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English summary

The key goal in scientific visualization is to transform numerical data into alfsum that enables
us to reveal important information about the data. It is a tool that engagdmithan senses and an
effective medium for communicating complex information. The engineeringseiatific commu-
nities early employed applications of visualization. The computers were ssedo@l to simulate
physical processes such as fluid flows, ballistic trajectories and stalichechanics. As the size
of the computer simulations increased, the large amount of data made itamydesgansform the
numbers from calculations into images. The use of images to communicate infarsatspe-
cially effective as the human visual system is able to extract an enormousaioinformation
from a single image in very short time.

New challenges in scientific visualization emerge as advances in modencaupelters make it
possible to compute bigger simulations of physical phenomena with highésipreand increasing
complexity. Contrary to the early computer simulations, current simulations aftatve three
spatial dimensions in addition to time (which together result in 4D data), progluemabytes of
data containing complex dynamical and kinematical information. There arediwations that the
trend of increasing complexity in computer simulations will cease. Incredsgty &0 model more
complex systems is an important progress, but the enormous size of ppf@seriuture) scientific
data sets demands more efficient and advanced visualization tools in oetealyae and interpret
the data.

VoluViz is a visualization tool developed at FFI which is capable of interaatisualization of large
time-dependent volumetric data. It addresses many of the challengesg®rsizale data analysis
and supports a set of visualization tools to facilitate scientists in their work wigfe lolata sets,
including effective rendering techniques, easy navigation of the dath {fiotime and space) as well
as advanced multi-field visualization techniques and feature enhancewtemngtees. The software
takes advantage of commonly available modern graphics hardware ansigeett with the goal
of real-time investigation of the data. VoluViz has been used to investigate rataaf number
of applications: dispersion modeling (pollution, toxic gases), biomedical fltaeling (blood
vessels, the human heart) and in industrial design optimization (aircraftslensissker technology).
Choosing the right visualization can turn gigabytes of numbers into easily redrapsible images
and animations. If used properly, VoluViz can thus be an effective medancommunicating
complex information and for presenting the result from scientific simulations intelligible and
intuitive way, both to fellow scientists as well as a broader audience.

The report is divided into three main parts. The first part (sectionsdivés an overview of the
rendering framework of VoluViz in addition to the description of some importettme visual-
ization concepts. The second part (section 4) provides a more detafedpdion of the rendering
algorithm used by VoluViz in addition to a presentation of the available tools wiimgkes. The
third part (sections 5-6) provides the user manual.
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Sammendrag

Formélet med vitenskapelig visualisering &rforvandle numeriske data til en visuell form som
gjer oss i stand tik vise viktig informasjon om dataene. Det er et verktgy som utnytter de men-
neskelige sansene og et effektivt mediumdd&ommunisere kompleks informasjon. Vitenskapelige
miljger tok tidlig i bruk dette verktayet. Datamaskiner ble brukétgimulere fysiske prosesser som
strgmninger, ballistiske baner og konstruksjonsmekanikk. Etter hveradedngdengsstor at det

ble ngdvendica overfare beregningstallene til bilder. Bruk av bilder er spesielt &ffe&ttersom

det visuelle systemet hos mennesker er i stand tikkke ut enorme mengder informasjon fra ett
enkelt bilde i lgpet av sveert kort tid.

Nye utfordringer i vitenskapelig visualisering har ogqstparallelt med utviklingen av moderne
superdatamaskiner. Dagens maskiner gjgr det mligeregne starre og starre simuleringer av
fysiske fenomener med hgyere presisjon og med gkende kompleksitet. | rmgjddttidligere,
inneholder dagens simuleringer ofte tre romlige dimensjoner i tillegg til tid (sonaninsen farer

til 4D-data). Disse simuleringene kan produsere terabyte med komplekafdatasjon. Det er
ingen indikasjoner @ at trenden med gkende kompleksitet i datasimuleringer vil stoppe. @t evn
til & modellere komplekse systemer er et viktig framskritt, men samtidig ferer senmgsiagens
vitenskapelige datasett til et stadig starre behov for mer effektive atsavie visualiseringsverktay.

Visualiseringsverktgyet VoluViz er utviklet ved FFI og i stand til interaktigualisering av store
tidsavhengige volumetriske data. Det lgser mange av de utfordringeriéns@s for storskala data-
analyse og stgtter et sett med visualiseringsverktaé foelpe forskere i arbeidet med store datasett,
inkludert avanserte flerfeltsvisualiseringsteknikker og enkel navigeav data (&de i tid og rom).
Programvaren utnytter moderne grafikkmaskinvareteknologi og ermaéfiomed et ral om etter-
forskning av data i sanntid. VoluViz har blitt brukt &l undersgke data fra en rekke applikasjoner:
spredningsmodellering (forurensning, giftige gasser), biomedisingknsiingsmodellering (blod-
kar, menneskehjerte) og i industriell designoptimalisering (fly, missilsdisotegi). A velge riktig
visualisering kan forvandle gigabyte med tall til lett f@slige bilder og animasjoner. Bruk&p
riktig mate kan VoluViz veere et effektivt medium fér kommunisere kompleks informasjon og
et viktig verktgy fora presentere forskningsresultatér gn forsaelig og intuitiv néte, tade til
forskerkollegaer og et starre publikum.

Rapporten er delt i tre hoveddeler. Den fagrste delen (kapittel 1-3ngiversikt over rammeverket
i VoluViz i tillegg til en beskrivelse av noen viktige begreper i volumvisuaiisg. Den andre
delen (kapittel 4) gir en mer detaljert innfgring i hvordan VoluViz visuaksetata, i tillegg til
en beskrivelse av tilgjengelige verktgy med eksempler. Den tredje delpittékd-6) presenterer
bruksanvisningen.
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Preface

The development of VoluViz was started, in 2001, by Anders Helgelanaliszthe main architect
behind the software. The software has been upgraded several timegi@rtbd from 2001 to 2014,
partly with the help from some master and summer students associated with thegimiefence
Research Establishment (FFI). A special thanks goes to Trond Ga@eleKokkvoll Engdahl and
Kim Kalland for their contributions. Thanks also goes to the students anatistseworking at FFI,

using VoluViz, for interesting and useful discussions on how to upgaadeto further improve the
software. This also applies to all the people providing data sets used inbis.re

What VoluVizisand isn't

VoluViz was developed to overcome new challenges emerging in scientifialation of large-

scale data from numerical simulations. It is designed Bereari to give interactive rendering of
large time-dependent volumetric data. A high degree of interactivity is dricensure an effec-
tive investigation of the data. If the visualization is carried out too slowly, Wwiferget what was

displayed before the next image is rendered and then lose track of tmmatfon. As a result, all
components of VoluViz (from color mapping to advanced multi-field rendgrimglesigned with

the goal of immediate response when investigating data.

VoluViz is, however, not designed to replace other existing visualizatitiwace. It features tools
and techniques that the other software lacks - in particular volume visualiz@ibhniques. We
have not made efforts to re-implement the parts of other software thatigivearks sufficiently for

data visualization. VoluViz should therefore be used as one of many fii@nsgor data investiga-
tion and data analysis. For data navigation and presentation of 3D (seadtor and tensor) field
components, VoluViz comes with a particularly well developed tool box.

"Have fun :)”
A caution when analyzing data

It is important to remember that the quality of the physical interpretationenalden using visual-
ization tools, in general, are no better than the quality of the original data set.

FFl-rapport 2014/01616 7
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Top: Advancedfocus+contexwisualization with the purpose of revealing and emphasizing major
arteries, known as th@ircle of Willis, inside an MRI data set of a human brain (see figure 4.9).
Middle: Advanced temporal-spatial visualization of a breakdown of a singlexdrig by project-

ing data from six different time steps into the same scene (see figure 4.14).

Bottom: Visualization of a surface model of an industrial environment together edttsentration
data (of pollution) released from the industrial plant (see figure 6.11).
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Figure 1.1 (a) Concentration of pollution released from an industrial plant [11]. W3ualization
of the velocity field around a carrier pod for F-16 [12]. Both visualizatiamsre made
using VoluViz.

1 Introduction

VoluViz is a volume rendering application designed for viewing time-depearatahtime-independent
(static) volumetric data. Such data is the output of a number of applicatiohsasuio dispersion
modeling (e.g. smoke, pollution), biomedical flow modeling (e.g. blood vesdrls, delivery
systems) and in industrial design optimization (e.g aircrafts, engines)gsee fi.1.

VoluViz was developed to overcome new challenges emerging in scientifialigation of large

three-dimensional (and time-dependent) data. Large tree-dimensidaateta is challenging to
visualize effectively mainly due to two reasons. Firstly, while one- and tintedsional data sets
are rather straightforward to visualize, volumetric data sets cannot hecpd to a 2D screen
without losing information. For instance, important information embedded in alte whight get

lost if it is hidden behind other parts of the data or if the “wrong” parts ofdbmain are selected
for display. Good tools for exploring and navigating volumetric data setselp $cientists and
engineers to convey only the important and interesting parts of the dattheaefore needed to
ensure an effective visualization. Secondly, these tools need to beciiteraA high degree of

interactivity is important when investigating data due to the short-term memonrgdiutiman brain.

If the visualization is carried out too slowly, we will forget what was displdpefore the nextimage
is rendered and then lose track of the information.

VoluViz takes advantage of commonly available modern graphics hardwaradvanced visual-
ization techniques to implement a wide variety of visualization modes. It feaiwésto facilitate
scientists in their work with huge data sets including effective renderingnigebs, easy navigation
of the data (both in time and space) as well as advanced multi-field visualizationiqgees and
feature enhancement techniques. The software is implemented in C+4QB], OpenGL [35]
and OpenGL Shading Language (GLSL) [32]. The development ofWblwas initially started in
2001 by Anders Helgeland and has been upgraded several times irrithe foem 2001 to 2014.

FFl-rapport 2014/01616 11



It is an ongoing project, and VoluViz is still being extended to include newufea to support
scientists working at the Norwegian Defence Research Establishment at@hadalysis and data
presentations. Choosing the right visualization can turn gigabytes of marimte easily compre-
hendable images and animations. If used properly, VoluViz can thus b#eamtivee medium for
communicating complex information and for presenting the result from sciesitifialations, both
to co-workers as well as a broader audience, in an understandabietaiive way.

The document works both as a user guide and a detailed theoreticaiptieacof some of the
visualization techniques used by VoluViz. The report is divided into tree ipaits. The first part
(sections 2 and 3) provides an overview of the rendering framewokohiViz in addition to the
description of some concepts important in volume visualization. The secon@eetion 4) gives a
more detailed description of the rendering algorithm used by VoluViz in additianpresentation
of the available tools with examples. The third part (sections 5-6) providesdar manual. The
three different parts are, to some extent, independent of each othismmEans that a reader could
start reading the user manual first and then move on to the other partsrtorieeg about details of
the software and the visualization techniques.
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Figure 2.1 (a) Render window. (b) Volume Scene Graph window. (@mster function editor.

