 
logic specified by the designer. 

• andor.def – A .def file is the library definition format that Uncle-based tools used. This file 
contains cell definitions for all cells in the synopsys/andor2.lib file. In addition to these cells, it 
also contains dual-rail definitions of these cells where ‘dr_’ is appended to the cell name, and 
pins have ‘t_’ and ‘f_’ versions. There are also ‘eager’ versions (‘_eager’) of the dual-rail cells 
that are used for cells that are marked as being relaxed during mapping.  

• ncl_andor.v – this verilog file defines NCL implementations for all dual-rail cells defined in 
andor.def. This is where optimized NCL implementations of particular cells can be placed. 

• ncl.def - library definition file for all NCL cells 
• andor2_patterns.def – this file defines the valid target cells that can be used by the cellmerge 

program. 
• andor2_patterns.v – this file defines the implementations of the cells in andor2_patterns.def 

and is used for pattern matching during cell matching. 
• models/verilog/src/gatelib/*.v  - contains all of the functional models for gates that can appear 

in a final NCL netlist. 

These technology files are communicated to Uncle tools via the $UNCLE/mapping/tech/common.ini 
file specifies using various keyword/value1/../valueN statements. The common.ini file is included in the 
various scripts default.ini, perfopt.ini etc, previously mentioned in this document. 

Technology files are found via the $UNCLEPATH environment variable. If this variable is set prior to 
the Uncle script invocation, then that path is used to locate technology files instead of the default 
location of $UNCLE/mapping/tech, so this is the mechanism for using a different technology. 
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10.1 common.ini Variables 
This section documents some of the variables in the $UNCLE/mapping/tech/common.ini file. Many 

are self-explanatory by the comment included with the variable, and some are experimental or 
obsolete. The variables documented here are the ones that a typical user may want to change during 
normal usage. It is not necessary to edit the common.ini file itself; you can create a new .ini file, include 
the original common.ini file, and then override a variable setting by including it in your .ini file (that last 
setting that is encountered for a variable is the one used). See the relax.ini file for an example of an 
.include statement. This section documents variables not discussed in other sections of the user manual. 

Variables related to relaxation 

There are several variables that are used to control the CPU effort related to relaxation. The 
relaxation algorithm has two phases. Phase 1 identifies reconvergent paths from all data sources to their 
destinations, and phase 2 identifies gates to be relaxed on the reconvergent paths. Each phase is 
partitioned to work on smaller subsets than the entire netlist (or all paths). Phase 1 partitions its work 
by identifying data sources with common destinations. It starts with the data source with the most 
destinations, and identifies reconvergent paths. It then finds the next data source that has the most 
common destinations with the previous data source, and finds these paths, and repeats this until all 
data sources have been processed or a maximum number of paths have been identified, at which point 
these paths are passed to the phase 2 algorithm. Initially, the phase 1 algorithm uses exhaustive search 
to look for reconvergent paths from data sources to destinations, but if a specified CPU effort limit is 
exceeded, the algorithm resorts to random walks to identify paths. Once reconvergent paths from data 
sources to their destinations have been identified, phase 2 starts by partitioning the paths into subsets 
that share gates. Each subset is searched to identify the maximum number of gates that can be relaxed, 
and still ensure that each data source has at least one path to each destination that contains all non-
relaxed gates. Once all path subsets have been relaxed, the algorithm is finished. A separate post-
relaxation check is done on the final netlist to ensure that all data sources has at least one path 
consisting of all non-relaxed gates to each of its destinations. In general, the more paths that are 
identified, the better the relaxation quality, with diminishing returns on CPU effort versus relaxation 
quality. Variables related to relaxation are: 

• relax_maxtotalpaths integer value:  Phase 1, limits the total number of reconvergent paths 
found before initiating phase 2 to finish relaxation of these paths.  

• relax_maxpaths float_value: Phase 1, limits the total number of reconvergent paths between 
any data source and a single destination. 

