
VoluViz3.1 theory and user guide – a flexible 
volume visualization framework for 4D data analysis

FFI-rapport 2014/01616

Anders Helgeland

Forsvarets
forskningsinstituttFFI

N o r w e g i a n  D e f e n c e  R e s e a r c h  E s t a b l i s h m e n t





FFI-rapport 2014/01616

VoluViz3.1 Theory and User Guide – a Flexible Volume

Visualization Framework for 4D Data Analysis

Anders Helgeland

Norwegian Defence Research Establishment (FFI)

18 March 2015



 
  

  
 

 2 FFI-rapport 2014/01616 

 

FFI-rapport 2014/01616 

1311 

 

P: ISBN 978-82-464-2504-7 

E: ISBN 978-82-464-2405-4 

 

Keywords 

Visualisering 

Dataanalyse 

Programmering 

 

 

 

 

 

Approved by 

Bjørn Anders P. Reif Project Manager 

Janet Blatny Director 

 
 

 

 



English summary

The key goal in scientific visualization is to transform numerical data into a visual form that enables

us to reveal important information about the data. It is a tool that engages the human senses and an

effective medium for communicating complex information. The engineering andscientific commu-

nities early employed applications of visualization. The computers were used as a tool to simulate

physical processes such as fluid flows, ballistic trajectories and structural mechanics. As the size

of the computer simulations increased, the large amount of data made it necessary to transform the

numbers from calculations into images. The use of images to communicate information is espe-

cially effective as the human visual system is able to extract an enormous amount of information

from a single image in very short time.

New challenges in scientific visualization emerge as advances in modern supercomputers make it

possible to compute bigger simulations of physical phenomena with higher precision and increasing

complexity. Contrary to the early computer simulations, current simulations ofteninvolve three

spatial dimensions in addition to time (which together result in 4D data), producing terabytes of

data containing complex dynamical and kinematical information. There are no indications that the

trend of increasing complexity in computer simulations will cease. Increased ability to model more

complex systems is an important progress, but the enormous size of present (and future) scientific

data sets demands more efficient and advanced visualization tools in order toanalyze and interpret

the data.

VoluViz is a visualization tool developed at FFI which is capable of interactive visualization of large

time-dependent volumetric data. It addresses many of the challenges for large-scale data analysis

and supports a set of visualization tools to facilitate scientists in their work with huge data sets,

including effective rendering techniques, easy navigation of the data (both in time and space) as well

as advanced multi-field visualization techniques and feature enhancement techniques. The software

takes advantage of commonly available modern graphics hardware and is designed with the goal

of real-time investigation of the data. VoluViz has been used to investigate data from a number

of applications: dispersion modeling (pollution, toxic gases), biomedical flowmodeling (blood

vessels, the human heart) and in industrial design optimization (aircrafts, missile seeker technology).

Choosing the right visualization can turn gigabytes of numbers into easily comprehensible images

and animations. If used properly, VoluViz can thus be an effective mediumfor communicating

complex information and for presenting the result from scientific simulations in an intelligible and

intuitive way, both to fellow scientists as well as a broader audience.

The report is divided into three main parts. The first part (sections 1-3)gives an overview of the

rendering framework of VoluViz in addition to the description of some importantvolume visual-

ization concepts. The second part (section 4) provides a more detailed description of the rendering

algorithm used by VoluViz in addition to a presentation of the available tools with examples. The

third part (sections 5-6) provides the user manual.

FFI-rapport 2014/01616 3



Sammendrag

Formålet med vitenskapelig visualisering erå forvandle numeriske data til en visuell form som

gjør oss i stand til̊a vise viktig informasjon om dataene. Det er et verktøy som utnytter de men-

neskelige sansene og et effektivt medium forå kommunisere kompleks informasjon. Vitenskapelige

miljøer tok tidlig i bruk dette verktøyet. Datamaskiner ble brukt tilå simulere fysiske prosesser som

strømninger, ballistiske baner og konstruksjonsmekanikk. Etter hvert ble datamengden så stor at det

ble nødvendig̊a overføre beregningstallene til bilder. Bruk av bilder er spesielt effektivt ettersom

det visuelle systemet hos mennesker er i stand tilå trekke ut enorme mengder informasjon fra ett

enkelt bilde i løpet av svært kort tid.

Nye utfordringer i vitenskapelig visualisering har oppstått parallelt med utviklingen av moderne

superdatamaskiner. Dagens maskiner gjør det muligå beregne større og større simuleringer av

fysiske fenomener med høyere presisjon og med økende kompleksitet. I motsetning til tidligere,

inneholder dagens simuleringer ofte tre romlige dimensjoner i tillegg til tid (som til sammen fører

til 4D-data). Disse simuleringene kan produsere terabyte med kompleks datainformasjon. Det er

ingen indikasjoner p̊a at trenden med økende kompleksitet i datasimuleringer vil stoppe. Økt evne

til å modellere komplekse systemer er et viktig framskritt, men samtidig fører størrelsen p̊a dagens

vitenskapelige datasett til et stadig større behov for mer effektive og avanserte visualiseringsverktøy.

Visualiseringsverktøyet VoluViz er utviklet ved FFI og i stand til interaktivvisualisering av store

tidsavhengige volumetriske data. Det løser mange av de utfordringene somfinnes for storskala data-

analyse og støtter et sett med visualiseringsverktøy forå hjelpe forskere i arbeidet med store datasett,

inkludert avanserte flerfeltsvisualiseringsteknikker og enkel navigering av data (b̊ade i tid og rom).

Programvaren utnytter moderne grafikkmaskinvareteknologi og er utformet med et m̊al om etter-

forskning av data i sanntid. VoluViz har blitt brukt tilå undersøke data fra en rekke applikasjoner:

spredningsmodellering (forurensning, giftige gasser), biomedisinsk strømningsmodellering (blod-

kar, menneskehjerte) og i industriell designoptimalisering (fly, missilsøkerteknologi). Å velge riktig

visualisering kan forvandle gigabyte med tall til lett forståelige bilder og animasjoner. Brukt på

riktig måte kan VoluViz være et effektivt medium forå kommunisere kompleks informasjon og

et viktig verktøy for å presentere forskningsresultater på en forst̊aelig og intuitiv m̊ate, b̊ade til

forskerkollegaer og et større publikum.

Rapporten er delt i tre hoveddeler. Den første delen (kapittel 1-3) gir en oversikt over rammeverket

i VoluViz i tillegg til en beskrivelse av noen viktige begreper i volumvisualisering. Den andre

delen (kapittel 4) gir en mer detaljert innføring i hvordan VoluViz visualiserer data, i tillegg til

en beskrivelse av tilgjengelige verktøy med eksempler. Den tredje delen (kapittel 5-6) presenterer

bruksanvisningen.

4 FFI-rapport 2014/01616



Contents

Preface 7

1 Introduction 11

2 VoluViz3.0 Framework Overview 13

3 Introduction to Volume Rendering 14
3.1 Transparency, Opacity and Alpha Values 14

3.2 Color Mapping 15

3.3 Texture Mapping 15

3.4 Direct Volume Rendering 17

3.5 Texture-Based Direct Volume Rendering 19

4 The VoluViz Rendering framework 21
4.1 Introduction 21

4.2 Flexible Direct Volume Rendering 21

4.3 Framework Overview 22

4.4 Volume Shader Scene Graph 23

4.5 Shader Code Generation 25

4.6 VoluViz Operators 26

4.6.1 Compositing Operators 26

4.6.2 Feature Enhancement Operators 30

4.6.3 Numerical Operators 35

4.7 4D Data Analysis 36

4.7.1 Animation 36

4.7.2 Time-Varying Multi-Field Volume Visualization 37

4.8 Interactive Analysis 39

5 VoluViz User Manual: Part 1 - Rendering Volumes 41
5.1 Introduction 41

5.2 Starting a VoluViz Session 41

5.3 Render Window 42

5.3.1 Using the Mouse 43

5.3.2 Light source 43

5.3.3 File Menu 43

5.3.4 Edit Menu 44

5.3.5 View Menu 46

FFI-rapport 2014/01616 5



5.4 Scene Graph Window 47

5.4.1 Using the Mouse 47

5.4.2 Item Menu 47

5.4.3 Scene Graph Rendering Area 48

5.4.4 Color Table Editor 49

5.5 Tools Window 51

5.6 Dataset Window 51

5.6.1 Data set Menu 52

5.7 Animation Window 53

6 VoluViz User Manual: Part 2 - Rendering Geometries 56
6.1 Introduction 56

6.2 Loading and rendering mesh files 56

6.2.1 Datasets Window 56

6.2.2 Vis Objects Window 57

6.3 Mesh Editor 58

6.3.1 Surface Modes 60

6.4 Setting the Light source 64

Bibliography 68

6 FFI-rapport 2014/01616



Preface

The development of VoluViz was started, in 2001, by Anders Helgeland who is the main architect

behind the software. The software has been upgraded several times in the period from 2001 to 2014,

partly with the help from some master and summer students associated with the Norwegian Defence

Research Establishment (FFI). A special thanks goes to Trond Gaarder, Geir Kokkvoll Engdahl and

Kim Kalland for their contributions. Thanks also goes to the students and scientists working at FFI,

using VoluViz, for interesting and useful discussions on how to upgradeand to further improve the

software. This also applies to all the people providing data sets used in this report.

What VoluViz is and isn’t

VoluViz was developed to overcome new challenges emerging in scientific visualization of large-

scale data from numerical simulations. It is designed as aFerrari to give interactive rendering of

large time-dependent volumetric data. A high degree of interactivity is crucial to ensure an effec-

tive investigation of the data. If the visualization is carried out too slowly, we will forget what was

displayed before the next image is rendered and then lose track of the information. As a result, all

components of VoluViz (from color mapping to advanced multi-field rendering) is designed with

the goal of immediate response when investigating data.

VoluViz is, however, not designed to replace other existing visualization software. It features tools

and techniques that the other software lacks - in particular volume visualization techniques. We

have not made efforts to re-implement the parts of other software that already works sufficiently for

data visualization. VoluViz should therefore be used as one of many fine options for data investiga-

tion and data analysis. For data navigation and presentation of 3D (scalar,vector and tensor) field

components, VoluViz comes with a particularly well developed tool box.

”Have fun :)”

A caution when analyzing data

It is important to remember that the quality of the physical interpretation made when using visual-

ization tools, in general, are no better than the quality of the original data set.

FFI-rapport 2014/01616 7



8 FFI-rapport 2014/01616



Top: Advancedfocus+contextvisualization with the purpose of revealing and emphasizing major

arteries, known as theCircle of Willis, inside an MRI data set of a human brain (see figure 4.9).

