
UNIT 9.1Creating Databases for Biological
Information: An Introduction

The essence of bioinformatics is dealing with large quantities of information. Whether it
be sequencing data, microarray data files, mass spectroscopy fingerprints, the catalog of
strains arising from an insertional mutagenesis project, or even large numbers of PDF
files, there inevitably comes a time when the information can simply no longer be
managed with files and directories. This is where databases come into play.

A database manages information. It allows you to organize data, ensure completeness and
integrity, transform it from one form to another, and search through the data efficiently
to find the desired information.

Although strictly speaking, the term “database” applies to any collection of information,
and can therefore be applied to a stack of index cards or a box of papyrus scrolls, it has
come to mean a collection of data that is managed by a computerized database manage-
ment system, or DBMS.

How do you know when you have reached the point of needing a real DBMS? Some of
the physical signs are easily recognized:

1. The information you need is scattered among hundreds of files. You spend much of
your time searching for the file you need using the operating system’s Find command
or a command-line utility such as grep.

2. You find yourself creating complex, multilevel naming schemes in order to keep track
of files and directories.

3. You’ve stored everything into an Excel spreadsheet, but the number of rows and
columns have become so huge that the spreadsheet takes minutes to load.

4. You’ve started to lose data, sometimes by inadvertently overwriting or deleting a file,
and sometimes just by losing track of it.

Even if none of the outward signs are manifest, you’ll know when the time for a DBMS
has come when you start experiencing the symptoms of “information overload,” the
anxiety associated with feeling overwhelmed with the size and complexity of your data.

DBMSs provide effective medicine against information overload. Despite their reputation
for complexity, setting up a DBMS can be relatively painless and very educational, in part
because the task will force you to look at your data in a novel way. Once installed, a DBMS
will empower you to explore your data in ways that were previously impractical, and to
undertake larger projects in the future.

DBMS CHARACTERISTICS

Once you have decided that you need a database, the first task becomes choosing a suitable
database management system. DBMSs come in a bewildering variety of sizes and shapes,
and are, like most software products, subject to the tides of fashion consciousness among
bioinformaticists and computer scientists. We will walk through the major types of
database system so that you get a feel for the range of offerings, and then offer some
guidelines for choosing the one that is right for your needs.

Contributed by Lincoln Stein
Current Protocols in Bioinformatics (2003) 9.1.1-9.1.9
Copyright © 2003 by John Wiley & Sons, Inc.

9.1.1

Building
Biological
Databases

Flat File Databases

We begin with “flat file” databases, which consist of a set of one or more files containing
information, and one or more programs that people use to look up, add, and delete
information. A typical flat file database might be a list of researchers’ names and
addresses. Each line of the file contains information about a single person. Different items
of data, such as the researcher’s first name, last name, affiliation, and address are separated
from the others by a comma or tab character. To apply database terms to this, each line
of the file is a “record” and the individual data items are called “fields.”

If you’ve used Microsoft Excel or another spreadsheet program to store lists of informa-
tion, you’ve essentially created a flat file database. Flat file databases are simple to set up
and understand, but are limited in their ability to represent the relationships among pieces
of information. Also, since the information is stored in one long list, the time it takes to
find a particular piece of data increases proportional to the length of the file.

Indexed File Databases

Indexed file databases are similar to flat file databases, except that the programs that
manipulate the data files maintain indexes of one or more of the fields. The presence of
an index on a field allows searches to occur much more quickly—i.e., a big file can be
searched in milliseconds rather than seconds. A great many proprietary DBMSs are
indexed file databases at heart, including such industry stalwarts as Microsoft Access and
the Filemaker series.

In addition to these commercial systems, machines running the Unix and Linux operating
systems come with a family of libraries for creating indexed file databases known as the
DBM series. Because of the easy availability of these libraries, many bioinformaticists
have built custom databases on top of them.

Relational Databases

Relational databases (RDBMSs) are the mainstream of serious DBMSs, and include such
industry heavyweights as Oracle and DB2. Relational databases are distinguished by the
following features:

1. The data is broken down into a series of “tables,” each with a set of records and fields.
The structure of the tables and their relation to one another are described formally by
something called the “schema.”

2. A standard query language called “SQL” (UNIT 9.2) is used to insert information into
the database, to update it, and to look information up in it.

3. The DBMS allows you to define “constraints” on the data in order to maintain internal
consistency.

4. The system provides a guarantee of no corruption of the data if multiple users update
the database concurrently, even if the program that a user is using to update the data
crashes unexpectedly.

Most relational DBMSs also provide the following features:

1. Network access to the database over the local area network and/or internet.

2. Support for user authentication and access controls, which limit who can access the
database and what they can do once they gain access.

3. Support for backup and recovery of the database.

Current Protocols in Bioinformatics

9.1.2

Creating
Databases for

Biological
Information:

An Introduction

4. Support for a variety of programming languages. Most relational databases support
the Java programming language, and many provide additional support for C, C++,
Perl, and Python.

A sample schema
The way that data is broken down into tables is the essence of relational databases. For
example, a database of protein sequences from different taxa might have three tables: a
“sequence” table, a “taxon” table, and a protein “function” table (Fig. 9.1.1). The sequence
table has fields for the name of the protein, the common name of the species it came from,
and the protein sequence itself. The taxon table provides information about each species,
including its formal kingdom, phylum, class, family, genus, and species. The function
table contains fields that describe the function of each protein using gene ontology.

Because information about protein sequences, protein functions, and species are separated
into tables, each data item is present in the database only once, making it much easier to
maintain. Fields that appear in multiple tables can be used to “relate” them together. For
example, the taxon_id can be used to relate the sequence table to the taxon table, while
the function_id can be used to relate the sequence table to the function table. In
contrast, a flat file or indexed database (Fig. 9.1.2) would force the taxon and function
information to be repeated multiple times.

Figure 9.1.1 A relational schema for protein sequences separates information in distinct tables to minimize redun-
dancy.

Current Protocols in Bioinformatics

9.1.3

Constraints
Constraints are a set of consistency rules and tests that can be used to prevent inappropriate
values from being entered into the database, and to maintain internal consistency. In the
protein sequence database of Figure 9.1.1, constraints can be used to ensure that every
protein has a sequence associated with it, and to prevent the deletion of a species from
the taxon table if there are still entries that referred to it from the sequence table.

Regulating access
The ability of most relational DBMSs to be accessed from the network creates the problem
of managing writes by multiple users. If two users try to update the same record
simultaneously, there is a risk that one user’s modifications will overwrite the other’s. For
this reason, relational DBMSs can lock a record so that a user can’t alter it while another
one is making changes. There are also techniques for “rolling back” the database to a
consistent state if a user starts to make changes but later changes his mind (or the program
he’s using to make the changes crashes). Programming language support allows program-
mers to write software that accesses the database in order to add or retrieve information.
In addition to allowing many database management tasks to be automated, this is the key
to providing a Web-based interface to the database.

The advantage of SQL
A signal advantage of relational DBMSs is that the SQL query language is standardized
(UNIT 9.2). Once you learn SQL, you can talk to any relational DBMS. You can also move
data from one relational DBMS to another with relative ease, although there are multiple
small differences among the various products that make the process not as automatic as
it should be.

Relational database products
Relational database products include the heavy-duty commercial products Oracle, Sy-
base, Microsoft SQL Server, IBM’s DB2, and Informix. There are also two popular open
source (freeware) relational database products: PostgreSQL (http://www.postgresql.org)
and MySQL (http://www.mysql.org).

The biggest downside of relational DBMSs is that they are complex pieces of software
that have to be installed, managed, and maintained. A cadre of specially trained individuals
known as Database Administrators (DBAs) are available—at a price—to manage rela-
tional databases.

Figure 9.1.2 A flat-file representation of the same data will cause two proteins that share the same function of taxon
to duplicate the information in “common_name,” “genus,” “species,” “go-accession,” and “description.”

Current Protocols in Bioinformatics

9.1.4

Creating
Databases for

Biological
Information:

An Introduction

The ACeDB Data Management System

The ACeDB DBMS (http://www.acedb.org) was designed specifically to manage biologi-
cal data. It was developed to manage the C. elegans genome sequencing project (hence
its name A C. elegans database), and has since been adopted for use in a number of other
biological databases, particularly for various plant species.

Like relational databases, ACeDB uses a formal schema language to describe the structure
of the data, and a query language to ask questions about the data. ACeDB also supports
remote access via the network, a user authentication and access system, and access via
the C, Java, and Perl programming languages.

Despite the similarities, ACeDB is not a relational database system. The data is structured
differently (it looks like a multi-level word processor outline rather than a spreadsheet
table), the schema language is different, and the ACeDB query language is only superfi-
cially similar to SQL. ACeDB offers four advantages:

1. Built-in support for nucleotide and protein sequences. Some DBMSs have tradition-
ally had difficulty dealing with large amounts of text information, but ACeDB
supports arbitrarily large stretches of DNA and protein sequences. However, this
distinction has become of less importance as more relational database have begun to
provide support for large text objects.

2. A rich set of schemas for representing biological data, such as genetic and physical
maps, genomic sequence annotation data, phenotypic information, and bibliographic
citations.

3. A graphical user interface with built-in displays for genetic and physical maps,
annotated DNA sequences, phylogenetic trees, and other common biological data
types (but not microarray data).

4. ACeDB is free software, and will run equally well on Windows and Unix systems.

The main disadvantage of ACeDB is its shrinking user community, which makes it
difficult to get answers to problems and to exchange ideas. Although ACeDB is actively
maintained and supported by its developers, it has become increasingly difficult to find
programmers who have experience working with ACeDB. Figure 9.1.3 shows the schema
for protein databases in ACeDB format.

Figure 9.1.3 The protein database as an ACeDB schema.

Current Protocols in Bioinformatics

9.1.5

Building
Biological
Databases

Other Types of DBMS

There are a variety of other DBMS architectures that you may hear about, including
Object-Relational DBMSs, pure Object DBMSs, On-Line Transaction Processing
(OLTP) and On-Line Analytic Processing (OLAP) databases. Object-relational DBMSs
are essentially relational databases in which the restrictions on table contents have been
relaxed to allow table cells to hold more complicated things than numbers or text. For
example, a cell can hold a list of numbers, or even another table. Newer versions of Oracle
and PostgreSQL both have object-relational features.

Pure object databases, once touted as the wave of the future, have now been relegated to
the status of niche products. These databases allow programmers to create programs that
store “persistent” data. That is, the program can create a large complex data structure and
exit. The next time the program is run, the data structure is “magically” restored to its
original state.

OLTP describes a class of DBMSs that are specialized for very high volume activity, such
as airline booking systems. Similar databases are found in biology in the form of
laboratory information management system (LIMS) databases, which manage highly
automated procedures such as laboratory robotics.

OLAP databases are more informally known as “data warehouses.” An OLAP database
is a data repository that periodically collects the information from many other databases.
The information is then available for leisurely data mining and analysis. An OLAP is often
paired with an OLTP, because the first is good for queries but not good for high volume
transactions, whereas the latter has the opposite characteristics.

CHOOSING A DBMS

Practical considerations dominate the choice of a suitable DBMS. Obtaining and install-
ing the software itself is just the first of a long series of steps required to get a useful
running system. More important in the long run are issues of maintenance and support.
What support is available for the DBMS? How easy is it to find programmers and
administrators who are familiar with the DBMS? Will the DBMS grow with you? And
finally, what is the likelihood that you can move your data to a different DBMS should
you ever need to?

Flat and Indexed File Database Management Systems

Flat and indexed file database management systems offer easy installation, a pretty
graphical user interface, and an intuitive data structure; however, they are limited in their
ability to handle the interrelatedness of biological data, have little in the way of internal
consistency checks, and are particularly pernicious with respect to “lock in.” Indexed file
database systems tend to be operating system specific (e.g., Microsoft Access is only
available for the Windows operating system), and although it is possible to move the data
itself to another DBMS, other aspects of the database, such as custom data entry forms,
cannot be easily moved to other software products.

The better commercial offerings, including Filemaker Pro and Microsoft Access, allow
their databases to be used as front ends to relational DBMSs, in effect combining the nice
graphical user interface with the expressiveness of a relational DBMS.

ACeDB

The lock-in concerns that apply to flat and indexed DBMSs apply doubly to ACeDB.
ACeDB offers the ability to load a text file containing genetic mapping information or

Current Protocols in Bioinformatics

9.1.6

Creating
Databases for

Biological
Information:

An Introduction

BLAST hits and immediately obtain an interactive display of the data. The data can then
be put on the network or displayed by a Web server. Unfortunately, once data is in ACeDB
format it cannot easily be moved to any other DBMS. This, coupled with the observation
that the number of bioinformaticists familiar with ACeDB is steadily shrinking, should
give you pause before considering ACeDB as the basis for a new database project;
however, it is an excellent product for data exploration and for projects that are expected
to have a short half-life.

RDBMSs

Relational DBMSs are both well-supported and widely used in bioinformatics. Because
of this, an RDBMS should probably be the first solution that you consider. The main
choice is between a freeware open source solution such as MySQL or PostgreSQL, and
a commercial RDBMS, such as Oracle, MS SQL Server, or DB2.

Open source products (freeware)
The MySQL database offers the core RDBMS features, including SQL, multiuser access,
and transactions. It runs on Unix systems, on Windows 2000, on Linux, and on Macintosh
OS X (but not OS version 9). It has a deserved reputation for being very fast, and has
become the RDBMS of choice for Web site operators because of its ability to handle large
loads; however, MySQL does not provide the full gamut of integrity checking that other
DBMSs offer, and its implementation of SQL is incomplete. Nevertheless, its gentle
learning curve and great price (free) has made MySQL the most popular RDBMS in
academic bioinformatics. Many biological schemas are available for MySQL, and many
full software systems use MySQL as a back end. For example, both the EnsEMBL and
UCSC genome browsers are built on top of MySQL. For this reason, the Current Protocols
in Bioinformatics units that follow this introduction use MySQL as their example RDBMS
(UNIT 9.2).

PostgreSQL is a full-featured Object-Relational DBMS that is making inroads against
MySQL in the bioinformatics community. It offers a virtually complete implementation
of SQL, and an extensive repertoire of constraints and other integrity checking features.
It runs on Windows 2000, Linux, and many variants of Unix, but is not documented to
work with Macintosh OS X. PostgreSQL’s performance is not as good as MySQL’s, but
this should not be an issue for the vast majority of users.

Commercial products
The commercial RDBMSs offer a large number of features not available in the open source
DBMSs, including such things as fancy graphical administrative interfaces and failover
databases that will take over when the master database becomes inaccessible. There is
also the customer support agreement, which guarantees phone and/or on-site assistance.

All this comes at a price of course. Commercial DBMSs are typically licensed on a
per-seat basis, where each seat allows a single developer access to the database. Base
licenses, which typically allow for five seats, are available for a modest sum, but prices
rise steeply for larger numbers of seats. In particular, if you intend to use the database as
the back-end for a Web site, you may be required to purchase a number of seats equal to
the number of people who will simultaneously access the Web site. This can be difficult
to estimate and quite costly indeed.

Commercial RDBMSs also require more in the way of care and feeding than their open
source cousins. The Oracle database, in particular, comes configured out of the box in
such a way that its performance is extremely poor. It requires extensive configuration
(“tuning”) in order to achieve its full potential. Fortunately, there is no dearth of books

Current Protocols in Bioinformatics

9.1.7

Building
Biological
Databases

that describe how to achieve this; just consult the computer book shelf at your local
bookstore.

Of the commercial databases in use in bioinformatics, Oracle is currently the market
leader. This reflects its preeminent position in the business world at large and the
consequent abundance of Oracle programmers and DBAs. This large reservoir of talent
makes Oracle a good choice for bioinformatics development; however, any of the
commercial RDBMSs will handle bioinformatics tasks, and the standardization of SQL
is such that it is not too painful to move a database from one to another should you change
your mind in the future. (This assumes that you stick to the basic features of the DBMS;
as soon as you use the special features that are specific to a particular vendor’s DBMS
you are lost to lock-in.)

In summary, a relational database system is probably the best place to start when looking
for a solution to information overload. If you already have an RDBMS handy, for example
an institutional license for a commercial system, then by all means use it. Otherwise I
recommend starting with either of the open source engines, MySQL or PostgreSQL.
When and if you run up against the limitations of the open source product, you can always
move your data to a commercial DBMS later.

Using DBMSs

The protocols contained within this chapter describe how to use databases to solve
common problems, such as storing a significant amount of sequence information. Al-
though some of the protocols are based on MySQL and others ACeDB, many broad
aspects of interacting with the database are shared in common. The following are
important steps in working with a DBMS.

Install the database software
Modern DBMSs consist of two components: a database server and a database client. The
server is the heavyweight component of the system; it manages the disk files on which
the database is physically stored, and handles backup and recovery operations. Database
server software is typically installed in such a way that the server application is started
automatically when the computer boots up.

The database client is a lightweight application that interacts with the user. It accepts
requests from the desktop or command line, and forwards the requests to the server. The
server’s response is then formatted and displayed for the user. The client can run on the
same machine as the server, or can connect to the server remotely via the network. It is
also commonplace for there to be several different types of clients. For example, MySQL
has a text-only client that comes with the MySQL package, but the server can also be
accessed from the graphical application Microsoft Access, which serves as an alternative
client on Microsoft Windows platforms.

The steps for installing software under Unix are given in APPENDIX 1C.

Create user accounts
Because a DBMS can be accessed remotely via the network, access to the database must
be restricted, either by defining a set of computers that are allowed to connect to the
database, or by creating a set of users who are allowed to connect to the database by
providing an authorized username and password. Typically one user account has special
database administrator (DBA) permissions, which allows its owner to add and delete other
users, create databases, and perform other administrative tasks. Other user accounts have

Current Protocols in Bioinformatics

9.1.8

Creating
Databases for

Biological
Information:

An Introduction

restricted privileges. At the discretion of the DBA, some users may be able to read but
not alter a database, while others may have less restricted privileges.

The process of creating user accounts is described for MySQL in UNIT 9.2, and in a
forthcoming unit for ACeDB.

Create named databases
A single DBMS server can manage many individual databases. The ability to maintain
separate databases allows you to keep your database of laboratory protocols separate from
your database of PDF files without risk of “cross talk.”

On many systems, creating a new database involves no more than choosing an easy-to-
remember name and issuing a single command while logged in with DBA privileges. On
some systems, you can also specify options such as the expected size of the database and
other characteristics.

The process of creating a database under MySQL is described in UNIT 9.2.

Design the database schema
Before you can enter data into the database, you have to design the schema. The schema
should be designed to represent the type of data you wish to store, and the relationships
between the various data objects. The schema should also be designed with a view to the
types of searches you will perform on the data once loaded.

Schema design is as much an art as a science. We will endeavor to provide guidelines for
this art in many of the subsequent units in this chapter, which will present basic schemas
for storing common biological data types. After experimenting with the basic schemas in
cookbook style, we urge you to modify them to meet your specific needs. Modern DBMSs
all provide you with the ability to modify an existing schema without invalidating the
existing contents of the database.

The mechanics of writing and loading a schema into a newly-created database are covered
in UNIT 9.2.

Load the data
Once a database has been created and initialized with a schema, you can load data into
it. DBMS clients provide you with two general methods for loading data. You can load
data interactively by typing the data a line at a time, or you can perform a “bulk load,” in
which the data is loaded rapidly from one or more text files. A similar system can be used
to update existing information.

Loading, updating, and deleting the data in a relational databases is described in UNIT 9.2.

Query the database
After loading the data you can query the database in an unlimited number of ways in order
to retrieve data and to discover relationships within it. Queries are expressed in a query
language, either the standard SQL query language for relational databases, or a DMBS-
specific query language such as ACeDB Query Language (AQL).

UNIT 9.2 introduces the SQL query language, while future modules will describe AQL.

Contributed by Lincoln Stein
Cold Spring Harbor Laboratory
Cold Spring Harbor, New York

Current Protocols in Bioinformatics

9.1.9

Building
Biological
Databases

UNIT 9.2Structured Query Language (SQL)
Fundamentals

The Structured Query Language (SQL) is the universally accepted mechanism for
accessing and manipulating data stored in a relational database management system
(RDMS). SQL is a text-based language that allows the user to fully describe the
hierarchical structure of a relational database in a query, making it possible to concoct
arbitrarily complex and powerful queries in a straightforward manner. This unit will use
the MySQL database to show how to use the SQL language to create and alter tables (see
Basic Protocol 1 and Support Protocol 1), populate them with data (see Basic Protocols
2, 3, and 4, and Alternate Protocol 1), and then extract the data in a sophisticated manner
(see Basic Protocol 5).

The examples in this unit will utilize the database schema shown in Figure 9.2.1. The
example database contains information for the tracking of PCR primers. The database is
composed of four tables: the oligonucleotides, sequence, protocol, and buffer tables. For
more information about relational databases and schemas, see UNIT 9.1.

The general syntax of a SQL statement is a mixture of keywords, identifiers, and literals.
Keywords are specific SQL commands like CREATE or SELECT (although MySQL and
most other RDMSs do not care, the commands in the examples provided in this unit are
written in all capital letters to distinguish them from identifiers and literals). An identifier
is the name of a table, column, or other database-specific name. For example, in the primer
database, Oligo is the identifier of a table, and Sequence is the identifier for a column
within that table. Finally, literals are exact values to be inserted or matched. Identifiers
are often tested against literals using mathematical operators like <, =, or >. For example,
a clause like protocol = 2 would compare the value in the protocol column of
every row to see if it was equal to 2.

Literals conform to the various datatypes available in the relational database. Table 9.2.1
lists the datatypes available in MySQL. Each column must be a specific datatype, and
only that specific datatype can be stored there without an error.

BASIC
PROTOCOL 1

CREATING A DATABASE

The first step in using a relational database is to create the database and tables. This step
sets aside a space within the database and defines the tables and columns.

Necessary Resources

Hardware

A computer capable of running MySQL, such as one with a Windows, OS/2, or
Unix-based operating system

Software

A working installation of MySQL, version 3.22.11 or higher. One must also have
DBA permissions (see Support Protocol 2). MySQL is available for free under
the GNU Public License. It may be downloaded from http://www.mysql.com.

1. In a shell window, start the MySQL client without specifying a database. In this step,
and all others, the input is given in boldface, and the computer response is shown in
lightface. Also, note that the interactions with the author’s computer are shown.
Individual computer prompts might look somewhat different. And of course, substi-
tute the correct user name in place of the author’s:

Contributed by D. Curtis Jamison
Current Protocols in Bioinformatics (2003) 9.2.1-9.2.29
Copyright © 2003 by John Wiley & Sons, Inc.

9.2.1

Building
Biological
Databases

Table 9.2.1 MySQL Data Types

Data typea MySQL
datatypeb Description

Binary longblob Binary Large Object used to store data that is not
character-based. The long-, medium-, and tiny- prefix
refers to the amount of storage to be set aside for the
object.

mediumblob

tinyblob

Character char Array-based character storage up to 255 characters in
length. char and nchar are fixed lengths, nvarchar and
varchar are variable lengths (the storage grows and
shrinks as needed). nchar and nvar char store the
extended Unicode character strings rather than ASCII.

nchar

nvarchar

varchar

Date and time datetime Time-based data type. Datetime stores any date and
time from 1000 to 9999 A.D.

timestamp Timestamp stores from 1970 to 2037 A.D.

year Year stores the two (1970-2069) or four (1901-2155)
digit years

Decimal decimal Exact numeric values. These two terms are
synonymous.

numeric

Double precision double Double-precision exact numeric values. These two
terms are synonymous.

real

Floating point float Stores floating point numbers with a precision of 8 or
less.

Integer bigint Integer numbers. The standard int is between
−2,147,483,548 and 2,147,483,547. Big ints are
between −9 × 1018 and 9 × 1018.

int

mediumint Mediumints are between −8,338,608 and 8,388,607.

smallint Smallints are between −32,758 and 32,757.

tinyint Tinyints are between −128 to 127.

Text longtext Textual data like memo fields or long descriptions. A
tinytext is the same size as a varchar, while a longtext
holds text data of up to 4,294,967,295 characters.

mediumtext

tinytext

Non-standard types enum A char datatype where each of the entries must
correspond to a list of possible values. An enum can
handle up to 65,535 values.

set A set can handle up to 64 values.

aSQL99 ANSI standard type definitions.
bThe datatype names for MySQL are listed and are grouped by the SQL99 ANSI standard type definitions.

Current Protocols in Bioinformatics

9.2.2

Structured Query
Language (SQL)

Fundamentals

transposon:cjamison% mysql -u cjamison -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or /g.
Your MySQL connection id is 12 to server version: 3.23.46
Type ’help;’ or ’/h’ for help. Type ’/c’ to clear the
buffer.
mysql>

The MySQL program provides a text interface to the MySQL server. The -u command tells
the MySQL program program to login to the database using the user name specified. The
-p command tells the program to prompt for a password.

The MySQL program is the general way of interaction with the database. SQL as well as
MySQL commands are typed in following the mysql> prompt. All commands end with a
semicolon or /g but the commands can be stretched across multiple lines. The MySQL
program indicates that a new line is part of the previous command by switching from the
mysql> prompt to the -> prompt. Previous lines can be recalled using the up- and
down-arrow keys.

Forgetting to put the semicolon at the end of the statement is the most common error of
novice and intermediate MySQL users. But if you enter a command and hit the Return key
prematurely, simply put the semicolon on the line that you are presently on and pretend
that a multiline command was intended.

2. Use the CREATE DATABASE [database_name] command to create a database:

mysql> CREATE DATABASE primers;
Query OK, 1 row affected (0.00 sec)

The CREATE DATABASE command sets aside a database directory named with the
identifier supplied as the [database_name]. In this example, primers is the data-
base name.

3. Switch to the new database with the USE [database_name] command:

mysql> USE primers;
Database changed

4. Create the oligo table using the CREATE TABLE [table_name] [col-
umn_list] command. The [table_name] is an identifier for the table, and the
[column_list] is a comma-separated list of column names followed by the
datatype and any options. The list is enclosed in parentheses. This example creates
the oligo table shown in Figure 9.2.1.

mysql> CREATE TABLE oligo
-> (ID INT NOT NULL UNIQUE,
-> direction ENUM(“Forward”, “Reverse”),
-> sequence VARCHAR(50),
-> derived_from VARCHAR(12),
-> protocol INT DEFAULT 1);
Query OK, 0 rows affected (0.35 sec)

Note that this is a multiline command, and MySQL does not process the command until the
semicolon is reached. When the user hits the Return key, the MySQL program provides the
-> prompt to continue the command.

The column list specifies how the table is to look, defining what data can be put in. The
general form is [column_name] [datatype options]. The column name has to
be a unique identifier for the table: duplicate column names are not permitted within a
table (although other tables can have columns with the same name). The column options
are listed in Table 9.2.2. Some of the more common ones are used in the oligo table
creation above. For example, the ID field is going to be our key, a unique identifier for

Current Protocols in Bioinformatics

9.2.3

Building
Biological
Databases

every primer. Therefore, the column options are NOT NULL because every row must have
an ID, and UNIQUE because the ID for every row must be different. This makes the ID a
field that always differentiates rows.

Another useful option is shown in the protocol column. Here the DEFAULT value for
entries into this column is going to be 1. Thus, when entering data into the oligo table
(see Basic Protocol 2), if a protocol is unspecified, it is automatically set to 1. For the
most part, the column options can be applied to any data type. For some data types, an
argument in parentheses is required. For example, the number in parentheses following the
Varchar type tells how many characters the field will hold.

oligo

ID
direction
sequence
derived_from
protocol

sequence

GBID
name

protocol

ID
name
buffer
description

buffer

ID
name
recipe

Figure 9.2.1 Example schema for protocol examples. Each box represents a table to be used in
the primers database. The table name is at top, and the fields are shown within. Arrows from fields
to other tables shows the relational schema.

Table 9.2.2 Column Creation Options: Allowed Keywords for Defining Column Specifications
in the CREATE TABLE Command

Keyword Arguments Description

NULL
NOT NULL

Allows or disallows NULL values. The default
is to allow NULLs

DEFAULT default value Defines a value to input if not otherwise
specified

AUTO_INCREMENT Automatically set entry to next sequential
number

PRIMARY KEY reference (optional) Specifies how each row is uniquely identified

CHECK expression Checks input to be valid as defined by the
expression

INDEX index column name
list

Assigns the column to be an indexed column
in all indices listed

UNIQUE Prevents values from being duplicated in the
column, creating a key

CONSTRAINT constraint name Constrains input to a previously defined rule

Current Protocols in Bioinformatics

9.2.4

Structured Query
Language (SQL)

Fundamentals

5. Create the rest of the tables:
mysql> CREATE TABLE sequence
-> (GBID VARCHAR(12) NOT NULL UNIQUE,
-> name VARCHAR(100));
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE protocol
-> (ID INT NOT NULL UNIQUE,
-> name VARCHAR(100),
-> buffer INT NOT NULL,
-> description LONGTEXT);
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE buffer
-> (ID INT NOT NULL UNIQUE,
-> name VARCHAR(100),
-> recipe LONGTEXT);
Query OK, 0 rows affected (0.00 sec)

6. Check your database with the SHOW command:
mysql> SHOW tables;
Tables_in_primers
buffer
oligo
protocol
sequence
4 rows in set (0.00 sec)

These steps have created a database structure within MySQL that can be used to store
primer data. Support Protocol 1 shows how to make changes in the database. Basic
Protocol 2 will show how to populate the database with actual data.

SUPPORT
PROTOCOL 1

CHANGING A SCHEMA

Often, even the best designed schema is inadequate. As the use of a database evolves, it
may be necessary to revise and extend the tables in order to accommodate changes in data
collection or analysis. SQL has several commands that allow the database administrator
to alter the schema.

For example, upon reviewing the schema for the primers database, a couple of
oversights become apparent. First, it appears that the schema lacks a field to show where
the primer is in the sequence. Second, if the maximum primer length will be 35
nucleotides, setting aside 50 characters is somewhat wasteful.

Necessary Resources

Hardware

A computer capable of running MySQL, such as one with a Windows, OS/2, or
Unix-based operating system

Software

A working installation of MySQL, version 3.22.11 or higher. One must also have
DBA permissions. MySQL is available for free under the GNU Public License.
It may be downloaded from http://www.mysql.com.

Files

The primers database created in Basic Protocol 1. Schema shown in Figure 9.2.1

Current Protocols in Bioinformatics

9.2.5

Building
Biological
Databases

1. After connecting to the database (see Basic Protocol 1), examine the tables. Use the
DESCRIBE command to list the columns and attributes found in a table. This example
will use the oligo table. In this step, and all others, the input is given in boldface,
and the computer response is shown in lightface. Also, note that the interactions with
the author’s computer are shown. Individual computer prompts might look somewhat
different.

mysql> DESCRIBE oligo;

The output that will be displayed upon submitting this command is shown in Figure
9.2.2.

The DESCRIBE command returns a table listing the column names (the Field column),
the datatype stored in the column (the Type column), whether NULLs are allowed (the
Null column), what type of key the column is (the Key column), the default value (the
Default column), and any additional information (the Extra column).

2. Add a column for the position with the ALTER command. The syntax for the
command is ALTER TABLE [table_name alter_command]. The [al-
ter_command] keywords range from adding a column to renaming the table. The
full set of [alter_command] keywords is given in Table 9.2.3. This example uses
the ADD COLUMN keyword, which allows the user to define a new column using the
same syntax as the CREATE table command (see Basic Protocol 1). To add a column
called position, which will contain integer values:

mysql> ALTER TABLE oligo ADD COLUMN position INT;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

Note that the ALTER command reports back how many records were affected by the schema
change. The ALTER command actually makes a temporary copy of the table, alters the
copy, deletes the original, and renames the copy to the original name. The number of
records affected should be equal to the number of rows in the table. In this case, the number
is zero, since the table does not contain any data at this point.

Look at the oligo table using the DESCRIBE command from step 1. The output now
shows six columns, with position being the last one.

3. Now, modify the sequence column to reflect the shorter primer length. Again, use
the ALTER TABLE command, this time using the MODIFY COLUMN keywords.
The change in the column is specified by using the CREATE column syntax.

+--------------+---------------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+---------------------------+------+-----+---------+-------+
ID	int(11)		PRI	0	
direction	enum(’Forward’,’Reverse’)	YES		NULL	
sequence	varchar(50)	YES		NULL	
derived_from	varchar(12)	YES		NULL	
protocol	int(11)	YES		NULL	
+--------------+---------------------------+------+-----+---------+-------+
5 rows in set (0.01 sec)

Figure 9.2.2 Output obtained upon submitting the command in Support Protocol 1, step 1. The annotation in parentheses
following the type indicates the valid range or size of the variable.

Current Protocols in Bioinformatics

9.2.6

Structured Query
Language (SQL)

Fundamentals

mysql> ALTER TABLE oligo MODIFY COLUMN sequence
VARCHAR(35);
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

Again using the DESCRIBE command verifies that the sequence is now of type
VARCHAR(35) rather than the original VARCHAR(50).

SUPPORT
PROTOCOL 2

ADDING USERS AND PERMISSIONS
When newly installed, the MySQL database defines a single-user named root, and an
anonymous user with no name. Neither account has a password. Basically, this means the
MySQL database has no security and anyone can connect to the database. For security,
each user of the MySQL RDMS should have their own password-protected account.

Each user has a set of privileges defined for each database, which determines their usage
rights. The usage rights determine what the user can and cannot do to the data within the
database. Table 9.2.4 shows the privileges available to users. The privilege levels fall into
three broad categories: data access, data manipulation, and database manipulation.
Roughly, the first category represents data consumers, the second represents data gener-
ators, and the third represents database administrators. Depending on why the database
was set up, the majority of users will fall into either the consumer or the generator category.
Administration should be restricted to one or two people.

For the example primer database, suppose there are two users in addition to the adminis-
trator. One, Maureen Johnson, might be in charge of generating the primers and entering
the data where she would need to have enter and edit privileges. The other, Brian Smith,
is in charge of running the PCR, thus he needs to be able to look up data about the primers,
but should not be allowed to edit the data. These two users need to be added to the database.

Table 9.2.3 Allowed Options for the ALTER TABLE Command

Alter keyword Arguments Description

ADD COLUMN column name,
specification

Adds a new column to the table using
the specification as defined in CREATE
TABLE command (see Basic Protocol 1)

ADD INDEX index name, column
name

Adds a table index based upon a specific
column

ADD PRIMARY KEY column name Makes the named column a primary key

ADD UNIQUE column name Sets the column attribute to UNIQUE

ALTER COLUMN column name, SET or
DROP DEFAULT,
literal

Changes the default value attribute of a
column, with the SET DEFAULT
command, a literal value must be
supplied

CHANGE COLUMN column name,
specification

Changes the column specification using
the syntax in the CREATE TABLE
command (see Basic Protocol 1)

DROP COLUMN column name Deletes a column

DROP PRIMARY KEY Deletes the primary key (but not the
column)

DROP INDEX index name Deletes the index

MODIFY COLUMN column name,
datatype, attributes

Changes the data type and attributes

RENAME AS table name Renames the entire table

Current Protocols in Bioinformatics

9.2.7

Building
Biological
Databases

Necessary Resources

Hardware

Computer capable of running MySQL

Software

Newly installed copy of MySQL, version 3.22.11 or higher

Files

The primers database created in Basic Protocol 1

Restricting access
1. Launch the MySQL shell program as root, using the MySQL database:

transposon:cjamison%mysql -u root mysql

2. Set the root password:

mysql> UPDATE user SET Password=PASSWORD(’new_password’)
WHERE user=’root’;
mysql> FLUSH PRIVILEGES;

The root login to the database is now password protected. Whenever you log in next, you
will have to specify the -p option to get a password prompt and supply whatever
password you decided to use (something other than new_password).

Adding users
3. Determine the permission level allowed for each user.

Since Maureen Johnson is adding and editing data, give her SELECT, INSERT, UPDATE,
and DELETE privileges. Brian Smith will get only SELECT privileges.

Table 9.2.4 User Privilege Types

Privilegea Categoryb Note

ALL Admin Has access to all functions

SELECT Access Can only make queries

DELETE Data

INSERT Data

UPDATE Data

ALTER Admin

CREATE Admin

DROP Admin

INDEX Admin

FILE Admin

RELOAD Admin

SHUTDOWN Admin

PROCESS Admin

USAGE None Currently stands for no privileges

aThe ALL privilege encompasses every other privilege, all others have to be allocated specifi-
cally.
bPrivileges categorized as “Access” are those for data access; the “Data” category privileges
are for data manipulation; and the “Admin” category privileges are for database manipulation.

Current Protocols in Bioinformatics

9.2.8

Structured Query
Language (SQL)

Fundamentals

4. Determine user names and passwords for each user.

The format of the user name is rather like that of an e-mail address: user@machine.
The user portion should be the user’s Unix login name, and the machine portion should
be the name of the machine the user is going to be accessing the database from. Following
this convention allows users to dispense with the -u option. For example, for the author
to access his SQL database from his account on his development server, he would create a
user name that looked like cjamison@haydn.gmu.edu.

Since the users in this example are going to be using the database from the same machine
it is installed on, use the localhost alias for the machine: mjohnson@localhost
and bsmith@localhost. This will allow Maureen to connect to the database by typing
transposon:mjohnson% mysql -p and entering her password.

Note the use of the −p argument to get a password prompt. Without the -p, MySQL
refuses to connect to the database the error message ERROR 1045: Access denied
for user: maureen@localhost (Using password: NO) to remind you
that you need to use a password.

Some database administrators take the easy way out and assign a password based upon
the user’s name, relying upon the user to change their password into something more
secure. However, users are generally lazy and an easily remembered (and guessed)
password is often not changed. It is best to assign a very cryptic password from the start.

5. If needed, start MySQL as root, using the primer database.

transposon:cjamison% mysql -u root -p primers
Enter password:

6. Use the GRANT command to both create users and confer privileges.

The GRANT command is multifunctional in that it not only will change the privileges of an
existing user, but will create a new user with specified privileges if the user does not exist.
Typos in the user name can have unintended affects, so it is important to be very careful
when doing this and any other system administration task.

The GRANT command syntax is GRANT [permission_list] ON [table_list]
TO [user_name] IDENTIFIED BY [password], where the [permis-
sion_list] is a comma-separated list of permissions from Figure 9.2.5 and [ta-
ble_list] is a list of tables within the current database to apply those permissions. An
asterisk is the wild-card symbol denoting all tables in the database. The [password] is
written as regular unencrypted text delimited with quotation marks.

mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON * TO
-> mjohnson@localhost IDENTIFIED BY ’H22ASK8’;
Query OK, 0 rows affected (0.00 sec)
mysql> GRANT SELECT ON * TO bsmith@localhost
-> IDENTIFIED BY ’D9KLL32’;
Query OK, 0 rows affected (0.00 sec)
mysql> FLUSH PRIVILEGES;

The FLUSH PRIVILEGES command propagates the changes made in the database.
Otherwise the new privileges (and logins) would not work until the MySQL server is
restarted.

7. Check the permissions for each person (see Fig. 9.2.3).

8. Restrict privileges with the REVOKE command. To deny Maureen the ability to delete
information from the database, remove that permission from her account by following
Figure 9.2.4.

Current Protocols in Bioinformatics

9.2.9

Building
Biological
Databases

BASIC
PROTOCOL 2

ADDING DATA TO A TABLE

After the tables are finished, the next big job is getting data into the database. Data items
can be added either singly in an interactive mode, or en mass in a batch data load (see
Alternate Protocol 1). Both methods are row-based methods; that is, data are placed into
the database one table row at a time. Thus, it is important to have the data somewhat
organized prior to sitting down for data entry; otherwise much time can be lost.

This protocol inserts four hypothetical primers into the oligo table. The data associated
with each primer is arranged in a logical manner, as one might find in a spreadsheet or a
laboratory notebook. A good database schema serves to aid data input, as the tables reflects
the manner in which data are either collected or arranged.

Necessary Resources

Hardware

A computer capable of running MySQL, such as one with a Windows, OS/2, or
Unix-based operating system.

Software

A working installation of MySQL, version 3.22.11 or higher. One must also have
DBA permissions. MySQL is available for free under the GNU Public License.
It may be downloaded from http://www.mysql.com.

Files

The primers database created in Basic Protocol 1, as altered in Support Protocol 1

Figure 9.2.3 Checking permissions for a specific user. The first line shows that the users are allowed to connect to the
database server, and are required to login. The following line(s) show their privileges on specific databases.

Figure 9.2.4 The grants table reflects the revocation of the DELETE privilege.

Current Protocols in Bioinformatics

9.2.10

Structured Query
Language (SQL)

Fundamentals

1. Connect to the database as described in Basic Protocol 1, step 1. Switch to the primer
database with the USE command as described in Basic Protocol 1, step 3.

2. Insert data rows. In this step, and all others, the input you should type is given in
boldface, and the computer response is shown in lightface. Also, note that the
interactions with the author’s computer are shown. Individual computer prompts
might look somewhat different:

mysql> INSERT INTO oligo VALUES (1, ’Forward’,
’ATCGGTATGATCAT’, ’G19982’, 1, 3111);
Query OK, 1 row affected (0.32 sec)

The INSERT INTO command takes a table name (oligo) and a list of comma-separated
VALUES, which are enclosed in parentheses. Numeric values are entered directly, while
textual data (ENUM and VARCHAR) are enclosed by quotation marks. Note that the order
of the values is important. INSERT places the values into the table in the order in which
the columns appear in the table.

3. The above procedure is sufficient if the table never changes, but to avoid confusion
specify a column list that explicitly tells the database what order the data are in:

mysql> INSERT INTO oligo (ID, direction, sequence,
derived_from, protocol, position) VALUES (2, ’Reverse’,
’AGACATTGATACGA’, ’G19982’, 1, 3433);
Query OK, 1 row affected (0.00 sec)

Even though the order is the same, this form of the command assures that the data are
inserted into the correct columns, even if the layout of the table is altered with additional
columns.

4. Another issue arises when values are not available for all columns. If the column list
is unspecified, explicitly set the missing column values to NULL:

mysql> INSERT INTO oligo VALUES (3, ’Forward’,
’CTTAGTCGATCCAG’, NULL, NULL, NULL);
Query OK, 1 row affected (0.08 sec)

The NULL value is written like a keyword (e.g., no quotation marks). Alternatively, if the
user specifies a column list such as (ID, direction, sequence) it is possible to skip
the NULL specification.

5. Another way to deal with the INSERT command is to use the SET keyword and then
a comma-separated list of columns and values tied together with an “=” sign. Again,
numeric values are written as literals and text data are enclosed with quotation marks:

mysql> INSERT INTO oligo SET ID=4, direction=’Reverse’,
sequence=’ATAGGCAGTAGCAT’;
Query OK, 1 row affected (0.00 sec)

Using the SET version of INSERT has the advantage that it is clearly understandable
when read.

6. While the SET keyword makes it easier and more understandable to put values into
the database, it is still important to understand the table structure to prevent trying to
put the wrong type of data into the wrong column. For example, the ID column of
the oligo table is defined to be UNIQUE and NOT NULL. Attempting to insert a
value that is already present or to put in a NULL, will result in an error:

mysql> INSERT INTO oligo SET ID = 1, direction =
’Reverse’, sequence=’ATTATTTATT’;
ERROR 1062: Duplicate entry ’1’ for key 1

Current Protocols in Bioinformatics

9.2.11

Building
Biological
Databases

mysql> INSERT INTO oligo VALUES (NULL, ’Forward’,
’ATTGTAAGTAA’, NULL, NULL, NULL);
ERROR 1048: Column ’ID’ cannot be null

The error messages returned from the MySQL program are not fatal, and it is possible to
go back and edit the INSERT statements. However, if using the batch loading procedure
in Alternate Protocol 1, the errors will interrupt the entire process.

7. Verify the data entry:

mysql> SELECT * FROM oligo;

The output that will be displayed upon submitting this command is shown in Figure
9.2.5.

The SELECT command returns data from the table. Basic Protocol 5 will deal with this
statement in depth. For now, just note that this version of the command returns all entries
from every row. Also note that for primers 3 and 4, the protocol has been set to 1, even
though data was not explicitly entered for it, since we specified a default value of 1 for the
column when we created the table (see Basic Protocol 1). Otherwise, the default value for
columns is NULL, as can be seen in the derived_from and position columns.

ALTERNATE
PROTOCOL 1

A BATCH METHOD TO LOAD DATA INTO A TABLE

Although the INSERT method is good for data entered row by row, it can be tedious if
one has a lot of data to enter. For example, the information entered into the primers
database might have been previously stored in a spreadsheet, with several hundred primers
that would be nearly impossible to input individually by hand. Fortunately, there is an
easy way to input many rows at once.

The LOAD DATA command inserts rows into the database from a text file. The text file
should be a delimited text file, with the data values specified in column order, with one
row per line. Most spreadsheet programs will output some form of delimited text file, the
most common being tab-delimited, meaning that each value is separated by a tab character.
The tab character is the default delimiter, but can be altered so any type of delimited file
can be used.

The order of the values in the text file must be the same as the order of the columns in the
table into which one is loading the data. The LOAD DATA command works like the
INSERT INTO command without column specifications (see Basic Protocol 2, step 2).

+----+-----------+----------------+--------------+----------+----------+
| ID | direction | sequence | derived_from | protocol | position |
+----+-----------+----------------+--------------+----------+----------+
1	Forward	ATCGGTATGATCAT	G19982	1	3111
2	Reverse	AGACATTGATACGA	G19982	1	3433
3	Forward	CTTAGTCGATCCAG	NULL	1	NULL
4	Reverse	ATAGGCAGTAGCAT	NULL	1	NULL
+----+-----------+----------------+--------------+----------+----------+
4 rows in set (0.00 sec)

Figure 9.2.5 Output obtained upon submitting the command in Basic Protocol 2, step 7.

Current Protocols in Bioinformatics

9.2.12

Structured Query
Language (SQL)

Fundamentals

Necessary Resources

Hardware

A computer capable of running MySQL, such as one with a Windows, OS/2, or
Unix-based operating system

Software

A working installation of MySQL, version 3.22.11 or higher. One must also have
DBA permissions. MySQL is available for free under the GNU Public License.
It may be downloaded from http://www.mysql.com.

Files

The primers database created in Basic Protocol 1, as altered in Support
Protocol 1

Tab-delimited trial data file, oligo.txt. This file is available at the Current
Protocols Website: http://www3.interscience.wiley.com/c_p/cpbi_sample
datafiles.htm.

1. If needed, start the MySQL program using the primers database. Providing the
name of the database as the last argument causes the MySQL program to do an
automatic USE:

transposon:cjamison% mysql -u cjamison -p primers
Enter password:

Table 9.2.5 Keywords That Allow Change in Defaults for Delimiters, Line Terminators, and
Other Aspects Controlling Reading the Data From the File

LOW_PRIORITY | CONCURRENT Specifies the priority of the data load.
LOW_PRIORITY makes the data load wait until
no other clients are reading from the table.
CONCURRENT allows other clients to fetch from
the table while the load is in progress. The
default behavior is to block all other clients.

REPLACE | IGNORE Specifies how duplicate records are handled.
REPLACE allows new rows to replace old rows
with the same unique key value. The default
behavior is IGNORE, which skips the new row that
is a duplicate.

FIELDS (must be followed by at least one of the following options)

TERMINATED BY [string] Changes the field separator from the tab character
to that specified by [string]. Another common
field separator is the comma character.

ENCLOSED BY [string] Changes the field enclosure from nothing to that
specified by [string].

ESCAPED BY [string] Changes the escape string from \\ to that specified
by [string]. The loader ignores any field
prefaced by the escape [string].

LINES TERMINATED BY
[string]

Changes the line end character from \n to that
specified by [string]. This option is dangerous
to change randomly.

IGNORE [number] LINES Tells the loader to skip over a certain number of
lines. Useful when reading from files that have
header lines.

Current Protocols in Bioinformatics

9.2.13

Building
Biological
Databases

2. Load the oligo table. In this step, and all others, the input is given in boldface, and
the computer response is shown in lightface. Also, note that the interactions with the
author’s computer are shown. Individual computer prompts might look somewhat
different:

mysql> LOAD DATA LOCAL INFILE “oligo.txt” INTO TABLE
oligo;
Query OK, 8 rows affected (0.01 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

The LOAD DATA command has several options. The LOCAL keyword tells the computer
to look for the input file on the local computer rather than the database server (which is
important if connecting to the database from a remote client). The INFILE keyword is
required to specify the string following as the name of the file. The INTO TABLE command
specifies the table to insert the data into.

Other keywords change the defaults for delimiters, line terminators, and other aspects
controlling reading the data from the file and are shown in Table 9.2.5. Using the default
of IGNORE, any rows with duplicate primary keys would be skipped (and would show in
the skipped: statistic).

3. Check the table using the SELECT command again:

mysql> SELECT * FROM oligo;

The table should have eight rows.

BASIC
PROTOCOL 3

REMOVING DATA FROM A TABLE

Often it will become necessary to remove data from the database. The DELETE FROM
command is the reciprocal action of INSERT INTO (see Basic Protocol 2). The
command also requires a WHERE clause that controls what rows are deleted by matching
values within the columns of the table.

Necessary Resources

Hardware

A computer capable of running MySQL, such as one with a Windows, OS/2, or
Unix-based operating system

Software

A working installation of MySQL, version 3.22.11 or higher. One must also have
DBA permissions. MySQL is available for free under the GNU Public License.
It may be downloaded from http://www.mysql.com.

Files

Primer database created in Basic Protocol 1, as altered in Support Protocol 1,
loaded with the data from oligo.txt as shown in Alternate Protocol 1

1. If needed, start the MySQL program using the primers database:

transposon:cjamison% mysql -u cjamison -p primers
Enter password:

2. Delete some records. In this step, and all others, the input is given in boldface, and
the computer response is shown in lightface. Also, note that the interactions with the
author’s computer are shown. Individual computer prompts might look somewhat
different:

Current Protocols in Bioinformatics

9.2.14

Structured Query
Language (SQL)

Fundamentals

mysql DELETE FROM oligo WHERE derived_from = ’M10992’;
Query OK, 2 rows affected (0.00 sec)

The WHERE clause controls what records are selected for deletion, so care must be taken
when writing the clause to make it as specific as possible. More information on formulation
of WHERE clauses is found in Basic Protocol 3. The DELETE FROM command returns the
number of rows in the table that matched the WHERE clause criteria and were deleted.

3. Check the oligo table again with the SELECT command:

mysql> SELECT * FROM oligo

Note that primer records 3 and 4 were the rows removed. Both primers had the value
M10992 in the derived_from column.

BASIC
PROTOCOL 4

CHANGING DATA IN A TABLE

The most common data maintenance task is probably updating data to reflect new
conditions. For example, suppose it is necessary to SET protocol = 3 for all primers
derived from sequence G172889. It is possible to find all the rows that have a [de-
rived_from] value of G172889, delete those rows, and then insert the corrected row
back into the database. Obviously this will be a tedious job if there are a lot of rows.

The UPDATE command is used to edit specific rows. UPDATE uses a WHERE clause to
find specific rows, and a SET clause to alter the value of the columns.

Necessary Resources

Hardware

A computer capable of running MySQL, such as one with a Windows, OS/2, or
Unix-based operating system.

Software

A working installation of MySQL, version 3.22.11 or higher. One must also have
DBA permissions. MySQL is available for free under the GNU Public License.
It may be downloaded from http://www.mysql.com

Files

The primers database created in Basic Protocol 1, as altered in Support Protocol 1.

1. If needed, start the MySQL program using the primer database:

transposon:cjamison% mysql -u cjamison -p primers
Enter password:

2. Update the database. In this step, and all others, the input is given in boldface, and
the computer response is shown in lightface. Also, note that the interactions with the
author’s computer are shown. Individual computer prompts might look somewhat
different:

mysql UPDATE oligo SET protocol = 3 WHERE derived_from =
’G172889’;
Query OK, 2 rows affected (0.01 sec)
Rows matched: 2 Changed: 2 Warnings: 0

As with the DELETE command, the WHERE clause contains the criteria for finding
the records to change. The UPDATE command returns information telling us that the
WHERE clause matched two rows, and that two rows were changed.

Current Protocols in Bioinformatics

9.2.15

Building
Biological
Databases

3. Check the changes using the SELECT command:

mysql> SELECT * FROM oligo;

Note that primers 5 and 6 are now changed to protocol 3.

BASIC
PROTOCOL 5

RETRIEVING DATA

The advantage of using SQL is the simplicity and flexibility of the language for retrieving
data. The SELECT statement is used to retrieve columns from tables based upon arbitrarily
complex selection criteria.

The basic structure of the command is SELECT [column_list] FROM [table].
Previous examples in this unit have used an asterisk as a “wildcard” for the [col-
umn_list] to specify all columns. However, providing a comma-separated list of
column names in the column_list would restrict the results to only those columns
(e.g., a column list of ID, direction, position would list only those three columns).
Additionally, it is possible to add a WHERE clause to the SELECT statement and restrict
the return values to only those rows that match the value.

Necessary Resources

Hardware

A computer capable of running MySQL, such as one with a Windows, OS/2, or
Unix-based operating system

Software

A working installation of MySQL, version 3.22.11 or higher. One must also have
DBA permissions. MySQL is available for free under the GNU Public License.
It may be downloaded from http://www.mysql.com.

Files

The primers database created in Basic Protocol 1, as altered in Support Protocol 1
Four data files containing the larger search set: cpboligo.txt,
cpbprotocol.txt, cpbbuffer.txt, and cpbsequence.txt. These
files are available from the Current Protocols Web site: http://www3.
interscience.wiley.com/c_p/cpbi_sampledatafiles.htm.

1. If needed, start the MySQL program using the primer database:

transposon:cjamison% mysql -u cjamison -p primers
Enter password:

2. Load expanded tables. In this step, and all others, the input is given in boldface, and
the computer response is shown in lightface. Also, note that the interactions with the
author’s computer are shown. Individual computer prompts might look somewhat
different.

In order to make the sample queries more realistic, the database has to be a realistic
size. Thus, first load real data, derived from DB-STS (see Alternate Protocol 1):

mysql LOAD DATA LOCAL INFILE “cpboligo.txt” INTO TABLE
oligo;
Query OK, 124 rows affected (0.01 sec)
Records: 124 Deleted: 0 Skipped: 0 Warnings: 2

mysql LOAD DATA LOCAL INFILE “cpbprotocol.txt” INTO TABLE
protocol;

Current Protocols in Bioinformatics

9.2.16

Structured Query
Language (SQL)

Fundamentals

Query OK, 9 rows affected (0.01 sec)
Records: 9 Deleted: 0 Skipped: 0 Warnings: 0

mysql LOAD DATA LOCAL INFILE “cpbbuffer.txt” INTO TABLE
buffer;
Query OK, 6 rows affected (0.01 sec)
Records: 6 Deleted: 0 Skipped: 0 Warnings: 0

mysql LOAD DATA LOCAL INFILE “cpbsequence.txt” INTO
TABLE sequence;
Query OK, 43 rows affected (0.00 sec)
Records: 62 Deleted: 0 Skipped: 19 Warnings: 1

Using the basic SELECT statement
3. With the expanded data loaded, begin retrieving data from the tables. Using the basic

SELECT command structure, put an asterisk into the command for the column list
to obtain all the columns and examine the entire table at once:

mysql> SELECT * FROM buffer;

The output that will be displayed upon submitting this command is shown in Figure
9.2.6.

The output of the SELECT command (Fig. 9.2.6) is presented in tabular form. The names
of the columns being viewed are at the top, separated from the rows of data by lines of
dashes. After the end of the output, there is a line stating the number of rows returned by
the query.

Note that the size of the response can be quite large. A line of text is returned for every row,
and if the line is longer than the screen is wide, it will wrap down to the next line, as seen
in the first example. Thus, it is best to only request the columns of interest.

4. Alternatively, one can look at a subset of the columns:

mysql> SELECT ID, name FROM protocol;

The output that will be displayed upon submitting this command is shown in Figure 9.2.7.

Using the WHERE clause
5. The WHERE clause adds much power to the query. Instead of looking at all the data,

this clause restricts the results to rows that match a criteria. For example, to list all
the oligos that use protocol 2:

mysql> SELECT ID, sequence, protocol FROM oligo WHERE
protocol = 2;

The output that will be displayed upon submitting this command is shown in Figure 9.2.8.

Note that the column used in the WHERE clause does not have to be included in the column
list for the results. The clause is simply a filter to screen the rows. The clause is evaluated
to a Boolean value, and only the TRUE results are included in the returned data.

6. In the example in step 5, we used an equality test to filter the protocols. Table 9.2.6
lists the available comparison operators and the type of data they work on. Given the
number of operators, it is easy to see that a WHERE clause can become arbitrarily
complex, making it possible to write practically any conceivable search condition.
For example, one might want to list only the forward primers that use protocol 2:

mysql> SELECT ID, sequence, protocol FROM oligo WHERE
protocol = 2 AND direction = ’Forward’;

Current Protocols in Bioinformatics

9.2.17

Building
Biological
Databases

+-----+---------------------------+----------+
| ID | sequence | protocol |
+-----+---------------------------+----------+
4	GTTCTTTCCCAGGTATGC	2
5	TTGTTGGTACTGAGGAAGTGCG	2
24	GCTTCTAGCTTTCCTGTCTC	2
25	TYCAATTGCTCCTTGTGCTTCC	2
44	AGGTGATACCTCCGCCGGTGA	2
45	ATTGGCATGTTGCTAGGCATAAGG	2
64	CTCATCCTCATTTTCATAC	2
65	ACACACACATCATTTCTGGATGG	2
84	CGTAGGGCAGGTTAGAATGC	2
85	GTTGTGCCAAATGTGTGGG	2
104	CCTACTTGGAACACAGTCAGGC	2
105	CACACAACATTCTCCACTGC	2
+-----+---------------------------+----------+
12 rows in set (0.12 sec)

Figure 9.2.8 Output obtained upon submitting the command in Basic Protocol 5, step 5.

+----+-------------+
| ID | name |
+----+-------------+
0	Protocol 1
1	Protocol 2
2	Protocol 3
3	Protocol 4
4	Protocol 5
5	Protocol 6
6	Protocol 7
7	Protocol 8
8	Protocol 9
+----+-------------+
9 rows in set (0.00 sec)

Figure 9.2.7 Output obtained upon submitting the command with the WHERE clause (see Basic
Protocol 5, step 4).

+----+----------+--+
| ID | name | recipe |
+----+----------+--+
0	Buffer A	MgCl2: 1.5 mM KCl: 100 mM Tris-HCl: 10 mM NH4Cl: 5 mM pH: 8.6
1	Buffer B	MgCl2: 2.5 mM KCl: 50 mM Tris-HCl: 10 mM pH: 8.3
2	Buffer C	MgCl2: 1.5 mM KCl: 50 mM Tris-HCl: 10 mM pH: 8.3 Enhancer: 0.04 units/ul (Stratagene Perfect Match)
3	Buffer D	MgCl2: 1.5 mM KCl: 50 mM Tris-HCl: 10 mM pH: 8.3 Enhancer: 0.04 units/ul (Stratagene Perfect Match)
4	Buffer E	MgCl2: 1.5 mM KCl: 100 mM Tris-HCl: 10 mM NH4Cl: 5 mM pH: 8.6
5	Buffer F	MgCl2: 1.5mM KCl:50mM Tris-HCl:10mM Tetrathlammoniumchloride(TMAC):1mM pH:8.3
+----+----------+--+
6 rows in set (0.00 sec)

Figure 9.2.6 Output obtained upon submitting the command in Basic Protocol 5, step 3.

Current Protocols in Bioinformatics

9.2.18

Structured Query
Language (SQL)

Fundamentals

The output that will be displayed upon submitting this command is shown in Figure 9.2.9.
This query is identical to the one in step 5, except it has an added constraint with the AND
operator. Not surprisingly, now half as many primers are returned as before (since the
experiments employ primer pairs).

7. As selection clauses get more complex, they need to have some rules of precedence
to remove ambiguities. The rules of precedence are similar to those learned in algebra
to understand that the equation 5 + 3 × 4 should be equal to 17 rather than 32. The
operators in Table 9.2.6 are grouped into order of operation, from highest to lowest.
As in algebra, it is possible to use parentheses to group operands and alter the order
of execution. For example, to return the forward primers for either protocol 2 or
protocol 3, write:

Table 9.2.6 MySQL Comparison Operatorsa

Class Operator Description

Grouping () Groups a complex expression

Unary + Positive numeric value

- Negative numeric value

~ Bitwise complement of number

Mathematical * Multiplication

/ Division

Arithmetic + Addition

- Subtraction

Comparison = Equal to

> Greater than

< Less than

>= Greater or equal to

<= Less than or equal to

<> Not equal to

!= Not equal to

!> Not greater than

!< Not less than

Bitwise | Bitwise OR

& Bitwise AND

<< Shift left

>> Shift right

~ Invert bits

Logical NOT Inverts meaning

AND Logical AND

BETWEEN Value within specified range

IN Value in list

LIKE Pattern matching

OR Logical OR

Assignment = Place value on right into
variable

aOperator groups are listed by order of precedence. Operator precedence within a group
varies, either following the order listed or having left-to-right precedence.

Current Protocols in Bioinformatics

9.2.19

Building
Biological
Databases

mysql> SELECT ID, sequence, protocol FROM oligo WHERE
(protocol = 2 OR protocol = 3) AND direction = ’Forward’;

The output that would be displayed upon submitting this command is shown in Figure
9.2.10.

Filtering text data
8. Filtering text data is a little trickier, but is possible using the LIKE operator. LIKE

searches the entry in a column for a pattern. The pattern is created using characters
from the pattern and wildcard symbols that stand for any character(s).

The most common wildcard is the percent sign (%), which stands in for any character or
set of characters (including no characters). Thus, the pattern %jam% would match Curt
Jamison (an author), James Doohan (an actor), and strawberry jam (a sugary
fruit preserve). Note that the LIKE operator is case-insensitive, i.e., J is the same as j
when matching.

Another useful wildcard operator is the pair of square brackets, [and], which denote a
set or range of characters. For example, the pattern ‘jam[ie]son’ would match both
Jamison (a biologist) or Jameson (a fine Scotch whiskey). The square brackets wildcard

+-----+-------------------------+----------+
| ID | sequence | protocol |
+-----+-------------------------+----------+
4	GTTCTTTCCCAGGTATGC	2
24	GCTTCTAGCTTTCCTGTCTC	2
44	AGGTGATACCTCCGCCGGTGA	2
64	CTCATCCTCATTTTCATAC	2
84	CGTAGGGCAGGTTAGAATGC	2
104	CCTACTTGGAACACAGTCAGGC	2
+-----+-------------------------+----------+
6 rows in set (0.00 sec)

Figure 9.2.9 Output obtained upon submitting the command in Basic Protocol 5, step 6.

+-----+-------------------------+----------+
| ID | sequence | protocol |
+-----+-------------------------+----------+
4	GTTCTTTCCCAGGTATGC	2
6	GTTCTTTCCCAGGTATGC	3
24	GCTTCTAGCTTTCCTGTCTC	2
26	GCTTCTAGCTTTCCTGTCTC	3
44	AGGTGATACCTCCGCCGGTGA	2
46	AGGTGATACCTCCGCCGGTGA	3
64	CTCATCCTCATTTTCATAC	2
66	CTCATCCTCATTTTCATAC	3
84	CGTAGGGCAGGTTAGAATGC	2
86	CAGGAAGGAAGCATGACGC	3
104	CCTACTTGGAACACAGTCAGGC	2
106	CCTACTTGGAACACAGTCAGGC	3
+-----+-------------------------+----------+
12 rows in set (0.14 sec)

Figure 9.2.10 Output obtained upon submitting the command in Basic Protocol 5, step 7.

Current Protocols in Bioinformatics

9.2.20

Structured Query
Language (SQL)

Fundamentals

is more restrictive than the underscore wildcard, which stands for any possible character:
‘jam_son’ would find both the i and the e variants, as well as any other possible
permutations of single characters like Jamoson, Jamyson, and Jam8son.

One can use the LIKE operator to filter rows based upon text fields. For example,
one might want to know which of our buffers use Stratagene products:

mysql> SELECT name, recipe FROM buffer WHERE recipe LIKE
’%stratagene%’;

Examination of the results shows that both records returned have a Stratagene product in
the recipe.

Joining tables
9. The single most powerful aspect of SQL is the ability to draw information from

multiple tables in a process called joining. The tables to be joined must have a column
in common that links the two tables. For example, the protocol table has a column
called buffer that contains the ID value of an entry in the buffer table. This is
a common column that allows joining the two tables and creating a report that tells
which buffers are used by which protocol:

mysql> SELECT protocol.name, buffer.name FROM protocol,
buffer WHERE protocol.buffer = buffer.ID;

The output displayed upon submitting this command is shown in Figure 9.2.11. The first
thing to note is that the query uses the fully specified column names. A fully qualified table
name is simply the table name and the column name concatenated together with a period
(e.g., protocol.name and buffer.name). The second thing to note is that both tables
are specified in the FROM clause. Finally, the WHERE clause relates the proto-
col.buffer column to the buffer.ID column. The result is a list of protocol
names and their associated buffer names.

The database has several table-linking columns. In Figure 9.2.1, arrows are drawn from
the name of a linking column to the corresponding linking column in another table. In
addition to the linking columns between the protocol and the buffer tables, there are
linking columns between oligo and protocol, as well as between oligo and
sequence tables.

10. Often, using fully qualified names can become tedious, especially when the table
names are long. To simplify the query, assign an alias to a table or column name using
the AS statement. For example, abbreviate the table names in the previous query:

mysql> SELECT p.name, b.name FROM protocol AS p, buffer
AS b WHERE p.buffer = b.ID;

The AS statement aliases p to protocol and b to buffer. The results returned by this
query are identical to the query in step 9.

11. Join across multiple tables. For example, to generate a list of sequences and the assay
conditions associated with their STS primers:

mysql> SELECT s.name, p.name, b.name FROM sequence AS s,
protocol AS p, buffer AS b, oligo AS o WHERE
o.derived_from = s.GBID AND o.protocol = p.ID AND
p.buffer = b.ID;

The result of this query lists the sequence names, protocols, and buffers for all
112 oligos. Note that even though the query does not output a column from the oligo
table, the oligo table still needs to be included in the FROM clause because it is
used in the WHERE clause.

Current Protocols in Bioinformatics

9.2.21

Building
Biological
Databases

Figure 9.2.12 Output obtained upon submitting the command in Basic Protocol 5, step 12.