2 \VoluViz3.0 Framework Overview

VoluViz is a volume visualization application capable of fast visualization of aiadlefined on a
regular structured grid. As most of the rendering code is executed daRke(graphics processing
unit), it manages interactive analysis of quite large data. It reads files At [1] format and
includes a browser for easy navigation of HDF5 files. In addition, Vollh4s the following key
features:

e Fully interactive color table editor for specifying transfer functions
e Support for interactive visualization of time-varying fields
e Support for interactive multi-field visualization with custom GLSL shaders

e Interactive clip plane and picking of subset utilities for easy navigationetitita

The framework basically consists of volume data, operators to manipulatat#eadvolume scene
graph, and a renderer. Figure 2.1 shows a very simple setup whergla dataset (the velocity
magnitude of a hurricane simulation [28]) is visualized using volume rendelmthis setup, the
volume data is first mapped to a color and transparency value before mdened in the main
VoluViz render window (figure 2.1(a)). The scene graph window aaeden in figure 2.1(b). Here,
different types of visualizations can be constructed by connecting fbenecdata to different types
of operators. In the current visualization, a single operator is usedelyaa lookup table (LUT),
which maps every data value inside the data domain into to a color and tramspaatue by using
a color table editor. The lookup table (also known as a transfer functeey) for constructing the
current scene can be seen in figure 2.1(c). In this case, it maps atiodgttayscale values giving
maximum and minimum data values the colors white and black, respectively.
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Figure 3.1 The skull of a head is emphasized by assigning low opacity tofthéessues.

3 Introduction to Volume Rendering

Volume rendering is the process used to create images from volumetric daige tata sets ob-
tained from instruments (such as medical scanners) or numerical simulaéoesled to an in-
creasing demand for more efficient visualization techniques. As a resuérad volume rendering
techniques have emerged. As VoluViz uses a technique known as dilecher rendering as its
main rendering algorithm, this section will cover a few concepts that are imgartazolume vi-
sualization. Understanding these concepts will make it easier for scientisengdit from using
VoluViz as an interactive tool for data navigation and data analysis. A metagled and complete
description of volume visualization can be found, for instance, in [1514R,

3.1 Transparency, Opacity and Alpha Values

An important concept in visualization of volumetric data is transparency aciop Although many

visualization techniques involve rendering of opaque objects, thergophieaions that can benefit
from the ability to render semitransparent objects and even objects that erifliighinternal data
from an MRI scan can for instance be shown by making the skin semitnamgpsee figure 3.1.

Opacity and transparency are complements in the sense that high opacity impltesnsparency,
and are often referred to asphain computer graphics. The opacity or alpha valdejs a normal-
ized quantity in the rangf, 1]. If an object has maximum opacityl(= 1), it is opaque and the
objects and light behind are shielded and invisibleA Ik 1, the object is transparent and makes
objects behind visible. An alpha value of zetd £ 0) represents a completely transparent object.
The relation between opacity and transparency, T, is giveA by1 — T.

14 FFl-rapport 2014/01616
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Figure 3.2 Mapping scalars to colors via a lookup table.

3.2 Color Mapping

Color mapping is a common scalar visualization technique that maps scalar datalortwalues

to be rendered. In color mapping, the scalar values are dividedhieigual intervals and serve as
indices into a lookup table. The table holds an array of colors and is atseidgh a minimum and
maximum scalar data rangeiin, max) into which the scalar values are mapped. Scalar values with
either lower or greater value than the chosen data range is clamped to the miamdumaximum
color value, respectively. The rest of the scalar valugsare given colors associated with the index,
1, in the lookup table, see figure 3.2.

The lookup table holds an array of colors that can be representectdonpte by theRGBA(red,
green, blue, alpha) or thHdSVA(hue, saturation, value, alpha) color system. The RGBA system
describes colors based on their red, green, blue and alpha intensttisased in the raster graphics
system. The HSVA system, which is by scientists found to give good conteolomlors in scientific
visualizations, represents colors based on hue, saturation, valudpliad | this system, the hue
component refers to the wavelength which enables us to distinguish onefrcmioanother. The
valueV which also is known as the intensity component, represents how much light is aokbr

and saturation indicates how much of the hue is mixed into the color.

Use of colors is important in visualization and should be used to emphasipev&eatures of the
data set. However, making an appropriate color table that communicateanteiieformation is a
rather challenging task. “Wrong use” of colors may exaggerate unimgatgtails. Some pieces
of advice in making appropriate color tables are given in [37, 4]. In voluisealization, lookup
tables are often referred to &ransfer functionsFigure 3.3 illustrates the use of transfer functions
on data from a simulation of aerosol dispersion in an industrial environfhé&t

3.3 Texture Mapping

In computer graphics, geometric objects are represented by polygaméiyes (consisting of ver-
tices and cells). In order to render a complex scene, millions of verticestbawe used to capture
the details. A technique that adds detail to a scene without requiring explidiling of the detail
with polygons, istexture mapping Texture mapping maps or pastes an image (a texture) to the
surface of an object in the scene. The image is callEktre mapand its individual elements are
calledtexels Texture maps can be one-, two- and three-dimensional. A texture mayrctnota

FFl-rapport 2014/01616 15
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Figure 3.3 Visualization of concentration of pollution released from an industrial plamgishe

HSVA color system for the color mapping. The consentration data arerfapped to a
voxel set with 8-bit precision (in the rang@ 255]), and serve as indices into a lookup
table giving each value a separate color and opacity value. Figures @)&@mshow two
scenes rendered using the transfer functions displayed in (b) aneé&bectively. In both
transfer function editors, the consentration data are mapped to identicatcaolking
identical mappings for the HSV components. The only difference betwetmndiscenes
is in the mapping to the opacity values also known as the alpha (A) compa¥bite. one
of the scenes is rendered with maximum opacity (A=1) for all data pointsthiez scene
(c) is rendered using much lower opacities resulting in a very differgresentation of
the data. Here, all data points containing the lowest amount of consentrat® made
completely invisible (by setting alpha to zero for all these values). In additi@nest
of the data are rendered in a semi-transparent fashion using low opagites. A clip
plane is used in both scenes, removing all data between the clip plane aniéthe
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Figure 3.4 Texture mapping example in 3D. Here, a single planar surface has hadhrough the
volume. Local texture coordinates are then sampled along the surfaich gives the
mapping to the 3D texture storing the volumetric data. The data is then mappetbte
and opacities and finally pasted as an image on top of the surface.

one to four components. A texture with one component contains only the iiiyteatue, and is
often referred to as aimtensity mapr aluminance textureTwo component textures contain infor-
mation about the intensity value and the alpha value. Three component ssstutain RGB values
and a texture with four components contains RGBA values. To determine howajcahe texture
onto the polygons, each vertex has an associa&edre coordinate The texture coordinate maps
the vertex into the texture map. The texture map in 1D, 2D and 3D can be deafittezlcoordinates
(u), (u,v) and(u, v, w), respectively, where, v, w are in the rang¢, 1.

Texture mapping is a hardware dependent feature and is designedlaydispiplex scenes at real
time rates. While 2D textures is most common in computer gaming, both 1D and 3Detexsig
widely used in scientific visualization, especially in volume rendering. Onestiinaal textures
can for instance be used to store transfer functions (see section 32)n Axample, the transfer
functions displayed in figure 3.3 are implemented using one-dimensionaldgsxtustore the data
mapping to the color and opacity components used in the visualization. Timesglonal textures
can, for instance, be used to store volumetric scalar data fields. In volkmdening, the scalar
values are often normalized and represented as a regular structueesetlavith 8-bit (or 16-bit)
precision. These values can be used as indices into a lookup table. taseatexel values in the
volume texture are mapped to color (and opacity) values to be renderéte tifansfer functions
are implemented in texture hardware, this allows an instant update of the ocolapacity in the
scene after altering the lookup table. If the transfer functions are ppiosted in hardware, the 3D
textures have to be regenerated every time the lookup table changese Bigulustrates the use
of texture mapping, where concentration data (of pollution) from an indligtiant is mapped to
colors and then pasted as an image onto a single surface intersecting terdata.

3.4 Direct Volume Rendering

Direct volume rendering is a group of rendering methods that generatgeswd volumetric data
sets without explicitly extracting geometric surfaces from the data. In direlcime rendering,

FFl-rapport 2014/01616 17



voxels are used as building blocks to represent the entire volume. Typieatlly voxel is associated
with a single data point which is mapped to optical properties such as colapeuity (see figure
3.5(b)). As opposed to the indirect techniques, such as isosurfreetion [24, 27, 34], the direct
methods immediately display the voxel data. These methods try to give a visuassigr of
the complete 3D data set using light transport models which describes thagatteon of light in
materials. During rendering, the optical properties are accumulated admigvéewing ray to form
an image of the data (see figure 3.5(a)). An overview of different dpticaels ranging from very
simple to very complex models that account for absorption, emission as wsth#tering effects
can be found in the work by Max [26]. The most widely used method formeluendering is the
one limited to absorption and emission effects only. Téhigssion-absorptiof26] model can be
expressed by the differential equation

% =gx(s) — 7(s)Ix(s), (3.1)
where I, (s) = Ix(x(s)) is the intensity of radiation with wavelength at the positions along
the rayx(s). The functiong,(s) = C\(s)7(s) is called thesource termand describes the emissive
characteristics throughout the volume. He&Tg(s) is the emissive color contribution at a poii(s)
in the volume. The functiom(s) is called theextinction functiorand gives the amount of radiation
that is absorbed. Solving equation (3.1) by integrating from 0 at the edge of the volume to the

endpoints = D leads to thevolume rendering integraVRI)

D D D
(D) = Iy(0)e~ o )t 4 / O (s)7(s)e I 70t g (3.2)
0

The term,(0) gives the light coming from the background at the positios= 0 and (D) is
the total intensity of radiation leaving the volumesat D and finally reaching the eye. The first
term represents the light from the background multiplied by the volume’sgeasaacy between
s = 0ands = D. The second term represents the integral contribution of the sourceaterath
positions, multiplied by the volume’s transparency along the remaining distance to théJsireg
this definition of the transparenc¥s;, s2) = e I3 7 \ve obtain a slightly different version of
the volume rendering integral

D
(D) = I,(0)T(0, D) + /0 i (5)7(s)T (s, D)ds.

By approximating the VRI (3.2) with a Riemann sum and using a second oegjéorTseries to
approximate the exponential, we get the discrete volume rendering intBy/allY

L/As—1 L/As—1
L(D)= Y C\iAs)A(ids) [ (1-A(jAs)),
i=0 j=it+1 (3.3)

with  g5(0) = Cx(0)A(0) = 1,(0).

Here, A(iAs) = (1 — T(iAs)) ~ (1 — (1 — 7(iAs)As)) = 7(iAs)As is the opacity. When
looking at equation (3.3), the reason for preferring this particular digzation of the VRI becomes

18 FFl-rapport 2014/01616



RGB A =1 - transparency
(emission) (absorption)
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Figure 3.5 (a) In Ray Casting, the final image is obtained by sending rays from tleeisdnto the
scene. The final color at each pixel is obtained by evaluating a rengl@rtegral along
samples containing optical properties (color and opacity) along each(lgyData to be
rendered are typically represented as a voxel set. Each voxel isiagso with a single
data point which is mapped to a color and opacity value giving the local erissid
absorption properties which can be used directly in¢heission-absorptiof26] model.

apparent. It is equal to the recursive evaluation ofdher operator [30]. Not only is this a useful
theoretical tool for describing the science behind direct volume rengldsirt it also enables the use
of existing general compositing (software and hardware) algorithms tterammlumes.