Middle : Advanced temporal-spatial visualization of a breakdown of a single vortex ring by project-

ing data from six different time steps into the same scene (see figure 4.14).

Bottom: Visualization of a surface model of an industrial environment together withconsentration

data (of pollution) released from the industrial plant (see figure 6.11).

FFI-rapport 2014/01616 9



10 FFI-rapport 2014/01616



(a) (b)

Figure 1.1 (a) Concentration of pollution released from an industrial plant [11]. (b)Visualization

of the velocity field around a carrier pod for F-16 [12]. Both visualizationswere made

using VoluViz.

1 Introduction

VoluViz is a volume rendering application designed for viewing time-dependent and time-independent

(static) volumetric data. Such data is the output of a number of applications such as in dispersion

modeling (e.g. smoke, pollution), biomedical flow modeling (e.g. blood vessels,drug delivery

systems) and in industrial design optimization (e.g aircrafts, engines), see figure 1.1.

VoluViz was developed to overcome new challenges emerging in scientific visualization of large

three-dimensional (and time-dependent) data. Large tree-dimensional data sets is challenging to

visualize effectively mainly due to two reasons. Firstly, while one- and two-dimensional data sets

are rather straightforward to visualize, volumetric data sets cannot be projected to a 2D screen

without losing information. For instance, important information embedded in the data might get

lost if it is hidden behind other parts of the data or if the “wrong” parts of thedomain are selected

for display. Good tools for exploring and navigating volumetric data sets, to help scientists and

engineers to convey only the important and interesting parts of the data, aretherefore needed to

ensure an effective visualization. Secondly, these tools need to be interactive. A high degree of

interactivity is important when investigating data due to the short-term memory of the human brain.

If the visualization is carried out too slowly, we will forget what was displayed before the next image

is rendered and then lose track of the information.

VoluViz takes advantage of commonly available modern graphics hardware and advanced visual-

ization techniques to implement a wide variety of visualization modes. It featurestools to facilitate

scientists in their work with huge data sets including effective rendering techniques, easy navigation

of the data (both in time and space) as well as advanced multi-field visualization techniques and

feature enhancement techniques. The software is implemented in C++ [38],Qt [2], OpenGL [35]

and OpenGL Shading Language (GLSL) [32]. The development of VoluViz was initially started in

2001 by Anders Helgeland and has been upgraded several times in the period from 2001 to 2014.

FFI-rapport 2014/01616 11



It is an ongoing project, and VoluViz is still being extended to include new features to support

scientists working at the Norwegian Defence Research Establishment with data analysis and data

presentations. Choosing the right visualization can turn gigabytes of numbers into easily compre-

hendable images and animations. If used properly, VoluViz can thus be an effective medium for

communicating complex information and for presenting the result from scientificsimulations, both

to co-workers as well as a broader audience, in an understandable and intuitive way.

The document works both as a user guide and a detailed theoretical description of some of the

visualization techniques used by VoluViz. The report is divided into tree mainparts. The first part

(sections 2 and 3) provides an overview of the rendering framework ofVoluViz in addition to the

description of some concepts important in volume visualization. The second part (section 4) gives a

more detailed description of the rendering algorithm used by VoluViz in additionto a presentation

of the available tools with examples. The third part (sections 5-6) provides the user manual. The

three different parts are, to some extent, independent of each other. This means that a reader could

start reading the user manual first and then move on to the other parts to learn more about details of

the software and the visualization techniques.

12 FFI-rapport 2014/01616



(a) (b) (c)

Figure 2.1 (a) Render window. (b) Volume Scene Graph window. (c) A transfer function editor.

2 VoluViz3.0 Framework Overview

VoluViz is a volume visualization application capable of fast visualization of 3D data defined on a

regular structured grid. As most of the rendering code is executed on theGPU (graphics processing

unit), it manages interactive analysis of quite large data. It reads files in theHDF5 [1] format and

includes a browser for easy navigation of HDF5 files. In addition, VoluVizhas the following key

features:

• Fully interactive color table editor for specifying transfer functions

• Support for interactive visualization of time-varying fields

• Support for interactive multi-field visualization with custom GLSL shaders

• Interactive clip plane and picking of subset utilities for easy navigation of the data

The framework basically consists of volume data, operators to manipulate the data, a volume scene

graph, and a renderer. Figure 2.1 shows a very simple setup where a single dataset (the velocity

magnitude of a hurricane simulation [28]) is visualized using volume rendering. In this setup, the

volume data is first mapped to a color and transparency value before it is rendered in the main

VoluViz render window (figure 2.1(a)). The scene graph window can be seen in figure 2.1(b). Here,

different types of visualizations can be constructed by connecting the volume data to different types

of operators. In the current visualization, a single operator is used, namely a lookup table (LUT),

which maps every data value inside the data domain into to a color and transparency value by using

a color table editor. The lookup table (also known as a transfer function) used for constructing the

current scene can be seen in figure 2.1(c). In this case, it maps all datato grayscale values giving

maximum and minimum data values the colors white and black, respectively.

FFI-rapport 2014/01616 13



Figure 3.1 The skull of a head is emphasized by assigning low opacity to the soft tissues.

3 Introduction to Volume Rendering

Volume rendering is the process used to create images from volumetric data. Large data sets ob-

tained from instruments (such as medical scanners) or numerical simulationshave led to an in-

creasing demand for more efficient visualization techniques. As a result, several volume rendering

techniques have emerged. As VoluViz uses a technique known as direct volume rendering as its

main rendering algorithm, this section will cover a few concepts that are important in volume vi-

sualization. Understanding these concepts will make it easier for scientists tobenefit from using

VoluViz as an interactive tool for data navigation and data analysis. A more detailed and complete

description of volume visualization can be found, for instance, in [15, 42,14].

3.1 Transparency, Opacity and Alpha Values

An important concept in visualization of volumetric data is transparency or opacity. Although many

visualization techniques involve rendering of opaque objects, there are applications that can benefit

from the ability to render semitransparent objects and even objects that emit light. The internal data

from an MRI scan can for instance be shown by making the skin semitransparent, see figure 3.1.

Opacity and transparency are complements in the sense that high opacity implieslow transparency,

and are often referred to asalpha in computer graphics. The opacity or alpha value,A, is a normal-

ized quantity in the range[0, 1]. If an object has maximum opacity (A = 1), it is opaque and the

objects and light behind are shielded and invisible. IfA < 1, the object is transparent and makes

objects behind visible. An alpha value of zero (A = 0) represents a completely transparent object.

The relation between opacity and transparency, T, is given byA = 1 − T .

14 FFI-rapport 2014/01616



0

rgb

rgb

rgb

rgb

s

max − min

1

i color
i

i

i

n−1

2

)s  − min(i = n

s  > max, i = n−1

s  <  min, i = 0

Figure 3.2 Mapping scalars to colors via a lookup table.

3.2 Color Mapping

Color mapping is a common scalar visualization technique that maps scalar data intocolor values

to be rendered. In color mapping, the scalar values are divided inton equal intervals and serve as

indices into a lookup table. The table holds an array of colors and is associated with a minimum and

maximum scalar data range(min, max) into which the scalar values are mapped. Scalar values with

either lower or greater value than the chosen data range is clamped to the minimumand maximum

color value, respectively. The rest of the scalar values,si, are given colors associated with the index,

i, in the lookup table, see figure 3.2.

The lookup table holds an array of colors that can be represented for example by theRGBA(red,

green, blue, alpha) or theHSVA(hue, saturation, value, alpha) color system. The RGBA system

describes colors based on their red, green, blue and alpha intensities and is used in the raster graphics

system. The HSVA system, which is by scientists found to give good control over colors in scientific

visualizations, represents colors based on hue, saturation, value and alpha. In this system, the hue

component refers to the wavelength which enables us to distinguish one color from another. The

valueV which also is known as the intensity component, represents how much light is in the color

and saturation indicates how much of the hue is mixed into the color.

Use of colors is important in visualization and should be used to emphasize various features of the

data set. However, making an appropriate color table that communicates relevant information is a

rather challenging task. “Wrong use” of colors may exaggerate unimportant details. Some pieces

of advice in making appropriate color tables are given in [37, 4]. In volumevisualization, lookup

tables are often referred to astransfer functions. Figure 3.3 illustrates the use of transfer functions

on data from a simulation of aerosol dispersion in an industrial environment[11].

3.3 Texture Mapping

In computer graphics, geometric objects are represented by polygonal primitives (consisting of ver-

tices and cells). In order to render a complex scene, millions of vertices have to be used to capture

the details. A technique that adds detail to a scene without requiring explicit modeling of the detail

with polygons, istexture mapping. Texture mapping maps or pastes an image (a texture) to the

surface of an object in the scene. The image is called atexture mapand its individual elements are

calledtexels. Texture maps can be one-, two- and three-dimensional. A texture may contain from

FFI-rapport 2014/01616 15



(a) (b)

(c) (d)

Figure 3.3 Visualization of concentration of pollution released from an industrial plant using the

HSVA color system for the color mapping. The consentration data are firstmapped to a

voxel set with 8-bit precision (in the range[0, 255]), and serve as indices into a lookup

table giving each value a separate color and opacity value. Figures (a) and (c) show two

scenes rendered using the transfer functions displayed in (b) and (d), respectively. In both

transfer function editors, the consentration data are mapped to identical colors using

identical mappings for the HSV components. The only difference between the two scenes

is in the mapping to the opacity values also known as the alpha (A) component.While one

of the scenes is rendered with maximum opacity (A=1) for all data points, theother scene

(c) is rendered using much lower opacities resulting in a very different representation of

the data. Here, all data points containing the lowest amount of consentration are made

completely invisible (by setting alpha to zero for all these values). In addition,the rest

of the data are rendered in a semi-transparent fashion using low opacity values. A clip

plane is used in both scenes, removing all data between the clip plane and theview.

16 FFI-rapport 2014/01616



Figure 3.4 Texture mapping example in 3D. Here, a single planar surface has been cut through the

volume. Local texture coordinates are then sampled along the surface which gives the

mapping to the 3D texture storing the volumetric data. The data is then mapped tocolors

and opacities and finally pasted as an image on top of the surface.

one to four components. A texture with one component contains only the intensity value, and is

often referred to as anintensity mapor a luminance texture. Two component textures contain infor-

mation about the intensity value and the alpha value. Three component textures contain RGB values

and a texture with four components contains RGBA values. To determine how tomap the texture

onto the polygons, each vertex has an associatedtexture coordinate. The texture coordinate maps

the vertex into the texture map. The texture map in 1D, 2D and 3D can be definedat the coordinates

(u), (u, v) and(u, v, w), respectively, whereu, v, w are in the range[0, 1].