+-------------+----------+
| name | name |
+-------------+----------+
Protocol 1	Buffer A
Protocol 2	Buffer B
Protocol 3	Buffer C
Protocol 4	Buffer D
Protocol 5	Buffer E
Protocol 6	Buffer C
Protocol 7	Buffer F
Protocol 8	Buffer D
Protocol 9	Buffer E
+-------------+----------+
9 rows in set (0.35 sec)

Figure 9.2.11 Output obtained upon submitting the command in Basic Protocol 5, step 9.

Current Protocols in Bioinformatics

9.2.22

Structured Query
Language (SQL)

Fundamentals

Manipulating the output
12. Review the output from Figure 9.2.12, note that there are multiple entries for each

sequence. In fact, there are two, because the forward and reverse primers are entered
in the oligo table. The net effect is that there are two of each row in the answer. If
one adds the DISTINCT keyword to the SELECT command, duplicate rows within
the answer are filtered out. Thus, the modified query:

mysql> SELECT DISTINCT s.name, p.name, b.name FROM
sequence AS s, protocol AS p, buffer AS b, oligo AS o
WHERE o.derived_from = s.GBID AND o.protocol = p.ID AND
p.buffer = b.ID;

returns half the number of rows (56), since it filters out the duplicates.

Use the up arrow to recall a previous command, and the left and right arrows to move to
the appropriate place to insert or delete changes to the query.

13. The order in which the rows are returned is based upon the order in which the data
are placed in the table. Since this order is typically meaningless, SQL allows sorting
and grouping the data in different ways using the ORDER BY clause. The order can
be either ascending (ASC) or descending (DESC), and there can be multiple sort
orders within the query. For example, edit the previous query to return only sequences
using buffer E, sorted by protocol and then sequence name:

mysql> SELECT DISTINCT s.name, p.name, b.name FROM
sequence AS s, protocol AS p, buffer AS b, oligo AS o
WHERE o.derived_from = s.GBID AND o.protocol = p.ID AND
p.buffer = b.ID AND b.name = ’Buffer E’ ORDER BY p.name
ASC, s.name ASC;

Examination of the resulting list of twelve sequences should show the first six sequences
using protocol 5 and sorted from Stn27 to sWSS1280, and the second group of six using
protocol 9 and sorted from Bos Taurus to sWSS 1139.

14. It is often useful to retrieve data in aggregate. An aggregate function combines rows
into a summary statistic (like averages or counts). For example, to know how many
sequences used buffer E, count the instances in the column list:

mysql> SELECT p.name, b.name, COUNT(s.name) AS ’Seq #’
FROM sequence AS s, protocol AS p, buffer AS b, oligo AS
o WHERE o.derived_from = s.GBID AND o.protocol = p.ID
AND p.buffer = b.ID AND b.name = ’Buffer E’ GROUP BY
p.name, b.name;

The output displayed upon submitting this command is shown in Figure 9.2.13. The table
is arranged by the non-aggregated columns in the GROUP BY clause.

15. Note that by aggregating the sequences with the COUNT, the user loses the ability to
SELECT DISTINCT based upon [sequence.name] (since it is no longer in the
result table), and again there are twice as many sequences as necessary (compared to
the table in step 13). In this case, go back and add a restriction to the WHERE clause
to look at only the Forward primers:

mysql> SELECT p.name, b.name, COUNT(s.name) AS ’Seq #’
FROM sequence AS s, protocol AS p, buffer AS b, oligo AS
o WHERE o.derived_from = s.GBID AND o.protocol = p.ID
AND p.buffer = b.ID AND b.name = ’Buffer E’ AND
o.direction = ’Forward’ GROUP BY p.name, b.name;

The output displayed upon submitting this command is shown in Figure 9.2.14.

Current Protocols in Bioinformatics

9.2.23

Building
Biological
Databases

16. Aggregates can be useful in other ways as well. By using the COUNT function in place
of column names, one can find the number of items in any particular table:

mysql> SELECT COUNT(*) FROM oligo;

reports that there are 124 items in the oligo table. It is also possible to estimate how
many lines will be returned by a particular query. For example, count how many lines
will be returned from the query used in Step 11 (see Fig. 9.2.15).

ALTERNATE
PROTOCOL 2

BATCH PROCESSING COMMAND SCRIPTS

SQL queries can be arbitrarily complex, and it often seems the more useful a query is,
the more complex it gets. Typing a complex query into the MySQL command line can be
a frustrating experience, especially if you are running a query on a regular basis.
Fortunately, MySQL provides a mechanism for reading SQL queries and commands from
a file and executing them in a batch mode.

+-------------+----------+-------+
| name | name | Seq # |
+-------------+----------+-------+
| Protocol 5 | Buffer E | 12 |
| Protocol 9 | Buffer E | 12 |
+-------------+----------+-------+
2 rows in set (0.16 sec)

Figure 9.2.13 Output obtained upon submitting the command in Basic Protocol 5, step 14.

+-------------+----------+-------+
| name | name | Seq # |
+-------------+----------+-------+
| Protocol 5 | Buffer E | 6 |
| Protocol 9 | Buffer E | 6 |
+-------------+----------+-------+
2 rows in set (0.01 sec)

Figure 9.2.14 Output obtained upon submitting the command in Basic Protocol 5, step 15.

Figure 9.2.15 Query and output obtained from Basic Protocol 5, step 16.

Current Protocols in Bioinformatics

9.2.24

Structured Query
Language (SQL)

Fundamentals

Necessary Resources

Hardware

Computer capable of running MySQL

Software

Working installation of MySQL version 3.22.11 or higher.

Files

The primers database created in Basic Protocol 1, as altered in Support Protocol
1, and loaded with the larger search data set as described in Basic Protocol 5,
step 2

Script.txt file, which contains a set of four SQL commands. This file is
available from the Current Protocols Web site: http://www3.interscience.
wiley.com/c_p/cpbi_sampledatafiles.htm.

1. Use your favorite text editor (APPENDIX 1C) and examine the script.txt file. This
file contains four SQL commands:

USE primers;
SELECT count(*) FROM oligo;
SELECT ID, name FROM protocol;
SELECT ID, sequence, protocol FROM oligo WHERE protocol
= 2;

The batch processing utility in MySQL will execute these four lines in order, as if they had
been typed in at the command line. The first line makes sure one uses the proper database.
The next three lines are increasingly complex SQL queries that were run by hand in Basic
Protocol 5.

Running a script from inside the MySQL program
2. Login to the MySQL database server:

transposon:cjamison% mysql -u cjamison -p
Enter password:

Note it is not necessary to specify a particular database, since the first line of the script
does that.

3. Use the SOURCE command to run the script as in Figure 9.2.16.

Each command generates a normal output. The USE command generated a database-
changed message, and each query produced an output table. The actual commands are not
echoed.

4. Quit the MySQL program:

mysql> exit
Bye

Running a script from the Unix command line
5. A MySQL script can be executed directly from the command line using the input

redirect as in Figure 9.2.17.

The MySQL program reads the file and outputs the answers directly to the screen. Note
that the ASCII boxes around the tables and the query statistics are now gone. All extraneous
text has been removed, and the results are in a tab-delimited format suitable for copying
and pasting into other analysis programs.

6. Use the output redirect to put the results of the query into a file:

Current Protocols in Bioinformatics

9.2.25

Building
Biological
Databases

transposon:cjamison% mysql -p < script.txt > output.txt
Enter password:

The output script is now in the directory:

transposon:cjamison% ls -la
total 176
drwxr-xr-x 12 cjamison 364 May 13 09:55 .
drwxrwxrwx 12 cjamison 364 May 11 15:55 ..
-rw-r—r— 1 cjamison 498 May 13 09:55 output.txt ...

and contains exactly the same output as went to the screen. The difference is that the
output is bundled into a nice neat file for importing into other programs.

Figure 9.2.16 SOURCE command output from running script in Alternate Protocol 2, step 3.

Current Protocols in Bioinformatics

9.2.26

Structured Query
Language (SQL)

Fundamentals

7. Sometimes it is useful to actually have the SQL commands echoed into the output.
To do this, use the -vvv switch, which makes the MySQL program act as if the user
had logged in and issued the SOURCE command, depicted in Figure 9.2.18.

The SQL query commands are now echoed, and the ASCII line art surrounding the result
tables is back. Note also the Bye on the last line of the output, which resulted from the
implicit exit command that terminated every batch session.

The most common use of the batch session utility is to import database setup scripts. For
example, all the SQL commands used to create the primers database in Basic Protocol
1 and to load the data in Basic Protocol 5 could have been placed into a single text file to
be used as the input to the batch mode. Since most biological databases are orders of
magnitude more complex than the simple one used as example here, the batch mode comes
in quite handy.

COMMENTARY

Background Information
MySQL (favored pronunciation “my-es-

queue-ell”) is a powerful relational database
system. It is available for free under the GNU
Public License, and runs on Windows, OS/2,
Linux, Sun Solaris, and a wide variety of other
Unix-based operating systems (e.g., the code
examples in this unit were tested using MySQL
installed on an Apple Macintosh G4 laptop
running MacOS X). While MySQL does not
have all the powerful features one might find

in a commercial RDMS, databases created us-
ing MySQL are nearly as powerful and cer-
tainly as fast as any other RDMS.

While MySQL was used as the platform for
this chapter, most of the example SQL is valid
for any relational database system that imple-
ments the ANSI SQL99 standard (with the
exception of the enum type, which is specific
to MySQL). This includes databases such as
Oracle, Sybase, Microsoft SQL Server, and
Postgres. Each of these systems implements the

Figure 9.2.17 Input redirect output from Alternate Protocol 2, step 5.

Current Protocols in Bioinformatics

9.2.27

Building
Biological
Databases

Figure 9.2.18 SQL commands echoed output using -vvv switch in Alternate Protocol 2, step 7.

Current Protocols in Bioinformatics

9.2.28

Structured Query
Language (SQL)

Fundamentals

standard to a varying degree, and each has a
specific dialect and extension; however, the
core language remains the same.

This unit has touched upon only a minimal
subset of the SQL, just enough to get started
creating databases and moving data in and out.
Using these principles, the reader should be
able to interact successfully with any SQL-
compliant database and to generate relatively
sophisticated queries. However, there are many
more commands and nuances than are given
here, especially in the realms of joins, views,
and virtual tables.

An important SQL concept is that of a NULL
value. Simply put, a NULL value is a value that
is not there. Any datatype can have a NULL
value. It is important to note that a NULL value
is very different from a zero or a blank. A NULL
cannot be used in a comparison or a calculation,
since two NULL values are not equal to one
another. However, the NULL value can be used
in a Boolean expression test clause like ’proto-
col IS NULL’ or ’sequence IS NOT NULL’.
In cases where it is desirable to have an entry
for every row, NULL values can be specifically
disallowed for a column.

Critical Parameters and
Troubleshooting

While SQL is not a programming language
per se, interacting with the language often feels
like programming. Specifically, the SQL inter-
preter will issue cryptic complaints about errors
in the SQL query, and queries must often be
fine-tuned to return the desired result. However,

most command-line SQL interpreters only of-
fer the most rudimentary interactive editing
capabilities (e.g., MySQL only allows for cy-
cling through the command list with the arrow
keys). Many people who interact with SQL on
a constant basis keep a text editor like emacs or
vi open in which to compose their queries, then
copy/paste the line into the SQL interpreter.

Key References
DuBois, P. 1999. MySQL. New Riders. Indianapo-

lis, Ind.

A comprehensive guide, with many examples and
tutorials. An excellent reference for beginners.

Gulutzan, P. and Pelzer, T. 1999. SQL-99 Complete,
Really. CMP Books. Gilroy, Calif.

A complete description of the SQL99 standards.

Kline, K. and Kline, D. 2001. SQL in a Nutshell.
O’Reilly and Associates. Sebastopol, Calif.

A compact yet comprehensive guide to SQL state-
ments. Includes several different SQL dialects like
MySQL and Oracle.

Internet Resources
http://www.mysql.com

The main MySQL site.

http://www.useractive.com

A hands-on tutorial.

Contributed by D. Curtis Jamison
George Mason University
Manassas, Virginia

Current Protocols in Bioinformatics

9.2.29

Building
Biological
Databases

UNIT 9.3Modeling Biology Using Relational Databases

Experimental data as well as information extracted from the various sequence and other
bioinformatics databases can all be stored in a relational database allowing for easy
querying and data exploration (UNIT 9.1). The information is stored in sets of tables; the
layout of the tables, termed the schema, can be designed using one or more standard
methods. Certainly, one could enter all of the data into a single table, but this would simply
perpetuate the problems encountered using a standard spreadsheet: high data redundancy,
missing data, and difficulty in arbitrarily mixing and grouping the data. The power of a
relational database comes from nonredundantly sequestering pieces of information and
then enabling queries that recombine them in many different ways.

There are several different methodologies that can be used for designing a database
schema; no one is the best for all occasions. This unit demonstrates two different
techniques for designing relational tables and discusses when each should be used. These
two techniques are (1) traditional Entity-Relationship (E-R) modeling (as described in
the Basic Protocol) and (2) a hybrid method that combines aspects of data warehousing
and E-R modeling (described in the Alternate Protocol). The method of choice depends
on (1) how well the information and all its inherent relationships are understood, (2) what
types of questions will be asked, (3) how many different types of data will be included,
and (4) how much data exists.

The naming scheme used in the following protocols and figures does not correspond to
any particular database management system (DBMS) and is used for its readability. Refer
to the DBMS’s documentation for the characters allowed in table and column names. In
particular, note that the MySQL DBMS used in other units does not allow spaces in table
or column names. To create valid MySQL schemas from these examples, replace spaces
with the underscore character _.

BASIC
PROTOCOL

USING ENTITY-RELATIONSHIP MODELING TO DESIGN A DATABASE

This protocol describes the use of Entity-Relationship modeling to design a database and
covers designing the table schema (outlined in the flowchart in Fig. 9.3.1), creating tables,
and finally, querying the database to ask interesting biological questions. A typical
problem in genomics is used as an example: storing results from gene expression studies.
Figure 9.3.2 shows a very small portion of typical data obtained from gene chip studies
looking for changes in gene expression important in diabetes. A number of different
stimuli were used on samples from different tissues in different organisms and the fold
expression differences were recorded. Even in this small subset, the data duplication is
readily apparent as shown by the number of times the name, description, and ID of
glucose-6-phosphatase appear. In addition, it is hard to obtain an answer to the question,
“Which genes are up-regulated in liver in the presence of glucose and down-regulated in
the presence of insulin?” In this example, each gene is described by a unique identifier,
unique even across all of the organisms of interest. The relationships between the different
general types of information (referred to as “entities”) are well known since they are the
experimental parameters and results: the genes are the probes on the chip, the organisms,
tissue, and stimulus comprise the sample, and the expression levels are the experimental
results. As discussed in the Commentary section below, the schema design method
highlighted in this protocol, Entity-Relationship (E-R) modeling, works well when the
relationships between entities are well known.

Contributed by Robert M. Peitzsch
Current Protocols in Bioinformatics (2003) 9.3.1-9.3.28
Copyright © 2003 by John Wiley & Sons, Inc.

9.3.1

Building
Biological
Databases

determine all of the data types to be
included in the database

find a column or set of columns that
uniquely identifies a row in the table and

make this the primary key

identify a set of non-primary key
columns that describe only some of the

columns in the primary key

move these non-primary key columns
to a new table.

identify non-primary key columns that
depend on other non-primary key

columns in the same table

remove the other columns in the
interdependent set from the parent

table

copy the portion of the primary key
they describe to the new table

copy these interdependent columns to
a new table

select one of them to be the primary
key

Figure 9.3.1 Flowchart outlining steps for designing table schema in Entity-Relationship model-
ing, as described in the Basic Protocol.

Current Protocols in Bioinformatics

9.3.2

Modeling Biology
Using Relational

Databases

Necessary Resources

Hardware

Personal computers with the Microsoft Windows operating system

Software

There are several software packages for designing formal schemas, some examples
are: Microsoft Access, Designer from Oracle, PowerDesigner from Sybase, and
Visio also from Microsoft. Pencil and paper also work well, and are
recommended for those who are just starting out.

Files

None

Designing the table schema
1. Place all of the different types of information in a single table as in Figure 9.3.3.

The first step is to list all of the different types of information in a single table. This exercise
is often done mentally or by simply listing the types of data on a piece of paper. Examples
of types of data are gene name, gene description, expression level, and
tissue. In contrast, G6PC is a value for the data type gene name.

Each type of information should be as specific as possible. For instance, instead of having
a column expression to hold the expression level and the name of the tissue, there are
two separate columns: expression level and tissue.

2. Identify a column or a set of columns that will uniquely identify an entry in the table
as in Figure 9.3.4. This is the primary key for this table.

In this example, the values in the columns gene id, tissue, and stimulus, together,
uniquely identify a row in the table and are chosen to be the primary key. For example, the
combination of values (NM_013098, Liver, Insulin) identifies the specific entry in

Gene name Gene ID Description Organism Tissue
Expression
level (fold) Stimulus

G6PC NM_000151 Glucose-6-phosphatase Liver
Liver
Liver

Liver
Liver
Liver

Liver
Liver
Liver
Liver
Liver
Liver
Liver

0.1
G6PC NM_013098 Glucose-6-phosphatase -0.3
G6PC NM_008061 Glucose-6-phosphatase 0.02
G6PC NM_000151 Glucose-6-phosphatase Kidney

Kidney
Kidney

Kidney
Kidney
Kidney

0.18
G6PC NM_013098 Glucose-6-phosphatase -0.04
G6PC NM_008061 Glucose-6-phosphatase 0.9
G6PC NM_000151 Glucose-6-phosphatase 2.1 Starvation

Starvation
Starvation
Starvation
Starvation
Starvation

G6PC NM_013098 Glucose-6-phosphatase 2.5
G6PC NM_008061 Glucose-6-phosphatase 3.3
G6PC NM_000151 Glucose-6-phosphatase Human 0.13
G6PC NM_013098 Glucose-6-phosphatase Rat

Rat

Rat

Rat

0.22
G6PC NM_008061 Glucose-6-phosphatase mouse -0.32
G6PC NM_000151 Glucose-6-phosphatase Human

Human

Human

Human

20.4 Glucose
Glucose
Glucose
Glucose
Glucose

G6PC NM_013098 Glucose-6-phosphatase Rat 20.1
G6PC NM_008061 Glucose-6-phosphatase Mouse 19.3
PEPCK NM_002591 Phosphoenolpyruvate carboxykinase 1 Human 10.2
PEPCK NM_011044 Phosphoenolpyruvate carboxykinase 1 Mouse

Mouse

Mouse

Mouse

10.3
PEPCK NM_002591 Phosphoenolpyruvate carboxykinase 1 Human -0.05
PEPCK NM_011044 Phosphoenolpyruvate carboxykinase 1 Mouse 0.11 Insulin

Insulin

Insulin
Insulin
Insulin
Insulin
Insulin
Insulin

Figure 9.3.2 A small portion of data typically obtained from gene expression studies. The full dataset contains the name,
an identifier (accession number), and a description for every probe on the chip; the organism and tissue from which the
sample was obtained; how the sample was treated; and the fold change in the gene expression versus the normal tissue.
The identifier uniquely specifies a gene, even across organisms.

Current Protocols in Bioinformatics

9.3.3

Building
Biological
Databases

expression

gene id
gene name
gene description
organism scientific name
organism common name
tissue
expression level
simulus

Figure 9.3.3 A single table is created containing all of the different types of information obtained
from the gene expression study. Often, this is done as a mental exercise. In this and subsequent
figures showing tables, the table name is shown in the gray area at the top of the box representing
a table. In the area below the gray area are the names of the columns used in the table’s primary
key, these will have a PK preceding them. In some of the figures, this will be blank depending on
the step in the protocol. The names of all other columns in the table will be found in the bottom
portion. Columns involved in foreign keys are indicated by a FK# where the # is a number that
differentiates between the different foreign keys. Note that the naming scheme used in these figures
does not correspond to any database product. Please refer to individual database product
documentation for the proper naming of tables and columns. It is standard practice to use the
singular form of a word when naming tables and columns.

expression

PK gene id
PK tissue
PK stimulus

gene name
gene description
organism scientific name
organism common name
expression level

Figure 9.3.4 Together, the columns gene id, tissue, and stimulus uniquely identify a row
in the table. Accordingly, they are designated the primary key as indicated by the PK to the left of
the column names.

Current Protocols in Bioinformatics

9.3.4

Modeling Biology
Using Relational

Databases

the table that contains that gene’s expression level in that tissue with that stimulus. Since
this example problem defines the gene id as being unique across all organisms, neither
form of the organism name needs to be included in the primary key.

It is possible that there is more than one column or sets of columns that can uniquely identify
a row; pick one set to be the primary key. Expression level cannot be the used as a
key since the values in that column are experimental results and do not aid in uniquely
identifying a row.

3. Identify a set of non-primary key columns that describe only a subset of the columns
in the primary key.

Gene name and gene description describe a gene and hence describe only gene
id and not the entire primary key. Neither form of organism name directly describes any
specific part of the primary key and hence will remain in the expression table.

4. Move these non-primary key columns into a separate table. Remove the non-primary
key columns from the original table. Name the new table as specifically as possible.
This is shown in Figure 9.3.5.

Gene name and gene description have been moved into a separate table called
gene and have been removed from the original table. Since these columns are now in the
gene table, the prefix gene is dropped from both column names for brevity.

5. Copy the corresponding columns in the primary key into this table as well. The
columns copied from the original table’s primary key comprise the primary key for
this new table as shown in Figure 9.3.6.

Gene id has been copied into gene and has been made the primary key of that table.
This column still resides in the table expression as well.

6. Set up a foreign key from the original table to the new table.

The foreign key links a column or set of columns in a table (the child) to a column or set
of columns in a unique index, a primary key is a type of unique index, in another table (the
parent). This linkage ensures data consistency between the two tables. With a foreign key
in place, the DBMS will only allow values in the gene id column of the expression
table that are also in the gene id column of the gene table. The relationship between
tables is shown, where appropriate, in each figure using an arrow: the arrow points from
the child to the parent. In the example shown in Figure 9.3.7, the table gene is the parent
table for the column gene id and the table expression is the child table.

7. Repeat steps 2 to 6 until all non-primary key columns in the table describe all columns
in the primary key. This should be done for every table.

expression

PK gene id
PK tissue
PK stimulus

organism scientific name
organism common name
expression level

gene

name
description

Figure 9.3.5 A related set of columns that are attributes of only part of the compound (multiple
column) primary key have been removed from the original table and placed in a new table gene.
The prefix gene has been dropped from the column names for brevity.

Current Protocols in Bioinformatics

9.3.5

Building
Biological
Databases

In this example, there are no non-primary key columns that describe the tissue column,
so no more needs to be done.

8. For each table, identify non-primary key columns that are interdependent on each
other.

Organism common name depends on organism scientific name in the table
expression; they are simply two ways of describing an organism (e.g., human versus
Homo sapiens).

9. Create a new table for each set of interdependent columns and identify a primary key
for the new table as shown in Figure 9.3.8.

A new table organism is created with the columns organism scientific name
and organism common name; organism scientific name is arbitrarily
selected to be the primary key. Since these columns are now in the organism table, the
prefix organism is dropped from both column names for brevity.

10. Replace each set of interdependent columns in the parent table with the primary key
from the child table. To ensure data integrity, declare the column to be a foreign key
in the parent table. This is shown in Figure 9.3.9.

expression

PK,FK1 gene id
PK tissue
PK stimulus

organism scientific name
organism common name
expression level

gene

PK gene id

name
description

Figure 9.3.6 The portion of the original table’s primary key, gene id, described by the columns
in the new table becomes the primary key of the new table.

expression

PK,FK1 gene id
PK tissue
PK stimulus

organism scientific name
organism common name
expression level

gene

PK gene id

name
description

Figure 9.3.7 A foreign key is set up between the gene id column in the expression table (the
child table) and the gene id column in the gene table (the parent table). A foreign key is used to
ensure data integrity between two tables; the only values allowed in the gene id column in the
expression table are those that are found in the gene id column in the gene table. The arrow
between the two tables indicates the parent-child relationship between the two tables; the arrow
points from the child to the parent. The FK1 in the expression table indicates the child column in
the child table.

Current Protocols in Bioinformatics

9.3.6

Modeling Biology
Using Relational

Databases

gene

PK gene id

name
description

organism

PK scientific name

common name

expression

PK,FK1 gene id
PK tissue
PK stimulus

scientific name
expression level

Figure 9.3.8 The columns organism scientific name and organism common name in
the table expression are interdependent: they describe each other. Organism common name
is moved to a new table organism. Arbitrarily, organism scientific name is selected to be
the primary key in the new table organism and remains in the table expression. The organism
prefix is removed from the column names for brevity.

expression

PK,FK1 gene id
PK tissue
PK stimulus

FK2 scientific name
expression level

gene

PK gene id

name
description

organism

PK scientific name

common name

Figure 9.3.9 A foreign key is set up from scientific name in the expression table to
scientific name in the organism table as indicated by the arrow between the two tables and
the FK2 in the expression table.

Current Protocols in Bioinformatics

9.3.7

Building
Biological
Databases

Organism common name is removed from the expression table, and scien-
tific name becomes a foreign key in the expression table.

11. Repeat steps 8 through 10 for each table.

The tables are now in third normal form (see Commentary); data redundancy has been
eliminated within each table and the final form of the database is shown in Figure 9.3.9.

Creating the tables
12. Create tables using SQL statements as shown in Figure 9.3.10. (An introduction to

SQL can be found in UNIT 9.2).

For simplicity, several column names have been abbreviated (e.g., the column expres-
sion level is exp_level in the table; defn for description since desc is a
reserved word in SQL). Note that the order of the create statements depends on the
relationships between the tables: a parent table must be created prior to a child table. In
this example, the table expression has a foreign key to the table gene and to the table
organism and so must be created after them. The same order must be followed when data
is loaded into the tables: data must be entered into a parent table before it can be used in a
child table. While foreign keys are a part of standard SQL, the exemplar DBMS, MySQL,
used in other units does not yet implement them. Currently, MySQL will ignore any mention
of foreign keys in the create statements and will not check for data consistency between
tables. Support for foreign keys will be added with the upcoming release of version 4.1.

Querying the database
13. Create queries to address questions of interest.

Once the database has been created and the data loaded, answers may be obtained to many
interesting questions. Queries are set up by determining what information is wanted and
which tables contain it, then finding a way to relate that information to each other through
a process similar to the children’s game of connecting the dots. In the small example
schema, the relationships are obvious. In a database with many tables, the information

create table gene
 (gene_id varchar(50) not null,
 name varchar(10) not null,
 defn text not null,
 primary key (gene_id));

create table organism
 (scientific_name varchar(100) not null,
 common_name varchar(100) not null,
 primary key (scientific_name));

create table expression
 (gene_id varchar(50) not null,
 tissue varchar(100) not null,
 scientific_name varchar(100) not null,
 exp_level real(10,5) not null,
 stimulus varchar(100) not null,
 primary key (gene_id, tissue, stimulus),
 foreign key expression_f1 (gene_id)
 references gene (gene_id),
 foreign key expression_f2 (scientific_name)
 references organism (scientific_name));

Figure 9.3.10 The SQL statements to create the tables in MySQL for the schema shown in Figure
9.3.9. To implement this schema in a different DBMS, the column types (e.g., text) will need to be
adapted appropriately. Please refer to individual DBMS documentation for supported data types.

Current Protocols in Bioinformatics

9.3.8

Modeling Biology
Using Relational

Databases

may be related only by bringing together other information in other tables and all these
tables are included in the query. The number of tables in a query should be kept to a
minimum, too many tables in a query of a schema designed using the E-R method can make
the query run excruciatingly slow. Try to limit the number of tables to around six or so
depending on the number of columns and rows in each table. Additional indices may have
to be added to selected tables to improve the performance of a query, though care must be
taken not to adversely affect other queries. If it is impossible to relate the information with
just a few tables, then either the query will have to be broken down into multiple smaller
queries with the interim results stored in a temporary table, or the schema will have to be
denormalized. Denormalization is the process used to introduce redundancy back into a
normalized database: a column from one table is duplicated in another table used in the
query and a foreign key is set up between the new column and the original one. This process
reduces the number of tables from frequently used queries that would otherwise execute
too slowly.

The following examples show how to ask different types of questions of the schema
shown in Figure 9.3.9.

a. Figure 9.3.11 shows the SQL to recreate the original spreadsheet in Figure 9.3.2.
A column in one table must be distinguished from a column with the same name in a
second table (e.g., gene_id in the table gene and gene_id in the table expres-
sion). One method is the prefix each column name with tablename (e.g.,
gene.gene_id and expression.gene_id). However, this can lead to an
inordinate amount of typing and can even make the query difficult to read. SQL allows
for table abbreviations to be used; the g, o, and e in Figure 9.3.11 are the abbreviations
for the tables gene, organism, and expression, respectfully, and are defined
in the from clause in the query. Use of sensibly selected one- to three-letter abbrevia-
tions reduces amount of typing while still making it obvious which table is being
referenced. The order by clause determines how the results will be sorted, in this
example, column names are used.

select g.name, g.gene_id, g.defn, o.common_name,
 e.tissue, e.exp_level, e.stimulus
 from gene g,
 organism o,
 expression e
 where g.gene_id = e.gene_id
 and e.scientific_name = o.scientific_name
 order by g.name, e.stimulus, e.tissue, o.common_name;

Figure 9.3.11 The SQL statement to reproduce the spreadsheet shown in Figure 9.3.2 based on
the schema shown in Figure 9.3.9.

select g.name, g.gene_id, g.defn, e.tissue, e.exp_level
 from gene g,
 organism o,
 expression e
 where g.gene_id = e.gene_id
 and e.exp_level >= 2
 and e.scientific_name = o.scientific_name
 and o.common_name = 'human'
 order by g.name, e.stimulus, e.tissue, o.common_name;

Figure 9.3.12 The SQL query to answer the question, “What genes have an expression level
greater or equal to two-fold in humans?”

Current Protocols in Bioinformatics

9.3.9

Building
Biological
Databases

b. Figure 9.3.12 shows the SQL for the question, “What genes have an expression
level greater or equal to two-fold in humans?” The results are shown in Figure
9.3.13.

This query requires that expression data from one stimulus be compared to expression
data from another stimulus. This is achieved by having two copies of the expression
table, denoted by the abbreviations e1 and e2 thus showing another use for abbrevia-
tions, in the query. Since the select clause of the query has an expression in it,
position numbers are used in the order by clause; positions 5, 1, 6, and 7 correspond
to the expression (e1.exp_level - e2.exp_level) and the columns
g.name, e1.stimulus, and e2.stimulus in the select clause, respectfully.

c. Figure 9.3.14 shows the SQL for the question, “What genes are differentially
expressed in human tissues and what are the stimuli that cause the differential
expression?” Figure 9.3.15 shows the results.

More complex queries of this sort can be created using subselects and group functions
like intersect and minus (scheduled to be included in release 4.1 of MySQL and
already available in other DBMS). The group function intersect returns entries
that are common between two selects and minus returns entries from one
select that are not found in a second select. A subselect is a way of using a
select statement inside of a second select statement. An example of the group
function minus is found in the protocol for the hybrid schema (see Alternate Protocol).

+-------+-----------+-------------------------------------+--------+-----------+
| name | gene_id | defn | tissue | exp_level |
+-------+-----------+-------------------------------------+--------+-----------+
g6pc	nm_000151	Glucose-6-phosphatase	liver	20.00000
g6pc	nm_000151	Glucose-6-phosphatase	liver	2.00000
pepck	nm_002591	phosphoenolpyruvate carboxykinase 1	liver	10.20000
+-------+-----------+-------------------------------------+--------+-----------+

Figure 9.3.13 Results to the SQL query shown in Figure 9.3.13 obtained from a database implemented in MySQL.

select g.defn, e1.tissue,
 (e1.exp_level - e2.exp_level), e1.stimulus, e2.stimulus
 from gene g,
 organism o,
 expression e1,
 expression e2
 where g.gene_id = e1.gene_id
 and e1.scientific_name = o.scientific_name
 and e1.gene_id = e2.gene_id
 and e1.tissue = e2.tissue
 and e1.scientific_name = e2.scientific_name
 and abs(e1.exp_level - e2.exp_level) >= 2
 and o.common_name = 'human'
 order by 3, 1, 4, 5;

Figure 9.3.14 The SQL query to answer the question, “What genes are differentially expressed in human
tissues and what are the stimuli that caused the differential expression?” The order by clause uses
position numbers since the select clause has an expression in it. The position numbers correspond to
the columns named in the select clause: g.defn is in position 1 and e2.stimulus is in position 5.

Current Protocols in Bioinformatics

9.3.10

Modeling Biology
Using Relational

Databases

ALTERNATE
PROTOCOL

USING THE HYBRID METHOD TO DESIGN A DATABASE

This protocol describes the use of hybrid method modeling to design a database and covers
designing the table schema (outlined in the flowchart in Fig. 9.3.16), creating tables, and
finally, querying the database to ask interesting biological questions. Another typical
problem in genomics is used as an example: storing sequence annotation. Figure 9.3.17
shows a small subset of information frequently obtained from public data sources that
describe sequences: a sequence identifier (or accession number), the gene name, a
description, where the sequence was obtained, and the tissue and organism from which
that sequence was putatively obtained. The data redundancy in this subset is readily
apparent. In addition, it is difficult to spot the gene that is found in human and not in
mouse, much less to find more intricate differences or similarities between the genes.
Even with this rather simple example, the relationships between the three main pieces of
information (sequence, tissue, and organism) are not always well known or well docu-
mented. The schema design method highlighted in the following protocol works well
when the relationships are uncertain since any changes to the schema are highly localized
and thus have a minimal impact on the rest of the database.

Necessary Resources

Hardware

Personal computers with the Microsoft Windows operating system

Software

There are several software packages for designing databases, some examples are:
Microsoft Access, Designer from Oracle, PowerDesigner from Sybase, and
Visio also from Microsoft. Pencil and paper also work well, and are
recommended for those who are just starting out.

Files

None

Designing the table schema
1. Place all information in a single table as in Figure 9.3.18.

As in the E-R example (see Basic Protocol), the first step is to put all of the information in
a single table, at least conceptually, and then eliminate data redundancy. Note that the
abbreviation seq is being used as the table name and not the word sequence. In many
database products, sequence is a reserved word for a function that automatically
generates a sequence of numbers.

+-------------------------------------+--------+-----------------+------------+------------+
| | | (e1.exp_level - | | |
| defn | tissue | e2.exp_level) | stimulus | stimulus |
+-------------------------------------+--------+-----------------+------------+------------+
Glucose-6-phosphatase	liver	-20.00000	insulin	glucose
Glucose-6-phosphatase	liver	-18.00000	starvation	glucose
phosphoenolpyruvate carboxykinase 1	liver	-10.20000	insulin	glucose
Glucose-6-phosphatase	liver	-2.00000	insulin	starvation
Glucose-6-phosphatase	liver	2.00000	starvation	insulin
phosphoenolpyruvate carboxykinase 1	liver	10.20000	glucose	insulin
Glucose-6-phosphatase	liver	18.00000	glucose	starvation
Glucose-6-phosphatase	liver	20.00000	glucose	insulin
+-------------------------------------+--------+-----------------+------------+------------+

Figure 9.3.15 Results to the SQL query shown in Figure 9.3.14.

Current Protocols in Bioinformatics

9.3.11

Building
Biological
Databases

2. Identify related repeating groups of data and move them into separate tables as in
Figure 9.3.19.

This is the most important step in the protocol and requires some practice. There are two
guides for identifying the base types of information (often termed “entities”), look for
controlled vocabularies and biology. Data using controlled vocabularies, e.g., an ontology,
should be moved into separate tables. Many entities fall right out of biology, e.g., organism.
Tables should be named as specifically and succinctly as possible, using the singular form
of the word(s). Figure 9.3.20 shows the general form of an entity table along with two
examples.

There are three sources of redundancy in the single table in Figure 9.3.20: seq source
(a sequence can be found multiple times in the same data source), tissue, and organ-
ism; with many entries in the table, the same values will be seen repeatedly for these fields.
Each set of related sources of redundancy is moved to a separate table. Many will be
obvious since they reflect biological entities. For example, scientific name and
common name are sources of redundancies but are related as they both describe an
organism. Note that the organism prefix has been dropped from scientific name
and common name for brevity.

all of the data types
to be included in the database

identify related groups of
repeating data and move them

into separate tables

give each table a numeric
primary key

create relationship tables using
only the numeric primary keys

from the tables in each
relationship

make every column in a
relationship table part of that

table’s primary key

determine

Figure 9.3.16 Flowchart outlining steps for designing table schema for hybrid method modeling,
as described in Alternate Protocol.

Current Protocols in Bioinformatics

9.3.12

Modeling Biology
Using Relational

Databases

Accession Gene name Description Seq source Tissue Organism
NM_000078 CETP Cholesteryl ester transfer protein RefSeq
NM_000078 CETP Cholesteryl ester transfer protein RefSeq
NM_000078 CETP Cholesteryl ester transfer protein RefSeq Spleen
CETP_RABIT CETP Cholesteryl ester transfer protein SwissProt rabbit
NM_005229 ELK1 ELK1, member of ETS oncogene family RefSeq
NM_005229 ELK1 ELK1, member of ETS oncogene family RefSeq
NM_005229 ELK1 ELK1, member of ETS oncogene family RefSeq
NM_005229 ELK1 ELK1, member of ETS oncogene family RefSeq
NM_005229 ELK1 ELK1, member of ETS oncogene family RefSeq
NM_005229 ELK1 ELK1, member of ETS oncogene family RefSeq Pancreas
NM_005229 ELK1 ELK1, member of ETS oncogene family RefSeq
NM_007922 ELK1 ELK1, member of ETS oncogene family RefSeq
NM_007922 ELK1 ELK1, member of ETS oncogene family RefSeq
NM_002591 PEPCK Phosphoenolpyruvate carboxykinase 1 RefSeq
NM_002591 PEPCK Phosphoenolpyruvate carboxykinase 1 RefSeq
NM_002591 PEPCK Phosphoenolpyruvate carboxykinase 1 RefSeq Human

Human
Human

Human
Human

Human
Human
Human

Human
Human
Human
Human
Human

NM_011044 PEPCK Phosphoenolpyruvate carboxykinase 1 RefSeq Adipocytes

Adipocytes

NM_011044 PEPCK Phosphoenolpyruvate carboxykinase 1 RefSeq Kidney

Kidney

Kidney

Kidney

Kidney

NM_011044 PEPCK Phosphoenolpyruvate carboxykinase 1 RefSeq
SRF_HUMAN SRF Serum response factor SwissProt
SRF_HUMAN SRF Serum response factor SwissProt
SRF_HUMAN SRF Serum response factor SwissProt Brain

Brain

SRF_HUMAN SRF Serum response factor SwissProt
SRF_HUMAN SRF Serum response factor SwissProt Liver

Liver

Liver

Liver

Liver

SRF_HUMAN SRF Serum response factor SwissProt Lung

Lung

SRF_HUMAN SRF Serum response factor SwissProt Pancreas
SRF_HUMAN SRF Serum response factor SwissProt
SRF_HUMAN SRF Serum response factor SwissProt Spleen Human

Human
Human
Human
Human
Human
Human
Human
Human

NM_020493 SRF Serum response factor RefSeq Adrenal

Adrenal

Adrenal

Adrenal

NM_020493 SRF Serum response factor RefSeq B-lymphocytes

B-lymphocytes

B-lymphocytes

NM_020493 SRF Serum response factor RefSeq Prostate tumor

Prostate tumor

Prostate tumor

Prostate tumor

Mouse
Mouse
Mouse

Mouse
Mouse
Mouse

Mouse
Mouse

Figure 9.3.17 A small portion of typical sequence annotation obtained from public data sources. The full dataset contains
the gene name, a sequence identifier (accession number), a description of the gene, the name of the repository where the
identifier can be used to retrieve the sequence, and the tissue and organism from which the sequence was putatively
obtained.

seq

accession number
gene name
description
seq source
tissue
organism scientific name
organism common name

Figure 9.3.18 A single table is created containing all of different types of information obtained
from the gene expression study. Often, this is done as a mental exercise. The abbreviation seq is
used for the table name since sequence is a reserved word in many implementations of SQL.

Current Protocols in Bioinformatics

9.3.13

Building
Biological
Databases

3. Give each table a numeric primary key as shown in Figure 9.3.21.

The numeric primary key identifies a row in the table and is used to relate the tables to
each other.

4. For each table, identify the non-primary key column or combination of non-primary
key columns (properties) that define a unique entry in the table or that should not be
found more than once in the table. Create a unique index using them, this will
minimize data redundancy. Figure 9.3.22 shows the tables with the indices, the “U1”
in a table shows the column with the index. (If there were a second unique index on
a table, it would be indicated with “U2.”)

seq

accession number
gene name
description

seq source

name

tissue

name

organism

scientific name
common name

Figure 9.3.19 Related sets of repeating data (entities) have been identified and moved into their
own entity tables.

entity

PK entity id

name
...
other 1-to-1 attributes

tissue

PK tissue id

name

seq

PK seq id

name
accession number
description

A B

Figure 9.3.20 (A) The general form of an entity table used in the hybrid method. It consists of a
numeric primary key and 1 to N attributes. (B) Two examples of entity tables. Redundancy in the
table is either accepted or reduced through the liberal use of unique indices other than the primary
key.

Current Protocols in Bioinformatics

9.3.14

Modeling Biology
Using Relational

Databases

Liberal use of unique indices eliminates the data redundancy problem and it is not unusual
for a table to have more than one unique index on it. For example, a unique index on name
in the table tissue will prevent a tissue name from being entered multiple times. The
table organism is an interesting case. In Figure 9.3.22, it is shown with only scien-
tific name in the unique index. In many cases, the unique index would consist of the
pair of columns scientific name and common name. This would prevent a
particular combination of scientific name and common name from being entered
more than once. However, scientific name could be entered more than once, each
time with a different common name. To fully prevent any duplication, the table would
need three unique indices: one on scientific name, one on common name, and

seq

PK seq id

accession number
gene name
description

seq source

PK seq source id

name

tissue

PK tissue id

name

organism

PK organism id

scientific name
common name

Figure 9.3.21 Each table is given a numeric primary key. This numeric identifier uniquely identifies
a row in the table and is used to relate information in the table to information in a different table.

seq

PK seq id

U1 accession number
gene name
description

seq source

PK seq source id

U1 name

tissue

PK tissue id

U1 name

organism

PK organism id

U1 scientific name
common name

Figure 9.3.22 Data redundancy within a table is eliminated by identifying a column or a set of
columns that uniquely identifies a row and then using them in a unique index, not in the primary
key. A table will often have more than one unique index.

Current Protocols in Bioinformatics

9.3.15

Building
Biological
Databases

one on the pair (scientific name, common name). However, by putting the unique
index on just scientific name, the same common name can now be entered multiple
times. This can be an advantage if combining the information from different species is
desired. For example, combining the information for Rattus rattus and Rattus
norvegicus simply by querying on the common name rat would be possible. Since this
table will most likely be small, putting an index on common name is not necessary.

5. Identify related entities.

Some relationships are obvious, the relationship between seq and seq source for
instance. Other relationships, however, are not what they initially appear. Case in point,
tissue and organism might be unrelated or they might be related. If they are unrelated,
then there can be an organism entry for every tissue entry. If they are related, then
only certain combinations of organism and tissue are allowed. See Figure 9.3.23.

6. Create a relationship table for each set of related entities.

A relationship table will only contain columns corresponding to the primary keys of each
entity in the relationship. The primary key of a relationship table will be comprised of every
column in a relationship table. Unlike in a data warehouse fact table, no other data will
appear in relationship table. Figure 9.3.24 shows a general form for naming a relationship
table along with an example. Each column will also be a foreign key back to its associated
entity table. A foreign key links a column or set of columns in a table (the child) to a column
or set of columns in a unique index, a primary key is a type of unique index, in another
table (the parent). This linkage ensures data consistency between the two tables. With a
foreign key in place, the DBMS will only allow values in the seq id column of the
seq2seq source table that are also in the seq id column of the seq table. The
relationship between tables is shown where appropriate in each figure using an arrow: the
arrow points from the child to the parent.

Figure 9.3.25 shows the schema assuming that there is no relationship between the tables
organism and tissue.

If the organism and tissue tables are related, then a relationship table must be set up
to reflect this. Figure 9.3.26 shows one version of the schema. Here, organism id,

seq organism

seq tissue

A

seq organism tissue
B

Figure 9.3.23 The figure shows the two different ways that a sequence can be linked to an
organism and tissue. (A) A sequence can be linked independently an organism and a tissue. This
can lead to combinations of organism and tissue that might not have been found experimentally.
(B) A sequence is linked to an organism and a tissue.

Current Protocols in Bioinformatics

9.3.16

Modeling Biology
Using Relational

Databases

tissue id, and seq id are combined in a single relationship table and all three
columns comprise the primary key. Figure 9.3.27 shows a second version. Here, an
intermediary relationship table is set up combining organism id and tissue id to
create the new entity library with its own unique primary key library id (the name
was chosen under the assumption that the sequence data derives from a cloning step).
Organism id and tissue id together comprise a standard unique index and not the
primary key. This new entity itself can now be used in other relationships. Either form of
the schema, Figure 9.3.26 or 9.3.27, is equally valid when organism and tissue are
related.

entityA2entityB

PK entityA id
PK entityB id

seq2tissue

PK seq id
PK tissue id

A B

Figure 9.3.24 (A) The general form of a relationship table used in the hybrid method is shown. It
consists of numeric columns corresponding to the primary keys of the entity tables in the
relationship. All columns in a relationship table comprise its primary key and are linked back to their
respective parent tables by foreign keys. (B) An example of relationship tables is shown.

seq

PK seq id

U1 accession number
gene name
description

seq source

PK seq source id

U1 name

tissue

PK tissue id

U1 name

organism

PK organism id

U1 scientific name
common name

seq2seq source

PK,FK2 seq id
PK,FK1 seq source id

seq2tissue

PK,FK1 seq id
PK,FK2 tissue id

seq2organism

PK,FK1 seq id
PK,FK2 organism id

Figure 9.3.25 Relationship tables are created by linking related entities. In this schema, it is
assumed that there is no direct relationship between organism and tissue. The primary key in
each relationship table is comprised of all of the columns in the table. Foreign keys are set up
between each relationship table and the entity tables involved in the relationship.

Current Protocols in Bioinformatics

9.3.17

Building
Biological
Databases

A comparison of these three schemas shows the flexibility of schemas developed using the
hybrid method. All of the base tables and the relationship table seq2seq source have
remained untouched.

Creating the tables
7. Examine Figure 9.3.28, which shows the SQL statements to create the base tables

seq, seq_source, organism, and tissue used in both of the final forms of
the schema where organism and tissue are related (Figs. 9.3.26 and 9.3.27).
Figure 9.3.29 shows the statements to create the relationship tables
seq2seq_source and seq2tissueorganism used in the schema shown in
Figure 9.3.20. Figure 9.3.30 shows the statements to create the relationship tables
seq2seq_source, library, and seq2library used in the schema shown in
Figure 9.3.27. Altering the SQL statements to create the tables in the schema where
organism and tissue are unrelated (Fig. 9.3.25) is straightforward.

Note that the order of the create statements depends on the relationships between the
tables: a parent table must be created prior to a child table. In this example, the table
seq2seq_source has foreign keys to both the seq and the seq_source tables and
so must be created after them. (As mentioned previously, MySQL is scheduled to implement
foreign keys in version 4.1 and currently ignores any mention of foreign keys in the create
statements and does not do any checking for referential integrity.) The same order must be
followed when data is loaded into the tables: data must be entered into a parent table before
it can be used in a child table. Typically, data is loaded by first checking to see if it already
exists in an entity table. If it does, then the ID for that row in the table is obtained. If not,
then the data is entered into a new row and the ID for the new row is obtained. This is then

seq

PK seq id

U1 accession number
gene name
description

seq source

PK seq source id

U1 name

tissue

PK tissue id

U1 name

organism

PK organism id

U1 scientific name
common name

seq2seq source

PK,FK2 seq id
PK,FK1 seq source id

seq2tissueorganism

PK,FK1 seq id
PK,FK2 tissue id
PK,FK3 organism id

Figure 9.3.26 Relationship tables are created by linking related entities. In this schema, it is
assumed that the organism and tissue tables are directly related. This is shown in the
relationship table seq2organismtissue which contains three columns, one for each entity in the
relationship. A comparison of this schema to the one in Figure 9.3.25 shows its flexibility: the base
tables seq, seq source, tissue and organism and the relationship table seq2seq source
remain untouched.

Current Protocols in Bioinformatics

9.3.18

Modeling Biology
Using Relational

Databases

done for all other tables whose identifiers are found in a relationship table. The relationship
table is then checked to see if that combination of IDs already exists. If that combination
is not found, then they are entered into the table. This process of checking each entry
increases the amount of time required to load the information into the database (see
Commentary).

Querying the database
8. Create queries to address questions of interest.

Once the database has been created and the data loaded, answers may be obtained to many
interesting questions. Queries are set up by determining what information is wanted and
which tables contain it, then finding a way to relate that information to each other through
a process similar to the children’s game of connecting the dots. In this small example
schema, the relationships are obvious. In a database with many tables, the information
may be related only by bringing together other information in other tables. The very nature
of a hybrid schema means that many tables will be involved in even a simple query. Because
of the structure of the tables (data-rich but short entity tables and data-poor but long
relationship tables built from the primary keys of entity tables), this generally does not have
a significant impact on the time required for a query to execute (but not always). It is not
unusual to have ten or twelve tables included in a query; some queries can become quite
lengthy and complex and still run in an acceptable amount of time with an acceptable load
on the DBMS. This increase in query complexity along with the increase time for loading

seq

PK seq id

U1 accession number
gene name
description

seq source

PK seq source id

U1 name

tissue

PK tissue id

U1 name

organism

PK organism id

U1 scientific name
common name

seq2seq source

PK,FK2 seq id
PK,FK1 seq source id

library

PK library id

FK1,U1 tissue id
FK2,U1 organism id

seq2library

PK,FK1 seq id
PK,FK2 library id

Figure 9.3.27 This figure shows a second way of setting up the sequence-organism-tissue
relationship. This form sets up a relationship between organism and tissue called library with
its own primary key. This new entity is then related to sequence in seq2library and can be used
in other relationships.

Current Protocols in Bioinformatics

9.3.19

Building
Biological
Databases

create table seq
 (seq_id bigint not null,
 accno varchar(25) not null,
 name varchar(100) not null,
 defn text not null,
 primary key (seq_id),
 unique index seq_i1 (accno));

create table seq_source
 (seq_source_id tinyint not null,
 name varchar(50) not null,
 primary key (seq_source_id),
 unique index seq_source_i1 (name));

create table tissue
 (tissue_id tinyint not null,
 name varchar(100) not null,
 primary key (tissue_id),
 unique index tissue_i1 (name));

create table organism
 (organism_id tinyint not null,
 scientific_name varchar(100) not null,
 common_name varchar(100) not null,
 primary key (organism_id),
 unique index organism_i1 (scientific_name));

Figure 9.3.28 The SQL statements to create the base tables seq, seq_source, tissue, and
organism in MySQL for the schemas shown in Figures 9.3.25, 9.3.26, and 9.3.27. To implement
this schema in a different DBMS, the column types (e.g., bigint) will need to be adapted
appropriately. Please refer to specific DBMS documentation for supported data types.

create table seq2seq_source
 (seq_id bigint not null,
 seq_source_id tinyint not null,
 primary key (seq_id, seq_source_id),
 foreign key seq2seq_source_f1 (seq_id)
 references seq (seq_id),
 foreign key seq2seq_source_f1 (seq_source_id)
 references seq_source (seq_source_id));

create table seq2tissueorganism
 (seq_id bigint not null,
 tissue_id tinyint not null,
 organism_id tinyint not null,
 primary key (seq_id, tissue_id, organism_id),
 foreign key seq2tissueorganism_f1 (seq_id)
 references seq (seq_id),
 foreign key seq2tissueorganism_f2 (tissue_id)
 references tissue (tissue_id),
 foreign key seq2tissueorganism_f3 (organism_id)
 references organism (organism_id));

Figure 9.3.29 The SQL statements to create the relationship tables in the schema where
organism and tissue are related as shown in Figure 9.3.26.

Current Protocols in Bioinformatics

9.3.20

Modeling Biology
Using Relational

Databases

data are the trade-offs for having a flexible schema that readily handles arbitrary data-
mining queries. If a query is found to run too slowly, additional indices (often non-unique)
may have to be added to selected base tables or the database can be denormalized.
Denormalization is the process used to introduce redundancy back into a normalized
database. In a hybrid schema, denormalization is typically done by either creating new
relationship tables or adding a column to an existing relationship table. The entity tables
are only rarely touched during denormalization.

The following examples show how to ask different types of questions of the schema
shown in Figure 9.3.27. The same queries can be executed on the schemas shown in
Figures 9.3.25 and 9.3.26 with some slight modifications.

a. Figure 9.3.31 shows the SQL to recreate the original spreadsheet in shown Figure
9.3.17.

Even with this simple query, seven tables are required. As discussed previously (see
Basic Protocol), a column in one table must be distinguished from a column with the
same name in a second table (e.g., seq_id in the table seq and seq_id in the table
seq2seq_source). One method is the prefix each column name with table-
name. (e.g., seq.seq_id and seq2seq_source.seq_id). However, this can
lead to an inordinate amount of typing and can even make the query difficult to read.
SQL allows for table abbreviations to be used; for example the s, s2s, and ss in Figure
9.3.31 are abbreviations for the tables seq, seq2seq_source, and
seq_source, respectfully, and are defined in the from clause in the query. Use of
sensibly selected one- to three-letter abbreviations reduces the amount of typing while
still making it obvious which table is being referenced.

b. Figure 9.3.32 shows the SQL to return only those genes found in humans, Figure
9.3.33 shows the results.

create table seq2seq_source
 (seq_id bigint not null,
 seq_source_id tinyint not null,
 primary key (seq_id, seq_source_id),
 foreign key seq2seq_source_f1 (seq_id)
 references seq (seq_id),
 foreign key seq2seq_source_f1 (seq_source_id)
 references seq_source (seq_source_id));

create table library
 (library_id int not null,
 tissue_id tinyint not null,
 organism_id tinyint not null,
 primary key (library_id),
 unique index library_i1 (tissue_id, organism_id),
 foreign key library_f1 (tissue_id)
 references tissue (tissue_id),
 foreign key library_f2 (organism_id)
 references organism (organism_id));

create table seq2library
 (seq_id bigint not null,
 library_id int not null,
 primary key (seq_id, library_id),
 foreign key seq2library_f1 (seq_id)
 references seq (seq_id),
 foreign key seq2library_f2 (library_id)
 references library (library_id));

Figure 9.3.30 The SQL statements to create the relationship tables in the schema where
organism and tissue are related as shown in Figure 9.3.27.

Current Protocols in Bioinformatics

9.3.21

Building
Biological
Databases

Requiring o.common_name = ’human’ restricts the query to just the human
genes, though a gene with the same name could certainly exist in another organism.

c. Figure 9.3.34 shows the SQL for the question, “What information exists in the
database for the sequence with the RefSeq identifier NM_005229?” The results
are shown in Figure 9.3.35.

Requiring s.seq_id = ’nm_005229’ restricts the query to only the information
on that accession number. Since the seq id has been defined to be specific to an
organism, only information for that organism will be retrieved. Note that the DBMS
search engine considers ’nm_005229’ and ’NM_005229’ to be different entries.
When data is loaded into the database, accession numbers and other types of informa-
tion should be consistently set to either upper or lower case if possible.

d. Figure 9.3.36 shows the SQL for the question, “What information exists in the
database for the sequence with the name pepck?” The results are shown in Figure
9.3.37.

Unlike the previous query where an organism-specific seq id was used, this uses a
name that can be shared by multiple organisms.

e. Figure 9.3.38 shows the SQL for the question, “What genes are found in human
but not in mouse?” using the group function minus. Figure 9.3.39 shows the
results for this query.

select s.accno, s.name, s.defn, ss.name,
 t.name, o.common_name

 from seq s,
 seq2seq_source s2s,
 seq_source ss,
 seq2library s2l,
 library l,
 tissue t,
 organism o
 where s.seq_id = s2s.seq_id
 and ss.seq_source_id = s2s.seq_source_id
 and s2l.seq_id = s.seq_id
 and s2l.library_id = l.library_id
 and l.tissue_id = t.tissue_id
 and l.organism_id = o.organism_id
 order by s.name, t.name, o.common_name;

Figure 9.3.31 The SQL statement to reproduce the spreadsheet shown in Figure 9.3.17.

select distinct s.accno, s.name, s.defn, t.name
 from seq s,
 seq2library s2l,
 library l,
 organism o,
 tissue t
 where s2l.seq_id = s.seq_id
 and s2l.library_id = l.library_id
 and l.organism_id = o.organism_id
 and o.common_name = 'human'
 and t.tissue_id = l.tissue_id
 order by s.name, t.name;

Figure 9.3.32 The SQL query to return only those genes found in humans based on the schema
shown in Figure 9.3.27.

Current Protocols in Bioinformatics

9.3.22

Modeling Biology
Using Relational

Databases

+-----------+-------+-------------------------------------+----------------+
| accno | name | defn | name |
+-----------+-------+-------------------------------------+----------------+
nm_000078	cetp	cholesteryl ester transfer protein	kidney
nm_000078	cetp	cholesteryl ester transfer protein	liver
nm_000078	cetp	cholesteryl ester transfer protein	spleen
nm_005229	elk1	elk1, member of ETS oncogene family	adrenal
nm_005229	elk1	elk1, member of ETS oncogene family	b-lymphocytes
nm_005229	elk1	elk1, member of ETS oncogene family	brain
nm_005229	elk1	elk1, member of ETS oncogene family	kidney
nm_005229	elk1	elk1, member of ETS oncogene family	lung
nm_005229	elk1	elk1, member of ETS oncogene family	pancreas
nm_005229	elk1	elk1, member of ETS oncogene family	prostate tumor
nm_002591	pepck	phosphoenolpyruvate carboxykinase 1	adipocytes
nm_002591	pepck	phosphoenolpyruvate carboxykinase 1	kidney
nm_002591	pepck	phosphoenolpyruvate carboxykinase 1	liver
srf_human	srf	serum response factor	adrenal
srf_human	srf	serum response factor	b-lymphocytes
srf_human	srf	serum response factor	brain
srf_human	srf	serum response factor	kidney
srf_human	srf	serum response factor	liver
srf_human	srf	serum response factor	lung
srf_human	srf	serum response factor	pancreas
srf_human	srf	serum response factor	prostate tumor
srf_human	srf	serum response factor	spleen
+-----------+-------+-------------------------------------+----------------+

Figure 9.3.33 Results to the SQL query shown in Figure 9.3.32 obtained from a database implemented in MySQL. Name
is shown as a column header since it is found in two tables and both are listed in the select clause of the query.

select s.accno, s.name, s.defn, t.name,
o.common_name
 from seq s,
 seq2library s2l,
 library l,
 tissue t,
 organism o
 where s.accno = 'nm_005229'
 and s2l.seq_id = s.seq_id
 and s2l.library_id = l.library_id
 and l.tissue_id = t.tissue_id
 and l.organism_id = o.organism_id
 order by s.name, t.name, o.common_name;

Figure 9.3.34 The SQL query to show all of the annotation in the database for the sequence with
the identifier (accession number) nm_005229. Note that a DBMS query engine will consider
nm_005229 and NM_005229 to be different entries. Care must be taken prior to loading the data
to ensure that all identifiers are either all uppercase or all lowercase.

Current Protocols in Bioinformatics

9.3.23

Building
Biological
Databases

More complex queries can be created using subselects and group functions like in-
tersect and minus. The minus function removes entries from the top select
that are found in the bottom select. The intersect function returns only those
entries that are found in both select statements. These functions, available in many
other DBMS, are scheduled to be included in release 4.1 of MySQL. With MySQL, the
query will have to be broken down into subqueries (e.g., “What genes are found in
human?” “What genes are found in mice?”). The results of each subquery must then
be processed and compared programmatically using a language like Perl.

+-----------+------+-------------------------------------+----------------+-------------+
| accno | name | defn | name | common_name |
+-----------+------+-------------------------------------+----------------+-------------+
nm_005229	elk1	elk1, member of ETS oncogene family	adrenal	human
nm_005229	elk1	elk1, member of ETS oncogene family	b-lymphocytes	human
nm_005229	elk1	elk1, member of ETS oncogene family	brain	human
nm_005229	elk1	elk1, member of ETS oncogene family	kidney	human
nm_005229	elk1	elk1, member of ETS oncogene family	lung	human
nm_005229	elk1	elk1, member of ETS oncogene family	pancreas	human
nm_005229	elk1	elk1, member of ETS oncogene family	prostate tumor	human
+-----------+------+-------------------------------------+----------------+-------------+

Figure 9.3.35 Results to the SQL query shown in Figure 9.3.34.

select s.accno, s.name, s.defn, t.name,
o.common_name
 from seq s,
 seq2library s2l,
 library l,
 tissue t,
 organism o
 where s.name = 'pepck'
 and s2l.seq_id = s.seq_id
 and s2l.library_id = l.library_id
 and l.tissue_id = t.tissue_id
 and l.organism_id = o.organism_id
 order by s.name, t.name, o.common_name;

Figure 9.3.36 The SQL query to retrieve information on the gene with the name pepck regardless
of the organism. As mentioned previously, the DBMS query engine will consider PEPCK or any
variation with different upper and lowercase letters to be different from the all lowercase pepck.

+-----------+-------+-------------------------------------+------------+-------------+
| accno | name | defn | name | common_name |
+-----------+-------+-------------------------------------+------------+-------------+
nm_002591	pepck	phosphoenolpyruvate carboxykinase 1	adipocytes	human
nm_011044	pepck	phosphoenolpyruvate carboxykinase 1	adipocytes	mouse
nm_002591	pepck	phosphoenolpyruvate carboxykinase 1	kidney	human
nm_011044	pepck	phosphoenolpyruvate carboxykinase 1	kidney	mouse
nm_002591	pepck	phosphoenolpyruvate carboxykinase 1	liver	human
nm_011044	pepck	phosphoenolpyruvate carboxykinase 1	liver	mouse
+-----------+-------+-------------------------------------+------------+-------------+

Figure 9.3.37 Results to the SQL query shown in Figure 9.3.35.

Current Protocols in Bioinformatics

9.3.24

Modeling Biology
Using Relational

Databases

COMMENTARY

Background Information
As mentioned in the introduction, there

are many methodologies that can be used to
design a database schema and no one is the
best for every type of database. A large data-
base can contain areas, called “domains,”
which have been designed using different
methodologies; a database to hold gene an-
notation is a perfect example of this. The
tables to hold the evidence for the different
pieces of annotation are usually designed
using E-R modeling while the hybrid method
is used to design the tables to hold the anno-
tation itself and for relating the annotation to
the evidence. This hypothetical gene annota-
tion database could also be part of a larger
data warehouse that brings together a wide
range of biological knowledge.

Entity-Relationship modeling
Entity-Relationship (E-R) modeling is the

standard method taught in database classes
(Codd, 1990; Date, 1995; Yarger et al., 1999).
An entity is any fundamental topic that is to be
stored in the database. In the genomics world,
an entity might be tissue, organism, or
gene. An entity can have properties that de-
scribe it; for example, genus and species
are properties of the entity organism. A re-
lationship describes how the entities go to-
gether and is frequently considered to be a
property of an entity. There are four types of
relationships as shown in Figure 9.3.40.

There are two levels to E-R modeling: con-
ceptual and physical. The conceptual level
treats the entities as abstract objects while the
physical level treats them as components of
physical tables that will be implemented using

select distinct s.name, s.defn
 from seq s,
 seq2library s2l,
 library l,
 organism o
 where s2l.seq_id = s.seq_id
 and s2l.library_id = l.library_id
 and l.organism_id = o.organism_id
 and o.common_name = 'human'
minus
select distinct s.name, s.defn
 from seq s,
 seq2library s2l,
 library l,
 organism o
 where s2l.seq_id = s.seq_id
 and s2l.library_id = l.library_id
 and l.organism_id = o.organism_id
 and o.common_name = 'mouse'
 order by 1, 2;

Figure 9.3.38 The SQL query to find all genes in humans that are not found in mice. This query
uses the group function minus which returns all entries in the first query that are not found in the
second query. This function along with intersect and subselects are scheduled to be imple-
mented in version 4.1 of MySQL.

NAME DEFN
------ ----------------------------------
cetp Cholesteryl ester transfer protein

Figure 9.3.39 Results to the SQL query shown in Figure 9.3.38 obtained from a database
implemented in Oracle.

Current Protocols in Bioinformatics

9.3.25

Building
Biological
Databases

SQL create table statements. Most pro-
fessional modelers tend to bounce back and
forth between them: thinking of the tables while
working on the conceptual entities and vice-
versa.

E-R modeling works well if the information
is well understood, if the relationships between
the different types of information are well un-
derstood, and if only a few types of questions
will be asked. This method should also be
considered if data needs to be loaded at a high
rate, e.g., data captured off of a piece of experi-
mental equipment as the experiment is running.

An example of well-understood information
and relationships is sequence similarity results
from using a BLAST search (Altschul et al.,
1990; UNITS 3.3 & 3.4). There are three categories
of information associated with BLAST results.
The first category is the data needed to set up
the search (e.g., the query sequence, the data-
base searched, the BLAST program, and date
of the search). The second category is the sum-
mary of the result (i.e., the summary section of
a BLAST report). The third category is the
detailed result (i.e., the high-scoring pairs,
HSPs). Since a computer program takes in in-
formation and generates the results, the relation-
ships between the different categories will never
change unless the program itself is changed. A
database schema to hold BLAST results could
have just three tables, one for each category.

E-R modeling is designed to reduce data
redundancy, if not eliminate it completely.
There are two basic types of data redundancy:
(1) redundancy within a table and (2) redun-
dancy in the results of a query that combines
multiple tables. Rules have been developed to
eliminate data redundancy; these rules are
called normalization. The first three rules cover
most of the database redundancy problems a

designer will encounter. These three rules are:
(1) 1st Normal Form (1NF), where there can be
no duplicated rows in the table; each cell in a
table is single valued, there can be no repeating
groups or arrays; and a column can contain only
one type of information. (2) 2nd Normal Form
(2NF), all the characteristics of 1NF in addition
to all non-primary key columns must describe
every column in the primary key and there can
be no partial dependencies. (3) 3rd Normal
Form (3NF), all the characteristics of 2NF in
addition to the information in each non-primary
key column must be independent of the infor-
mation in any other non-primary key column
in the same table.