In order to produce images of the volume data, an algorithm must be usedlt@atevthe volume
rendering integral (equation (3.3)). The conceptually most simple algoighay casting[9, 22],
since it immediately follows from the discussion above. The basic idea ofsting is to determine
the value of each pixel in the image by sending a ray through the pixel intcctrees Typically,
when rendering volumetric data, the rays are parallel to each other apenakcular to the view
plane, see figure 3.5. The DVRI (equation (3.3)) is then evaluated &r ey by sampling the
volume at a series of sample points a distaceapart.

Other direct volume rendering techniques are splatting [44], shear-{24], and texture-based
direct volume rendering [7, 8], which is the algorithm VoluViz is based upon

3.5 Texture-Based Direct Volume Rendering

Hardware assisted volume rendering using 3D textures can providedtiteraisualizations of 3D
scalar fields [7, 8], The basic idea of the 3D texture mapping approachusetdhe scalar field
as a 3D texture. If the texture memory is large enough, the entire volume islabmed into
the texture memory once as a preprocess. To render the voxel setpfaesptally spaced planes
(slices) parallel to the image plane are clipped against the volume. Thedrardssthen exploited
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Figure 3.6 Direct volume rendering by texture slicing. First, data volumad eolor tables are
uploaded to texture memory on the graphics card as a preprocess, arset of view
aligned slices are clipped against the volume and blended in a back-tberder. The
bottom left image shows the result from applying volume slicing on a dataisgtfosir
slices only. In the bottom right image, a considerably larger amount afgdaare used
to render the same data set. This gives a much more continuous visualizitiendata.

to interpolate 3D texture coordinates at the polygon vertices and to regontte texture samples
by trilinearly interpolating within the volume. If a transfer function is used, therpolated data
values are passed through a lookup table that maps the values into colgpagity values. This
way, graphics hardware allows fast response when modifying cotbopacity. Finally, the volume
is displayed by blending the texture polygons back-to-front onto the vigpiane using thever
operator [30] (which is equivalent to solving equation (3.3)). This teplmis calledexture slicing
orvolume slicing Texture slicing is capable of producing images of high quality at interaciies.
Figure 3.6 shows an illustration of the steps involved when rendering volusieg texture-based
direct volume rendering.

Although 3D texture mapping is a powerful method, it strongly depends onapabilities of the
underlying hardware. When the size of the volume data sets exceeds thetarhavailable texture
memory, the data can be split into subvolumes (or bricks) that are small letodiginto memory.
Each brick is then rendered separately, but since the bricks have ¢ébdaeled for every frame, the
rendering performance decreases considerably.
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4 The VoluViz Rendering framework
4.1 Introduction

Even though most computer simulations involve the solution of a multiple set ofdealata fields,

much of the current data analysis focus on studying the data in a singleigddble manner only.
While single-variable visualizations can satisfy the needs of the user in npatigations, it is clear

that in some areas, such as in fluid mechanics research, it would be dytresatul to be able to
effectively visualize multiple fields simultaneously and the relation between themevér, due to

perceptual issues, such as clutter and occlusion, it can be very diafieilo produce an effective
visualization of multiple volumetrical fields.

To facilitate a more effective visualization of multiple data fields, VoluViz is desibnsing a flex-
ible multi-field visualization framework that is capable of combining a multiple setatd fields
(both temporal and spatial) into a single field, for rendering. This is actiigveugh a set of op-
erators. The final output is selected through a powerful and flexilslphical user interface which
makes it very easy to change between different types of visualizatidms.u3er interface allows
the generation of visualization scenes through drag and drop eventseatong the operators into
a volume scene graph. To enable interactive analysis, each visualizegine, svhich is the out-
come of a tree graph, is converted to a mathematical expression andpomesy GPU (graphics
processing unit) shader code to be run on the graphics card.

Interesting features in the data can be emphasized by manipulating tramséé&oms (to control
color and transparency of the data) in addition to applying feature eeh@mt techniques to en-
hance depth, boundaries, edges, and detail. The latter techniques caedto give the user a
better appreciation of the three-dimensional structures in the data.

4.2 Flexible Direct Volume Rendering

Our rendering framework is based on texture-based direct volumesriegd[7, 8] which is ex-
plained, in detail, in section 3.5. Here, a set of view aligned slices are clipg&idst the volume
and blended in a back-to-front order. The hardware is then exploiteddmolate 3D texture co-
ordinates at the polygon vertices and to reconstruct the texture sampleknaarly interpolating
within the volume. Typically, for single-field data volume rendering, data whre sampled at
each sample position on the view-aligned slice planes. The data valuesraradpped to a color
and transparency value and then used directly in the (discrete) volumerig integral

L/As—1 L/As—1
leye= > C(iAs)A(iAs) [ (1— A(jAs)). (4.1)
i=0 j=i+1

This particular integral is derived from themission-absorptioi26] model whereC(iAs) and
A(iAs) are the emissive color and opacity contribution at given sample points in thseand
As is the sampling distance between the individual slice planes.

VoluViz however, takes advantage of the flexibility of modern graphicsiliare to implement a
much more flexible variant of volume rendering. On modern graphics tee\a separate program,
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Figure 4.1 Flexible volume rendering pipeline used by VoluViz. By writing separate @Bgrams
called shaders, allows the user to control what is sent as local colorogatity values
when evaluating the volume rendering integral (eq. 4.1). Hence, it silplesmplement-
ing compositing operators, such as the merge operator, for local blgnairultiple
data sets.

referred to as a fragment program, or a fragment shader, can bd fralleach time a single volume
sample is processed in the above volume integral. This means that we cadeowdat is sent
as color and opacity contributions, and write our own shaders. Thislenabflexible way of
implementing a number of more sophisticated volume rendering techniquesssumhime shading,
non-photorealistic volume rendering techniques as well as multi-field voluntering.

A sketch of the flexible volume rendering pipeline can be seen in figure 4slopfosed to tra-
ditional volume rendering, which only handles a single data set, VoluViz aralize data from
a multiple set of data fields simultaneously. This means that we can upload multiplseds and
their associated transfer function into texture memory on the graphicsarti@n control the local
output by our fragment program. This is illustrated in the bottom right imagegafdi4.1, where
the two data set8 andB are merged locally into the same scene using a merge operator.

4.3 Framework Overview

To benefit from the flexible volume rendering pipeline, a powerful andtiméuframework is needed
that allows the user to quickly change between different data sets amsldypesualization tech-
niques.

The framework basically consists of data objects, volume objects, a volueme sgaph, and a
renderer. First, the selected data fields are stored as data objects tog#ttieformation such as
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Figure 4.2 (a) Volume shader scene graph. (b) Four different shader itemsttagid connection
areas. Single field areas are drawn as straight rectangles while multiptedieas are
drawn as rounded rectangles.

data range and time information. Then, volume objects are created from tlheeata and put in

the volume scene graph. Each volume object is defined by a uniform 3&r §ieédd and stored as

a separate 3D texture on the graphics card. In this process, the odgi@alalues are normalized
and stored according to the internal texture format specified by the Tikerframework supports

8-bit, 16-bit as well as 32-bit (floating point) precision.

A visualization scene graph is then created by connecting the volume objscisgorted operators
through a flexible graphical user interface (GUI). The scene grafiteis automatically converted
to a shader program which is used in the volume rendering pipeline.

4.4 Volume Shader Scene Graph

The scene graph consists of a set of nodes, caledier itemor scene graph itemawith input
areas on the top and output areas on the bottom (see figure 4.2). Thez gbms are connected by
connecting the input and output areas through drag and drop events.

To increase the user friendliness, the color and opacity (represewntdee bved, green, blue, and
alpha, (r,g,b,a), components), which are the output of most of the shiades, are hidden from
the user. This simplifies the GUI and makes it easier to switch between diffeéseralization
scenes. For single-value operafossich as thaliff operator, which can be used to calculate the
local difference between two selected data sets, the input values asetrad through the alpha

IWhile many of the shader items have the four (r,g,b,a) componentgassjrsingle-value operators only need a
single component as input which is sent through to the shader item as tizecalmponent.
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component. For consistency, the resulting output value is copied to all,thb,& components.
The same applies for the volume node which copies the sampled (scalarptiatewalues, after
texture lookup, in a similar way. The connection (input and output) are#isecdhader items are
currently of the two typefRGBAand Gradient They can either be defined as a single-field or a
multi-field connection area. While single-field areas only support a singleestiion to any other
shader item, multi-field areas can be connected to a multiple set of nodes. -fkidjlereas are
drawn as straight rectangles whereas multi-field areas are drawn redesbuectangles (see figure
4.2(b)).

The shader scene graph consist of a number of various shader itens @ntinuously extended
to include new operators. Currently, the following shader items are stemhor

e \Volume:Returns data values from the associated data set after a 3D texture lookup

e LUT: Performs a 1D transfer function lookup. A lookup table (LUT) can balugeny level
in the scene graph. More details on transfer functions can be founctiioses.2 which
covers color mapping. A graphical user interface of the transfertiomeditor is obtained by
double-clicking on the shader item. More details on how to use the transfetidn editor
can be found in section 5.4.4.

e Color Out: This is the root node of the shader graph. It contains the fDall) = (RGB, A)
values that are used in the volume rendering integral (eq. 4.1).

e Compositing OperatorsThe scene graph supports all the compositing operators defined by
Porter and Duff [30] and the merge operator defined by Helgeland ¢1L.74l.

e Color/Alpha: Combines two fields by taking the RGB values from the first field and the
opacity value from the second field.

e Mask: This operator combines two fields by multiplying the alpha value of the firsteshos
field with the alpha value of the second field, while taking the RGB value frorfirdidield.

e Diff: Computes the difference between two fields.
e AbsDiff: Computes the absolute difference between two fields.

e Gradient: Computes the gradient using a second-order central differencenscfdne evalu-
ated gradient is based on the total expression that is sent as input tathengroperator.

e NormalizeGrad:Can be used to visualize the gradient field. It normalizes the local gradient
and sends the vector component values through the RGB values. Thevalpk is set to 1.

e GradientCorr: Evaluates the gradient similarity measure [33] of two selected fields.
e Lighting: Computes the Blinn-Phong [6] volume shading model.

e Contours: Computes contours from the the input field. This operator can be useédtecr
silhouettes.
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4.5 Shader Code Generation

Our shader composer evaluates the volume shader expression throeglrave traversal of the
shader tree graph starting from tlmlor Outroot node. First, all the volumes and LUTSs are lo-
cated. Once found, the corresponding data objects are located araitedrto 3D and 1D textures,
respectively. A shader program is then generated by replacing aleastthder nodes with corre-
sponding GLSL shader language code. A new shader program tedreaery time the user makes
changes to the scene graph. For instance, the shader graph depiigede.2(a) is converted to
the following shader code.

/«+ Shader generated by VoluViz/

uniform sampler3D Volumel;
uniform sampler3D Volume2;
uniform samplerlD LUT1;
uniform samplerlD LUTZ2;
varying vec3 TexCoordO;

void main ()

{

/+* Resl = Volumelsx/
vecd Resl = texture3D (Volumel, TexCoord0O.xyz).rgbr;

/%x Res2 = LUT1(Resl1)x/

vecd4 Res2;

Res2.rgb = texturelD (LUT1,Resl.r).rgb;
Res2.a = texturelD (LUT1,Resl.a).a;

/+ Res3 = Volume2x/
vec4 Res3 = texture3D (Volume2,TexCoord0.xyz).rghbr;

I/« Res4 = LUT2(Res3)x/

vec4 Res4;

Res4.rgb = texturelD (LUT2,Res3.r).rgb;
Res4.a = texturelD (LUT2,Res3.a).a;

/+ Res5 = Atop(Res2,Res4 )/

vec4 Res5;

Res5.rgbh = Res2.a Res2.rgb + (1- Res2.a)x* Res4.rgb;
Res5.a = Res4.a;

gl_FragColor = Res5;
}

The most complex shader item is the gradient operator. Since the gradiebecvaluated at any
level in the scene graph this implies that the entire expression prior to theegrathde has to
be evaluated at six different sample positions (assuming a second aiteedffference scheme is
used). The beauty of the system is that any new field can be computed etiegraph, mapped
to a color and alpha value through a separate texture lookup, and theéeredncorrectly with a
gradient based light model or a non-photorealistic rendering technique.