Texture mapping is a hardware dependent feature and is designed to display complex scenes at real

time rates. While 2D textures is most common in computer gaming, both 1D and 3D textures are

widely used in scientific visualization, especially in volume rendering. One-dimensional textures

can for instance be used to store transfer functions (see section 3.2). As an example, the transfer

functions displayed in figure 3.3 are implemented using one-dimensional textures to store the data

mapping to the color and opacity components used in the visualization. Three-dimensional textures

can, for instance, be used to store volumetric scalar data fields. In volume rendering, the scalar

values are often normalized and represented as a regular structured data set with 8-bit (or 16-bit)

precision. These values can be used as indices into a lookup table. In thatcase, texel values in the

volume texture are mapped to color (and opacity) values to be rendered. Ifthe transfer functions

are implemented in texture hardware, this allows an instant update of the color and opacity in the

scene after altering the lookup table. If the transfer functions are not supported in hardware, the 3D

textures have to be regenerated every time the lookup table changes. Figure 3.4 illustrates the use

of texture mapping, where concentration data (of pollution) from an industrial plant is mapped to

colors and then pasted as an image onto a single surface intersecting the datadomain.

3.4 Direct Volume Rendering

Direct volume rendering is a group of rendering methods that generates images of volumetric data

sets without explicitly extracting geometric surfaces from the data. In directvolume rendering,

FFI-rapport 2014/01616 17



voxels are used as building blocks to represent the entire volume. Typically, each voxel is associated

with a single data point which is mapped to optical properties such as color andopacity (see figure

3.5(b)). As opposed to the indirect techniques, such as isosurface extraction [24, 27, 34], the direct

methods immediately display the voxel data. These methods try to give a visual impression of

the complete 3D data set using light transport models which describes the propagation of light in

materials. During rendering, the optical properties are accumulated along each viewing ray to form

an image of the data (see figure 3.5(a)). An overview of different optical models ranging from very

simple to very complex models that account for absorption, emission as well asscattering effects

can be found in the work by Max [26]. The most widely used method for volume rendering is the

one limited to absorption and emission effects only. Thisemission-absorption[26] model can be

expressed by the differential equation

dIλ

ds
= gλ(s) − τ(s)Iλ(s), (3.1)

whereIλ(s) = Iλ(x(s)) is the intensity of radiation with wavelengthλ at the positions along

the rayx(s). The functiongλ(s) = Cλ(s)τ(s) is called thesource termand describes the emissive

characteristics throughout the volume. Here,Cλ(s) is the emissive color contribution at a pointx(s)

in the volume. The functionτ(s) is called theextinction functionand gives the amount of radiation

that is absorbed. Solving equation (3.1) by integrating froms = 0 at the edge of the volume to the

endpoints = D leads to thevolume rendering integral(VRI)

Iλ(D) = Iλ(0)e−
R

D

0
τ(t)dt +

∫ D

0
Cλ(s)τ(s)e−

R

D

s
τ(t)dtds. (3.2)

The termIλ(0) gives the light coming from the background at the positions = 0 andIλ(D) is

the total intensity of radiation leaving the volume ats = D and finally reaching the eye. The first

term represents the light from the background multiplied by the volume’s transparency between

s = 0 ands = D. The second term represents the integral contribution of the source termat each

positions, multiplied by the volume’s transparency along the remaining distance to the eye.Using

this definition of the transparency,T (s1, s2) = e
−

R

s2
s1

τ(t)dt, we obtain a slightly different version of

the volume rendering integral

Iλ(D) = Iλ(0)T (0, D) +

∫ D

0
Cλ(s)τ(s)T (s, D)ds.

By approximating the VRI (3.2) with a Riemann sum and using a second order Taylor series to

approximate the exponential, we get the discrete volume rendering integral (DVRI)

Iλ(D) =

L/∆s−1
∑

i=0

Cλ(i∆s)A(i∆s)

L/∆s−1
∏

j=i+1

(1 − A(j∆s)),

with gλ(0) = Cλ(0)A(0) = Iλ(0).

(3.3)

Here,A(i∆s) = (1 − T (i∆s)) ≈ (1 − (1 − τ(i∆s)∆s)) = τ(i∆s)∆s is the opacity. When

looking at equation (3.3), the reason for preferring this particular discretization of the VRI becomes

18 FFI-rapport 2014/01616



(a) (b)

Figure 3.5 (a) In Ray Casting, the final image is obtained by sending rays from the screen into the

scene. The final color at each pixel is obtained by evaluating a rendering integral along

samples containing optical properties (color and opacity) along each ray.(b) Data to be

rendered are typically represented as a voxel set. Each voxel is associated with a single

data point which is mapped to a color and opacity value giving the local emissive and

absorption properties which can be used directly in theemission-absorption[26] model.

apparent. It is equal to the recursive evaluation of theover operator [30]. Not only is this a useful

theoretical tool for describing the science behind direct volume rendering, but it also enables the use

of existing general compositing (software and hardware) algorithms to render volumes.

In order to produce images of the volume data, an algorithm must be used to evaluate the volume

rendering integral (equation (3.3)). The conceptually most simple algorithmis ray casting[9, 22],

since it immediately follows from the discussion above. The basic idea of ray casting is to determine

the value of each pixel in the image by sending a ray through the pixel into the scene. Typically,

when rendering volumetric data, the rays are parallel to each other and perpendicular to the view

plane, see figure 3.5. The DVRI (equation (3.3)) is then evaluated for each ray by sampling the

volume at a series of sample points a distance∆s apart.

Other direct volume rendering techniques are splatting [44], shear-warp [21], and texture-based

direct volume rendering [7, 8], which is the algorithm VoluViz is based upon.

3.5 Texture-Based Direct Volume Rendering

Hardware assisted volume rendering using 3D textures can provide interactive visualizations of 3D

scalar fields [7, 8], The basic idea of the 3D texture mapping approach is touse the scalar field

as a 3D texture. If the texture memory is large enough, the entire volume is downloaded into

the texture memory once as a preprocess. To render the voxel set, a setof equally spaced planes

(slices) parallel to the image plane are clipped against the volume. The hardware is then exploited

FFI-rapport 2014/01616 19



memory
Texture

Data

Voxel set

Volume slicing

Transfer function

Figure 3.6 Direct volume rendering by texture slicing. First, data volumes and color tables are

uploaded to texture memory on the graphics card as a preprocess. Then, a set of view

aligned slices are clipped against the volume and blended in a back-to-front order. The

bottom left image shows the result from applying volume slicing on a data set using four

slices only. In the bottom right image, a considerably larger amount of planes are used

to render the same data set. This gives a much more continuous visualizationof the data.

to interpolate 3D texture coordinates at the polygon vertices and to reconstruct the texture samples

by trilinearly interpolating within the volume. If a transfer function is used, the interpolated data

values are passed through a lookup table that maps the values into color andopacity values. This

way, graphics hardware allows fast response when modifying color and opacity. Finally, the volume

is displayed by blending the texture polygons back-to-front onto the viewing plane using theover

operator [30] (which is equivalent to solving equation (3.3)). This technique is calledtexture slicing

or volume slicing. Texture slicing is capable of producing images of high quality at interactiverates.

Figure 3.6 shows an illustration of the steps involved when rendering volumesusing texture-based

direct volume rendering.

Although 3D texture mapping is a powerful method, it strongly depends on thecapabilities of the

underlying hardware. When the size of the volume data sets exceeds the amount of available texture

memory, the data can be split into subvolumes (or bricks) that are small enough to fit into memory.

Each brick is then rendered separately, but since the bricks have to be reloaded for every frame, the

rendering performance decreases considerably.

20 FFI-rapport 2014/01616



4 The VoluViz Rendering framework

4.1 Introduction

Even though most computer simulations involve the solution of a multiple set of related data fields,

much of the current data analysis focus on studying the data in a single-fieldvariable manner only.

While single-variable visualizations can satisfy the needs of the user in many applications, it is clear

that in some areas, such as in fluid mechanics research, it would be extremely useful to be able to

effectively visualize multiple fields simultaneously and the relation between them. However, due to

perceptual issues, such as clutter and occlusion, it can be very challenging to produce an effective

visualization of multiple volumetrical fields.

To facilitate a more effective visualization of multiple data fields, VoluViz is designed using a flex-

ible multi-field visualization framework that is capable of combining a multiple set of data fields

(both temporal and spatial) into a single field, for rendering. This is achieved through a set of op-

erators. The final output is selected through a powerful and flexible graphical user interface which

makes it very easy to change between different types of visualizations. The user interface allows

the generation of visualization scenes through drag and drop events, connecting the operators into

a volume scene graph. To enable interactive analysis, each visualization scene, which is the out-

come of a tree graph, is converted to a mathematical expression and corresponding GPU (graphics

processing unit) shader code to be run on the graphics card.

Interesting features in the data can be emphasized by manipulating transfer functions (to control

color and transparency of the data) in addition to applying feature enhancement techniques to en-

hance depth, boundaries, edges, and detail. The latter techniques can be used to give the user a

better appreciation of the three-dimensional structures in the data.

4.2 Flexible Direct Volume Rendering

Our rendering framework is based on texture-based direct volume rendering [7, 8] which is ex-

plained, in detail, in section 3.5. Here, a set of view aligned slices are clippedagainst the volume

and blended in a back-to-front order. The hardware is then exploited tointerpolate 3D texture co-

ordinates at the polygon vertices and to reconstruct the texture samples bytrilinearly interpolating

within the volume. Typically, for single-field data volume rendering, data values are sampled at

each sample position on the view-aligned slice planes. The data values are then mapped to a color

and transparency value and then used directly in the (discrete) volume rendering integral

Ieye =

L/∆s−1
∑

i=0

C(i∆s)A(i∆s)

L/∆s−1
∏

j=i+1

(1 − A(j∆s)). (4.1)

This particular integral is derived from theemission-absorption[26] model whereC(i∆s) and

A(i∆s) are the emissive color and opacity contribution at given sample points in the volume and

∆s is the sampling distance between the individual slice planes.

VoluViz however, takes advantage of the flexibility of modern graphics hardware to implement a

much more flexible variant of volume rendering. On modern graphics hardware, a separate program,

FFI-rapport 2014/01616 21



memory
TextureData

Volume slicing

Transfer functions

A B
Voxel sets

A B A merge B

Opacity = ?Color = ?