To ensure that data used in more than one
table is used consistently; columns in pairs of
tables can be set up in parent-child relationships
called a foreign key. Foreign keys maintain data
integrity between tables, the only values that
can be entered into a foreign keyed column(s)
in the child table are those that are in the parent.
Thus, data must be loaded into the parent before
it can be loaded into the child. The reverse is
true when deleting data. A foreign key can be
a single or multiple columns. The number, type,
and order of the child columns involved must
be the same as found in a unique index in the
parent table. The index does not have to be the
primary key, just a unique index.

There are two major drawbacks to databases
designed using E-R modeling. First is that the
tables tend to be tightly related; adding new
entities can potentially necessitate a complete
redesign of the schema. Second, queries involv-
ing many large tables often run slowly, even if
only one column is used in some of the tables.
The speed of a search is especially important
for data mining queries.

1 to 1 person number of hearts

1 to N gene sequence in a database

M to 1 sequences gene

M to N sequence database

Figure 9.3.40 The four types of relationships: 1-to-1, 1-to-N, M-to-1, and M-to-N. The crows-feet
indicate the item with the multiplicity. There are many more symbols used, these are the most
common.

Current Protocols in Bioinformatics

9.3.26

Modeling Biology
Using Relational

Databases

The hybrid method

Data warehousing
To address the data mining problem, another

method was developed called data warehous-
ing, along with its smaller cousin the data-mart
(Inmon et al., 1995; Kimball, 1996; Dodge and
Gorman, 1998). A data warehouse consists of
a central table called the fact table that is sup-
ported by additional tables, the dimension ta-
bles, in a form that looks somewhat like a star.
Accordingly, queries of data warehouses have
been called “star queries.”

A dimension table contains information that
describes a narrowly defined entity; all of the
attributes of an entity are placed in that entity’s
dimension table. Unlike E-R modeling, nor-
malization is not used and redundancy is dealt
with, even accepted, within the dimension table
itself through a combination of logic in the
program that loads the data and liberal use of
unique indices. Since data duplication is ac-
ceptable in a dimension table, each row is
identified with a numeric primary key. A di-
mension table can be thought of as “short and
wide” reflecting the large number of attributes
and few entries that are often found.

In contrast, the fact table brings together the
primary keys of each dimension table these
columns make up the primary key of the fact
table, each column of which is also a foreign
key back to the appropriate dimension table.
Other data that may be used in a query may also
be included in a fact table. A fact table can be
thought of as “long and thin” since it contains
lots of rows and few columns. Arbitrary data-
mining queries involving many tables run very
fast since (1) the meat of the information is
contained in the dimension tables, (2) the rela-
tionships between the tables are numeric and
indexed, and (3) there is only one intermediate
table between any pair of dimension tables.

The fact table is designed based on the an-
ticipated questions that may be asked. As a
result, from a scientist’s point of view, informa-
tion may be brought together in the fact table
that has no biological relationship. In addition,
many entities encountered in biology are for
the most part not very well understood and the
relationships even less so. Thus, a database
schema is needed to sequester each area of
uncertainly into its own table and minimizes
the interrelationships between the tables. Such
a database should allow new tables to be easily
added, old tables dropped, and the data in table
completely revamped with only a minimal im-

pact on the rest of the database and any com-
puter programs that query the database.

To create such a database, a method was
developed that brings some aspects of E-R mod-
eling into data warehousing; this is the hybrid
method. In the hybrid method, both the dimen-
sion and fact tables are narrowly defined and
there are frequently many fact tables that relate
information between only two or three dimen-
sion tables. The hybrid method, therefore, gives
the advantage of a rapidly changeable database.

The hybrid method
As in E-R modeling, the first step in design-

ing a database using the hybrid model is to
identify the entities to be stored. There are two
types of entities: abstract entities and concrete
entities. Abstract entities are those terms that
biologists use on a daily basis that are hard to
define concretely in computer terms; gene is
one of the most familiar abstract entities en-
countered. Abstract entities are defined only
within the scope of the information stored in
the database that describes it and are often the
focus of the database or a domain of the data-
base. Concrete entities, on the other hand, can
be easily defined at some level and are fre-
quently described using controlled language.
The Gene Ontologies (The Gene Ontology
Consortium, 2000; UNIT 7.2) are examples of
controlled language; each ontology (biological
process, cellular component, and molecular
function) is a separate entity. Each entity has
its own table; each table is set up with a numeric
primary key and columns that contain non-en-
tity properties of that entity. The more narrowly
defined an entity is the better; an entity table
has the general form shown in Figure 9.3.20.

After defining the entities, the second step
is to identify which entities are related; a rela-
tionship table has the general form shown in
Figure 9.3.24. Concrete entities are often prop-
erties of abstract entities.

A simple example contrasting entity and
non-entity properties is foot size versus shoe
size. A person’s foot can be any size; this is an
example of uncontrolled language. Shoes,
however, come in predefined sizes; this is an
example of controlled language. Within the
definition of a hybrid database, foot size is a
non-entity property and would be contained
within a table for the entity foot. Shoe
size, however, would have its own table con-
taining all possible shoe sizes and would be
related to foot through a relationship table
foot to shoe size. This relationship

Current Protocols in Bioinformatics

9.3.27

Building
Biological
Databases

table would contain only two columns, foot
id and shoe size id, both part of the
primary key for the table, which would be
foreign keys back to the tables foot and shoe
size, respectively.

Just as in data warehousing, data redundancy
issues are handled within each entity table inde-
pendently using programming logic in the input
program and the liberal use of unique indices as
appropriate. Unlike data warehousing, the rela-
tionship tables rarely hold any information be-
yond the numeric row identifiers of the entity
tables in the relationship and are biologically
descriptive. Thus, relationship tables are more
like the E-R tables that handle many-to-one and
many-to-many relationships. Hybrid databases
readily handle queries containing many tables;
ten tables in a query is not unusual.

Additional types of information can easily
be added to a hybrid database by creating new
entity and relationship tables, or adding to ex-
isting tables, to link them into the database.
Tables holding computational analysis results
designed using E-R modeling can be easily
linked in with a relationship table. In addition,
whole domains each with a different focus, e.g.,
sequence annotation, pathway information, ex-
pression data, etc., can each be designed using
the hybrid model and then linked to each other
again using relationship tables.

Like a data warehouse, these databases take
in data slowly mainly due to the data checking
that must be done by the loading program. In
general, this fits the genomics world well since
data is usually added on a daily or weekly basis
rather than a second-by-second basis.

Critical Parameters and
Troubleshooting

Externally versus internally controlled data
Data controlled by a person or process ex-

ternal to the database can change at any time.
These changes can cause many headaches if the
data is used to link tables together. Regardless
whether E-R modeling or the hybrid method is
used, it is a good idea to use a numeric repre-
sentation of externally controlled data within
the database itself. The hybrid method does this
automatically, but it must be done explicitly
E-R modeling. For example, imagine a data-
base that uses a user ID comprised of a person’s
last name plus first initial. In this hypothetical
database, this user ID is a primary key in a
user table and is a property in tables contain-
ing information about experiments run, results,

etc., with the appropriate foreign keys set up to
link the child tables back to the user tables. If
a person changes their last name, the user ID
will have to be changed in many tables. Many
database products do not have a “cascade on
update” feature, this feature propagates a change
to a field in a parent table throughout the child
tables. Thus, either the foreign key constraints
must be dropped and then the changes made to
each table individually, or a new record must be
made in the parent table, new records created in
each child table, the old records deleted from
the child tables, and then the old record deleted
from the parent table. As one can imagine, this
can get very complicated for a large database.
In addition, the person may still be making
additions to the database while the change to the
user id is being made! Using an internal ID that
is completely under the database’s control can
eliminate this problem; the person’s name
would only have to be changed in one place.

It may require some practice to develop a
well-designed database, but even a poorly de-
signed database can be a great aid in answering
interesting and complicated questions. Of the
two modeling methods, the hybrid model is the
easiest and most general method to use and
database schemas resulting from it are the easi-
est to expand. In either case, if redundant data
is found to exist in a query, then further analysis
is needed in the design of the database.

Literature Cited
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and

Lipman, D.J. 1990. Basic local alignment search
tool. J. Mol. Biol. 215:403-410.

Codd, E.F. 1990. The Relational Model for Database
Management; Version 2. Addison-Wesley Publish-
ing, New York.

Date, C.J. 1995. An Introduction to Database Systems,
6th ed. Addison-Wesley Publishing, New York.

Dodge, G. and Gorman, T. 1998. Oracle8 Data Ware-
housing. John Wiley & Sons, New York.

The Gene Ontology Consortium. 2000. Gene ontol-
ogy: Tool for the unification of biology. Nature
Gen. 25:25-29

Inmon, W.H., Imhoff, C., and Battas, G. 1995. Building
the Operational Data Store. John Wiley & Sons,
New York.

Kimball, R. 1996. The Data Warehouse Toolkit. John
Wiley & Sons, New York.

Yarger, R.J., Reese, G., and King, T. 1999. MySQL &
mSQL. O’Reilly & Associates, CA.

Robert M. Peitzsch
Pfizer Global Research and Development
Groton, Connecticut

Current Protocols in Bioinformatics

9.3.28

Modeling Biology
Using Relational

Databases

UNIT 9.4Using Relational Databases for Improved
Sequence Similarity Searching and
Large-Scale Genomic Analyses

As protein and DNA sequence databases have grown, characterizing evolutionarily related
sequences (homologs) through sequence similarity has paradoxically become a more
challenging endeavor. In the early 1990s, a similarity search might identify a dozen
homologs only once in three searches; many searches would reveal only one or two
homologs, if any. With today’s comprehensive sequence libraries, most similarity searches
will identify several dozen homologous sequences, and many searches will yield hundreds
of homologs from dozens of species. As scientifically interesting as these results may be,
they are often impractical to organize and analyze manually. Moreover, modern genome-
scale studies do 1,000 to 10,000 searches in a single analysis, producing millions of lines of
comparison results. Fortunately, relational databases (UNITS 9.1 & 9.2) can manage large sets
of search results, greatly simplifying genome-scale analyses—for example identifying
the most conserved sequences shared by two organisms, or the proteins that are found
in plants but not animals. Relational databases are designed to integrate diverse types of
information: e.g., sequence, taxonomy, similarity to other proteins, and gene location.
Relational databases can also make searches more efficient by focusing on subsets of the
protein databases—proteins found in similar organisms or with similar functions. Thus,
relational databases are not only essential for the management and analysis of large-scale
sequence analyses, but can also be used to improve the statistical significance of similarity
searches by focusing the search on subsets of sequence libraries most likely to contain
homologs, based, e.g., on taxonomy, structure, or function.

The protocols in this unit use relational databases to improve the efficiency of se-
quence similarity searching and to demonstrate various large-scale genomic analyses
of homology-related data. Basic Protocol 1 illustrates the installation and use of a simple
protein sequence database, seqdb-demo, which will be used as a basis for all the other
protocols. Basic Protocol 2 then demonstrates basic use of the seqdb-demo database
to generate a novel sequence library subset. Basic Protocol 3 shows how to extend and
use seqdb-demo for the storage of sequence similarity search results. Basic Protocols
4 to 6 make use of various kinds of stored search results to address three different aspects
of comparative genomic analysis. All of the SQL statements used in these protocols are
available in the seqdb-demo package, described in Basic Protocol 1. While many of
the SQL statements are briefly explained in each protocol, the concepts in Basic Protocols
2 to 4 will easier to understand if the reader is familiar with basic SQL (UNIT 9.2).

BASIC
PROTOCOL 1

INSTALLING AND POPULATING THE seqdb-demo RELATIONAL
DATABASE

In this protocol, a very simple protein sequence database, seqdb-demo (Fig. 9.4.1) will
be installed and then populated with data obtained from a “flat-file” sequence library. The
database includes: (1) a table for the raw sequence data; (2) a table to hold information
about the sequence, including its description and various public database accession num-
bers; and (3) tables to store taxonomic information about the organism from which the
sequence was obtained, and how those organisms are themselves related to each other.

Sequence and annotation information are loaded from a sequence library “flat file” into an
empty seqdb-demo database using the Perl program load-seqdemo.pl, found in

Contributed by Aaron J. Mackey and William R. Pearson
Current Protocols in Bioinformatics (2004) 9.4.1-9.4.25
Copyright C© 2004 by John Wiley & Sons, Inc.

Building
Biological
Databases

9.4.1

Supplement 7

Relational
Databases

9.4.2

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.1 A schema for protein sequence data. Each of the boxes represents one of the tables
in the seqdb-demo database. Sequences are stored in the protein table, their descriptions
and accession information are stored in the annot table, and taxonomic information is stored in
the taxon and taxon-name tables. The links between the tables are shown with dashed lines.
The symbols at the ends of the line indicate the type of relationship; e.g., the protein:annot
relationship is a one-to-many relationship; each protein sequence can have many descriptions or
annotations but an annotation refers to only one protein sequence. The abbreviations to the left
of the table entry names indicate whether the entry is a primary key (PK) or foreign key (FK, a
foreign key in one table is a primary key in another, and allows the information in the two tables to
be “joined”), or if the entry is indexed (IX) for rapid lookup.

theseqdb-demo.tar.gz package. Although the comprehensivenr protein sequence
library from the NCBI will be used, any FASTA-formatted database (APPENDIX 1B) can be
used, provided that descriptions follow the NCBI nonredundant DefLine format, e.g.:

>gi|15241446|ref|NP-196966.1| (NM-121466) putative protein
[Arabidopsis thaliana]̂ Agi|11281152|pir||T48635
hypothetical protein T15N1.110 -- Arabidopsis
thalianâ Agi|7573311|emb|CAB87629.1| (AL163792) putative
protein [Arabidopsis thaliana]

See ftp://ftp.ncbi.nih.gov/blast/db/blastdb.txt for further description of this specialized
FASTA sequence format.

The protocol steps below demonstrate how to extract subsets of sequences from specific
taxonomic groupings.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available for the raw data flat-files and
the MySQL sequence database files

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

Building
Biological
Databases

9.4.3

Current Protocols in Bioinformatics Supplement 7

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules. With Unix-like systems, the DBI and
DBD::mysql modules can be installed from the CPAN Perl software
repository with the following commands (typed input indicated in bold):
% perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

In some cases, it may be necessary to type force install DBD::mysql (at
the cpan prompt) if errors are encountered (generally, these errors can safely be
ignored). Under Windows-based operating systems, the ppm package
management utility should be used instead to install both the DBI and
DBD::mysql packages.

Files

The seqdb-demo package of SQL and Perl scripts for creating and maintaining a
relational database of protein sequences, downloaded from ftp://ftp.virginia.edu/
pub/fasta/CPB/seqdb demo.tar.gz. This package includes all of the utilities to
create, load, and maintain the simple protein sequence database described in
these protocols.

A FASTA-format (APPENDIX 1B) “flat-file” protein sequence library, such as
SwissProt or nr. These sequence libraries can be downloaded from
ftp://ftp.ncbi.nih.gov/blast/db/FASTA/swissprot.gz, or nr.gz. The nr library is
more comprehensive, but the SwissProt library is a smaller, more manageable
dataset. In these protocols, the nr sequence library will be exclusively used.

Creating the seqdb demo database
1. In a Unix terminal window, traverse into the directory in which the

seqdb-demo.tar.gz package file was downloaded and execute the commands
listed below (type the text in bold to issue the command; the computer response is
in lightface and comments about the commands are written in italics).

% tar -xzvf seqdb-demo.tar.gz

Uncompresses and unpacks seqdb-demo.

% cd seqdb-demo

Changes directory into seqdb-demo.

% mysql < mysql/seqdb-demo.sql

Creates the database and its tables.

Before executing the third command, one may wish to edit the top few lines of
mysql/seqdb-demo.sql to change the user name, and password from the de-
faults (seqdb-user and seqdb-pass, respectively).

2. To confirm that the database has been created correctly (and to become familiar with
the database’s schema), type the following:

% mysql -u seqdb-user -pseqdb-pass seqdb-demo
mysql> SHOW TABLES;

Provides a listing of the tables found in this database (Fig. 9.4.2A).

Relational
Databases

9.4.4

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.2 (A) List of tables in the database created in Basic Protocol 1, step 1, retrieved
via the SHOW TABLES command. (B) Description of columns in the database, retrieved via the
DESCRIBE annot command.

mysql> DESCRIBE annot;

Gets a description of the columns in the annot table (Fig. 9.4.2B).

These commands confirm that one has successfully created the seqdb-demo database
with four tables, as described in Fig. 9.4.1. Briefly, the protein table will store raw
protein sequences and the annot table (short for “annotation”) will contain the de-
scription of the protein and any links to external public databases (SwissProt, Genpept,
PIR, TrEMBL, etc.), while the other two tables (taxon and taxon-name) will provide
taxonomic species information.

Populating the seqdb-demo database
3. To load the sequences from the nr FASTA-format sequence library, type the

following:

% gunzip /seqdata/nr.gz

Uncompresses the file.

% load-seqdb.pl /seqdata/nr

Loads the data into the database.

In these commands,/seqdata should be changed to the directory of the compressed
nr.gz file previously downloaded from ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz
(see Necessary Resources, above). The load-seqdb.pl script reads every se-
quence entry from the specified sequence library, storing the sequence data in the
protein table and the header information in the annot table. For a large protein
database like nr (which in March of 2004 contained nearly 2 million entries), this
initial loading may take 6 to 12 hr.

4. To confirm that the database has successfully loaded the protein sequences and their
annotations, type (from a MySQL prompt):

Building
Biological
Databases

9.4.5

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.3 (A) Number of protein sequences loaded into database from the nr sequence library, retrieved via the
SELECT COUNT(*) FROM protein command. (B) Number of different descriptions loaded into the database from
nr, retrieved via the SELECT COUNT (*) FROM annot command. (C) Information on a single protein, retrieved via
the SELECT * FROM protein WHERE prot-id = 100 command. (D) All annotations of a protein, retrieved via the
SELECT gi, db, acc, descr command.

mysql> SELECT COUNT(*) FROM protein;

Reports the number of protein sequences (Fig. 9.4.3A).

mysql> SELECT COUNT (*) FROM annot;

Reports the number of different descriptions (Fig. 9.4.3B).

mysql> SELECT * FROM protein WHERE prot-id = 100;

Get a single protein (Fig. 9.4.3C).

mysql> SELECT gi, db, acc, descr

+> FROM annot WHERE prot-id = 100;

Get all annotations of a protein (Fig. 9.4.3D).

Because thenr database is constantly growing, results may not exactly match those above.

5. To add species taxonomic information to all of the protein sequence entries in the
database, it is necessary to download information from the NCBI Taxonomy database.
The updatetax.pl script automatically downloads this information and uses it to
load the taxonomy-related tables in the seqdb-demo database. Type the following:

% mkdir /seqdata/taxdata

Makes a new directory for NCBI Taxonomy download.

Relational
Databases

9.4.6

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.4 (A) Total number of taxa loaded from the NCBI Taxonomy database, retrieved via
the SELECT COUNT(*) FROM taxon command. (B) NCBI’s ID for human, retrieved via the FROM
taxon-name WHERE taxon-id = 9606 command.

% updatetax.pl /seqdata/taxdata

Downloads and imports the NCBI Taxonomy database.

6. To confirm that the NCBI Taxonomy database was successfully loaded into the
database, type the following commands:

mysql> SELECT COUNT(*) FROM taxon

Gets total number of taxa (Fig. 9.4.4A).

mysql> SELECT name, class

+> FROM taxon-name WHERE taxon-id = 9606

Gets NCBI’s ID for human (Fig. 9.4.4B).

Again, one may expect to see slightly different values, as the NCBI Taxonomy database
continues to grow.

BASIC
PROTOCOL 2

EXTRACTING SEQUENCES FROM seqdb-demo FOR SIMILARITY
SEARCHING TO IMPROVE HOMOLOG SEARCHING

The inference of sequence homology is based on the identification of statistically signifi-
cant sequence similarity. If an alignment between two sequences is statistically significant,
one can reliably infer that the sequences are homologous. However, if the score is not
significant, one cannot be certain the sequences are not homologous; in fact, many truly
homologous proteins (where homology is inferred by significant structural similarity) do
not share significant sequence similarity. The significance of an alignment is measured
by the expectation value E, which describes the number of alignments of similar or better
similarity that could be expected to occur by chance alone. The E value is calculated as
E = P × D, where P is the probability of seeing an alignment this good between any given
pair of sequences and D is the total number of pairwise comparisons performed during
the search. Therefore, one of the easiest ways to improve the sensitivity of a similarity
search is to search a subset of sequence libraries, reducing D and improving the signifi-
cance of all E values (nonhomologous alignments will continue to have E values ≈1.0 or
greater). This strategy is particularly effective now that many complete prokaryotic and
eukaryotic genomes and proteomes are available. For example, searching only against
the proteins predicted from a complete genome instead of the entire nr sequence library,

Building
Biological
Databases

9.4.7

Current Protocols in Bioinformatics Supplement 7

can improve the statistical significance of homologous alignments by 100 to 1000-fold,
greatly enhancing the efficiency of the search for homologs in the given organism.

In addition, by searching against specific taxonomic subsets of a sequence library, one
can tailor various scoring parameters to the evolutionary distance being considered. For
example, modern mammals shared a common ancestor only about 100 million years
ago, and so most mammalian orthologs share modestly high protein sequence identity
(70% to 85%, on average). The BLOSUM50 scoring matrix (the default for FASTA), or
BLOSUM62 scoring matrix (the default for BLAST), is “tuned” to be able to identify
distant homologs that share less than 30% identity over long regions, but in return may
not be able to reliably identify shorter homologies that have high identity. Conversely, the
PAM40 matrix is targeted to sequences that share approximately 70% identity, and thus
should be more effective at identifying and accurately aligning mammalian orthologs,
particularly those that are too short to identify using the default matrices. Gap penalties can
be similarly adjusted to be more or less forgiving, based on the approximate evolutionary
distance between library and query sequences.

There are many other motivations for wanting to search against smaller subsets of avail-
able sequences. The most general strategy for searching against a taxonomic (or other)
subset of a larger sequence database is to use the fully populated seqdb-demo database
to generate customized, FASTA-formatted sequence libraries. This protocol will demon-
strate how to generate both species-specific and clade-specific sequence database flat files
from the seqdb-demo relational database.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules

Files

Generated as in Basic Protocol 1

1. Complete Basic Protocol 1.

To generate a species-specific sequence library
2a. To generate a library of human sequences (or sequences from any other species for

which the preferred scientific name is known), create a text file (e.g., human.sql,
found in the seqdb-demo distribution) with SQL code (see UNIT 9.2) that generates
the desired sequences. In this case the SQL code would be that shown in Figure 9.4.5.

3a. Once this file has been created and saved, use it as input to the mysql client with
the following command:

Relational
Databases

9.4.8

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.5 SQL code used to generate a library of human sequences (note the space following the fourth “|” symbol).

Figure 9.4.6 FASTA-formatted human sequences, printed to human.lib.

% mysql -rN seqdb-demo < human.sql > human.lib

The –r flag tells mysql that the output should be left “raw,” so that the embedded
newline characters, \n, will be correctly interpreted; the -N flag prevents mysql from
printing any column names. Together, this command selects all human sequences
(and their preferred annotations) from the seqdb-demo database and prints them
to human.lib, already converted into FASTA format, e.g., Figure 9.4.6.

4a. The SQL command script in Figure 9.4.5 generates valid FASTA-formatted files, but
the sequence is all on one line. This can be problematic for sequence analysis tools
that read sequences line-by-line into small buffers. To reformat the database so that
sequences are on multiple lines with a maximum length of 60, the reformat.pl
Perl script is included in the seqdb-demo distribution.

% reformat.pl human.lib

To generate taxonomic subsets
The updatetax.pl script described in Basic Protocol 1 calculates additional infor-
mation (the left-id and right-id values) that can be used to select entire taxo-
nomic subgroupings of species, e.g., all mammals or all vertebrate species. These two
left-id/right-id numbers have the useful property that any descendents of a tax-
onomic node will have left-id’s (and right-id’s) that are between the left-id
and right-id range of all their parent node; this is referred to as a “nested-set” repre-
sentation of the hierarchy, and can be used to select entire hierarchical subsets without
recursion (Celko, 1999).

2b. Generate a library of mammalian sequences from seqdb-demo; to do so, create a
file (e.g., mammalia.sql, found in the seqdb-demo distribution) with the SQL
code shown in Figure 9.4.7.

3b. As in Step 3a, use this SQL script to generate the sequence library with the following
command:

% mysql -rN seqdb-demo < mammalia.sql > mammalia.lib

4b. Reformat the library as in step 4a with the following command.

% reformat.pl mammalia.lib

Building
Biological
Databases

9.4.9

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.7 SQL code used to generate a library of mammalian sequences from seqdb-demo.

To generate a BLAST-searchable taxonomic subset
The BLAST algorithms (UNITS 3.3 & 3.4) require sequence libraries to be specially formatted
and indexed to accelerate searches. The NCBI-BLAST and WU-BLAST versions use the
formatdb andxdformatutilities, respectively, to perform this reformatting. However,
the NCBI-BLAST versions provide a mechanism to specify a subset of a sequence library
(by GI numbers) without the generation of custom sequence libraries and reformatting.

5. Using the formatdb utility, reformat the nr database for use with NCBI-BLAST
programs:

% formatdb -p T -i /seqdata/nr

6. Alter the SELECT line from the SQL script (in step 3a or step 3b) to select only gi
numbers:

SELECT gi
FROM [. . .]
WHERE [. . .]

7. Execute the revised SQL:

% mysql -rN seqdb-demo < mammalia-gi.sql > mammalia.gi

8. Use thisGI list file (specified with-l) for any BLAST search against thenr sequence
library:

% blastall -p blastp -i query.fa -l mammalia.gi -d
/seqdata/nr

See UNITS 3.3 & 3.4 for further discussion of many of the commands and arguments used in
the steps above.

BASIC
PROTOCOL 3

STORING SIMILARITY SEARCH RESULTS IN seqdb-demo

Most sequence-similarity search programs produce human-readable, textual output.
While this text has important information embedded within it—sequence descriptions,
scores, alignment boundaries, etc.—it is not practical for an investigator to look at all the
results when hundreds of homologies are detected, or when thousands of independent
searches are run. To manage and make efficient use of large sets of search results, the data
must be organized and indexed for easy querying and retrieval. Furthermore, the ratio of
actual similarity and alignment data to white space and formatting text in the output is
often fairly low, making the files easy to read, but much larger than necessary. Finally,

Relational
Databases

9.4.10

Supplement 7 Current Protocols in Bioinformatics

keeping the search results in separate results files makes it more difficult to integrate search
results with other information. This protocol addresses many of these problems by storing
results from sequence similarity searches in the seqdb-demo relational database.

Every similarity-searching program—e.g., BLAST (UNITS 3.3 & 3.4), FASTA (UNIT 3.9),
SSEARCH (UNIT 3.10), or HMMER—produces somewhat different similarity and align-
ment results. Some programs produce alignments with both gaps and frameshifts, while
other programs may provide many separate alignment blocks (e.g., BLAST HSP’s). To
create a generic table structure able to store results from most similarity-search programs,
the focus of this protocol will be on the common types of data produced by these programs;
any data specific only to one algorithm will be ignored, and the BioPerl software will
be used to extract these common data. In general, the programs perform many pairwise
comparisons between one (or more) query sequence(s) and many entries in a sequence
library, reporting only the most similar (or most significant) sequence comparisons. Each
pairwise comparison produces an alignment with an associated raw score and statistical
score (usually expressed as bits), as well as an overall estimate of the alignment’s sta-
tistical significance (E value). Additionally, some alignment information, including the
boundaries in the query and library sequences, the number and position of gaps, etc., is
usually available. Finally, summary information such as percent identity and lengths of
the two sequences may be provided.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules.

The BioPerl toolkit (http://www.bioperl.org; available via CPAN, see Basic
Protocol 1) should be installed.

Files

The seqdb-demo package of SQL and Perl scripts for creating and maintaining a
relational database of protein sequences, downloaded from
ftp://ftp.virginia.edu/pub/fasta/CPB/seqdb demo.tar.gz. This package includes
all of the utilities to create, load, and maintain the simple protein sequence
database described in these protocols.

Similarity search results from FASTA (UNIT 3.8), BLAST (UNITS 3.3 & 3.4), SSEARCH
(UNIT 3.10), or HMMER

A sample set of similarity results is available from
ftp://ftp.virginia.edu/pub/fasta/CPB/ec human.results.gz to produce the file
ec-human.results.

1. Complete Basic Protocol 1.

Building
Biological
Databases

9.4.11

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.8 A schema for similarity search results. Each of the boxes represents one of the
tables used to collect alignment data in the seqdb-demo database. The search table records
the parameters of the search; search-query and search-lib record information about the
query and library sequences used for the search, and the search-hit table records the scores
and boundaries of alignments between query and library sequences. The links between tables,
primary keys (PK), and foreign keys (FK) are indicated as in Figure 9.4.1.

Extending seqdb-demo to include similarity search results
2. An SQL script, search.sql, is included in the seqdb-demo distribution to add

the tables related to sequence similarity search results:

% mysql seqdb-demo < mysql/search.sql

3. As in Basic Protocol 1, step 2, again execute SHOW TABLES and DESCRIBE
<table> statements for each of the search, search-query, search-lib,
and search-hit tables to confirm their existence in the database, and to become
familiar with them (also see Fig. 9.4.8). Briefly, for any one set of similarity results,
a single row will be stored in the search table, summarizing the search (algo-
rithm used, parameters, etc.). Each query used for the search will be stored in the
search-query table, while any library sequence reported in the search will be
stored once in the search-lib table. Information about the alignments between
any query and library sequences is stored in the search-hit table.

Importing similarity search results
4. Run the loadsearch.pl script, provided with the seqdb.demo distribution to

parse and load the sequence similarity search data (e.g., ec_human.results)
into the database:

% loadsearch.pl --format fasta --tag ecoli-vs-human \
--comment ‘E. coli vs human proteome’ < fasta.results

Similarity search results are imported into the database by parsing the raw text out-
put and entering the sequence names, scores, and boundaries into the various search-
related tables. The BioPerl toolkit provides functions for parsing BLAST, FASTA,
and HMMER text results, among others, which are easily combined with Perl DBI
database modules to store search results. The provided loadsearch.pl script from

Relational
Databases

9.4.12

Supplement 7 Current Protocols in Bioinformatics

the seqdb-demo distribution makes use of the BioPerl-based result parsers, so it the-
oretically should be able to accommodate any result formats that BioPerl can parse.
Furthermore, loadsearch.pl assumes that all query and library sequences either
(a) have the NCBI-like “DefLine” header ID found in the nr and similar flat files
(e.g., gi|123456|gb|CAA1128383.1), or (b) have a customized ID of the form
table.field|key (e.g., contig.contig-id|9876 or annot.acc|X12983)
that references a sequence obtainable via the provided table and key field. The key will be
used in the seq-id field of the search-query and search-lib tables, and either
GI or annot.acc, etc., will be used as the type.

Additionally, the FASTA-specific @C:1001 syntax for defining the coordinate offset of
the sequence (which, for this parser to work, must follow the ID) may also be included.
An example entry might look like:

Figure 9.4.9 SQL statements to confirm successful importing of results. Bold text represents
input; lightface text represents output.

Building
Biological
Databases

9.4.13

Current Protocols in Bioinformatics Supplement 7

>contig.contig-id|9876 @C:1001 Fragment of assembled
contig
ACTAGCTACGACTACGATCAGCGACTACGAGCGCGCATCGAC . . .

Finally, loadsearch.pl also assumes that if the report contains multiple results from
multiple queries, then the same library database and parameters were used in all searches
(i.e., the search table data remains constant, and the entire result set is considered as
one search execution, with multiple independent queries). The script expects to receive
the report via STDIN, and to obtain the name “tag” and any descriptive commentary via
command-line arguments.

Confirm successful result importing
5. Execute a few basic SQL statements to check that the data has been successfully

imported into the database (Fig. 9.4.9).

The result shown in Figure 9.4.9 further exemplifies the need to store similarity results in a
relational database: manually examining and evaluating over 8500 statistically significant
alignments is simply not feasible.

BASIC
PROTOCOL 4

ANALYZING SIMILARITY SEARCH RESULTS: IDENTIFYING ANCIENT
PROTEINS

Once the data from sequence similarity searches are stored in a relational database, it
becomes possible to build “genome-scale” summaries that incorporate data about thou-
sands of sequences almost as easily as reporting results from one or two searches. Once
one has saved all the results of a large-scale sequence comparison (e.g., all E. coli protein
sequences used as queries in searches against a database of human protein sequences),
comprehensive summaries of the similarities between the proteins in two genomes can
be generated with a few SQL statements. To illustrate, the authors of this unit searched
all 4,289 E. coli K12 predicted proteins against approximately 40,000 human sequences
from the nr database that are also found in the curated human IPI database, and saved
the results in a seqdb-demo database as ecoli-vs-human. It is then possible to
identify ancient genes—genes shared by human and E. coli, presumed to be present in
the last common ancestor of bacteria and man.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules.

Files

Generated as in Basic Protocols 1 and 3

1. Complete Basic Protocols 1 and 3.

Relational
Databases

9.4.14

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.10 List of highest-scoring E. coli homologs to human sequences, obtained via the commands shown in step
3 of Basic Protocol 4.

2. Once the search results are loaded (using loadsearch.pl, as described in Ba-
sic Protocol 3), a simple summary of the number of E. coli sequences that share
significant similarity to human sequences can be produced:

mysql > SELECT COUNT(DISTINCT search-hit.query-id) AS
shared
-> FROM search-hit
-> INNER JOIN search USING (search-id)
-> WHERE search.tag = ‘‘ecoli-vs-human’’
-> AND expect < 1e-6;

This query returns a count of 926 E. coli sequences.

One could also ask the opposite question, how many human proteins have a significant
match with E. coli, simply by changing theDISTINCT query-id clause toDISTINCT
lib-id.

3. In addition to knowing the numbers of matches that obtain an E value less than
1e--6, one might also like to identify the highest-scoring homologs. It is relatively
easy to identify the E. coli sequences involved in the ten most significant (i.e., lowest
E value) alignments between E. coli and human sequences:

mysql> SELECT search-hit.query-id, search-query.descr,
MIN(expect)

-> FROM search
-> INNER JOIN search-hit USING (search-id)
-> INNER JOIN search-query USING (query-id)
-> WHERE search.tag = ‘‘ecoli-vs-human’’
-> GROUP BY query-id
-> ORDER BY expect
-> LIMIT 10;

To get the listing (Fig. 9.4.10) of E. coli sequences (rather than just the count),
the COUNT (DISTINCT search-hit.query-id) clause from step 2 was
replaced with aGROUP BY query-id; both statements ensure that E. coli proteins
that match several human proteins will be counted only once.

Building
Biological
Databases

9.4.15

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.11 SQL statement to identify human sequences involved in alignments from from
step 3 of Basic Protocol 4, for a database system that allows subselects (see step 4a of Basic
Protocol 4).

4a. For database systems that allow “subselects”: It is more difficult to identify
the human sequences involved in each of these alignments because the GROUP
BY clause used in step 3 means that all the rows from search-hit that
share the same query-id have been collapsed; if one were also to request
search-hit.lib-id, from which of the collapsed rows will thelib-id come?
One might guess that the selected lib-id would be from the same row where the
value of expect is equal to MIN(expect), but, with SQL, there is nothing that
guarantees this to be true. In a database system that allows “subselects” (SQL clauses
that are themselves complete SELECT statements), one could instead do something
like what is illustrated in Figure 9.4.11. Note that in this solution, multiple rows may
be obtained for a given query, if the best hits happen to share the same expectation
value (e.g., an expect of 0).

4b. For database systems that do not allow “subselects”: Versions of MySQL prior to 4.1
lacked “subselect” capability; getting the related hit information without subselects
is a bit more complicated, but demonstrates a useful approach. A temporary interme-
diate table is first created to store the hit-id and query-id values for the rows of
interest (i.e., the hit-id corresponding to the row or rows having MIN(expect)
for each query-id). Because the aggregate functions MIN and MAX only operate
on the first numeric value found in an entry, the trick to getting valid hit-id’s is
to embed each hit-id in a string that also contains the numeric log-transformed
E value, separated by white space. One can then extract thehit-id that corresponds
to MIN(expect) [or MAX(-LOG(expect), as the case may be] from the aggre-
gate function’s result (seeancient.sql, found in theseqdb-demo distribution),
using the statement shown in Figure 9.4.12. The intermediate besthits table (Fig.
9.4.13) can now be used to retrieve only the rows of interest. For instance, the script
shown in Figure 9.4.14 produces a list of the ten best matches between E. coli and
human proteins, excluding any obvious transposase insertion sequences.

These SQL queries show that there are many very highly conserved proteins shared by
both E. coli and humans; because these genes have shared ancestry, they must have been
present in the last common ancestor of bacteria and humans.

Relational
Databases

9.4.16

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.12 SQL statement to identify human sequences involved in alignments from step 3 of
Basic Protocol 4, for versions of MySQL that do not allow subselects (see step 4b of Basic Protocol
4).

Figure 9.4.13 Intermediate besthits table produced by SQL from Figure 9.4.14.

Figure 9.4.14 Script used to produce a list of the ten best matches between E. coli and human
proteins from the intermediate besthits table shown in Figure 9.4.13.

Building
Biological
Databases

9.4.17

Current Protocols in Bioinformatics Supplement 7

BASIC
PROTOCOL 5

ANALYZING SIMILARITY SEARCH RESULTS: TAXONOMIC SUBSETS

One can generalize the genome-genome comparison from Basic Protocol 4 to determine
a taxonomic distribution (i.e., the presence or absence in a given species or taxonomic
clade) for any gene of interest. In this protocol, sequence similarity searches will be used
against a database such as that described in Basic Protocol 1, where species information
is available for each sequence. For any library sequence identified, it is possible to use
the seq-id field from the search-lib table to look up taxon-id values from
the annot table. The goal is to generate a summary table of gene counts that reflect
various taxonomic subsets, i.e., the number of genes that have homology with proteins
in Bacteria, Archaea, and Eukaryota, or only with proteins found in Bacteria (but not
Archaea or Eukaryota), or only with proteins found in Archaea, or with proteins found
in both Bacteria and Archaea but not Eukaryota, etc. Although the relational database
concepts required to generate the summary table are a bit more complex than in the
examples given elsewhere in this unit, which involve “joining” only a handful tables, the
SQL shown in this protocol demonstrates how relational databases can provide summaries
of datasets where the data must satisfy many conditions.

The data for this example come from a sequence similarity search of all 4289 E. coli K12
proteins against the entire NCBI nr database. The goal is to generate the necessary data
to create a summary table, shown in Table 9.4.1. Note that this protocol is not intended
to obtain knowledge about matches that occurred to other E. coli proteins already in the
database, only to homologs in bacterial species other than E. coli. Thus, the last line in
the table demonstrates that 355 E. coli proteins have no known homologs in any other
species.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

Table 9.4.1 Taxonomic Distribution of E. coli Homologs

Eukaryota Archaea Bacteria Totals

+ + + 893

+ − + 661

− + + 394

+ + − 0

− − + 1986

− + − 0

+ − − 0

− − − 355

1560 1289 3934 4289

Relational
Databases

9.4.18

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.15 SQL statement used to create a temporary intermediate results table to store
the taxon-id of all species in which a homolog to each query was found (see step 2 of Basic
Protocol 5). Bold text represents input; lightface text represents output.

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules

Files

Generated as in Basic Protocols 1 and 3

1. Complete Basic Protocols 1 and 3.

2. Create a temporary intermediate results table to store the taxon-id of all species in
which a homolog to each query was found, using the SQL statement shown in Figure
9.4.15 (see taxcat.sql, found in the seqdb-demo distribution). For efficiency,
specify that the table should exist only in memory (remove the TYPE=HEAP clause
if the results do not fit into available memory). Having built this temp-result
table, it can now be used for every combination of desired taxonomic subsets.

3. To generate the counts for genes found in Bacteria and Eukaryota, but not Archaea,
generate a second temporary table, excludes, which contains the query-id’s
of homologs in the undesired taxonomic subsets, using the SQL statement shown in
Figure 9.4.16.

Building
Biological
Databases

9.4.19

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.16 SQL statement used to generate the temporary excludes table (see step 3 of
Basic Protocol 5). Bold text represents input; lightface text represents output.

Figure 9.4.17 SQL statement used to select the count of rows in temp-results where the
query-id appears, given the desired taxonomic subsets.

The WHERE constraint in this query is equivalent to taxon-name.name =
`Archaea'; therefore the number of records inserted (1289) is the total number of
E. coli proteins that have homologs in Archaea (regardless of what other homologies
there may be). These are the source of the column totals found at the bottom of the
summary table.

4. For eachquery-id not inexcludes, select the count of rows intemp-results
where the query-id appears, given the desired taxonomic subsets, using the SQL
statement shown in Figure 9.4.17. If that count equals the number of taxonomic
subsets, then that query-id satisfies the condition (note the HAVING clause that
enforces this behavior).

The number of rows that this query returns (661; Fig. 9.4.18) is the number of genes that
have hits against proteins in both Bacteria and Eukaryota species, but have no significant
hits against proteins from Archaea species (the +/−/+ row in Table 9.4.1). Also, by
joining the results back to the annot table, it is possible to see which genes have this
taxonomic distribution.

5. Repeat steps 3 and 4 for each taxonomic combination of interest (changing only the
names of the taxa to include, and the HAVING clause to reflect the number of taxa)
to generate the summary table. Note that the last combination (--/--/--) denotes
E. coli proteins that did not align against any other protein sequence; the value for
that row (355) is the difference between the total number of E. coli proteins used in
the search (4289) and the sum of all the other totals.

Relational
Databases

9.4.20

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.18 Table returned by the query in Figure 9.4.17. The number of rows that this query returns (661) is the
number of genes that have hits against proteins in both Bacteria and Eukaryota species, but have no significant hits
against proteins from Archaea species.

BASIC
PROTOCOL 6

ANALYZING SIMILARITY SEARCH RESULTS: INTERGENIC REGIONS

While ab initio gene prediction is difficult in eukaryotes (and can be difficult for prokary-
otes with sequencing errors), many genes are easily identifiable by homology to known
protein sequences. However, comparing complete genomic DNA sequences against the
entire nr protein database is time consuming. Gene finding by homology can be much
more efficient if one only searches against protein sequences from closely related or-
ganisms. Having identified the “low-hanging fruit,” remaining stretches of intergenic
sequence can be searched against a larger database. This approach is both more sensitive
and faster, because a smaller database is used in the initial search, and fewer comparisons
are made overall. Here, a two-step search strategy will be described, which could also be
extended over multiple iterations using subsequent nested taxonomic subsets.

First, a taxonomic subset of proteins are selected that share homology with most of the
genes in the target organism. For example, to identify genes in E. coli, one might search
against the approximately 45,000 proteins from the parental family Enterobacteriaceae.
The choice depends on the evolutionary distance to organisms with comprehensive pro-
tein data: for the puffer fish (Fugu rubripes), the parent order Tetraodontiformes includes
only about 700 protein sequences; the parent class Actinopterygii (ray-finned fishes)
includes approximately 16,000 protein sequences, while the parent superclass Gnathos-
tomata (jawed vertebrates) 330,000 proteins; however, species from across the superclass
have diverged over 500 million years of evolution, and these may be difficult to identify.
Next, the genomic DNA would be compared to the chosen taxonomic subset of pro-
tein sequences (using a DNA-translating search algorithm—e.g., BLASTX (UNIT 3.3) or
FASTX (UNIT 3.9)—and the search results would be stored in seqdb-demo. Then, the
next step in this process would be to identify the unmatched regions of “intergenic” DNA
sequence—i.e., subregions of search-query entries that did not produce a signifi-
cant alignment, and use only these regions to search a more complete protein set. This
protocol demonstrates how to produce intergenic regions from prior search results, using
S. typhimurium (STM) sequences searched against E. coli (ECO) proteins.

While the process of searching a new sequence library with unmatched DNA sequences
is easy to conceptualize, identifying those sequences requires several steps. Importantly,
the approach illustrated here assumes a bacterial or archaeal genome without introns—
i.e., any sequence-similarity hit can be considered a gene and any unmatched DNA as

Building
Biological
Databases

9.4.21

Current Protocols in Bioinformatics Supplement 7

intergenic (and not intronic). However, the same technique could be used in eukaryotes,
but only after exon-based alignments have been assembled into complete gene models
and the ranges of those gene models saved as search hits in the database.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules.

Files

Generated as in Basic Protocols 1 and 3

1. Complete Basic Protocols 1 and 3.

A sample set of similarity results is available from ftp://ftp.virginia.edu/pub/fasta/
CPB/stm eco.results.gz. This file must be uncompressed with the command gunzip
stm-eco.results.gz to produce the file stm-eco.results, which can then be
loaded into the database with the loadsearch.pl command.

2. Build a temporary table that contains the ranges of the successful hits using the SQL
statement shown in Figure 9.4.19 (see ranges.sql, found in the seqdb-demo
distribution). Note that it is not possible to declare this table as TEMPORARY because
it is later going to be joined against itself).

3. For each set of hits A that have the same beginning on the same DNA sequence, pair
them with all hits B on the same DNA sequence that begin after any of the A hits
end. Take the max of the endings of A as the beginning of an intergenic range; from
all the B’s, choose the smallest begin as the end of the intergenic range. Use the SQL
statement shown in Figure 9.4.20.

Figure 9.4.19 SQL statement used to build a temporary table that contains the ranges of the
successful hits, used in step 2 of Basic Protocol 6.

Relational
Databases

9.4.22

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.20 SQL statement used in step 3 of Basic Protocol 6, which contains an initial set of
intergenic ranges for each query-id.

Figure 9.4.21 Two SQL statements used for adding the missed classes of beginning and ending
“intergenic” DNA sequence to the igranges table (see step 4 of Basic Protocol 6).

4. The SELECT statement used in step 2 (Fig. 9.4.20) missed two important classes of
“intergenic” DNA sequence: the range from the beginning of the DNA sequence to
the first hit, and the range from the last hit to the end of the DNA sequence. The two
SQL statements in Figure 9.4.21 add those ranges to the igranges table.

5. Finally, it is desirable to add any DNA sequence queries that did not match against
anything (and thus have no rows in the hitranges table), using the SQL state-
ment in Figure 9.4.22. This must be done in two steps because it is not possible to
simultaneously SELECT from a table into which one is also INSERT-ing.

6. What remains is to clean the igranges table of a few sources of artifactually
overlapping ranges. The first is caused when a collection of hits look like the diagram
shown in Figure 9.4.23A, leading to two igrange’s as shown in Figure 9.4.23B.
Only the lowermostigrange, marked by the arrow, is desired. The unwanted longer
range is removed by grouping the igrange’s on end and selecting MAX(begin)
as the new boundary:

CREATE TEMPORARY TABLE clean-igranges TYPE=HEAP
SELECT query-id, MAX(begin) AS begin, end
FROM igranges
GROUP BY query-id, end;

Building
Biological
Databases

9.4.23

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.22 SQL statement to add any DNA sequence queries that did not match against
anything and that have no rows in the hitranges table (see step 5 of Basic Protocol 6).

Figure 9.4.23 Schematic illustration of one possible source of artifactually overlapping ranges; the collection of hits in
(A) lead to two igrange’s as shown in (B). Only the lowermost igrange, marked by the caret, is desired. See step 6 of
Basic Protocol 6.

Figure 9.4.24 Schematic illustration of a second possible source of artifactually overlapping ranges: (A) the begin and
end of two small hits are spanned by a third, larger hit, leading to the ranges shown in (B).

7. The second set of artifactual overlap ranges stems from hits where the begin and
end of two small hits are spanned by a third, larger hit as shown in Figure 9.4.24A,
leading to the ranges shown in Figure 9.4.24B. The unwanted ranges are eliminated
by checking to see if any of the ranges overlap within the original set of hits using
the SQL statement in Figure 9.4.25; any that do are not selected into the final set of
intergenic ranges.

The final-igranges table now contains the intergenic regions. These regions could
be used as the basis for queries in a subsequent search of a larger taxonomic subset
of protein sequences; the above process can then be repeated for each new subset of
intergenic regions.

Relational
Databases

9.4.24

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.25 SQL statement for eliminating unwanted ranges from the final set of intergenic
ranges.

COMMENTARY

Background Information
Relational databases provide a powerful

and flexible foundation for large-scale se-
quence comparison, and make it much easier
to implement the “management controls” nec-
essary to keep track of sequences, alignment
positions, and scores. The seqdb-demo
database and the accompanying Basic Proto-
cols in this unit are meant to serve as examples
of the many ways that relational databases can
simplify genome-scale analyses in an investi-
gator’s research.

These protocols use relational databases
and SQL to provide comprehensive summaries
of large-scale sequence comparisons. To pro-
vide relatively compact examples, the authors
have focused on evolutionary analyses, e.g.,
the number of homologs that are shared be-
tween different taxonomic classes. The power
of relational approaches greatly increases as
additional data are added to the database. In
addition to sequence and taxonomic data, re-
lational databases can store information about
protein families and domains (e.g., PFAM)
or protein functional assignments (the Gene
Ontology or GO classification). Relational
databases are particularly powerful when they
are used to associate different kinds of data;

for example, one might ask how often homol-
ogous proteins (proteins that share statistically
significant similarity) are distant in the GO
hierarchy and thus are likely to have differ-
ent functions. As biological databases become
more diverse, including not only sequence data
but also genome locations, biological func-
tion, interaction results, and biological path-
ways, SQL databases provide powerful tools
for exploring relationships between very dif-
ferent sets of biological data on a genome
scale.

Literature Cited
Celko, J. 1999. Joe Celko’s SQL for Smarties. Mor-

gan Kaufmann, San Francisco.

Internet Resources
ftp://ftp.ncbi.nih.gov/pub/blast/db/FASTA/nr.gz

Comprehensive nr database (flat file protein se-
quence database).

ftp://ftp.ncbi.nih.gov/pub/blast/db/FASTA/
swissprot.gz

SwissProt protein database (flat file protein se-
quence database).

Building
Biological
Databases

9.4.25

Current Protocols in Bioinformatics Supplement 7

ftp://ftp.pir.georgetown.edu.pir databases/
psd/mysql/

The Protein Identification Resource (PIR) at
Georgetown University, which distributes the PIR
protein database in relational format for the MySQL
database program.

Contributed by Aaron J. Mackey and
William R. Pearson

University of Virginia
Charlottesville, Virginia

UNIT 9.5Using Apollo to Browse and Edit Genome
Annotations

An annotation is any feature that can be tied to sequence, such as an exon, promoter, or
transposable element. The Apollo tool (Lewis et al., 2002) allows researchers to explore
genomic annotations at many levels of detail, and to perform expert annotation curation,
all in a graphical environment. It is currently used by FlyBase (Drysdale et al., 2005)
and Ensembl (Hubbard et al., 2005) to display genomic sequence annotations for many
different species. The Apollo Java application can be downloaded from the Web and run
locally on any Windows, Mac OS X, or Unix-type system (including Linux). Version
1.6.0, described in this protocol, was released in November, 2005, but Apollo is actively
under development and new versions are released every few months.

The simplest use of Apollo is to browse gene annotations and supporting evidence for the
annotations of a single species, like Drosophila melanogaster, that are stored in GAME
Extensible Markup Language (XML) format (Basic Protocol). However, one can access
data from a Chado database via Chado XML files (Alternate Protocol 1) or directly via
Java Database Connectivity (JDBC; Alternate Protocol 2), from an Ensembl database
(Alternate Protocol 3), from Gene Finding Format (GFF) files (Alternate Protocol 4),
or from GenBank or EMBL formatted files (Alternate Protocol 5). Support Protocol 1
describes moving beyond browsing to create, delete, split, and merge annotations of
different types, modify intron-exon structures, or add and edit text comments. Support
Protocol 2 describes the configuration files necessary to view data from each source.
This unit does not discuss using the Apollo Synteny Browser and Editor to compare
annotations and evidence between multiple species, but detailed information is available
at the Apollo User Guide Web site at http://www.fruitfly.org/annot/apollo/userguide.html.

BASIC
PROTOCOL

BROWSING GENOME ANNOTATIONS IN GAME XML FILES

Apollo can display a region of genomic sequence, obtained by querying a live database (by
a gene symbol or identifier, map location, genomic sequence coordinates, or GenBank
accession for the genomic sequence segment), or by simply loading a local file. This
protocol illustrates how to download and install the program, query for a gene, and
browse computational evidence and other information associated with the annotated
gene model and sequence, using the Drosophila melanogaster annotations in GAME
XML format as an example.

Necessary Resources

Hardware

Unix (Linux, Solaris, or other variety) workstation, PC with Microsoft Windows,
or Macintosh with OS X v. 10.2.3 or later

At least 164 Mb of RAM
Internet connection if querying database interactively
Three-button mouse (see Troubleshooting for information on simulating a

three-button mouse)

Software

Apollo program version 1.6.0 or higher
Java JDK 1.4 (included with the Apollo distribution for Unix and Windows)

Contributed by Sima Misra and Nomi Harris
Current Protocols in Bioinformatics (2005) 9.5.1-9.5.28
Copyright C© 2005 by John Wiley & Sons, Inc.

Building
Biological
Databases

9.5.1

Supplement 12

Using Apollo for
Genome

Annotations

9.5.2

Supplement 12 Current Protocols in Bioinformatics

Files

Configuration files (included with installation)
Data in GAME XML format (sample file: example.xml is included with

installation; more data can be obtained from within Apollo transparently over
the Internet). If edited, files must be saved in plain text format with line breaks,
i.e., as a simple ASCII file.

Download and install Apollo
1. Download Apollo from the Apollo home page at http://www.fruitfly.org/

annot/apollo/ and install on the local computer by clicking Install and following
the instructions on the screen. When Apollo is installed, a Java Virtual Machine
(JVM) is bundled with it, except under Mac OS X. If the browser being used does
not support Java, download the installer and then launch it by double-clicking on the
installer icon or (for Unix/Linux) by typing sh./apollo.bin.

On Unix or Linux, be aware that, when asked where to make links to Apollo, one cannot
choose the Apollo installation directory, or the link will overwrite the Apollo executable.

On Mac OS X version 10.2.3 or higher, install JDK1.4, if not already installed, using
Software Updates. Sometimes, the Apollo installer stops responding due to a known
problem with the installer software. If this happens, close the installer and restart it.

Browse genome annotations graphically
2. Start an Apollo session. On a Windows or Macintosh machine, click on the Apollo

icon. In Unix or Linux, type Apollodir/Apollo, where Apollodir is the
directory in which Apollo is installed. The Apollo splash screen will stay up for a
few seconds while the Apollo software loads. A window opens offering various ways
to find the region of interest, as shown in Figure 9.5.1.

The first time Apollo is opened on a Mac, a warning is displayed about JDK1.4. If JDK1.4
is already installed, ignore the warning and restart Apollo.

3. Query for and load a region of interest. From the pull-down menu under “Choose
data adapter,” select Drosophila Annotations (GAME XML Format), click on a
tab (e.g., File), and enter text in the appropriate box(es). For this example, load
the default example.xml file that was downloaded into the Apollo/data/
directory during installation. Click the OK button at the bottom of the window.

Figure 9.5.1 Loading an XML data file into Apollo. Drosophila annotations may also be loaded
over the Internet by Gene name, Cytology, etc. by clicking on the tabs.

Building
Biological
Databases

9.5.3

Current Protocols in Bioinformatics Supplement 12

Apollo provides several ways to search for the region of interested: Gene (symbol or
identifier); Scaffold (GenBank accession, a 250- to 350-kb section of the Drosophila
genomic sequence); Location (chromosome arm, start, and end position, e.g., arm:3R,
start:100000, end:300000); or File (e.g., data/example.xml, or use Browse to select
a file, then click the OK button). To download all the Drosophila annotation data to the
computer to access it locally via the File tab, see http://flybase.net/annot/.

4. Browse the computational evidence and annotations in the main display. The main
window, shown in Figure 9.5.2, displays a portion of Drosophila chromosome arm
3R. Each feature is displayed as a colored box; different feature types have different
colors, with feature sets (groups of features like the exons in a transcript) connected
by lines. All forward strand features are shown above the “axis,” which is labeled
in base pairs in the middle of this panel, and reverse strand features are below
the axis. Green and red vertical bars on the axis indicate the limits of the currently
displayed sequence range. Raw “computational evidence” or “results” (e.g., BLAST,
Genscan) produced by computational algorithms are displayed in the black zones
above and below the axis. “Annotations,” features that can be tied to sequence, such
as transcripts, promoters, or transposable elements, can be synthesized from the
results in the black zones, e.g., by a human curator. Manually annotated blue and
green gene transcript models appear in light blue zones above and below the axis.
Dragging the small red arrows at the left edge of the display controls the amount of
space dedicated to results versus annotations.

5. Zoom and scroll to a region of interest. To zoom in for a closer view, use the “×2”
and “×10” buttons at the bottom of the window (Fig. 9.5.2). Zooming in enough
will show the individual bases near the axis and residues for many features, and all
possible start codons (in green) and stop codons (in red) will appear (Fig. 9.5.3). To
zoom out, use the “×.1” and “×.5” buttons. Use the Reset button to go back to the
original zoom level. To scroll horizontally, use the scroll bar just above the Zoom
buttons. The main panel also has vertical scroll bars. If there are many different

Figure 9.5.2 The main display of Apollo, with detail panel at the left, result panels in black,
annotations panels in light blue, navigation panel at top right, and scroll and Zoom buttons at the
bottom. For the color version of this figure go to http://www.currentprotocols.com.

Using Apollo for
Genome

Annotations

9.5.4

Supplement 12 Current Protocols in Bioinformatics

Figure 9.5.3 Zoomed-in main display of Apollo, showing green start and stop codons at the top,
sequence of result features, and genomic reference sequence and metric at the bottom. For the
color version of this figure go to http://www.currentprotocols.com.

results or annotations stacked up, one may need to scroll vertically with the scroll
bars or mouse wheel to see all of them. To zoom in and center on a particular feature,
click on the feature to select it, then choose the Zoom to Selected function from the
View menu (keyboard shortcut, Ctrl-z).

Clicking the middle mouse button anywhere in the main panel will center the panel on
that point. If any of the Zoom buttons is then pressed, the display will stay centered around
the selected position as it is zoomed in or out.

6. Choose strand to inspect. To facilitate examination of genes on the reverse strand, the
entire display (including the sequence) can be reverse complemented by selecting
Reverse Complement from the View menu. When the display is reverse comple-
mented, the axis turns red. To toggle strands on and off, use the “Show forward
strand” and “Show reverse strand” check boxes in the View menu.

Selecting “Flip strands” from the View menu reverse complements if both strands are
currently displayed. If only one strand is shown, “Flip strands” will show the other strand,
reverse complemented.

7. Select features. Clicking on a feature with the left mouse button selects it; selected
features appear boxed in red (Fig. 9.5.2). To select more than one feature, hold
down the middle mouse button while dragging the mouse around the features to be
selected (“rubber-banding”). Holding down the Shift key while left clicking (“Shift-
clicking”) can be used to toggle features in or out of the selection. Add features to
the currently selected set by Shift-clicking with the left mouse button (to add single
features) or dragging while holding down the Shift key and the middle mouse button
(to add multiple features). To deselect one or more of the features selected while
leaving the others selected, Shift-click (or drag while holding down the Shift key
and the middle mouse button) the feature(s) to be deselected. Click on an intron
or double-click an exon to select the whole transcript or feature set. To select all
transcripts of an annotated gene, double-click an intron. Double-clicking an intron
belonging to a computational result feature selects all results of that particular type.

8. Determine how features are displayed with the Types Panel. Computational evidence
features are organized into “tiers,” i.e., horizontal rows of data that can be labeled
and controlled as a unit. In addition to the tier, each feature is associated with a

Building
Biological
Databases

9.5.5

Current Protocols in Bioinformatics Supplement 12

Figure 9.5.4 Types panel, indicating color and presentation of each tier of data. Performing a
right mouse click over a tier, in this example over Gene Prediction, brings up a pop-up menu
with the individual data types in the tier (Genscan, Genie, and FgenesH analyses). For the color
version of this figure go to http://www.currentprotocols.com.

particular data “type” (e.g., the Gene Prediction tier includes the Genie type and
the Genscan type, corresponding to the results from different algorithms). Each data
type can be individually assigned a color, indicated in the Types Panel (Fig. 9.5.4),
and a shape or “glyph,” set in the tiers configuration file, described in Support
Protocol 2.

a. To bring up the Types panel, select Show Types Panel in the Tiers menu. The
Types panel shows the names of the different types of computational results and
the colors that were assigned to them, organized by tier. To see a pop-up menu
of types that belong to each tier, click the right mouse button while the mouse
cursor is over that tier panel in the Types panel (Fig. 9.5.4). Selecting one of the
types from the popup menu brings up a color editor to make it possible to change
the color of that result type. Middle clicking over a tier panel makes it possible to
adjust the score threshold for showing results of that type.

b. The panel for each tier has check boxes that can be used to change the view in the
main panel, e.g., to conserve space. The Show check box determines whether or
not to display a tier. The Expand check box determines whether all features of a

Using Apollo for
Genome

Annotations

9.5.6

Supplement 12 Current Protocols in Bioinformatics

given type are collapsed into the same row, possibly on top of each other (e.g., the
light blue tier in Fig. 9.5.2) or expanded on different rows so that no two features
overlap (e.g., the light green tier in Fig. 9.5.2). The Sort box determines whether
the features are sorted, so that the highest-scoring features in a tier are closest to
the center of the display. The Label check box determines whether the features in
that tier are labeled with their names.

An alternative way to expand/collapse or show/hide a result tier is to select a feature,
bring up the right-mouse-button pop-up menu (RMPM), and select the Expand/Collapse
tier or Show/Hide tier options to force all features of that type to be expanded or collapsed,
or shown or hidden. To expand/collapse or show/hide all tiers, use the options under the
Tiers menu.

9. Identify matching, new, and suspicious evidence. Apollo conveys a great deal of
information graphically in the main display; see Figure 9.5.5 for examples of several
useful visual flags. To identify features with matching endpoints, all features that
have the same 5′ or 3′ boundary as the currently selected feature are highlighted
with white lines at the edges of the feature boxes. If a type in the results panel
has a manually set date defined in the tiers configuration file (described in Support
Protocol 2), then results of that type representing matches to sequences newer than
that date are shown with a white box around them. Sequencing gaps, e.g., when 5′
and 3′ Expressed Sequence Tags (ESTs) from the same cDNA clone are matched but
internal sequence is missing, are indicated by dashed lines. If a splice site is incorrect
or unconventional (not a GT donor or AG acceptor), an orange triangle appears in
the annotation at the site of the splice site. If cDNA or EST evidence has been tagged
with a comment indicating that it is incomplete or suspect, the feature appears cross-
hatched in bright pink. Finally, if a protein-coding annotation is missing a start or
stop codon, it will appear with a green or red arrowhead, respectively.

Read more information associated with genome annotations
10. Read more about a feature in the detail panel. Summary information about selected

feature(s) will appear in the Detail panel at the left or bottom of the main window,
shown at the left in Figure 9.5.2. The far left side of the Detail panel shows a list of
the types of features selected and their names, sequence ranges, and scores. The right
side of the panel displays the coordinates of the feature selected in the left panel, and
usually other information, depending on the feature type.

Figure 9.5.5 Visual cues in the Apollo main display indicate new, matching, or problematic data.
For example, boxed features indicate new results, white edge lines indicate matching features,
cross-hatched features have been flagged, dotted lines indicate sequencing gaps, and arrowheads
indicate missing start or stop codons or nonconsensus splice sites. For the color version of this
figure go to http://www.currentprotocols.com.

Building
Biological
Databases

9.5.7

Current Protocols in Bioinformatics Supplement 12

By default, the selected features are sorted by start position (Range) in the detail panel on
the lower left. One can change the sort by clicking (for forward sort) or Shift-clicking (for
reverse sort) on a column header. For example, clicking on Name sorts the selected features
in alphabetical order by name, and Shift-clicking on Score sorts them in descending
order by score. The details displayed and the default sort order for any feature type
are configurable. The panel can be oriented horizontally or vertically by selecting Make
Evidence Panel Horizontal/Vertical from the View menu.

11. Read more about a feature via the Web. If any feature is selected and the right mouse
button is clicked, the right mouse pop-up menu (RMPM) will appear (Fig. 9.5.6).
Select “Get info about this feature via the Web” to get more information from the
parent database of that feature (e.g., SwissProt, GenBank) in the browser.

If the browser window is hidden at this point, it may be necessary to bring it back up
to see the report. If a Web browser is not running, Apollo will try to launch the default
browser; if this does not work, start the Web browser manually and try again.

Figure 9.5.6 The right-mouse pop-up menu (RMPM) brings up various browsing and editing
functions, depending on which feature is selected. In this example, an annotated gene was
selected.

Using Apollo for
Genome

Annotations

9.5.8

Supplement 12 Current Protocols in Bioinformatics

Figure 9.5.7 The Annotation Info Editor in Apollo allows browsing and editing of text information,
including comments, associated with annotations.

12. Read more text information about annotations. The RMPM item Annotation Info
Editor brings up a window that has text information about the annotation, shown
in Figure 9.5.7. Comments and properties associated with the annotation are shown
in the scrollable Comments panel, followed by comments and properties associated
with individual transcripts belonging to the annotation. Above the Comments panel
is a table listing database identifier(s) for this annotation. If an identifier is selected,
more information about that database entry (if available) will appear in the Web
browser. For more see Support Protocol 1 and the Apollo User Guide (also see step
20 of this protocol).

The Follow Selection check box on the lower left side of the window is used to follow
selections from other parts of Apollo. If it is checked, when another annotation is selected
in the main Apollo window, the Annotation Info Editor will load that annotation; if an
annotation name is selected in the Annotation Info window, the main window will scroll
to show that annotation. Alternatively, multiple Annotation Info Editors can be opened at
once.