• relax_tracemult integer value: Phase 1, this number multiplied by relax_maxpaths gives a 
number that controls the amount of non-random searching to do for reconvergent paths. 
Increasing this number increases the effort spent in non-random searching. 

• relax_randomsearch float_value: Phase 1, if the non-random search effort is exceeded, then 
random search is used to find reconvergent from a data source to its destinations. This number 
is multiplied by relax_maxpaths as the number of random iterations to use for searching for 
paths to destinations for a given data source. 
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• relax_maxsubset integer_value: Phase 2, this number is the limit of paths×components to 
consider in one subset during identification of relaxed components.  

• relax_fastsubset integer_value: Phase 2, a non-zero value causes a fast approach to be used 
when subsetting the reconvergent paths that are passed to phase 2. 

 

Variables related to netlist processing 

• safe_use_null_dff integer_value:  The default value of this variable is zero, which means that any 
RTL DFF without an asynchronous init signal will be mapped to a DATA-0 DFF. This value must be 
non-zero if you want NULL DFFs to be used for DFFs without an asynchronous init signal. 

• verilog_noescapednames integer_value: A non-zero value means that escaped net/instance 
names (names with a leading slash character such that normally disallowed characters can be 
used in identifiers) are modified to contain all legal characters. 

 

Variables related to ack network generation 

 

• safe_disable_cgate_sharing integer_value: The default value of this variable is zero, which 
means that sharing of C-gates between ack networks is enabled. A non-zero value disables C-
gate sharing. 

• safe_acktype string_value: Default value is word which causes ack generation to use a merged 
ack approach. A value of bit causes Uncle to generate bit-oriented acks at the cost of more C-
gates in the ack network with no guarantee that performance will be improved. This option is 
included for completeness at the current time; with plans for timing-driven ack generation to be 
added in a later release that will automatically chose between merged and bit acks for 
performance reasons. 

 

Variables related to cell merging 

 

• merge_enable integer_value: A non-zero value enables cell merging 

 

Undocumented variables 

There are many undocumented variables; if they are not mentioned in this section or somewhere 
else in this document then they are considered experimental, obsolete, or for internal use only.  
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12 Appendix 
This appendix contains topics on miscellaneous areas. 

12.1  Debugging Tips 
The most common simulation problem is for a design to be stuck in either a request-for-null state 

(true/false data rails are at null, ackin is low) or a request-for-data state (true/false data rails contain 
data, ackin is high). If a register is stuck in a request-for-null state, its ackin will be stuck low – trace its 
ack tree back and find the ack signal that is stuck low (the null state on the register’s outputs will have 
propagated to register destinations, and these acks should all be high, but are not for some reason). If a 
register is stuck in a request-for-data state, its ackin will be stuck high – trace its acktree back and find 
the ack signal that is stuck high (the data state on the register’s outputs will have propagated to register 
destinations, and these acks should all be low, but are not for some reason).  

Typically, the reason for the stuck ack signal either will be an error by Uncle in ack netlist generation, 
or an illegal network topology for which no correct ack network can be generated. 

If you suspect tool problems, other things you can try to pinpoint the problem is: 

• Simulate the modname_safe0.v netlist in the tmp/ directory – this is the netlist before merging if 
you suspect a cell merger problem (or use a script with the variable merge_enable set to 0, this 
will disable cell merging).  

 

12.2  Notes on Synopsys synthesis 
The $UNCLE/mapping/tech/synopsys/default_synopsys.template script used to synthesize the 

examples in this example uses two Synopsys variables that are set differently from their default values: 

• compile_seqmap_propagate_constants is set to false; this prevents latches/dffs with constant 
values from being removed from the netlist.  
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• compile_delete_unloaded_sequential_cells to false; this prevents unloaded latches/dffs from 
being removed from the netlist.  