Figure 4.3 shows an example where data from a hurricane simulation [28hdered using a bit
more advanced scene graph construction including the computation eémggsdnd the use of a
gradient based light model.
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Figure 4.3 Visualization of volumetric streamlines giving the local wind direction of theibame
data. The streamliney@¢lume? are color encoded by the velocity magnitustelmel)
using theColor/Alphaoperator and rendered using a gradient-based light model.

4.6 VoluViz Operators

4.6.1 Compositing Operators

One method for combining multiple data sets into a single field is by using the compagignators
presented by Porter and Duff [30]. Here, a composited color andtgpadue of the two volumes
A andB is obtained by the formulas

A:aAFA—i—aBFB, (4.2)
F F
O — CcAQA A‘;CBCZB 37 (4.3)

wherec; anda; are the color and opacity values associated with the contributing volumes;and
is a weight function. The following combination of weight functions definesdperators given
in table 4.1. These operators are very useful for showing correlagbme®n multiple data fields,
such as finding overlapping regions of selected data sets. Differeratops correspond to different
visible regions using union and intersection operations on the opacity values

As an additional compositing operator we have also implementeohéigeoperator presented by
Helgeland et. al. [17]. For some applications, the merge operator is gbéfecompared to, for
instance, the over operator since this expression holds no precedemsearea covered by multiple
data fields (see table 4.1). It also handles arbitrary number of input fisldpposed to the binary
operators presented by Porter and Duff. The merge operator is lgywtre formulas

A=1- f[(l - a;) (4.4)
=1
C=0ca)/ ) ai (4.5)
=1 =1
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Table 4.1 Compositing operators. The alpha (or opacity) values are dat wompletely opaque
(a; = 1) for both the visible (blue and red) regions defined by the data4etsd B in all
the examples.

| Operations | Fy | Fa| Result |
A 1 0 o
B 0 1 QO
AoverB 1 1—ay o
BoverA 1—ap 1 o
Ain B ag ol 09
Bin A 0 a | Q9@
AoutB 1—ap 0 :
BoutA 0 1—as | ()
A atopB ap I —aq ‘ ’
paond | 1-u o @
A xor B 1—ap 1—ay (:)
AmergeB | eq. (4.4),(4.5) eq. (4.4),(4.5) o
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(a) (b)

Figure 4.4 (a) Visualization of vortices generated in the wake of a radome mountebdeoR3-C
aircraft. (b) A zoomed in rendering of the vortices.

Figure 4.5 gives an example where we demonstrate the usefulness ofmtipesitng operators
by showing relationships between three different vortex identification uneasised on a channel
flow simulation data set [13]. In fluid dynamics research, the study of \astis important for
understanding the underlying physics; vortices are often viewed assfttesvs and muscles of
turbulence” [20]. In engineering applications, vortices can either ls&ratde or undesirable and
attempts to promote or to prevent the occurrence of vortices are useptfimizing and modifying
design. Figure 4.4 shows an example of undesirable vortex formatioatedran the wake of a
radome mounted on the P-3C aircraft [5]. The turbulent wake impactstparmbf the aircraft and
may trigger vibrations in the aircraft.

Many vortex-detection methods have been proposed in the literature. Atnemgost popular and
successful identifiers are the three criteria

e helicity (v - w),
e enstrophy(||lw||?), and

e X2 [19],

wherev andw are the velocity and vorticity vectors, respectively.

In Figure 4.5(a), the relation between the and the enstrophy field is revealed using #tep
operator. The operation\{ atop enstrophy) gives a rendering where the visible region (given by
the opacity) is defined by the enstrophy field while the color is determined thyfledds but with

an emphasis on th®, field. Setting the alpha values of the structures equal to one results in a
rendering where regions occupied by the intersection of the two fieldscdoeed by the), field
while the remaining region of the enstrophy structures is colored by theophstfield. Hence, we
are able to see the spatial relation between the two fields. Regions of higlityanagnitude result
both in vortex cores and vorticity sheets. By using the atop operator wibaseble to distinguish
between the vortex cores (red) from the vorticity sheets (gray/whitedabe seen in figure 4.5(a).
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(b) Helicity in A,

Figure 4.5 Visualization of relationships between three different vortex identificati@suores using
compositing operators. (@) The operatiog atop enstropy is used to distinguish the
vortex cores (red) from the vorticity sheets (gray/white). (b) Individwatices defined
by the)\s criterion are colored by the helicity using tlireoperator. Red and blue colored
vortices indicate clockwise and counter clockwise rotation, respectively.
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Figure 4.5(b) gives another example whereitheperator is used to convey information about the
spatial correlation between helicity and vortices defined bytheriterion. Here, the visible region

is defined by the\, field while the color is determined by the helicity field. There is a strong
correlation between helicity and coherent structures in a turbulent flddy fed this quantity has
previously been used to extract vortex core lines [23]. The assumpttbatishat near vortex core
regions, the angle betweenandw is small, which means that local extreme values of helicity can
be used as indicators of vortex cores. The sign of the helicity value indita¢edirection of the
rotation (or swirl) with respect to the streamwise velocity component. Pos#ives give clockwise
rotation while negative values give counter clockwise rotation. In figusébd individual vortices
defined by the\, criterion are colored by the helicity. Red and blue vortices indicate clockavide
counter clockwise rotation, respectively.

4.6.2 Feature Enhancement Operators

Even though themission-absorptiomodel [26] and the resulting volume rendering integral (equa-
tion (4.1)) does not take external light sources into account, shadirajwhes can still be achieved.
Volume shading can increase realism and understanding of volume datd.vdome shading is
computed using the Phong [29] or Blinn-Phong [6] illumination models. Theltireg color is a
function of the gradient, light, and view direction, as well as the ambient, s#iffand specular
shading parameters.

Traditional local illumination models is based upon a normal vector which ihescthe orientation
of a surface patch. In volume rendering no explicit surfaces exist. §edd, the model is adapted
assuming light is reflected at isosurfaces inside the volume data. Forrafgus p an isosurface
is given as:

I(p) = {x|f(z) = f(p)}

with normal,n, defined as

Vi(p) 0f(x) 9f(x) Of(x)
n(p):m, 1) = ( ox = Oy = Oz )
A local illumination model can thus be incorporated into the emission-absorptiaelnby using
the gradientV f(p), as the normal vector. The volume shading is typically added to the emissive
color contribution in the emission-absorption model resulting in an alternatil contribution,
Cyolume, SUbstituting the pure emissive term in the volume rendering integral (egoy.1)

C’volume - Cemission + Cilluminationv (Cillumination - IPhong|IBlinnPh0ng)- (46)
The Blinn-Phong model can, for instance, be expressed as

IBlinnPhong = Iambient + Idiﬁuse =+ Ispeculara

4.7)
= ko + ka(1-n) + ks(h - n)®,

wherel is the light direction vectorh is the half vector which is halfway between the viewing

vector and the light directiors, is the specular power arigl, k; andk, are the ambient, diffuse and
specular coefficients.
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Figure 4.6 (a) Traditional direct volume rendering without any featureamcements with associ-
ated transfer function (b). (c) Gradient-based volume shading (BlinmnBimodel) with
associated transfer function.

Figure 4.6 demonstrates the effect of applying gradient-based volume illtiominia a selection of
vortices from a simulation of stratified turbulent shear layer [43]. Theréighows the rendering
result both with and without a local illumination model, in addition to the transfectfan used for

the two cases.

It is important to note that the transfer function gives the mapping to the emitssin in equation
(4.6) only and that the contribution from the illumination model is added to the amigsim to
produce the final local color. As a result, more "white” light is added to tene when applying
volume illumination compared to traditional volume rendering (when using the samsfer func-
tion for the emissive color). When designing transfer functions well sdidedolume illumination,

a piece of advice is thus to use lower values for Ya¢ue component in the HSV color system
(see section 3.2) than what would be ideal for traditional volume rendairitigut a local illumi-
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Figure 4.7 Visualization of contours in a volumetric teddy bear and torus sieta

nation model. This is illustrated in figure 4.6. Here, a constéitie V' = 0.65, is used for the
transfer function associated with the local illumination model, whetéas 1 is used for the pure
emission-absorption model.

Another way of enhancing volume data features is by using Non-Phéstie&olume Rendering
(NPVR) techniques. The overall goal of NPVR is to go beyond the megphkaiorealistic vol-
ume rendering and produce images that emphasize important features mtahesuth as edges,
boundaries, depth, and detalil, to provide the user with a better appre@étiumthree-dimensional
structures in the data. NPVR techniques are able to produce artistic anchiilesteffects, such
as feature halos, tone shading, depth enhancements, boundargemieats, fading, silhouettes,
sketch lines, stipple patterns, and pen-ink drawings [18, 40, 31, 3&625-or volumetric data, sil-
houettes or contours can, for instance, be obtained by computing a cartensity field,/contours,
evaluated by the following equation

Tcontours = g(vaH)(l - ||(V : n”)n' (48)

In our implementation of theontoursoperator, the derived intensity fieldgontours defines the
opacity while the colors is sent as input parameters to the operator. Figushdws an example
where equation (4.8) has been used to create volumetric contours of taveeda using (|| V f||) =
IV f] andn = 8.

Figure 4.8 illustrates different feature enhancement techniques useskdection of vortices from a
channel flow [13]. The images clearly reveal how volume shading anephotorealistic rendering
techniques can add detail, enhance spatial structures and give tlssargc@D appearance of the
volume data.

The above example also demonstrates the flexibility of the presented visualizaticework. As
volume shading and NPVR techniques, in addition to compositing operatotsaaséer functions,
can be assigned individually to all of the volume data objects, this providetadet! control of the
final rendering appearance, enabling a numerous variety of visuatigagiech as the ones depicted
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Figure 4.8 Feature enhancement techniques used on a selection of vorticesirget) use of the
volume integral given in equation (4.1) without any feature enhancenm@jtSradient-
based volume shading (Blinn-Phong model). (c) Feature enhandersiag limb dark-
ening [16]. (d) Volume shading in combination with limb darkening. (e) it
rendering using the gradient-based contour operator. (f) Volumeisad combination
with silhouettes.
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(a) (b)

Figure 4.9 (a) Regular volume rendering of an MRI data set [41] of a human brdl) Volume
rendering (of the same data) in combination with compositing operatorsfeattire
enhancement techniques used with the purpose to reveal (and erg)tzateries in the
human brain.

in figure 4.9. Here, a single MRI data set of a human head [41] is visualizbdlifferent rendering

techniques resulting in two quite different visualizations. One of the visu@liris rendered with
regular volume rendering (figure 4.9(a)) while the other one is visualiza@tyua combination of
compositing and feature enhancement operators (fig 4.9(b)). The l&telization is generated
with the purpose of emphasizing the major bloodvessels inside the humandreating a ring of

arteries located at the base of the brain known airde of Willis.