13. Display and save the sequence of any feature. To display the sequence of one or more
features in FASTA format, select the feature(s) and choose the Sequence option on
the RMPM to open a Sequence Window (Fig. 9.5.8). The Sequence Window display
options for annotations include the translated peptide sequence, cDNA sequence
(exons only), CDS (from start to stop of translation), and corresponding genomic
sequence (plus and minus the desired amount of genomic sequence on either side
of the feature). The default display is amino acid sequence for gene annotations
and result sequence for results that have sequence. The sequence can be copied and
pasted into another application; alternatively the currently displayed sequence(s) can
be saved as a multiple-FASTA file by clicking the Save As button.

By default, the sequence window does not follow selections made in the main panel. If the
Follow External Selection check box is checked, then, as new features in the main panel are
selected, their sequences show up in the Sequence window. Launch new sequence windows
from an existing one by clicking the New Sequence Window button. For annotations or
features that extend over an edge of the region being displayed (indicated by green and
red vertical lines across the axis), the Sequence menu item is disabled.

Building
Biological
Databases

9.5.9

Current Protocols in Bioinformatics Supplement 12

Figure 9.5.8 The Apollo Sequence window displays the sequence of selected features in FASTA
format; a variety of options are available for protein-coding gene annotations.

14. Display and save the sequence of any genomic region. The Save Sequence option
under the File menu saves the entire sequence of the current region as a FASTA-
formatted file. To save any part of the genomic sequence, e.g., for further analyses
such as BLAST or primer prediction, use the middle mouse button to rubber-band
the region of interest immediately above (for the sequence of the forward strand) or
below (for the reverse strand) the axis. If a very large region is selected, a prompt
will appear instructing the user to enter a filename to save the sequence as a FASTA
file; otherwise, the selected region will appear in a new Sequence window.

Navigate from within Apollo
15. Navigate between regions in the genome. Use the navigation bar at the top of the

main display (Fig. 9.5.2) to move between regions. To go to a particular region,
select a chromosome arm from the pull-down menu, enter start and end positions,
then click the Load button to fetch the new region over the Internet. To request the
region immediately upstream or downstream, use the < and > buttons, then click
the Load button. To extend the current region by 50%, click the Expand button, and
then click the Load button. The Load button is disabled until there is a change in the
requested region.

This option only works for datasets that query transparently over the Internet, such as
Drosophila.

Using Apollo for
Genome

Annotations

9.5.10

Supplement 12 Current Protocols in Bioinformatics

16. Navigate with the Annotation Menu and Annotation Tree. The Annotation Menu
lists all of the annotations in the current region alphabetically and color-coded by
annotation type. When an annotation name is selected, Apollo will zoom to that
annotation. The Annotation Tree lists annotations in the left-to-right order in which
they appear in the displayed region, in the Annotation Info Editor described in step
12 (Fig. 9.5.7), or as a separate window, opened by selecting Show Annotation Tree
under the View menu. After making an initial selection in the annotation tree, use
the keyboard arrow keys to navigate up and down the tree. If the + icon to the left of
an annotation name is clicked, that item will expand to show all the transcripts for
that gene. Clicking the + to the left of a transcript will show the coordinates of the
exons for that transcript.

On a Mac, one will see horizontal and vertical arrowheads instead of + and −. Click on
the base of the arrowhead, not the tip, to open or close a node.

17. Search by position, name, or sequence. To search within the current region, select
Find from the Edit menu. Entering a base-pair coordinate in the Position field and
pressing “Go to” will center the main panel display on that base pair. Entering an
accession number, gene name, or other main feature identifier in the Name field and
pressing Find will search through all of the features and select all that have that name;
the main panel will center on the first. Search is case-insensitive, and adds an implicit
wildcard (∗) to the end of the search string. Entering a nucleic acid sequence in the
Sequence field on the Search window will search for all occurrences in the current
genomic sequence on the selected strand and display them in a table. Clicking on an
entry will zoom to and highlight the matching subsequence next to the axis.

If the “Use Regular Expressions?” box is checked, one can search for a sequence or
a feature name that matches a pattern of some kind. For example, by querying for
ATCG. {0,20} GGAC, all sequences flanked by ATCG and GGAC with up to 20 bases
in between would be identified.

Figure 9.5.9 The Exon Detail Editor (EDE) allows browsing and editing of annotations while
viewing the genomic sequence and three-frame translation. Click the diagram at the bottom
of the EDE to navigate within the annotated model. For the color version of this figure go to
http://www.currentprotocols.com.

Building
Biological
Databases

9.5.11

Current Protocols in Bioinformatics Supplement 12

View features in greater detail
18. View annotated transcripts with reading frames. The Exon Detail Editor (EDE)

window (Fig. 9.5.9) is invoked from the RMPM after selecting an annotation. A
separate line of reference nucleotide sequence is displayed for each transcript that
appears in the annotation zone in the region being viewed. The three-frame translation
of the reference sequence is also displayed, with all start codons highlighted in green
and all stop codons highlighted in red. The exons for each transcript are denoted on
the sequence in blue with successive exons in alternating light and dark blue shades.
The selected transcript appears outlined in red, and its name is indicated on the lower
left side of the panel—the pull-down menu can be used to select a different transcript.
The graphic at the bottom of the window shows the exon structure of the selected
transcript (with or without introns) and the translation start (in green) and stop (in
red). The numbers on the exons indicate the translation reading frame, with respect
to the genomic sequence displayed in Apollo: 1 refers to the top reading frame in the
viewer, 2 to the middle, and 3 to the bottom. The black outline indicates the region
of sequence currently visible in the exon detail view; this region is also indicated in
the main display with a colored rectangle matching the color of the stripe below the
title bar at the top of the EDE. Click on the graphic at the bottom to navigate within
the transcript. Alternatively, drag the colored rectangle in the main display near the
axis, or use the scroll bar at the right of the EDE. Buttons at the bottom right of the
EDE move to the next 5′ or 3′ gene. Click the Find Sequence button to search for
amino acid or nucleotide sequences; click on any result in the table to center on the
identified sequence, outlined in yellow.

For more details, consult the EDE section in the Apollo User Guide (see step 20, below)
and Support Protocol 1.

19. View alignments of computational results with annotations. Apollo does not calculate
sequence alignments, but data loaded into Apollo often contain alignments (from
BLAST, sim4, etc.). Zooming into the main display shows aligned sequences, but
without any gaps. To inspect alignments with appropriate gaps in the reference and
result sequences, invoke the Jalview multiple alignment viewer by selecting one
or more result features on one strand, then use the RMPM to select either Align
Selected Features or Align Same Type Features in Region. A new window will open,
showing the selected protein or DNA sequences aligned to that strand’s reference
sequence and its three-frame virtual translation (Fig. 9.5.10). To see detailed pairwise
comparisons between sequences, click on the labels (at the left of the Jalview display)

Figure 9.5.10 The Jalview alignment viewer can be called from within Apollo to view multiple
alignments of nucleotide and peptide sequences.

Using Apollo for
Genome

Annotations

9.5.12

Supplement 12 Current Protocols in Bioinformatics

of the sequences for which pairwise comparisons are to be viewed, then under the
Calc menu, choose Pairwise Alignments.

Many more options are available in Jalview; see the Jalview documentation at
http://www.jalview.org/documentation.html for more details (but note that not all of the
options described there are available within Apollo).

Introns in annotations are displayed in Jalview as gaps (dashes) flanked by 10 base pairs
of the intronic genomic sequence next to the splice site acceptor and/or splice site donor.

20. Access more detailed instructions. The Apollo User Guide can be viewed in
the Web browser by selecting the Help menu inside Apollo or by visiting
http://www.fruitfly.org/annot/apollo/userguide.html. This document includes de-
tailed instructions and keyboard shortcuts for the steps described above, information
on how to browse annotations from multiple species simultaneously, analyze se-
quence for restriction sites, and analyze GC content, as well as discussion on other
options.

SUPPORT
PROTOCOL 1

EDITING GENOME ANNOTATIONS

Apollo, unlike many genome browsers, can also be used as an editor to create, delete,
split, and merge annotations of different types, modify intron-exon structures, and add
and edit text comments. The modified annotations can then be saved in a flat file or saved
directly to the database.

Necessary Resources

Hardware

Unix (Linux, Solaris, or other variety) workstation, PC with Microsoft Windows,
or Macintosh with OS X 10.2.3 or later

At least 164 Mb of RAM
Internet connection if querying database interactively
Three-button mouse (see Troubleshooting for information on simulating a

three-button mouse)

Software

Apollo program version 1.6.0 or higher
Java JDK 1.4 (included with the Apollo distribution for Unix and Windows)

Files

Configuration files (included with installation); data in GAME XML format
(sample file: example.xml is included with installation; more data can be
obtained from within Apollo transparently over the Internet)

1. Save annotations. Immediately after creating or editing annotations, select Save As
from the File menu to save the changes. One can choose to Save annotations, evidence
(computational evidence), or both annotations and evidence in the selected file by
checking the appropriate boxes and clicking OK. To protect against losing changes
inadvertently, Apollo also automatically saves data in the apollo.backup file in
the user’s personal .apollo directory (see Support Protocol 2) every 20 min.

Modify exon-intron structure of a gene model
2. Create annotations. To create a new gene model or transcript, select results on which

to base the gene annotation (see step 7 of the Basic Protocol) and drag-and-drop
the results into the blue annotation zone. The Action box in the lower left corner of
the main display (Fig. 9.5.2) will indicate the editing action, and a ghost image will

Building
Biological
Databases

9.5.13

Current Protocols in Bioinformatics Supplement 12

appear in the blue zone while dragging. If a previously annotated gene transcript
open reading frame (ORF) overlaps the ORF of the new transcript, the new gene
model will be added to the existing gene as a new transcript. To add a new transcript
as a separate gene, select the result, but instead of dragging, use the right mouse
button pop-up menu (RMPM) option Create New Annotation and select the type
of the new annotation (protein-coding gene, transposable element, etc.) from the
RMPM. To create a new annotation with no supporting evidence, place the mouse in
the blue annotation zone at the 5′ edge of the exon (the coordinate will be indicated
in the Position box in the lower left of the main display panel) and select Create New
Annotation from the RMPM. Choose the annotation type and enter the length of the
exon when prompted.

3. Modify annotations at the exon level. To duplicate a transcript, e.g., to create an al-
ternatively spliced model, select it and choose Duplicate Transcript from the RMPM
(Fig. 9.5.6). To add one or more exons to an existing annotated transcript, hold down
the Shift key while dragging result features on top of the transcript. To delete anno-
tated exons or transcripts, select the unwanted feature(s), then select Delete Selection
from the RMPM. To merge two exons, hold down the Shift key (Shift-click) to select
the exons, and then choose Merge Exons from the RMPM; the intron between the
exons will disappear. To transfer exons from one transcript to another, select all ex-
ons of the recipient transcript, Shift-click while selecting the exons to be transferred
from the donor transcript, and select Move Exon(s) to Transcript from the RMPM.
To transfer all exons from one transcript to another, repeat this procedure, but select
Merge Transcripts from the RMPM. To split exons from one transcript into two
separate transcripts, Shift-click the exons on either side of the intron at the desired
site of the split and select Split Transcript from the RMPM.

4. Modify exon edges in the main display. To set the 5′ or 3′ edge of an annotated exon
to match the 5′ or 3′ edge of a result feature, first select the exon to be modified
in the blue annotation zone, then Shift-click the result feature and select Set as 5′
End or Set as 3′ End from the RMPM. To set both 5′ and 3′ boundaries to match
a result feature’s boundaries, repeat this procedure but select Set Both Ends from
the RMPM. To split one exon into two exons, position the mouse where the split is
desired and select Split Exon from the RMPM. A 1-bp break will be created that can
be modified into a proper intron (see step 5).

5. Modify exons in the Exon Detail Editor. Invoke the Exon Detail Editor (EDE; de-
scribed in step 18 of the Basic Protocol) by selecting the annotation to be edited and
choosing Exon Detail Editor from the RMPM. Clicking and dragging on the edges
of exons in the EDE will make it possible to modify their boundaries, regardless of
whether the new boundary is a proper splice site or not. The ORF will be recalcu-
lated and changes will be reflected in the main display as well as in the glyph at the
bottom of the EDE. Changes can be monitored in the Sequence Window, described
in step 13 of the Basic Protocol. Selecting a base and bringing up the RMPM in
the EDE indicates the position of the base within the genomic reference sequence,
annotated transcript, and annotated exon, and allows fine-grained changes to exons.
For example, trim an exon by selecting the desired edge and choosing Set as 5′ End
or Set as 3′ End from the RMPM. To make an intron within an exon, select a base
within the exon and choose the Make Intron option from the RMPM. Apollo creates
a 1-bp break that can be made into an intron by dragging the edges of the adjacent
exons to appropriate splice donor and acceptor sites. To create an exon within an
intron, select a base within the intron and choose the Create Exon option from the
RMPM. Apollo creates a 1-bp “exon” that can be modified by clicking and dragging
the left and right edges. To delete an exon from within the EDE, select the exon

Using Apollo for
Genome

Annotations

9.5.14

Supplement 12 Current Protocols in Bioinformatics

and then choose Delete Exon from the RMPM. To remove an intron and merge two
exons, select Merge with 5′ Exon or Merge with 3′ Exon from the RMPM.

Modify information associated with annotations or results
6. Set the start of translation. When transcripts are modified, Apollo calculates the

longest ORF and sets the start of translation accordingly, then calculates the stop
of translation based on the modified ORF (see the Apollo User Guide for details).
Thus, if one wishes to set the start or stop of translation manually, it must be done
after other changes have been made to the structure of the gene model.

a. To set the translation start or stop for a transcript in the main display, zoom in to
see the green start and red stop codons at the top and bottom of the result panel
(Fig. 9.5.3), select the start or stop codon of interest, and then drag it down to the
annotated transcript.

b. To manually reset the start of translation of a protein-coding transcript annotation
to reflect the longest ORF, select the annotation and choose Calculate Longest
ORF from the RMPM. Within the EDE, one can manually select any base to be
the start of translation by clicking on the base and choosing Set Start of Translation
from the RMPM. If the translation start is an ATG, the site is marked in green;
otherwise, it is marked in purple, and the unconventional start codon will be
listed in the Annotation Info Editor (see step 7). Unconventional start codons are
automatically translated as methionines. Missing start or stop codons are identified
in the main display by green or red arrowheads (Fig. 9.5.5).

7. Edit text associated with an annotation. Open the Annotation Info Editor, described
in step 12 of the Basic Protocol (Fig. 9.5.7), by selecting an annotation and choosing
Annotation Info Editor from the RMPM.

a. Select the appropriate transcript with the annotation tree at the left of the editor.

b. Type in the text boxes to change the annotation or transcript symbols or synonyms.
Special settings allow users to modify the annotation identifier (ID), but this must
be done with caution, and the ID must match the format specified in the tiers
configuration file (described in Support Protocol 2).

c. Use the check boxes to mark an annotation as dicistronic, an annotation or tran-
script as problematic, or a transcript as finished, or to approve a nonconsensus
splice site (non-GT donor or AG acceptor).

d. Use the pull-down menu to change the Type of entity for the annotation, e.g., gene
(protein-coding gene, the default), tRNA, transposable element, etc.

e. Click the appropriate Edit Comments box to add comments to annotations or indi-
vidual transcripts. A new Comment window will open that lists existing comments
for the annotation or transcript. Click the author/date pair of an existing comment
to edit or delete it, or click Add to create a new comment, either by typing in free
text or by selecting a comment (specified in the style configuration file, described
in Support Protocol 2) from the pull-down menu. Check For Internal Viewing
Only to mark the comment as internal. Click Close in the Comment window when
finished editing Comments. If the Undo button is clicked in the main Annota-
tion Info Editor, the most recent change made will be discarded. Clicking Undo
repeatedly will discard each change going backwards in time.

f. Click Close in the main Annotation Info Editor to save the changes. After the
Annotation Info Editor is closed, it will be impossible to undo the changes made
(although, of course, the user can decide whether to save the changes to a file or
just exit Apollo and leave the file unchanged).

Building
Biological
Databases

9.5.15

Current Protocols in Bioinformatics Supplement 12

8. Indicate translation exceptions.

a. To indicate that a stop codon in a transcript is read through, check the box in the
Annotation Info Editor next to Read Through Stop Codon with Selenocysteine,
and the ORF will be extended to the next stop codon. The original stop codon
shows up in pink in the main display and in the EDE.

b. Set a +1 translational frame shift in the EDE by selecting the nucleotide to be
skipped and choosing Set +1 Translational Frame Shift Here from the RMPM.
The base will be highlighted in orange in both the main display and EDE, and
Apollo will skip over this base and move forward one frame to continue the
translation of the sequence. A similar option allows one to set a −1 frame shift to
re-read a base pair.

c. Frame shifts are shown in the Annotation Info Editor for that transcript. To reset
the ORF, select the base in the EDE and choose Remove [+1/−1] Translation
Frame Shift Here from the RMPM.

9. Indicate genomic sequencing errors. A limited number of single-base-pair edits on
the genomic sequence can be performed to allow the correct translation of a gene
model. To delete a single base pair, select it in the EDE, then choose Adjust For
Sequencing Error Here, then select Deletion. The base pair will remain in the main
display and EDE, highlighted in orange, as well as in the saved genomic sequence, but
any features overlapping this base pair (annotated transcripts, transcript translations)
will not include it. To make an insertion, repeat this procedure but select Insertion. A
new pop-up will allow the user to choose which nucleotide to add at that position. The
new base pair will not appear in the display or in the saved genomic sequence, but
the position just downstream of the inserted base pair will be highlighted in orange
in both the EDE and main display, and any features overlapping this base pair will
include it. To make a 1-bp substitution, repeat the procedure but select Substitution
and select the appropriate nucleotide from the popup. Any of these changes will
also be detailed in the bottom right panel of the Annotation Info Editor. To remove
a change to the genomic sequence, select the highlighted base in the Exon Detail
Editor, and select Remove [Deletion/Insertion/Substitution] from the RMPM.

10. Move or tag results and annotations in the main display. If a result feature (e.g.,
an EST) has been assigned to the wrong strand, choose the Move to Other Strand
option from the RMPM. As mentioned in step 9 of the Basic Protocol, computational
evidence can be tagged with a comment, e.g., indicating it is incomplete or suspect.
To tag evidence, select the feature, then from the RMPM select Change Tag from
None to the appropriate comment from a new pop-up menu (specified by the style
configuration file, described in Support Protocol 2); the feature will then appear
cross-hatched in bright pink to indicate that it has a comment associated with it,
and the comment will be saved when the work is saved. Annotations can also be
tagged in the main display using the RMPM. The Peptide Status options specified
in the style configuration menu can be altered, the owner of the annotation changed,
or the transcript marked as finished. All of these settings are also indicated in the
Annotation Info Editor. See Basic Protocol, step 20 for more details.

Note that only result types with ResultTag entries in the style configuration file can be
tagged.

Add annotations or results
11. As described in step 1, one can save separate annotations and evidence GAME XML

files. These files can also be loaded sequentially. For example, when browsing an
annotation file, it is possible to layer an evidence file for the corresponding region

Using Apollo for
Genome

Annotations

9.5.16

Supplement 12 Current Protocols in Bioinformatics

by selecting Layer More Results or Annotations from the File menu. One can also
layer computational evidence files, like BLAST files, by selecting Computational
Analysis Results from the drop-down menu under Choose Data Adapter.

SUPPORT
PROTOCOL 2

CONFIGURATION FILES

Apollo relies on a number of configuration files to set the parameters to handle data from
different sources. The format and contents of the configuration files are described in detail
in the Apollo user manual (included with the Apollo distribution and also available at
http://www.fruitfly.org/annot/apollo/userguide.html). The configuration files can be con-
fusing, but it is not usually necessary to read, understand, or modify these files. This sec-
tion describes the organization of the configuration files in case it is necessary to change
them—for example, to add a new Chado database to the list of known databases, or to add
a new data type to the tiers file. See Troubleshooting section for information about how
to address problems that may arise from improper modification of the configuration files.

By default, the configuration files reside in the conf subdirectory inside the Apollo main
directory. There are three levels of configuration files: global configuration file, style file,
and tiers file. The steps below describe how the user can, if necessary, modify Apollo’s
configuration files. If Apollo is running while any of the configuration files are edited,
one will generally have to exit and restart Apollo in order to see the changes made.

Necessary Resources

Hardware

Unix (Linux, Solaris, or other variety) workstation, PC with Microsoft Windows,
or Macintosh with OS X 10.2.3 or later

At least 164 Mb of RAM

Software

Apollo program version 1.6.0 or higher
Java JDK 1.4 (included with the Apollo distribution for Unix and Windows)
Any text-editing program

Files

Configuration files (included with installation). If edited, files must be saved in
plain text format with line breaks, i.e., as a simple ASCII file. Take care not to
add any line breaks in the middle of lines (some text editors tend to do this).

1. Save personal preferences in the .apollo directory. The .apollo subdirectory
in the user’s personal home directory is created the first time that Apollo is launched.
Configuration files in the .apollo directory override or modify the settings in the
default configuration files in the Apollo/conf directory. Apollo first reads the
global configuration file apollo.cfg and style files in its conf directory, and
then parses the user’s personal configuration files in the user’s .apollo directory
(if any).

2. Modify global settings. The apollo.cfg file sets some of the parameters that
apply to every data source (e.g., GAME XML, Chado, etc.) and also tells Apollo
which data source–specific configuration files (style files) correspond with which
data readers (data adapters). Use a text editor to change parameter settings (for
example, to change the detail panel FrameOrientation to vertical). Each data adapter
has a DataAdapterInstall line in apollo.cfg, which tells Apollo where to
find the Java class and the style file for that data adapter, e.g.:

Building
Biological
Databases

9.5.17

Current Protocols in Bioinformatics Supplement 12

DataAdapterInstall "apollo.dataadapter.gamexml.
GAMEAdapter" "fly.style"

If a new data adapter, or a new style file for an existing data adapter is added to
Apollo, apollo.cfg will need to be modified.

If changes are made in apollo.cfg, one will need to quit and restart Apollo to see the
changes reflected.

3. Modify the settings for a particular data source. Each data source has at least one
style file associated with it (e.g., fly.style and game.style for Drosophila
annotations, which are in GAME XML format; ensembl.style for Ensembl
data). Besides setting various display preferences, the style file indicates where to
find the tiers file for the particular data source. Use the Preferences editor inside
Apollo, by selecting Preferences (Style) from the Edit menu, to change a parameter
in the style file (for example, to change EnableEditing to True) and then click Save.
The file will be saved by default in the .apollo directory in the personal home
directory. Click the Cancel or Restore Original buttons to restore the style file to its
original state. Besides setting various display preferences, the style file tells Apollo
where to find the tiers file for that particular data source. For example, fly.style
has the line:

Types "fly.tiers"

If the tiers file has been saved it under a different name, the style file must be hand
edited to point to the new tiers file. It is preferable to save the new tiers file as
fly.tiers in the .apollo directory.

It is possible to import supplementary style files into the main file by using Import-
Style:

ImportStyle "extra.style"

For example, fly.style imports game.style and then overrides some of
game.style’s parameters.

Do not to try to import a file into itself—this results in a Java error due to stack overflow.

It is necessary to keep only the settings that one wishes to change in the personal
style file in the .apollo directory—for example, if one is happy with all of the
settings in game.style but wants the result background color to be white instead of
black, the .apollo/game.style file could contain only the lines

FeatureBackgroundColor "white"

EdgematchColor "black"

The rest of the settings will keep the values that they were assigned by the default
game.style in the Apollo/conf directory.

Sometimes it is necessary to restart Apollo to see changes take effect.

4. Modify the tiers files. The tiers file describes the expected data types and how they
should be grouped into tiers and displayed. As described in the Basic Protocol step 8,
tiers are collections of (generally related) data types that are displayed in the same
row. For example, gene predictions made by Genscan and Genie might be grouped
in the same tier but displayed in different colors (Fig. 9.5.4), and the colors assigned
to each type can be changed from the Types panel. To save this sort of change,
select the Save Type Preferences option under the File menu. To add new data types,

Using Apollo for
Genome

Annotations

9.5.18

Supplement 12 Current Protocols in Bioinformatics

change information displayed in the detail panel, etc., use a text editor very carefully
to make changes in the tiers file. To add a new data type to the tiers file, first decide
which tier (i.e., row) the type is to appear in (or create a new tier). Next, add a new
[Type] record for the data type. The most critical field in the [Type] record is
datatype or resulttype, which identifies how this type of data is described in the input.
For example:

datatype : blastx masked:aa SPTR.yeast

identifies masked BLASTX hits to a database called aa SPTR.yeast. The corre-
sponding computational results in the GAME XML file might look like this:

<result set id=":830665">

<name>P39515-AE003603.Sept-aa SPTR.yeast-
blastx masked</name>

<result span>

<type>blastx masked:aa SPTR.yeast</type>

These datatypes are constructed from the program and database identified in the
computational analysis record in the GAME XML input:

<computational analysis>

<program>blastx masked</program>

<database>aa SPTR.yeast</database>

It may be necessary to restart Apollo after editing the tiers file. Apollo preferentially uses
the tiers files that it finds in the .apollo directory. If there is no tiers file in .apollo
for a given style, it uses the default tiers file in the Apollo/conf directory.

ALTERNATE
PROTOCOL 1

BROWSING GENOME ANNOTATIONS IN CHADO XML FILES

The Chado XML adapter allows Apollo to read files in Chado XML format (UNIT 9.6),
e.g., if one wishes to set up a private or customized genome database. Tools such as
XORT (UNIT 9.6) can be used to export Chado XML from a Chado database or import
Chado XML back into the database. Apollo’s Chado XML adapter was developed to
work well with FlyBase’s Chado XML format; if one’s own Chado XML is significantly
different, one may need to modify the Chado XML adapter.

Note that the Chado XML adapter, like the GAME XML adapter, can be used to read
in or write out separate files for the results and the annotations (see steps 1 and 11 in
Support Protocol 1).

Necessary Resources

Hardware

Unix (Linux, Solaris, or other variety) workstation, PC with Microsoft Windows,
or Macintosh with OS X 10.2.3 or later

At least 164 Mb of RAM
Internet connection
Three-button mouse (see Troubleshooting for information on simulating a

three-button mouse)

Building
Biological
Databases

9.5.19

Current Protocols in Bioinformatics Supplement 12

Software

Apollo program version 1.6.0 or higher
Java JDK 1.4 (included with the Apollo distribution for Unix and Windows)

Files

Configuration files (included with installation); data in Chado XML format (sample
file: CG16983.chado.xml are included with installation). Files must be in
plain-text format with line breaks (simple ASCII files).

1. Download Apollo and start an Apollo session as described in the Basic Protocol.

2. Load a region of interest. From the pull-down menu under Choose Data Adapter
(Fig. 9.5.1), select “Chado XML file” and enter a file name in the box. For this
example, load the CG16983.chado.xml sample file that downloaded into the
Apollo/data/ directory during installation. Then click the OK button at the
bottom of the window.

3. Proceed to step 4 of the Basic Protocol.

ALTERNATE
PROTOCOL 2

BROWSING GENOME ANNOTATIONS FROM A CHADO DATABASE

The Chado adapter allows Apollo to read data directly from a Chado database (UNIT 9.6)
via Java Database Connectivity (JDBC). This direct connection allows one to modify a
customized genome database without having to dump or load flat files that can become
stale and asynchronous with the database, although Chado writeback via JDBC is still a
work in progress. Using Chado databases will require modification of some configuration
files.

Necessary Resources

Hardware

Unix (Linux, Solaris, or other variety) workstation
PC with Microsoft Windows, or Macintosh with OS X 10.2.3 or later
At least 164 Mb of RAM
Internet connection
Three-button mouse (see Troubleshooting for information on simulating a

three-button mouse)

Software

Apollo program version 1.6.0 or higher
Java JDK 1.4 (included with the Apollo distribution for Unix and Windows)
Any text-editing program

Files

Configuration files (included with installation). Edited files must be saved in plain
text format with line breaks, i.e, as simple ASCII files.

1. Download Apollo as described in the Basic Protocol.

2. Modify chadodb element in the configuration file. Before starting Apollo it will be
necessary to edit text in the configuration file conf/chado-adapter.xml in
order to fill in the “chadodb” element. An example is shown in Figure 9.5.11. Add a

Using Apollo for
Genome

Annotations

9.5.20

Supplement 12 Current Protocols in Bioinformatics

Figure 9.5.11 Part of the Chado configuration file conf/chado-adapter.xml containing the “chadodb” element. For
definitions, see Table 9.5.1.

Table 9.5.1 Definitions of Terms in the Configuration File conf/chado-adapter.xml (see Fig. 9.5.11)

Term Definition

name The label that will appear in the drop-down list of databases

url URL for the database to be used

adapter Identifies the Apollo class to use for the database. If the database uses
Postgres, use apollo.dataadapter.chado.jdbc.
PostgresChadoAdapter; if it uses Sybase, use
apollo.dataadapter.chado.jdbc.SybaseChadoAdapter.

dbName The database name to use on the server

dbUser The database user/login

dbInstance Identifies the type of Chado database (see Alternate Protocol 2, step 3)

style Style configuration file for this database (see Support Protocol 2)

default-command-line-db Database used when Apollo is run from the command line when set to
“true”

similar entry to chado-adapter.xml describing the particular Chado database
to be used, referring to the definitions in Table 9.5.1.

If using a different database vendor, try Postgres and Sybase to see if one of them works.
If these changes do not work, see Troubleshooting for instructions on how to contact the
Apollo mailing list.

3. Modify chadoInstance element in the configuration file. Edit text in the file
conf/chado-adapter.xml to fill in the “chadoInstance” element. Whereas
chadodb captures how to connect to a Chado database, chadoInstance captures the
differences in Chado instantiations. For example, if there were several servers for
the same Chado database, they would have different chadodb elements, but the same
chadoInstance. The chadoInstance element captures two things: a Java class to use,
and a list of annotation types in the particular Chado database. An example is shown

Building
Biological
Databases

9.5.21

Current Protocols in Bioinformatics Supplement 12

Figure 9.5.12 Part of the Chado configuration file conf/chado-adapter.xml containing the
“chadoInstance” element.

Using Apollo for
Genome

Annotations

9.5.22

Supplement 12 Current Protocols in Bioinformatics

in Figure 9.5.12. Add a similar entry to chado-adapter.xml describing the
particular Chado database to be used.

clsName is the class name to be used for the particular Chado instance.
There are currently three Chado instance classes: apollo.dataadapter.
chado.jdbc.TigrSybilChadoInstance; apollo.dataadapter.chado.
jdbc.FlybaseChadoInstance; and apollo.dataadapter.chado.jdbc.
RiceInstance. These Java instances capture differences in schema and ontologies
between these three Chado instances.

oneLevelAnnotTypes and threeLevelAnnotTypes list annotation types con-
sisting of one and three levels. One-level annotation types are currently used by Apollo for
annotations such as transposons or transposon insertions. Three-level annotation types
are used for hierarchical annotations like genes/transcripts/exons. Eventually, the anno-
tation containment hierarchy will be determined automatically using Sequence Ontology
terms.

Because Chado database instantiations may vary, both in schema and ontologies, it is
possible that these changes to configurations will not be enough. RiceInstance is the most
up-to-date of the three clsNames, so start by trying that with the database; if it does
not work, see the Troubleshooting section for instructions on how to contact the Apollo
mailing list.

4. Choose Chado database to load data over the Internet. Select the database to be
used from the pull-down menu next to Chado Database.

5. Select a region to display. The list for Type of Region includes the “sequenceTypes”
listed in chado-adapter.xml that correspond to the top-level types in the Chado
database. For example, one might query the FlyBase Chado database by gene or by
golden path region, a 250 to 350 kb region of genomic sequence. Enter the identifier
for the Type next to Region ID and click OK. Be patient; large regions may take time
to retrieve.

6. Proceed to step 4 of the Basic Protocol.

ALTERNATE
PROTOCOL 3

BROWSING GENOME ANNOTATIONS FROM AN ENSEMBL DATABASE

The Ensembl project has created public MySQL databases of annotated genomes for
many species, including human, mouse, mosquito, rat, zebrafish, and fugu. Each species
is stored in a separate, publicly accessible database. Apollo’s Ensembl (EnsJ) adapter can
read these databases, as well as any other MySQL database that uses Ensembl Schema
20 or above. This protocol describes how to read data interactively over the Internet from
these databases.

Necessary Resources

Hardware

Unix (Linux, Solaris, or other variety) workstation, PC with Microsoft Windows,
or Macintosh with OS X 10.2.3 or later

At least 164 Mb of RAM
Internet connection
Three-button mouse (see Troubleshooting for information on simulating a

three-button mouse)

Software

Apollo program version 1.6.0 or higher
Java JDK 1.4 (included with the Apollo distribution for Unix and Windows)

Building
Biological
Databases

9.5.23

Current Protocols in Bioinformatics Supplement 12

Figure 9.5.13 Loading data into Apollo from an Ensembl database via the Internet.

Files

Configuration files (included with installation)

1. Download Apollo and start an Apollo session as described in the Basic Protocol.

2. Read data from Ensembl over the Internet. From the pull-down menu, under Choose
Dataadapter, select “EnsJ - Direct Access for Ensembl Databases (Schema 20 and
above),” as shown in Fig. 9.5.13). Expand the Databases panel by clicking the
Show/Hide Databases button. For Ensembl data, the Host should be set to ensem-
bldb.sanger.ac.uk, the Port to 3306, and the User name to anonymous (no
password is necessary). Data in other Ensembl-type databases will have other Host
and Port settings.

When the Ensembl adapter is requested, it takes a moment to appear. A pop-up error
message saying that one did not select a database may be displayed. Click the OK
button to continue. Sometimes Apollo will stop responding; see Troubleshooting for more
information.

3. Select a region to display. At the bottom of the Databases panel, next to Ensembl
Database Name, select an available Ensembl database from the pull-down menu.
Under the Location Panel, a specific gene can be chosen for viewing, either by
Stable ID (e.g., ENSG00000187981) or by specifying a Coordinate System and
Chromosome Sequence Region (e.g., one could choose “chromosome—NCBI35”
for the coordinate system, “6” for the seq region name, and “500000-100000” for
start-end). The History pull-down should contain a list of preset regions to try.

4. Choose which features to display. Ensembl features are categorized into various
Types, as described in step 8 of the Basic Protocol. To determine which Types to
display in the region loaded, click the Show/Hide Tracks button. This will bring up
an expanded Types panel. The numbers beside each type—e.g., Genes (23578)—
represent the number of features of that type in the whole Ensembl database. Select
at least one type of feature to view (Genes is a good starting point). Click the OK
button at the bottom of the panel, and Apollo will bring up the selected annotations
in the chosen region.

Using Apollo for
Genome

Annotations

9.5.24

Supplement 12 Current Protocols in Bioinformatics

Be aware that the Ensembl data adapter uses lazy loading, which means it delays loading
information—such as the actual sequence residues—until it is requested. This makes the
initial load faster, but when the user selects a feature and attempts to zoom in, there will
be a pause while the sequence residues are fetched from the server.

5. Proceed to step 4 of the Basic Protocol.

ALTERNATE
PROTOCOL 4

BROWSING GENOME ANNOTATIONS FROM ENSEMBL GFF FILES

Gene Finding Format (GFF) is a simple tab-delimited text format for storing ge-
nomic annotations. A version of GFF called Ensembl GFF is used at the Sanger
Institute for storing the annotations in flat files. Note that there is more than
one type of GFF, and Apollo only supports the Ensembl type (as described in
http://www.sanger.ac.uk/Software/formats/GFF).

The GFF adapter can be a useful starting point for groups that are trying to import data
into Apollo, since many analysis tools produce output that is in GFF or GFF-like format.

Necessary Resources

Hardware

Unix (Linux, Solaris, or other variety) workstation, PC with Microsoft Windows,
or Macintosh with OS X 10.2.3 or later

At least 164 Mb of RAM
Internet connection if querying database interactively
Three-button mouse (see Troubleshooting for information on simulating a

three-button mouse)

Software

Apollo program version 1.5.2 or higher
Java JDK 1.4 (included with the Apollo distribution for Unix and Windows)

Files

Configuration files (included with installation)
Data in Ensembl GFF format (sample file: chr.200000-400000.gff is

included with installation). If edited, files must be saved in plain text format with
line breaks, i.e., as simple ASCII files.

1. Download Apollo and start an Apollo session as described in the Basic Protocol.

2. Read a GFF file. From the pull-down menu, under Choose data adapter, choose the
Ensembl GFF option (Fig. 9.5.14). Type the GFF file name in the text box or press
the Browse button to bring up a file chooser.

3. In order to see the genomic sequence of the region, one may optionally enter a
FASTA-format sequence file name for the region that corresponds to the GFF file.

4. Proceed to step 4 of the Basic Protocol.

5. Optional. To save data in GFF format, choose the Save As menu item from the
File menu and then select Ensembl GFF file format from the Choose Data Adapter
pull-down menu. It is possible at this point to supply names for the GFF file and
(optionally) the FASTA-format sequence file.

Note that Ensembl GFF format is not rich enough to support curated annotation, so
even if editing is turned on (which, by default, is not enabled in the Ensembl GFF data
adapter), it will not be possible to create and save curated annotations on GFF-format
data. Loading data from another data source and saving as GFF is also not recommended,
as one will lose much of the information.

Building
Biological
Databases

9.5.25

Current Protocols in Bioinformatics Supplement 12

Figure 9.5.14 Loading data into Apollo from a file in GFF format.

ALTERNATE
PROTOCOL 5

BROWSING GENOME ANNOTATIONS FROM GenBank OR EMBL FILES

Apollo can read GenBank and EMBL format from files or directly over the Internet (given
an accession number). The GenBank and EMBL adapters are still under development,
and are not as robust as the GAME XML adapter. In particular, reading as GenBank or
EMBL and then saving in GenBank format does not yet perfectly preserve everything
from the original source.

Necessary Resources

Hardware

Unix (Linux, Solaris, or other variety) workstation, PC with Microsoft Windows,
or Macintosh with OS X 10.2.3 or later

At least 164 Mb of RAM
Internet connection if querying database interactively
Three-button mouse (see Troubleshooting for information on simulating a

three-button mouse)

Software

Apollo program version 1.6.0 or higher
Java JDK 1.4 (included with the Apollo distribution for Unix and Windows)

Files

Configuration files (included with installation)
Data in GenBank or EMBL format. If edited, files must be saved in plain text

format with line breaks (i.e., as simple ASCII files).

1. Download Apollo and start an Apollo session as described in the Basic Protocol.

2. Load from a file or via the Internet. To load from a file, choose the GenBank/EMBL
option from the “Choose data adapter” menu (Fig. 9.5.1), then select the File tab.
Type the file name in the text box or press the Browse button to bring up a file chooser.
Note that Apollo can read only one GenBank or EMBL record at a time, so if the file
contains a series of records, only the first one will be read. To load via the Internet,
if the GenBank or EMBL accession number of the sequence of interest is known,
select the Accession tab instead of the File tab. Choose the appropriate Database
(GenBank or EMBL) from the pull-down list, enter the accession number in the text
box, and press the OK button. The GenBank or EMBL data will be downloaded from

Using Apollo for
Genome

Annotations

9.5.26

Supplement 12 Current Protocols in Bioinformatics

the Internet and displayed in Apollo. If the accession number requested is not found,
a pop-up message saying Read Failed will appear.

3. Proceed to step 4 of the Basic Protocol.

4. Optional. It is possible to save data in GenBank format regardless of whether it
was loaded from GenBank or from another data source. Select Save As from the
File menu and choose GenBank/EMBL Format from the pull-down menu. One can
choose tabular format, supplying a directory name in which to save the tables (this
is generally used for submitting annotations to GenBank), or the more familiar
GenBank human-readable format, which generates a single file.

COMMENTARY

Background Information
In order to provide biological insight, DNA

sequences need annotation. The process of an-
notation starts with computational analyses
that look for sequences that seem to corre-
spond to interesting biological features. There
are a variety of tools available for this task—
including those that look for similarity to
known gene transcripts or other types of fea-
tures, such as BLAST (UNITS 3.3 & 3.4), sim4
(Florea et al., 1998), and BLAT (UNIT 1.4)—
and those that construct abstract models to
identify possible regions of interest, such as
Genscan (Burge and Karlin, 1997), FgenesH
(Salamov and Solovyev, 2000), promoter pre-
dictors, etc. While automated analyses point
to regions of interest on the sequence, se-
quence analysis tools still fall short of the
expert knowledge that biologists can bring to
the task of annotation. Thus, Web browsers
such as the UCSC Genome Browser (UNIT 1.4)
and NCBI Map Viewer (UNIT 1.5) are help-
ful for browsing computational results, but do
not offer the possibility of easily synthesiz-
ing computational data into a coherent model
of the gene. Apollo provides interactive tools
to allow biologists to curate the preliminary
gene model and other annotations generated
by automatic analysis tools, both to ensure the
correctness of the annotations themselves and
to deepen the current understanding of biol-
ogy by connecting these annotations to the
biology of the organism. Apollo was written
in Java to make it easily portable to multiple
sites with different data-management environ-
ments. Apollo is the annotation editor for the
Generic Model Organism Database (GMOD)
project (Stein et al., 2002) and is the editing
tool of choice for an increasing number of
genome centers, many of which have made
changes to better suit their individual needs.
These changes range from adding new data
types to the tiers configuration file to writing

new adapters to enable Apollo to read annota-
tion data from proprietary databases.

The first major public release of Apollo
(version 1.2.3) was made available in
December, 2002. Since then, new updates of
the Apollo software have been released every
few months at the Apollo Web site. Apollo has
been downloaded over 5000 times. The most
recent public release at the time of publication
is Version 1.6.0 (November, 2005), described
in this document.

Troubleshooting

Apollo mailing list
To submit questions about Apollo, send

a message to the Apollo mailing list. It is
first necessary to visit http://mail.fruitfly.org/
mailman/listinfo/apollo and join the mailing
list before sending a question.

Apollo and memory use
Apollo makes it possible to load and ex-

amine a large amount of annotation data at
once. However, if the local computer does not
have very much memory, one may run out of
memory when trying to load a large region.
Apollo should be able to load relatively small
regions (e.g., for Drosophila, 100 kb) even on
a low-memory computer, but it will run very
slowly. When the machine is about to run out
of memory, a warning message should pop
up, in which case all work should be immedi-
ately saved, and the user should exit and restart
Apollo.

Memory problems may also be encountered
by keeping the same Apollo window open and
repeatedly loading new regions. Again, the
easiest solution is to quit and restart.

Simulating a three-button mouse
The hardware requirements for Apollo in-

clude a three-button mouse; however, it is pos-
sible to use Apollo with a one-button mouse.
If using a Mac with a single-button mouse, a
right mouse click can be simulated by holding

Building
Biological
Databases

9.5.27

Current Protocols in Bioinformatics Supplement 12

Figure 9.5.15 Messages printed to Java console window indicating where Apollo finds its con-
figuration files. See Support Protocol 2 for a description of the files.

down the Ctrl or Alt key while clicking the
mouse; a middle mouse click can be simulated
by holding down the Apple key while clicking
the mouse. On some laptop computers run-
ning Windows, the middle mouse button pops
up a scrollbar instead of bringing up Apollo’s
middle mouse popup menu. To simulate a mid-
dle mouse click, use the Alt key with the left
mouse button.

Configuration files
For instructions on adding a new data type

to the tiers file, see step 4 of Support Protocol 2.
Most users should not need to modify the con-
figuration files. If they have been changed, be
sure that no line breaks have been inserted
in any lines—this is a common source of
problems.

When trying to track down problems re-
lating to the configuration files, it is helpful
to figure out which configuration files are be-
ing used. The console window reports which
configuration files Apollo is using. On Mac
OS X, it is possible to start a Java console
by running the Console application in the
Applications/Utilities folder. On
Windows, go to the Control Panel, select In-
ternet Options, select Advanced, scroll down
to Microsoft VM, and check “Java console
enabled.” Windows will have to be restarted
in order to see the Java console. The con-
sole should come up when starting Apollo.
On Unix, the text output will go to the shell
window from which Apollo was invoked.
The messages printed to the console win-
dow (Fig. 9.5.15) will say where Apollo finds
its configuration files. This can be useful in
troubleshooting—many users do not realize
that they actually have personal configuration
files in their .apollo directories that are
causing problems. If having Apollo problems
that might conceivably be related to configura-
tion files, the best course of action is to find and

remove the.apollo folder, uninstall Apollo,
and install it again.

Ensembl (EnsJ) adapter
The Ensembl data adapter can be tricky to

use because the Ensembl databases are in con-
stant flux. Be sure to select a database before
trying to access a region. This can be done by
clicking the Show/Hide Databases button to
show the database selection panel.

For each data adapter, Apollo saves a his-
tory of where data has been loaded (and
where it has been saved). This history
file is saved in the .apollo directory as
apollo.history. Normally, this file does
not need to be changed, but with the Ensembl
adapter, the database names stored in the his-
tory become out-of-date, so the best recourse
if having trouble using the Ensembl adapter
is to remove .apollo/apollo.history
and restart Apollo.

To ask for help with trouble accessing the
Ensembl databases, use the Apollo mailing list
(see above).

GAME XML adapter
The GAME Adapter can read GAME XML

data directly from a file or by gene name, loca-
tion, etc. The latter options access the FlyBase
database over the Internet. Occasionally, the
FlyBase database is down or too busy to an-
swer, in which case a message may appear
saying that the region requested could not be
found. If that happens, try the query again later.

The Drosophila annotation data are very
dense, so it is best to load regions of no more
than 200 kb. Attempts to load bigger regions
may cause the local computer to run out of
memory (see above).

Acknowledgements
This work was supported by NIH grant

HG00739 to FlyBase. The authors of this
unit would like to thank M. Gibson for his

Using Apollo for
Genome

Annotations

9.5.28

Supplement 12 Current Protocols in Bioinformatics

assistance with the Chado JDBC adapter sec-
tion, and M. Gibson, S. Lewis, G. Wu, J. Crab-
tree, V. Iyer, J. Day-Richter, M.E. Clamp, and
S.M.J. Searle for their work developing the
Apollo annotation tool. The authors also wish
to thank G.M. Rubin.

Literature Cited
Burge, C. and Karlin, S. 1997. Prediction of com-

plete gene structures in human genomic DNA.
J. Mol. Biol. 268:78-94.

Drysdale, R.A., Crosby, M.A., Gelbart, W., Camp-
bell, K., Emmert, D., Matthews, B., Russo, S.,
Schroeder, A., Smutniak, F., Zhang, P., Zhou,
P., Zytkovicz, M., Ashburner, M., de Grey, A.,
Foulger, R., Millburn, G., Sutherland, D., Ya-
mada, C., Kaufman, T., Matthews, K., DeAn-
gelo, A., Cook, R.K., Gilbert, D., Goodman, J.,
Grumbling, G., Sheth, H., Strelets, V., Rubin,
G., Gibson, M., Harris, N., Lewis, S., Misra, S.,
and Shu, S.Q. 2005. FlyBase: Genes and gene
models. Nucl. Acids Res. 33:D390-D395.

Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M.,
and Miller, W. 1998. A computer program for
aligning a cDNA sequence with a genomic DNA
sequence. Genome Res. 8:967-974.

Hubbard, T., Andrews, D., Caccamo, M., Cameron,
G., Chen, Y., Clamp, M., Clarke, L., Coates, G.,
Cox, T., Cunningham, F., Curwen, V., Cutts, T.,
Down, T., Durbin, R., Fernandez-Suarez, X.M.,
Gilbert, J., Hammond, M., Herrero, J., Hotz,
H., Howe, K., Iyer, V., Jekosch, K., Kahari, A.,
Kasprzyk, A., Keefe, D., Keenan, S., Kokocin-
sci, F., London, D., Longden, I., McVicker, G.,
Melsopp, C., Meidl, P., Potter, S., Proctor, G.,
Rae, M., Rios, D., Schuster, M., Searle, S.,
Severin, J., Slater, G., Smedley, D., Smith, J.,
Spooner, W., Stabenau, A., Stalker, J., Storey,
R., Trevanion, S., Ureta-Vidal, A., Vogel, J.,
White, S., Woodwark, C., and Birney, E. 2005.
Ensembl 2005. Nucl. Acids Res. 33:D447-D453.

Lewis, S.E., Searle, S.M., Harris, N., Gibson, M.,
Iyer, V., Richter, J., Wiel, C., Bayraktaroglu,
L., Birney, E., Crosby, M.A., Kaminker, J.S.,
Matthews, B.B., Prochnik, S.E., Smithy, C.D.,
Tupy, J.L., Rubin, G.M., Misra, S., Mungall,
C.J., and Clamp, M.E. 2002. Apollo: A se-
quence annotation editor. Genome Biol. 3:
RESEARCH0082.

Salamov, A.A. and Solovyev, V.V. 2000. Ab ini-
tio gene finding in Drosophila genomic DNA.
Genome Res. 10:516-522.

Stein, L.D., Mungall, C., Shu, S., Caudy, M., Man-
gone, M., Day, A., Nickerson, E., Stajich, J.E.,
Harris, T.W., Arva, A., and Lewis, S. 2002. The
generic genome browser: A building block for a
model organism system database. Genome Res.
12:1599-1610.

Key References
Lewis et al., 2002. See above.

This article gives background on Apollo develop-
ment and features.

Internet Resources
http://www.fruitfly.org/annot/apollo/

Download Apollo.

http://www.fruitfly.org/annot/apollo/userguide.html

Get more detailed and current information about
Apollo features and usage.

http://mail.fruitfly.org/mailman/listinfo/apollo

Join the Apollo mailing list to ask questions or be
notified of new releases.

http://www.jalview.org/documentation.html

Get detailed information about using Jalview, the
alignment viewer in Apollo.

Contributed by Sima Misra and
Nomi Harris

University of California
Berkeley, California

UNIT 9.6Using Chado to Store Genome Annotation
Data

Chado was originally developed to integrate the information resources in two indepen-
dent Drosophila databases. Since then it has evolved into a powerful ontology-driven
genome database schema in response to feedback from end users and the bioinformat-
ics community. It is an integral component of the NIH/USDA ARS-funded Generic
Model Organism Database (GMOD) project, and now supplies the database infrastruc-
ture for numerous software packages both within and outside the GMOD project. This
Chado-compatible packages include the Gbrowse Web-based genome annotation browser
(Stein et al., 2002) and Apollo (Lewis et al., 2002; also see UNIT 9.5), a genome annotation
viewer and editor.

These protocols describe how to use the Chado relational database schema to store
genome annotation data, in both the Unix/Linux/Mac OS X (Basic Protocol 1) and Win-
dows environments (Support Protocol). This includes installing Chado and XORT in the
Unix/Linux environment (Basic Protocol 1), obtaining the Chado schema data definition
language script (DDL) and initializing the database (Basic Protocol 2), importing genome
annotation data into the database (Basic Protocols 2 and 3), running useful queries across
the data (Basic Protocol 4), and, finally, exporting the data into different standard data
formats (Basic Protocol 5). An additional protocol will guide the reader through the
acquisition and loading of genome data in GenBank flat-file format into Chado (Basic
Protocol 3). A schematic representation of the organizational relationship between the
protocols and the data flow for Chado is shown in Figure 9.6.1.

These protocols are intended for biologists and computer scientists who have experience
working with whole-genome data as well as a basic working knowledge of Perl and
RDBMS principles. It is assumed that the user has access to a computer running a Unix-
based or PC/Windows operating system with the PostgreSQL RDBMS installed, and has
permissions to create databases. All of the examples presented here come from FlyBase,
which is a public database of genetic and molecular data for Drosophila.

Figure 9.6.1 A schematic representation of the protocols and the organizational relationship
between the protocols and data flow for Chado.

Contributed by Pinglei Zhou, David Emmert, and Peili Zhang
Current Protocols in Bioinformatics (2005) 9.6.1-9.6.28
Copyright C© 2005 by John Wiley & Sons, Inc.

Building
Biological
Databases

9.6.1

Supplement 12

Using Chado to
Store Genome

Annotation Data

9.6.2

Supplement 12 Current Protocols in Bioinformatics

BASIC
PROTOCOL 1

INSTALLING CHADO AND XORT IN THE UNIX/LINUX ENVIRONMENT

This protocol describes the installation of Chado and XORT in the Unix/Linux environ-
ment and creation a new instance of a Chado database. Support Protocol describes the
corresponding procedures for a Windows computer.

Necessary Resources

Hardware

Any recent computer system running Macintosh OS X, Solaris, Linux, or other
Unix variant

Software

Standard software:
PostgreSQL and BioPerl: Instructions for the installation of PostgreSQL and

BioPerl under a Unix/Linux environment are beyond the scope of this unit;
more information on these installation procedures can be found at
http://www.postgresql.org/docs/7.4/static/installation.html (for PostgreSQL)
and http://www.bioperl.org and http://bioperl.org/Core/Latest/INSTALL (for
BioPerl)

The following software packages should be preinstalled:
Perl v. 5.0 or higher (http://www.perl.org)
PostgreSQL v. 7.3.2 or higher (http://www.postgresql.org)
Java 1.4.1 or higher (http://java.sun.com)

Nonstandard software:
These packages will need to be installed:
XML Parser (http://search.cpan.org/∼kmacleod/libxml-perl-0.08/)
XML::DOM (http://search.cpan.org/∼tjmather/XML-DOM-1.43/)
DBI (http://search.cpan.org/∼timb/DBI/)
DBD-Pg (http://search.cpan.org/dist/DBD-Pg/)
XML-XORT (http://www.gmod.org)
BioPerl (http://www.bioperl.org/Core/Latest/index.shtml)

For the purposes of this demonstration, it is assumed that the PostgreSQL database
has been installed and that a user account has been created and has been granted
“create database” privileges. It is also assumed that the XORT/Gamebridge
package will be saved into the /home/work directory.

1. Download XORT. The XORT package can either be downloaded via SourceForge
CVS or via FTP.

a. To download via CVS, use the following command:
$ cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/
cvsroot/gmod \co XML-XORT

b. To download via FTP, use the following command:
http://prdownloads.sourceforge.net/gmod/

2. Install XORT using the following commands:

$ cd /home/work/XML-XORT
$ perl Makefile.PL

Building
Biological
Databases

9.6.3

Current Protocols in Bioinformatics Supplement 12

3. Makefile.PLwill then take the user through the configuration of XORT by asking
a series of questions. In most cases, one can use the default configuration (presented
in square brackets below).

What is the database name? chado
What is the database username? [zhou]
What is the password for ‘zhou’? zhoupg
What is the database host? [localhost]
What is your database port? [5432]
Where will the tmp directory go?
[/home/work/XML-XORT/tmp]

Where will the conf directory go?
[/home/work/XML-XORT/conf]

Where is the DDL file?
[/home/work/XML-XORT/examples/chado.ddl]

Where do you want to install XORT if other than
default, press ENTER if default: [/tmp/xort]

$ make
$ make install

Besides installing the XORT executables, the steps above are required to collect
database information that will be written to a very important configuration file
called chado.properties (default location: /home/work/XML-XORT/conf/
chado.properties). The chado.properties file contains all the necessary
information for XORT to connect to the Chado database that one is working with.
If at some point it is necessary to connect to a different instance of Chado on the
PostgreSQL server, one can either edit the chado.properties file to indicate
the new Chado database name or create a new file, with the suffix .properties
(e.g., my new chado.properties). In order to be used by XORT, any .prop-
erties file needs to be located in the configuration directory (/home/work/XML-
XORT/conf/). When executing XORT (see below), the -d parameter specifies which
.properties file to use (e.g., -d my new chado). For more documentation, see
/home/work/XML-XORT/doc/readme xort.

BASIC
PROTOCOL 2

BUILDING A CHADO ANNOTATION DATABASE

This protocol describes how to download the Chado DDL and use it to create an empty
Chado database instance on a PostgreSQL server. It then describes how to convert a
GAME XML file (the output format from Apollo) into ChadoXML, the XML format
for all data going directly into and coming directly out of a Chado database when using
XORT. Finally, the protocol describes how to use the XORT validator and loader utilities
to validate ChadoXML and load it into the Chado database.

Necessary Resources

Hardware

Any recent computer system running Macintosh OS X, Solaris, Linux, or other
Unix variant

Software

Standard software:
PostgreSQL and BioPerl: Instructions for the installation of PostgreSQL and

BioPerl under a Unix/Linux environment are beyond the scope of this unit;
more information on these installation procedures can be found at
http://www.postgresql.org/docs/7.4/static/installation.html (for PostgreSQL)
and http://www.bioperl.org and http://bioperl.org/Core/Latest/INSTALL (for
BioPerl)

Using Chado to
Store Genome

Annotation Data

9.6.4

Supplement 12 Current Protocols in Bioinformatics

The following software packages should be preinstalled:
Perl v. 5.0 or higher (http://www.perl.org)
PostgreSQL v. 7.3.2 or higher (http://www.postgresql.org)
Java 1.4.1 or higher (http://java.sun.com)
CVS (http://www.cvs.org)

Nonstandard software:
These packages will need to be installed:
XML Parser (http://search.cpan.org/∼kmacleod/libxml-perl-0.08/)
XML::DOM (http://search.cpan.org/∼tjmather/XML-DOM-1.43/)
DBI (http://search.cpan.org/∼timb/DBI/)
DBD-Pg (http://search.cpan.org/dist/DBD-Pg/)
XML-XORT (http://www.gmod.org)
BioPerl (http://www.bioperl.org/Core/Latest/index.shtml)

For the purposes of this demonstration, it is assumed that the PostgreSQL database
has been installed and that a user account has been created and has been granted
“create database” privileges. It is also assumed that the XORT/Gamebridge
package will be saved into the /home/work directory.

Files

The sample data file GAME.xml used in this protocol is included as part of the
XORT download

Create the Chado instance
1. Get the Chado schema DDL. The most recent Chado schema DDL is included

with the XORT package distribution in directory XML-XORT/examples/
chado.ddl. It may also be downloaded from the GMOD Sourceforge CVS using
the following command:

$ cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/
cvsroot/gmod \co schema/chado

2. In the psql client, create the Chado instance on the PostgreSQL database server using
the Chado schema DDL:

psql> create database chado;
psql> \c chado;
psql> \i /home/work/XML-XORT/examples/chado.ddl
psql> \q

Load a GAME-XML File
3. Download GAME files from FlyBase. GAME XML files can be either created using

Apollo (UNIT 9.5) or can be downloaded from the FlyBase Web site (which currently
hosts annotation for two Drosophila species GAME XML) using the following
command:

ftp://flybase.net/genomes/Drosophila melanogaster/
current/xml-game/

An example of GAME XML file format is shown in Figure 9.6.2.

Building
Biological
Databases

9.6.5

Current Protocols in Bioinformatics Supplement 12

Figure 9.6.2 GAME XML format, which is one of the input formats for the annotation editor
Apollo.

Convert GAME XML file into ChadoXML
The following steps use the sample file GAME.xml.

4. Convert the GAME XML file into ChadoXML using the GTC converter in XORT.
Software for converting between GAME XML and ChadoXML formats is included
as part of the XML-XORT package. The following command will convert the sample
GAME XML (GAME.xml) into ChadoXML (chado.xml):

$ java -cp /home/work/XML-XORT/conf/
GAMEChadoConv.jar GTC GAME.xml chado.xml -a

Examples of GAME XML and ChadoXML file formats are shown in Figures 9.6.2 and
9.6.3, respectively.

Possible switches for GTC are:

-a: Convert all, both annotation and computational data.
-g: Convert annotation data only.
-c: Convert computational data only.

Validate the ChadoXML
5. Validate the ChadoXML using the validator from the XORT package. The XORT

validator serves several purposes. It may be used in stand-alone mode, which will
verify the syntax of the ChadoXML file or it may be used in connection with the
database, which will allow content testing to spot some potential problems before
any update transactions are actually executed. The command syntax is:

Using Chado to
Store Genome

Annotation Data

9.6.6

Supplement 12 Current Protocols in Bioinformatics

Figure 9.6.3 Structure for ChadoXML, which serves as intermediate format between Chado
database and other file formats.

$ perl /home/work/XML-XORT/bin/
xort validator.pl -d chado -f chado.xml -v 1

Options and parameters include:

-h: help message.
-d: database alias.
-f: ChadoXML file to be validated.
-b debug: 0 (default) without debug message, 1 with debug message.
-v 0 or -v 1: 0 (default) without or 1 with database connection during

validation process.

In the example above, -v 1 is specified, causing XORT to connect to the database for
content testing, which helps to identify data problems in the input ChadoXML before the
loader actually attempting to load it into the database. Possible data problems originate
from: (1) inconsistency between different version of the database schema, which may
happen if the database schema has changed but converter configuration has not been
followed, or (2) inconsistency in data implementation from different data sources, which
may happen when ChadoXML generated by different projects and from different sources
are loaded into the same Chado instance. The types of problems -v 1 can detect include:
(1) use of an object reference in ChadoXML before it has been defined, (2) attempting
to delete an object which does not exist in the database, or (3) attempting to update an
object without specifying enough constraints, which could lead to an erroneous update
of multiple records.

6. Load the file into the database using the loader from the XORT package. Assuming
that the ChadoXML file validated successfully, the XORT loader can be used to
update the database with the validated ChadoXML file. The command syntax is as
follows:

Building
Biological
Databases

9.6.7

Current Protocols in Bioinformatics Supplement 12

$ perl /home/work/XML-XORT/bin/xort loader.pl -d Chado
-f chado.xml

The above command loads the ChadoXML into the database. At the end of loading,
xort loader.pl indicates whether the loading was successful or not. If the loading
was not successful, the loader attempts to indicate the nature of the problem it encountered.

Options and parameters include:

-h: help message.
-d: database alias.
-f: ChadoXML file to be loaded.
-b debug: 0 (default) without debug message, 1 with debug message.

BASIC
PROTOCOL 3

LOADING A GenBank FILE

Essentially all genome sequence and annotation data are submitted to GenBank by
individual genome project teams and research groups. It is a common practice to acquire
data by downloading relevant records from GenBank. A GenBank record can be fed
into the BioPerl module Bio::SeqIO to build a Bio::Seq object. Peili Zhang at FlyBase
Harvard has contributed a BioPerl module which converts all the sequence and annotation
data contained in a Bio::Seq object into ChadoXML. The resulting ChadoXML can then
be easily loaded into Chado using the XORT package. This protocol provides users an
option to populate the Chado database with data from GenBank, a rich data source.

Necessary Resources

Hardware

Any recent computer system running Macintosh OS X, Solaris, Linux, or other
Unix variant

Software

Standard software:
PostgreSQL and BioPerl: Instructions for the installation of PostgreSQL and

BioPerl under a Unix/Linux environment are beyond the scope of this unit;
more information on these installation procedures can be found at
http://www.postgresql.org/docs/7.4/static/installation.html
(for PostgreSQL) and http://www.bioperl.org and
http://bioperl.org/Core/Latest/INSTALL (for BioPerl)

The following software packages should be preinstalled:
Perl v. 5.0 or higher (http://www.perl.org)
PostgreSQL v. 7.3.2 or higher (http://www.postgresql.org)
Java 1.4.1 or higher (http://java.sun.com)

Nonstandard software:
These packages will need to be installed:
XML Parser (http://search.cpan.org/∼kmacleod/libxml-perl-0.08/)
XML::DOM (http://search.cpan.org/∼tjmather/XML-DOM-1.43/)
DBI (http://search.cpan.org/∼timb/DBI/)
DBD-Pg (http://search.cpan.org/dist/DBD-Pg/)
XML-XORT (http://www.gmod.org)
BioPerl (http://www.bioperl.org/Core/Latest/index.shtml)

For the purposes of this demonstration, it is assumed that the PostgreSQL database
has been installed and that a user account has been created and has been granted
“create database” privileges. It is also assumed that the XORT/Gamebridge
package will be saved into the /home/work directory.

Using Chado to
Store Genome

Annotation Data

9.6.8

Supplement 12 Current Protocols in Bioinformatics

Download GenBank flat files
There are two ways to download the GenBank records:

1a. Go to the NCBI Web site (http://www.ncbi.nlm.nih.gov), choose Nucleotide from
the Search drop-down menu, then enter the accession number or a valid identifier to
search for the sequence. In the Search Results page, click on the relevant record to
view its content. On the top of the record details page, choose the Text option from
the “Send to” drop-down menu to save the page as a text file.

1b. Write a simple perl script making using of the BioPerl package (see sample code
below) to download from GenBank over the Internet:

Perl script to download AE003576 and save into file
AE003576.g in local directory

use Bio::DB::GenBank;
use Bio::SeqIO;
my $gb = new Bio::DB::GenBank;
my $seq = $gb->get Seq by acc(‘AE003576’);
my $o = Bio::SeqIO->new(-file=>‘>AE003576.gb’,
-format=>‘genbank’);

$o->write seq($seq);

Convert GenBank flat files into ChadoXML and load into Chado
2. The GenBank data file may need some preprocessing on the feature coordinates

before being converted into ChadoXML and loaded into the Chado database. In gen-
eral, GenBank records have record-based coordinates for all features in the record.
However, in a Chado database, it is far preferable to have a consistent coordinate
system that is biologically meaningful and that allows better data management and
data analysis. Thus, the feature locations are often represented in Chado by the
features’ genomic coordinates on chromosomes. The record-based coordinates in
the GenBank record must be transformed into coordinates in the system adopted
in Chado (e.g. Chromosomes) before loading. For example, the GenBank record
for accession AE003576 is to be loaded into Chado. The FEATURES section of
the record resembles Figure 9.6.4. AE004576 is one section of the Drosophila
melanogaster chromosome 2L, spanning bases 2L:4321253..4611145. Because the
Chado database that the record will be loaded into localizes all genomic features on
the chromosomes, the GenBank record has to be modified to reflect the chromoso-
mal coordinates, as illustrated in Figure 9.6.5. The chromosome name information
(2L) will be passed into the BioPerl module that converts the GenBank record into
ChadoXML, as described in step 3, below.

Figure 9.6.4 FEATURES section of GenBank record to be loaded into Chado.

Building
Biological
Databases

9.6.9

Current Protocols in Bioinformatics Supplement 12

Figure 9.6.5 FEATURES section of GenBank record to be loaded into Chado, modified to reflect
chromosomal coordinates.