Figure 4.1 Flexible volume rendering pipeline used by VoluViz. By writing separate GPUprograms

called shaders, allows the user to control what is sent as local color andopacity values

when evaluating the volume rendering integral (eq. 4.1). Hence, it is possible implement-

ing compositing operators, such as the merge operator, for local blending of multiple

data sets.

referred to as a fragment program, or a fragment shader, can be called for each time a single volume

sample is processed in the above volume integral. This means that we can override what is sent

as color and opacity contributions, and write our own shaders. This enables a flexible way of

implementing a number of more sophisticated volume rendering techniques such as volume shading,

non-photorealistic volume rendering techniques as well as multi-field volume rendering.

A sketch of the flexible volume rendering pipeline can be seen in figure 4.1. As opposed to tra-

ditional volume rendering, which only handles a single data set, VoluViz can visualize data from

a multiple set of data fields simultaneously. This means that we can upload multiple data sets and

their associated transfer function into texture memory on the graphics card and then control the local

output by our fragment program. This is illustrated in the bottom right image of figure 4.1, where

the two data setsA andB are merged locally into the same scene using a merge operator.

4.3 Framework Overview

To benefit from the flexible volume rendering pipeline, a powerful and intuitive framework is needed

that allows the user to quickly change between different data sets and types of visualization tech-

niques.

The framework basically consists of data objects, volume objects, a volume scene graph, and a

renderer. First, the selected data fields are stored as data objects together with information such as

22 FFI-rapport 2014/01616



(a) (b)

Figure 4.2 (a) Volume shader scene graph. (b) Four different shader items andtheir connection

areas. Single field areas are drawn as straight rectangles while multiple field areas are

drawn as rounded rectangles.

data range and time information. Then, volume objects are created from the data sets and put in

the volume scene graph. Each volume object is defined by a uniform 3D scalar field and stored as

a separate 3D texture on the graphics card. In this process, the originaldata values are normalized

and stored according to the internal texture format specified by the user.The framework supports

8-bit, 16-bit as well as 32-bit (floating point) precision.

A visualization scene graph is then created by connecting the volume objects tosupported operators

through a flexible graphical user interface (GUI). The scene graph isthen automatically converted

to a shader program which is used in the volume rendering pipeline.

4.4 Volume Shader Scene Graph

The scene graph consists of a set of nodes, calledshader itemsor scene graph items, with input

areas on the top and output areas on the bottom (see figure 4.2). The shader items are connected by

connecting the input and output areas through drag and drop events.

To increase the user friendliness, the color and opacity (represented by the red, green, blue, and

alpha, (r,g,b,a), components), which are the output of most of the shaderitems, are hidden from

the user. This simplifies the GUI and makes it easier to switch between different visualization

scenes. For single-value operators1 such as thediff operator, which can be used to calculate the

local difference between two selected data sets, the input values are transferred through the alpha

1While many of the shader items have the four (r,g,b,a) components as inputs, single-value operators only need a

single component as input which is sent through to the shader item as the alpha component.

FFI-rapport 2014/01616 23



component. For consistency, the resulting output value is copied to all the (r,g,b,a) components.

The same applies for the volume node which copies the sampled (scalar) data volume values, after

texture lookup, in a similar way. The connection (input and output) areas ofthe shader items are

currently of the two typesRGBAandGradient. They can either be defined as a single-field or a

multi-field connection area. While single-field areas only support a single connection to any other

shader item, multi-field areas can be connected to a multiple set of nodes. Single-field areas are

drawn as straight rectangles whereas multi-field areas are drawn as rounded rectangles (see figure

4.2(b)).

The shader scene graph consist of a number of various shader items and is continuously extended

to include new operators. Currently, the following shader items are supported:

• Volume:Returns data values from the associated data set after a 3D texture lookup.

• LUT: Performs a 1D transfer function lookup. A lookup table (LUT) can be used at any level

in the scene graph. More details on transfer functions can be found in section 3.2 which

covers color mapping. A graphical user interface of the transfer function editor is obtained by

double-clicking on the shader item. More details on how to use the transfer function editor

can be found in section 5.4.4.

• Color Out: This is the root node of the shader graph. It contains the final(C, A) = (RGB, A)

values that are used in the volume rendering integral (eq. 4.1).

• Compositing Operators:The scene graph supports all the compositing operators defined by

Porter and Duff [30] and the merge operator defined by Helgeland et. al.[17].

• Color/Alpha: Combines two fields by taking the RGB values from the first field and the

opacity value from the second field.

• Mask: This operator combines two fields by multiplying the alpha value of the first chosen

field with the alpha value of the second field, while taking the RGB value from thefirst field.

• Diff: Computes the difference between two fields.

• AbsDiff: Computes the absolute difference between two fields.

• Gradient:Computes the gradient using a second-order central difference scheme. The evalu-

ated gradient is based on the total expression that is sent as input to the gradient operator.

• NormalizeGrad:Can be used to visualize the gradient field. It normalizes the local gradient

and sends the vector component values through the RGB values. The alpha value is set to 1.

• GradientCorr: Evaluates the gradient similarity measure [33] of two selected fields.

• Lighting: Computes the Blinn-Phong [6] volume shading model.

• Contours: Computes contours from the the input field. This operator can be used to create

silhouettes.

24 FFI-rapport 2014/01616



4.5 Shader Code Generation

Our shader composer evaluates the volume shader expression through arecursive traversal of the

shader tree graph starting from theColor Out root node. First, all the volumes and LUTs are lo-

cated. Once found, the corresponding data objects are located and converted to 3D and 1D textures,

respectively. A shader program is then generated by replacing all of the shader nodes with corre-

sponding GLSL shader language code. A new shader program is created every time the user makes

changes to the scene graph. For instance, the shader graph depicted infigure 4.2(a) is converted to

the following shader code.

/∗ Shader g e n e r a t e d by VoluViz∗ /

un i fo rm sampler3D Volume1 ;
un i fo rm sampler3D Volume2 ;
un i fo rm sampler1D LUT1 ;
un i fo rm sampler1D LUT2 ;
v a ry i n g vec3 TexCoord0 ;

vo id main ( )
{
/∗ Res1 = Volume1 ∗ /
vec4 Res1 = t e x t u re 3 D ( Volume1 , TexCoord0 . xyz ) . r g b r ;

/∗ Res2 = LUT1( Res1 ) ∗ /
vec4 Res2 ;
Res2 . rgb = t e x t u re 1 D (LUT1 , Res1 . r ) . rgb ;
Res2 . a = t e x t u re 1 D (LUT1 , Res1 . a ) . a ;

/∗ Res3 = Volume2 ∗ /
vec4 Res3 = t e x t u re 3 D ( Volume2 , TexCoord0 . xyz ) . r g b r ;

/∗ Res4 = LUT2( Res3 ) ∗ /
vec4 Res4 ;
Res4 . rgb = t e x t u re 1 D (LUT2 , Res3 . r ) . rgb ;
Res4 . a = t e x t u re 1 D (LUT2 , Res3 . a ) . a ;

/∗ Res5 = Atop ( Res2 , Res4 )∗ /
vec4 Res5 ;
Res5 . rgb = Res2 . a∗ Res2 . rgb + (1− Res2 . a ) ∗ Res4 . rgb ;
Res5 . a = Res4 . a ;

g l F r a g C o l o r = Res5 ;
}

The most complex shader item is the gradient operator. Since the gradient can be evaluated at any

level in the scene graph this implies that the entire expression prior to the gradient node has to

be evaluated at six different sample positions (assuming a second order finite difference scheme is

used). The beauty of the system is that any new field can be computed in the scene graph, mapped

to a color and alpha value through a separate texture lookup, and then rendered correctly with a

gradient based light model or a non-photorealistic rendering technique.

Figure 4.3 shows an example where data from a hurricane simulation [28] is rendered using a bit

more advanced scene graph construction including the computation of gradients and the use of a

gradient based light model.

FFI-rapport 2014/01616 25



Figure 4.3 Visualization of volumetric streamlines giving the local wind direction of the hurricane

data. The streamlines (volume2) are color encoded by the velocity magnitude (volume1)

using theColor/Alphaoperator and rendered using a gradient-based light model.

4.6 VoluViz Operators

4.6.1 Compositing Operators

One method for combining multiple data sets into a single field is by using the compositingoperators

presented by Porter and Duff [30]. Here, a composited color and opacity value of the two volumes

A andB is obtained by the formulas

A = aAFA + aBFB, (4.2)

C =
cAaAFA + cBaBFB

A
, (4.3)

whereci andai are the color and opacity values associated with the contributing volumes andFi

is a weight function. The following combination of weight functions defines the operators given

in table 4.1. These operators are very useful for showing correlation between multiple data fields,

such as finding overlapping regions of selected data sets. Different operators correspond to different

visible regions using union and intersection operations on the opacity values.

As an additional compositing operator we have also implemented themergeoperator presented by

Helgeland et. al. [17]. For some applications, the merge operator is preferable compared to, for

instance, the over operator since this expression holds no precedencein any area covered by multiple

data fields (see table 4.1). It also handles arbitrary number of input fieldsas opposed to the binary

operators presented by Porter and Duff. The merge operator is givenby the formulas

A = 1 −

n
∏

i=1

(1 − ai) (4.4)

C = (
n

∑

i=1

ciai)/
n

∑

i=1

ai. (4.5)

26 FFI-rapport 2014/01616



Table 4.1 Compositing operators. The alpha (or opacity) values are set tobe completely opaque

(ai = 1) for both the visible (blue and red) regions defined by the data setsA andB in all

the examples.

Operations FA FA Result

A 1 0

B 0 1

A overB 1 1 − aA

B overA 1 − aB 1

A in B aB 0

B in A 0 aA

A outB 1 − aB 0

B outA 0 1 − aA

A atopB aB 1 − aA

B atopA 1 − aB aA

A xor B 1 − aB 1 − aA

A mergeB eq. (4.4),(4.5) eq. (4.4),(4.5)

FFI-rapport 2014/01616 27



(a) (b)

Figure 4.4 (a) Visualization of vortices generated in the wake of a radome mounted onthe P3-C

aircraft. (b) A zoomed in rendering of the vortices.

Figure 4.5 gives an example where we demonstrate the usefulness of the compositing operators

by showing relationships between three different vortex identification measures used on a channel

flow simulation data set [13]. In fluid dynamics research, the study of vortices is important for

understanding the underlying physics; vortices are often viewed as “thesinews and muscles of

turbulence” [20]. In engineering applications, vortices can either be desirable or undesirable and

attempts to promote or to prevent the occurrence of vortices are used for optimizing and modifying

design. Figure 4.4 shows an example of undesirable vortex formations created in the wake of a

radome mounted on the P-3C aircraft [5]. The turbulent wake impacts the aft part of the aircraft and

may trigger vibrations in the aircraft.