Figure 4.10 shows another example where non-photorealistic rendecimgiqeies have been used
to visualize data from a hurricane simulation [28]. Here, areas with thdagteaind speed have
been rendered in grey colors using volume shading (revealing the 3&twwf the hurricane)
while areas with the lowest wind speed have been rendered in white tolgd asing volumetric
contouring (revealing the eye of the hurricane).

In both the two latter examples (figure 4.9 and figure 4.10) variations of rchraf techniques
known asfocus+contexvisualization has been used. In focus+context visualizations, some®bjec
or parts of the data are shown in detail, while other objects or parts actasext While the data

"in focus” often are displayed rather opaque (to emphasize these s83gtbe rest of the data can
be shown rather transparent.
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Figure 4.10 Hurricane data visualized using two different rendering techniques.asAwith the
greatest wind speed are rendered densely, in gray, (with high opagipy volume
shading to enhance the 3D structure of the hurricane. Areas with the tovied speed
are visualized in a more semitransparent way (using lower opacities) rimbatation
with silhouette rendering, in white to red colors, to reveal the eye of thedarre.

4.6.3 Numerical Operators

In addition to the compositing and feature enhancement operators, nunogrécators acting di-
rectly on the volume data can also be incorporated in the proposed visualifatioework. Two
operators that we have found particularly useful are the operBiffrand AbsDiff given as

Diff (A, B) = A— B, Diff € [~1,1],
AbsDiff(A, B) = |A — B|, AbsDiff € [0, 1].

These can be used to estimate the local difference between two data fledddiffErence operators
can be used for a variety of applications. It can for instance be ugsetefiugging of numerical
code, but also for finding the effect of adjustments made to a simulation.eTdagsrange from
minor adjustments such as the change of simulation parameters to larger adfasimerding
the change of boundary conditions and choice of model, to major adjustmetitsas adding or
removing terms in the mathematical equation describing the problem. In additian he used
to visualize the change occurring between different time steps of a simulatbnasucalculating
time derivatives. Time derivatives can be obtained by calculating finitereiftees, which can be
computed using the diff operator on two copies of a chosen data field with a tifeeedce equal
to one. Then, a first order backward or forward difference caoliieined depending on the setup.

Figure 4.11 gives an example where &iesDiff operator has been used to examine the convergence
of statistical steady turbulence in a chamber simulation [11]. The visualizdiamssregions where
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Figure 4.11 Visualization of statistically non-converged regions of a turbulent charfitbe simu-
lation.

the statistics of the flow has not yet reached a fully converged state. Tdasésby computing the
root-mean-square (RMS) of the velocity for two different time steps fowargtime interval. For
statistically converged regions the RMS value should not change, whiahsitiest we can visualize
numerically non-converged regions inside the computational box by apgyptlien diff operator on
the two RMS fields and then render all areas that are not close to zetseHid.1 shows the result
after a transfer function lookup table (LUT) has been connected to tipeioiiom the diff operator
in addition to a gradient-based volume shader operator.

Figure 4.12 provides another example where wheralifieoperator is used to compare two chan-
nel flow simulations [13] using different boundary conditions. While tht filata set is obtained
using no-slip boundary conditions, the second channel flow simulatiomergted by first splitting
the channel in the middle and then using a slip boundary condition at one sfitfaezes. Data
derived from the second simulation is then compared to data from half ohdranel from the first
simulation. The data is compared by visualizing regions of difference oiryileé® to the previous
example (see figure 4.11), regions of difference are enhancedgrsidiggnt based volume shading.
Volume shading has, in both cases, been used in combinatiotinviidarkening16] to highlight
the boundaries of the visualized regions.

4.7 4D Data Analysis
4.7.1 Animation

Once the desired data is selected and an appropriate visualization scexatas cour visualization
framework handles two types of navigations through the time-varying datalTée data set can
be explored by either dragging a time slider or by using the animation utility. The fioher s
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Figure 4.12 Comparison of two channel flow simulations with different boundary itiong by vi-
sualizing the local difference between the two solutions.

very useful for investigating the data at different time steps. Once a newdtiepeis selected,
the visualization scene graph is automatically updated accordingly. The time felatare also

simplifies the process of finding transfer functions that are well-suitedh®mhole time-series.
Finding good transfer functions is often a tedious process that sometinudgagclipping of data

value ranges. To facilitate this process we have implemented a histograemeetitht also updates
according to the time slider. The user can select between continuous wpdaddates that occur
only when the time slider is released.

The animation utility, on the other hand, allows a pre-defined and a more dedtamimation of
the time-dependent data. Here, the user can select the time interval, thefdtte data sets to be
loaded, the step size, as well as pre-generated user interactionssotatimn and zooming.

4.7.2 Time-Varying Multi-Field Volume Visualization

The most common method to investigate the time-dependent behavior of a diatéhsetigh ani-
mation. Even though animations can be sufficient, for a number of applicaiticas be difficult to
analyze spatio-temporal relationships using this technique. This is due tethef jpositional infor-
mation when moving between individual time steps. To facilitate a more complete-spaoral
investigation of the multi-variate and time-varying data, VoluViz is designed wsimgvel 4D data
analysis framework. Instead of just relying on animation utilities, VoluViz alggpsrt the projec-
tion of a multiple set of data fields (both temporal and spatial) in the same sdeiseextended 4D
analysis functionality is incorporated into the already presented shagiee geaph (section 4.4) in
the following way. Multiple copies of selected data fields from the time-varyaig dets can be
generated by the user. Each of theseopies have assigned a local time difference which is added
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Figure 4.13 An example of a volume scene graph used to visualize data from threemiffene
steps in the same scene.

to the global time to produce the local time of each copy
(time); = global time+ (time difference), i =1...n. (4.9)

When data copies are used to generate volume objects in the volume sgamehgdocal time of
each volume is used when accessing the data. Hence, the volume sg@neeagraonsist of multiple
data fields from different time steps. This allows the computation of time-vaxyirggtities such
as time derivatives (provided that the time difference is sufficiently small)ragle-dimensional
projection volumes. When the global time is changed, all of the data volumessoehe graph are
adjusted accordingly. For example, if the scene graph is constructeditdizésthe spatio-temporal
relationship of a time-evolving volume structure by visualizing the structurereé ttifferent time
steps {1 = 0,t2 = 5,t3 = 10) for t = 0 together in the same scene, an animation of the scene will
preserve the time difference between the volumes for all scenes (asddhg cal time steps are
inside the global time interval). Hence, we get a 4D visualization which botibiexime-evolution
as well as the depiction of spatio-temporal relationships at each time stepaniithation. Figure
4.13 gives an example of how such a scene graph can be constructed.

Figure 4.14 gives an example where the 4D data analysis framework o¥i¥dias been used to
depict the spatio-temporal evolution of the breakdown of a single vortex riiere, the vortex
structure is rendered in the same scene (usingrtbreoperator) at six different time steps using
a constant time step size between the time-varying data. To distinguish betweaeditidual time
steps, the vortex structure is visualized using six different colors stéfrtingred color (giving the
earliest time step) to a purple depiction of the vortex structure (showing trst tatee step in the
time-evolution). The visualization clearly depicts how the ring structure botlesiand deforms in
space as time evolves. For instance, one is able to see how the ring fiestsasiin size, then starts
to tilt forward before it begins to break down.
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Figure 4.14 Temporal-spatial visualization of a breakdown of a single vortex ringioykaneously
rendering the data from six different time samples in the same scenegeapee by six
different colors).

Another example showing the usefulness of the 4D analysis framework athpresented in the
second paragraph of section 4.6.3 and in figure 4.11. Here, two diffénee steps of a derived sta-
tistical quantity is compared to reveal all statistically non-converged regibasurbulent chamber
flow simulation.

In addition to the local time difference functionality, each individual datacitgan also be ‘frozen’

in time. This functionality can for instance be used for visualizing the time-evelufosolume
structures starting from a fixed time, with the initial structure kept in the scenalfftime steps.
With two fixed time stepst( = A andty = B), an animation could show how the structure evolves
from time stepA to time stepB, with both fixed structures kept in the scene for all frames. This
is illustrated in figure 4.15. Here, a silhouette rendering of the hurrica8gi$2rendered at two
fixed time steps for all frames to provide contextual information, thus inorgdke depiction of
temporal-spatial relationships in the data.

4.8 Interactive Analysis

To facilitate interactive analysis of a three-dimensional time-dependergeiatae rendering frame-
work of VoluViz supports an additional set of tools. In addition to manipulatirgublume scene
graph and individual transfer functions, the system supports clip plaraipulation, data-subset
selections, and other user functions, at interactive rates. Thesé# trelsithat can be used to di-
minish the occlusion effects by for instant reducing the complexity of theesbgrfocusing on a
region of interest.

In addition, a data caching system is implemented allowing whole time series desetiata sets
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Figure 4.15 Snapshots from an animation of a hurricane data set where silhouettes lofitHicane
at two fixed time steps are rendered in all frames.

to be cached in the CPU memory, assuming there is enough memory available écefittitte data
set. As the transfer of data from the hard-drive to CPU-memory tendstteebmain bottle-neck for
the animation system, this helps speeding up animations. This caching mecharfi@rmitance,
very useful when studying the spatial-temporal evolution of non-steadyghenomena.

To support large-scale data analysis, the texture based volume slicingaieehhas been imple-
mented using a brick-based volume renderer. A maximum 3D texture size, withpier limit
being what is supported by the used graphics card, is specified byeheTlgs value defines the
largest possible 3D brick size that can be used by the rendering systeem, dependent on the
exact size of the data set, the largest volume used in the volume scenasggsgphinto a number
of bricks which are sorted and rendered in a back-to-front ordersupport a wide selection of
graphics cards, the bricking algorithm splits the volume into a number of pofsevo textures.

If multiple data fields of different sizes are visualized in the the same scBwe]wames are split
according to the brick configuration defined by the largest volume. Whemrslibset selections are

made, this could change the brick constellation and result in a configuratmiring less amount
of texture memory.

2Some older graphics cards only support power-of-two textures.
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Figure 5.1 (a) Render window. (b) Volume Scene Graph window. (&3HBle browser.

5 VoluViz User Manual: Part 1 - Rendering Volumes
5.1 Introduction

\VoluViz is an application designed for interactive analysis of both time-dégetrand static volume
data. VoluViz has many features including:

e Fully interactive color table editor for specifying transfer functions
e Support for interactive visualization of time-varying fields
e Support for interactive multi-field visualization through a flexible scenglgeditor

e Interactive clip plane and picking of subset utilities for easy navigationetitita

Currently, VoluViz is restricted to handle data defined on a regular thieestsional structured
grid. It reads files in the HDF5 [1] format and includes a browser feyaevigation of HDF5 files.

5.2 Starting a VoluViz Session
To start a VoluViz session do one of the following approaches:

- start a new voluviz session

% vol uviz &

- start with a particular data set as input parameter
% vol uvi z data. h5 &

- start voluviz with an already saved scene

% vol uvi z scene.vv &

As default, VoluViz starts with two windows activated, namely BRender windowfigure 5.1(a)),
which is VoluViz main window, and th&cene Graph windoigure 5.1(b)).