3. After the necessary coordinate translation and/or other data preprocessing are com-
pleted, the GenBank flat data file can be converted into ChadoXML through a simple
Perl script, making use of the aforementioned BioPerl module. An example of the
code to use would be:

#Perl script to convert a GenBank formatted flat file
to Chadoxml using BioPerl

use Bio::SeqIO;
#the GenBank records need to be pre-processed to
convert the record-based coordinates

#to coordinates on the chosen coordinate system (e.g.,
chromosome arm)

my $seqin = Bio::SeqIO->new(-format=>‘genbank’,
-file=>‘AE003576 processed.gb’);

my $seq = $seqin->next seq();
#AE003576 is a scaffold on Drosophila melanogaster
chromosome arm 2L

my $arm = ‘2L’;
my $seqout = Bio::SeqIO->new(-format=>‘Chadoxml’,
-file=>‘>AE003576.Chadoxml’);

#if the optional input parameters ‘src feature’ and
‘src feat type’ are absent,

#the biological entity corresponding to the $seq object
and its type are used as the

#src feature and src feat type, respectively.
$seqout->write seq(-seq=>$seq, -src feature=>$arm,
-src feat type=> ‘chromosome arm’);

4. Load the ChadoXML into Chado as described in Basic Protocol 2.

BASIC
PROTOCOL 4

QUERYING A CHADO ANNOTATION DATABASE USING SQL

This protocol presents some basic SQL queries for exploring annotation data in Chado.
It is expected that once these queries, and the relational structures implicit in them, have
been thoroughly understood, a user will be able to navigate through the tables storing
annotation data in Chado and improvise queries as the need arises.

Using Chado to
Store Genome

Annotation Data

9.6.10

Supplement 12 Current Protocols in Bioinformatics

Figure 9.6.6 Example query to retrieve location information for the gene oaf.

Necessary Resources

Hardware

Any recent computer system running Macintosh OS X, Solaris, Linux, or other
Unix variant

Software

Standard software:
PostgreSQL and BioPerl: Instructions for the installation of PostgreSQL and

BioPerl under a Unix/Linux environment are beyond the scope of this unit;
more information on these installation procedures can be found at
http://www.postgresql.org/docs/7.4/static/installation.html (for PostgreSQL)
and http://www.bioperl.org and http://bioperl.org/Core/Latest/INSTALL (for
BioPerl)

The following software packages should be preinstalled:
Perl v. 5.0 or higher (http://www.perl.org)
PostgreSQL v. 7.3.2 or higher (http://www.postgresql.org)
Java 1.4.1 or higher (http://java.sun.com)

Nonstandard software:
These packages will need to be installed:
XML Parser (http://search.cpan.org/∼kmacleod/libxml-perl-0.08/)
XML::DOM (http://search.cpan.org/∼tjmather/XML-DOM-1.43/)
DBI (http://search.cpan.org/∼timb/DBI/)
DBD-Pg (http://search.cpan.org/dist/DBD-Pg/)
XML-XORT (http://www.gmod.org)
BioPerl (http://www.bioperl.org/Core/Latest/index.shtml)

For the purposes of this demonstration, it is assumed that the PostgreSQL database
has been installed and that a user account has been created and has been granted
“create database” privileges. It is also assumed that the XORT/Gamebridge
package will be saved into the /home/work directory.

Using SQL to retrieve details of a single gene model
1. Design an SQL query (see Fig. 9.6.6 for example) to retrieve the location information

for a given gene (e.g., oaf). This query joins three tables:

a. feature (g, for the gene, oaf).

b. feature (ch, for the chromosome arm).

c. featureloc (g c, localizing oaf on the chromosome arm).

2. The result of the query described in Figure 9.6.6 is shown in Figure 9.6.7.

Building
Biological
Databases

9.6.11

Current Protocols in Bioinformatics Supplement 12

Figure 9.6.7 Results returned for the query depicted in Figure 9.6.6.

Figure 9.6.8 Example query to get transcripts and their locations for the gene oaf.

3. For a given gene (eg, oaf), design a query to get transcripts and their locations (see
Fig. 9.6.8 for example). This query joins six tables:

a. feature (g for the gene oaf).

b. feature (tx for the transcripts linked to the gene).

c. feature relationship (g tx, links gene and transcripts).

d. featureloc (txc, localizing transcripts on the chromosome arm).

e. feature (ch for the chromosome arm).

f. cvterm (tcv, for specifying the type of record linked to the gene).

4. The result of the query described in Figure 9.6.8 is shown in Figure 9.6.9.

5. For a given transcript (e.g., “oaf-RB”), design a query to get exons and their locations
(see Fig. 9.6.10 for example). This query joins six tables:

a. feature (tx, for the transcript “oaf-RB”).

b. feature (ex, for the exons linked to the transcript).

c. feature relationship (tx ex, links transcript and exons).

d. featureloc (exc, localizing exons on the chromosome arm).

e. feature (ch, for the chromosome arm).

f. cvterm (ecv, for specifying the type of record linked to transcript).

The same query can be used to get the protein product and location, simply by switching
protein for exon in the text of Figure 9.6.10.

Using Chado to
Store Genome

Annotation Data

9.6.12

Supplement 12 Current Protocols in Bioinformatics

Figure 9.6.9 Results returned for the query depicted in Figure 9.6.8.

Figure 9.6.10 Example query to get exons and their locations for a given transcript, “oaf-RB.”.

6. The result of the query described in Figure 9.6.10 is shown in Figure 9.6.11.

7. For a given gene (eg, oaf), design a query to list exons and their locations (see Fig.
9.6.12 for example). This query joins seven tables:

a. feature (gn, for the gene, oaf).

b. feature (ex, for the exons linked to the gene via the transcripts).

c. feature relationship (gn tx, linking the gene and its transcripts).

d. feature relationship (tx ex, linking the transcripts and their exons).

e. featureloc (exc, localizing the exons on the chromosome arm).

f. feature (ch, for the chromosome arm).

g. cvterm (ecv, for specifying the type of record linked to transcripts).

Note that the exons for a given gene model may be used in multiple transcripts, and,
therefore, in order to return each exon only once (though they are related to the gene in
Chado via the transcripts), it is necessary to formulate the query as “select distinct” (see
Fig. 9.6.12).

8. The result of the query described in Figure 9.6.12 is shown in Figure 9.6.13.

Building
Biological
Databases

9.6.13

Current Protocols in Bioinformatics Supplement 12

Figure 9.6.11 Results returned for the query depicted in Figure 9.6.10.

Figure 9.6.12 Example query to get exons and their locations for the gene oaf.

Figure 9.6.13 Results returned for the query depicted in Figure 9.6.12.

Using Chado to
Store Genome

Annotation Data

9.6.14

Supplement 12 Current Protocols in Bioinformatics

Figure 9.6.14 Example query to list types of analysis available and sets of data used in the analysis for a given
genomic region (arm 2L, bases 1 to 49,999).

SQL to retrieve supporting evidence tiers for specific gene model
9. For a given (genomic) region (e.g., arm 2L, bases 1 to 49,999), design a query to list

types of analysis available and sets of data used in the analysis (see Fig. 9.6.14 for
example). This query uses six tables:

a. feature (hsp, for HSP hits).

b. feature (ch, for the chromosome arm; e.g., 2L).

c. featureloc (hsp ch, linking HSPs to the chromosome arm).

d. featureloc (hsp al, linking HSPs to the aligned object).

e. analysisfeature (af, linking HSP to analysis details).

f. analysis (a, for analysis details).

10. The result of the query described in Figure 9.6.14 is shown in Figure 9.6.15.

11. For a given (genomic) region (eg, arm 2L, bases 1 to 49,999), design a query to list
aligned objects (see Figure 9.6.16 for example). This query uses four tables:

a. feature (al, for the aligned objects).

b. feature (ch, for the chromosome arm).

c. featureloc (hsp ch, linking HSPs to the chromosome arm).

d. featureloc (hsp al, linking HSPs to the aligned object).

Note that, since the aligned object is related to the chromosome via the HSP(s) that
constitute the alignment, in order to avoid reporting a given aligned object multiple
times (if there are multiple HSPs in its alignment to the arm), it is necessary to use the
distinct constraint.

12. The result of the query described in Figure 9.6.16 is shown in Figure 9.6.17.

Building
Biological
Databases

9.6.15

Current Protocols in Bioinformatics Supplement 12

Figure 9.6.15 Results returned for the query depicted in Figure 9.6.14.

Figure 9.6.16 Example query to list aligned objects for a given genomic region (arm 2L, bases 1 to 49,999).

Using Chado to
Store Genome

Annotation Data

9.6.16

Supplement 12 Current Protocols in Bioinformatics

Figure 9.6.17 Results returned for the query
depicted in Figure 9.6.16.

Figure 9.6.18 Example query to retrieve the alignment details for the alignment of a given sequence against the
chromosome arm (e.g., GenBank record “AY129461”).

13. Query to retrieve the alignment details for the alignment of a given sequence against
the chromosome arm (e.g., GenBank record “AY129461”; see Fig. 9.6.18). This
query uses five tables:

a. feature (al, for the aligned objects).

b. feature (hsp, for the HSPs).

c. featureloc (hsp ch, localizing HSPs to the chromosome arm).

d. featureloc (hsp al, localizing HSPs to the aligned object).

e. feature (ch, for the chromosome arm).

14. The result of the query described in Figure 9.6.18 is shown in Figure 9.6.19.

Building
Biological
Databases

9.6.17

Current Protocols in Bioinformatics Supplement 12

Figure 9.6.19 Results returned for the query depicted in Figure 9.6.18.

BASIC
PROTOCOL 5

GENERATING STANDARD REPORTS FROM A CHADO ANNOTATION
DATABASE

This protocol explains first how to dump data in ChadoXML format from a Chado
annotation database using XORT, and then how to convert ChadoXML-formatted data
files into the commonly used sequence annotation data formats GAME XML, GFF3, and
FASTA,

Necessary Resources

Hardware

Any recent computer system running Macintosh OS X, Solaris, Linux, or other
Unix variant

Software

Standard software:
PostgreSQL and BioPerl: Instructions for the installation of PostgreSQL and

BioPerl under a Unix/Linux environment are beyond the scope of this unit;
more information on these installation procedures can be found at
http://www.postgresql.org/docs/7.4/static/installation.html (for PostgreSQL)
and http://www.bioperl.org and http://bioperl.org/Core/Latest/INSTALL (for
BioPerl)

The following software packages should be preinstalled:
Perl v. 5.0 or higher (http://www.perl.org)
PostgreSQL v. 7.3.2 or higher (http://www.postgresql.org)
Java 1.4.1 or higher (http://java.sun.com)

Using Chado to
Store Genome

Annotation Data

9.6.18

Supplement 12 Current Protocols in Bioinformatics

Nonstandard software:
These packages will need to be installed:
XML Parser (http://search.cpan.org/∼kmacleod/libxml-perl-0.08/)
XML::DOM (http://search.cpan.org/∼tjmather/XML-DOM-1.43/)
DBI (http://search.cpan.org/∼timb/DBI/)
DBD-Pg (http://search.cpan.org/dist/DBD-Pg/)
GMODTools (http://www.gmod.org)
XML-XORT (http://www.gmod.org)
BioPerl (http://www.bioperl.org/Core/Latest/index.shtml)

For the purposes of this demonstration, it is assumed that the PostgreSQL database
has been installed and that a user account has been created and has been granted
“create database” privileges. It is also assumed that the XORT/Gamebridge
package will be saved into /home/work directory.

Files

The sample data files dumpspec gene model.xml and chado dump.xml
used in this protocol are included as part of the XORT download

1. Export data in ChadoXML format using the following command:

$ perl /home/work/XML-XORT/conf/xort dump.pl -d Chado
-g /home/work/XML-XORT/conf/
dumpspec gene model.xml -f output file

Users can configure the XORT dumper to generate specific data sets into different
ChadoXML formats using a project-specific “dump spec.” The sample file (dump-
spec gene model.xml) is a typical dump spec to export Central Dogma structure
into three-level XML file which, when converted to GAME XML, can be read by Apollo
(see sample file: chado dump.xml).

2. Convert ChadoXML to GAME XML. Software for converting between GAME
XML and ChadoXML formats is included as part of the XML-XORT package.
The following command will convert the sample GAME XML (GAME.xml) into
ChadoXML (chado.xml):

$ java -cp /home/work/XML-XORT/conf/
GAMEChadoConv.jar CTG chado.xml GAME.xml -a

Possible switches for GTC are:

-a: Convert all, both annotation and computational data.
-g: Convert annotation data only.
-c: Convert computational data only.

3. Produce GenBank flat-file format report. For the moment, the preferred way to
produce GenBank flat-file format records from GAME XML is to load the GAME
XML file into Apollo, and then save again in GenBank format. See UNIT 9.5 for details
on how to do this.

4. Produce bulk FASTA or GFF3 dumps. Assume that the GMODTools pack-
age has been downloaded from the GMOD Web site (see Necessary Re-
sources) and saved in the /home/work directory. The following three con-
figuration files need to be modified to reflect the database connection:
conf/gmod.conf, conf/bulkfiles/fbreleases.xml, and the main
configuration file conf/bulkfiles/fbbulk-hetr3.xml. Sample modified
configuration files are shown in Figure 9.6.20.

Building
Biological
Databases

9.6.19

Current Protocols in Bioinformatics Supplement 12

Figure 9.6.20 Examples of conf/bulkfiles/fbreleases.xml and conf/bulkfiles/fbbulk-
hetr3.xml files modified to reflect the database.

The file name is not important; any file name with proper information can be used.

Don Gilbert at FlyBase Indiana developed the necessary software to generate
FASTA/GFF3 report files.

5. After editing the configuration files to reflect the project specific information, it
is possible to generate report files using a command similar to the one in Figure
9.6.21. This prepares the Chado database for reporting, assuming configuration file
fbbulk-hetr3.xml has the correct data information:

Using Chado to
Store Genome

Annotation Data

9.6.20

Supplement 12 Current Protocols in Bioinformatics

Figure 9.6.21 Example of commands used for generating report files.

% perl -IGMODTools/lib bulkfiles.pl -conf
../conf/bulkfiles/fbbulk-hetr3.xml -make

makes all FASTA and GFF3 files for all chromosomes.

% perl -IGMODTools/lib bulkfiles.pl -conf
../conf/bulkfiles/fbbulk-hetr3.xml -chr X -format
fasta -make

makes subset of FASTA files for chromosome X, (subset of GFF3 for chromosome
X if replacing FASTA with GFF).

SUPPORT
PROTOCOL

INSTALLING SOFTWARE FOR A UNIX-LIKE ENVIRONMENT ON A PC

For many reasons, much open-source bioinformatics software runs on Linux, Mac OS X,
Solaris, or one of the many other Unix variants. Nevertheless, many biologists favor the
Windows operating system, partially due to the user-friendly GUI software that can be
used under this system. Cygwin is a Linux-like environment for Windows that attempts
to solve the conflict between Unix and Windows operating systems. With Cygwin, one
can run most programs with Linux-like command. This Support Protocol guides the user
through the steps needed to create, populate, and use the Chado database in a Windows
environment running Cygwin.

Necessary Resources

Hardware

PC with ≥256 Mb RAM, ≥1 GHz processor, and ≥10 Gb hard disk

Software

Cygwin (http://www.cygwin.com)
Perl v. 5.0 and higher (http://www.perl.org)
PostgreSQL v. 7.3.2 and higher (comes with Cygwin installation)
Java 1.4.1 and higher (http://java.sun.com)
XML::DOM (http://search.cpan.org/∼tjmather/XML-DOM-1.43/)
XML::Parser (http://sea rch.cpan.org/∼kmacleod/libxml-perl-0.08/)
DBI (http://search.cpan.org/∼timb/DBI/)
DBD-Pg (http://search.cpan.org/dist/DBD-Pg/)
XML-XORT (http://www.gmod.org)

1. Download and install the Windows version of Java 1.4.2. From
http://java.sun.com/j2se/1.4.2/download.html, click “Download Windows J2SE
SDK.” When the download is completed, click on the downloaded executable file
to start the installation. After installation, add the Java directory to CLASSPATH.
See Troubleshooting section (“How to set environment variable in Windows
environment”) for more details.

Building
Biological
Databases

9.6.21

Current Protocols in Bioinformatics Supplement 12

Figure 9.6.22 Screen shot of the Cygwin setup window.

To test if CLASSPATH is set properly, open a command-line window, type java -h, and
check if the command parameters are displayed. If not, check to see if the CLASSPATH
variable is set properly. Remember the every time the variable value is modified, a new
command-line window must be opened to refresh the setting.

2. Download and install the latest version of Cygwin at http://www.cygwin.com/ by
clicking on one of the several Install Cygwin Now links on the home page. This will
start an interactive download. After several steps, a screen will appear that makes it
possible to select which packages to download (Fig. 9.6.22). The groups that must
be installed in order to install the rest of the package are tabulated in Figure 9.6.23.
Note that some of these will be installed by default, and some are interdependent, so
that when one is chosen, another may automatically be selected.

For demonstration purpose, it is assumed that the Root Install Directory is set as
d:\cygwin..

3. Download and install Perl under Cygwin. As stated in the last step, if
interpreter->perl and interpreter->perl-libwin32 are chosen,
the setup process automatically installs the core Perl modules.

4. Download and install additional Perl modules. The modules listed in Table 9.6.1 are
not installed with core Perl, and need to be downloaded and installed from CPAN.
Remember to download and install in the correct order.

5. Here bioperl-1.5.0.tar.gz is used as an example to detail the installation.
From http://www.bioperl.org, click Download, then download the core BioPerl. As-
suming that bioperl-1.5.0.tar.gz has been saved in d:/cygwin/tmp,

Using Chado to
Store Genome

Annotation Data

9.6.22

Supplement 12 Current Protocols in Bioinformatics

Figure 9.6.23 Groups that must be installed in order to install Cygwin.

Building
Biological
Databases

9.6.23

Current Protocols in Bioinformatics Supplement 12

Table 9.6.1 Perl Modules Needed for Running Chado and XoRT Under Windows

Module URL Current version file

HTML::Tagset http://search.cpan.org/∼sburke/HTML-Tagset-3.04/ HTML-Tagset-3.04.tar.gz

HTML::TokeParser http://search.cpan.org/dist/HTML-Parser HTML-parser-3.45.tar.gz

URI http://search.cpan.org/dist/URI/ URI-1.35.tar.gz

LWP::UserAgent http://search.cpan.org/dist/libwww-perl/ libwww-perl-5.803.tar.gz

XML::RegExp http://search.cpan.org/∼tjmather/XML-RegExp-0.03/ XML-EegExp-0.03.tar.gz

XML::DOM http://search.cpan.org/∼tjmather/XML-DOM-1.43/ XML-DOM-1.43.tar.gz

XML::Parser http://search.cpan.org/∼kmacleod/libxml-perl-0.08/ libxml-perl-0.08.tar.gz

XML::
Parser::PerlSAX

http://search.cpan.org/∼kmacleod/libxml-perl-0.08/ libxml-perl-0.008.tar.gz

XML::Writer http://search.cpan.org/∼josephw/XML-Writer-0.520/ XML-Writer-0.530.tar.gz

DBI http://search.cpan.org/∼timb/DBI/ DBI-1.47 DBI-1.47.tar.gz

DBD::Pg http://search.cpan.org/dist/DBD-Pg/ DBD-Pg-1.32.tar.gz

XML::Simple http://search.cpan.org/∼grantm/XML-Simple-2.12/ XML-Simple-2.14.tar.gz

BioPerl http://www.bioperl.org/Core/Latest/index.shtml bioperl-1.5.0.tar.gz

launch the Cygwin shell window (not the usual command-line window) and install
BioPerl using the following series of commands:

$ cd /tmp
$ gunzip bioperl-1.5.0.tar.gz
$ tar xvf bioperl-1.5.0.tar
$ cd bioperl-1.5.0
$ perl Makefile.PL
$ make
$ make test
$ make install

6. Download, install and configure PostgreSQL under Cygwin. The easiest way is
to download and install PostgreSQL via the Cygwin setup program. Launch the
setup program, choose PostgreSQL from the “database” menu, and press Next Post-
greSQL will be downloaded and installed under Cygwin. Subsequently, configure
PostgreSQL as follows:

a. Set the environment variable CYGWIN to “server.” Refer to troubleshooting
section (“How to set environment variable in Window environment”) for details.

b. Install and configure cygserver using the command:
$ cygserver-config

c. Start cygserver:
$ /usr/sbin/cygserver &

d. Initialize PostgreSQL:
$ initdb -D /var/postgresql/data

e. Start the PostgreSQL postmaster:
$ postmaster -D /var/postgresql/data -i &

f. Connect to PostgreSQL:
$ psql -d template1 -U username -W

Here, username/password are the same as the Window login username/password.

Using Chado to
Store Genome

Annotation Data

9.6.24

Supplement 12 Current Protocols in Bioinformatics

g. Note that, the next time one connects to the database, only the following steps are
necessary:
$ postmaster -D /var/postgresql/data -i &
$ psql -d template1 -U username -W

h. To shut down the database properly before logging out use:
$ pg ctl stop -D /var/postgresql/data -m fast

7. Download and install XORT as described in Basic Protocol 1.

8. Create the Chado instance as described in Basic Protocol 2.

COMMENTARY

Background Information

Controlled vocabularies and relationships
between biological objects in Chado

According to Chado schema documenta-
tion, most objects with biological meanings
are defined as “features” in Chado, which are
localized (if they have been localized) to a spe-
cific location on a genomic contig, linked via
the featureloc table. Feature relations (in the
feature relationship table) are used to estab-
lish relationships between features other than
localizations. For example, the relationship be-
tween a gene and a transcript is represented by
a feature relationship of type “partof,” while
an allele is linked to a gene by a feature re-
lationship of the type “AlleleOf.” The core
representation of genes, transcripts, and pro-
teins, and the relationships between them, is
referred to as the Central Dogma. In Chado,
it is implemented as a three-level hierarchical
structure: genes, transcripts, proteins, and ex-
ons are stored as features and the transcript
features are stored as “partof” the gene fea-
ture through feature relationship, whereas the
exon and protein features are saved as “partof”
and “producedby” the transcript features, re-
spectively (Fig. 9.6.24).

Alignment data and other evidence in Chado
The evidence to support genome anno-

tation includes gene prediction generated
by programs such as GenScan (Burge and
Karlin, 1997) and Genie (Reese et al., 2000),
and other biological data such as ESTs aligned
using the program Sim4 (Florea et al., 1998)
and protein homologies revealed by BLASTX
(Altschul et al., 1990; Mungall et al., 2002).
As with the Central Dogma, they are stored
in Chado as features with featureloc and fea-
ture relationship information (Fig. 9.6.25).

Understanding the GAME XML format
GAME (genome annotation markup ex-

tensive) XML, designed by the Berkeley
Drosophila Genome Project, is the major in-

put file format for Apollo. The basic structure
includes the following elements:

1. <game>: The root element, this repre-
sents the curation of one or more sequences of
DNA, RNA, or amino acids. Most commonly,
the <game> element represents the curation
of a single sequence.

2. <seq>: Represents a sequence of
DNA, RNA, or amino acids. There is gen-
erally one <seq> in the document repre-
senting the primary sequence being curated,
and other <seq>’s that support the cura-
tion of the primary sequence. The primary
<seq> is directly under the <game> el-
ement, and is identified by having its “focus”
attribute set to “true.” Each <seq> has one
or more <db-xref>’s. <db-xref> indi-
cates where the <seq> can be found using
a particular unique identifier. For Drosophila
curation, BDGP uses the primary <seq> to
represent an accession, and other <seq>’s to
represent cDNAs, protein coding sequences,
and homologous sequences that are referenced
by computational analyses such as tblastx.

3. <annotation> This represents a set
of related sequence features and a collec-
tion of genetic information describing them.
The term “sequence feature” means a seg-
ment of DNA. An annotation will generally
contain a number of <feature-set>’s,
each of which represents a set of related
sequence features that have a specific lo-
cation. A <feature-set> can contain
nested <feature-set>’s (although in
practice this has not yet occurred), as well
as one or more <feature-span>’s, each
of which represents an individual sequence
feature. A <feature-span> can contain
<evidence>, which specifies a result id
and result type. An <annotation> can
have one or more <db-xref>’s.

For Drosophila curation, the types of an-
notations are: gene, pseudogene, transposon,
tRNA, rRNA, snRNA, snoRNA, “misc. non-
coding RNA,” and “miscellaneous curator’s

Building
Biological
Databases

9.6.25

Current Protocols in Bioinformatics Supplement 12

Figure 9.6.24 The Central Dogma model for a protein-coding gene with one known spliced
transcript. The dashed lines denote the featureloc records of features aligned to the genomic
contig, while the solid lines denote the feature relationship records between two features (subject
and object). For the color version of this figure go to http://www.currentprotocols.com.

Figure 9.6.25 Data implementation of prediction and alignment evidence in Chado to support
genome annotation. The dashed line denotes the featureloc of features aligned to genomic contig,
while solid line denotes the feature relationship between two features.

observation.” For an <annotation> of
type “gene”, one <feature-set> element
represents each transcript, and for each tran-
script, one <feature-span> element rep-
resents each exon.

4. <computational-analysis>

Contains evidence from computa-
tional analysis programs such sim4
and blastx. <result-set>’s and
<result-span>’s represent a tree struc-
ture of results, with <result-set>’s rep-
resenting branch nodes (e.g., gene matches),

and <result-span>’s representing leaf
nodes (e.g., exon matches). The elements
<feature-set>, <feature-span>,
<result-set>, and <result-span>

run parallel to one another. They allow
multiple levels of nesting and have phys-
ical location(s) on sequences. The key
differences are that “features” have re-
sults as evidence and “results” have some
form of an associated score for the assay.
<seq-relationship>’s provides the
locations on the underlying <seq>’s.

Using Chado to
Store Genome

Annotation Data

9.6.26

Supplement 12 Current Protocols in Bioinformatics

Critical Parameters and
Troubleshooting

File system affecting file recognition in
Cygwin environment

If possible, install Cygwin on a drive or
partition that’s NTFS-formatted instead of
FAT32-formatted. When installing Cygwin
on a FAT32 partition, it is not possible to
set permissions and ownership correctly,
which may be problematic in certain situ-
ations. If trying to use some application or
resource “outside” of Cygwin and a problem
is encountered, remember that Cygwin’s
path syntax may not be the correct one.
Cygwin understands /home/jacky or
/cygdrive/e/cygwin/home/jacky
(when referring. e.g., to the E: drive),
but the external resource may want
E:/cygwin/home/jacky. Depending on
these issues, the *rc files, which are normally
named .tcshrc and .wishrc, and contain
startup instructions for an application pro-
gram, may end up with paths written in these
different syntaxes.

File permission under Cygwin
Cygwin PostgreSQL may fail to start or not

function properly if certain files and directo-
ries have incorrect permissions. The following
usually solves such problems:

$ chmod a+rwx /tmp
$ chmod a+rx /usr/bin
/usr/bin/*

$ chmod a+rw /var/log # could
adversely affect other
daemons

Make test for DBD::Pg under Cygwin
While installing DBD::Pg, the make tests

are designed to connect to a live database. The
following environment variables must be set
for the tests to run:

DBI DSN=dbi:Pg:dbname=
<database>

DBI USER=<username>

DBI PASS=<password>
Under Cygwin, set those variables as

follows: (assuming that one is logged
in as system administrator: zhou/
zhoupgsql):

$ DBI DSN=dbi:Pg:dbname=
template1

$ export DBI DSN
$ DBI USER=zhou
$ export DBI USER
$ DBI PASS=zhoupgsql
$ export DBI PASS

Memory issue when converting big GAME
XML files into ChadoXML

The converter uses DOM structure to build
the tree structure into memory. It requires a
large amount of memory. If the converter dis-
plays an “out of memory” error, it is possible
to explicitly allocate more memory (e.g., 500
Mb if possible) to the Java process with the
following command:

java -Xms500M/conf/
GAMEChadoConv.jar GTC

If the machine has limited memory, one
way to get around this problem is to
copy GAMEChadoConv.jar and input the
GAME file to another machine with Java in-
stalled that has more memory, because this
utility is independent of other modules.

How to enable PostgreSQL for TCP/IP
In order to use DBI to access PostgreSQL

(which is required by XML-XORT), it is nec-
essary to have one’s database enabled for
TCP/IP connections. Either start the database
up with the -i switch:

$ postmaster -D /var/
postgresql/data -i &

or enable TCP/IP settings in the
database. Edit the /var/postgresql/
data/postgresql.conf file and set:

tcpip socket = true

How to set environment variables in the
Windows environment

As an example, to add d:\jdk1.4\bin
to CLASSPATH according to the instructions
for the respective operating system as de-
scribed under the headers below.

For Windows NT 4
Activate the Control Panel from the Start

menu (under Settings), then double-click on
the System icon. Choose the Environment tab.
Select the CLASSPATH variable (in the Sys-
tem Variables section) by clicking on it. In
the Value edit box, add d:\jdk1.4\bin to
the front of the variable definition, but be sure
not to overwrite what is already there. Note
the semicolon, which separates path segments.
Click the Set button, then OK.

For Windows 2000
Activate the Control Panel from the Start

menu (under Settings), then double-click
on the System icon. Select the Advanced
tab and click on Environment Variables.
Select the CLASSPATH variable (in the

Building
Biological
Databases

9.6.27

Current Protocols in Bioinformatics Supplement 12

Figure 9.6.26 The “rebase” error message from Cygwin.

System Variables section), then click Edit. Add
d:\jdk1.4\bin to the front of the variable
definition, but be sure not to overwrite what is
already there. Note the semicolon, which sep-
arates path segments. Click OK on each suc-
cessive screen to return to the Control Panel,
then close the Control Panel window.

For Windows XP Home or Professional
Activate the Control Panel from the Start

menu (under Settings). From the vertical menu
on the left, select Switch to Classic View,
then click on the System icon. Select the Ad-
vanced tab and click on Environment Vari-
ables. Select the CLASSPATH variable (in
the System Variables section), then click Edit.
Add d:\jdk1.4\bin to the front of the
variable definition, but be sure not to over-
write what is already there. Note the semi-
colon, which separates path segments. Click
OK on each successive screen to return to the
Control Panel, then close the Control Panel
window.

For Windows 98
Activate the Run dialog box by selecting

Run from the Start menu, then enter notepad
c:\autoexec.bat. Click OK. When the
editor window appears, add the following line
to the end of the file:

set CLASSPATH=
d:\jdk1.4\bin;%CLASSPATH%

Save the file, quit the editor, then restart the
computer.

Note that, to add a forward-slash direc-
tory to an existing value, one should sepa-
rate the new value from the old one by a
colon (:) instead of a semicolon (;). For ex-
ample to add /home/XML-XORT/lib to
an existing PERL5LIB that already has the

value /tmp/GMOD, the value should read
/tmp/GMOD:/home/XML-XORT/lib.

How fix a “rebase” error from Cygwin
If the error message shown in Figure 9.6.26

is encountered when running a Perl code
under Cygwin, then try issuing the command
$ rebaseall -v.

Literature Cited
Altschul, S.F., Gish, W., Miller, W., Myers, E.W.,

and Lipman, D.J. 1990. Basic local alignment
search tool. J. Mol. Biol. 5:215:403-10.

Burge, C. and Karlin, S. 1997. Prediction of com-
plete gene structures in human genomic DNA.
J. Mol. Biol. 268:78-94.

Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M.,
and Miller, W. 1998. A computer program for
aligning a cDNA sequence with a genomic DNA
sequence. Genome Res. 8:967-974.

Lewis, S.E., Searle, S.M.J., Harris, N., Gibson, M.,
Iyer, V., Richter, J., Wiel, C., Bayraktarogly,
L., Birney, E., Crosby, M.A., Kaminker, J.S.,
Matthews, B.B., Prochnik, S.E., Smith, C.D.,
Tupy, J.L., Rubin, G.M., Misra, S., Mungall,
C.J., and Clamp, M.E. 2002. Apollo: A sequence
annotation editor. Genome Biol. 3(12).

Mungall, C.J., Misra, S., Berman, B.P., Carlson,
J., Frise, E., Harris, N., Marshall, B., Shu, S.,
Kaminker, J.S., Prochnik, S.E., Smith, C.D.,
Smith, E., Tupy, J.L., Wiel, C., Rubin, G.M.,
and Lewis, S.E. 2002. An integrated computa-
tional pipeline and database to support whole-
genome sequence annotation. Genome Biol.
3(12).

Reese, M.G., Kulp, D., Tammana, H., and Haus-
sler, D. 2000. Genie: Gene finding in Drosophila
melanogaster. Genome Res. 10:529-538.

Stein, L.D., Mungall, C., Shu, S., Caudy, M., Man-
gone, M., Day, A., Nickerson, E., Stajich, J.E.,
Harris, T.W., Arva, A., and Lewis, S. 2002. The
generic genome browser: A building block for a
model organism system database. Genome Res.
12:1599-1610.

Using Chado to
Store Genome

Annotation Data

9.6.28

Supplement 12 Current Protocols in Bioinformatics

Internet Resources
http://www.gmod.org

Web site of GMOD.

http://www.flybase.org

Web site of FlyBase.

http://www.fruitfly.org/annot/gamexml.dtd.txt

Location of GAME XML DTD.

Contributed by Pinglei Zhou,
David Emmert, and Peili Zhang

Harvard University
Cambridge, Massachusetts

UNIT 9.7PubSearch and PubFetch: A Simple
Management System for Semiautomated
Retrieval and Annotation of Biological
Information from the Literature

Database curators and biology researchers must keep track of the literature concerning
their genes of interest. Such investigators have an interest in obtaining and using more
sophisticated tools for this purpose than spreadsheets and laboratory notebooks. Pub-
Search and PubFetch comprise a literature curation system that integrates and stores
literature and gene information into a single relational database. The PubSearch system
provides curators with a central Web application interface to support querying and edit-
ing publication articles, genes, and keywords such as the Gene Ontology (GO) terms. It
also facilitates annotating genes with keywords and article references, and allows con-
trolled access to protected PDF documents. The PubFetch system supports PubSearch
by providing a general interface to search and retrieve publications from online literature
sources. An overview of the PubSearch workflow is shown in Figure 9.7.1.

In this unit, a set of protocols is provided for populating and using PubSearch and
PubFetch. Basic Protocol 1 describes, in a step-by-step fashion, how to populate articles,
genes, keywords, and annotations in standard format into the database. The Alternate
Protocol is a procedure for populating articles using a Web interface, GO terms from
the GO database, and annotations in a tab-delimited format. Basic Protocol 2 describes
how to index the articles for full-text searching. Basic Protocol 3 shows how to use
PubSearch to search for genes, articles, keywords, and annotations using a Web browser.
Basic Protocol 4 describes ways to update and add data one item at a time using the Web
browser. Basic Protocol 5 describes how to annotate genes using GO and other controlled

Figure 9.7.1 An overview of the PubSearch workflow illustrating how published articles, genes, and key biological
terms are brought together and integrated within PubSearch. Manual review and annotation of these data creates an
annotated database of literature, genes, and related information that can be used within PubSearch alone or exported
to other applications.

Contributed by Danny Yoo, Iris Xu, Vijay Narayanasamy, Tanya Z. Berardini, Simon Twigger, and
Seung Yon Rhee
Current Protocols in Bioinformatics (2006) 9.7.1-9.7.27
Copyright C© 2006 by John Wiley & Sons, Inc.

Building
Biological
Databases

9.7.1

Supplement 13

PubSearch and
PubFetch

9.7.2

Supplement 13 Current Protocols in Bioinformatics

Table 9.7.1 Guide to Conventions Used for Naming Directories

Name Explanation

${TMPDIR} A temporary scratch directory

${WebAPP} The Web application directory where the servlet engine looks for
installed Web applications. Apache Tomcat uses a variation of
jakarta-tomcat/Webapps.

${PUBHOME} The root directory where PubSearch will be installed. This will be
WebAPP/PubSearch for typical installations.

${DOMAINNAME} A placeholder for the domain name of the PubSearch hosting machine

${PASSWORD} A placeholder for the database password used to access the “pubdb”
database in MySQL

${TOMCATBIN} Stands for the binary directory for Apache Tomcat. Typically, this is
apache-tomcat-[version]/bin.

vocabulary terms. Basic Protocol 6 shows how to generate and load GO annotations from
proteins that have been annotated with InterPro (http://www.ebi.ac.uk/interpro/) domains.
The unit also provides support protocols for installing PubSearch and PubFetch. Support
Protocol 1 describes how to install PubSearch; Support Protocol 2 describes how to
install and run PubFetch as a stand-alone software application. Finally, the Commentary
provides background information and related resources and includes information on
troubleshooting potential problems and future directions of software development. More
information about this project, including schema and software documentation, can be
found online at http://www.pubsearch.org.

Conventions for naming directories that are referred to in this unit are given in Table
9.7.1. Unix conventions (also see APPENDIX 1C) for navigating through directories will be
assumed. Unix commands will be prefixed with > to indicate the shell prompt. When
commands are to be sent to the MySQL console, these commands will be prefixed with
the prompt mysql>.

BASIC
PROTOCOL 1

POPULATING PubSearch

In this protocol, an instance of the PubSearch curation system will be populated. A
description of how to load articles, genes, and keywords in XML format, and annotations
in GO annotation format, is provided. In addition, the protocol describes how to generate
indices of the articles using the gene and keyword names. Upon completion of this
protocol, a functional installation of the system will have genes, articles, keywords, and
gene annotations that can be edited and queried from the Web interface.

Necessary Resources

Hardware

PubSearch has been tested on the following systems:
Intel Xeon, 866 MHz, 2 CPUs (512 Mb RAM)
Apple PowerBook, 1 GHz (1 Gb RAM)

Dedicated hard drive space required for indexing full text

Software

PubSearch has been tested on the following operating systems:
Red Hat Enterprise Linux 3
Mac OS 10.3
PubSearch has not yet been tested on the Windows platform.

Building
Biological
Databases

9.7.3

Current Protocols in Bioinformatics Supplement 13

Installation of the following list of programs is a prerequisite for installing and
running PubSearch:

Java JDK 1.4 or higher (http://java.sun.com/j2se/1.4/)
Any Java Servlet platform, such as Apache’s Tomcat

(http://jakarta.apache.org/tomcat/)
MySQL 4 (http://mysql.com)
In order to have transactional support, MySQL should be configured to support

the INNODB table type. INNODB is described online at
http://dev.mysql.com/doc/mysql/en/innodb-overview.html

Perl 5.8 (http://www.cpan.org/src/README.html)
Python 2.3 (http://www.python.org/2.3/)
Perl and Python are used as scripting languages to administer many of the

subsystems, including cron jobs and other maintenance

The following are software requirements for performing this protocol:

GO-DB-PERL and GO-PERL Perl bindings for loading GO terms. These bind-
ings are used to process data files that have been released by the Gene On-
tology. GO-PERL and GO-DB-PERL are available as part of the standard set
of development tools from the Gene Ontology’s SourceForge repository at
http://sourceforge.net/projects/geneontology.

The “go-dev” download package linked from the SourceForge page contains both
Perl modules, and instructions on installing them are included in the package.
PubSearch has been tested against the go-dev-20040609-amigo2.0 re-
lease, and that version is strongly recommended.

XPDF tools from http://www.foolabs.com/xpdf/download.html. The current ver-
sion at the time of writing is xpdf-3.00pl3-linux.tar.gz. XPDF is a
separate set of tools to parse PDF files. XPDF includes the “pdftotext” utility,
which is used to extract full text from a PDF file for searching and indexing.
The XPDF source and binary distributions include instructions on how to install
the XPDF toolset.

Files

A sample dataset is provided on the PubSearch Web site for demonstration pur-
poses. The archived demonstration database can be downloaded from http://
pubsearch.org/releases/pubsearch-database-newest.sql.bz2 Note that the file is
compressed (using bzip2) to conserve space.

1. Install PubSearch and PubFetch as described in Support Protocols 1 and 2.

2. Download the sample dataset from the PubSearch Web site at http://pubsearch.
org/releases/pubsearch-database-newest.sql.bz2 using the following command:

>wget http://pubsearch.org/releases/pubsearch-database-
newest.sql.bz2

3. Load the dataset into the database using the command:

>bzcat pubsearch-database-newest.sql.bz2 | mysql pubdb

Bulk load articles from XML
As an alternative to bulk loading using PubFetch, articles can be added in bulk through
the command-line interface. The bulk input format is a subset of the document type def-
inition (DTD) file pubmed 020114.dtd (http://www.ncbi.nlm.nih.gov/entrez/query/
DTD/pubmed 060101.dtd) used by PubMed as part of the PubMedArticleSet (http://
eutils.ncbi.nlm.nih.gov/entrez/query/DTD/index.html). This subset includes the following

PubSearch and
PubFetch

9.7.4

Supplement 13 Current Protocols in Bioinformatics

attributes: PMID, MedlinePgn, Volume, Issue, MedlineID, ArticleTitle, AbstractText,
AbstractNumber, ISSN, PubSourceId, PubSourceName, and PublicationType. Note that
the DTD from PubMed may change in the future. The authors will update PubSearch to
work with the latest version of the DTD. Users are advised to check for the latest version
of the DTD when installing PubSearch.

4. Construct a data file. This file must conform to the DTD definition de-
scribed above. A sample set of articles in the PubSearch Article XML format
is included in ${PUBHOME}/data/test/sample pubmed articles.dtd.
NCBI PubMed queries can also produce appropriate XML output for the bulk loader.

The XML parser that is bundled with PubSearch is nonvalidating, because the selected
PubMed subset that is used in the bulk article loader is itself not compliant with the
PubMed DTD. In future releases of this software, the bulk article loader will define its
own custom DTD format and use a validating parser for greater safety.

5. Run article importing script on the data file. Assuming that the input file is called
ARTICLE.XML, go into the PubSearch home directory:

>cd ${PUBHOME}

Execute the article bulk loading command:

>bin/bulk load articles.pl -pubsources ARTICLE.XML

The -pubsources flag tells the loader to add new Publication Sources such as
Journals, as necessary. If the flag is not given, then articles that refer to a nonexistent
pub source will be ignored. After the command is executed, the set of articles will be
entered into the PubSearch database, along with any necessary publication journals
as PubSource entries.

Bulk load Term Ontologies with XML
PubSearch provides two ways of loading the Gene Ontology terms into its in-
ternal databases: loading straight from an XML data file, or from a MySQL
dump of the GO database. Both methods are documented below. GO pro-
vides two types of XML dump for the ontology. PubSearch provides a loader
for the GO-RDF format defined at http://www.godatabase.org/dev/database/archive/
latest/go yyyymm-rdf.dtd.gz. To get the latest DTD, replace “yyyymm” with the year
and month, e.g., “....go 200601-rdf.dtd.gz.”

6. Download the GO RDF XML file at http://www.godatabase.org/dev/database/
archive/latest/go 200503-termdb.obo-xml.gz, using the following command:

>wget
http://www.godatabase.org/dev/database/archive/
latest/go yyyymm-termdb.obo-xml.gz

For example, “...go 200601-termdb.obo-xml.gz.”

7. Decompress the file:

>gunzip go yyyymm-termdb.obo-xml.gz

When the year and month are substituted, this will generate a file named go 200503-
termdb.obo-xml in the same directory.

Building
Biological
Databases

9.7.5

Current Protocols in Bioinformatics Supplement 13

8. Run the bulk term loader over the decompressed file:

>$ {PUBHOME}/bin/bulk load terms.pl go yyyymm-
termdb.obo-xml

This should load all the terms and the term-to-term ontology structure into the PubSearch
database.

9. Restart PubSearch by restarting the servlet container. The system keeps a cached
view of the ontology graph that is updated every hour. A restart forces the system to
refresh its view of the ontology:

>cd ${TOMCATBIN}

>bin/shutdown.sh

>bin/startup.sh

Bulk load genes from xml
The PubSearch software provides a simple data format for bulk loading gene objects into
the system. This format is defined in:

${PUBHOME}/data/dtds/bulk gene.dtd

10. Prepare a GeneXML file in the format described in the DTD. An example file in this
format can be found in:

${PUBHOME}/data/test/one gene.xml

Once a file has been prepared in this format, it can be run through the provided
bulk gene loader.pl script.

11. Load the data file into PubSearch. For example, to load the one gene.xml file:

>${PUBHOME}/bin/bulk load genes.pl

>${PUBHOME}/data/test/one gene.xml

Bulk load GO gene annotations
There are currently two types of file formats for loading annotations: user-submission
annotation file format, which is used by TAIR (UNIT 1.11), and GO annotation file
format, which is used by all databases contributing GO annotations to the GO
Web site. More information about the user-submission file format is found online
at http://arabidopsis.org/info/functional annotation.submission.jsp. More information
about the GO annotation file format can be found online at http://www.geneontology.
org/GO.annotation.shtml#file.

12. Download a GO gene association file from the GO Web site (http://www.
geneontology.org/GO.current.annotations.shtml). For example, to retrieve Ara-
bidopsis thaliana annotation data from TAIR, download the file from ftp://ftp.
geneontology.org/pub/go/gene-associations/gene association.tair.gz.

13. Save file in the ${PUBHOME}/maint/tigrannotation/data directory and
unzip that file by executing the following commands:

>cd ${PUBHOME}/maint/tigrannotation/data

>wget ftp://ftp.geneontology.org/pub/go/gene-
associations/gene association.tigr Athaliana.gz

PubSearch and
PubFetch

9.7.6

Supplement 13 Current Protocols in Bioinformatics

>gunzip gene association.tigr Athaliana.gz

This generates a file called gene association.tigr Athaliana in the same
directory.

14. Run generateAnnotationFromTigrFile.pl on this new file to load GO
annotation file by executing the following commands from the ${PUBHOME}
directory:

>cd maint/tigrannotation

>perl generateAnnotationFromTigrFile.pl -D
database name

Generating hits
Hits are associations between terms and articles that can be generated by exact-term
matching. The program generate hits.pl will do a bulk search for database terms
within the titles and abstracts of all articles.

15. Execute generate hits.pl:

>${PUBHOME}/bin/generate hits.pl

This step may take several minutes, depending on how many terms exist in the database.

SUPPORT
PROTOCOL 1

INSTALLING PubSearch

The PubSearch Web application is one of the main components of the literature curation
system. This protocol describes how to install the software on a clean machine, configure
its connection to a relational database, and add initial users to the system.

Necessary Resources

Hardware
PubSearch has been tested on the following systems:

Intel Xeon, 866 MHz, 2 CPUs (512 Mb RAM)
Apple PowerBook, 1 GHz (1 Gb RAM)

Dedicated hard drive space required for indexing full text

Software

PubSearch has been tested on the following operating systems:
Red Hat Enterprise Linux 3
Mac OS 10.3

PubSearch has not yet been tested on the Windows platform.
Installation of the following list of programs is a prerequisite for installing and

running PubSearch:

Java JDK 1.4 or higher (http://java.sun.com/j2se/1.4/)
Any Java Servlet platform, such as Apache’s Tomcat (http://jakarta.apache.org/

tomcat/)
MySQL 4 (http://mysql.com)
In order to have transactional support, MySQL should be configured to support

the INNODB table type. INNODB is described online at http://dev.mysql.
com/doc/mysql/en/innodb-overview.html

Perl 5.8 (http://www.cpan.org/src/README.html)
Python 2.3 (http://www.python.org/2.3/)
Perl and Python are used as scripting languages to administer many of the

subsystems, including cron jobs and other maintenance

Building
Biological
Databases

9.7.7

Current Protocols in Bioinformatics Supplement 13

The following are software requirements for performing this protocol:

GO-DB-PERL and GO-PERL Perl bindings for loading GO terms. These bind-
ings are used to process data files that have been released by the Gene On-
tology. GO-PERL and GO-DB-PERL are available as part of the standard set
of development tools from the Gene Ontology’s SourceForge repository at
http://sourceforge.net/projects/geneontology.

The “go-dev” download package linked from the SourceForge page contains both
Perl modules, and instructions on installing them are included in the package.
PubSearch has been tested against the go-dev-20040609-amigo2.0 re-
lease, and that version is strongly recommended.

XPDF tools from http://www.foolabs.com/xpdf/download.html. The current ver-
sion at the time of writing is xpdf-3.00pl3-linux.tar.gz. XPDF is a
separate set of tools to parse PDF files. XPDF includes the “pdftotext” utility,
which is used to extract full text from a PDF file for searching and indexing.
The XPDF source and binary distributions include instructions on how to install
the XPDF toolset.

1. Download the binary distribution of PubSearch from http://pubsearch.org/
releases/pubsearch-newest.tar.gz into ${TMPDIR}. Most versions of UNIX have
a command called wget that can be used to retrieve the contents of Web URLs from
a shell prompt:

>cd ${TMPDIR}

>wget http://pubsearch.org/releases/pubsearch-newest.
tar.gz

See Table 9.7.1 for explanations of the directory names used here.

2. Untar this file from within the ${WebAPP} directory:

>cd ${WebAPP}

>tar xzvf ${TMPDIR}/PubSearch-newest.tar.gz

A new subdirectory called PubSearch will be produced underneath the
${WebAPP} directory.

3. Change the current working directory to ${WebAPP}/pubsearch:

>cd pubsearch

4. Initialize the PubSearch Database. Use MySQL’s administrative tool mysqladmin
to create a new database called pubdb:

>mysqladmin createdb pubdb

An empty database called pubdb will be created.

5. Load schema structure into the pubdb database. This structure is defined in the files
schema.mysql and schema-support.mysql:

>mysql pubdb < data/schema.mysql

>mysql pubdb < data/schema-support.mysql

PubSearch and
PubFetch

9.7.8

Supplement 13 Current Protocols in Bioinformatics

6. Create a separate MySQL user account for PubSearch. It is strongly recommended
that a separate MySQL database user be used to connect to the database, with a
separate password. This can be done through the MySQL console:

>mysql pubdb

mysql> grant all on pubdb.* to pubuser@${DOMAINNAME}
identified by ‘‘${PASSWORD}’’;;

mysql> exit

7. Configure PubSearch’s global preference file. The PubSearch Web application main-
tains its configuration settings in the following file:

${PUBHOME}/Web-INF/classes/pub/config/program.
properties

This file must be edited so that the system knows what resources it can use (e.g.,
database settings, index directories, PDF repositories):

>emacs ${PUBHOME}/Web-INF/classes/pub/config/program.
properties

The most relevant of the properties are:

pub.database username

pub.database password

pub.database connection string

pub.aux data dir

which should be adjusted to appropriate values. The first three property values
define the values necessary to connect to the MySQL database. The last value,
pub.aux data dir, defines an auxiliary data directory that is used to store indices for
the full-text search engine as well as temporary scratch space. Full-text indices typically
take up 30% of the full text.

8. Test the Database Connection. To verify that the program.properties file
has been successfully modified, execute the following command from within the
${PUBHOME} directory:

>bin/test database connection.pl

If the PubSearch system can successfully connect to thepubdb database, then the message
Database connection looks good should be displayed. Otherwise, correct the
program.properties file and repeat this step until PubSearch can connect to the
database.

9. Notify the Servlet Engine of the PubSearch Web application. Apache Tomcat rescans
the Web application directory WebAPP on startup. If Tomcat is already running, shut
it down, and then start it again.

>${TOMCATBIN}/shutdown.sh

>${TOMCATBIN}/startup.sh

Otherwise, start Tomcat:

>${TOMCATBIN}/startup.sh

Building
Biological
Databases

9.7.9

Current Protocols in Bioinformatics Supplement 13

The PubSearch Web application should be running at this point. Under de-
fault settings, the page will show up under the URL http://${DOMAINNAME}:
8080/pubsearch/.

10. View PubSearch on a Web browser to see that the application is active.

Adding curators to the system
Only curator users are allowed to make changes to PubSearch. Curators can be added
through a command-line interface. Also, if a PDF repository has been constructed,
curators have access to those protected links.

11. Execute the add curator.pl program. Change directory to ${PUBHOME} and
run the command bin/add curator.pl.

>cd ${PUBHOME}

>bin/add curator.pl

Prompts from the program will ask for username and initial password.

Adding regular users to the system
Regular users are allowed to inspect and query the PubSearch system, but are not allowed
to make changes or to view PDF files. Regular users can be added through a command
line interface, similarly to curators. The command add user.pl is used.

12. Execute the add user.pl program. Change directory to ${PUBHOME} and run
the command bin/add user.pl:

>cd ${PUBHOME}

>bin/add user.pl

Prompts from the program will ask for username and initial password.

Setting up administrative cron jobs for periodic maintenance
On Unix systems, a cron job can be initialized to perform regular tasks on the PubSearch
system. Such tasks might include running the full text indexing, generating hits, and
exporting bulk output out of PubSearch.

An example cronable script is included in${PUBHOME}/maint/cron/pub daily.sh.

13. To schedule pub daily.sh on a regular basis, execute:

>crontab -e

This will execute the crontab editor. Add the following entry into the crontab:

0 0 * * * ${PUBHOME}/maint/cron/pub daily.sh

which will schedule the execution of pub daily.sh every midnight.

14. Create a cronjob entry for each maintenance script desired.

SUPPORT
PROTOCOL 2

INSTALLING PubFetch FOR USE OUTSIDE OF PubSearch

PubFetch is available as Java Archive (JAR) library that can be used by any other Java
application. PubFetch currently contains adaptors to allow the standardized retrieval of
literature references from PubMed at NCBI (National Center for Biotechnology Informa-
tion) via the eUtils interface and from Agricola (National Agricultural Library) via their
Machine Readable Cataloging (MARC)–based system. PubFetch is part of the standard

PubSearch and
PubFetch

9.7.10

Supplement 13 Current Protocols in Bioinformatics

PubSearch release, so no further action is required to use PubFetch with PubSearch.
The protocol below is employed to obtain and use PubFetch as an independent software
library.

Necessary Resources

Hardware

Any computer that runs Java and has an Internet connection

Software

Java SDK available at http:www.java.sun.com
Xerces XML Parser (http://xml.apache.org/): xercesImpl.jar can be found in

the lib folder of PubFetch releases

MARC4J (http://marc4j.tigris.org/): provides an easy to use Application
Programming Interface (API) for working with MARC records in Java
(marc4j.jar can be found in the lib folder of PubFetch releases

Log4j (http://logging.apache.org/log4j/): a logging package for Java
(log4j-1.2.8.jar) can be found in the lib folder of PubFetch releases).
The logging behavior can be controlled by editing the configuration file (see
below)

Apache Ant: a common build utility for Java

Files

Log4J configuration file (log configuration.properties can be found in
the data folder of the release)

Entrez Journal List file containing journals in PubMed and the molecular biology
databases (J Entrez.txt.gz can be found in the data folder of the release)

1. Download the latest PubFetch binary or source files from GMOD project
(Generic Model Organism Database) SourceForge site (http://sourceforge.net/
project/showfiles.php?group id=27707).

2. Unarchive the files using appropriate software for the operating system. For example
use WinZip on the Windows operating system. On Unix and Macintosh OS X
operating systems use the command:

>tar -zxvf file-name

3. To use PubFetch as an API for fetching records from Agricola and/or PubMed
in Java applications, it is first necessary to install the pubfetch.jar final in
CLASSPATH.PubFetch.jar is provided as part of the binary release or can be
built from scratch from the source code release by running ant with the jar target:

>cd ${PUBFETCH}

>ant jar

4. Add other essential jar files to CLASSPATH such as XML Parser (xerces-
Impl.jar), MARC4J (marc4j.jar) and Log4J (log4j-1.2.8.jar). These
jar files can be found in the lib folder of the release. They can also be downloaded
from the appropriate software application’s Web site.

5. Once installed, PubFetch provides the following features to Java clients:

Common format: A common output format is implemented so that downstream
applications can easily use the retrieved literature. PubFetch retrieves articles in

Building
Biological
Databases

9.7.11

Current Protocols in Bioinformatics Supplement 13

MEDLINE Display Format, which is also one of the standard formats used by the
GMOD (Generic Model Organism Database) project. PubFetch converts MARC
Record Format to MEDLINE Display Format, in the case of Agricola, by replacing
MARC tags with corresponding MEDLINE tag. For example MARC tag 245 is
MEDLINE tag TI, which corresponds to the Title of the article.

Full text URL: PubFetch can return the URL for the full text of each document
if the full text link is available in PubMed LinkOut, or PubMed Central, or if
a CrossRef/DOI (Digital Object Identifier) is provided. This can be used for the
subsequent download of the full text PDF for full text indexing or printing.

Duplicate filtering: When searching multiple databases, the potential exists for
records to be present in both databases, resulting in a duplicate record. PubFetch
provides a duplicate filtering algorithm based upon common attributes such as the
Title, ISSN number, and starting page, which can be used to identify and then remove
duplicate records. Cross-references to the duplicated record are maintained, so links
can be created to both sources.

Explicit examples for using PubFetch as a stand-alone tool are provided in the README
files distributed with the release. These illustrate how to search and retrieve documents
from a literature repository and also acquire URLs for full-text articles, where available.

For more in depth explanations of the PubFetch API, javadoc files are available for the
source code. The can be found in the htdocs/javadoc folder in the binary release,
or run ant-doc in the source release to produce the javadoc from scratch.

ALTERNATE
PROTOCOL

OTHER WAYS TO POPULATE PubSearch

As an alternative to Basic Protocol 1, this protocol explores other ways of loading data
into the PubSearch database. Procedures are described for loading articles from Agricola
and Medline using a Web interface, for loading an entire ontology directly from the Gene
Ontology database, and for processing a bulk set of annotations from a tab-delimited
input file.

Necessary Resources

See Basic Protocol 1 and Support Protocol 1

Bulk loading articles using the Web browser
Users can query online publication databases and load the results into the PubSearch
database. This functionality uses the PubFetch software in the background. The user
must be logged in to perform this task.

1. From the PubSearch Web interface (see Basic Protocol 1), go to Add Articles in
Bulk on the Add toolbar.

2. Select the type of data source: Agricola or PubMed.

3. Enter published date range in the format YYYY/MM/DD (e.g., 2005/01/08) of the
articles to be retrieved.

4. Enter the keyword to be used in the input box following Search For; this will limit
the search to those articles which have this keyword in their titles or abstracts.

5. Click the FetchToPub button.

After the user clicks the FetchToPub button, the underlying PubFetch application will fetch
the articles the user wants from the user-specified data source and add the articles into
PubSearch after filtering out the duplicates. If the publication source of the article (e.g.,
journal) does not exist in the database, the application adds the journal automatically.

PubSearch and
PubFetch

9.7.12

Supplement 13 Current Protocols in Bioinformatics

6. Confirm/Check the inserted articles. After the software fetches and inserts the articles,
a summary page will be displayed with three sections, as follows:

a. Number of new articles that were added to the database. For each added article,
the page has a link to the article detail page, where the user can check the detail
of that article and add/modify article information.

b. Number of new journals that were added. This will also link to the journal detail
page, where the user can modify journal information. Journal entries are
occasionally duplicated with some existing journals in database due to slight
differences in naming conventions in the source data. If this is the case, the user
can merge the two entries by “obsoleting” (i.e., by marking the entry obsolete
in the database, one is effectively “deleting” it without removing it from the
database) the new journal and replacing it with the other journal. This step will
also associate any articles that were linked to the old journal with the new one.

c. Number of articles that were skipped because they were duplicates of existing
entries. For the duplicated articles, the article entries in the database and
entries from the data source are displayed side by side so the user can compare
them and modify/add information to the article entries in database.

Bulk loading term ontologies from a Gene Ontology database
7. Load a Gene Ontology database.

The Gene Ontology defines an SQL schema for storing terms and the associated rela-
tionships. These can be found on the GO Web site at http://geneontology.org. PubSearch
contains a set of loading scripts to read the native Gene Ontology databases and to import
the terms and ontologies into a local database.

8. Download a suitable ontology dump file. For example, the GO consortium publishes
a dump of its term database once a month. Use the following command:

>wget
http://archive.godatabase.org/latest/go yyyymm-termdb-
tables.tar.gz

The string “yyyymm” is to be replaced with the latest year and month in the file name, e.g.,
for January, 2006, the file name would be go 200601-termdb-tables.tar.gz.

9. Restore the MySQL dump into the local database. For the purposes of this guide,
assume the database is named gene ontology.

>mysqladmin create gene ontology

>tar xzvf go yyyymm-termdb-tables.tar.gz

>cd go yyyymm-termdb-tables

>cat *.sql | mysql gene ontology

>mysqlimport -L gene ontology *.txt

10. Run Gene Ontology loaders. Once the Gene Ontology MySQL database is created,
the following steps will add terms and term-to-term ontology relationships into the
PubSearch system.

>cd ${PUBHOME}/maint/gene ontology

>perl add goterm to pubterm.pl

>python load term2term.py

Building
Biological
Databases

9.7.13

Current Protocols in Bioinformatics Supplement 13

>cd ${PUBHOME}

>perl bin/import go term synonyms.pl gene ontology

Loading user-submitted annotations
The bulk annotation loader provides a way to load gene-to-term associations with
article references. The loader takes a tab-delimited file as input, and the format
that the file reads is documented in ${PUBHOME}/maint/bulk annotation
loader/format.txt. An example file is included in ${PUBHOME}/maint/
bulk annotation loader/sample/example.txt.

11. To load the annotations, execute the bulk load annotations.pl script on the
data file:

>cd ${PUBHOME}/maint/bulk annotation loader

>perl bulk load annotations.pl sample/example.txt

BASIC
PROTOCOL 2

SETTING UP A PDF REPOSITORY FOR FULL-TEXT INDEXING

Articles in the PubSearch database often have Adobe Portable Document Format (PDF)
files associated with them. These documents can be processed by PubSearch’s full-text
index system, thereby enabling a powerful full-text search engine. However, access
to these PDFs may need to be restricted due to licensing issues. PubSearch provides
a rudimentary scheme for restricting PDF access to curators only. The protocol below
describes how to set aside a protected PDF repository for PubSearch and schedule regular
maintenance of a full-text index for PDF documents.

Necessary Resources

See Basic Protocol 1 and Support Protocol 1

Setting up A PDF repository for full-text indexing
1. Set aside a directory for documents. This directory can be placed in any file system

with sufficient storage. Once a directory has been made, PubSearch must be con-
figured to use that directory, using the program.properties configuration file
described in the PubSearch installation section.

2. Edit the program.properties file in the ${PUBHOME}/Web-INF/
classes/pub/config directory. Change the property pub.pdf document
base to the PDF repository directory.

3. Once a PDF repository directory is configured, PDFs can be copied into the repos-
itory. The filename of each PDF must be named to match the article id within the
PubSearch system.

In a future revision of the system, a Web interface for adding PDFs will be implemented.

4. Once a PDF has been copied into the PDF repository directory, a FullText URL
will be available from the article detail page. Only logged-in curators with the
“can access pdfs” capability will be allowed to access the URL. At the current time,
SQL update statements issued from the MySQL client are required to change this
property.

Generating full-text indices
5. Generate text files for article PDFs by executing the following command from the

${PUBHOME} directory:

PubSearch and
PubFetch

9.7.14

Supplement 13 Current Protocols in Bioinformatics

$cd maint/perl

$perl extract full text.pl

PubSearch sets up a cron job for this task (see Support Protocol 1).

6. Set up a PDF repository for storing article full text, and specify this resource in pro-
gram.properties file in the ${PUBHOME} directory. The following illustrates
the settings from PubSearch:

Where are the PDFs located on the system?

pub.pdf document base = /opt2/pub documents

7. Set aside a directory for storing the indices that the Lucene search engine
will generate. The following lines are the configuration from PubSearch’s pro-
gram.properties file:

Directory where Pub can store auxiliary data
(indices)

pub.aux data dir = /opt2/PubSearch/var

8. Add the following lines to the program.properties file (see Basic Protocol 1).
The settings below indicate to the system which specific content types are used as
document collections. Classes are separated from one another by a comma. Pub-
Search comes with three standard document type index classes listed below:

pub.lucene document iterators = pub.db.search.
LuceneTermIterator,
pub.db.search.LuceneGeneIterator,
pub.db.search.LuceneArticleIterator

9. To generate the indices for full text, execute the following commands under the
${PUBHOME} directory:

>cd ${PUBHOME}

>bin/index full text.pl

BASIC
PROTOCOL 3

USING PubSearch TO SEARCH DATA

Once data have been warehoused into PubSearch, the data can be queried from the Web
interface. Procedures are described below for logging into the system as a privileged
curator and performing simple and complex queries. The intended users for this pro-
tocol are biologists, database curators, computational biologists, bioinformaticians, or
bench scientists who need to manage a large amounts of literature and gene data. This
protocol uses the following convention for the URL where PubSearch can be accessed:
http://${DOMAINNAME}:8080/pubsearch.

Necessary Resources

See Basic Protocol 1 and Support Protocol 1

Navigation and home page
The page header displayed on top of every page (Fig. 9.7.2) illustrates all of the function-
alities available in PubSearch. In addition to logging in, searching, browsing, and adding
data, users can access curation and usage guides, as well as submit bugs. The home page
displays a short description of the software, recent changes, and database statistics.

Building
Biological
Databases

9.7.15

Current Protocols in Bioinformatics Supplement 13

Figure 9.7.2 A screenshot of the Navigation toolbar of PubSearch Web user interface. It lists the
different types of user functions, links to usage guide, and text boxes for logging in.

Logging into the database
Users can log in from any page in PubSearch. Logging in is required for updating,
inserting, and viewing full-text articles. Searching and viewing results do not require
logging in.

1. In the page header, type the user name in the Name input box, and enter the password
in the Password input box.

Searching the database
It is not necessary to be logged in to search the database. There are two types of search
interfaces available, a simple search of all datatypes, and advanced searches for each of
the major datatypes.

Simple searching

2. From the page header, click the All hyperlink in the “Search for” section or go
directly to the simple search interface from the URL (http://$
{DOMAINNAME}:8080/pubsearch/Search?middle page=ALL).

3. Type the search string (both words and phrases are accepted) in the text input box
next to Query:, then click the Submit button. For example, try typing “water
channel” (including the quotes, which searches for the phrase).

This search uses Lucene’s full-text search algorithm. For a complete list of avail-
able query string options and formats, refer to http://lucene.apache.org/java/docs/
queryparsersyntax.html.

4. Results are ordered in terms of how they score in terms of “density” in the Lucene
search engine (frequency of term occurrence per document size; Fig. 9.7.3). In the
example query, from TAIR’s PubSearch instance, 125 results are retrieved, which
include genes, controlled vocabulary terms, and articles. Clicking on the name/title
of the gene, term, or article leads to the detail page of the data object.

The simple search function searches all of the data fields. It is experimental and is not
supported.

Advanced searching

There are four types of data—articles, genes, terms, and hits—that can be searched by
using more parameters. These data types are listed in the page header. The user interface
and usage of the search and result pages for all of these data types are similar. Therefore,
only the hit search is described here. “Hit search” is used to find papers that are associated
with a gene (or other types of terms) of interest. Both articles and terms can be restricted
for finding matches between papers and terms.