Many vortex-detection methods have been proposed in the literature. Amongthe most popular and

successful identifiers are the three criteria

• helicity (v · ω),

• enstrophy(‖ω‖2), and

• λ2 [19],

wherev andω are the velocity and vorticity vectors, respectively.

In Figure 4.5(a), the relation between theλ2 and the enstrophy field is revealed using theatop

operator. The operation (λ2 atop enstrophy) gives a rendering where the visible region (given by

the opacity) is defined by the enstrophy field while the color is determined by both fields but with

an emphasis on theλ2 field. Setting the alpha values of theλ2 structures equal to one results in a

rendering where regions occupied by the intersection of the two fields arecolored by theλ2 field

while the remaining region of the enstrophy structures is colored by the enstrophy field. Hence, we

are able to see the spatial relation between the two fields. Regions of high vorticity magnitude result

both in vortex cores and vorticity sheets. By using the atop operator we arethus able to distinguish

between the vortex cores (red) from the vorticity sheets (gray/white) as can be seen in figure 4.5(a).

28 FFI-rapport 2014/01616



(a) λ2 atop enstrophy

(b) Helicity in λ2

Figure 4.5 Visualization of relationships between three different vortex identification measures using

compositing operators. (a) The operationλ2 atop enstropy is used to distinguish the

vortex cores (red) from the vorticity sheets (gray/white). (b) Individualvortices defined

by theλ2 criterion are colored by the helicity using thein operator. Red and blue colored

vortices indicate clockwise and counter clockwise rotation, respectively.

FFI-rapport 2014/01616 29



Figure 4.5(b) gives another example where thein operator is used to convey information about the

spatial correlation between helicity and vortices defined by theλ2 criterion. Here, the visible region

is defined by theλ2 field while the color is determined by the helicity field. There is a strong

correlation between helicity and coherent structures in a turbulent flow field, and this quantity has

previously been used to extract vortex core lines [23]. The assumption isthat that near vortex core

regions, the angle betweenv andω is small, which means that local extreme values of helicity can

be used as indicators of vortex cores. The sign of the helicity value indicates the direction of the

rotation (or swirl) with respect to the streamwise velocity component. Positive values give clockwise

rotation while negative values give counter clockwise rotation. In figure 4.5(b) individual vortices

defined by theλ2 criterion are colored by the helicity. Red and blue vortices indicate clockwiseand

counter clockwise rotation, respectively.

4.6.2 Feature Enhancement Operators

Even though theemission-absorptionmodel [26] and the resulting volume rendering integral (equa-

tion (4.1)) does not take external light sources into account, shading ofvolumes can still be achieved.

Volume shading can increase realism and understanding of volume data. Most volume shading is

computed using the Phong [29] or Blinn-Phong [6] illumination models. The resulting color is a

function of the gradient, light, and view direction, as well as the ambient, diffuse, and specular

shading parameters.

Traditional local illumination models is based upon a normal vector which describes the orientation

of a surface patch. In volume rendering no explicit surfaces exist. So instead, the model is adapted

assuming light is reflected at isosurfaces inside the volume data. For a given pointp an isosurface

is given as:

I(p) = {x|f(x) = f(p)}

with normal,n, defined as

n(p) =
∇f(p)

‖∇f(p)‖
, ∇f(x) =

(∂f(x)

∂x
,
∂f(x)

∂y
,
∂f(x)

∂z

)

.

A local illumination model can thus be incorporated into the emission-absorption model by using

the gradient,∇f(p), as the normal vector. The volume shading is typically added to the emissive

color contribution in the emission-absorption model resulting in an alternative color contribution,

Cvolume, substituting the pure emissive term in the volume rendering integral (eq. 4.1)by

Cvolume = Cemission + Cillumination, (Cillumination = IPhong|IBlinnPhong). (4.6)

The Blinn-Phong model can, for instance, be expressed as

IBlinnPhong = Iambient + Idiffuse + Ispecular,

= ka + kd(l · n) + ks(h · n)s,
(4.7)

where l is the light direction vector,h is the half vector which is halfway between the viewing

vector and the light direction,s is the specular power andka, kd andks are the ambient, diffuse and

specular coefficients.

30 FFI-rapport 2014/01616



(a) (b)

(c) (d)

Figure 4.6 (a) Traditional direct volume rendering without any feature enhancements with associ-

ated transfer function (b). (c) Gradient-based volume shading (Blinn-Phong model) with

associated transfer function.

Figure 4.6 demonstrates the effect of applying gradient-based volume illumination to a selection of

vortices from a simulation of stratified turbulent shear layer [43]. The figure shows the rendering

result both with and without a local illumination model, in addition to the transfer function used for

the two cases.

It is important to note that the transfer function gives the mapping to the emissive term in equation

(4.6) only and that the contribution from the illumination model is added to the emissive term to

produce the final local color. As a result, more ”white” light is added to the scene when applying

volume illumination compared to traditional volume rendering (when using the same transfer func-

tion for the emissive color). When designing transfer functions well suitedfor volume illumination,

a piece of advice is thus to use lower values for theValuecomponent in the HSV color system

(see section 3.2) than what would be ideal for traditional volume renderingwithout a local illumi-

FFI-rapport 2014/01616 31



Figure 4.7 Visualization of contours in a volumetric teddy bear and torus dataset.

nation model. This is illustrated in figure 4.6. Here, a constantValue, V = 0.65, is used for the

transfer function associated with the local illumination model, whereasV = 1 is used for the pure

emission-absorption model.

Another way of enhancing volume data features is by using Non-Photorealistic Volume Rendering

(NPVR) techniques. The overall goal of NPVR is to go beyond the means of photorealistic vol-

ume rendering and produce images that emphasize important features in the data, such as edges,

boundaries, depth, and detail, to provide the user with a better appreciationof the three-dimensional

structures in the data. NPVR techniques are able to produce artistic and illustrative effects, such

as feature halos, tone shading, depth enhancements, boundary enhancements, fading, silhouettes,

sketch lines, stipple patterns, and pen-ink drawings [18, 40, 31, 36, 25, 16]. For volumetric data, sil-

houettes or contours can, for instance, be obtained by computing a contour intensity field,Icontours,

evaluated by the following equation

Icontours = g(‖∇f‖)(1 − ‖(v · n‖)n. (4.8)

In our implementation of thecontoursoperator, the derived intensity field,Icontours defines the

opacity while the colors is sent as input parameters to the operator. Figure 4.7 shows an example

where equation (4.8) has been used to create volumetric contours of two data sets usingg(‖∇f‖) =

‖∇f‖ andn = 8.

Figure 4.8 illustrates different feature enhancement techniques used ona selection of vortices from a

channel flow [13]. The images clearly reveal how volume shading and non-photorealistic rendering

techniques can add detail, enhance spatial structures and give the necessary 3D appearance of the

volume data.

The above example also demonstrates the flexibility of the presented visualization framework. As

volume shading and NPVR techniques, in addition to compositing operators andtransfer functions,

can be assigned individually to all of the volume data objects, this provides a detailed control of the

final rendering appearance, enabling a numerous variety of visualizations such as the ones depicted

32 FFI-rapport 2014/01616



(a) (b)

(c) (d)

(e) (f)

Figure 4.8 Feature enhancement techniques used on a selection of vortices. (a) direct use of the

volume integral given in equation (4.1) without any feature enhancements.(b) Gradient-

based volume shading (Blinn-Phong model). (c) Feature enhancement using limb dark-

ening [16]. (d) Volume shading in combination with limb darkening. (e) Silhouette

rendering using the gradient-based contour operator. (f) Volume shading in combination

with silhouettes.

FFI-rapport 2014/01616 33



(a) (b)

Figure 4.9 (a) Regular volume rendering of an MRI data set [41] of a human brain. (b) Volume

rendering (of the same data) in combination with compositing operators andfeature

enhancement techniques used with the purpose to reveal (and emphasize) arteries in the

human brain.

in figure 4.9. Here, a single MRI data set of a human head [41] is visualizedwith different rendering

techniques resulting in two quite different visualizations. One of the visualizations is rendered with

regular volume rendering (figure 4.9(a)) while the other one is visualized using a combination of

compositing and feature enhancement operators (fig 4.9(b)). The latter visualization is generated

with the purpose of emphasizing the major bloodvessels inside the human brain revealing a ring of

arteries located at the base of the brain known as theCircle of Willis.

Figure 4.10 shows another example where non-photorealistic rendering techniques have been used

to visualize data from a hurricane simulation [28]. Here, areas with the greatest wind speed have

been rendered in grey colors using volume shading (revealing the 3D structure of the hurricane)

while areas with the lowest wind speed have been rendered in white to red colors using volumetric

contouring (revealing the eye of the hurricane).

In both the two latter examples (figure 4.9 and figure 4.10) variations of a branch of techniques

known asfocus+contextvisualization has been used. In focus+context visualizations, some objects

or parts of the data are shown in detail, while other objects or parts act as a context. While the data

”in focus” often are displayed rather opaque (to emphasize these regions), the rest of the data can

be shown rather transparent.

34 FFI-rapport 2014/01616



Figure 4.10Hurricane data visualized using two different rendering techniques. Areas with the

greatest wind speed are rendered densely, in gray, (with high opacity)using volume

shading to enhance the 3D structure of the hurricane. Areas with the lowest wind speed

are visualized in a more semitransparent way (using lower opacities) in combination

with silhouette rendering, in white to red colors, to reveal the eye of the hurricane.

4.6.3 Numerical Operators

In addition to the compositing and feature enhancement operators, numerical operators acting di-

rectly on the volume data can also be incorporated in the proposed visualization framework. Two

operators that we have found particularly useful are the operatorsDiff andAbsDiff given as

Diff (A, B) = A − B, Diff ∈ [−1, 1],

AbsDiff(A, B) = ‖A − B‖, AbsDiff ∈ [0, 1].

These can be used to estimate the local difference between two data fields. The difference operators

can be used for a variety of applications. It can for instance be used for debugging of numerical

code, but also for finding the effect of adjustments made to a simulation. These can range from

minor adjustments such as the change of simulation parameters to larger adjustments including

the change of boundary conditions and choice of model, to major adjustments such as adding or

removing terms in the mathematical equation describing the problem. In addition, it can be used

to visualize the change occurring between different time steps of a simulation such as calculating

time derivatives. Time derivatives can be obtained by calculating finite differences, which can be

computed using the diff operator on two copies of a chosen data field with a time difference equal

to one. Then, a first order backward or forward difference can beobtained depending on the setup.