When a data file is opened the user can pick data sets by double clickinghosenadata set in the
HDF5 browser windowfigure 5.1(c)). Once a data set is double clicked, the data set camibe fo
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Figure 5.2 (a)-(c) lllustration of necessary steps needed to make a visualizatemesgraph in
VoluViz. (d) Rendering result.

in the Data listin the Scene Graph windo\figure 5.2(a)). Individual data sets and operators can
be put into the scene graph through drag and drop events. Figurg Stizflys an example where
a single data set and a transfer function is put into the scene graph wikdloally, a scene (tree)
graph can be constructed by connecting the scene graph items with éatewssing drag and drop
events) as depicted in figure 5.2(c). Once the scene graph item €alledOut, which is the root of
the scene graph, is connected to the tree graph, the output is rendénedémder window (figure
5.2(d)). More details on the scene graph and supported operatorsxaitipies can be found in the
sections 4.4-4.6.

5.3 Render Window

VoluViz main window (figure 5.1(a)) consists of a render area in additionrteeau system, from
which commands and functionalities can be accessed from.
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5.3.1 Using the Mouse

To rotatethe volume, press and hold the left mouse button while moving the mouse.

To movethe volume, press and hold the middle mouse button while moving the mouse.

Tozoomin and out, press and hold the right mouse button while moving the mouse haskwa
and forwards.

The view can be aligned with the y andz axis by pressing, Y andZ respectively. Pressing
one of these combinations twice in a row flips the view 180 degrees.

5.3.2 Light source

The light source can be activated by pressing and holdingtHebutton. This displays an icon of
the light source giving its location and direction. To rotate the light sourees@trl and hold the
left mouse button while moving the mouse. The light source is used when volataésdendered
using volume shading and gives the light direction vector used in the local ilairmmmodel (see
section 4.6.2). Figure 5.3 shows the result from using three differentdigéctions when rendering
a vortex ring structure. The default light direction is set to be parallel toridw direction which
gives the rendering displayed in 5.3(b). The light source is also used wéndering geometries
(see section 6.4).

@) (b) ()

Figure 5.3 Rendering of a volumetric ring structure using three different light dirextioa) Light
source from the left. (b) Light source direction parallel to the view directi@).Light
source from the right.

5.3.3 File Menu

New clears VoluViz for a new session.

Load volume starts the HDF5 browser (see figure 5.1(c)) which can be used to fildbpen
volume data sets. (Hotketrl+V)

Load mesh loads a VoluViz mesh file (see section 6.2). (Hotk€yrl+M )
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Snapshot takes a snapshot of the rendering area of the render window ansl is@geone of the
supported image formats.

Save scenesaves the VoluViz session to file. The file, which is written as a text file, capbeed
and modified by the user in any text editor.

Load sceneloads a VoluViz session.

Quit quits the VoluViz application. (Hotke\Ctrl+Q)

5.3.4 Edit Menu

Background sets the background color. This can be:

- asingle color.

- avertical gradient between two colors.

- a gradient between four colors defined at the corners of the screen
The colors are chosen by entering a string of color names (e.g. “blait&"vor by its HEX
value. See the Qt documentation [2] for f@€olor class undeset NanmedCol or () for a

list of valid colors. In addition, VoluViz also allows the use of any valid X11locmames. A
full list of valid X11 color names can be found on the web [3].

Bounding Box sets the color of the axis aligned bounding box surrounding the volume data.
Clip Plane sets the color of the clip plane.

Physical Coordinates sets the physical coordinates of the volume data domain. The default phys-
ical data domain i© = ([-1,1],[-1,1],[-1,1]), given in thex, y andz directions, respec-
tively.

Subset opens the subset dialog box which can be used to pick a subset of tineevdbmain to be
rendered (see figure 5.4). (Hotke@trl+S)

Figure 5.4 The subset editor can be used to render only a subset chtheloimain.
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Sampling rate sets the number of slices that are used to render the volume (see sectioif 3.5)
thereducedcheckbox is checked, the number of slices are reduced during usgrutzdion
of the volume (moving, rotating, scaling etc.). This decreases the rendedrigoad and
increases the interactivity of the application. (Hotk&yrl+R)

Field of View Angle sets the field of view angle used in the (perspective) projection of theescen
Using the analogy of a camera lens, the field of view defines how wide movidine view is
(see figure 5.5). (HotkeyCtrl+F)

(@) (b)

Figure 5.5 MRI data rendered using different Field of View (FOV) angles. (a) FOyla= 20°.
(b) FOV angle= 60°.

Volume Transform can be used to scale the volume in the; andz directions.

Texture interpolation sets the interpolation mode used when rendering volume data. The user can
choose betweelmear interpolation andhearestineighbor look up when sampling the data at
given locations in the volume.

Texture format sets the texture format used when storing the volume data as 3D textures on the
graphics card (see section 3.3). The framework supports

e Byte - stores the data as 3D textures with 8 bits precision.
e Short - stores the data as 3D textures with 16 bits precision.

e Float - stores the data as 3D textures with 32 bits precision.

Datasets opens theDatasets window The dataset window is used for handling geometries (see
section 6.2.1). (HotkeyCtrl+F)

Vis Objects opens thé&/is Objects windowThe Vis objects window is used for handling geometries
(see section 6.2.2). (HotkeZitrl+O)

Scene Graph opens theéscene Graph windowThe scene graph window is used for handling and
manipulating data volumes (see section 5.4). (Hotkayl+O)

FFl-rapport 2014/01616 45



Animation (Movie) opens theAnimation window The animation window is used for creating
animations (see section 5.7). (Hotketr|+M )

5.3.5 View Menu

View All resets the default view of the data scene.
Axis displays the coordinates of the volume along:thg andz axis. (Hotkey:Ctrl+A)

Bounding box displays an axis aligned bounding box surrounding the volume.
(Hotkey: Ctrl+B)

Clip plane enables the clip plane. The volume on one side of the plane is displayed whiltnére
side is “clipped” (see figure 5.6).

Figure 5.6 lllustration of the use of a clip plane to see the internal informaticand¥IR| data set.

The clip plane can be manipulated using the mouse in conjunction with the kelyboar
- To rotate the clip plane pressShift and hold the left mouse button while moving the
mouse.

- To slidethe clip plane along the plane normal, pr&sftand hold the middle mouse
button while moving the mouse.

- The clip plane can be aligned with they andz axis by pressinghift+X, Shift+Y and
Shift+Z respectively. Pressing one of these combinations twice in a row flips the clip
plane 180 degrees, so that the visible portion of the volume becomes invidipfee()
and vice versa.

- Toresetthe clip plane to the initial configuration, preSkift+R
(Hotkey: Ctrl+P)

Reset Light resets the light source direction.
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Figure 5.7 The scene graph window.

5.4 Scene Graph Window

The Scene Grapldialog window basically consists of three windowsTanlswindow displaying a

list of various operators, Bata window displaying loaded data sets and the main window showing
the scene graph rendering areahere data sets and operators can be used to construct different
types of visualizations, see figure 5.7. In addition, the scene graph wihds a menu system and

a time slider, located at the top and bottom, respectively. Both the data and iodi3ng can be
separated from and put back into the scene graph dialog window tharaghand drop events (at

given valid positions).

5.4.1 Using the Mouse

All scene graph items can be accessed through drag and drop events.

- To move an item, press and hold the left button while moving the mouse.

- To drop an item, move it over to the scene graph rendering area andedlealeft button.

5.4.2 Item Menu

Delete can be used to delete activated scene graph items from the scene grd@ingarea. Scene
graph items can be activated by pressing the left mouse button while holdingptiee cursor
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over an item. (HotkeybDel)

Clear Sceneclears the scene graph by removing all items from the rendering areatkefo
Ctrl+C)

5.4.3 Scene Graph Rendering Area

In the scene graph rendering area, scene graph items can be puetagetlree graph to construct
various types of visualizations. All scene graph items have connectias argich can be used to
connect the items together. Input and output connection areas caunruzkdbthe top and bottom of
the scene graph items. Most of the items have both input and output cormaias while some

special items, such as data (Molume) items andXbler Outitem, only have one of them. Some of
the available scene graph items can be seen in figure 5.8.

[ ] [ ] [ =] [ ]
Volumel LUT1 Gradient Lighting Color Out
ouT ouT ouT

Figure 5.8 Some available scene graph items.

Currently, there are two types of connection areas in VoluViz. These are

e RGBA This is the standard connection type and sends data (color and opatit@g)h the
(r,0,b,a) components. The standard connection areas are ninaed OUT.

e Gradients This connection type sends and receives a gradient vector usinggt® com-
ponents. The gradient connection areas are naid andG:OUT.

Connection areas can only interact with their own type.

Making a connection

- To make a connection between two items, start by pressing and holding thés roidtbn
while holding the mouse cursor on a connection area. Then finish the @@mmby moving
the mouse cursor to a new connection area and then release the mouselbtiitononnec-
tion was made successfully an arrow will be made between the two chosengregh items,
see figure 5.9.

- To delete a connection, first activate a connection area by holding theenmusor over
a connection area and press the left mouse button (see figure 5.10(&)). press th®el
button. This will delete all arrows connected to the activated connectian (aee figure
5.10(b)).

To learn more about the different operators (with examples) read thiersed.4-4.6.
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Figure 5.9 Scene graph items are connected together by connecting an input gnd oannection
area by arrows.

Volumel Volume?2
ouT

Volumel
ouT

__________________

(a) (b)

Figure 5.10 Deleting connections. (a) Activating a connection area will display all coting ar-
rows in dashed style and with grey colors. (b) PressingRleébutton will remove all
activated arrows.

5.4.4 Color Table Editor

The color (lookup) table editor can be accessed by double clicking™® operator in the scene
graph rendering area. The editor is divided into three main parts (see fglit).

- Thecombined sectiomclude a global view of the color table and a zoomable detailed view.
- Thecolor spacecombo box allows you to choose between HSVA and RGBA color spaces.

- The channel viewsshows the color table for each color component. The channels will be
hue saturation valueandalpha, orred, green blueandalphadepending on the chosen color
space.

To modify the color table, the user inserts and manipulates a numieotdin the desired channel
view.

- Toinserta knot, press the middle mouse button.

- To movean existing knot, move the mouse over the desired knot, and while pressitgjtthe
mouse button, drag the knot to its new position.
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Figure 5.11 The Color table editor.

- To deletea knot, move the mouse over the desired knot and press the the right mutose b

Each channel has an interpolation mode (linear, spline or Gauss) thaniets the interpolation
function between knots.

The exact operation of the color table depends on the input data sentdoltineeditor. VoluViz
supports the following types of (texture) color mappings:

- One-component (texture) color mappinghis is what normally occurs in the visualization
scene graph, when (for instance) a data set is used directly as inpabtoraeditor. Then,
the same (single) scalar component is used in the mapping for all the (r,grl{fapw,a)
channels.

- Two-component (texture) color mappi@his is what occurs when the input contains two sets
of scalars. Then, the first scalar component is mapped using the (rg(b)se) channels,
while the second scalar component is mapped using the alpha channel. appisni, for
instance, when two data sets are combined into a single output usiGglitiéAlphaoperator
and then used as input to a color table editor.

In the current version of VoluViz, the color tables have 256 entries. éf3D data are stored,
internally, as (byte) textures with 8-bit precision there is a one-two-omesjpondence with the
mapping of the data and the number of entries in the color table. If the dattbesd asing 16-bit
(short) precision or 32-bit float precision, interpolation is used in the oetpping to colors and
opacities. More information on color mapping and texture mapping can bel feection 3.2 and
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section 3.3, respectively. The color editor supports saving and loadiioglar tables. Load and
save functionality can be accessed from the color editor file menu.