5. Go to the Hit search page by clicking on the Hit hyperlink in the Search section of
the page header (Fig. 9.7.4).

PubSearch and
PubFetch

9.7.16

Supplement 13 Current Protocols in Bioinformatics

Figure 9.7.3 A screenshot of the Search All function’s result page showing the first page of results from a search with
‘‘water channel’’ (including quotes) as query string. Results are displayed in the order of “density” of the match,
which is a measure of the frequency of the matching string over the length of the entry. Underlined text (shown also in
blue on screen) indicates a hyperlink to more information.

Figure 9.7.4 A screenshot of the Search Hits function. Users can restrict the search by terms
(lower left box), articles (lower right box), and validation status of the automated hits between terms
and articles (upper left). Options for displaying the results are listed in the upper right corner.

Building
Biological
Databases

9.7.17

Current Protocols in Bioinformatics Supplement 13

6. For the “Filter based on validation status” parameter, click “Retrieve hits that haven’t
been looked at” radio button to retrieve hits that have not been validated manually.

There are three types of parameters to restrict the search: validation status, terms, and
articles. All hits are generated automatically by the software, which can be validated by
users using the Web browser. Valid hits refer to those that have been validated by a user.

7. To restrict the search by terms, the Term section on the left side of the search page
can be used. Users can limit the search by term name, description, ID(s), type,
and obsoletion status. As an example, type transcription factor (without
quotes) in the first text input box, change the drop-down menu to “Term description,”
and choose the “Contains” option. Leave the “Filter by term type” drop-down menu
as the default. This will limit the search to all genes whose description contains the
phrase transcription factor.

8. To restrict the search by articles, the Article section on the right side of the search
page can be used. Users can limit the search by year of publication, title, authors,
abstract, journal name, ID(s), publication type (e.g., journal article or book chapter),
article type (e.g., research article or review), obsoletion status, and local full-text
availability. As an example, limit the year of the publication by selecting “2005”
from the “Let the Year span From” parameter. This will limit the search to all articles
published in 2005 or later.

Figure 9.7.5 A screenshot of Search Hits result page. Results are grouped by each article.
The first column shows article information, the second column shows matching genes, the third
column indicates information about the matching, and the fourth column displays the options for
validating the matches between the papers and genes. Underlined text (shown also in blue on
screen) indicates hyperlinks to more information.

PubSearch and
PubFetch

9.7.18

Supplement 13 Current Protocols in Bioinformatics

9. There are two types of output formats: List Hits Individually and List Hits Grouped
by Article. The first option lists individual hits ordered by article ID. Choose the
second option, and hit the Submit button.

10. The results page (Fig. 9.7.5) shows how many matches (in this case, matching
articles) are retrieved. Each row of result has four columns that contain article
information, matched term information, details about the match, and a column that
allows logged in users to validate the match. Hyperlinks lead to the detail pages of
the articles, hits, and other PubSearch objects.

BASIC
PROTOCOL 4

USING PubSearch TO ADD AND UPDATE DATA

PubSearch also provides basic interfaces for curating data in its database. All searchable
data types can be edited using the Web browser by logged in users. The mechanism
for editing is similar for all data types. This protocol describes the updating of existing
article data as well as the addition of new articles from the Web interface.

Necessary Resources

See Basic Protocol 1 and Support Protocol 1

Updating article information
1. Go to the “Article search” page (Fig. 9.7.6) by clicking on the Article hyperlink in

the “Search for” page header.

2. Search for articles of interest by using the parameters provided on the search page.
For example, type‘‘auxin biosynthesis’’ (including quotes) in the text input

Figure 9.7.6 A screenshot of the Article Search form.

Building
Biological
Databases

9.7.19

Current Protocols in Bioinformatics Supplement 13

Figure 9.7.7 A screenshot of the Article Detail page. Logged users can update the fields on this
page.

box under the Simple section, and change the “Let the Year span From:” drop-down
menu to “2003.”

The text input box in the Simple section of this page searches the full text of all of the
articles in a manner similar to that of Google. If phrases are not enclosed within quotes,
individual words will be searched separately.

3. All articles that contain the phrase ‘‘auxin biosynthesis’’ in the text, and
that were published in 2003 or later, will be retrieved.

4. Results are displayed grouped by articles. For each article, the year, title, journal,
authors, and abstract are displayed. In addition, links to the PDF version of the full
text, associated terms and genes, and article detail page are provided. To go to the
article detail page to edit the information, click on the title.

5. If logged in, a number of fields will be seen that can be updated in the form of
text boxes, radio buttons, and drop-down menus (Fig. 9.7.7). Multiple fields can be
updated at once. Update the fields as necessary, then click the Submit button.

6. If the publication source information (e.g., periodicals) needs to be updated, click
on the PubSource name.

7. Modify the updatable fields as necessary, then click the Submit button.

Adding data individually
In addition to the bulk import of data described in Basic Protocol 1 and the Alternate
Protocol, logged-in users can insert new data entries using the Web forms. Currently
data types that can be added into the database via these Web forms include articles,
publication sources, genes, sequences, alleles, germplasms, terms, hits, and controlled
vocabulary annotations. Web forms for adding new data can be found by clicking on the

PubSearch and
PubFetch

9.7.20

Supplement 13 Current Protocols in Bioinformatics

data object names in the “Add:” toolbar on top of each page (e.g., articles, genes, terms;
Fig. 9.7.2). In addition, data that are associated with genes or articles such as alleles,
sequences, germplasms, or publication sources can be added from the gene or article
update pages. The principle for adding new data objects is the same for all objects. In
this chapter, adding articles individually is used as an example.

Adding article information
8. Log in to the database as described in Basic Protocol 3.

9. Click on Article in the “Add:” toolbar to get to the Add Article page (Fig. 9.7.8).

10. There are two ways of adding an article into the database. If the PUBMED ID is
known, enter the ID in the text input box. For example, enter 15861308 and click
the “Get it” button.

11. If the article does not exist in the database, the article information will be automati-
cally entered into the database and an article update page will be displayed. Check
the data and update the information if necessary.

If the article already exists in the database, the user will be given an error page that
includes a link to the existing article entry. Click on the link to check that the correct
article is in the database.

12. If the article to be entered into the database does not have PubMed ID, the fields can
be filled in manually on the Add Article page (Fig. 9.7.8). Fields marked with an
asterisk (*) are required.

Figure 9.7.8 A screenshot of the Add an Article form. This form allows users to insert an individual
article. Entering the PubMed ID will retrieve all the article information from PubMed automatically
using the PubFetch software, check for duplicates with articles in PubSearch database, insert the
article if it does not yet exist in the database, and allow users to update the retrieved fields if
necessary. If the PubMed ID is not known, users can enter the fields of the article.

Building
Biological
Databases

9.7.21

Current Protocols in Bioinformatics Supplement 13

Figure 9.7.9 A screenshot of the Add an Article function’s preview page. If the fields of the
new article have been entered manually, the preview page allows users to choose the correct
publication source using a drop-down menu, or to add a new publication source.

13. If the input string for the publication source (e.g., Journal or Book Series) matches
existing publication sources, one will be redirected to a page with a drop-down list of
publication sources from which to choose the source (Fig. 9.7.9). Choose the correct
journal and, if all other fields are correct, enter Submit. To change any fields, use the
Back button of the browser to go back to the previous page to update the fields as
necessary.

14. If the input string for the publication source does not exist in the database, the user
will be notified so as to be able to go back and update the search parameter or go to
a page to add it as a new publication source.

15. Click on the hyperlink to add a new publication source. Add the necessary fields and
click the Submit button. This will return the article update page with the article data
that has just been inserted into the database. If any of the fields need to be updated,
update the necessary information and click the Submit button.

BASIC
PROTOCOL 5

USING PubSearch TO MAKE GENE ONTOLOGY ANNOTATIONS

This section describes how to use PubSearch to make associations between genes
and Gene Ontology terms using the Web browser. The intended users for this sec-
tion are database curators. This protocol uses the demo version URL. For one’s own
version of PubSearch, the base URL will be different. By default, it takes the form:
http://${DOMAINNAME}:8080/PubSearch.

Users can login from any page in PubSearch (see Basic Protocol 3). Logging in is required
for making or updating GO annotations.

Necessary Resources

Hardware

Computer with Internet access

Software

Up-to-date browser such as Netscape 6.X, Internet Explorer 5.X, Safari 1.X

PubSearch and
PubFetch

9.7.22

Supplement 13 Current Protocols in Bioinformatics

Select the gene to be annotated
1. Go to Gene search page either by clicking on the Genes hyperlink in the

“Search for” page header or by going to the URL http://${DOMAINNAME}:8080/
pubsearch/Search?middle page=genes exp.

2. Enter the name of the gene to be annotated; for example, HST. Click Submit.

3. From the search results page, either click on the “annotate HST” link at the bottom
of the gene entry or click on the gene name and then click the Add Annotations link
on the Gene Detail page.

Select a GO term
4. Type in the term to be used in the input box below Term Name. For example, type

in kinase.

5. Click the Term Search button. This brings up the Term Search page with kinase
filled in for a “contains” search.

6. Restrict “term type” to the aspect of interested. For example, if doing a function
annotation, select “only allow func” from the “Filter based on term type” drop-down
menu. Click Submit.

7. From the search results page, select the term that looks the most appropriate for the
particular annotation. One can click either on the “term name” or on the Ontology
View link.

Clicking on “term name” opens a “term detail page” with the definition of the term
and the term’s parentage. Clicking on the Ontology View link opens a term browser and
allows one to traverse up and down the structured hierarchy of the GO. In either case, it is
possible to click on the button with the GO id to be used for the annotation. Doing so will
enter both the term name and the term id into the annotation window in the appropriate
slots.

Select a relationship type
8. The relationship type clarifies the gene-to-term relationship. Select the appropriate

one for the annotation. For example, when using a GO biological process term, a
commonly used relationship type is “involved in.”

Select an evidence code
9. From the Type drop-down menu, select the appropriate three-letter evidence code

for the annotation.

Select an evidence description
10. Depending on the evidence code selected, a number of evidence descriptions will be

displayed in the Description drop-down menu. Select the one that is most appropriate
for the annotation.

Select a reference
11. Click on either Article, Communication, Analysis Reference, or Book, depending

on what type of reference is appropriate. If Article, Analysis Reference, or Commu-
nication are chosen, click the Select button beside the appropriate reference to use it
in the annotation. If Book is chosen, select the title of the book from the Book menu,
highlight the chapter to use within the Book Chapter menu, and click the Select
button.

Enter the completed annotation into the database
12. Click on the Update button. The annotation will appear in the list of completed

associations with the user’s name and the current date in the “Annotated by” and
Date fields.

Building
Biological
Databases

9.7.23

Current Protocols in Bioinformatics Supplement 13

Updating existing annotations
13. It is possible to update the term name, relationship type, evidence code, or evidence

description by making changes and then clicking the Update button. However, if
changing from one reference type to another (i.e., Communication to Article), it is
necessary to obsolete the old annotation by clicking on the Obsolete “Y” radio button
and then creating the new annotation as described above.

Propagating annotations
14. The user may find it desirable to propagate an annotation that has been made for one

gene to other genes discussed in the same paper. If the annotations will be identical,
except for the gene being annotated, one can use the annotation propagation function
that is built into PubSearch.

15. Start on the Gene Detail page of the gene that has the annotation(s) to be propagated.

16. Select the annotations to propagate from the Annotations band by ticking the boxes
beside the annotations in question, then click the Propagate button at the top of the
Annotations band.

17. Enter the gene name for propagation. If there are several genes with the same base
name, for example, ABC1-10, select “contains,” type in the base name ABC, and
click on Search Gene. If there are several genes that do not share a base name, it is
possible to upload a file with all of the gene names from the computer desktop using
the Browse button.

18. From the search results page, select the genes to which the annotation(s) are to be
propagated. One may get multiple matches to the query, so make sure that the correct
genes are selected.

19. Click the Propagate button.

20. A list of annotations that will be propagated will come up. Confirm that this is the
course of action to take. Click Propagate Annotations.

BASIC
PROTOCOL 6

GENERATING AND LOADING InterProToGo ANNOTATIONS

A common source of associations between genes and GO terms is via InterPro pro-
tein mappings. This protocol describes how to generate GO annotations from InterPro
mappings to proteins and load them to PubSearch database on the fly using a perl script.

Necessary Resources

Hardware

See Support Protocol 1

Software

PubSearch (see Support Protocol 1 and Support Protocol 2)

Files

To generate GO annotations from InterPro mappings to proteins, the authors of this
unit use the Interpro2gene mapping file and Interpro2Go mapping file. The
Interpro2gene mapping file is a two-column file in which the first column is the
gene name and second column contains the InterPro Ids. This file is generated
using InterProScan.pl, which can be downloaded from http://www.ebi.ac.
uk/interpro.

PubSearch and
PubFetch

9.7.24

Supplement 13 Current Protocols in Bioinformatics

The sample file for Arabidopsis, INTERPRO.Arab R5.txt, is located in the
maint/interpro2goAnnotation under ${PUBHOME} directory.

The Interpro2Go file contains a mapping between InterPro domains and
corresponding GO terms. It is manually generated and maintained by InterPro
curators and is available from the GO Website
http://www.geneontology.org/external2go/interpro2go.

The Perl script used in this protocol will automatically retrieve this mapping file.

1. To generate and load GO annotations from InterPro annotations, run addAnnota
tionFromInterproGo.pl. This script retrieves the latest Interpro2Go mapping
file from the GO Website, generates GO annotations from the Interpro2Go mapping
file and the Interpro2Gene mapping file, and loads the converted GO annotations
into a PubSearch database. To run the script, execute the following commands from
the ${PUBHOME} directory:

>cd maint/interpro2goAnnotation

>perl addAnnotationFromInterproGo.pl -D database name
-U user id

COMMENTARY

Background Information
The systematic review and curation of sci-

entific literature to extract relevant information
is a task faced by every researcher. Broad-
based, systematic curation of literature has
been transformed by the World Wide Web.
Tasks that were impossible when journals
and articles were only available in print are
now routine. Online literature repositories like
PubMed, online journals, and the move toward
providing the full text of research articles on-
line have all made the literature more acces-
sible than ever before. However, with this in-
crease in accessibility has come an increase in
complexity that is familiar to any user of the
World Wide Web. How do you effectively find
the literature you are looking for out of the
ever-increasing quantities of literature that are
not relevant to the task at hand?

Model Organism databases such as TAIR
and RGD rely on the primary research lit-
erature as one of the main sources of infor-
mation about an organism’s genes and pro-
teins and their functional role in that organ-
ism. While a variety of other information is
stored in these databases, genes remain the
primary focus. PubSearch was developed with
the goal of facilitating the curation of liter-
ature pertaining to the genes of Arabidopsis
thaliana. Figure 9.7.10 shows how PubSearch
is used at TAIR for facilitating literature
curation. In step 1, articles from literature
databases such as PubMed, gene data from
TAIR, and ontologies from GO and PO (Plant
Ontology, http://www.plantontology.org) are
imported. Next, the articles are indexed with

gene data and ontologies. After the automatic
associations are made in the database, curators
can access the data using a Web browser and
perform a number of functions such as edit-
ing data, validating the associations between
data objects and articles, making controlled
vocabulary annotations, and adding missing
information (step 3). Finally, curated data are
exported to TAIR and other databases such as
the GO database (step 4).

The literature identification strategy of Pub-
Search is to first collect a larger corpus of
broadly relevant articles and then narrow it
down using specific terms relevant to the task
at hand. In the case of PubSearch at TAIR,
all articles mentioning Arabidopsis published
since the previous analysis are identified.
These are then searched for “terms” (known
keywords of interest such as Arabidopsis gene
symbols, ontology terms, etc.) to identify pa-
pers that have a higher chance of being useful
for the curation of data relevant to a gene. The
process of screening the articles against the list
of relevant terms generates “hits” between an
article and a term. The hits are then validated
by human review of the full abstract to deter-
mine if the article does indeed pertain to the
expected gene and has potentially useful in-
formation about its function. The combination
of automated term matching and the manual
validation of the subsequent hits is a relatively
quick way to screen large numbers of articles
to identify those that should be read in full by
a human curator.

PubSearch provides a variety of search in-
terfaces to allow curators to retrieve genes,

Building
Biological
Databases

9.7.25

Current Protocols in Bioinformatics Supplement 14

Figure 9.7.10 The PubSearch database is the central component of the PubSearch system. The
following operations are performed during PubSearch use. In step 1, the PubSearch database is
loaded in batch mode using input from other databases—e.g., articles from literature databases
such as PubMed and Agricola using PubFetch software, biological data like gene, allele, and
germplasm information from TAIR (an example model organism database), and ontologies from
Ontology databases such as Gene Ontology and Plant Ontology. In step 2, the PubSearch
database indexes the information by populating the Hit table using the Lucene engine. In step 3,
through the Java API and a set of Web user interfaces, curators search, browse, edit, and add
data, relying on the indexed data in the database. Finally, in step 4, the edited biological, literature,
and annotation data are exported to the TAIR production database and other databases such as
Gene Ontology and Plant Ontology.

keywords, articles, and matches between ar-
ticles and terms using a variety of search
parameters. Upon retrieval of relevant infor-
mation, curators can annotate gene function,
cellular location, expression patterns, genomic
location, and other attributes by reading the
matched articles. The Web user interface for
editing annotations is designed to reduce
free-text data entry, in order to increase the
efficiency of annotation and reduce data-entry
errors. The appropriate controlled vocabu-
lary terms can be selected using an inte-
grated ontology browser—a modified version
of the AmiGO browser developed by the GO
Consortium (The Gene Ontology Consortium
2001)—which allows interactive traversing
of structured vocabularies and point-and-click
selection of terms. The annotation interface
facilitates data entry using pull-down menus
or clickable lists that are generated on the fly
with the appropriate data for the annotation
task at hand. For example, the GO evidence
codes (http://www.geneontology.org/doc/GO.
evidence.html) and evidence descriptions, a
controlled vocabulary of experiment types de-

veloped at the Arabidopsis Information Re-
source (Rhee et al., 2003), can be selected from
pull-down menus.

PubSearch can be used as a stand-alone
literature-management tool for biologists. In
this case, all that is required in addition to
periodic literature downloads using PubFetch
is to update the gene and term lists to keep
pace with modifications to the various ontolo-
gies and identification of new genes. Data im-
port/export tools are provided to upload new
vocabularies and updates to the Genes and
to export the curated information for use in
downstream applications or databases. By de-
fault, PubSearch is set up as an internal-use-
only Web application and is thus password-
protected; a login is required when starting
a session. This authentication scheme would
also work well for a group of investiga-
tors working on the annotation of a gene
family or a microarray result set. The login
also allows tracking of operations that a user
has performed during a session, which can
be used to verify consistency of annotation
between users.

PubSearch and
PubFetch

9.7.26

Supplement 14 Current Protocols in Bioinformatics

Alternative approaches
The PubSearch/PubFetch system is unique

in that it provides a stand-alone, integrated
literature-management and data-curation envi-
ronment. Literature-curation software devel-
oped by other curation groups is typically
tightly coupled to the computing environment
of the particular curation group, making it dif-
ficult if not impossible for others to reuse the
software components. As an alternative to a
server-based approach, many researchers are
familiar with desktop bibliography software
such as EndNote and Reference Manager.
These provide extensive literature retrieval
and searching capabilities; however, they pro-
vide no capacity for curating information
from this literature. In this scenario, data
are often recorded in other desktop applica-
tions such as Microsoft Excel, which certainly
has advantages for small-scale endeavors;
however, this quickly becomes inconvenient
for larger-scale annotation efforts. Another
open-source text-mining project, Textpresso
(Müller et al., 2004), is being developed as
a component of the Generic Model Organism
Database project. Texpresso uses customized
biological concept ontologies to search the full
text of an article, providing a sophisticated se-
mantic search algorithm that goes beyond the
existing PubSearch term-matching approach.
Texpresso currently provides no data-curation
functionality, so one might envisage integrat-
ing PubSearch with the Textpresso search en-
gine to enable more precise categorization of
the literature for subsequent curation.

Future directions
PubSearch is an open-source project, and,

as such, all contributions by interested devel-
opers are most welcome. Below are listed a
number of potential areas for extensions of the
software that might provide ideas about how
PubSearch could be used in the future.

PubSearch as a framework for the
implementation of additional classification
algorithms

PubSearch uses a robust but simple term-
matching technique to identify relevant arti-
cles. This approach will miss relevant articles
that do not contain these keywords. In addition
to tools such as Texpresso, described above,
other machine-learning algorithms exist that
could be implemented within the PubSearch
environment to identify articles in a more so-
phisticated fashion. The manual validation of
articles in PubSearch divides them into those
that have been shown to be relevant for further

curation and those that are not relevant for
further curation. One could use these datasets
to train a Support Vector Machine to recapit-
ulate this classification, with the expectation
that it might work better at identifying arti-
cles that were lacking the exact keywords but
nonetheless had overall content that indicated
relevance. Even if these algorithms were not
implemented inside PubSearch, the annotated
literature corpus that is created through the use
of PubSearch would be of great use to natural
language processing researchers.

Expansion of PubSearch to allow curation
of additional data beyond genes

PubSearch is currently gene-centric, allow-
ing the curation of gene-related information
from the literature. PubSearch could be ex-
panded to allow the curation of data for other
objects of interest, such as quantitative trait
loci, subspecies of an organism (e.g., inbred
rat strains, plant ecotypes), or other objects of
interest. This would enable PubSearch to be-
come a broader literature curation platform,
allowing researchers to integrate a variety of
data types with links to the literature, terms
and vocabularies, and other data objects.

Further support for desktop applications
such as EndNote

PubSearch provides the means to down-
load articles from online literature databases
and link them to genes and other biological
terms. It would be convenient if relevant arti-
cles could be exported in a format compatible
with EndNote or Reference Manager, so that
articles stored in PubSearch could be easily
used as citations in a manuscript.

Troubleshooting

Failure in database connection
If there is a failure in database connection

to MySQL, there are two major possibilities:
first that MySQL’s network support has been
turned off, and second that MySQL’s permis-
sions are too restrictive. In the first case, the
MySQL configuration file /etc/my.cnf
may contain the directive “skip networking.”
If this is the case, comment this directive out
and restart MySQL. In the second case, the
MySQL administrator must grant privileges
to allow PubSearch to communicate with the
database. The administrator may need to exe-
cute step 6 of Support Protocol 1 and inspect
the program.properties file, to make
sure that the granting SQL statement uses the
same hostname as the configuration file.

Building
Biological
Databases

9.7.27

Current Protocols in Bioinformatics Supplement 13

Failure in unarchiving the distribution
If thetar utility fails with an error message

about directory checksum errors, it is likely
that the native tar utility on the system does
not support long filenames. In this case, it is
recommended that GNU tar be used to un-
pack the PubSearch distribution. GNU tar
can be found online at http://gnu.org/.

Failure in logging in
If a user cannot log in, then it is possible

that the user has not yet been added to the User
table. To show a list of users on the system,
execute:

>mysql pubdb
mysql> select * from pub user

to verify that the user does exist in the Pub-
Search database. If not, then the user can be
added by using the bin/add curator.pl
or bin/add user.pl commands.

If the user does exist in the pub user table,
then it is likely that the password has been en-
tered incorrectly and may need to be updated.
There is no command-line utility to update a
user’s password, but the following SQL com-
mand will refresh the database:

mysql> update pub user set
password=PASSWORD(‘‘[pass-
word here]’’) where name=
‘‘[username]’’

Acknowledgement
The development of PubSearch is sup-

ported in part by NHGRI grant number
R01HG02728 (SYR, ST), NSF grant num-
ber DBI-9978564 (SYR), and NIH grant
number HL64541(ST). The authors of this
unit wish to thank Barbara Buchanan at
NAL for compiling the Arabidopsis papers
from Agricola and BIOSIS. The authors also
thank Julie Tacklind for designing and main-
taining the Web site, and are grateful to
Suparna Mundodi, Leonore Reiser, Eva
Huala, Margarita Garcia-Hernandez, Hartmut
Foerster, Katica Ilic, Chris Tissier, Rachael
Huntley, Nick Moseyko, and Peifen Zhang for
their valuable input in improving the usability

of the software. The authors are also grateful
to the former members, Bengt Anell, Behzad
Mahini, Victor Ruotti, and Lukas Mueller,
who were involved in the project during its
initial stages, and also thank Doug Becker,
Dan MacLean, Chris Wilks, Jon Slenk, Su-
san Bloomberg for their careful reading of the
manuscript.

Literature Cited
The Gene Ontology Consortium. 2001. Creating the

gene ontology resource: Design and implemen-
tation. Genome Res. 11:1425-1433.

Müller, H., Kenny, E.E., and Sternberg, P.W. 2004.
Textpresso: An ontology-based information re-
trieval and extraction system for biological lit-
erature. PLoS Biol 2:e309.

Rhee, S.Y., Beavis, W., Berardini, T.Z., Chen, G.,
Dixon, D., Doyle, A., Garcia-Hernandez, M.,
Huala, E., Lander, G., Montoya, M., Miller, N.,
Mueller, L.A., Mundodi, S., Reiser, L., Tack-
lind, J., Weems, D.C., Wu, Y., Xu, I., Yoo, D.,
Yoon, J., and Zhang, P. 2003. The Arabidopsis
Information Resource (TAIR): A model organ-
ism database providing a centralized, curated
gateway to Arabidopsis biology, research mate-
rials and community. Nucl. Acids Res. 31:224-
228.

Internet Resources
http://sourceforge.net/projects/geneontology

Gene Ontology’s SourceForge repository.

http://pubsearch.org

PubSearch homepage.

http://tesuque.stanford.edu:9999/pubdemo

PubSearch demo version.

http://lists.sourceforge.net/lists/listinfo/gmod-
pubsearch-dv

PubSearch support mailing list.

http://www.gmod.org

Generic Model Organism Database project home
page.

Contributed by Danny Yoo, Iris Xu, Tanya
Z. Berardini, and Seung Yon Rhee

Carnegie Institution
Stanford, California

Vijay Narayanasamy and Simon Twigger
Medical College of Wisconsin
Milwaukee, Wisconsin

UNIT 9.8Installing and Configuring CMap

Genomic data often comes in the form of maps of ordered markers. Maps run the gamut
from genetic maps consisting of ordered genetic markers through physical maps of
ordered clones and sequence-based maps of DNA base pairs. A species will often have
multiple maps of different types and sometimes several of a single type: for example, the
human genome has the subtly different Celera and public sector sequence assemblies.
When performing positional cloning experiments or analyzing differences among closely
related species, it is often critical to be able to align multiple maps together. The CMap
application was designed to make this possible. It is a generic map alignment and
visualization tool that works on all types of maps, whether they are genetic, physical, or
sequence-based.

Since CMap is generic, it has many uses. It can be used to view synteny between species,
map QTL data, and compare marker patterns. It can compare fingerprint-mapped clone
(physical) contigs and sequence contigs for use as a quality control for the assemblies
of each. CMap can be used to compare different versions of sequence assemblies to
show how the assembly has changed. For example, Figure 9.8.1 shows a physical map
compared to a genetic map in CMap.

Figure 9.8.1 CMap image of com-
parison between a physical map and
a genetic map. The lines between
the maps are correspondences that
point to the feature location on each
map. The features in red are involved
in the displayed correspondences. For
the color version of this figure go to
http://www.currentprotocols.com.

Contributed by Ben Faga
Current Protocols in Bioinformatics (2007) 9.8.1-9.8.30
Copyright C© 2007 by John Wiley & Sons, Inc.

Building
Biological
Databases

9.8.1

Supplement 17

Installing and
Configuring

CMap

9.8.2

Supplement 17 Current Protocols in Bioinformatics

CMap has a variety of concepts: maps, map sets, features, correspondences, and cor-
respondence evidence. A map is any linearly ordered set of features, e.g., genomic
assemblies, fingerprint contigs, QTL maps, and physical maps. Maps from one study are
grouped into map sets. For instance, sequence contigs from a specific assembly version
would go into one map set while fingerprint contigs would go into a separate map set.
Features are annotations on the map, e.g., sequence reads, markers, or any other locatable
annotations. Correspondences connect related features to establish links between maps.
Each correspondence has one or more pieces of evidence that provide information about
why the correspondence was created, e.g., matching names or BLAST similarity (see
UNIT 3.3).

The overall goal of these protocols is to install and run CMap. Basic Protocol 1 gives
an overview of the CMap user interface. Then there are protocols for creating a CMap
database (Basic Protocol 2), configuring CMap (Basic Protocol 3), creating and importing
data (Basic Protocol 4), and configuring CMap for speed and clarity (Basic Protocol 5).
The Support Protocol directs installing CMap in a Linux environment.

BASIC
PROTOCOL 1

GETTING STARTED WITH CMap

This protocol describes becoming familiar with the CMap interface. The Gramene Web
site (http://www.gramene.org), a resource for comparative grass genomics, is used as an
example. Since this is an active data repository, the actual data may change as well as
the version of CMap used. The examples use the Gramene CMap present at the time of
writing.

Necessary Resources

Hardware

Computer with Internet access

Software

JavaScript (http://java.sun.com) enabled up-to-date Internet browser, e.g., Internet
Explorer (http://www.microsoft.com/ie); Netscape (http://browser.netscape.
com); Firefox (http://www.mozilla.org/firefox); or Safari (http://www.apple.com/
safari)

1. Go to the CMap start page for Gramene by either direct link (http://www.
gramene.org/cmap) or by clicking on the MAPS link from the Gramene home page
(http://www.gramene.org).

Genomic resources other than Gramene also use CMap (see Commentary, Background
Information).

2. At the starting page for CMap, choose one of the Maps links to go to the CMap
viewer menu (http://www.gramene.org/db/cmap/viewer).

There are a number of other ways to access data within CMap from the start page.
These are described in the tutorial provided with the CMap distribution. There is also a
Gramene-specific tutorial linked from this page on the Gramene site.

The viewer menu is truncated until a species and map set are chosen.

3. Select Rice (Oryza sativa) from the Ref. Species drop-down box. Then click Change
Species to load only Rice map sets into the Ref. Set drop-down box.

Building
Biological
Databases

9.8.3

Current Protocols in Bioinformatics Supplement 17

4. Select Sequence: Rice-Gramene Annot Seq 2006 from the Ref. Set drop-down box.
Then click the Show Selected Set’s Maps button. Figure 9.8.2 shows the view after
these selections have been made.

Become familiar with the menu options that will have appeared (See Fig. 9.8.2). There
will be a Ref. Map drop-down box with the maps in that set are listed with their start and
stop values. Multiple maps can be selected in this box.

Be aware that when many maps are loaded the server must work harder to present the
data.

There are Ref Map Start and Ref Map Stop boxes, which control the start and stop of the
selected map when there is only one reference map selected.

Lastly, there is the Feature Type Display table. These settings dictate how features of each
type are handled. Setting a feature type to Display if Correspondence will cause features
of that type to only display if they are being used in a correspondence. This can improve
performance greatly, but for this tutorial leave the defaults.

Figure 9.8.2 The maps selection menu. Initially, only the Ref. Species and Ref. Set drop-down
boxes are displayed. The remaining options appear when a reference set is selected. These
options allow for a more refined view.

Installing and
Configuring

CMap

9.8.4

Supplement 17 Current Protocols in Bioinformatics

Figure 9.8.3 Legend at right.

Building
Biological
Databases

9.8.5

Current Protocols in Bioinformatics Supplement 17

Figure 9.8.4 The Map Options menu with one reference map. Clicking the Add Maps Left and
Add Maps Right links in the corners will bring up the comparative maps menu which allows for
selection of the next corresponding maps.

5. Select Chr. 1 0.00-43594513.00 from the Ref. Map select box. Click on the Draw
Maps button and wait for the image to return. Figure 9.8.3 shows the image that
returns.

Depending on server load and the state of the cache this may take a few seconds.

Chromosome 1 is displayed as a vertical line with features attached. The features are
drawn in different ways and colors depending on how the feature type is configured. For
instance, a BAC is represented by a light blue, dumbbell shape whereas gene model is
represented by a brown rectangle.

There are also several navigation buttons on the image. The map-unit tick marks have
arrows on each side. Clicking on one of the arrows will truncate the map at that point,
zooming in on the side of the map that the arrow was pointing at. Above each map is a
small menu which contains options such as flipping a map vertically or deleting it. The
legend details what each option does. The maps and features are also links that default
to the details page but can be configured to point elsewhere.

6. To add comparative maps to the image, click Add Maps Right in the Maps Menu
(Fig. 9.8.4). This will bring up a small Comparative Maps menu (Fig. 9.8.5).

7. Select Genetic: Rice-IGCN 1998 [4] in the top drop-down box and 1 [118, 118] in
the second. Click Add Maps. Figure 9.8.6 will appear showing the correspondences
between the two maps.

The crossing correspondence lines indicate that these maps are oriented opposite in
respect to each other.

Figure 9.8.3 (at left) Chromosome 1 from a rice sequence assembly. The features are drawn,
according to the feature type configuration, as variously colored glyphs to differentiate themselves
from each other. Various navigation buttons are present, including truncation arrows and menu
icons. The map and features are also links which can be configured. For the color version of this
figure go to http://www.currentprotocols.com.

Installing and
Configuring

CMap

9.8.6

Supplement 17 Current Protocols in Bioinformatics

Figure 9.8.5 The Comparative Maps menu. This menu is where the next corresponding maps
are chosen. A minimum number of correspondences can be entered to limit the maps to those
with a high number of correspondences.

8. Orient the maps with respect to one another by clicking the F button above the map,
causing one chromosome to flip (Fig. 9.8.7).

Figure 9.8.8 shows the Map Options menu as it is after this step. (The views shown in Fig.
9.8.7 and Fig. 9.8.8 are both produced by step 8.). This menu is represented as a table of
all the maps in the image.

The Min. Correspondences option will limit maps in a map set by removing maps that
have fewer correspondences than the minimum number. This is useful for winnowing
away maps that may not be as interesting.

When multiple maps are used as reference maps, selecting the Stack Vertically option
will cause the reference maps to be stacked on top of each other rather than side by
side.

The remaining options in this table are covered in the tutorial included with CMap.

9. Open up the Feature Options menu by clicking on Feature Options (Fig. 9.8.9). This
menu contains the same Feature Type Display table that was described in the step 4
annotation.

The Highlight Features box works by typing a feature name into the box.

The Collapse Overlapping Features option dictates whether features that would be drawn
exactly the same are to be collapsed into one glyph.

Building
Biological
Databases

9.8.7

Current Protocols in Bioinformatics Supplement 17

Figure 9.8.6 Chromosome 1 of a sequence assembly compared to chromosome 1 of a genetic
map set. The gray lines represent correspondences between features on these maps. The crossing
correspondences indicate that these maps are not oriented correctly. For the color version of this
figure go to http://www.currentprotocols.com.

10. Open the Correspondence Options menu. This menu has a table for selecting
how each correspondence evidence is handled—ignored, used, or compared to a
score.

The most used option in this menu is Aggregate Correspondences. When set to one line
or two lines and when CMap is displaying more than one map from a set, CMap will
aggregate the correspondences between maps as one line or two lines (representing the
span of features on each map). For more information about correspondence aggregation,
see Basic Protocol 5.

The other menus, Display Options and Advanced Options, hold less used options. For
more information about these, see the tutorial included with the CMap distribution.

Installing and
Configuring

CMap

9.8.8

Supplement 17 Current Protocols in Bioinformatics

Figure 9.8.7 Maps from Figure 9.8.6 with the genetic map flipped. Note the F (flip) icon above
the genetic map is now UF (un-flip). The correspondences are less tangled, and the image is more
clear. For the color version of this figure go to http://www.currentprotocols.com.

Figure 9.8.8 The maps selection menu after adding a correspondence map. The reference map
options are in blue while the other map options are in white. As more corresponding maps are
added, this table will reflect that growth.

Building
Biological
Databases

9.8.9

Current Protocols in Bioinformatics Supplement 17

Figure 9.8.9 The Feature Options menu. This menu allows for individual feature types to be
treated differently. Some can be always displayed, while others can be only displayed if they are
being used in a correspondence and still others can be ignored completely. Highlight Features will
highlight the labels of the features with names written in the box. The options Show Labels and
Collapse Overlapping Features affect how the image is drawn.

BASIC
PROTOCOL 2

CREATING THE CMap DATABASE

This protocol describes setting up the CMap database. CMap stores data in a specialized
schema which needs to be set up before running any CMap scripts. Since CMap strives
to be database independent, it should not matter which relational database management
system (RDBMS) is used. The following examples will be demonstrated with MySQL
5.0 commands but other RDBMSs will work.

Necessary Resources

Hardware

Computer with Internet access

Software

An installation of CMap (Support Protocol)

Installing and
Configuring

CMap

9.8.10

Supplement 17 Current Protocols in Bioinformatics

Files

Files provided with the CMap distribution

Create CMap database
1. Create a database for use by CMap by typing the following command.

$ mysql -uroot -p -e ‘create database CMAP’

The database name does not matter. For this example, it will simply be called “CMAP”.

2. Install the CMap schema using the schema file in thesql/ directory that corresponds
with the RDBMS being used (e.g., MySQL uses sql/cmap.create.mysql).

$ mysql -uroot -p CMAP < sql/cmap.create.mysql

There are schema files provided for five different RDBMSs: MySQL, PostgreSQL, Oracle,
Sybase and SQLite.

The schema files create the database tables but do not populate them with data.

3. Create a user account and give it permission to read and modify the CMap database.

$ mysql -uroot -p CMAP -e ’grant select, insert, up-
date, delete on CMAP.* to mysql@localhost identified by
""’

4. Flush the privilege table to allow the new user permissions to take effect.

$ mysqladmin -uroot -p flush-privileges

NOTE: It is reasonable to create two database users, one for the Web page that can only
read the database and one for administration that can read and modify the data. Each
will need its own individual configuration file (described in the next section).

BASIC
PROTOCOL 3

CONFIGURING CMap

CMap comes with example configuration files. This protocol describes how to modify
these files to get CMap running and provides descriptions of some of the useful basic
configuration options. Please note that if the configuration files are changed after CMap
is in use, the query cache will need to be purged using the cmap admin.pl tool (see
Basic Protocol 5, step 8).

Necessary Resources

Hardware

Computer with Internet access

Software

JavaScript (http://java.sun.com) enabled up-to-date Internet browser, e.g., Internet
Explorer (http://www.microsoft.com/ie); Netscape (http://browser.netscape.
com); Firefox (http://www.mozilla.org/firefox); or Safari (http://www.apple.com/
safari)

An installation of CMap (Support Protocol)
Text editor (e.g., vi)

Files

Files provided with the CMap distribution

Building
Biological
Databases

9.8.11

Current Protocols in Bioinformatics Supplement 17

Configure an individual data source configuration file
1. Move to the cmap.conf/ directory in the web servers conf/ directory and

copy example.conf to a new file.

$ cd /usr/local/apache/conf/cmap.conf/
$ sudo cp example.conf cmap live.conf

The new file can have any name with the .conf extension. For this example,
cmap live.conf will be used.

2. Open cmap live.conf with a text editor such as “vi” (this might require super
user privileges).

$ sudo vi cmap live.conf

3. Modify the <database> option as indicated for the unmodified commands.

<database>

name EXAMPLE CMAP

Change the name field to a unique name that will identify this data source, for this
example, CMap Live. It must be unique across the whole server even if there are multiple
installations of CMap.

datasource dbi:mysql:EXAMPLE CMAP

Change the datasource to dbi:mysql:CMAP. The datasource contains the
DSN value for connecting to the database. The value for MySQL is of the form
dbi:mysql:database name. The database from the previous section was named
CMAP, so the datasource will be dbi:mysql:CMAP. For the format of other
database systems, view the documentation for the DBD:: modules (e.g., perldoc
DBD::mysql or perldoc DBD::Pg).

user mysql
password

Modify the user and password fields to reflect the user information created for the
database.

</database>

4. The modified version of the <database> option becomes the following.

<database>

name CMap Live
datasource dbi:mysql:CMAP
user mysql
password </database>

5. Go farther down in the file and change the is enabled value from 0 to 1.

When is enabled is set to 0, the configuration file is ignored. The example.conf
file is not enabled by default in order to keep it from unintentionally disrupting CMap
during an upgrade.

6. Configure map, feature, and evidence types for each type of object that will be
inserted into CMap. Replace configurable * values with the words map, feature,
or evidence and words in all capital letters with the appropriate wording in the
following format.

<* type ACCESSION>

* type acc ACCESSION
* type NAME OF TYPE
</* type>

Installing and
Configuring

CMap

9.8.12

Supplement 17 Current Protocols in Bioinformatics

Note that due to technical reasons, the accession value must be declared both in the initial
tag and as its own field.

Types for maps, features, and correspondence evidence must be defined in the configura-
tion file before objects of that type can be entered into the CMap database. For CMap to
function correctly, it is very important for the CMap objects to have their types defined in
the configuration file. The types hold mostly drawing information. The example configu-
ration file has several predefined types. These are not required types and can be modified
or copied.

To get started, each type requires an accession and a name. The accession is a unique
identifier for that feature, map, or evidence type. It is used internally and never seen. It
must be unique and contain only numbers and letters. For more information, see Critical
Parameters and Troubleshooting. Additionally, map types need a map units value
which defines the unit name such as bp, cM or bands. All other options have reasonable
defaults and can be left out without breaking CMap. For details about the other options,
please see the administration document included with the CMap distribution.

7. The following is a sample map type definition from the example.conf file.

<map type genetic>

map type acc genetic
map type Genetic
map units cM
is relational map
width 1
shape box
color
</map type>

In this example, the map type accession is genetic and is defined in the opening tag
and again as the map type acc option.

The map type of Genetic is the value displayed on the Web pages when referring to
this map type.

The units that maps of this type have are centimorgans (cM).

The field is relational map is left blank and will be filled in with the default. When
set to 1, the is relational map tells CMap that maps of this type cannot be used as
a starting reference map but can only be used as correspondence maps.

The remainder of the options deal with the drawing of maps. The genetic maps defined by
this map type will have a width of 1 pixel and be shaped like a box. The field color is
left blank and will be filled in with the default color (gray).

This configuration is reflected by the genetic map on the right side of Figure 9.8.1 of the
introduction. These and other options are covered in more detail by the administration
document included with the CMap distribution.

One last important point is that the feature and evidence types are continually used by
CMap. If a feature type color is changed, that change will be reflected imme-
diately after the query cache is purged (see Basic Protocol 5, step 8). By contrast, the
map type is mostly used during map set creation. The values such as color and width are
stored in the database. This allows the protocol user to change the options for individual
map sets of the same type. Thus changing the color of a map type will have no effect on
the color of map sets that were created before the change.

8. Validate the data source configuration after modification by running bin/
cmap validate config.pl on it. Call the script with the configuration file
as follows.

Building
Biological
Databases

9.8.13

Current Protocols in Bioinformatics Supplement 17

$ bin/cmap validate config.pl/usr/local/apache/conf/cmap.
conf/cmap live.conf

This will check the syntax, check for required options, check for deprecated options, and
give a list of any optional options that have not been specified.

If the data source configuration is valid, the script will print out a list of missing optional
entries and a statement of validity as follows.

The config file, /usr/local/apache/conf/cmap.conf/cmap
live.conf is valid

If the file is invalid, the script will declare the configuration file invalid and explain where
the problem is.

The config file,/usr/local/apache/conf/cmap.conf/cmap
live.conf is INVALID

Configure global configuration file
9. Set the default data source (the default db option) to the name of the data source

that should be used when no data source is given, to read in the above example,
default db CMap Live.

NOTE: The required configuration options in the global.conf file will have been
prepopulated based on the installation settings.

For additional useful configuration settings see Basic Protocol 5.

BASIC
PROTOCOL 4

CREATING AND IMPORTING DATA

This protocol describes creating and importing data for a CMap database. There are
multiple ways to affect a CMap database. This protocol will focus on the most useful
CMap administration tool, the cmap admin.pl script.

The cmap admin.pl script will be installed in the execution path. It can be controlled
either by command line or through a menu system within the script. Each step in this
protocol will describe the steps through the menu system and then provide the command
line options to do the same thing. To get a complete listing of the command line options,
execute perldoc cmap admin.pl.

Necessary Resources

Hardware

Computer with Internet access

Software

JavaScript (http://java.sun.com) enabled up-to-date Internet browser, e.g., Internet
Explorer (http://www.microsoft.com/ie); Netscape (http://browser.netscape.
com); Firefox (http://www.mozilla.org/firefox); or Safari (http://www.apple.com/
safari)

An installation of CMap (Support Protocol)

Files

CMap sample import files: tabtest1 and tabtest2 (included with
distribution)

1. Run the cmap admin.pl script.

$ cmap admin.pl

This following menu will appear.

Installing and
Configuring

CMap

9.8.14

Supplement 17 Current Protocols in Bioinformatics

Current data source: CMap Live
-=-=-=-=-=-=-=-=-=-=
--= Main Menu =--
-=-=-=-=-=-=-=-=-=-=
[1] Change current data source
[2] Create new species
[3] Create new map set
[4] Import data
[5] Export data
[6] Delete data
[7] Make name-based correspondences
[8] Delete duplicate correspondences
[9] Reload correspondence matrix
[10] Purge the cache to view new data
[11] Import links
[12] Quit
What would you like to do? (one choice only):

Select an option by typing the number in the last line and hitting enter.

2a. To change the data source: Select [1] Change current data source.
Then select the correct data source from the list.

The Current data source is initially set to the default data source.

2b. To set the data source from the command line: Use the -d flag.

cmap admin.pl -d CMap Live.

Assuming no other flags are set, the data source flag will still enter the menu system but
using the selected data source.

Create a new species
3a. To create a new species from the main menu: Select[2] Create new species.

and respond as indicated to the following prompts:

Full Species Name (long) Enter a long form of the
species name (e.g., ‘‘Mus musculus’’).

Common Name

Enter the common form of the species name (e.g., ‘‘Mouse’’).

Accession ID

Enter an optional, unique accession id (e.g., ‘‘m musculus’’). If not defined, the
accession id will be assigned a numeric value.

OK to create species ‘‘Mus musculus’’ in data source
‘CMap Live’?.

To confirm the species creation, say yes, and the species will be created.

3b. To confirm species creation from the command line: Type the following.

$ cmap admin.pl -d CMap Live --action create species --
species full name ‘‘Mus musculus’’ --species common name
‘‘Mouse’’ --species acc ‘‘m musculus’’

Building
Biological
Databases

9.8.15

Current Protocols in Bioinformatics Supplement 17

Create a map set
4a. To create a map set from the main menu: Select [3] Create new map set

and respond as indicated to the following prompts:

What species?

Choose from a list of previously created species.

What type of map?

Choose from a list of map types in the database (e.g., Sequence).

Map Study Name (long)

Enter the long form of the map set name (e.g., ‘‘Pretend Mouse Sequence
Assembly 2006’’).

Short Name

Enter the short form of the map set name (e.g., ‘‘Mouse Seq Assm 2006’’).

Accession ID

Enter an optional, unique accession id (e.g., ‘‘PMSA2006’’). If not defined, the
accession id will be assigned a numeric value.

What color should this map set be?

Enter the color to draw maps from this set (e.g., black). A list of available colors is in
the Bio/GMOD/CMap/Constants.pm module.

What shape should this map set be?

Enter the shape to draw maps from this set. Choose from box, dumbbell or I-beam.

What width should this map set be?

Enter the number of pixels wide the maps should be. A good starting value is 4.

A map set is any collection of maps that are related, have the same map type and are
from the same species. For instance the contigs of a specific version of sequence assembly
would be in the same map set.

OK to create set ‘Pretend Mouse Sequence Assembly 2006’
in data source ‘CMap Live’?

Indicate yes, and the map set will be created.

4b. To confirm the map set creation from the command line: Type the following.

$ cmap admin.pl -d CMap Live --action create map set
--map set name ‘‘Pretend Mouse Sequence Assembly
2006’’ --species acc m musculus --map type acc Seq --
map set short name ‘‘Mouse Seq Assm 2006’’ --map set acc
PMSA2006 --map shape box --map color black --map width 4

Create a CMap import file
5. Create the following required fields with a tab delimited list of the following field

headers: map name, feature name, feature start, feature stop,
and feature type acc.

Each line of tab delimited data represents information about a single feature corre-
sponding to the field headers. While the creation of these import files is left to the user,
there are a few scripts included with the distribution to help; cmap parseagp.pl

Installing and
Configuring

CMap

9.8.16

Supplement 17 Current Protocols in Bioinformatics

for GenBank assembly files in AGP format (http://www.ncbi.nlm.nih.gov/Genbank/
WGS.agpformat.html), cmap parsefpc.pl for files exported from the fin-
gerprint contig program, FPC (http://www.agcol.arizona.edu/software/fpc) and
cmap parseWashUAceFiles.pl which parses Ace files output from the sequence
assembly program, Phrap (UNIT 11.4; http://www.phrap.org). Sample import files are also
included in the distribution (data/tabtest1 and data/tabtest2).

6. Optional: Create other useful fields including the following.

map acc/feature acc

Accession IDs for the maps and features. If not defined, the accession id will be assigned
a numeric value.

map start/map stop

If these are not provide, the map start and stop are set by the span of the features.

feature direction

The feature’s direction in relation to the map. −1 or 1.

feature aliases

Alternate feature names separated by a comma.

feature attributes

A list of feature attributes separated by a semicolon. The attributes are in name:value
format.

Figure 9.8.10 shows an example tab delimited import file with a subset of the possible
columns.

Figure 9.8.10 Tab delimited files used to import data into CMap. The first line in the
file is the column headers. For an exhaustive list of possible fields, execute perldoc
Bio::GMOD::CMap::Admin::Import.

Building
Biological
Databases

9.8.17

Current Protocols in Bioinformatics Supplement 17

7. Validate the import file using the validate import file.pl script by
entering the following.

$ validate import file.pl -d CMap Live -f import file.cmap

The program will report any problems with the file.

8a. To import the tab delimited file from step 5 into CMap: Use cmap admin.pl to se-
lect from the main menu cmap admin the option [4] Import data. Then se-
lect [1] Import tab-delimited data for existing map set and
respond to the following prompts.

Please specify the files?

Enter the location of the import file(s).

How would you like to select map sets?

Choose whether to use a menu system to pick the map set to import data into or to simply
supply it. If the map set accession id is known, simply choose Supply Map Set Accession
ID and enter the accession. Otherwise, a menu system will guide the map set selection
process.

Remove data in map set not in import file?

In most cases, the answer should be no but if only data in the import files should be
in the database, answer yes. Using this option slows down the import process so it is
recommended to just delete the data from the database first and then do a fresh install.

Check for duplicate data (slow)?

When doing incremental imports, CMap can check for features and maps already in the
database and update where needed. This can slow the process. If no duplicate data is
going to be imported, answer no and all of the data in the import file will be inserted.

OK to import?

Indicate yes and the data will be imported.

Importing a tab delimited file will create the maps and features that are described.

8b. To confirm data importation from the command line: type the following.

$ cmap admin.pl -d CMap Live --action import tab data
--map set acc PMSA2006 data/tabtest1 data/tabtest2

9a. To create correspondences between features: Select from the main menu
[7] Make name-based correspondences and respond to the following
prompts.

First you will select the starting map sets

A map set accession id can be supplied or the menu system can be used to choose map
sets.

Use the starting map sets as the target sets?

Choose if the starting group should also be the target group. If not, choose the target
map sets.

It is important to note that when creating name based correspondences, there are two
groups of map sets, the starting sets and the target sets. Each of the starting sets will have
correspondences made with each of the target sets. This prevents the map sets in the start-
ing group from creating correspondences between each other. A map set can be in both the
starting and target groups if correspondences between the maps in that set are desired.

Installing and
Configuring

CMap

9.8.18

Supplement 17 Current Protocols in Bioinformatics

Select any feature types to skip in check

Choose feature types that should not be looked at when making correspondences.

Check for duplicate data?

It is recommended to not check for duplicates during creation because it can slow the
process. Simply, create the correspondences and the run the delete duplicate correspon-
dences portion of cmap admin.pl (see the following step for instructions).

Select the match type that you desire

Choose how the feature names will be compared. The default choices are to compare
the whole name ([1] exact match only) or use a Perl regular expression to
strip off the extensions of read pairs ([2] read pairs ‘(\S+)\.\w\d$’). Other
options can easily be created by someone comfortable with editing thecmap admin.pl
script.

Number of ‘from’ maps to consider at once

The default is to take the maps one at a time. If the starting map sets have a lot of maps
with few features on each, maps can be grouped together and considered at the same
time. This is more efficient but it can drive memory usage up.

The easiest way to create correspondences is based on the feature names. Under this
system, if two features on two separate maps share the same name, a correspondence
will be created between them.

OK to make correspondences?

Say yes and the correspondences will be created.

9b. To confirm the correspondence creation from the command line: Enter the following
command.

$ cmap admin.pl -d CMap Live --action
make name correspondences --evidence type acc ANB
--from map set accs PMSA2006 --to map set accs
PMSA2005,PMSA2004 --name regex read pair

10a. Alternatively, to import a file using the menu: Create and import tab delimited file
of feature correspondences. The import file fields are feature name1, fea-
ture acc1, feature name2, feature acc2 and evidence.

The feature accession IDs are optional but recommended as a way to link CMap data
to other data sources (see the Background Information for a more in depth discussion).
The evidence consists of an evidence type accession and an optional score in this format,
evidence type acc[:score] (e.g., ANB or blast:1e-10).

10b. To import a file from the command line: Type the following.

$ cmap admin.pl -d CMap Live --action
import correspondences --map set accs
PMSA2006,PMSA2005,PMSA2004 import file

11a. To delete duplicate correspondences from the main menu: Select option [8]
Delete duplicate correspondences. The script will immediately go
to work clearing duplicate correspondences. It will report the number of duplicate
correspondences that were removed.

11b. To delete duplicate correspondences from the command line: Type the following.

$ cmap admin.pl -d CMap Live --action
delete duplicate correspondences

Building
Biological
Databases

9.8.19

Current Protocols in Bioinformatics Supplement 17

Figure 9.8.11 The matrix entry point into the CMap viewer. This view shows the correspondences
between maps in a rice sequence map set and maps in a rice QTL map set. The number of
correspondences between each map is given as the first number, and the number of maps
involved is given in parentheses. The second is useful when viewing the matrix at the map set
level (not shown).

If name based correspondences were created twice or there is reason to believe duplicate
correspondences have been inserted into the database, it is a good idea to delete any
duplicates.

12a. To reload the correspondence matrix from the menu: Select option [9] Reload
correspondence matrix. A prompt will display asking to confirm. Say yes and the
correspondences matrix will be reloaded.

12b. To reload the correspondence matrix from the command line: Type the following.

$ cmap admin.pl -d CMap Live --action
reload correspondence matrix

The matrix is a table that displays the number of corresponding maps between map sets
or the number of correspondences between maps (see Fig. 9.8.11). This can be used
as an alternate entry point into the CMap viewer. For speed purposes, the matrix is
precalculated and stored in a database table. After new correspondences are created,
the correspondence matrix needs to be regenerated in order for the CMap matrix view
to display correctly.

BASIC
PROTOCOL 5

ADVANCED CONFIGURATION AND DATA MANIPULATION OPTIONS

This protocol describes configuration options for enhancing the usability of CMap. There
are also configuration and data manipulation options for increasing the speed and clarity
of CMap when the database grows exceptionally large. CMap has a large number of
configuration options. To get the full list, see the administration document included with
the CMap distribution. Each step in this protocol is independent of the others; feel free
to pick and choose among the options.

NOTE: If the configuration files are changed after CMap is in use, the query cache will
need to be purged using the cmap admin.pl tool (see step 8).

Installing and
Configuring

CMap

9.8.20

Supplement 17 Current Protocols in Bioinformatics

Necessary Resources

Hardware

Computer with Internet access

Software

JavaScript (http://java.sun.com) enabled up-to-date Internet browser, e.g., Internet
Explorer (http://www.microsoft.com/ie); Netscape (http://browser.netscape.
com); Firefox (http://www.mozilla.org/firefox); or Safari (http://www.apple.com/
safari)

An installation of CMap (Support Protocol)

Files

Files provided with the CMap distribution

Define useful configuration options
1. To configure the map scaling to a default where maps with the same base unit can

be drawn in scale with each other:

a. Set the scale maps option to 1 in the configuration file.

b. Declare the map units (as defined in the map type options) scalable by placing
the unit name inside <scalable> tags with a value of 1. For an example, see
below.

Maps with units set to 0 or not declared will not be drawn to scale.

<scalable>

bp 1
bands 1
cM 1
</scalable>

Maps with the same base unit can be drawn in scale with each other. If this option is
not set, maps will be drawn all the same size.

In the previous example, maps with units bp, bands and cM will all be drawn to
scale but a map with the map unit “minutes” will not because “minutes” is not
defined as scalable.

It is also possible for maps with different map units to have a conversion factor applied
and scale accordingly. For information on this option, see the CMap administration
document.

2. To allow the cmap admin.pl script to create correspondences between features
of different types, add an add name correspondence line to the individual
configuration file. List the feature type accessions (feature type acc) of the
feature types on the same line to allow name based correspondences between features
of those types.

For example, add name correspondence clone read allows clones and se-
quence reads to have correspondences between them.

By default, CMap will only create correspondences between features of the same
type.

3. To validate the data source configuration after modification:

a. Runbin/cmap validate config.pl. Call the script with the configuration
file.

Building
Biological
Databases

9.8.21

Current Protocols in Bioinformatics Supplement 17

$ bin/cmap validate config.pl/usr/local/apache/conf/cmap.
conf/cmap live.conf

This will check for syntax, required options, and deprecated options and give a
list of any discretionary options that have not been specified.

b. If the file configuration file is valid: The script will print out a list of Missing
optional entr[ies] and declare the file valid:

The config file, /usr/local/apache/conf/cmap.conf/
cmap live.conf is VALID.

c. If the configuration file is invalid: the output will declare the file invalid and
explain where the problem is:

The config file, /usr/local/apache/conf/cmap.conf/cmap
live.conf is INVALID.

Configure CMap for speed and clarity
This set of configuration options is to be inserted into the individual data source config-
uration files to increase speed and clarity. All of the options are simply defaults and can
be overridden by the user if they choose.

4. Set the collapse features option to 1 (collapse features 1). This
causes features that would be drawn exactly the same way to be collapsed into one
glyph. This improves the clarity of the image by preventing redundant feature glyphs
on the map. It also reduces the time taken to draw features.

Examine the differences between Figures 9.8.12 and 9.8.13 to see the effects of collapsing
features.

Figure 9.8.12 A view of a rice sequence map without using the collapse features option.
Thousands of redundant features are drawn. The actual image continues for eleven more screen
widths which makes this view unusable and quite slow to load.

Installing and
Configuring

CMap

9.8.22

Supplement 17 Current Protocols in Bioinformatics

Figure 9.8.13 The map is using the collapse features option resulting in a cleaner and
quicker view of the map. For the color version of this figure go to http://www.currentprotocols.com.

Figure 9.8.14 All of the feature types in this view are set to always display. For the color version
of this figure go to http://www.currentprotocols.com.

Building
Biological
Databases

9.8.23

Current Protocols in Bioinformatics Supplement 17

5. Set the feature default display option to corr only (fea-
ture default display corr only) Only features that have correspon-
dences between maps in the view will be displayed. This greatly reduces the time to
process features when displaying a dense map.

Examine the differences between Figures 9.8.14 and 9.8.15 to see the effects of displaying
only features with correspondences.

6. Set aggregate correspondences to 1 or 2 (aggregate
correspondences 1). This causes all of the correspondences between
maps to be condensed into either one line or two lines. The single line setting joins
maps from the average location of the features. The double line shows the span of
the features on each map.

This increases visibility when there are a lot individual correspondences crossing and
cluttering up the screen. Figure 9.8.16 shows how aggregating correspondences can
create a clean and usable image when there are many corresponding maps.

7. Set omit area boxes to 1 (omit area boxes 1) to reduce rendering time
caused by a large number of features.

Every feature has HTML associated with it to allow the user to click the mouse on it
and have an action performed (this action can be configured but defaults to the sending
the user to the feature details page). As the number of features increases, the HTML
associated with them can grow to be larger than the image itself causing long, data
transmission times and can break browsers like Internet Explorer with the amount of data

Figure 9.8.15 The feature types in this view are set to only display features with correspondences
resulting in a cleaner look. Each feature type default can be set individually.

Installing and
Configuring

CMap

9.8.24

Supplement 17 Current Protocols in Bioinformatics

Figure 9.8.16 Correspondences can be aggregated into a single line (as shown) or two lines to
decrease the number of lines on the screen.

to render. The omit area boxes option removes the clickable area above the features
which removes some functionality. Features will no longer be clickable, but this can help
the user get data in a more timely fashion.

Setting omit area boxes to 2will remove all clickable elements from the image which
removes a large set of the navigation controls, so that is not recommended.

Purge the query cache
8a. To purge the query cache using menu options: After editing, run cmap admin.pl

with the -d flag specifying the data source name, cmap admin.pl -d
CMap Live. Choose option 10, [10] Purge the cache to view new
data. Select 1, [1] Cache Level 1 Purge All to purge the whole cache.

8b. To purge the query cache from the command line: Type the following command.

cmap admin.pl -d CMap Live --action purge query cache.

Every time the configuration file is altered, the query cache should be purged to remove
any old configuration data.

Manage data for speed and clarity
9. Use cmap create stacked maps.pl as follows to condense a large set of

comparison (relational) maps into contigs, based on a reference set, to ease viewing
in CMap:

a. Create a map set for the maps that will be created (see Basic Protocol 4, step 4).

b. Supply the accession ID of the relational map set, the accession ID of the reference
map set, the accession id of the new map set and the feature type accession ID for
the features that represent the original relational maps on the new maps (which
will need to be defined in the individual configuration file).

c. Run the cmap create stacked maps.pl script.

$ cmap create stacked maps.pl -d CMap Live --
map set to stack FPC SET ACC --reference map set

Building
Biological
Databases

9.8.25

Current Protocols in Bioinformatics Supplement 17

SEQ SET ACC --new map set NEW SET ACC --
stack feature type acc fpc contig

Use this script on map sets that have a large number of maps and are mainly used in
relation to another reference set to order and orient maps into large contigs based on
correspondences to a reference map set.

An example of when this would be useful is a set of fingerprint contigs (FPCs) that has
correspondences to a sequence assembly. Each chromosome of the sequence assembly
could have correspondences to hundreds of FPCs. Displaying this severely taxes the
server. The cmap create stacked maps.pl script takes those FPCs and finds the
chromosome to which it has the most correspondences. The FPCs for each chromosome
are ordered and oriented based on correspondences. New maps are then created by
combining the FPCs into one giant contig for each chromosome. The features from the
FPCs are carried over to the new maps and features representing the original FPCs are
added. Instead of hundreds of maps, CMap can display a fewer, increasing readability by
removing the clutter.

This is a nondestructive process. The original map sets will be untouched. To keep the
original relational map set from being used, it must be removed. However, it will then
become difficult to modify the stacked maps because the position information on the maps
will have changed from the original import.

10. Remove useless data and condense dense features into a depth display.

A proof of concept is provided in the form of the cmap manageParsedAceFile.pl
script. This script takes a CMap import file of a sequence assembly with individual reads
as features (created by the cmap parseWashUAceFiles.pl script which is also
included) and greatly reduces the number of features that CMap is required to display
while maintaining usability.

It removes read pairs that are within 100,000 bases on the same map because they are
uninteresting. However before removing the reads, a read depth is tallied for a specified
window size. In this way the read density is kept. Read pairs that are more than 100,000
bases apart are condensed into one far apart glyph to make them stand out. Reads
that don’t have a pair on the same map are left as anchors for correspondences. This
reduces the number of reads on a map while leaving the singleton reads to be used to
make correspondences with their pair.

Configure the read depth glyph as in the following example.

<feature type read depth>
feature type acc read depth
feature type Read Depth
default rank 1
color red
shape read depth
drawing lane 1
drawing priority 1
</feature type>

SUPPORT
PROTOCOL

INSTALLING CMap

This protocol describes how to download and install CMap on a Linux server.

Necessary Resources

Hardware

A fast desktop or server machine running a recent (<2 years old) version of Linux
or Unix

Installing and
Configuring

CMap

9.8.26

Supplement 17 Current Protocols in Bioinformatics

Software

Relational database management system: MySQL (http://www.mysql.com),
PostgreSQL (http://www.postgresql.org) or Oracle (http://www.oracle.com)

Perl version 5.8 or higher (http://www.perl.org)
Web server (e.g., Apache HTTP Server; http://httpd.apache.org).
gd Graphics Library version 2.0.28 or higher (http://www.boutell.com/gd)
Required Perl Modules: downloaded from CPAN (http://search.cpan.org/) or

installed using the CPAN Perl module from the command line (perl -MCPAN
-e ‘‘install module::name’’); installed separately; or as a group by
installing Bundle::CMap from CPAN (bundle excludes the GD module
because it requires a C library)
Algorithm::Numerical::Sample
Apache::Htpasswd
Bit::Vector
Cache::Cache
CGI::Session
Class::Base
Clone
Config::General
Data::Page
Data::Pageset
Data::Stag
Date::Format
Filesys::Df
GD
GD::SVG
IO::Tee
Module::Build
Params::Validate
Regexp::Common
Template
Template::Plugin::Comma
Text::RecordParser
Time::ParseDate
Time::Piece
version
XML::Parser::PerlSAX
XML::Simple

Optional Perl Modules:
Apache (http://search.cpan.org/∼gozer/mod perl/): needed if mod perl is

running on the Web server
BioPerl (http://www.bioperl.org): required for BLAST parsing

1. Download the CMap release from Generic Model Organism Database
project (GMOD) project at SourceForge (https://sourceforge.net/project/showfiles.
php?group id=27707). The file will be named cmap-##.tar.gz where ## is the
version number.

2. Untar the CMap tarball and enter the newly created cmap/ directory.

$ tar -zxf cmap-##.tar.gz
$ cd cmap-##/

3. Create the Build file.

$ perl Build.pl

To change the directories into which CMap components are installed, use the Build.pl
options. For a list of these options, execute perl Build.pl --help.

Building
Biological
Databases

9.8.27

Current Protocols in Bioinformatics Supplement 17

Figure 9.8.17 The initial CMap menu allows the user to select a species and a map set.