Because Uncle RTL usually contains manually instantiated components such as read ports and write 
ports, logic being silently removed by the synthesis tool can have unintended consequences with 
connections to these modules. In the case of unloaded latches/dffs, Uncle will generate a self-ack for 
these modules and the user can then adjust the source RTL to remove these unused latches/dffs. Or, if a 
user does not like this behavior, then the $UNCLE/mapping/tech/synopsys/default_synopsys.template 
script can always be edited by user and these non-default settings removed. 

The Synopsys script $UNCLE/mapping/tech/synopsys/mindelay_synopsys.template uses a minimum 
delay constraint, and can only be used with data-driven designs as it attempts to minimize register-to-
register delays, where registers are defined by D-latches and DFFs, which are only found in data-driven 
RTL. This constraint will be removed in future release. 

Synopsys Warning Messages 

You will receive messages about unconnected outputs in regard to write ports; these are normal as 
Synopsys is complaining about the unconnected outputs on the write port demux output. If you 
received a warning message about an unconnected output on a read port, this means that the particular 
bit on the read port is unused for some reason in the logic; Uncle will generate a self-ack for that output 
during the mapping process so that this unused output will not prevent the system from cycling. 

 

12.3  Notes on Cadence synthesis 
The $UNCLE/mapping/tech/cadence/default_synopsys.template script emulates what is done by the 

Synopsys script. Differences the author has noted between Cadence and Synopsys synthesis is: 

• Synopsys seems to be more likely to infer FA cells if +/- arithmetic operators are used. 
• Cadence seems to be more like to infer mux2 cells than Synopsys. 

Because both the FA and mux2 cells have very efficient implementations in NCL, a designer probably 
should use the parameterized modules from parm_modules.v instead of trying to infer these from 
behavioral RTL. 

There is also available a $UNCLE/mapping/tech/cadence/mindelay_synopsys.template that uses a 
minimum delay constraint. 

 

12.4  Constant Logic 
Constant logic cells that are that drive data pins (as opposed to asynchronous preset/reset pins on 

DFFs) expand to dual rail logic as shown in Figure 12-1 (the rsb is the low-true asynchronous reset). Also, 
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each constant logic cell in the input netlist driving data nets that have multiple fanout are replaced by 
individual constant logic cells during dual-rail expansion as it is not clear at that time which constant 
logic cells can share acknowledgements. 

 

Figure 12-1 Constant Logic dual-rail implementations. 

Be careful with constant logic and demuxes/merge gates. In the ALU example, all signals that went 
through demuxes were later merged via merge gates. A problem will occur if there is constant logic after 
the demuxes but before the merge gates – since the constants do not go through demuxes, the merge 
gates may experience simultaneous dual-rail assertions since the constant logic cells generate data 
every cycle, and not when the demux channel is active. To prevent this problem, any constant logic has 
to be demuxed the same as other signals. 

 

12.5  doregress.py Scripts 
Most of the directories in the $UNCLE/designs directory have a python scripted named doregress.py 

that runs regression tests for the separate designs in that directory. Executing this script without 
arguments gives a usage string. The script contains a variable composed of nested lists that define each 
test. The first item in regression test list is the name of the test that is specified as the first argument to 
doregress.py, the rest of the arguments are parameters to the ‘uncle.py’ and ‘uncle_sim.py’ scripts. A 
typical entry is: 

[“<test name>”, [“ncl_module_name”,[[“in_mod_name”,”out_mod_name”]], ‘uncle_sim parameters’]]        

["updnmod10", ["ncl_updnmod10", [["clk_updnmod10", "ncl_updnmod10"]],'-maxcycles 100']] 

 

A typical invocation is: 

doregress.py unpdnmod10 qhdl default.ini  

This runs the tool flow, and simulates the result using the Mentor mentor (qhd== Mentor Modelsim). 
This assumes the RTL has already been synthesized. The following command: 
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doregress.py unpdnmod10 qhdl default.ini –syntool cadence 

will run the Cadence synthesis tool first to synthesize the RTL to gates. 