5.5 Tools Window

The tools, in VoluViz, can be accessed throughThelswindow, see figure 5.12. The tools can be
made available in the scene graph rendering area using drag and erap ésee section 5.4.1).

tools ]
- Operators

Ower

In

Out

Atop

Xor
Color/Alpha
Mask

Merge

Diff

AbsDiff
GradientCorr
NormalizeGrad

- LUTs & Lighting
LT
Gradient
Lighting
Contours

Figure 5.12 Tools window.

5.6 Dataset Window

Once a data set is loaded by the HDF5 browser, the data set can beifotinedData list in the
Dataset window (see figure 5.13). Here, the data appears together foithation such as the data
value range, data set size, and time information. The data volumes can be tmdive scene graph
rendering area by using drag and drop events (see section 5.4.1).

Data [E3]

Name ID Time Data range Voxel dims Path

- Data
channel/Enstrophy_sgrt/Enstrophy_sqrt0/Scalar 1 t = 55 [0, 150] Dynamic [0.420632, 377.328] 256 x 128 x 64 /net/manager/panfs/panal/work/...
channel/Helicity/Helicity0/Scalar 2 t=0[0,150] Dynamic [-3168.75, 2050] 256 x 128 x B4 /net/manager/panfs/panal/work/...
channelflambda2 /Llambda2 0/Scalar 3 t=0[0,150] Dynamic [-185715, 3996.57] 256 x 128 x 64 /net/manager/panfs/panal/work/...
channelfvelocity/velocity0/X-comp 4 t=0[0,150] Dynamic [0, 19.8003] 256 x 128 x 64 /net/manager/panfs/panal/work/...
channelfvelocity/velocity0/Y-comp 5 t=0[0,150] Dynamic [-490514, 434996] 256 x 128 x 64 /net/manager/panfs/panal/work/...
channelfVelocity/Velocity0/Z-comp 6 t=0[0,150] Dynamic [-290372, 36413] 256 x 128 x 64 /net/manager/panfs/panal/work/...
channelfVelocityMag/VelocityMag0/Scalar 7 t=01[0,150] Dynamic [0, 19.8743] 256 x 128 x 64 /netymanager/panfs/panaliwork/...

Figure 5.13 Dataset window.

A data set menu can be accessed by right clicking on the mouse button widieghtine cursor
over a specific data set, as illustrated in figure 5.14. The data set mene ceedh to manipulate
the data such as fixing the data range for an animation or changing the réattnge format.
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Data ®

Name ID Time Data range Voxel dims Path

= Data Freeze time
- channel/Enstrop

Edit time difference calar 1 t=55[0, 150] Dynamic [0.420632, 377.328] 256 x 128 x 64 /net/manager/panfs/panaljwork/...
channel/Helici 2 t=01[0,150]1 Dynamic [-3168.75, 2050] 256 x 128 x 64 /netymanager/panfs/panaliwork/...
channel/Lambdg Fix data range 3 t=01[0,150] Dynamic [-185715, 3396 57] 256 x 128 x 64 /net/manager/panfs/panal/work/...
channelVeloci Edit data range 4 t=01[0,150] Dynamic [0, 19.8003] 256 x 128 x 64 /net/manager/panfs/panal/work/...
channel/Veloci 5 t=01[0,150] Dynamic [-4.90514, 4.34996] 256 x 128 x 64 /net/manager/panfs/panal/work/...
channel/Veloci 6 t=01[0,150] Dynamic [-2.90372, 3.6413] 256 x 128 x 64 /net/manager/panfs/panal/work/...
channel/Veloci Cache 7 t=01[0,150]1 Dynamic [0, 19.8743] 256 x 128 x 64 /netymanager/panfs/panaliwork/...

Show histogram

Texture format

Remove

Figure 5.14 Dataset Menu.

5.6.1 Data set Menu

Freeze time freezes the time of the data set so that the local time of the current datarsghse
unchanged when adjusting the global time (see section 4.7.2).

Edit time difference is used when making multiple copies of a single data set. Can be used for
creating visualization showing spatio-temporal relationships (see secti@).4.7

Fix data range fixes the range of the current data set. When a new time step is loaded,etie fix
data range is used as minimum and maximum data values (instead of the dynamémdaja
during rendering. Fixing data range is especially useful when gengraiimations; forcing
a constant color mapping of the time-dependent data.

Edit data range can be used for fixing the data range of a chosen data set by spedifyiag
minimum and maximum data value. Minimum and maximum data values are for instance
used in color mapping (see section 3.2). Fixing the data range may resuliripiozof the
data. As a result, data values below and above the fixed ranged will he 8et nearest
available data value which is the user-specified minimum and maximum data values.

Unfix data range unfixes the data range. This causes the data set to be reloaded usiygahea
range as minimum and maximum data values.

Texture format sets the texture format used when storing the volume data as 3D textures on the
graphics card (see section 3.3). The framework supports
e Byte- stores the data as 3D textures with 8 bits precision.
e Short - stores the data as 3D textures with 16 bits precision.
e Float - stores the data as 3D textures with 32 bits precision.
Cache cashes the current data set allowing whole time series of selected datalsetsatched in
the CPU memory assuming there is enough memory available to fit the entire dafta tes.
transfer of data from the hard-drive to CPU-memory tends to be the main-bettlefor the

animation system, this helps speeding up animations. This caching mechanisynusefel
when investigating time-dependent data allowing interactive navigation otiae d
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Before caching whole time series, the user should estimate whether or mdtghenough
available memory to fit the entire data set. For example, one hundred time stepatd
set consisting 0512 « 512 * 256 data points takes up4MB * 100 = 6.25GB of memory,
assuming the data is storedBgtetextures (with 8 bits precision).

Uncache uncaches the data set by freeing up memory.

Show histogram displays the histogram. The histogram gives information on how the differen
data values of a data set are distributed (figure 5.15). When the datisdinged by the user,
clamped regions will be marked grey as can be seen in figure 5.15(b).

(=] Histogram: X X [BEIE) (=] Histogram: X X B

@) (b)
Figure 5.15The distribution of a data set can be visualized through histograms. (a¥tagnam

displaying the data distribution using dynamic data range. (a) A histograpialisg
the data distribution using fixed data ranffe 250].

Remove removes the data set from the data set list.

5.7 Animation Window

Time-dependent data sets can be explored either by dragging the time slitier §tene Graph
Window (section 5.4) or by using the animation utility. The animation utility allows adef&ed

animation of the time-dependent data. Here, the user can select the timeljriten@der of the
data sets to be loaded, and the step size. These parameters can beaddfiotied/s:

- Start at dataset gives the time step of the data to be loaded at the start of the animation.
- Stop at datasetgives the time step of the data to be loaded at the end of the animation.

- Number of frames gives the number of frames used in the animation. If the purpose of the
animation is just to traverse through all the time steps of the time-dependent simuth&o
number of frames should be equal to the number of time steps in the simulatioankinmber
of frames does not coincide with the number of available time steps, then tresthaaailable
time step will be loaded for each frame dependent on an interpolated lookup.

In addition, the animation utility supports a set of pre-generated camera sctidre supported
types of camera actions are the following three types:
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=] Animation IBEIE =] SEIES]
Output settings Camera Actions Gutput settings Camera Actions
Write files Type Start frame End frame Enabled Wirite files Type Start frame End frame Enabled
ROTATEL 400 1635 True ROTATEL 400 1635 True
birectory: [ /movi Directory: [ /movi
File format: | JPEG z File format: | JPEG z
Time settings Time settings
Start at dataset [0 | Start at dataset |0
Stop at dataset 1635 Stop at dataset 1635
Number of frames |1636 el D) Number of frames |1636 (K] I
[ Save Actions. | [ Save Actions. |
Display physical time Display physical time
[ Load Actions. | [ Load Actions |
[ Import last frame. | [ Import last frame. |
Animate | | Animate |

Figure 5.16 (a) Animation window. (b) Camera action editor.

- Rotation,
- Translation,

- Zooming.

These can be accessed by pressing the right mouse button in the catiogra®a of the animation
window and selectingdd Figure 5.16 shows an example of an animation setup where a 360 degrees
rotation of the scene is embedded into an animation of an indoor dispersion tsim{d#®] starting

at timestep = 400 of the simulation. Some snapshots of the animation can be seen in figure 5.17.

The animation starts when pressing th@imatebutton in the animation window. Snapshots of all
frames in the animation can be saved in one of the supported image formatediynchtheWrite
filescheck box. These images can then be converted to a movie using a nurabailaible tools.
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@@t =0. (b) ¢ = 400.

(c) t = 800) (d) ¢ = 1200.

Figure 5.17 Snapshots from an animation of a dispersion simulation [10]. Up to timestep.00
of the simulation the camera position is fixed. From timestep400 and until the end
of the simulation the camera makes a full rotation of the scene (aroundakisywhile
updating the time.
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Figure 6.1 (a) Visualization of toxic gas from an urban dispersion simula#iéij.[(b) Visualization
of the electrical activity of the human heart embedded in the torso [39].

6 VoluViz User Manual: Part 2 - Rendering Geometries
6.1 Introduction

\VoluViz is capable of visualizing the surface mesh geometry together with tlieneodata. Some
scenarios benefit from also depicting the surface geometry in the visi@tizaene, thus providing
a context to the visualization. Two examples where the surface geometyblean embedded in
the final visualization can be seen in figure 6.1.

Geometry files is generated by converting the Fluent mesh (*.msh) files. tfhash files can be
generated using mesh programs such as Gambit and ICEM. Be sure tthstéileient mesh files
as ASCII files. The Fluent mesh files are converted with the progmsim2vvm More information
on the program can be found at FFI's sinwiki web page under the'@dting Fluent data into
VoluViz”.

6.2 Loading and rendering mesh files

Mesh files can be loaded by selectingad Meshin the file menu of the render window. This opens
a file browser.

6.2.1 Datasets Window

Once a VoluViz Mesh file (.vvm) is selected, the mesh file is put into the data setlish can be
found under theMeshegab bar in theDatasets windowsee figure 6.2. The dataset window can be
opened by selectinDatasetdn the file menu of the render window.

Double clicking on a mesh in the data set list will generate a visualization oldj¢lcé @eometry
file and, by default, be put into the visualization scene.
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] Datasets Q@@

Datasets | Meshes

Name  Path
city Jcitywvm

Il
o

Continuous update t

ED

Figure 6.2 Dataset window.

6.2.2 Vis Objects Window

All geometry visualization objects are stored in a separate list which is displaytbeVis Objects
window see figure 6.3. The vis objects window can be opened by selédsngbjectsn the file
menu of the render window.

-

a Vis Objects EERN = Vis Objects

S city | Edit | v Mesh ri:e | Cdit |
e — move

Use physical coordinates

(a) (b)

Figure 6.3 (a) Visualization Object window. (b) Visualization object windod i&s pop-up menu.

All list items are displayed together with a check box enabling toggling on drttiefendering of
individual meshes. A Vis Object menu can be accessed by right clickitiggomouse button while
holding the cursor over an object, see figure 6.3(b). Particular usdeh#Use physical coordinates
option which sets the physical coordinates domain of the volume data to matcatéhéainain of
the mesh file. If volume data from only a subset of the full data domain hasd®ected by the
user, the physical coordinates of the volume data domain has to be spetineglly.