Figure 9.8.18 After selecting a map set, the user can select from a list of maps in the selected
set. The user can also preselect the map start and stop (if selecting a single map) and the feature
display options.

4. Build and install CMap.

$./Build
$./Build install

If there is a previous install on the machine, prompts will appear asking to overwrite
various files. It is good practice to respond “no” to any locally modified files. The new
versions will still exist in this cmap-##/ directory for later review.

‘/usr/local/apache/htdocs/cmap/index.html’ exists.
Overwrite? [n]

Installing and
Configuring

CMap

9.8.28

Supplement 17 Current Protocols in Bioinformatics

Figure 9.8.19 An initial view of two test maps imported from the tabtest1 file.

‘/usr/local/apache/conf/cmap.conf/global.conf’ exists.
Overwrite? [n]

‘/usr/local/apache/conf/cmap.conf/example.conf’ exists.
Overwrite? [n]

‘/usr/local/apache/cgi-bin/cmap’ exists. Overwrite? [n]

CMap should be fully functional after completing the above steps.

5. Verify correct installation of CMap by performing the following operations:

a. Point a Web browser to http://localhost/cmap (or substitute “localhost” with the
correct domain) and the default introduction page (CMap Installation Summary)
will be displayed.

This page can be customized for each install.

b. Click on the Maps link at the top of the page and the initial CMap menu will be
displayed (see Fig. 9.8.17).

c. Select a map set and click Show Selected Set’s Maps to display the maps in the
set (see Fig. 9.8.18).

d. Select one or more of the maps from the list and click Draw Maps to display an
image of the map(s) (see Fig. 9.8.19).

e. Click on the various buttons on the image.

If no errors occur, CMap has been installed correctly and can be used.

Building
Biological
Databases

9.8.29

Current Protocols in Bioinformatics Supplement 17

COMMENTARY

Background Information
CMap was written for the Gramene

project (http://www.gramene.org) to dis-
play comparisons between various cereal
genome data. It has since been moved
under the umbrella of the Generic Model
Organism Database project (GMOD,
http://www.gmod.org) and is in use for both
plant (e.g., The Legume Information System,
http://www.comparative-legumes.org) and an-
imal (e.g., The Honey Bee Genome Database,
http://racerx00.tamu.edu/bee resources.html)
data.

One of the guiding ideas for CMap is for
it to be generic. Rather than being bound to
a specific data type (i.e., sequence, genetic, or
physical data) the CMap database can handle a
variety of map data. This is what allows CMap
to display comparisons between a wide array
of data.

As of this writing, the current version is
CMap 0.16. CMap is a more mature applica-
tion than the version number suggests. There
have been 16 releases up to this point.

CMap only uses standard SQL. This means
that CMap can run on any relational database.
It is tested on MySQL and PostgreSQL but it
should work on Oracle, SQLite or any other
modern database.

Configuration files
CMap allows for multiple databases to be

used, allowing the user to select among them.
In fact, the same database can have multiple
configurations to allow for different views and
different permissions. CMap requires one con-
figuration file for each configuration. These in-
dividual configuration files are referred to as
data sources.

Options that relate to the computer sys-
tem such as location of the temp direc-
tory are stored in one global configuration
file named global.conf. The options in
global.conf are shared across all data
sources. The global.conf file also dictates
which data source will be used as the default.

The global.conf and data source con-
figuration files are installed in the CONF di-
rectory, which unless specified elsewhere dur-
ing installation, is located in /usr/local/
apache/conf/cmap.conf/.Data source
files are identified by the .conf extension.

Apache-style configuration files
The configuration files are written in

Apache-style syntax. Options are written in
Name Value format and groups of options

are clustered between tags in angle brack-
ets (XML-like). For more information on
the format, execute perldoc Config::
General from the command line.

Caching system
CMap employs a caching system to speed

up long database queries. The full page of the
first view of a map is also cached. It is impor-
tant to purge the cache whenever a change is
made to the configuration files or the database
is manipulated (without using cmap admin.
pl). For instructions on how to purge the
cache, see Basic Protocol 5, step 8.

Session system
Due to the number of user options that

CMap offers and the complex data required
for some vital functionalities, CMap requires
server-side sessions. Without sessions, the
URLs needed to convey the all of the dis-
play information were longer than browsers
like Internet Explorer could handle. These ses-
sions store all of the information about the
view. CMap navigation links rely on the ses-
sions to create the next view. The disadvantage
to the sessions is that they eventually expire
and get removed. This renders old bookmarks
useless.

To address this issue CMap has a Save Link
button below every image that will store the
session information on the server indefinitely
and provide a permanent link to access the
view. The permanent link can then be book-
marked or emailed reliably. Even better, after
visiting the permanent link once, the whole
page gets cached which makes viewing that
page quicker for the people being sent the link.

HTML templates
Instead of generating HTML in Perl,

CMap uses the templating system of Template
Toolkit (http://www.template-toolkit.org). In
the templates directory, which can be set at
install time, are templates that can be modi-
fied for each installation. This allows protocol
users to easily change the Web pages without
having to open up the code.

Critical Parameters and
Troubleshooting

Accession IDs
Most of the objects in CMap have an ac-

cession ID. These are unique identifiers that
can be set during data creation. It is a recom-
mended practice to use meaningful accession

Installing and
Configuring

CMap

9.8.30

Supplement 17 Current Protocols in Bioinformatics

IDs for features, maps, map sets and species.
This can make tying different data sources to-
gether easier. An example would be to use
GenBank accession IDs for sequence maps or
use an in-house identifier that links to separate
databases.

Accession IDs are alphanumeric (a-zA-Z0-
9) and can be up to 30 characters long. Always
use at least one letter when creating an acces-
sion ID. A strictly numeric accession ID can
cause conflicts because when not given, CMap
will automatically use the main table ID as the
accession ID which is numeric. A record with
a duplicate accession will not be allowed into
the database.

Missing configuration files
The configuration files (one global.

conf and one or more data source files) must
be in the cmap.conf/ directory and the data
source configuration files must be set to en-
abled. If the global.conf file is missing,
a No global.conf found error will be
displayed. If there are no data source config-
uration files present with the is enabled
option set, a No database conf files
found error will appear.

Permissions
In order for CMap to run, the Web server

user needs to have the correct privileges to
CMap files and the directory path to those files.
These permissions should have been set cor-
rectly during the install. The following will
describe what privileges are needed.

If it doesn’t have read and execute per-
missions to the cmap.conf/"directory or
doesn’t have read access for the actual con-
figuration files, CMap will display a variety of
errors complaining that the configuration files
couldn’t be found or accessed.

The Web server must have read and execute
permissions for the template directory and read
permissions for the templates themselves or an
error related to a .tmpl file will be displayed.

The server must have read, write and exe-
cute permissions to the cache directory. This
directory is assigned at install but defaults to
/usr/local/apache/htdocs/cmap/
tmp/ or there will be File does not
exist errors regarding the image file.

Sessions
The Invalid session id: error usu-

ally means the session has expired. To avoid
seeing this, use the Save Link button un-
derneath the image. If the error is occurring
soon after starting the session (usually the sec-
ond image view), that could mean that the ses-
sions directory is not being written to due to
fullness or permissions. The sessions directory
must have read, write and execute permissions
for the server.

Cache problems
If changes are made to the data or the con-

figuration files and those changes are not being
used, or are being used sporadically, this is a
sign that the cache needs to be cleared. See
Basic Protocol 5, step 8 for a description of
how to clear a cache.

Unique data source naming
Another cause of sporadically changing

data is configuration files with the same
<database> name. CMap will check for
this if the duplicates are in the same installa-
tion. However, if there are two installations on
the same machine, data sources with the same
name can share the same cache space. Data
from one installation can seep into the display
of the other. The easy solution is to rename
one of the data sources.

E-mail list
If other assistance is needed, send a mes-

sage detailing the issue to the CMap list,
gmod-cmap@lists.sourceforge.net.

Internet Resources
https://sourceforge.net/project/showfiles.php?

group id=27707
The location of the CMap package.

http://www.gramene.org
The Gramene project Web site for which CMap was
initially created.

http://www.gmod.org
The Generic Module Organism Database project
Web site.

http://www.gmod.org/cmap
The CMap home page.

Contributed by Ben Faga
Cold Spring Harbor Laboratories
Cold Spring Harbor, New York

UNIT 9.9Using the Generic Genome Browser
(GBrowse)
Maureen J. Donlin1

1Department of Biochemistry and Molecular Biology and Department of Molecular
Microbiology and Immunology, Saint Louis University School of Medicine,
St. Louis, Missouri

ABSTRACT

A genome browser is software that allows users to visualize DNA, protein, or other
sequence features within the context of a reference sequence, such as a chromosome or
contig. The Generic Genome Browser (GBrowse) is an open-source browser developed
as part of the GenericModel OrganismDatabase project (Stein et al., 2002). GBrowse can
be conÞgured to display genomic sequence features for any organism and is the browser
used for the model organisms Drosophila melanogaster (Grumbling and Strelets, 2006)
and Caenorhabditis elegans (Schwarz et al., 2006), among others. The software package
can be downloaded from the Web and run on a Windows, Mac OS X, or Unix-type
system. Version 1.64, as described in the original protocol, was released in November
2005, but the software is under active development and new versions are released about
every six months. This update includes instructions on updating existing data sources
with new Þles from NCBI. Curr. Protoc. Bioinform. 28:9.9.1-9.9.25. C© 2009 by John
Wiley & Sons, Inc.

Keywords: computational biology � genome �GBrowse � genome browser

INTRODUCTION

The GBrowse genome browser was designed to be highly conÞgurable and portable. It
can be run locally on a laptop computer with modest memory and CPU, or be installed
on a high-end server to provide a browsable genome to the online research commu-
nity. GBrowse can be used to display genome annotations on small genomes, such as
S. cerevisiae, as easily as displaying large genomes such as human�the main constraint
being how much disk space is available.

A central feature of GBrowse is its use of adaptors to connect to various types of
databases. This unit has two main protocols. Basic Protocol 1 shows how to set up a
browser on a small genome using the GBrowse ßat Þle adaptor. This adaptor is suitable
for genomes up to 20,000 features (genes or other annotations). Basic Protocol 2 shows
how to use the relational database adaptor, which is suitable for very large genomes. Two
support protocols provide additional information on using GBrowse. Support Protocol 1
describes how to install the software, and Support Protocol 2 shows how to load and view
sequence annotation records from GenBank. A troubleshooting guide describes how to
isolate and remedy problems.

BASIC
PROTOCOL 1

CONFIGURATION AND USE OF GBrowse 1.X

This protocol will take the user through the main features of GBrowse and point out some
of the most common problems encountered when conÞguring the software for the Þrst
time. This protocol assumes that the user has successfully set up GBrowse as described
in Support Protocol 1. In this protocol, the user will use a Þle-based GBrowse database
with simulated Volvox genome annotation data. In Basic Protocol 2, the user will set up

Current Protocols in Bioinformatics 9.9.1-9.9.25, December 2009
Published online December 2009 in Wiley Interscience (www.interscience.wiley.com).
DOI: 10.1002/0471250953.bi0909s28
Copyright C© 2009 John Wiley & Sons, Inc.

Building
Biological
Databases

9.9.1

Supplement 28

Using GBrowse

9.9.2

Supplement 28 Current Protocols in Bioinformatics

GBrowse using a MySQL database. This protocol is a short introduction to the many
things GBrowse can do. There are numerous other features to be explored using the online
tutorial. The user can Þnd additional information in the CONFIGURE HOWTO document,
and in the documentation for Bio::DB::GFF andBio::Graphics in theBioPerl distribution.
Should the user have questions or problems with the installation and setup, contact the
GMOD-GBrowse mailing list for help. This protocol was adapted, with permission, from
the online tutorial written by Lincoln Stein that is installed with GBrowse.

Necessary Resources

Hardware

Unix (Linux, Solaris, or other variety) workstation or Macintosh with OS X 10.2.3
or higher

A minimum of 500 Mb RAM
Internet connection

Software

All necessary software should be installed if Support Protocol 1 has been completed

Files

The data Þles used during the tutorial are found in the install directory under the
/docs/tutorial directory path. The data files directory contains the
DNA and features Þles to load into the local database. The conf files
directory contains the GBrowse conÞguration Þles for the user to work with and
modify.

Setting the Þle permissions

The userwill use aÞle-based database, which allowsGBrowse to run directly off textÞles.
To prepare this database, Þnd the GBrowse databases directory, which was created on the
Apache Web server directory during installation. When working with a RedHat Linux
system, it should be located at /var/www/html/gbrowse/databases. Similarly,
check that the gbrowse.conf conÞguration directory can be located. It should be
located at: /etc/httpd/conf/gbrowse.conf and contain the conÞguration Þle
yeast chr1.conf. If one is unsure of where these directories are located, the main
page of the GBrowse installation under Directory Paths should be checked. It will
list the directory paths for the GBrowse documentation and in-memory databases, as
well as the path for the conÞguration Þles.

1. Change the permissions of the database and conÞguration directories so that the user
can write to them without root privileges using the commands:

$ su
Password: *********
chown my user name /var/www/html/gbrowse/databases
chown my user name /etc/httpd/conf/gbrowse.conf
exit

Replace my user namewith the user�s login name. The $ and # sign in these exam-
ples are the command-line prompts for the unprivileged and root users respectively.
Unix systems are variable, but the prompt usually ends with $, %, or #.

Examine the contents of the databases directory. There should be a single subdirec-
tory named yeast chr1. The yeast chr1 subdirectory is where the example
yeast chromosome 1 dataset is stored. For each Þle-based genome displayed in
GBrowse, a separate directory needs to be created.

Building
Biological
Databases

9.9.3

Current Protocols in Bioinformatics Supplement 28

2. Create an empty volvox subdirectory, and make it world writable using the com-
mands:

$ cd /var/www/html/gbrowse/databases
$ mkdir volvox
$ chmod go+rwx volvox

Next, put the Þrst of several data Þles into the volvox database directory.
Within the data files subdirectory of this tutorial, the user should Þnd the Þle
volvox1.gff.

3. Copy volvox1.gff into the volvox database directory using the commands:

$ cp volvox1.gff /var/www/html/gbrowse/databases/volvox/

Next, one will need a GBrowse conÞguration Þle to tell GBrowse how to render this data
set.

4. Change to the subdirectory conf files, where one should Þnd a sample conÞgu-
ration Þle named volvox.conf.

5. Copy volvox.conf into the GBrowse conÞguration directory:

$ cp volvox.conf /etc/httpd/conf/gbrowse.conf/.

6. To view the dataset, open a Web browser and type in the address:

http://localhost/cgi-bin/gbrowse/volvox

If viewing the pages from a computer other than the one on which GBrowse was installed,
replace localhost with the name of the Web server.

7. Type in ctgA in the search box. The page as shown in Figure 9.9.1 should now be
seen.

Figure 9.9.1: Example features from the volvox1.gff Þle as displayed with the
volvox.conf conÞguration Þle.

If a blank page or an Internal server error, message appears, there are a few
things that can be checked. First, open the Þle volvox.conf with a text editor and
conÞrm that the path to the volvox database directory in this section is correct:

Figure 9.9.1 Example features from the volvox1.gff file as displayed with the volvox.conf
configuration file.

Using GBrowse

9.9.4

Supplement 28 Current Protocols in Bioinformatics

db args = -adaptor memory
-gff ’/var/www/html/gbrowse/databases/volvox’

If there is a space in the argument to the -gff option, then put single quotes around
the path as shown in the example above. Next, check that the volvox1.gff Þle does
exist in the volvox database directory and that it is readable by all users on the system
being used. Check that the volvox.conf conÞguration Þle is in the same directory as
yeast chr1.conf, and that it is readable by all users on the system being used. If
none of the above suggestions Þx the problem, check the Apache server error log for error
messages as described in the Troubleshooting section at the end of this unit. If all else
fails, submit the errors to the GMOD-GBrowse mailing list for help.

Working with the data Þle

The data Þle for GBrowse is based on a format called the General Feature Format (GFF).
It is organized into nine columns, separated by tabs. Table 9.9.1 lists the nine columns
of the GFF Þle in order, from left to right.

The group Þeld format is class name, where class describes the class of the feature
and name describes its name. Separate the class and name by a space, not a tab. The
feature class is just a preÞx that distinguishes one name from another, but it can
be confusing because it is very similar to the feature type. Features with the same name
can be distinguished by giving them distinctive preÞxes. For example, use the feature
class to distinguish �Transcript M1.2� from �GeneM1.2.� Later versions of GFF, such
as GFF3, will likely do away with the class entirely. The author suggests reusing the type
Þeld here. In these examples, an initial capital letter in the class Þeld distinguishes the
class Þeld from the type Þeld.

Open the volvox1.gff Þle in a text editor and examine the data Þle in more detail.
One should see a series of genome �features,� of which the Þrst few lines are shown in
Figure 9.9.2.

Each of the features seen in Figure 9.9.2 also has a source of example and a type
of my feature, and occupies a short range (roughly 1.5 k) on the reference contig
named ctgA. In addition to the features themselves, there is an entry for the contig
itself (type contig). This entry tells GBrowse the length of ctgA. Each line of the Þle
corresponds to a feature on the genome and has the nine columns deÞned by the GFF
speciÞcation as described in Table 9.9.1. The last columnhas features separated by spaces,
not tabs.

DeÞning the feature tracks

8. Using a text editor, open the volvox.conf Þle from its location in the
gbrowse.conf directory.

If a mistake is made, just copy a fresh version of volvox.conf from the
/docs/tutorial/conf files directory.

Scan down the Þle until Þnding the part that starts with the line:

TRACK CONFIGURATION ###:
[ExampleFeatures]
feature = my feature
glyph = generic
stranded = 1
bgcolor = blue
height = 10
key = Example Features

Building
Biological
Databases

9.9.5

Current Protocols in Bioinformatics Supplement 28

Table 9.9.1 The GFF3 File Specificationsa

Column Description

Seqid This is the id of the landmark, which establishes the coordinate system for the
annotation or current feature. This is usually the name of a chromosome, clone,
or contig. In this protocol, the seqid is �ctgA.� A single GFF Þle can refer to
multiple reference sequences.

Source The column lists the source of the annotation or describes how the feature was
derived. In the protocol, the source is �example� for lack of a better description.
Many people use the source as a way of distinguishing between similar features
that were derived by different methods; for example, gene annotations derived
from different prediction software. This column can be left blank by replacing
the source with a single dot (�.�).

Type This column describes the feature type. The user can choose anything they like to
describe the feature type, but common names are �gene,� �repeat,� �exon,� and
�CDS.� For lack of a better name, the features in this protocol are of type
�my feature.�

Start This column lists the position that the feature starts at, relative to the reference
sequence. The Þrst base of the reference sequence is position 1.

End This column lists the end of the feature, again relative to the reference sequence.
The end is always greater than or equal to start.

Score For features that have a numeric score, such as sequence similarities, this Þeld
holds the score. Score units are arbitrary, but it is common to use the expectation
value for similarity features and p-values for ab initio gene prediction features.
This can be left blank by replacing the column with a dot (�.�).

Strand For features that are strand-speciÞc, this Þeld is the strand on which the
annotation resides. It is �+� for the forward strand, ��� for the reverse strand, or
�.� for annotations that are not stranded. If the user is unsure of whether a feature
is stranded, use a �?� here.

Phase For CDS features that encode proteins, this Þeld describes the part of the codon
on which the Þrst base falls. The Þeld is a number from 0 to 2, where 0 means
that the Þrst base of the feature corresponds to the start of the codon, 1 means that
the second base of the feature corresponds to the start of the codon, and 2 means
that the third base of the feature corresponds to the start of the codon. Phase
information is represented by a glyph called �cds� to show how the reading
frame changes across splice sites. For all other feature types, use a dot here.

Attributes A list of feature attributes in the format tag=value. Multiple tag=value pairs are
separated by semicolons. URL escaping rules are used for tags or values
containing the following characters: �, = ;�. Spaces are allowed in this Þeld, but
tabs must be replaced with the %09 URL escape. This Þeld is not required.

aGFF3 format can be used to represent features with multiple tiers, such as the relationship between genes, transcripts,

and spliced isoforms. The full GFF3 speciÞcation can be found at http://www.sequenceontology.org/gff3.shtml.

ctgA example contig 1 50000 . . . Contig ctgA

ctgA example my_feature 1659 1984 . + . My_feature f07

ctgA example my_feature 3014 6130 . + . My_feature f06

ctgA example my_feature 4715 5968 . - . My_feature f05

ctgA example my_feature 13280 16394 . - . My_feature f08

...

Figure 9.9.2 The first few lines of the genome “features” from the volvox1.gff file.

Using GBrowse

9.9.6

Supplement 28 Current Protocols in Bioinformatics

This �stanza� describes one of the tracks displayed by GBrowse. The track has an internal
name of ExampleFeatures, which can be used on the HTML page to turn on the track.
The internal name is enclosed by square brackets. Following the track name is a series
of options that conÞgure the track. The feature option indicates what feature type(s)
is displayed inside the track. Currently, it displays the my feature feature type. The
glyph option speciÞes the shape of the rendered feature. The default is generic, which
is a simple Þlled box, but there are dozens of glyphs to choose from. The stranded option
tells the generic glyph to display the strandedness of the feature�this creates a little arrow
at the end of the box. The options bgcolor and height control the background color
and height of the glyph respectively, and key assigns the track a human-readable label.
Experiment with changing the track deÞnition by changing the color of the glyph using a
text editor.

9. Set the option bgcolor = orange.

10. Save the Þle and reload the page in the browser.

The features should be seen rendered in orange rather than blue as in the initial page.

11. Set height = 5, and key = Skinny features.

12. Set stranded = 0 (which means �false�).

13. Save the Þle and reload the page in the browser.

By changing just a few options, a very distinctive track can be created. Now try changing
the glyph. One of the standard glyphs was designed to show PCR primer pairs and it is
called primers.

14. Change glyph = generic to glyph = primers.

15. Save the Þle and reload the page in the browser.

Depending on other changes that the user might have made earlier, the result will look
similar to the image in Figure 9.9.3.

Far more glyph options are available than can be described in this protocol. Refer to the
CONFIGURE HOWTO Þle, available as a link from the initial GBrowse page or as a pod
document in the /docs/pod/ directory of the GBrowse distribution for a list of the most
popular glyphs and the options available for them. There is also a PDF Þle located in
the /docs/ directory of the GBrowse distribution that lists all of the available colors for
GBrowse.

Searching for named features

An important function of GBrowse is the ability to search for named features. If the user
looks through the volvox1.gff data Þle, they will see that all the example features
are named in column nine, and that their class is My feature. GBrowse has a very
ßexible search feature; try a few searches to see how they work.

16. Type in the name of the reference sequence, ctgA, and it will display the entire
contig.

23k 24k 25k 26k 27k

ctgA

Skinny features
f15

f14f13 f02

Figure 9.9.3 Display of the feature using the primers glyph.

Building
Biological
Databases

9.9.7

Current Protocols in Bioinformatics Supplement 28

17. Type in a range in the format ctgA:start..stop, such as ctgA:5000..8000
to see a portion of the contig.

In addition, GBrowse can search for features by name. By default, the name of the object
must be preceded by its class in the format Class:name.

18. To search for My feature f07, type My feature:f07 into the search box.

Although this search works, users will not always know the class name of a given feature
to put into the search box. The user can declare one or more classes automatic and
specify the order in which GBrowse will search for them to eliminate the need for including
the class name in the search Þeld. Do this with the volvox database as follows.

19. Open the volvox.conf conÞguration Þle in a text editor.

20. Find the option named automatic classes, and set it to:

automatic classes = My feature.

21. Save the Þle and reload the page in the browser. This tells GBrowse to search for the
My feature class for a match whenever a user types in an unqualiÞed search term.
Now type f07 directly into the search Þeld and GBrowse will Þnd the feature and
display it. Several automatic classes can be listed on this line by separating
them with spaces.

22. Set the automatic classes = My feature Gene Transcript
Contig Chromosome.

23. Save the Þle and reload the page in the browser.

24. To become familiar with other search options, try the following searches:

f1*
f07:-5000..5000
*3

The * is a wild-card option for searches.

Adding descriptions to a feature

By default, GBrowse displays the name of the feature above its glyph provided that there
is sufÞcient space to do this. Optionally, the user can attach descriptive text to the feature.
This text will be displayed below the feature, and can also be searched. The user can add
descriptions, notes, and other comments into the ninth column of the GFF load Þle. The
example Þle volvox2.gff shows how this is done. An excerpt from the top of the Þle
follows in Figure 9.9.4.

This GFF Þle (see Fig. 9.9.4) deÞnes several features of type motif. The ninth column,
in addition to giving each of the motifs names (e.g., Motif m11), adds a Note attribute
to each feature. Attributes are name=value pairs, where the attribute name is a single
word, and the value is a piece of text. If the value text contains white space (spaces or

ctgA example motif 11911 15561 . + . Motif m11 ; Note

ctgA example motif 13801 14007 . - . Motif m05 ; Note "helix loop helix"

ctgA example motif 14731 17239 . - . Motif m14 ; Note "kinase"

"kinase"

ctgA example motif 15396 16159 . + . Motif m03 ; Note "zinc finger"

Figure 9.9.4 An excerpt from the example file volvox2.gff is shown here.

Using GBrowse

9.9.8

Supplement 28 Current Protocols in Bioinformatics

tabs), the text must be enclosed by double quotes as shown above for helix loop
helix. It does not hurt to enclose the text in quotes even if it does not contain white
space, as shown in the example. Attribute pairs are separated from the Class/name pair
by a semicolon, as shown above. The online tutorial and CONFIGURE HOWTO Þle list
many ways to take advantage of different types of attributes. For now, it is only important
to know that an attribute named Note is automatically displayed and made searchable.

25. Add volvox2.gff to the volvox database by copying the Þle into
/var/www/html/gbrowse/databases/volvox so that the directory con-
tains both the volvox1.gff and volvox2.gff Þles.

26. Openvolvox.conf in a text editor and add the following stanza to the conÞguration
Þle:

[Motifs]
feature = motif
glyph = span
height = 5
description = 1
key = Example motifs

This deÞnes a new track whose internal name is Motifs. The corresponding feature type
is motif and it uses the span glyph, a graphic that displays a horizontal line capped
by vertical endpoints. The height is set to Þve pixels, and the human-readable key is
set to Example motifs. A new option, description, is a ßag that tells GBrowse
to display the Note attribute, if any. Any nonzero value means true.

27. Save the Þle and reload the page in the browser.

28. Turn on the �Example motifs� checkbox below the main image and click the Update
Image button.

The result is shown in Figure 9.9.5.

29. In the search text box, type the word kinase.

The resulting page should be a list of all the motifs whose Note attribute contains the
word �kinase.�

Showing multi-segmented features

Many features are discontinuous; for example, spliced transcripts, and gapped sequence
similarity alignments such as the alignment of cDNAs to the genome. Discontinuous
features in GBrowse can be displayed using speciÞc formatting options in the GFF Þle.

Figure 9.9.5 The GBrowse details view displaying the Note attribute from the GFF file.

Building
Biological
Databases

9.9.9

Current Protocols in Bioinformatics Supplement 28

ctgA example match 6885 8999 . - . Match seg03

ctgA example HSP 6885 7241 . - . Match seg03

ctgA example HSP 7410 7737 . - . Match seg03

ctgA example HSP 8055 8080 . - . Match seg03

ctgA example HSP 8306 8999 . - . Match seg03

…

Figure 9.9.6 The data file volvox3.gff contains a simulated dataset of a series of gapped
nucleotide alignments. An excerpt from the file is shown here.

The dataÞlevolvox3.gff contains a simulated dataset of a series of gapped nucleotide
alignments. An excerpt from the Þle is shown in Figure 9.9.6.

Several lines in a GFF Þle can share the same feature name in column nine and thus
represent a single segmented feature. In the example seen in Figure 9.9.6, all Þve lines
deÞne a single feature. The Þrst line, with the type match, has start and end coordinates
that correspond to the full length of the alignment. The next four lines, of the type
HSP, have start and end coordinates indicating one section of the match. In this example,
Match seq03 starts at position6885 and ends at8999. It has four subsegments:6885
to 7241; 7410 to 7737; 8055 to 8080 and 8306 to 8999. The types match and HSP
deÞne for GBrowse the relationship between the full-length feature and its subparts. A
series of aggregators, code modules that are loaded when GBrowse starts, mediate
the speciÞc type names and the display parameters for the gapped features.

30. Copy the volvox3.gff Þle into the volvox database directory.

31. Open volvox.conf in a text editor and add the following track deÞnition:

[Alignments]
feature = match
glyph = segments
key = Example alignments

This declares a new track named Alignments, which displays features of type match
using a glyph named segments. The segments glyph is specialized for displaying objects
that have multiple similar subparts.

32. Save the modiÞed conÞguration Þle and reload the page in the browser. Check the
Example Alignments checkbox and click the �Update Image� button to show the new
feature.

The user should see something like Figure 9.9.7. However, instead of showing multi-
segmented features, the track called �Example alignments� shows a single solid box that
spans the entire length of the feature, which is not quite the desired outcome.

To make multipart features display correctly, the user must activate or deÞne an appro-
priate aggregator. This is very easy for the similarity/match relationship, because there is
already a predeÞned aggregator named match.

33. Open the volvox.conf conÞguration Þle, and Þnd the option line near the top of
the Þle that reads aggregators =.

34. Change this to read: aggregators = match.

35. Save the Þle and reload the page in the browser.

This tells GBrowse to turn on the match aggregator. The user should now see an image
similar to Figure 9.9.8, with the multi-segmented glyphs for the Example alignments.

Using GBrowse

9.9.10

Supplement 28 Current Protocols in Bioinformatics

33k 34k 35k 36k 37k 38k 39k 40k 41k

ctgA

Example features

f03

f04

f09

Example Motifs
m15
7-transmembrane

m04
Ig-like

Example Alignments
seg10 seg09

seg02

seg05

seg01

seg15

Figure 9.9.7 Multi-segmented features are not properly displayed unless the appropriate aggregator is activated in the
configuration file.

33k 34k 35k 36k 37k 38k 39k 40k 41k

ctgA

Example features

f03

f04

f09

Example Motifs
m15
7-transmembrane

m04
Ig-like

Example Alignments
seg10 seg09

seg02

seg05

seg01

seg15

Figure 9.9.8 Turning on the match aggregator in the configuration file displays the match feature with its subparts
correctly.

Using aggregators

There are several predeÞned aggregators, each of which expects particular combinations
of feature type names. Table 9.9.2 summarizes the most useful ones.

To use any of these aggregators, follow this recipe: (1) Give features and their
subparts the speciÞc type names expected by the aggregators. (2) Add the aggre-
gator to the list of aggregators in the conÞg Þle, e.g., aggregators = match
processed transcript clone. (3) In the appropriate track deÞnition, use
the aggregator�s name as the argument for feature. For example: feature =
processed transcript.

The user can also deÞne custom aggregators, though that is beyond the scope of this
protocol. Refer to the CONFIGURE HOWTO Þle for more details on conÞguring custom
aggregators.

Showing protein coding genes

GBrowse can display protein-coding genes in various shapes and styles. Use
the processed transcript aggregator and its companion glyph, also called
processed transcript, to set this up. The user can see how this is done by

Building
Biological
Databases

9.9.11

Current Protocols in Bioinformatics Supplement 28

Table 9.9.2 Summary of the Predefined Aggregators for Displaying Segmented Features

Aggregator name Main type Subtype(s) Purpose

Alignment (none) Similarity Used for nucleotide and protein alignments
where the full extent of the match is unknown.

Coding mRNA CDS Used in concert with the �cds� glyph to display
the reading frame used by the coding portion of
each exon.

Clone (none) Clone left end
Clone right end

Used for cases in which clone ends have been
mapped to the genome, but one of the ends may
be missing.

Match Match Similarity, HSP Used for nucleotide and protein alignments.

processed transcript mRNA CDS, UTR, 5′-UTR, 3′-UTR,
transcription start site,
polyA site

This is used to display the canonical spliced
gene.

Transcript Transcript Exon TSS PolyA This is used for a spliced transcript with exon
features.

ctgA example gene 1050 9000 . + . Gene EDEN ; Note "protein kinase"

 ctgA example mRNA 1050 9000 . + . mRNA EDEN.1 ; Gene EDEN

ctgA example 5'-UTR 1050 1200 . + . mRNA EDEN.1

ctgA example CDS 1201 1500 . + 0 mRNA EDEN.1

ctgA example CDS 3000 3902 . + 0 mRNA EDEN.1

ctgA example CDS 5000 5500 . + 0 mRNA EDEN.1

ctgA example CDS 7000 7608 . + 0 mRNA EDEN.1

ctgA example 3'-UTR 7609 9000 . + . mRNA EDEN.1

ctgA example mRNA 1050 9000 . + . mRNA EDEN.2 ; Gene EDEN

ctgA example 5'-UTR 1050 1200 . + . mRNA EDEN.2

ctgA example CDS 1201 1500 . + 0 mRNA EDEN.2

ctgA example CDS 5000 5500 . + 0 mRNA EDEN.2

ctgA example CDS 7000 7608 . + 0 mRNA EDEN.2

ctgA example 3'-UTR 7609 9000 . + . mRNA EDEN.2

ctgA example mRNA 1300 9000 . + . mRNA EDEN.3 ; Gene EDEN

ctgA example 5'-UTR 1300 1500 . + . mRNA EDEN.3

ctgA example 5'-UTR 3000 3300 . + . mRNA EDEN.3

ctgA example CDS 3301 3902 . + 0 mRNA EDEN.3

ctgA example CDS 5000 5500 . + 1 mRNA EDEN.3

ctgA example CDS 7000 7600 . + 1 mRNA EDEN.3

ctgA example 3'-UTR 7601 9000 . + . mRNA EDEN.3

Figure 9.9.9 The contents of the file volvox4.gff.

examining the Þle volvox4.gff, which deÞnes a gene named EDEN, and its three
spliced forms named EDEN.1, EDEN.2, and EDEN.3. The contents of the Þle can be
seen in Figure 9.9.9.

The Þrst line of the Þle seen in Figure 9.9.9 deÞnes the gene as a whole, starting at
position 1050 of ctgA and extending to position 9000. Following this, there are three sets
of lines that deÞne the structure of the spliced forms EDEN.1, EDEN.2, and EDEN.3.

Using GBrowse

9.9.12

Supplement 28 Current Protocols in Bioinformatics

By convention, the whole transcript is represented as type �mRNA.� It has subparts
named 5′-UTR, CDS, and 3′-UTR, where the UTR features are the 5′ and 3′ untranslated
regions, respectively, and CDS is the coding region. Note how the CDS is split by splicing
amongmultiple discontinuous locations on the reference sequence. TheUTRs can be split
in this way too. Each mRNA and its subparts are grouped together under a common name
in the ninth column (mRNA EDEN.1, mRNA EDEN.2, etc.). In addition, each mRNA
has a Gene attribute that ties it to the EDEN gene itself (Gene EDEN). Although this is
not required for the display, doing this will identify the various alternative transcripts as
belonging to the same gene should the user wish to use the GBrowse database for data
mining. It will also show the user to which gene the transcript belongs to when he or she
clicks on it for details.

If the user prefers not to distinguish between 5′ and 3′ UTRs, simply use �UTR� as the
type. If the user does not know where the UTRs are, just leave them blank. If the user
would rather think in terms of exons and introns, then use the transcript aggregator
and its corresponding transcript glyph.

To set up the protein coding genes for GBrowse:

36. Copy the volvox4.gff to the database directory.

37. Open the volvox.conf Þle and change the aggregators line to read as follows:

aggregators = match
processed transcript

The indent is important as it allows the command to continue across multiple lines in the
conÞguration Þle.

38. Add the following new stanza to the bottom of the Þle:

[Transcripts]
feature = processed transcript
glyph = processed transcript
bgcolor = peachpuff
description = 1
key = Protein-coding genes

The updated aggregators option loads the processed transcript aggregator, which
knows how to put CDS and UTR features together to form a spliced transcript. The new
Transcripts track associates aggregated processed transcript features with
the like-named glyph, sets its background color to peachpuff, turns on the description
lines, and sets the human readable track name to Protein-coding genes.

The aggregators option demonstrates that GBrowse conÞg Þle options can continue across
multiple lines provided that each additional line is indented.

39. Save the conÞg Þle, reload the page, and turn on the Protein-coding genes
track.

40. If an image under the Protein-coding genes track is not seen, change the text
in the �Landmark or Region� textbox to: ctgA:1..10000 and click the �Search�
button.

An image underneath the Protein-coding genes track similar to that shown in
Figure 9.9.10 should be seen.

The image in Figure 9.9.10 can be improved by displaying the gene descriptions. The gene
description (the Note in the EDEN GFF line) is not displayed because the description is
attached to the gene and not to the individual mRNAs. To Þx this, tell GBrowse to display
features of type gene, as well as those of type processed transcript.

Building
Biological
Databases

9.9.13

Current Protocols in Bioinformatics Supplement 28

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

ctgA

Protein-coding gene
EDEN.1

EDEN.3

EDEN.2

Figure 9.9.10 An image of the canonical processed transcript glyph.

41. Modify volvox.conf so the last stanza looks like this:

[Transcripts]
feature = processed transcript gene
glyph = processed transcript
bgcolor = peachpuff
description = 1
key = Protein-coding genes

The only change is that there are now two types listed for the feature option,
processed transcript and gene. This tells GBrowse to place both feature types
in the same track.

42. Save the Þle and reload the page in the browser.

Now the display should render a glyph of the gene above the spliced transcripts and
include the description of the gene, �protein kinase.�

The processed transcript glyph can be customized using the options listed in
Table 9.9.3.

As an example of how the processed transcript glyph can be customized, use
the options listed in Table 9.9.3 to make the track look like the UCSC Genome Browser,
located at: http://genome.ucsc.edu.

43. Open the volvox.conf Þle and change the Transcripts stanza to the following
options.

[Transcripts]
Feature = processed transcript gene
Glyph = processed transcript
Height = 8
bgcolor = black
utr color = black
thin utr = 1
decorate introns = 1
description = 1
key = Protein-coding genes

44. Save the Þle and reload the page in the browser. The image should look like
Figure 9.9.11.

Showing the reading frame

Continuing with the example from the last section, it is known that the third exon of
EDEN.1 is shared with EDEN.3. How does one tell if the reading frame is preserved?
One can use the coding aggregator together with the cds glyph to create a display that
will display the reading frame for each CDS.

Using GBrowse

9.9.14

Supplement 28 Current Protocols in Bioinformatics

Table 9.9.3 Configuration Options for the process transcript Glyph

Option name Possible values Description

Thin utr 0 (false), 1 (true) If true, makes UTRs half the height of the exon.

utr color A color name (�gray� by default) Changes the UTR color.

decorate introns 0 (false), 1 (true) If true, puts little arrowheads on the introns to
indicate direction of transcription.

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

ctgA

Protein-coding gene
EDEN.1

EDEN.3

EDEN

protein kinase
EDEN.2

Figure 9.9.11 Image of a UCSC Genome Browser look-alike processed transcript glyph.

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

ctgA

Protein-coding gene
EDEN.1

EDEN.3

EDEN

protein kinase
EDEN.2

Frame usage
EDEN.1

EDEN.3

EDEN.2

Figure 9.9.12 The cds glyph shows the reading frame using a musical staff notation.

45. Open the volvox.conf Þle and add the predeÞned coding aggregator to the list
of aggregators:

aggregators = match
processed transcript
coding

The coding aggregator is similar to processed transcript, except that it only
pays attention to the CDS parts of the transcript. It was designed to work with the cds
glyph to display the reading frame.

46. Add the following short stanza to the bottom of the conÞguration Þle:

[CDS]
feature = coding
glyph = cds
key = Frame usage

47. Save the Þle. Reload the page and turn on the CDS track.

A �musical staff� representation of the frame usage as shown in Figure 9.9.12 should now
be seen. From this display, it can be seen that the alternative splicing does change the
reading frame of the third exon in EDEN.3 compared to EDEN.1 and EDEN.2.

Building
Biological
Databases

9.9.15

Current Protocols in Bioinformatics Supplement 28

BASIC
PROTOCOL 2

SETTING UP A MySQL-BASED GBrowse

GBrowse can either use Þle-based data or connect to a relational database. For datasets
with fewer than 20,000 features, a Þle-based data system works quite well. For larger
datasets and for ease of data management, one will want to use a relational database
management system. GBrowse supports MySQL, PostgreSQL, Oracle, and BioSQL
database systems. For this protocol, one will set up a MySQL database using real, though
out of date, data from the yeast genome, S. cerevisiae. MySQL is a good choice as it
has wide acceptance in the bioinformatics community, is open-source, and is capable of
handling large amounts of data with excellent performance.

Necessary Resources

Hardware

Unix (Linux, Solaris or other variety) workstation or Macintosh with OS X 10.2.3
or higher

A minimum of 500 Mb RAM
Internet connection

Software

Upon completion of Support Protocol 1 all necessary software should be installed

Files

In the Generic-Genome-Browser-1.X/sample data/ directory: yeast data.gff
In the Generic-Genome-Browser-1.64/contrib/conf/ directory: 01.yeast.conf
Download the yeast genome sequence data from GMOD section of Sourceforge at:
http://prdownloads.sourceforge.net/gmod/yeast.fasta.gz

Create database and set permissions

1. Create an empty MySQL database called yeast using the following commands:
$ mysql -u root -p
Enter password: *******

Depending on how MySQL was installed, a password may or may not be needed for the
MySQL root user.

mysql> create database yeast;
Query OK, 1 row affected (0.01 sec)

2. Set the permissions for the yeast database so that data can be loaded into the database
and Web users can access the database through GBrowse.

mysql> grant all privileges on yeast.* to
user@localhost with password pass;

This user can load the database with data.

Query OK, 0 rows affected (0.01 sec)
mysql> grant select on yeast.* to apache@localhost;
Query OK, 0 rows affected (0.00 sec)

This user can only select or view data from the database.

Mysql> quit
Bye

When granting �all� privileges to the user who will be able to load data into the database,
replace user with your own login or the username of the person using the loading
programs. Likewise, when granting select privileges to the Web server program, use the

Using GBrowse

9.9.16

Supplement 28 Current Protocols in Bioinformatics

login name for the Web server. The Web user on RedHat systems is apache; on other
systems, it may be nobody, httpd, www-data, or something else. Consult your
system documentation and change apache to the default Web user name used on the
system being used.

Load the data into database

3. Uncompress the yeast.fasta.gz Þle and move yeast.fasta into the
/sample data/ directory.

4. Rename 01.yeast.conf to yeast.conf and copy yeast.conf into the
/sample data/ directory so that all three Þles needed for this protocol are in the
same location.

5. Load the yeast data into the database using the following command:

bp load gff.pl -c -d yeast yeast.fasta yeast data.gff

6. If you receive an error message stating that you do not have sufÞcient privileges to
upload the data, try the following command:

bp load gff.pl -u user -p password -c -d yeast
yeast.fasta yeast data.gff

Substitute user and password with the login and password that you granted �all�
privileges to in the previous section.

This will likely return a series of seven warning messages starting with Unknown
table, followed by:

yeast data.gff: loading...
yeast data.gff: 13298 records loaded
Loading fasta file yeast.fasta
yeast.fasta: 17 records loaded

The script, bp load gff.pl, is a BioPerl script that is installed in the /usr/bin
or /usr/local/bin directory when BioPerl-1.5.1.is installed. The switch -c tells the
script to initialize the database. The switch -d yeast tells the script to use the yeast
database. The yeast.fasta contains the sequence data for the 16 chromosomes plus
the mitochondria. The yeast data.gff Þle contains the annotations or features for
the yeast genome. See the Troubleshooting section if the database loading did not go as
described above.

Move and modify the conÞguration Þle

7. Copy the conÞguration Þle into the gbrowse.conf:

$ cd /etc/httpd/conf/gbrowse.conf/
$ cp /path to sample data/yeast.conf

8. Open yeast.conf in a text editor and note the following lines:

db args = -adaptor dbi::mysql
-dsn dbi:mysql:databases=yeast;host=localhost

These two lines tell GBrowse how to connect to the database (using the dbi::mysql
adapter) and to connect to the database named yeast. Be sure to use two colons in the
adaptor argument and a series of single colons for the -dsn argument.

9. Change the following line to match the name of the Web user on the system being
used:

user = apache
pass =

Leave pass = to nothing, otherwise Web users will be unable to connect to the data.

Building
Biological
Databases

9.9.17

Current Protocols in Bioinformatics Supplement 28

Figure 9.9.13 GBrowse detailed view with default viewing options for yeast genome.

10. Save the Þle and open the newly created page by pointing the browser to:
http://localhost/cgi-bin/gbrowse/yeast/.

11. Click on the example link �NPY1� and an image similar to that shown in
Figure 9.9.13 should appear.

Initially just the named genes and tRNA tracks are turned on. Turn on other tracks and zoom
out to see the types of annotation data that can be displayed with GBrowse. An up-to-date
version of the S. cerevisiae genome can be accessed at http://db.yeastgenome.org/cgi-
bin/gbrowse/yeast/.

If an error is seen when opening the GBrowse window, conÞrm select privileges have been
given to the correct Web user on the system being used. ConÞrm that the -dsn speciÞes
the correct database.

12. Try clicking on the example links chrII, chrII:80,000..120,000, or YGL123*.

Any one of these three should give an error similar to The landmark named chrII
is not recognized. See the help pages for suggestions.This er-
ror is caused by two different issues. One is inconsistent nomenclature between the
01.yeast.conf Þle installed with GBrowse and the yeast data.gff Þle. The sec-
ond is that YGL123* represents an ORF, which is not listed as one of the automatic classes
to display. Both problems can be Þxed by making the following edits to the yeast.conf
Þle.

13. Open the yeast.conf Þle and note the line beginning with #examples to
show in the introduction. Below that is a line that starts example =
chrII.

14. Open the yeast data.gff Þle and note that the name of the reference chromo-
some sequences are listed as I, II, etc.; not chrI, chrII.

15. In the yeast.conf Þle, change example = chrII to example = II.

16. Change chrII:80,000..120,000 to II:80,000..120,000.

Using GBrowse

9.9.18

Supplement 28 Current Protocols in Bioinformatics

17. Change automatic classes = Symbol Gene Clone to automatic
classes = Symbol Gene Clone ORF.

18. Save the conÞguration Þle and reload the GBrowse Web page. All of the example
links should now work.

SUPPORT
PROTOCOL 1

INSTALLING GBrowse IN THE UNIX/LINUX ENVIRONMENT

This protocol describes the installation of GBrowse in a Unix/Linux environment. It is
assumed that the user has a working knowledge of Unix and has root privileges to install
software.

Necessary Resources

Hardware

Unix (Linux, Solaris or other variety) workstation or Macintosh with OS X 10.2.3
or higher

A minimum of 500 Mb RAM
Internet connection

Software

Standard software:

Perl 5.8.6 or higher. Perl will generally be installed on most machines with a
Unix-variant operating system, but is available from http://ww.perl.org if not
already installed.

MySQL, PostgreSQL, or other relational database. This protocol will use
MySQL. If MySQL is not already installed, instructions for obtaining and
installing MySQL can be found at http://dev.mysql.com/doc/refman/5.0/
en/installing.html. A user account with �create databases� privileges should
be available.

Apache Web server: Available at http://httpd.apache.org/download.cgi.

Nonstandard software (in all cases, use the latest version available):

BioPerl 1.6 or higher (http://www.bioperl.org)
GD 2.07 or higher (http://search.cpan.org/∼lds/GD-2.32/)
CGI (http://search.cpan.org/∼lds/CGI.pm-3.45/)
CGI::Session (http://search.cpan.org/∼markstos/CGI-Session-4.42/lib/CGI/)
DBI (http://search.cpan.org/∼timb/DBI-1.6/)
DBD::mysql (http://search.cpan.org/∼capttofu/DBD-mysql-4.012/)
Digest::MD5 (http://search.cpan.org/∼gaas/Digest-MD5-2.39/)
Text::Shellwords (http://search.cpan.org/∼lds/Text-Shellwords-1.08/)
If these links do not work, search the Perl module by name at
http://search.cpan.org.

Files

The INSTALL and README Þles for the protocol are located in the
Generic-Genome-Browser-1.X/ directory after unpacking the Generic
Genome Browser tar Þle.

Download and install GBrowse

1. Download the required Perl modules and install using the method of choice.

GD may not install correctly on some versions of RedHat or SuSE Linux if Perl was
pre-installed or installed as an RPM. It may be necessary to install Perl from the source
code in order for GD to install correctly. See the README.unix Þle found in the GD
install directory for more information about this issue.

Building
Biological
Databases

9.9.19

Current Protocols in Bioinformatics Supplement 28

2. Download GBrowse from either the home page for the Generic Model Or-
ganism Database project (http://www.gmod.org) or directly from SourceForge
(http://sourceforge.net/projects/gmod/Þles/. Use the latest version of GBrowse avail-
able. The download will be a .tar.gz Þle, which must be uncompressed and
unpacked before installation.

As of this writing, the most current version was 1.70. Read the INSTALL and README
Þles for any updated information.

3. Install GBrowse from source by running the following commands:

$ perl Makefile.PL
$ make
$ make test (recommended, but optional)
$ make install UNINST=1

The $ represents a command line prompt. The prompt may be represented as a #, $, or %,
depending on the system.

This will install the software in the default location under /usr/local/apache. The
GBrowse installation includes a number of Perl modules. The UNINST=1 checks for
older versions of any of these Perl modules and removes them before installing the newer
versions to prevent conßicts.

The default locations for the Þles installed are:

CGI script: /usr/local/apache/cgi-bin/gbrowse
Static HTML Þles: /usr/local/apache/htdocs/gbrowse
ConÞg Þles: /usr/local/apache/conf/gbrowse.conf
The module: standard site-speciÞc Perl library location

The default locations may not work on the system being used, but the location of the in-
stallation can be changed by passing to the Makefile.PL one or more NAME=VALUE
pairs. For example, on a RedHat Linux system, the CGI and HTML Þles are located in
the /var/www/cgi-bin and /var/www/html directories, respectively. The conf
directory is /etc/httpd/conf. For a RedHat installation, specify the following con-
Þguration:

$ perl Makefile.PL HTDOCS=/var/www/html \
$ CONF=/etc/httpd/conf \
$ CGIBIN=/var/www/cgi-bin

The backslash is there only to split the command across multiple lines.

The following arguments are recognized by the Makefile script:

CONF: ConÞguration Þle directory

HTDOCS: HTML static Þles directory

CGIBIN: CGI script directory

APACHE: Base directory for Apache conf, htdocs, and cgi-bin directories

LIB: Perl site-speciÞc modules directory

BIN: Perl executable script directory

NONROOT: Set to 1 to install GBrowse in a way that does not require root
access

The conÞguration Þles are always placed in a subdirectory named gbrowse.conf.
This cannot be changed. Similarly, HTML static Þles are placed in a directory named
gbrowse. More information about the installation process is available in the INSTALL
document located in the installation directory.

Using GBrowse

9.9.20

Supplement 28 Current Protocols in Bioinformatics

4. Test the installation.

Check that the installationwent correctly by opening the following page in the browser
of preference:

http://localhost/cgi-bin/gbrowse

If accessing the page from a different computer, replace localhost with the name
of the Web server on which Gbrowse is installed. If the installation worked, a page
should open titled �Generic Genome Browser.� On that page is a list of directory
paths where the various components of GBrowse were installed. This page can be
used a reference to locate the different components. There is a link to an example
database based on �yeast chromosome 1.� Click on that link and the GBrowse page
should open, as shown in Figure 9.9.14.

Click on the NUT21 link and it should open a page as shown in Figure 9.9.15.

Figure 9.9.14 Initial page view for the yeast chr1 sample database installed with GBrowse.

Figure 9.9.15 Detailed view for the Nut21 link from yeast chr1 database.

Building
Biological
Databases

9.9.21

Current Protocols in Bioinformatics Supplement 28

If the two pages seen are those shown in Figures 9.9.14 and 9.9.15, Gbrowse has been
successfully installed.

If at this point an error message is received, record the error message. See the Trou-
bleshooting section at the end of this unit for suggestions on how to determine why a
particular GBrowse installation is not behaving correctly and how to seek help from the
GBrowse community.

SUPPORT
PROTOCOL 2

SETTING UP A DATABASE FROM NCBI GENBANK FILES

Almost all genome sequence data submitted to Genbank by individual research groups
or genome project teams are available with the associated annotation from the genomes
division of the NCBI nucleotide database. While the NCBI annotation team has provided
GFF3 formatted Þles for all genomes, the default Genbank conf file provided in the
Gbrowse1.X/contrib/ directory assumes that you will create the GFF Þle from a
Genbank Þle. There are BioPerl scripts installed as part of the BioPerl installation that
allow users to create convert NCBI Genbank Þles into GFF Þles suitable for uploading
into a GBrowse database (v. 1.69 and higher). These can be used to set up a GBrowse
display of almost any sequenced genome or part of a genome. This protocol will take the
user through the process of setting up a MySQL database from Genbank genome Þles.
The Genbank Þles can be obtained from ftp://ftp.ncbi.nih.gov/genomes/. The sequences
are generally split into chromosomes or large contigs, depending on the type of data
available for a particular organism. For this example, the genome from Deinococcus
radiodurans, an extremely radiation-resistant bacteria, whose genome was published
in 1999 will be used. The genome consists of two chromosomes and two plasmids,
represented on four separate Genbank Þles.

Necessary Resources

Hardware

Unix (Linux, Solaris or other variety) workstation or Macintosh with OS X 10.2.3
or higher.

A minimum of 500 Mb RAM
Internet connection

Software

All necessary software should be installed if Support Protocol 1 has been completed

Files

From ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Deinococcus radiodurans/ download
the following 4 Þles:

NC 000958.gbk
NC 000959.gbk
NC 001263.gbk
NC 001264.gbk

In the Generic-Genome-Browser-1.x/contrib/conf/ directory:
08.genbank.conf

A sample, edited version of the dradians.conf is available for download from
http://www.currentprotocols.com/protocol/bi0909

1. Download the Genbank Þle and convert to GFF3 format1.

2. To simplify loading the database, you can concatenate the four Genbank data Þles
into one Genbank Þle:

$cat *.gbk > dradians.gbk

Using GBrowse

9.9.22

Supplement 28 Current Protocols in Bioinformatics

TheGenbank Þle contains the accession numbers for theGene database records associated
with the annotated genes. As there is a lot of data that is put into this record, it would be
convenient to create a link to that record from theGBrowse page. This can be accomplished
through the db xref links, but to simplify adding external links out of GBrowse, you can
also edit the Genbank Þle so that references to speciÞc NCBI databases are loaded into
the attributes table with a unique feature name.

3. Open the Genbank Þle in a text editor. In the FEATURES section, there is a gene
category, which lists a locus tag for each gene in the D. radiodurans genome. There
is also a db xref=�GeneID:#######�. This is the id number of the Gene database
record. Using Find/Replace in your text editor or GREP, replace the db xref tag with
the following:

Find: db xref="GeneID:
Replace with: geneid="

For each gene in the Genbank Þle, there should now be 2 identiÞers:

/locus tag=�DR X####�

/gene id=�#######�
These will be loaded into the attribute table as named features.

4. Convert the Genbank formatted Þle into a GFF Þle:

$ bp genbank2gff3.pl dradians.gbk

You will see a series of statements #working on region:NC 000958.. as it works
through each of the 2 chromosomes and 2 plasmids.

The Þnal output will be GFF3; save the Þle to ./path/dradians.gbk.gff.

5. Open the dradians.gbk.gff Þle in a text editor. The Þrst few lines should read:

##gff-version 3
#sequence-region NC 000958.1 177466
#conversion-by bp genbank2gff3.pl
#organism Deinococcus radiodurans R1 ect

6. The data in the 9th or attributes column of the GFF Þle are loaded into the attributes
table. Here you can see the identiÞers of the various features. As an example, the Þrst
gene on the plasmid MP1 is:

ID=DR=B0001; geneid=1799842; locus tag=DR B0001

Create MySQL database and load the GFF Þle

7. Create a MySQL database called dradians.

8. Grant the appropriate privileges as described in Basic Protocol 2 for setting up a
MySQL database.

9. Use the bp bulk load gff.pl script to load the gff Þle into the newly created
database.

$bp bulk load gff.pl -u user -p password -d dradians
dradians.gbk.gff

The output on the screen should state that this operation would delete all existing
data in the database dradians and ask if you want to continue. Type y. If all works
properly, 12921 features should have successfully loaded.

Building
Biological
Databases

9.9.23

Current Protocols in Bioinformatics Supplement 28

Modify the conÞguration script

It is necessary to move the generic conÞguration Þle into the appropriate directory and
modify the connection parameters and user-speciÞc settings so it will work with the D.
radiodurans database that was created.

10. Change the name of 08.genbank.conf to dradians.conf.

11. Move dradians.conf to your gbrowse.conf directory. On the author�s Red-
Hat system it is: /etc/httpd/conf/gbrowse.conf/.

12. Open dradians.conf in a text editor and change the -dsn line to reßect the
name of the database:

-dsn dbi:mysql:database=dradians;host=localhost13

Change user = nobody to user = apache. Save the Þle.
13. Bring up the page in the browser by opening it at http://localhost/cgi-bin/

gbrowse/dradians/.

The page still looks generic, as the dradians.conf Þle has not been changed to reßect
the name of the organism being displayed or the example searches available.

14. Change description = Genbanks Tests to description = D.
radiodurans genome.

15. Change examples = NC 001320 AP003256 to read examples =
DR B0015 DR C0024 NC 000958.

16. Save the Þle and reload the page in the browser.

17. Try the example searches.

It may be that the DR B0015, DR C0024, and NC 000958 links work, but click-
ing on NC 001263 gives an error: Detailed view is limited to 1 Mbp.
Click in the overview to select a region 100 kbp wide. Click in
the salmon-colored overview box and the display adjusts to show 100 kbp; many annotated
features will be seen. There is much more that can be modiÞed, but this protocol gives the
user a sense of how to utilize the large amount of genomic data and annotation available
from NCBI.

18. You can add an external link to theNCBIGene by incorporating a call-back subroutine
in the GENE track conÞguration. Replace description = 1 with the following
code:

description = sub {
my $feature = shift;
return $feature->attributes(‘gene id’)
}
link = sub {
my $feature = shift;
my ($geneid) = $feature->attributes(‘gene id’);
return
http://www.ncbi.nlm.nih.gov/sites/entrez?db=
gene&cmd=search&term=$geneid;

}
This should create a link below the track for Annotated Genes with the GeneID number
shown. If you click on this number, it should take you to the corresponding record in the
Gene database. If this link does not appear to be active, try clicking in the Reset link in
the instructions section at the top of the page.

Using GBrowse

9.9.24

Supplement 28 Current Protocols in Bioinformatics

COMMENTARY

Background Information
Over 200 eukaryotic and over 900 prokary-

otic genomes have been fully sequenced and
published as of August 2009. The sequence
data and its associated annotation are uploaded
to one of three public sequence repositories, all
of which have sophisticated search interfaces
for querying and accessing the data. A subset
of the sequence data are also represented in a
genome browser at the public sequence repos-
itories. Genome browsers give users the ability
to navigate genomic sequence information and
visualize various features in a series of tracks
within the context of a reference sequence.
The data available in a genome browser vary,
but any data that can be aligned to a refer-
ence sequence can be displayed. This allows
users to quickly answer questions that depend
on the sequence location, such as the prox-
imity of genes to each other or the placement
of microarray probes in alternatively spliced
exons. There are several sites that maintain
genome browsers for a number of organisms
(Furey, 2006), but not all sequenced genomes
are represented at these sites or by model or-
ganism databases such as Flybase (Grumbling
and Strelets, 2006) or Wormbase (Schwarz
et al., 2006).
Ideally, all genomes would have an associ-

ated database with a genome viewer, but the
cost and effort of developing and maintain-
ing a model organism database is prohibitive
for most research groups. However, in 2000,
four model organism databases agreed to pool
resources to design and make available, free
of charge, the software components neces-
sary to support a model organism database.
The project, called the Generic Model Organ-
ism Database (GMOD), released the Þrst two
components in 2002, the Apollo genome an-
notation editor (Lewis et al., 2002) and the
Generic Genome Browser (Gbrowse; Stein
et al., 2002). GBrowse is implemented as a
series of CGI scripts, which can display in a
browser an arbitrary set of features on a nu-
cleotide or protein sequence. It can accom-
modate genome-scale sequences up to several
megabases in length. GBrowse was designed
from the outset to be portable and extensi-
ble. It is written entirely in Perl, a language
widely used in bioinformatics, and runs on
LINUX/UNIX, Mac OSX, and Windows PC
platforms. It can be easily integratedwith other
datasets, either at the database level or through
the use ofURL links. It is not dependent on any
particular data model or annotation pipeline

and thus is suitable for any research group that
needs to maintain a set of sequence annota-
tions.
GBrowse2.0 is a complete rewrite of the

original GBrowse that adds several major new
features including:
1. User interface improvements.
2. ConÞguration changes to allow consoli-

dation of most conÞguration options into one
Þle, allowing the source speciÞc conÞguration
Þles to be more concise.
3. Support for multiple databases within a

given data source.
4. Support for slave renderers so the tasks

can be split acrossmultiple processors andma-
chines.
The Þnal version of GBrowse2 will

be released within a few months. It can
be downloaded and installed using the
CVS system. Fully functional, but possibly
buggy, beta releases are available on CPAN
(http://www.cpan.org) under the module name
Generic-Genome-Browser.

Critical Parameters and
Troubleshooting
The most useful resource for sorting

out issues with GBrowse is the GMOD-
GBrowse mailing list. One can subscribe to
this mailing list at https://lists.sourceforge.net/
lists/listinfo/gmod-gbrowse. This is a rela-
tively low volume list, but the developers
responsible for GBrowse and many other
users regularly monitor it and provide feed-
back to help troubleshoot problems en-
countered when setting up or conÞguring
GBrowse. You can also search archives of this
list at http://www.nabble.com/gmod-gbrowse-
f3500.html.
When an error message is received, al-

ways record the text of the message. Check
the Web server error log Þle for other er-
ror messages, which can be critical to un-
derstanding the problem. The error log Þle,
error log, is located in the server log di-
rectory. Two common locations for the log
Þles are: /usr/local/apache/logs or
/etc/httpd/logs. Open theerror log
Þle using a text editor and at the end of the Þle
will be the most recent entries. Include the
text of the errors in the email sent to contact
the GBrowse mailing list for help.
The two most common errors encountered

when loading databases using the load gff
scripts are not granting the user enough privi-
leges to load data into the database, or, having

Building
Biological
Databases

9.9.25

Current Protocols in Bioinformatics Supplement 28

granted privileges to user with a password, try-
ing to run theload gff script without a pass-
word.

Acknowledgments
The author would like to thank Lincoln

Stein for allowing her to adapt the GBrowse
online tutorial for use in this protocol. The au-
thor is also indebted to the members of the
GMOD community who monitor the GMOD-
GBROWSE mailing list and have answered
numerous questions.

Literature Cited
Furey, T.S. 2006. Comparison of human (and
other) genome browsers.Hum.Genomics 2:266-
270.

Grumbling, G. and Strelets, V. 2006. FlyBase:
Anatomical data, images and queries. Nucleic
Acids Res. 34:D484-D488.

Lewis, S.E., Searle, S.M., Harris, N., Gibson, M.,
Lyer, V., Richter, J., Wiel, C., Bayraktaroglir,
L., Birney, E., Crosby, M.A., Kaminker, J.S.,
Matthews, B.B., Prochnik, S.E., Smithy, C.D.,
Tupy, J.L., Rubin, G.M., Misra, S., Mungall,
C.J., andClamp,M.E. 2002.Apollo: A sequence
annotation editor. Genome Biol. 3:0082.1-
0082.14.

Schwarz, E.M., Antoshechkin, I., Bastiani, C.,
Bieri, T., Blasiar, D., Canaran, P., Chan, J., Chen,
N., Chen, W.J., Davis, P., Fiedler, T.J., Girard,
L., Harris, T.W., Kenny, E.E., Kishore, R.,
Lawson, D., Lee, R., Muller, H.M., Nakamura,
C., Ozersky, P., Petcherski, A., Rogers, A.,
Spooner, W., Tuli, M.A., Van Auken, K.,
Wang, D., Durbin, R., Spieth, J., Stein, L.D.,
and Sternberg, P.W. 2006. WormBase: Better
software, richer content. Nucleic Acids Res.
34:D475-D478.

Stein, L.D., Mungall, C., Shu, S., Caudy, M.,
Mangone, M., Day, A., Nickerson, E., Stajich,
J.E., Harris, T.W., Arva, A., and Lewis, S. 2002.
The generic genome browser: A building block

for a model organism system database. Genome
Res. 12:1599-1610.

Key Reference
Stein et al., 2002. See above.
This article gives extensive background and de-
scriptive details on how and why the Generic
Genome Browse was developed.

Internet Resources
http://gmod.org/wiki/Main Page
Generic Model Organism Database (GMOD):
Tutorials, overviews, and links for downloading
GBrowse.

https://lists.sourceforge.net/lists/listinfo/
gmod-gbrowse

GMOD-GBrowse mailing list: Join the mailing
list to ask questions about installation and use of
GBrowse and to be notiÞed of new releases.

http://gmod.org/wiki/GBrowse 2.0 HOWTO
GBrowse 2.0 HOWTO: This site provides instruc-
tions on installing and conÞguring GBrowse 2.
There are links to HOWTOs on migrating from
GBrowse 1.X to 2.

http://www.nabble.com/gmod-gbrowse-
f3500.html

Nabble: Search engine for various internet forums,
including GMOD-Gbrowse

http://www.sanger.ac.uk/Software/formats/GFF/
GFF Spec.shtml

General Feature Format (GFF) speciÞcation: Get
detailed information about the GFF and download
scripts for converting various computational anal-
yses to GFF format.

Supplemental File
Supplemental Þles can be downloaded from http://
www.currentprotocols.com/protocol/bi0909 by
clicking the Supplemental Files tab and selecting
the needed Þle.

dradians.conf
ConÞguration Þle for use with Support Protocol 2.
This Þle is an edited version of 08.genbank.conf Þle
that is installed with the gbrowse package.

UNIT 9.10Installing a Local Copy of the Reactome
Web Site and Database

Imre Vastrik1

1EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge, U.K.