Figure 4.11 gives an example where theAbsDiff operator has been used to examine the convergence

of statistical steady turbulence in a chamber simulation [11]. The visualization shows regions where

FFI-rapport 2014/01616 35



Figure 4.11Visualization of statistically non-converged regions of a turbulent chamber flow simu-

lation.

the statistics of the flow has not yet reached a fully converged state. This isdone by computing the

root-mean-square (RMS) of the velocity for two different time steps for a given time interval. For

statistically converged regions the RMS value should not change, which means that we can visualize

numerically non-converged regions inside the computational box by applying the diff operator on

the two RMS fields and then render all areas that are not close to zero. Figure 4.11 shows the result

after a transfer function lookup table (LUT) has been connected to the output from the diff operator

in addition to a gradient-based volume shader operator.

Figure 4.12 provides another example where where thediff operator is used to compare two chan-

nel flow simulations [13] using different boundary conditions. While the first data set is obtained

using no-slip boundary conditions, the second channel flow simulation is generated by first splitting

the channel in the middle and then using a slip boundary condition at one of thesurfaces. Data

derived from the second simulation is then compared to data from half of the channel from the first

simulation. The data is compared by visualizing regions of difference only. Similar to the previous

example (see figure 4.11), regions of difference are enhanced usinggradient based volume shading.

Volume shading has, in both cases, been used in combination withlimb darkening[16] to highlight

the boundaries of the visualized regions.

4.7 4D Data Analysis

4.7.1 Animation

Once the desired data is selected and an appropriate visualization scene is created, our visualization

framework handles two types of navigations through the time-varying data set. The data set can

be explored by either dragging a time slider or by using the animation utility. The time slider is

36 FFI-rapport 2014/01616



Figure 4.12Comparison of two channel flow simulations with different boundary conditions by vi-

sualizing the local difference between the two solutions.

very useful for investigating the data at different time steps. Once a new timestep is selected,

the visualization scene graph is automatically updated accordingly. The time slider feature also

simplifies the process of finding transfer functions that are well-suited forthe whole time-series.

Finding good transfer functions is often a tedious process that sometimes involves clipping of data

value ranges. To facilitate this process we have implemented a histogram renderer that also updates

according to the time slider. The user can select between continuous updateor updates that occur

only when the time slider is released.

The animation utility, on the other hand, allows a pre-defined and a more controlled animation of

the time-dependent data. Here, the user can select the time interval, the order of the data sets to be

loaded, the step size, as well as pre-generated user interactions such as rotation and zooming.

4.7.2 Time-Varying Multi-Field Volume Visualization

The most common method to investigate the time-dependent behavior of a data setis through ani-

mation. Even though animations can be sufficient, for a number of applications, it can be difficult to

analyze spatio-temporal relationships using this technique. This is due to the loss of positional infor-

mation when moving between individual time steps. To facilitate a more complete spatio-temporal

investigation of the multi-variate and time-varying data, VoluViz is designed usinga novel 4D data

analysis framework. Instead of just relying on animation utilities, VoluViz also support the projec-

tion of a multiple set of data fields (both temporal and spatial) in the same scene. This extended 4D

analysis functionality is incorporated into the already presented shader scene graph (section 4.4) in

the following way. Multiple copies of selected data fields from the time-varying data sets can be

generated by the user. Each of thesen copies have assigned a local time difference which is added

FFI-rapport 2014/01616 37



0 +5 +10

Figure 4.13An example of a volume scene graph used to visualize data from three different time

steps in the same scene.

to the global time to produce the local time of each copy

(time)i = global time+ (time difference)i, i = 1...n. (4.9)

When data copies are used to generate volume objects in the volume scene graph, the local time of

each volume is used when accessing the data. Hence, the volume scene graph can consist of multiple

data fields from different time steps. This allows the computation of time-varyingquantities such

as time derivatives (provided that the time difference is sufficiently small) andhigh-dimensional

projection volumes. When the global time is changed, all of the data volumes in thescene graph are

adjusted accordingly. For example, if the scene graph is constructed to visualize the spatio-temporal

relationship of a time-evolving volume structure by visualizing the structure at three different time

steps (t1 = 0, t2 = 5, t3 = 10) for t = 0 together in the same scene, an animation of the scene will

preserve the time difference between the volumes for all scenes (as long as the local time steps are

inside the global time interval). Hence, we get a 4D visualization which both exhibit time-evolution

as well as the depiction of spatio-temporal relationships at each time step of theanimation. Figure

4.13 gives an example of how such a scene graph can be constructed.

Figure 4.14 gives an example where the 4D data analysis framework of VoluViz has been used to

depict the spatio-temporal evolution of the breakdown of a single vortex ring. Here, the vortex

structure is rendered in the same scene (using themergeoperator) at six different time steps using

a constant time step size between the time-varying data. To distinguish between the individual time

steps, the vortex structure is visualized using six different colors startingfrom red color (giving the

earliest time step) to a purple depiction of the vortex structure (showing the latest time step in the

time-evolution). The visualization clearly depicts how the ring structure both moves and deforms in

space as time evolves. For instance, one is able to see how the ring first increases in size, then starts

to tilt forward before it begins to break down.

38 FFI-rapport 2014/01616



Figure 4.14Temporal-spatial visualization of a breakdown of a single vortex ring by simultaneously

rendering the data from six different time samples in the same scene (represented by six

different colors).

Another example showing the usefulness of the 4D analysis framework is theone presented in the

second paragraph of section 4.6.3 and in figure 4.11. Here, two different time steps of a derived sta-

tistical quantity is compared to reveal all statistically non-converged regionsof a turbulent chamber

flow simulation.

In addition to the local time difference functionality, each individual data object can also be ‘frozen‘

in time. This functionality can for instance be used for visualizing the time-evolution of volume

structures starting from a fixed time, with the initial structure kept in the scene for all time steps.

With two fixed time steps (t1 = A andt2 = B), an animation could show how the structure evolves

from time stepA to time stepB, with both fixed structures kept in the scene for all frames. This

is illustrated in figure 4.15. Here, a silhouette rendering of the hurricane [28] is rendered at two

fixed time steps for all frames to provide contextual information, thus increasing the depiction of

temporal-spatial relationships in the data.

4.8 Interactive Analysis

To facilitate interactive analysis of a three-dimensional time-dependent dataset, the rendering frame-

work of VoluViz supports an additional set of tools. In addition to manipulating the volume scene

graph and individual transfer functions, the system supports clip planes manipulation, data-subset

selections, and other user functions, at interactive rates. These are all tools that can be used to di-

minish the occlusion effects by for instant reducing the complexity of the scene by focusing on a

region of interest.

In addition, a data caching system is implemented allowing whole time series of selected data sets

FFI-rapport 2014/01616 39



(a) t = 0 (b) t = 15

(c) t = 30 (d) t = 45

Figure 4.15Snapshots from an animation of a hurricane data set where silhouettes of the hurricane

at two fixed time steps are rendered in all frames.

to be cached in the CPU memory, assuming there is enough memory available to fit the entire data

set. As the transfer of data from the hard-drive to CPU-memory tends to bethe main bottle-neck for

the animation system, this helps speeding up animations. This caching mechanism is, for instance,

very useful when studying the spatial-temporal evolution of non-steady flow phenomena.

To support large-scale data analysis, the texture based volume slicing technique has been imple-

mented using a brick-based volume renderer. A maximum 3D texture size, with the upper limit

being what is supported by the used graphics card, is specified by the user. This value defines the

largest possible 3D brick size that can be used by the rendering system. Then, dependent on the

exact size of the data set, the largest volume used in the volume scene graphis split into a number

of bricks which are sorted and rendered in a back-to-front order. To support a wide selection of

graphics cards, the bricking algorithm splits the volume into a number of power-of-two textures2.

If multiple data fields of different sizes are visualized in the the same scene, all volumes are split

according to the brick configuration defined by the largest volume. When data-subset selections are

made, this could change the brick constellation and result in a configuration requiring less amount

of texture memory.

2Some older graphics cards only support power-of-two textures.

40 FFI-rapport 2014/01616



(a) (b) (c)

Figure 5.1 (a) Render window. (b) Volume Scene Graph window. (c) HDF5 File browser.

5 VoluViz User Manual: Part 1 - Rendering Volumes

5.1 Introduction

VoluViz is an application designed for interactive analysis of both time-dependent and static volume

data. VoluViz has many features including:

• Fully interactive color table editor for specifying transfer functions

• Support for interactive visualization of time-varying fields

• Support for interactive multi-field visualization through a flexible scene graph editor

• Interactive clip plane and picking of subset utilities for easy navigation of the data

Currently, VoluViz is restricted to handle data defined on a regular three-dimensional structured

grid. It reads files in the HDF5 [1] format and includes a browser for easy navigation of HDF5 files.

5.2 Starting a VoluViz Session

To start a VoluViz session do one of the following approaches:

- start a new voluviz session

% voluviz &

- start with a particular data set as input parameter

% voluviz data.h5 &

- start voluviz with an already saved scene

% voluviz scene.vv &

As default, VoluViz starts with two windows activated, namely theRender window(figure 5.1(a)),

which is VoluViz main window, and theScene Graph window(figure 5.1(b)).

When a data file is opened the user can pick data sets by double clicking on a chosen data set in the

HDF5 browser window(figure 5.1(c)). Once a data set is double clicked, the data set can be found

FFI-rapport 2014/01616 41



(a) (b)

(c) (d)

Figure 5.2 (a)-(c) Illustration of necessary steps needed to make a visualization scene graph in

VoluViz. (d) Rendering result.

in theData list in theScene Graph window(figure 5.2(a)). Individual data sets and operators can

be put into the scene graph through drag and drop events. Figure 5.2(b) shows an example where

a single data set and a transfer function is put into the scene graph window. Finally, a scene (tree)

graph can be constructed by connecting the scene graph items with arrows(also using drag and drop

events) as depicted in figure 5.2(c). Once the scene graph item calledColor Out, which is the root of

the scene graph, is connected to the tree graph, the output is rendered inthe render window (figure

5.2(d)). More details on the scene graph and supported operators with examples can be found in the

sections 4.4-4.6.

5.3 Render Window

VoluViz main window (figure 5.1(a)) consists of a render area in addition to amenu system, from

which commands and functionalities can be accessed from.

42 FFI-rapport 2014/01616



5.3.1 Using the Mouse

- To rotatethe volume, press and hold the left mouse button while moving the mouse.

- To movethe volume, press and hold the middle mouse button while moving the mouse.

- To zoomin and out, press and hold the right mouse button while moving the mouse backwards

and forwards.

- The view can be aligned with thex, y andz axis by pressingX, Y andZ respectively. Pressing

one of these combinations twice in a row flips the view 180 degrees.