The Vis Object Menu consists of the following options:

Remove removes the visualization object from the Vis Object list.

Use physical coordinatessets the physical coordinates of the volume data so that the volume data
domain matches the data domain of the mesh file.
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(] Voluviz EEE]

Hle Edit View Help

Figure 6.4 Rendering of the surface geometry from a mesh file used irban dispersion simula-
tion [45].

A data set menu can similarly be accessed by right clicking on the mouse buitlenhoelding the
cursor over a specific mesh in timtasets windowThe data set menu can be used for removing
individual meshes. Removing a particular mesh will also delete all correappivisualization
objects.

Figure 6.4 shows the result after applying the above steps on a mesh @lawaseurban dispersion
simulation.

6.3 Mesh Editor

The mesh editor for a particular mesh can be opened by left clicking on soeiatededit button
displayed in the vis objects window (see figure 6.3(a)). The mesh editdrecared to manipulate
the geometry for instance be specifying the color and transparencyividadl surface items. The
default rendering of a mesh file displays each geometry item using a racmlomThis is illustrated
for the mesh file rendered in figure 6.4.

When loading a mesh file, VoluViz stores the geometry as a set of sepanfateesitems under a set

of groups. The number of surface items and groups depends bothaothanesh is constructed

as well as on the chosen parameters toRhent-to-VoluVizmesh converter program (msh2vvm).
For instance, eacpart created in the mesh program will be stored as a separate surface item unde
a separate group. Each surface item, under a single group, can ttresr fue split up into a number

of surface items dependent on the selected parameters to the mesh cqregnam. Sometimes

the splitting of surfaces into separate parts can be desirable as this gawesethmore control. All
surface items and groups are displayed in the mesh list browser window lingsle editor. Figure
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n Edit mesh: “city’ EEE]
Fle

Groups | Mesh options

--Root

Group_1 v Visible
Group_2 Clip to plane
Group_3
Group_4 Clip to range
Group_5 v| Use wireframe when moving
Group_6
Group_7 Size: [0, 13001 x [-50, 8501 x [-14.0078, 3001
Group_8 Number of triangles: 0
Group_9
Group_10
Group_11 Sync. | Iv] Enable items
Group_12
Group_13 Inside faces s
Sync. | [v] Visible
Sync. | [v] Lighting
Sync Opaque sithouette
Sync Back-to-front serting

Sync Draw in front of volume
Sync. | Diffuse colour (ARGE) (elelelelelelsls]

Sync. | Specular colour (RGB): | oooooo |

Specular powe 10000

Figure 6.5 Mesh Editor.

6.5 shows the mesh editor associated with the city model rendered in figurdlé groups and
surface items are listed under the root node of the mesh list.

Surface items can be activated in two ways; Either by left clicking on asairfam (or a group) in
the mesh list or by left clicking on a surface item in the render window. Awd/aurface items are
marked blue in the mesh list and rendered blinking in blue in the render windanking the root
node activates the whole mesh.

A set of keys can also be used in the picking of surface items. The folloképg are valid when
operating the mesh in the render window.

- If no key is pressed, the current selection is cleared and the pickedsitsslected.

If shiftis pressed, the picked item is added to the selection.

If ctrl is pressed, the picked item is toggled (on and off).

- If shiftandctrl is pressed, the picked item is removed from the selection.

If alt is pressed, everything connected to the picked item is toggled, addecctnoved from
the selection depending on the shift and ctrl state.

Figure 6.6 shows an example where the shift key has been used to aativatéple set of surface
items.

When operating the mesh using the mesh list in the mesh editor, the following oatidrikeys are
available:
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= Eait mesh: city’ Cax) (3 Voluviz EER)
Ele Ele Edit View Help
SETD S <] Mesh options
Ftem_32
 CE— g
item_34 Clip to plane
item 35
[amgae Clip to range
em_37 Use wiraframe when moving
ttem_38 H
ftem 3a | size: [0, 13001 x [-50, 850] x [-14.0078, 3001
fpitemedD: Number of triangles: 2398853
tem_a1
item_42
Hitem_43 Sync. | V] Enable items
em_a5
Lotem_a7
ttem_49
g tem 50 esi
hem 51
tem 52 Keto-fro g
ikem 53
hem_54 Draw in front of volume.
ttem 55 p— [
| s [ Sync. | bifiuse colour (ARGB) Fra8o27c|
[ Sync. | Specular colour (RGB): 000000 |
o Sync. | Specular colour |
lten, Specular power: 40000 |
ttem

Figure 6.6 Picking of surface items. Selected items are marked blue.

If ctrl is pressed, the picked item is toggled and either added to or removed fra@i¢otion.

When left clicking on an activated surface item (or group), the item ougican be renamed.

Groups and items can be moved in the mesh list using drag and drop events.

Right clicking on an activated surface item (or group) opens the meghdist:

Group creates a new group (at the current position) in the mesh list.

Ungroup removes the selected group from the mesh list.

Figure 6.7 gives an example where the functionality described aboveceasused to rename and
regroup the mesh items resulting in a more intuitive list which is easier to operatendtance,
all buildings in the city mesh can easily be activated if a common group holding atiuitdings
is first created. Once generated, the buildings can then be activatett bljcleng on the newly
constructeduilding group in the mesh list.

6.3.1 Surface Modes

Once a single or a set of surfaces has been activated, these swdadee manipulated by the mesh
editor to obtain a number of rendering effects. The mesh, or more precessth surface item,
consists of afnsideface, armoutsideface and a wireframe representation.

Inside face - Each surface item has both an inside and outside state associated withféice.su
The current state of a surface depends on the view vector. A sut&oes tagged as an
inside surface if the surface is considered to be in the "back” plane ohésh geometry. By
default, all inside surfaces are rendered.

Outside face - A surface item is marked as an outside surface if the surface is coedittebe in
the "front” plane of the mesh geometry. By default, the outside surfasesarendered.

Wireframe - This surface mode depicts the surface items using a wireframe repriesent8y
default, wireframes are rendered for all surface items.
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Ll
8|
x|

(= VoluViz &)
Fle Hle Edit View Help
Groups Mesh options
e

<.Buildings V| Visible

Tunnel
&-Buildings1
+-Buildings2

[ Clip to plane

clip to range
i i+-Buildings3 Use wireframe when moving
i w-Buildingsd
+-Buildings5 Size: [0, 1300] x [-50, 850] x [-14 0078, 300]
i &-Buildingss
+-Ground
Z.BBox
sidel Sync. | ¥ Enable items
Side2
Inflow Inside faces B

Number of triangles: 0

Qutflow
Top

sync. | [v] Visible

sync. | [¥] Lighting

Sync Opague silhouette
Sync Back-to-front sorting

Syne Draw in front of volume

Sync. | Diffuse colour (ARGB): [0000 |

Sync. | Specular colour (RGBJ: (0000 |

o
8
8
8

Specular power:

Figure 6.7 Individual mesh items can be renamed and regrouped intora miitive mesh list
which is easier to operate.

Yotz TE (O Yotz DeN B Vowviz (FEE)

(a) Inside faces only (b) inside and outside faces (c) Wireframe only

Figure 6.8 lllustration of the different surface modes.

All of these visualization modes can be toggled on and off individually fpasste surface items
using the mesh editor in addition to specifying attributes associated with theedifferodes. The
result of using the different surface modes can be seen in figure @i tNat theoutsidesurface
items in figure 6.8(b) have been rendered slightly semi-transparent intorskee thénsidesurfaces.

Each surface mode comes with a number of attributes which can be set bsethé\then activat-

ing multiple surface items, it might be necessary to pressSthecbutton to be able to access the
attributes. The surface modes support the following attributes:

Visible - Only visible surfaces are rendered.

Lighting - When lighting is activated, the Phong [29] illumination model is used to render the
surface. Otherwise, each surface item is rendered using a constantTthe Phong model,

in VoluViz, is implemented as a fragment program giving each fragment offacgielement
the color

C= Cambicnt + Cdiffusc + Cspccularv

(6.1)
= kaCoq + kqCq(1- n) + ks Cy(r - v)*,
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Fle Edit View Help Fle Edit View Help

(a) With lighting (b) No lighting

Figure 6.9 A model of a human torso [39] rendered both with and withautlamination model.

wherel is the light direction vectom is the normal vector; is the reflection vectow is the
viewing vector,s is the specular power arig, k; andk, are the ambient, diffuse and specular
coefficients. Figure 6.9 demonstrates the effect of applying an illuminatioreod model

of a human torso.

Diffuse color sets the diffuse color contribution in the Phong illumination model in addition to the
transparency of the surface (by the alpha value).

Specular color sets the specular color contribution in the Phong illumination model. Any color
can be used. However, it is recommended to use gray scale colors.withethe surface
will rendered with colored light reflected from the light source.

Specular power sets the specular power contribution in the Phong illumination model.

Opagque Silhouette - When activated, this mode renders the surface in a silhouette mode so that
surface elements near the silhouette of the surface item is always visiblembky of the
global transparency value selected for that particular surface. pa&ty (or alpha value) for
each surface element is given by the formula

a = (1 = asurface) (1 = || (v - m[})? (6.2)

Silhouette rendering can be very useful in visualizations where the gepomir acts as a
contextand where thdéocusis on conveying results from a simulation. This is illustrated in
figure 6.10 for simulation data from a modeling of the electrical activity of thadmu heart
[39].

Back-to-front sorting both sorts and renders all the surface items in a back-to-front ordesick-
to-front sorting of the surfaces can be desirable when rendering tsensiparent surfaces.
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(a) (b)

Figure 6.10 Silhouette rendering. (a) A visualization scene where theigrsodered by combining
low opacity with silhouette rendering whereas the human heart is renadgraque. (b)
Visualization of the electrical activity of the human heart embedded in the {8£3.
Here, a silhouette rendering of the torso is used to give contextual informaitbout
occluding the volume data.

Otherwise, the rendering may lead to visual artifacts. Note however ttizdiirng this feature
may decrease the rendering performance considerably.

Draw in front of the volume - As the rendering engine handles the geometry and the volumes
separately, this mode needs to be activated for semi-transparentesutfeat occlude the
volume data. This typically apply to trmutsidefaces of a mesh file if they are made visible.

In addition to the local surface attributes listed above, the mesh editor sgpipeifollowing global
parameters:

Visible sets the visibility state on the whole surface mesh.

Clip to plane clips the geometry set by the clip plane. See section 5.3.5 for more details on acti-
vating and handling the clip plane.

Clip to range clips the geometry specified by the subset selection. See section 5.3.4 #®r mor
details on picking of subsets.

Use wireframe when moving - When activated, a wireframe representation of the mesh is used
whenever the render window is activated by a mouse or key event. Teérisades the render-
ing workload and increases the interactivity of the application.
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Figure 6.11 Rendering of a surface mesh model of an industrial pldjt¢ing Phong illumination
model with two different light vector directions.

6.4 Setting the Light source

The light source can be activated by pressing and holdingCthebutton in the render window.
This displays an icon of the light source giving its location and direction.ofate the light source
pressCtrl and hold the left mouse button while moving the mouse. The light source is Ussd w
rendering geometries and gives the light direction vector in the illumination mog=i gy equation
(6.1). Figure 6.11 demonstrates the effect of changing the light directictor
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