ABSTRACT

The Reactome project builds, maintains, and publishes a database of biological pathways.
The information in the database is gathered from the experts in the field, peer reviewed,
and edited by Reactome editorial staff and then published to the Reactome Web site,
http://www.reactome.org (see UNIT 8.7). Reactome software is open source and builds on
top of other open-source or freely available software. Reactome data and code can be
freely downloaded in its entirety and the Web site installed locally. This allows for more
flexible interrogation of the data and also makes it possible to add one’s own information
to the database. Curr. Protoc. Bioinform. 21:9.10.1-9.10.9. C© 2008 by John Wiley &
Sons, Inc.

Keywords: pathways database � open source software

INTRODUCTION

The Reactome project, described in UNIT 8.7, builds, maintains, and publishes a database
of biological pathways. The Reactome database contains a curated collection of well
documented molecular reactions assembled into pathways ranging from intermediary
metabolism through signal transduction to complex cellular events such as the cell cycle.
The information in the database is gathered from the experts in the field, then peer
reviewed and edited by Reactome editorial staff. It is then published to the Reactome
Web site.

The Reactome Web site provides facilities to search and browse the database contents as
well as to export the data in various formats. Reactions and pathways can be exported in
BioPAX and SBML formats, and in automatically created diagrams in SVG format. The
narrative in Reactome can be exported in RTF and PDF formats.

While the Reactome Web site provides free access to the data, the data can also be
downloaded in their entirety and the Reactome software installed locally. The amount of
data and code to be downloaded from the Reactome Web site in compressed format is
around 100 Mb. This allows for more flexible interrogation of the data, and also makes
it possible to add one’s own information to the database. This unit describes setting up
your own copy of Reactome database together with the Web site software for accessing
and viewing the data.

The Basic Protocol describes the installation of a local copy of Reactome Web site and
database, while Support Protocol 1 covers the installation of other software required to
run the system.

BASIC
PROTOCOL

INSTALLATION OF THE REACTOME WEB SITE AND DATA

This protocol describes how to set up a local copy of Reactome Web site and database.

Current Protocols in Bioinformatics 9.10.1-9.10.9, March 2008
Published online March 2008 in Wiley Interscience (www.interscience.wiley.com).
DOI: 10.1002/0471250953.bi0910s21
Copyright C© 2008 John Wiley & Sons, Inc.

Building
Biological
Databases

9.10.1

Supplement 21

Installing
Reactome Locally

9.10.2

Supplement 21 Current Protocols in Bioinformatics

Necessary Resources

Hardware

Computer with Unix, Linux, or Mac OS X operating system, an Internet
connection, and at least 800 MB free disk space. Processing power requirements
depend on the planned use of the installation. The Reactome Web server has
been run on computers with a single Pentium III or PowerPC G3 processor, but
the response is slow. For personal or light group use, one “high-end” CPU
(Xeon, Opteron, G5) is sufficient if the computer is dedicated to this task. A
dual-processor or duo-core CPU will significantly improve response time. For
reference, at the time of this writing, the Reactome public Web site was hosted
on a machine with four 2.80 GHz Intel Xeon CPUs. You need to have root
(administrative) access to the installation machine for the installation with these
instructions to succeed.

Software

All the software apart from that for the BioMart functionality of the Web site is
described in Support Protocols 1 to 3. Installation of BioMart software as well as
creation of the appropriately formatted database is described at
http://wiki.reactome.org/index.php/Release#105 Upgrade BioMart and
Restart the Server.

The wget utility is also needed; this may be part of your operating system
distribution. If not, its source code and installation instructions can be obtained
from http://www.gnu.org/software/wget/.

Download Reactome and configure code
1. Download the Reactome Web site and Perl code, unpack it, and rename it to

/usr/local/gkb.

$ wget http://www.reactome.org/download/current/
GKB.tar.gz

$ tar xvzf GKB.tar.gz
$ mv GKB /usr/local/gkb

You will probably need to log in as “root” (or use the sudo command) in order to obtain
sufficient privileges to create the /usr/local/gkb directory.

2. Open /usr/local/gkb/modules/GKB/Config.pm with a text editor. Find
the line:

$JAVA PATH = ’/usr/bin/java’;

and change /usr/bin/java to reflect the correct path to the Java executable
on your system (you can find out by issuing the command which java in the
command-line shell.) Similarly, find and edit the line that sets $WWW USER to reflect
the user account under which the Web server runs.

On Mac OS X this is www while on Unix/Linux it tends to be nobody. Consult your
system documentation if you are unsure.

This file also specifies the MySQL user name, password, port, and name of the database
that the Web server is using to connect to the database server. Make sure that values
of $GK DB NAME, $GK DB USER and $GK DB PASS are as specified in the MySQL
installation step in Support Protocol 1.

Download and install Reactome data
3. Download the Reactome data as two MySQL database dumps. The first of those is

the main database while the second is derived from the main database and supports
the Web site’s “skypainter” utility.

Building
Biological
Databases

9.10.3

Current Protocols in Bioinformatics Supplement 21

$ wget http://www.reactome.org/download/current/
sql.gz

$ wget http://www.reactome.org/download/current/
sql dn.gz

4. Start the MySQL server if it is not running already. Note that the location of the
mysql directorymay be different if MySQL was preinstalled on your operating
system. See your system documentation for help.

$ cd /usr/local/mysql
$ bin/mysqld safe &
cd -

5. Connect to the database server with MySQL command line client and create empty
databases. The name of the main database has to be the same as the value of
$GK DB NAME in Config.pm. The name of the skypainter database should be the
name of the main database with “ dn” appended. Replace reactome user and
reactome pass with the username and password you chose when you created
the MySQL database in Support Protocol 1.

$ mysql -ureactome user -preactome pass
mysql> CREATE DATABASE reactome;
mysql> CREATE DATABASE reactome dn;

6. Fill the databases with downloaded data.

$ gunzip -c sql.gz |\
mysql -ureactome user -preactome pass reactome
$ gunzip -c sql dn.gz |\
mysql -ureactome user -preactome pass reactome dn

7. Create the reaction map images and other files that will be used to create the front
page of the Web site. This procedure creates a directory with the same name as the
main database in /usr/local/gkb/website/html/img-tmp. If you are
updating your database rather than doing everything from the scratch, remove this
directory first, as otherwise the new files will not be created.

$ /usr/local/gkb/scripts/release/
create frontpage files.pl

8. Make sure that the Web server can write into and read from the directory used to
store the temporary images.

$ chmod 777 /usr/local/gkb/website/html/img-tmp

This latter makes /usr/local/gkb/website/html/img-tmp directory writable
by anybody able to log into the server. If this seems too lax, assign the ownership of this
directory to the user account running the Web server and make it writable by this user
only.

Configure and start the Reactome Web server
9. Choose the Web server configuration file for starting the Web server. The Reactome

distribution comes with one configuration file (httpd.conf.static) for servers
with compiled-in modules and another (httpd.conf.dso) for servers that use
the Dynamic Shared Object (DSO) mechanism.

Both of those files are located in the /usr/local/gkb/website/conf directory.
The default Apache server installation compiles all the modules statically. However, the
server that comes with Mac OS X, for example, uses the DSO mechanism.

9.10.4

Supplement 21 Current Protocols in Bioinformatics

10. To determine which mechanism your Web server uses, invoke the httpd executable
with -l command line parameter. If the output contains all of the following lines,
use the httpd.conf.static file; otherwise use httpd.conf.dso.

mod log config.c
mod mime.c
mod include.c
mod autoindex.c
mod dir.c
mod cgi.c
mod alias.c
mod access.c
mod so.c

11. Start the Web server with the appropriate configuration file. The following example
assumes that the server has compiled-in modules.

$ httpd -f /usr/local/gkb/website/conf/
httpd.conf.static

Note that if Apache was preinstalled on your system, the httpd binary may be named
something different, such as apache or apache2.

If you are not logged in as the root user, execute the command via sudo. If the httpd
executable is not in the root users path, you will have to specify the full path to the
httpd executable. For example, if httpd is located in /usr/local/apache/bin
directory, issue the command:

$ sudo /usr/local/apache/bin/httpd \
-f /usr/local/gkb/website/conf/httpd.conf.static

Figure 9.10.1 Screenshot of the Web site front page after successful installation of a local copy of the Reactome
database and Web site.

Building
Biological
Databases

9.10.5

Current Protocols in Bioinformatics Supplement 21

12. If you have a browser on the same computer where you installed Reactome, point
your browser at http://localhost, otherwise replace localhost with the name or
IP address of the computer hosting your Reactome Web site. You should see the
Reactome front page (Fig. 9.10.1).

How to shut down Reactome installation
13. To stop the Web server, issue:

$ kill ‘cat /usr/local/gkb/website/logs/httpd.pid‘

Again, you may have to use sudo to be able to successfully complete this.

14. To stop the MySQL server:

$ mysqladmin -u root -p shutdown

INSTALLATION OF OTHER APPLICATIONS AND LIBRARIES

This module describes how to install third-party software required for installation and
running of Reactome database and Web site.

Necessary Resources

Hardware

A computer with Unix or Linux operating system, Internet connection, and at least
200 Mb free disk space. You need to have root access on the installation
machine for the installation with these instructions to succeed.

Software

Utilities such as gcc, gunzip, and tar. Often these come as part of the distribution of
the operating system. However, on Max OS X, these have to be installed from
the accompanying Developer Tools disk.

SUPPORT
PROTOCOL 1

Installing Apache, Perl, and Java

Installing Apache Web server
If you need to install the Apache Web server, you can download the source code from
http://httpd.apache.org/download.cgi. Although the Reactome project itself uses version
1.3 of the Apache Web server, later versions (2.2.4 is the most recent one at the time of
this writing) will also suffice. For installation instructions, please follow the appropriate
Documentation link on the Web page.

Installing Perl Version 5.8.0 or newer
Reactome can also be run with Perl 5.6, but this requires installation of a few extra
modules that have become part of the standard Perl distribution since version 5.8. You
can check for the presence of Perl and find the version of Perl installed on your system
by issuing following command in the terminal:

$ perl -v

The Reactome Web site is written in Perl. The Reactome Web applications assume
that the Perl executable resides at /usr/local/bin/perl. If Perl is installed on
your system at a different location, create a symbolic link /usr/local/bin/perl
pointing to the real location of your Perl executable. For example, on Mac OS X, the

Installing
Reactome Locally

9.10.6

Supplement 21 Current Protocols in Bioinformatics

Perl interpreter that comes with the system is located as /usr/bin/perl. To create
the symbolic link, you need to open a terminal and type:

$ ln -s /usr/bin/perl /usr/local/bin/perl

Please note that if you do not have /usr/local/ and/usr/local/bin/ directories,
you will have to create them first.

If you do not have Perl installed, or need to upgrade, you can get the source code from
http://www.cpan.org/src/README.html. Follow the installation instructions on the Web
page.

Installing Java version 1.5 (also known as Java 5.0)
Java is required for export of pathways in BioPAX and SVG formats only. You can find
out which version of Java your system has by issuing following command in the terminal
window:

$ java -version

Most recent version of Java can be obtained from http://java.com/en/download/.

SUPPORT
PROTOCOL 2

Installing MySQL

MySQL is a popular open-source relational database system. The easiest way to install
MySQL is to use the precompiled binaries from http://dev.mysql.com. Although internally
Reactome uses version 4.0, versions 4.1 and 5.0 (the stable release at the time of this
writing) also work.

Install MySQL
1. Download the appropriate standard binaries from http://dev.mysql.com/downloads/

mysql.

2. Unpack the downloaded file with:

$ tar xvzf MYSQL-VERSION-OS.tar.gz

3. Follow the installation instructions in the mysql/INSTALL-BINARY file.

Please note that your operating system may come with user and group “mysql” already
defined. If this is the case, you can skip the two first steps in the Mysql installation
instructions.

4. Add /usr/local/mysql/bin to your path. For Bash shell users, add this line
to ∼/.bashrc:

PATH = ‘‘$PATH:/usr/local/mysql/bin’’

For csh and tcsh users, add this line to ∼/.cshrc:

setenv PATH ‘‘${PATH}:/usr/local/mysql/bin’’
5. Once the database is running, connect to it as root:

$ mysql -u root -p mysql

Please note that MySQL will ask you for the root password that you set up during the
installation process. Just press the return key if you did not set up the MySQL root
password.

Building
Biological
Databases

9.10.7

Current Protocols in Bioinformatics Supplement 21

Create a MySQL user account to be used by Reactome Web server
6. Add a MySQL user account that the Reactome Web server will be using to connect

to the database and retrieve data. In this example the user name is reactome user
and the password is reactome pass. These will be used later when configuring
Reactome Web code to access the database.

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
ON reactome.∗
TO ’reactome user’@’localhost’
IDENTIFIED BY ’reactome pass’;

7. Extend the user’s permissions to any database with name containing ‘reactome’:

mysql> UPDATE db SET Db = ’%reactome%’
WHERE User = ’reactome user’;

SUPPORT
PROTOCOL 3

Installing Perl Modules and Supporting Software

Install Perl modules and the software they require
The Reactome Web site needs a few Perl modules to be installed in order for it to run.
These modules can all be downloaded from http://www.cpan.org, and are all installed in
much the same way: download the compressed archive, unpack in a working directory,
and install the module:

$ tar xvzf module.tar.gz
$ cd module
$ /usr/local/bin/perl Makefile.PL
$ make
$ make test
$ make install

Some of these modules require installation of further Perl modules. In addition, some
of the modules depend on C libraries or executables that have to be installed before the
Perl module in question can be installed successfully. Installation of these also follows a
similar pattern:

$ tar xvzf package.tar.gz
$ cd package
$./configure
$ make
$ make install

The last step in both of the instructions above requires you to have the root privileges or
execute the command as the root user. The latter is achieved by:

$ sudo make install

The Perl modules can also be installed by using the CPAN Perl module:

$ /usr/local/bin/perl --MCPAN ‘‘install module::name’’

The CPAN module automatically takes care of installation of required Perl modules.
However, non-Perl libraries and executables still need to be installed manually.

A list of required Perl modules along with their purposes and dependencies is provided
in Table 9.10.1.

Installing
Reactome Locally

9.10.8

Supplement 21 Current Protocols in Bioinformatics

Table 9.10.1 A Brief Description of Perl Modules

Module Description

DBI A common database interface for Perl. Defines a set of methods, variables, and
conventions that provide a consistent database interface, independent of the actual
database being used. The Reactome Perl API uses DBI to interact with Reactome
database.

DBD::mysql The MySQL driver for DBI, which mediates communication between DBI and the
MySQL API

BioPerl Perl modules for biology. Please note, though, that only the Bio::Root modules of
the BioPerl core package are required. These are used for throwing exceptions and
handling file input/output.

GD Modules for programmatic drawing and manipulation of images. Used for drawing
reaction diagrams and “reaction map.” The module is an interface to gd graphics
library in C (libgd), which is thus also required. libgd is available from
http://www.libgd.org and requires the libpng library for creation and manipulation
of images in Portable Network Graphics (PNG) format. libpng further requires
zlib compression. linpng and zlib are available from http://www.libpng.org
and http://www.zlib.net, respectively.

XML::Simple An Easy API to maintain XML. Used to read an XML configuration file which
determines the types of lists downloadable from dynamically created content pages
and also contains the instructions for creating those lists. The module requires
XML::Parser Perl module which itself requires expat XML parser library in C.
expat is available from http://sourceforge.net/projects/expat.

PDF::API2 Module for creation and modification of Portable Document Format (PDF) files.
Used for exporting description of Reactome pathways and reactions in PDF.
Requires Compress::Zlib, Compress::Raw::Zlib,
IO::Compress::Base, and IO::Compress::Zlib Perl modules.

GraphViz Perl interface to the identically named toolkit for layout and image generation of
directed and undirected graphs. Used for automatic layout of entity-level pathway
diagrams. GraphViz toolkit is available from http://www.graphviz.org.

Archive::Tar Module for manipulations of tar archives. Used for exporting Reactome data as
Protégé projects. Requires IO::Zlib Perl module.

WWW::Search Requires Date::Manip, IO::Capture, User, and Test::File.

Search::
Tools::
HiLiterm

Requires Data::Dump, File::Slurp, and Search::QueryParser

COMMENTARY

Background Information
The concept of a pathway database is not a

novel one and there are numerous sources of-
fering information under various access terms
ranging from free-for-all to paying-subscriber-
only. However, the feature that distinguishes
the Reactome project from many of its peers is
that, in addition to freely accessible data, it also
offers the possibility to download and replicate
the whole database and Web site. While the
Reactome project attempts to provide easy ac-
cess to various bits of information in various
formats, having a local copy of the database

and API code gives the ultimate freedom and
flexibility to extract whatever is necessary.

While the Reactome project’s own cura-
tion efforts concentrate mainly on human bi-
ology, the setup can be used to annotate
biochemical processes of any cellular or-
ganism. Indeed, the Reactome project also
produces orthology-based computational pre-
dictions of pathways in numerous other or-
ganisms. These can be used as a starting
point for manual curation of pathways in
other species. The Reactome Curator Tool,
available from the Reactome download page

Building
Biological
Databases

9.10.9

Current Protocols in Bioinformatics Supplement 21

Figure 9.10.2 Architectural diagram of the Reactome software. The information is entered into
the database with the help of Reactome Curator Tool. To enable off-line work, the latter can also
store information in an XML file in the local file system. End users usually access Reactome
database content with a Web browser via the Web server, where the request is handled by the
CGI scripts that interrogate the MySQL database via Perl API.

at http://www.reactome.org/download/, is a
stand-alone Java application that allows users
to edit existing database entries and to enter
new information. The same Web page also
offers access to the Reactome Author Tool,
which provides a more graphical way to enter
and edit the information and hides many of the
intricacies of the Reactome data model. How-
ever, in order to write the information assem-
bled in the Author Tool back to the database,
one has to use the Curator Tool.

The Reactome project also makes available
Perl and Java APIs for accessing the data in the
database. The Perl API comes as part of the
Web site and code download, while the Java
API is available as part of the Curator Tool
installation. Although both of them are exten-
sively used internally by the Reactome project,
their documentation is limited; therefore, they
should be approached only by individuals who
are comfortable with writing software.

Both the software developed as part of the
Reactome project and the external software
used by Reactome installation are open source
and freely available. The data are stored in a
MySQL database, the Web server is Apache,
and the Web site dynamic pages are written in
Perl. The Reactome Web site and database can
be installed on any computer with the Unix,
Linux, or Mac OS X operating system. An

architectural diagram of the software is shown
in Figure 9.10.2.

Critical Parameters and
Troubleshooting

The instructions presented in this unit as-
sume that the user has root privileges on the
computer where the local copy of Reactome is
being installed. These privileges are required
for installation of software at system-wide lo-
cations, as well as for starting up the Web
server.

For the local installation of Reactome to
work, both the Web and database servers have
to be running. Perl has to be located at (or
be symbolically linked from) /usr/local/
bin/perl. The name of the database served
by MySQL has to be as specified in the /usr/
local/gkb/modules/GKB/Config.pm.

The most useful resource for resolv-
ing issues with Reactome installation is the
help@reactome.org mailing list. When an
error message is received, always record
the text of the message. Check the Web
server error log file (/usr/local/gkb/
website/logs/error.log) for other
error messages, which can be critical to under-
standing the problem, and include these in the
E-mail sent to the help@reactome.org mailing
list.

UNIT 9.11Browsing Multidimensional Molecular
Networks with the Generic Network
Browser (N-Browse)

Huey-Ling Kao1 and Kristin C. Gunsalus1

1New York University, New York, New York

ABSTRACT

N-Browse is a graphical network browser for the visualization and navigation of hetero-
geneous molecular interaction data. N-Browse runs as a Java applet in a Web browser,
providing highly dynamic and interactive on-demand access to network data available
from a remote server. The N-Browse interface is easy to use and accommodates mul-
tiple types of functional linkages with associated information, allowing the exploration
of many layers of functional information simultaneously. Although created for appli-
cations in biology, N-Browse uses a generic database schema that can be adapted to
network representations in any knowledge domain. The N-Browse client-server package
is freely available for distribution, providing a convenient way for data producers and
providers to distribute and offer interactive visualization of network-based data. Curr.
Protoc. Bioinform. 23:9.11.1-9.11.21. C© 2008 by John Wiley & Sons, Inc.

Keywords: network � molecular � interaction � graph � browser � Web-based �

client-server system � JAVA � functional genomics � GUI � visualization � database �

MySQL

INTRODUCTION

New views of biological networks are emerging from the combination of large-scale ex-
perimental and computational approaches directed at understanding gene/protein func-
tion and functional relationships on many different levels. To help make sense of the
wealth of data being generated, effective tools for visualizing and exploring these data
are necessary. A natural paradigm for visualizing molecular interaction data is a network
graph. However, extracting useful information about a local gene neighborhood from the
entire network—which often can be very large and highly interconnected, thus collo-
quially termed a “giant hairball” (or “ridiculogram”)—can be challenging. The goal of
N-Browse is to provide a freely available software package that allows the biology com-
munity to share and explore functional interaction networks in an efficient, interactive,
and user-friendly way.

Inspired by interactive graphical interfaces for coordinate-based genome annotations
such as the Generic Genome Browser (GBrowse; UNIT 9.9), we have developed a similarly
intuitive, easy to use, interactive tool for navigating gene network neighborhoods based
on different kinds of functional links. This “Generic Network Browser,” N-Browse, is
available at http://www.gnetbrowse.org. N-Browse operates within a Web browser as a
Java applet and uses a client-server system composed of a server-side MySQL database
and a client-side graphical user interface (GUI). The N-Browse Web-based client allows
users to quickly access and explore a variety of publicly available interaction data.
In addition, the freely distributed N-Browse client-server package allows producers and
providers of network-based data to employ N-Browse as a visual interface and distribution
mechanism for serving their own combination of data from one or more species of interest.

Current Protocols in Bioinformatics 9.11.1-9.11.21, September 2008
Published online September 2008 in Wiley Interscience (www.interscience.wiley.com).
DOI: 10.1002/0471250953.bi0911s23
Copyright C© 2008 John Wiley & Sons, Inc.

Building
Biological
Databases

9.11.1

Supplement 23

9.11.2

Supplement 23 Current Protocols in Bioinformatics

N-Browse seeks to provide both a user-friendly client-side interface and a straightforward
procedure for server-side installation and configuration. This unit has two basic protocols
that describe usage and features of the client-side GUI. Basic Protocol 1 shows how
to access useful information from any N-Browse Web site using the main N-Browse
site at http://gnetbrowse.org as an illustrative example. Basic Protocol 2 shows how
to use advanced functions to select and configure different combinations of data for
network browsing. In addition, Basic Protocols 3 and 4 describe how to set up an
independent N-Browse server site from the N-Browse client-server distribution package.
A fully functional N-Browse Web site will require both installing and configuring the
Web server host software (Basic Protocol 3), as well as setting up and populating an
N-Browse database (Basic Protocol 4). A troubleshooting section describes how to detect
and fix potential problems that might be encountered during installation.

NAVIGATING THE N-Browse GUI

A quick tour describes the main features of the N-Browse GUI, which consists of four
panels (Fig. 9.11.1). The online tutorial at http://gnetbrowse.org/ includes a more detailed
description, as well as demonstration videos illustrating different aspects of the GUI; an
overview of each panel’s functions is described here.

The Graph display panel is the central component of the GUI and provides a network
representation of available interaction data. It offers a number of interactive features for
manipulating the graph (described in more depth in sections below) and communicates
with other panels in the N-Browse GUI.

Figure 9.11.1 The N-Browse GUI. For color version of this figure see http://www.currentprotocols.com.

Building
Biological
Databases

9.11.3

Current Protocols in Bioinformatics Supplement 23

The Edge control panel provides a menu of the different functional edge types available.
Essential features of this menu include the following:

1. The menu is constructed automatically from stored data types. Mousing over each
item in the menu will display a brief description of it.

2. Different edge data types are distinguished by different colors, which can be changed
by clicking on the color swatches for each edge type.

3. For each edge data type, different datasets (e.g., from multiple independent large-
scale studies) can be defined and appear as individual sub-items in the menu.

4. The display of each data type or dataset can be manipulated independently using a
toggle switch, by checking (to show) or unchecking (to hide) the adjacent box.

5. Navigation within the Graph display panel is restricted to the datasets listed in this
menu. Thus, at each expansion step, the number and types of edges (and nodes) drawn
into the graph are limited to those datasets available in the menu. Basic Protocol 2
explains how to configure which data sets are included in this panel, which can
be done by either (i) preselecting specific subsets of interest (using the Advanced
tab) and/or (ii) uploading your own data. Showing/hiding edges for display and
preselecting datasets for navigation produce different graphs; this is because hidden
edges are still included in expansion steps, so neighbors of hidden nodes will be
drawn into the graph in the former but not the latter case. See the online tutorial for
more detail on this topic.

The Node information panel contains three main sections, each of which can be opened
by choosing the corresponding tab, as described below. (Additional tabs may be included
in future releases of the N-Browse client-server core package or in association with
plug-ins.)

1. Node Info: Provides a brief description and some useful links about any gene in the
graph. This information appears dynamically when mousing over a node with the
cursor.

2. Node Attribute: Allows different types of node attributes to be highlighted on the
graph. A menu of available node attributes is dynamically generated when this tab is
opened. Both categorical (e.g. phenotypes) and ordinal data (e.g. expression levels)
can be highlighted.

3. GO Term: Displays the Gene Ontology DAG (directed acyclic graph) and highlights
terms for selected gene(s) in the current graph. At present, this tab is only available on
the main N-Browse Web site (http://gnetbrowse.org), as the current implementation
is experimental.

The Graph control panel provides options to manipulate the Graph display panel,
including:

1. Locate a specific node in the current network.

2. Back up one navigation step in the current network (retract last expansion step).

3. Zoom or rotate the network.

4. Display a new network by entering a new query.

5. Auto-launch Cytoscape using Java Webstart.

6. Save the current network in a variety of formats (text or image).

Browsing
Multidimensional

Molecular
Networks with

N-Browse

9.11.4

Supplement 23 Current Protocols in Bioinformatics

BASIC
PROTOCOL 1

BASICS OF THE N-Browse GUI

The N-Browse user interface provides a simple, easily accessible way to interactively
browse many different kinds of functional linkages at once. The GUI was designed
with several features in mind: (1) dynamic graphical interface for network browsing
and expansion, (2) dynamic edge and node attribute detection, (3) easily accessible
information on nodes and edges, with links to useful external resources, and (4) highly
configurable selection of edge data sets and score cutoffs.

This protocol will take the user through the main features of the N-Browse client-side
user interface. Below we present the general idea of each function and some examples
of how to view and explore network data, navigate local neighborhoods, and visualize
properties of interest. The N-Browse online tutorial also includes demonstration videos
illustrating each of these functions.

Necessary Resources

Hardware

Any computer with internet access

Software

Java-compatible internet browser
Java Runtime Environment (JRE) 1.4 or above

Files

N-Browse homepage: http://gnetbrowse.org
N-Browse tutorial: http://gnetbrowse.org/N-Browse tutorial.html
N-Browse system requirements: http://gnetbrowse.org/info.html

Browsing the network neighborhood around a single query gene
1. Start a Java-compatible Web browser and open the N-Browse homepage at

http://gnetbrowse.org (Fig. 9.11.2).

Make sure Javascript and Java are enabled in your browser preferences, since N-Browse
requires both (Javascript is needed to render the homepage and Java for the GUI).

Follow steps 2 to 4 below to generate a network display centered around a single
gene/protein query.

Basic Protocol 2 provides instructions on selecting specific datasets for display and
integrating user-defined data uploads in network navigation.

2. Type in the name of a gene.

Sample queries for different species are provided for reference.

3. Select the species from the drop-down menu.

4. Click the GO button.

This will open a new window containing the N-Browse GUI described above. Since the
Java applet requires access to your computer’s hard drive, you will also need to click
Trust when prompted about the Java applet’s certificate.

In Windows operating systems running Explorer, the GUI window will occupy the full
screen (pressing Ctrl+Esc will exit full-screen mode).

If you do not see the new window pop up, check that your browser preferences are set to
allow pop-up windows for the N-Browse Web site. If a new window is launched but you do
not see the N-Browse GUI (Fig. 9.11.2), double-check your browser preferences to make
sure Java is enabled.

All subsequent operations described below refer to the main N-Browse GUI window.

Building
Biological
Databases

9.11.5

Current Protocols in Bioinformatics Supplement 23

Figure 9.11.2 The N-Browse homepage.

5. Inspect a node: Mousing over a node causes relevant information about that node
(gene) to be displayed in the Node information panel, including links to external
databases (Fig. 9.11.1). Right-clicking (or Control-clicking with a one-button mouse)
on a node causes a drop-down menu to appear with several control options to
manipulate the selected node(s). To select multiple nodes, press and hold the Shift
button on the keyboard while clicking nodes in the current network.

6. Inspect an edge: Mousing over an edge will display the edge type, edge dataset,
and its numerical value, if any. Right-clicking (or Control-clicking with a one-button
mouse) on an edge will open a drop-down menu with options to hide the edge or to
show any external links associated with that edge (e.g., in other databases), which
will appear in a new browser window. In order to see information resulting from
mousing over, the size of the network can be adjusted by selecting Zoom in the
Graph control panel and moving the adjacent slider bar as described in step 16.

If you do not see a new window pop up when following external links, please make sure
that your pop-up blockers are disabled for the N-Browse Web site.

7. Select a new query: In the Graph control panel, look for Search New Gene. Type a
gene ID or name in the box and press Enter/Return to build a new network graph
around this gene as the starting point.

Ambiguous or unidentifiable IDs will trigger a warning prompt with a new window
offering a list of available choices. Select one of these and click the Submit button to
generate a new query.

Expanding the network around a node in the graph
8. Expand the graph: Double-click any node to retrieve any additional functional links

to that gene/protein that are not currently displayed (Fig. 9.11.3). With the default
view setting (“matrix” view), this will display all edges between any newly retrieved

Browsing
Multidimensional

Molecular
Networks with

N-Browse

9.11.6

Supplement 23 Current Protocols in Bioinformatics

first-degree neighbors of this node and all other nodes in the current graph. Browse
the local network neighborhood by sequentially expanding around successive nodes
as illustrated in Figure 9.11.3.

Expanding the network in the default matrix view setting may generate a tremendous
number of new edges. To avoid this, users can switch to a “spoke” view, which displays
only links between the selected node and its direct first-degree neighbors. See Basic
Protocol 2 for information on invoking the alternate “spoke” display view.

A

B

C

Figure 9.11.3 Network navigation: sequential expansion around selected network nodes. In this
example, the user has entered an initial query par-6 (A) and subsequently expands the network
around par-5 (B) and par-3 (C). For demonstration video see the N-Browse online tutorial. For
color version of this figure see http://www.currentprotocols.com.

Building
Biological
Databases

9.11.7

Current Protocols in Bioinformatics Supplement 23

9. Step backward: Recent steps in the network expansion sequence can be sequentially
reversed by clicking the “<<<” button in the Graph control panel, causing all nodes
and edges gathered in each step to disappear from view.

10. Select “miRNA search:” This will cause all microRNAs predicted to target genes in
the current graph to be displayed.

miRNA-target relationships at gnetbrowse.org are currently based on predictions by the
PicTar algorithm, available at http://pictar.org.

This function is hidden in the N-Browse distribution package, as it depends on the presence
of a particular data type in the corresponding species database. It can be restored by
uncommenting out this part of the code and recompiling.

Customizing the display
11. Select specific data types, datasets, and/or numerical thresholds for display.

By default, all available data types and data sets (listed in the Edge control menu) are
included for display in the network graph. The Edge control panel provides the ability to
selectively hide or show edges, either by toggling check boxes for different data types and
datasets or by changing numerical cutoffs (where present).

See Basic Protocol 2 for more information on preselecting basis datasets for network
navigation.

12. Display Gene Ontology terms: Switching to the GO Term tab in the Node information
panel displays a hierarchical term list from the Gene Ontology DAG (directed acyclic
graph). There are two ways to highlight genes annotated with particular GO terms
on the current graph (see UNIT 7.2 for information on GO):

a. Clicking on a specific GO term in the term list displayed in this panel will highlight
any nodes in the graph that are annotated with that term.

b. Selecting one or more nodes in the graph and choosing Show GO Term (∗) from
the drop-down menu that appears in response to a right-click (or control-click with
a one-button mouse) on the selected node(s) will also activate the GO Term panel.
In this case, all GO terms associated with the selected set of genes will then be
highlighted in the DAG term list. Right-clicking selected nodes in the graph will
also open a second window that displays a graphical hierarchy of the GO terms
associated with those genes.

This function is not included in the N-Browse distribution package as the current imple-
mentation is experimental, but future releases will contain a corresponding feature.

13. Highlight node attributes on the network graph: Switching to the Node Attribute
tab in the Node information panel allows the visualization of various properties
associated with genes/proteins in the current graph. When the Node Attribute tab is
opened, a list of available attributes will be displayed. Select a checkbox to load the
corresponding attribute class for highlighting on the graph. Node attributes may be
highlighted with either a graded scale of color intensity (for ordinal data) or a solid
color (for categorical data). A description of this control menu is also available when
clicking the “?” icon on the top-right corner of the Node Attribute tab.

Node attributes can be any type of data associated with nodes (genes/proteins), such as
phenotypes, expression levels, protein domains, etc.

14. Anchor or weigh nodes in the graph: All nodes in the graph can be frozen in place
or unfrozen by clicking the Anchor icon in the Graph control panel. Alternatively,
selected node(s) can be pasted to the background using the right-click drop-down
menu that becomes available when mousing over nodes in the graph and selecting
Anchor node or Weigh anchor, with the former anchoring the node and the latter
removing the anchor, respectively.

Browsing
Multidimensional

Molecular
Networks with

N-Browse

9.11.8

Supplement 23 Current Protocols in Bioinformatics

15. Adjust the current graph layout: Clicking the “adjust layout” button in the Graph
control panel resets the rendering of edges in the graph, resulting in the straightening
or bowing of different edges.

Normally, multiple edges between node pairs are splayed to avoid superimposition, and
single edges appear straight. Because the rendering method is not automatically adjusted
after each operation, hiding or unhiding selected edge types can sometimes leave, for
example, single edges that appear bowed. Adjusting the layout may take a long time for
a large graph with numerous edges, so be patient.

16. Zoom, rotate, or move the graph: The size and orientation of the network view can
be adjusted by selecting Zoom or Rotate in the Graph control panel and moving
the adjacent slider bar. The entire graph can be moved by positioning the cursor
anywhere in the background field and dragging it while holding down the mouse
button.

Saving and exporting network information
17. Save network data: Information about the current graph can be saved in a variety of

formats:

a. A list of nodes (as a tab-delimited text file).

b. A list of interactions (as a tab-delimited text file).

c. A Cytoscape .sif network file (see UNIT 8.13).

d. A screenshot image (Save PNG image).

e. An Encapsulated PostScript (EPS) file (Save EPS image).

The EPS format provides a vector representation of the image, producing very high quality
views that are especially useful for publications such as posters.

18. Auto-launch Cytoscape: Further analysis of the currently displayed network can
be performed in the stand-alone graph layout application Cytoscape (also see
UNIT 8.13 and http://cytoscape.org). Clicking on the Cytoscape icon in the Graph
control panel will cause all of the data in the current graph to be packaged for export
to and displayed using Cytoscape, which will be launched automatically on the user’s
computer using Java Web Start.

The Cytoscape-compatible files created by N-Browse do not automatically specify the
geometry of the graph layout, so a new layout will need to be generated from within
Cytoscape after import.

BASIC
PROTOCOL 2

WORKING WITH DATASETS AND USER-DEFINED UPLOADS

By default, network navigation in N-Browse includes all data in an N-Browse database
and operates using a “matrix,” or complete, view of all defined edges. N-Browse pro-
vides the ability to configure the range of data used for network navigation, either by:
(1) preselecting specific subsets of data and thresholds from an N-Browse database, or
(2) uploading user-defined data for integrated visualization with publicly available data.

In addition, N-Browse allows users to configure the display method for visualizing links
between selected nodes and their first-degree neighbors by toggling between the default
“matrix” view and an alternative “spoke” view. This protocol describes each of these
features. The N-Browse online tutorial also includes demonstration videos illustrating
each of these functions.

Necessary Resources

Hardware

Any computer with internet access

9.11.9

Current Protocols in Bioinformatics Supplement 23

Software

Java-compatible internet browser
Java Runtime Environment (JRE) 1.4 or above

Files

N-Browse homepage: http://gnetbrowse.org
N-Browse Advanced page: http://gnetbrowse.org (select “Advanced” tab)
N-Browse tutorial for user-defined data upload: http://gnetbrowse.org/

upload tutorial.html

1. Start a Java-compatible Web browser (such as Firefox, Safari, or Internet Explorer)
and open the N-Browse homepage at http://gnetbrowse.org.

2. Select the Advanced tab (Fig. 9.11.5).

3. Type in the name of a gene.

4. Select the species from the drop-down menu.

Selecting “matrix” versus “spoke” views
Two display options are available for visualizing functional links between selected nodes
of interest and their first-degree neighbors (Fig. 9.11.4): (i) Matrix view: This is the
default for N-Browse and displays all links between all nodes in the graph (Fig. 9.11.4,
left-hand panel). The matrix view guarantees that if any known edge exists between any
two nodes in the current graph, it will appear in the network diagram (unless any of
these have been manually hidden by the user). (ii) Spoke view: In contrast, the “spoke”
view (Fig. 9.11.4, right-hand panel) shows only links directly attached to query nodes
(either the initial query or a node selected for expansion). Since any edges between
two neighbors of a query node will not be shown, many existing edges are typically
not displayed in this view. The spoke view reduces visual “clutter,” but makes a trade-
off with information content (since many potentially interesting functional links will
not be revealed). In some cases the spoke view may be preferred, particularly where
relationships between neighbors are not clear (e.g., co-immunoprecipitation can recover
many proteins pulled down by a single query protein, but no information is available on
whether any of these directly interact with each other).

BA

Figure 9.11.4 Matrix (A) and Spoke (B) views for the query par-6 in C. elegans at http://gnetbrowse.org. For color
version of this figure see http://www.currentprotocols.com.

Browsing
Multidimensional

Molecular
Networks with

N-Browse

9.11.10

Supplement 23 Current Protocols in Bioinformatics

5. In the Configure Datasets section on the Advanced page, select either Matrix View
(Gather all interactions between neighbors) or Spoke View (Only show interactions
from the requested gene/protein to its 1-hop neighbors).

Selecting specific datasets and thresholds for network navigation
If some data types available in the database are not of interest to the user for some
reason, it is possible to exclude them from the base data sets used for network navigation.
For example, a user may be interested only in physical or genetic interactions, or may
consider some datasets unreliable, or may wish to impose a more stringent cutoff than
the default threshold for a correlation coefficient or other score.

6. Configure datasets for network navigation: The Configure Datasets section on the
Advanced page will dynamically list the available datasets in the N-Browse database
for the selected species (Fig. 9.11.5). Selecting a different species from the menu
in the Search section will automatically refresh the contents of the list. Configure
datasets as follows:

Figure 9.11.5 The N-Browse Advanced Web page. For color version of this figure see http://www.
currentprotocols.com.

Building
Biological
Databases

9.11.11

Current Protocols in Bioinformatics Supplement 23

a. To restrict the use of specific data types or datasets, deselect them by unchecking
the corresponding checkbox.

b. To change the threshold cutoff used for data with numerical ranges, enter a new
number in the text box for a specific dataset (the ranges present in the database
are shown for reference).

c. For more information about each data type and dataset available in the database,
click on the Types and Datasets link.

7. Press Go in the Search section.

If no prior query has been entered, a new N-Browse GUI window will open containing
only the selected data types, datasets, or data subsets. If a previous query was entered in
the Advanced page, the open N-Browse GUI will be refreshed and the edge menu in the
Edge control panel will now contain only the selected sets. Eliminated datasets will no
longer be considered during network navigation.

Different network information is retrieved from the database when navigating using the
full database contents versus selected subsets of the data. Using preselected subsets limits
the edges and nodes gathered during network expansion steps to those subsets matching
the preselection criteria. Thus, data that are eliminated from network navigation by
preselection will never be displayed in the network graph and are not considered for
expansion steps. Typically, this results in gathering fewer new edges and nodes at each
step. Users should be aware that preconfiguring datasets is very different from toggling
datasets for display in the Edge control panel menu, in which case all data listed in the
edge menu (including hidden data) are still gathered in expansion steps. This is necessary
so that data hidden from view can still be retrieved for display at any point in the session.

Uploading data for integrated viewing
Users are often interested in visualizing data that are not available in an N-Browse
database, either from their own laboratory’s work or other data sources. N-Browse
allows users to upload their own data for integrated viewing with the publicly available
data in an online N-Browse database. Currently, the file upload function accepts a simple
tab-delimited file format; descriptions and a sample file for C. elegans are provided in
the N-Browse online tutorial at http://gnetbrowse.org/upload tutorial.html.

8. Open either the N-Browse homepage or Advanced page on the N-Browse Web site.

Both provide the ability to integrate with available data in the N-Browse database. If data
are uploaded using the Advanced page, you can simultaneously configure the network
view (matrix or spoke) and the datasets in the N-Browse database to be included for
network navigation.

9. Specify a file containing network data: In the section User-Defined Network, click
Choose File and select a file located on your computer that contains network data in
one of the accepted file formats described on the N-Browse Web site.

User-defined data are not stored by the application, but are temporarily cached during
an active session. Thus these data are no longer accessible once the current session is
closed or expires.

10. Upload the data file: Select the species network with which you wish your data to
be integrated, and press Upload. If a previous query was entered in the Advanced
page and the corresponding N-Browse GUI is still open, the GUI will be refreshed
and the edge menu in the Edge control panel will now contain one or more new
menu items listing the data you provided. If your file explicitly specified one or
more data types or datasets, each of these will be listed by name with the prefix UD
(for user-defined), for example UD Y2H; otherwise, your data will appear under the
moniker UD unknown.

Browsing
Multidimensional

Molecular
Networks with

N-Browse

9.11.12

Supplement 23 Current Protocols in Bioinformatics

BASIC
PROTOCOL 3

INSTALLING AND CONFIGURING THE N-BROWSE
CLIENT-SERVER PACKAGE

As described in the Introduction, a fully functional N-Browse site will require completing
Basic Protocols 3 and 4. This protocol describes how to install the N-Browse client-server
package in the Unix/Linux environment. It is assumed that the user has proper knowledge
and privileges to install software in the Unix/Linux environment.

After installation, the N-Browse Web pages should appear through an HTTP connection.
To test the N-Browse GUI, you will need to populate an N-Browse database with either
the test data provided with the distribution or your own data, as described in Basic
Protocol 4.

Necessary Resources

Hardware

Any Unix (Linux, Solaris or other) workstation or Macintosh OS X
A minimum of 500 Mb RAM
Internet connection

Software

Most of the required software can be installed using a package manager for your
OS platform or downloaded directly from the providers at the Universal
Resource Locators (URLs) listed below

Standard software

N-Browse client-server package [the package can be downloaded either from the
main N-Browse Web site (http://gnetbrowse.org) or from SourceForge
(http://sourceforge.net/projects/nbrowse/)]

Tomcat4 or higher (Tomcat5 is preferred; the package is available at
http://tomcat.apache.org/)

Java Software Development Kit (Java SDK) 1.4 or higher (the package is available
at http://java.sun.com)

Perl v. 5.0 or higher (Perl 5.8 or higher is preferred; Perl will generally be installed
on most machines with a Unix-like operating system, but it is also available at
http://www.perl.org)

MySQL Server 4.1 or higher. MySQL Server 5 is preferred (MySQL is available at
http://www.mysql.com/)

JDBC Driver for MySQL (Connector/J) (the library is available at
http://dev.mysql.com/downloads/connector/j/5.0.html)

Nonstandard software

These packages will be needed if you want to set up Cytoscape auto-launch using
Java Web Start:
Apache Web server (available at http://httpd.apache.org/)
Perl CGI package (available at http://search.cpan.org/dist/CGI.pm/)
Perl Driver for MySQL (DBD::mysql) (the library is available at

http://search.cpan.org/dist/DBD-mysql/)

Files

The install.pl and README files are located in the
nbrowse server client/ directory after unpacking the N-Browse tarball

Building
Biological
Databases

9.11.13

Current Protocols in Bioinformatics Supplement 23

Table 9.11.1 Required Parameters in the install conf Filea

Parameter Description

TOMCAT SERVER [nematoda.bio.nyu.edu] Domain name of the Tomcat Web server. This will serve as
the base URL for HTTP connections.

TOMCAT PORT [8180] Port number for Tomcat HTTP connections. The default
port for Tomcat5 is 8180.

TOMCAT WEBAPPS PATH
[/var/lib/tomcat5/webapps/]

Physical (directory) location of the Tomcat Web application
in the file system. The default location for Tomcat5 is
/var/lib/tomcat5/webapps/.

TOMCAT APP FOLDER [NBrowse] Directory name to be used for the N-Browse Web
application. If you plan to run multiple N-Browse servers
on the same machine, this name can be customized to
distinguish different instances.

MYSQL SERVER [localhost] MySQL server location for database connections. If the
server resides on the same machine as the N-Browse server
package, you can use “localhost.” If the database resides on
a different machine, a domain name is required to make
remote database connections.

MYSQL PORT [3306] MySQL server port number. You can leave it empty if you
connect to “localhost” (MySQL default setting).

MYSQL DATABASE NAME [nbrowse] Name of the MySQL database containing the N-Browse
database schema (see Basic Protocol 4).

MYSQL USERNAME [handler] MySQL username that the N-Browse package will use as a
handler for database connections.

MYSQL PASSWORD [] MySQL password for the above MySQL user. It can be
empty if the MySQL user has no password.

INSTALL CYTOSCAPE AUTOLAUNCH [Y/N] Choose Y (yes) or N (no) to set up the Cytoscape
auto-launch function. If Y, the next 3 parameters must be
specified (JNLP CODEBASE, JAVA LOCATION, and
CYJNLP LOCATION).

JNLP CODEBASE
[nematoda.bio.nyu.edu/cgi-bin/nbTest/]

Web address (URL) for a directory on the N-Browse server
machine in which Perl CGI scripts have permission to run
(specified in Tomcat or Apache config files). This is
essential to create the files for Cytoscape auto-launch.

JAVA LOCATION[/usr/bin/] Physical (directory) location of the JAVA binary.

CYJNLP LOCATION
[/usr/lib/cgi-bin/nbTest/]

Physical (directory) location of the Perl CGI scripts
required for Cytoscape auto-launch.

WEBSITEHOSTBY [NYU Center for Genomics
& Systems Biology]

Text for customizing the N-Browse Web site at your
institution, to be displayed in an iFrame container at the top
of the N-Browse Web pages at your site. If desired, you can
further customize the Web site (with graphics etc.) by
directly editing the HTML code in
the containerInfo.html file included in the
distribution.

aThese parameters must be customized for your server machine prior to N-Browse installation. Example values for each parameter are provided in
square brackets.

Browsing
Multidimensional

Molecular
Networks with

N-Browse

9.11.14

Supplement 23 Current Protocols in Bioinformatics

Download and install N-Browse
1. Download and install the required software: Download N-Browse from either of the

locations listed above to the prospective N-Browse server machine.

The file is in .tar.gz format and will need to be uncompressed and unpacked
before installation.

2. Configure the install conf file in the nbrowse server client/ directory.
Edit the file so that the required parameters suit your machine’s configuration.

This configuration file MUST be modified before installing the N-Browse package.
Table 9.11.1 provides an explanation of each parameter with example values.

3. Install the N-Browse package from source: Run the install.pl script located in
the nbrowse server client/ directory:

$ perl install.pl

The “$” symbol represents a command line prompt. The prompt may be represented by
other symbols on different systems.

This will install the required software components in the locations and using the parameter
setting specified in the install conf file.

4. Test the installation: Check if the installation went correctly by opening the following
pages in your favorite browser (replacing the text string TOMCAT APP FOLDER in
the URL below with the parameter value you specified in the install conf file):

http://localhost:8180/TOMCAT APP FOLDER/NBrowse.html

If the installation was successful, you should see your customized N-Browse homepage at
this URL (similar to Fig. 9.11.2). If you do not see the NBrowse.html page, it is likely that
your Tomcat is not configured properly. In this case, see the Troubleshooting section below.

BASIC
PROTOCOL 4

INSTALLING AND POPULATING THE N-Browse GENERIC DATABASE

The design considerations for the N-Browse database schema included the need to
accommodate a diversity of data types without prior knowledge of their content or
structure, and the ability of the system to automatically discover the types of data and
ranges of values present across the entire database. To facilitate populating an N-Browse
database, the N-Browse distribution package provides a set of Perl scripts that will
automatically populate the generic N-Browse database schema using user-supplied data
in simple tab-delimited (.cvs) files. This protocol provides a step-by-step guide to
setting up and populating an N-Browse database by running these scripts. With default
parameters, these scripts will load a set of sample data included in the distribution
package. The resulting sample database can be used as a test version for the installation
process. For convenience, this protocol also includes an optional shortcut for generating
the sample database directly from a MySQL data dump to facilitate testing other aspects
of the installation.

Necessary Resources

Hardware

Any Unix (Linux, Solaris or other) workstation or Macintosh OS X
A minimum of 500 Mb RAM
Internet connection

Software

All necessary software should be installed if Basic Protocol 3 has been completed

Building
Biological
Databases

9.11.15

Current Protocols in Bioinformatics Supplement 23

Files

After unpacking the N-Browse tarball, the Perl dataloader scripts and README file
are located in the nbrowse dataloader/ directory

Dataloader Perl scripts:
dataloader node syn.pl
dataloader edge meta.pl
dataloader url.pl
dataloader node attr.pl
dataloader truncate tbs.pl

Data file format specification:
dataloader csv format.txt

README file containing short descriptions of the Perl dataloader scripts:
README.txt

Create an N-Browse generic database
1. Create an empty MySQL database called nbrowse and make it accessible to the

N-Browse MySQL database handler. This can be accomplished using the following
commands:

$ mysql -u root -p
Enter password: ********

The “$” symbol represents a command line prompt. The prompt may be represented
as other symbols on different systems. The MySQL user does not need to be “root,”
but must have the privilege to create databases.

mysql> create database nbrowse;
Query OK, 1 row affected (0.01 sec)

Here we use “nbrowse” as a database name for demonstration purposes. This name
can be anything but should be the same as the one indicated in the install conf file
described in Basic Protocol 3.

mysql> grant all privileges on nbrowse.*
to handler@localhost;
Query OK, 0 rows affected (0.01 sec)

When granting privileges to the user, replace handler with the username of the
nbrowse database handler and nbrowse with the name of your database. These
should be the same as specified in the install conf file described in Basic
Protocol 3.

mysql> quit
Bye

2. Load the N-Browse database schema into the newly created database. Start MySQL
as the N-Browse database handler:

$ mysql -u handler -p
Enter password: ********

Switch to thenbrowse database and load the schema filenbrowse schema.sql
located in the nbrowse dataloader/ directory:

mysql> use nbrowse;
mysql> source /home/bob/nbrowse install package/
nbrowse dataloader/nbrowse schema.sql;

Browsing
Multidimensional

Molecular
Networks with

N-Browse

9.11.16

Supplement 23 Current Protocols in Bioinformatics

This example uses the Unix username “bob” as the N-Browse package administrator.
When loading the schema into the database, replace the above path with the absolute
path of the nbrowse schema.sql file on your system.

mysql> quit
Bye

Load a sample N-Browse database from a MySQL data dump
This section is optional. It will allow you to immediately test the N-Browse GUI for your
server setup using a prebuilt database. You can generate the same database by skipping
this section and following the instructions in the next section.

NOTE: If you chose to carry out steps 3 and 4, make sure to either truncate all the
tables in the nbrowse database (e.g., using the provided script dataloader
truncate tbs.pl), or drop the database completely and repeat steps 1 and 2 prior to
proceeding with the next section.

3. Load the sample N-Browse database dump into the newly created database. Start
MySQL as the N-Browse database handler:

$ mysql -u handler -p
Enter password: ********

Switch to the nbrowse database and load the SQL dump for the sample database
(nbrowse sample data.sql located in the nbrowse dataloader/ direc-
tory):

mysql> use nbrowse;
mysql> SOURCE /home/bob/nbrowse install package/
nbrowse dataloader/ nbrowse sample data.sql;

As in step 2, replace the Unix path above with the absolute path of the
nbrowse schema.sql file on your system.

4. Test the GUI for your N-Browse installation: Go to the N-Browse URL on your
system, enter a query (e.g., “par-6”), and click GO. The N-Browse GUI should
appear with a small sample network.

Populate an N-Browse database from flat files
This section provides instructions for populating an N-Browse database using a set of
Perl scripts provided with the distribution package for the user’s convenience. However
there are many other ways to populate the database, and users should feel free to use
whatever method works best for them. Other methods will typically involve generating the
appropriate SQL commands with customized scripts. To load the database with sample
data included in the N-Browse distribution, follow the steps outlined in this section using
default configuration parameters. Upon completion of these steps (assuming you have
previously completed Basic Protocol 3) you should be able to navigate network data on
your site using the N-Browse GUI.

In addition to the table definition file, a diagram of the N-Browse database schema is
included in the N-Browse distribution package. To help users learn to understand the
schema, examples of SQL queries to retrieve different kinds of data from a populated
N-Browse database are also provided. The N-Browse database schema uses auto-
increment IDs as primary keys in many of the data tables. Users who prefer to load
data using scripts that automatically generate and cross-reference these IDs should re-
move the autoincrement flags from the corresponding table definitions.

Building
Biological
Databases

9.11.17

Current Protocols in Bioinformatics Supplement 23

Table 9.11.2 Parameters in the dataloader conf Filea

Parameter Description

TAXON ID [6239] NCBI Taxonomy ID. N-Browse uses this ID to distinguish
network data from different species within the same
database and to retrieve species names from NCBI for
display. A current list of species IDs and names can be
found at ftp://ftp.ncbi.nih.gov/pub/taxonomy/ in the
names.dmp file contained in the taxdump archive
(distributed in various formats:
.zip,.tar.Z,.tar.gz).

TABLE EDGEDEF
[./example data/table edgedef.csv]

Edge type definition file.

TABLE GNBI
[./example data/table gnbi.csv]

Binary interaction data file.

TABLE NODES
[./example data/table nodes.csv]

File containing node primary names and descriptions.

TABLE SYN
[./example data/table syn.csv]

Node synonyms for search and display functions. A priority
score specifies the preferred names for display.

TABLE URL
[./example data/table url.csv]

Optional data file specifying the construction of call strings
for external URLs that can be attached to nodes or edges
(e.g. links to other database resources).

TABLE NODE ATTR
[./example data/table node attr.csv]

Optional data file of node attributes (e.g. BlastP E-values,
phenotypes, domains, expression levels, etc.)

MYSQL SERVER [localhost] MySQL server location.

MYSQL PORT [3306] MySQL server port number. You can leave it empty if you
connect to “localhost” (MySQL default setting).

MYSQL DATABASE NAME [nbrowse] MySQL N-Browse database name.

MYSQL USERNAME [handler] MySQL username with database write privilege.

MYSQL PASSWORD [] MySQL password for the above MySQL user. It can be
empty if the MySQL user has no password.

aThese parameters must be customized for your server machine and data filenames. Using the default parameter values shown in square brackets to run
the Perl dataloader scripts will populate an empty N-Browse database with the sample data provided with the N-Browse distribution package.

5. Prepare tab-delimited .csv files containing the data you wish to load to the
database: The required fields for each .csv file are described in the dataloader
csv format.txt file in the nbrowse dataloader/ directory. The direc-
tory example data/ contains the sample data files.

The.csv format can be generated programmatically with a script, manually using a text
editor, or automatically by Microsoft Excel or OpenOffice Calc. To export data in this
format, place the data in different columns and then save as a “tab-delimited” file. (Data
in each column can include spaces, but should not include the “tab” character.)

6. Configure thedataloader conf file in thenbrowse dataloader/ directory:
The Perl dataloader scripts consult this configuration file for the names of the various
data files to be loaded to the database. Specify the names of the data files you have
prepared as values for the corresponding parameters in the configuration file (or, to
load the sample database, use the default parameters).

Table 9.11.2 presents parameters in the dataloader conf file.

Browsing
Multidimensional

Molecular
Networks with

N-Browse

9.11.18

Supplement 23 Current Protocols in Bioinformatics

7. Populate tables in the nbrowse database: Each Perl dataloader script populates
the database with a different type of information, as described below. Only the
first two are essential for network display: (i) information about the identity (and
descriptions) of nodes and (ii) information about edges (the types of functional links
and any associated numerical values). Node data should be loaded first.

a. Load information about nodes (genes and/or proteins) and their synonyms:
$ cd nbrowse dataloader
$ perl dataloader node syn.pl

This script populates the tables node, synonym, and attribute in the nbrowse
database. The.csv files TABLE NODES and TABLE SYN are required to run this script.

b. Load information about edges:
$ perl dataloader edge meta.pl

The script populates the tables (gnb interactions, edge group,
edge attribute, attribute, and metadata) in the nbrowse generic database.
The.csv files TABLE EDGEDEF and TABLE GNBI are required to run this script.
Currently, this script only populates binary interactions in the generic schema (vs.
interactions with multiple partners, such as obtained from co-IP data).

c. Load information about external links:
$ perl dataloader url.pl

This is optional. The script populates the tables (external url, url attribute,
attribute, and metadata) in the nbrowse database. The.csv file TABLE URL is
required to run this script. This is useful for you to show your client-users more detailed
information on nodes or edges.

d. Load information about node attributes:
$ perl dataloader node attr.pl

This is optional. The script populates the tables (node attribute,
attribute, and metadata) in the nbrowse generic database. The .csv file
TABLE NODE ATTR is required to run this script. This is for auto-constructing menu
options for the Node Attribute menu (see Basic Protocol 1: Highlight node attributes on
the network graph.).

If you completed steps 4-7 above using the default parameters and thus have loaded the
sample database, make sure to truncate all the tables in the nbrowse database or drop the
database completely and repeat steps 1 and 2 above prior to loading the actual data you
wish to use.

COMMENTARY

Background Information

The central idea behind N-Browse is to develop an easily accessible, simple yet pow-
erful tool that enables biomedical researchers to quickly extract data and generate
hypotheses from the results of large-scale analyses in diverse organisms. Inspired by
GBrowse (UNIT 9.9), an open-source software package that provides a Web-based GUI for
coordinate-based genome annotations supported by a light-weight database, N-Browse
aims to provide an analogous intuitive portal for network exploration and an easily
configurable client-server package for distribution. The data content available from an
N-Browse server, in terms of both functional linkage types and species-specific data, will
vary at different providers’ sites, but any data that can be described as nodes and can be
displayed.

Several applications now provide similar network visualization tools, including Cy-
toscape (UNIT 8.13), Osprey, VisANT (UNIT 8.8), and STRING (http://string.embl.de/). Each
was designed with differing goals and implemented independently. Different tools share
certain features with the vision of N-Browse, such as navigating functional relationships

Building
Biological
Databases

9.11.19

Current Protocols in Bioinformatics Supplement 23

based on data available from a remote server (e.g., Osprey applet version, VisANT, and
STRING) or providing an open-source package for distribution (Cytoscape). N-Browse
occupies a unique niche as a simple yet powerful on-demand navigation tool that allows
researchers access to heterogeneous data through a Web browser in a highly interactive
way and in a rich contextual environment. N-Browse can be easily integrated with other
Web resources via URL links and its functionality is extensible through the integration
of new data types and software plug-ins. Among the tools mentioned above, N-Browse is
unique in offering an open-source client-server system supported by a generic database
schema that is freely available for distribution. The N-Browse client-server package is
suitable as a data distribution and visualization mechanism for any research group that
wishes to serve network-related data to the public. N-Browse is affiliated with the Generic
Model Organism (GMOD) project, which provides open-source software components
for distribution of genomic and functional genomic data for any organism. A description
of N-Browse and links to other N-Browse resources can be found on the GMOD Wiki
site at http://www.gmod.org/wiki/index.php/nbrowse.

Critical Parameters and Troubleshooting

Below are addressed some common issues and questions encountered during use or
installation of the N-Browse package:

Expansion steps are taking a long time to appear after double-clicking on a selected
node. Is there a way to improve the querying process?

Everything is calculated on-the-fly when a client-end user queries a node. If the sub-
network of each node you have in your database is very large, you may want to activate a
function that caches the edge number around each node. This will potentially save query-
ing time if the hairball around the querying node is humongous. To implement this option
(after deploying the package and populating the database), perform the following steps.

1. Change directory to the servelets location (TOMCAT WEBAPPS PATH/TOMCAT
APP FOLDER/WEB-INF/classes), replacing TOMCAT WEBAPPS PATH and
TOMCAT APP FOLDER with the parameters specified in your install.conf
file (see Basic Protocol 3 and Table 9.11.1).

2. Run the following command (you must have permission to run sudo):

$ sudo java -classpath . databaseProcess.UpdateEdgeNum

Note that this script might take a while to run, depending on how many nodes and edges
are contained in the database.

No data shows in the network browser GUI. What happened?
This is most likely a problem with the Tomcat security policy. To check this, perform the
following steps.

1. Examine whether your Tomcat opens the SocketPermission.

2. Using your Web browser, try linking to the following URL (substituting the
uppercase text with appropriate values specified in your install conf file):
http://TOMCAT SERVER:TOMCAT PORT/TOMCAT APP FOLDER/database.jsp.

If you see the text “1 2 3” appear in your browser window, your Tomcat server is commu-
nicating well with your MySQL server. If you see “1 2” and tons of exception messages,
you may need to change your Tomcat policy to allow the connection to establish. Each
version of Tomcat might behave differently. One possible fix you can try is to change the
tomcat5 security policy as follows: (a) Find the file policy.d/04webapps.policy

Browsing
Multidimensional

Molecular
Networks with

N-Browse

9.11.20

Supplement 23 Current Protocols in Bioinformatics

on your machine. (b) Copy the following lines and paste into the 04webapps.policy
file:

//allow MySQL connect
permission java.net.SocketPermission ‘‘localhost’’,
‘‘connect,resolve’’;

//allow getting species information from NCBI
permission java.net.SocketPermission ‘‘www.ncbi.nlm.
nih.gov:80’’, ‘‘connect,resolve’’;

(c) Run the following command to restart the Tomcat Web server (you must have sudo
permission):

$ sudo /etc/init.d/tomcat5 restart

Why is my user upload function not working?
Again, this may be a problem with the tomcat5 policy. Here are some suggestions you
may want to try:

Modify the tomcat5 policy:

1. Find the file policy.d/04webapps.policy on your machine.

2. Copy the following lines and paste into the 04webapps.policy file:

permission java.io.FilePermission
‘‘/var/lib/tomcat5/temp/-’’, ‘‘read,write,delete’’;

permission java.io.FilePermission ‘‘/tmp/-’’,
‘‘read,write,delete’’;

permission java.io.FilePermission ‘‘./temp/-’’,
‘‘read,write,delete’’;

permission java.io.FilePermission ‘‘./uploads/-’’,
‘‘read,write,delete’’;

permission java.util.PropertyPermission
‘‘java.io.tmpdir’’, ‘‘read’’;

3. Run the following command to restart Tomcat Web server (you must have sudo):

$ sudo /etc/init.d/tomcat5 restart

4. Re-compile the servelets for the data upload function: Change directory to the Tom-
cat Web application directory (NBrowse or whatever name you gave it in the in-
stall conf file), and run the following commands:

$ cd WEB-INF/classes
$ javac -classpath . com/raditha/megaupload/*.java
$ sudo /etc/init.d/tomcat5 restart

5. Test the user upload function again. You can use the example file for user uploads
user upload example.txt located in the nbrowse server client/ di-
rectory to test the user upload function.

Why is my Cytoscape auto-launch function not working?
Check the permissions of the cgi-bin/ directory. The default setting for apache2 is
to allow execution of all file extensions in this directory as CGI scripts. If you change
these permissions, you must at least allow files with .cgi,.pl, and .jnlp extensions
to run as executable CGI scripts in CYJNLP LOCATION/ (this directory is specified in
the install conf file; see Basic Protocol 3 and Table 9.11.2).

Building
Biological
Databases

9.11.21

Current Protocols in Bioinformatics Supplement 23

ACKNOWLEDGEMENTS

We thank Fabio Piano and Yih-Shien Chiang for invaluable brainstorming sessions,
advice, and suggestions during the development process and Leslie Greengard for his en-
couragement and support. We thank the following beta testers of the N-Browse software
for helpful feedback on the installation process: Payan Canaran, Todd Harris, and Igor
Antoshechkin (from WormBase) and Nicolas Simonis and Changyu Fan at the Center
for Cancer Systems Biology (Dana Farber Cancer Center, Harvard). This work was sup-
ported by Department of the Army Award W81XWH-04-1-0307 and NYSTAR Contract
#C040066.

KEY REFERENCE

Lall, S., Grun, D., Krek, A., Chen, K., Wang, Y.L., Dewey, C.N., Sood, P., Colombo, T., Bray, N., Mac-
Menamin, P., Kao, H.L., Gunsalus, K.C., Pachter, L., Piano, F., and Rajewsky, N. 2006. A genome-wide
map of conserved microRNA targets in C. elegans. Curr. Biol. 16:460-471.

This is the first article in the literature to describe the use of N-Browse for integrating a new genome-scale
dataset with other available molecular interaction data. N-Browse was used to integrate microRNA-target
predictions with multiple types of functional links in C. elegans gathered from a variety of sources (these
datasets are described on the gnetbrowse.org Web site).

INTERNET RESOURCES

http://gnetbrowse.org

The main N-Browse Web site, currently providing access to heterogeneous functional data in E. coli, C.
elegans, D. melanogaster, and H. sapiens (see the Web site for details on available datasets). Provides a
link to the downloadable N-Browse client-server distribution package.

http://sourceforge.net/projects/nbrowse

The N-Browse client-server distribution package can be downloaded from here.

http://www.gmod.org/wiki/index.php/nbrowse

Provides a description of the N-Browse project with news and links to other N-Browse resources.

http://www.wormbase.org

The first example of an independent N-Browse client-server installation. WormBase currently uses N-Browse
as a graphical interface to server molecular interaction data curated there. Links to the N-Browse GUI at
WormBase are available on the Gene Summary pages. Also see UNIT 1.8.

http://interactome.dfci.harvard.edu/C elegans/host.php

An N-Browse portal is provided by the CCSB Interactome Database to visualize C. elegans protein-protein
interaction data in the context of other functional genomic data.