5.3.2 Light source

The light source can be activated by pressing and holding theCtrl button. This displays an icon of

the light source giving its location and direction. To rotate the light source pressCtrl and hold the

left mouse button while moving the mouse. The light source is used when volume data is rendered

using volume shading and gives the light direction vector used in the local illumination model (see

section 4.6.2). Figure 5.3 shows the result from using three different light directions when rendering

a vortex ring structure. The default light direction is set to be parallel to theview direction which

gives the rendering displayed in 5.3(b). The light source is also used when rendering geometries

(see section 6.4).

(a) (b) (c)

Figure 5.3 Rendering of a volumetric ring structure using three different light directions. (a) Light

source from the left. (b) Light source direction parallel to the view direction.(c) Light

source from the right.

5.3.3 File Menu

New clears VoluViz for a new session.

Load volume starts the HDF5 browser (see figure 5.1(c)) which can be used to find and open

volume data sets. (Hotkey:Ctrl+V )

Load mesh loads a VoluViz mesh file (see section 6.2). (Hotkey:Ctrl+M )

FFI-rapport 2014/01616 43



Snapshot takes a snapshot of the rendering area of the render window and saves it as one of the

supported image formats.

Save scenesaves the VoluViz session to file. The file, which is written as a text file, can beopened

and modified by the user in any text editor.

Load scene loads a VoluViz session.

Quit quits the VoluViz application. (Hotkey:Ctrl+Q)

5.3.4 Edit Menu

Background sets the background color. This can be:

- a single color.

- a vertical gradient between two colors.

- a gradient between four colors defined at the corners of the screen.

The colors are chosen by entering a string of color names (e.g. “black white”) or by its HEX

value. See the Qt documentation [2] for theQColor class undersetNamedColor() for a

list of valid colors. In addition, VoluViz also allows the use of any valid X11 color names. A

full list of valid X11 color names can be found on the web [3].

Bounding Box sets the color of the axis aligned bounding box surrounding the volume data.

Clip Plane sets the color of the clip plane.

Physical Coordinates sets the physical coordinates of the volume data domain. The default phys-

ical data domain isD = ([−1, 1], [−1, 1], [−1, 1]), given in thex, y andz directions, respec-

tively.

Subset opens the subset dialog box which can be used to pick a subset of the volume domain to be

rendered (see figure 5.4). (Hotkey:Ctrl+S)

Figure 5.4 The subset editor can be used to render only a subset of the data domain.

44 FFI-rapport 2014/01616



Sampling rate sets the number of slices that are used to render the volume (see section 3.5). If

thereducedcheckbox is checked, the number of slices are reduced during user manipulation

of the volume (moving, rotating, scaling etc.). This decreases the renderingworkload and

increases the interactivity of the application. (Hotkey:Ctrl+R)

Field of View Angle sets the field of view angle used in the (perspective) projection of the scene.

Using the analogy of a camera lens, the field of view defines how wide or narrow the view is

(see figure 5.5). (Hotkey:Ctrl+F )

(a) (b)

Figure 5.5 MRI data rendered using different Field of View (FOV) angles. (a) FOV angle = 20◦.

(b) FOV angle= 60◦.

Volume Transform can be used to scale the volume in thex, y andz directions.

Texture interpolation sets the interpolation mode used when rendering volume data. The user can

choose betweenlinear interpolation andnearestneighbor look up when sampling the data at

given locations in the volume.

Texture format sets the texture format used when storing the volume data as 3D textures on the

graphics card (see section 3.3). The framework supports

• Byte - stores the data as 3D textures with 8 bits precision.

• Short - stores the data as 3D textures with 16 bits precision.

• Float - stores the data as 3D textures with 32 bits precision.

Datasets opens theDatasets window. The dataset window is used for handling geometries (see

section 6.2.1). (Hotkey:Ctrl+F )

Vis Objects opens theVis Objects window. The Vis objects window is used for handling geometries

(see section 6.2.2). (Hotkey:Ctrl+O)

Scene Graph opens theScene Graph window. The scene graph window is used for handling and

manipulating data volumes (see section 5.4). (Hotkey:Ctrl+O)

FFI-rapport 2014/01616 45



Animation (Movie) opens theAnimation window. The animation window is used for creating

animations (see section 5.7). (Hotkey:Ctrl+M )

5.3.5 View Menu

View All resets the default view of the data scene.

Axis displays the coordinates of the volume along thex, y andz axis. (Hotkey:Ctrl+A)

Bounding box displays an axis aligned bounding box surrounding the volume.

(Hotkey:Ctrl+B)

Clip plane enables the clip plane. The volume on one side of the plane is displayed while theother

side is “clipped” (see figure 5.6).

Figure 5.6 Illustration of the use of a clip plane to see the internal information ofan MRI data set.

The clip plane can be manipulated using the mouse in conjunction with the keyboard:

- To rotate the clip plane pressShift and hold the left mouse button while moving the

mouse.

- To slide the clip plane along the plane normal, pressShift and hold the middle mouse

button while moving the mouse.

- The clip plane can be aligned with thex, y andz axis by pressingShift+X, Shift+Y and

Shift+Z respectively. Pressing one of these combinations twice in a row flips the clip

plane 180 degrees, so that the visible portion of the volume becomes invisible (clipped)

and vice versa.

- To resetthe clip plane to the initial configuration, pressShift+R.

(Hotkey:Ctrl+P)

Reset Light resets the light source direction.

46 FFI-rapport 2014/01616



Figure 5.7 The scene graph window.

5.4 Scene Graph Window

TheScene Graphdialog window basically consists of three windows: aToolswindow displaying a

list of various operators, aData window displaying loaded data sets and the main window showing

the scene graph rendering areawhere data sets and operators can be used to construct different

types of visualizations, see figure 5.7. In addition, the scene graph window has a menu system and

a time slider, located at the top and bottom, respectively. Both the data and tools windows can be

separated from and put back into the scene graph dialog window throughdrag and drop events (at

given valid positions).

5.4.1 Using the Mouse

All scene graph items can be accessed through drag and drop events.

- To move an item, press and hold the left button while moving the mouse.

- To drop an item, move it over to the scene graph rendering area and release the left button.

5.4.2 Item Menu

Delete can be used to delete activated scene graph items from the scene graph rendering area. Scene

graph items can be activated by pressing the left mouse button while holding themouse cursor

FFI-rapport 2014/01616 47



over an item. (Hotkey:Del)

Clear Sceneclears the scene graph by removing all items from the rendering area. (Hotkey:

Ctrl+C )

5.4.3 Scene Graph Rendering Area

In the scene graph rendering area, scene graph items can be put together in a tree graph to construct

various types of visualizations. All scene graph items have connection areas which can be used to

connect the items together. Input and output connection areas can be found at the top and bottom of

the scene graph items. Most of the items have both input and output connection areas while some

special items, such as data (Volume) items and theColor Out item, only have one of them. Some of

the available scene graph items can be seen in figure 5.8.

Figure 5.8 Some available scene graph items.

Currently, there are two types of connection areas in VoluViz. These are

• RGBA: This is the standard connection type and sends data (color and opacities)through the

(r,g,b,a) components. The standard connection areas are namedIN andOUT.

• Gradients: This connection type sends and receives a gradient vector using the (r,g,b) com-

ponents. The gradient connection areas are namedG:IN andG:OUT.

Connection areas can only interact with their own type.

Making a connection

- To make a connection between two items, start by pressing and holding the middle button

while holding the mouse cursor on a connection area. Then finish the connection by moving

the mouse cursor to a new connection area and then release the mouse button. If the connec-

tion was made successfully an arrow will be made between the two chosen scene graph items,

see figure 5.9.

- To delete a connection, first activate a connection area by holding the mouse cursor over

a connection area and press the left mouse button (see figure 5.10(a)).Then press theDel

button. This will delete all arrows connected to the activated connection area (see figure

5.10(b)).

To learn more about the different operators (with examples) read the sections 4.4-4.6.

48 FFI-rapport 2014/01616



Figure 5.9 Scene graph items are connected together by connecting an input and output connection

area by arrows.

(a) (b)

Figure 5.10Deleting connections. (a) Activating a connection area will display all connecting ar-

rows in dashed style and with grey colors. (b) Pressing theDel button will remove all

activated arrows.

5.4.4 Color Table Editor

The color (lookup) table editor can be accessed by double clicking aLUT operator in the scene

graph rendering area. The editor is divided into three main parts (see figure 5.11).

- Thecombined sectioninclude a global view of the color table and a zoomable detailed view.

- Thecolor spacecombo box allows you to choose between HSVA and RGBA color spaces.

- The channel viewsshows the color table for each color component. The channels will be

hue, saturation, valueandalpha, or red, green, blueandalphadepending on the chosen color

space.

To modify the color table, the user inserts and manipulates a number ofknotsin the desired channel

view.

- To inserta knot, press the middle mouse button.

- To movean existing knot, move the mouse over the desired knot, and while pressing theleft

mouse button, drag the knot to its new position.

FFI-rapport 2014/01616 49



Figure 5.11 The Color table editor.

- To deletea knot, move the mouse over the desired knot and press the the right mouse button.

Each channel has an interpolation mode (linear, spline or Gauss) that determines the interpolation

function between knots.

The exact operation of the color table depends on the input data sent to thecolor editor. VoluViz

supports the following types of (texture) color mappings:

- One-component (texture) color mapping– This is what normally occurs in the visualization

scene graph, when (for instance) a data set is used directly as input to acolor editor. Then,

the same (single) scalar component is used in the mapping for all the (r,g,b,a) or (h,s,v,a)

channels.

- Two-component (texture) color mapping– This is what occurs when the input contains two sets

of scalars. Then, the first scalar component is mapped using the (r,g,b) or (h,s,v) channels,

while the second scalar component is mapped using the alpha channel. This happens, for

instance, when two data sets are combined into a single output using theColor/Alphaoperator

and then used as input to a color table editor.

In the current version of VoluViz, the color tables have 256 entries. If the 3D data are stored,

internally, as (byte) textures with 8-bit precision there is a one-two-one correspondence with the

mapping of the data and the number of entries in the color table. If the data are stored using 16-bit

(short) precision or 32-bit float precision, interpolation is used in the datamapping to colors and

opacities. More information on color mapping and texture mapping can be found section 3.2 and

50 FFI-rapport 2014/01616



section 3.3, respectively. The color editor supports saving and loading of color tables. Load and

save functionality can be accessed from the color editor file menu.

5.5 Tools Window

The tools, in VoluViz, can be accessed through theToolswindow, see figure 5.12. The tools can be

made available in the scene graph rendering area using drag and drop events (see section 5.4.1).

Figure 5.12 Tools window.