If the –syntool syntoolName option is used, then from the parameters given in the regression script, 
the script assumes a file named ./syn/rtl/in_mod_name.v exists with top module name in_mod_name. 
This file is synthesized to a gate level file, and then copied to the file ./map/in_mod_name.v with the top 
module name replaced with out_mod_name. The uncle.py script is run on this file with the output file 
being produced named ./map/out_mod_name.v. The uncle_sim.py tool is run if Unclesim parameters 
are present. The  ./map/out_mod_name.v is copied to sim/src/out_mod_name/out_mod_name.v and 
the specified commercial simulation tool (Mentor Modelsim, Cadence, or Synopsys) is used to compile 
and test the mapped design using the testbench present in the sim/src/out_mod_name/ directory. 

The data in the regression test can override the script passed on the command line as shown below: 

["pmuv3",["ncl_pmuv3", [["clk_pmuv3", "ncl_pmuv3"]],'-maxcycles 100' ],"perfopt.ini"], 

This forces uses of the ‘perfopt.ini’ script. The –forceini flag passed to doregress.py can override the 
.ini file specified within the regression script with one passed on the command line. 
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13 Change Log 

 

13.1 Change log for 0.2.xx 
June 2013 (version 0.2.6): Added support for early completion [15], and MTNCL [16].  These 

approaches require a linear pipeline.  See the designs/regress_mtncl examples. 

December 2011 (version 0.2): Initial release of version 0.2 with rewritten documentation that more 
accurately reflects the code state. Other changes include adding the transistor-level library to the 
release, and fixed some problems with relaxation working in conjunction with loop balancing.  

13.2 Change log for 0.1.xx 
 

December 2011 (version 0.1.20):  This is the last release before version increment to 0.2 with 
documentation update. Performance optimization for data-driven designs (not Balsa-style) is now 
released, use the ‘perfopt.ini’ script. This moves half-latches to balance data/ack delays and can result in 
a substantial performance improvement. Added design directories ‘viterbi’, ‘cpu8’ with associated 
regression tests. Fixed numerous bugs. 

October 2011 (version 0.1.19):  The unclecsim binary is now statically linked like other tools to 
remove the GNU C library version dependency. Fixed problem that crept in an earlier release that 
disabled the acknet checking tool; acknet checking is now done by default. 

September 2011 (version 0.1.18):  Fixed problem relating to net buffering and assignment 
statements. Fixed problem related to arbiter simulation. Remove python library dependency from 
unclecsim. 

September 2011 (version 0.1.17):  A net buffering phase has been added to the flow to meet a 
transition time constraint. Nets are buffered with either a larger sized gate (if available) or a tree of 
inverters. The delay_max_transition_time constraint is used for all nets except the reset net, which uses 
the delay_max_transition_time_reset constraint (values in mapping/tech/common.ini). Net buffering is 
enabled if netbuf_enable is non-zero and if the nldm timing mode is set (the common.ini file in the 
release enables net buffering). A few gates of varying sizes have been added to the library (and to the 
timing65nm.def file) to support net buffering. Typical speedups you may see with net buffering enabled 
is about 10% with the current implementation. 

The default timing mode in the common.ini file is now nldm in order to support net buffering. 
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Support for relaxation in its current form is now deprecated, and the default.ini script is the script 
used for testing the regression designs in the designs/regress directory. Support for relaxation has been 
dropped because it does not product netlists that are delay insensitive to arbitrary delays. The 
default.ini script simply uses the settings found in the common.ini file (cell merging is the only 
optimization that is enabled). Future versions of Uncle will implement peephole logic optimization of 
NCL gates in order to reduce transistor counts. 

August 2011 (version 0.1.16): Internal release, added the ability to specify an external vector for the 
internal simulator. 

August 2011 (version 0.1.15): An internal simulator has been added. It supports either unit delays or 
a non-linear delay model s(NLDM) using standard table lookup where the two indices are input rise/fall 
vs output capacitive load. By default, the $UNCLE/mapping/tech/common.ini file is setup to use the unit 
delay model by the option: 

delay_timing_model unit ; 

To use the NLDM, change this to: 

delay_timing_model nldm ; 

which then uses timing data from the file specified in the following option: 

delay_timingfile timing65nm.def ; 

This timing data was created from transistor level simulations using a 65nm process. The regression 
test found in $UNCLE/designs/regress/doregress.py is set up to run the internal simulator after the 
mapping process. The internal simulator uses randomly generated inputs to stimulate the design, and is 
useful for determining if the design is live (will cycle) and for comparative performance between 
different versions of the same design.  

To run the internal simulator in standalone mode, an example command line: 

uncle_sim.py ncl_up_counter.v default.ini -maxcycles 50 

where ncl_up_counter.v is the NCL verilog file produced the mapping process. The second argument 
is the same initialization file used by the mapper, and –maxcycles argument specifies the number of 
cycles to run before terminating the simulation. Executing uncle_sim.py with no arguments gives a list of 
all arguments. 

If you use the NLDM on designs that have large fanout, then warnings are produced about transition 
times, capacitive loads exceeding the values specified in the delay tables contained in 
$UNCLE/mapping/tech/timing65nm.def file. In these cases, the timing values are clipped to the 
maximum value found in the appropriate timing lookup table. A future version of Uncle will have 
automatic buffering to keep delay times within the lookup table bounds. 
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May 2011 (version 0.1.14): Fixed problem relating to unconnected inputs and relaxation. 

May 2011 (version 0.1.13): Fixed line length limitation in verilog parser, improved final netlist 
cleanup, added ‘-obfuscate’ option to ‘flatten’. A sample command line for flatten with obfuscate is: 

flatten -ifile clk_up_counter.v -ofile tmp.v -top ncl_up_counter -ini relax.ini -obfuscate 

The ‘-obfuscate’ option renames instances/nets in the gate-level file to generic names. The ‘-
obfuscate’ option can be used if reporting a bug, and the netlist is needed to repeat the bug. Just ensure 
that the bug is repeatable with the obfuscated netlist. 

May 2011 (version 0.1.12): Added support for Cadence RTL Compiler (in regression tests, 
 use “-syntool cadence” option). 

March 2011 (version 0.1.11): Added support for Balsa-style([14],[15]) data registers and control cells. 
See the GCD example in regress_dreg/ directory. This is undocumented for now in the user manual; 
documentation will catch up in later releases.  

February 2011 (version 0.1.10): Internal releases 

February 2011 (version 0.1.9):  Moved relaxation to after ack generation. Added post-checkers for 
correctness of ack network and relaxation. Added performance enhancements to ack generation  and 
relaxation. Added more front-end checks for clocked netlist validity.  

January 2011 (versions 0.1.7, 0.1.8): Internal releases 

December 2010 (version 0.1.6): Added option for generating bit-oriented ack networks, added 64-bit 
binaries. 

November 2010 (version 0.1.5): Added C-gate sharing among ack networks. 

November 2010 (version 0.1.4): Added mindelay_synopsys.template Synopsys script, user manual 
section on NCL performance, added example on latch insertion for ring throughput improvement 
(iterative sqroot32 example). Added booth32x32 example (32x32=64 unsigned booth multiplier) to 
designs/regress directory; this stresses relaxation. 

November 2010 (version 0.1.3): Fixed problem with constant logic on write ports. 

November 2010 (version 0.1.2):  Some initial netlist checks were added such as logic on async 
preset/set nets, unconnected inputs. Unloaded latches/dffs are now handled gracefully self-acks being 
generated for them. The relaxation code was tweaked to limit effort spent on complex paths.  

November 2010 (version 0.1.1):  Initial Release 
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