5.6 Dataset Window

Once a data set is loaded by the HDF5 browser, the data set can be foundin the Data list in the

Dataset window (see figure 5.13). Here, the data appears together with information such as the data

value range, data set size, and time information. The data volumes can be moved to the scene graph

rendering area by using drag and drop events (see section 5.4.1).

Figure 5.13 Dataset window.

A data set menu can be accessed by right clicking on the mouse button while holding the cursor

over a specific data set, as illustrated in figure 5.14. The data set menu can be used to manipulate

the data such as fixing the data range for an animation or changing the internal texture format.

FFI-rapport 2014/01616 51



Figure 5.14 Dataset Menu.

5.6.1 Data set Menu

Freeze time freezes the time of the data set so that the local time of the current data set remains

unchanged when adjusting the global time (see section 4.7.2).

Edit time difference is used when making multiple copies of a single data set. Can be used for

creating visualization showing spatio-temporal relationships (see section 4.7.2).

Fix data range fixes the range of the current data set. When a new time step is loaded, the fixed

data range is used as minimum and maximum data values (instead of the dynamic datarange)

during rendering. Fixing data range is especially useful when generating animations; forcing

a constant color mapping of the time-dependent data.

Edit data range can be used for fixing the data range of a chosen data set by specifyinga new

minimum and maximum data value. Minimum and maximum data values are for instance

used in color mapping (see section 3.2). Fixing the data range may result in clamping of the

data. As a result, data values below and above the fixed ranged will be setto the nearest

available data value which is the user-specified minimum and maximum data values.

Unfix data range unfixes the data range. This causes the data set to be reloaded using the dynamic

range as minimum and maximum data values.

Texture format sets the texture format used when storing the volume data as 3D textures on the

graphics card (see section 3.3). The framework supports

• Byte - stores the data as 3D textures with 8 bits precision.

• Short - stores the data as 3D textures with 16 bits precision.

• Float - stores the data as 3D textures with 32 bits precision.

Cache cashes the current data set allowing whole time series of selected data sets tobe cached in

the CPU memory assuming there is enough memory available to fit the entire data set.As the

transfer of data from the hard-drive to CPU-memory tends to be the main bottle-neck for the

animation system, this helps speeding up animations. This caching mechanism is very useful

when investigating time-dependent data allowing interactive navigation of the data.

52 FFI-rapport 2014/01616



Before caching whole time series, the user should estimate whether or not there is enough

available memory to fit the entire data set. For example, one hundred time steps ofa data

set consisting of512 ∗ 512 ∗ 256 data points takes up64MB ∗ 100 = 6.25GB of memory,

assuming the data is stored asBytetextures (with 8 bits precision).

Uncache uncaches the data set by freeing up memory.

Show histogram displays the histogram. The histogram gives information on how the different

data values of a data set are distributed (figure 5.15). When the data range is fixed by the user,

clamped regions will be marked grey as can be seen in figure 5.15(b).

(a) (b)

Figure 5.15The distribution of a data set can be visualized through histograms. (a) A histogram

displaying the data distribution using dynamic data range. (a) A histogram displaying

the data distribution using fixed data range[0, 250].

Remove removes the data set from the data set list.

5.7 Animation Window

Time-dependent data sets can be explored either by dragging the time slider inthe Scene Graph

Window (section 5.4) or by using the animation utility. The animation utility allows a pre-defined

animation of the time-dependent data. Here, the user can select the time interval, the order of the

data sets to be loaded, and the step size. These parameters can be definedas follows:

- Start at dataset- gives the time step of the data to be loaded at the start of the animation.

- Stop at dataset- gives the time step of the data to be loaded at the end of the animation.

- Number of frames- gives the number of frames used in the animation. If the purpose of the

animation is just to traverse through all the time steps of the time-dependent simulation, the

number of frames should be equal to the number of time steps in the simulation. If the number

of frames does not coincide with the number of available time steps, then the nearest available

time step will be loaded for each frame dependent on an interpolated lookup.

In addition, the animation utility supports a set of pre-generated camera actions. The supported

types of camera actions are the following three types:

FFI-rapport 2014/01616 53



(a) (b)

Figure 5.16 (a) Animation window. (b) Camera action editor.

- Rotation,

- Translation,

- Zooming.

These can be accessed by pressing the right mouse button in the camera action area of the animation

window and selectingadd. Figure 5.16 shows an example of an animation setup where a 360 degrees

rotation of the scene is embedded into an animation of an indoor dispersion simulation [10] starting

at timestept = 400 of the simulation. Some snapshots of the animation can be seen in figure 5.17.

The animation starts when pressing theAnimatebutton in the animation window. Snapshots of all

frames in the animation can be saved in one of the supported image formats by checking theWrite

filescheck box. These images can then be converted to a movie using a number ofavailable tools.

54 FFI-rapport 2014/01616



(a) t = 0. (b) t = 400.

(c) t = 800) (d) t = 1200.

Figure 5.17Snapshots from an animation of a dispersion simulation [10]. Up to timestept = 400

of the simulation the camera position is fixed. From timestept = 400 and until the end

of the simulation the camera makes a full rotation of the scene (around the z-axis) while

updating the time.

FFI-rapport 2014/01616 55



(a) (b)

Figure 6.1 (a) Visualization of toxic gas from an urban dispersion simulation [45]. (b) Visualization

of the electrical activity of the human heart embedded in the torso [39].

6 VoluViz User Manual: Part 2 - Rendering Geometries

6.1 Introduction

VoluViz is capable of visualizing the surface mesh geometry together with the volume data. Some

scenarios benefit from also depicting the surface geometry in the visualization scene, thus providing

a context to the visualization. Two examples where the surface geometry have been embedded in

the final visualization can be seen in figure 6.1.

Geometry files is generated by converting the Fluent mesh (*.msh) files. Fluent mesh files can be

generated using mesh programs such as Gambit and ICEM. Be sure to storethe Fluent mesh files

as ASCII files. The Fluent mesh files are converted with the programmsh2vvm. More information

on the program can be found at FFI’s sinwiki web page under the title”Getting Fluent data into

VoluViz”.

6.2 Loading and rendering mesh files

Mesh files can be loaded by selectingLoad Meshin the file menu of the render window. This opens

a file browser.

6.2.1 Datasets Window

Once a VoluViz Mesh file (.vvm) is selected, the mesh file is put into the data set listwhich can be

found under theMeshestab bar in theDatasets window, see figure 6.2. The dataset window can be

opened by selectingDatasetsin the file menu of the render window.

Double clicking on a mesh in the data set list will generate a visualization object of the geometry

file and, by default, be put into the visualization scene.

56 FFI-rapport 2014/01616



Figure 6.2 Dataset window.

6.2.2 Vis Objects Window

All geometry visualization objects are stored in a separate list which is displayed in theVis Objects

window, see figure 6.3. The vis objects window can be opened by selectingVis Objectsin the file

menu of the render window.

(a) (b)

Figure 6.3 (a) Visualization Object window. (b) Visualization object window and its pop-up menu.

All list items are displayed together with a check box enabling toggling on and off the rendering of

individual meshes. A Vis Object menu can be accessed by right clicking onthe mouse button while

holding the cursor over an object, see figure 6.3(b). Particular usefulis theUse physical coordinates

option which sets the physical coordinates domain of the volume data to match the data domain of

the mesh file. If volume data from only a subset of the full data domain has been selected by the

user, the physical coordinates of the volume data domain has to be specifiedmanually.

The Vis Object Menu consists of the following options:

Remove removes the visualization object from the Vis Object list.

Use physical coordinatessets the physical coordinates of the volume data so that the volume data

domain matches the data domain of the mesh file.

FFI-rapport 2014/01616 57



Figure 6.4 Rendering of the surface geometry from a mesh file used in an urban dispersion simula-

tion [45].

A data set menu can similarly be accessed by right clicking on the mouse button while holding the

cursor over a specific mesh in theDatasets window. The data set menu can be used for removing

individual meshes. Removing a particular mesh will also delete all corresponding visualization

objects.

Figure 6.4 shows the result after applying the above steps on a mesh file used in an urban dispersion

simulation.

6.3 Mesh Editor

The mesh editor for a particular mesh can be opened by left clicking on the associatedEdit button

displayed in the vis objects window (see figure 6.3(a)). The mesh editor canbe used to manipulate

the geometry for instance be specifying the color and transparency of individual surface items. The

default rendering of a mesh file displays each geometry item using a randomcolor. This is illustrated

for the mesh file rendered in figure 6.4.

When loading a mesh file, VoluViz stores the geometry as a set of separate surface items under a set

of groups. The number of surface items and groups depends both on how the mesh is constructed

as well as on the chosen parameters to theFluent-to-VoluVizmesh converter program (msh2vvm).

For instance, eachpart created in the mesh program will be stored as a separate surface item under

a separate group. Each surface item, under a single group, can then further be split up into a number

of surface items dependent on the selected parameters to the mesh converter program. Sometimes

the splitting of surfaces into separate parts can be desirable as this gives the user more control. All

surface items and groups are displayed in the mesh list browser window in themesh editor. Figure

58 FFI-rapport 2014/01616



Figure 6.5 Mesh Editor.

6.5 shows the mesh editor associated with the city model rendered in figure 6.4.All groups and

surface items are listed under the root node of the mesh list.

Surface items can be activated in two ways; Either by left clicking on a surface item (or a group) in

the mesh list or by left clicking on a surface item in the render window. Activated surface items are

marked blue in the mesh list and rendered blinking in blue in the render window.Marking the root

node activates the whole mesh.

A set of keys can also be used in the picking of surface items. The followingkeys are valid when

operating the mesh in the render window.

- If no key is pressed, the current selection is cleared and the picked itemis selected.

- If shift is pressed, the picked item is added to the selection.

- If ctrl is pressed, the picked item is toggled (on and off).

- If shift andctrl is pressed, the picked item is removed from the selection.

- If alt is pressed, everything connected to the picked item is toggled, added to or removed from

the selection depending on the shift and ctrl state.

Figure 6.6 shows an example where the shift key has been used to activatea multiple set of surface

items.

When operating the mesh using the mesh list in the mesh editor, the following optionsand keys are

available:

FFI-rapport 2014/01616 59



Figure 6.6 Picking of surface items. Selected items are marked blue.

- If ctrl is pressed, the picked item is toggled and either added to or removed from theselection.

- When left clicking on an activated surface item (or group), the item or group can be renamed.

- Groups and items can be moved in the mesh list using drag and drop events.

- Right clicking on an activated surface item (or group) opens the mesh listmenu:

Group creates a new group (at the current position) in the mesh list.

Ungroup removes the selected group from the mesh list.

Figure 6.7 gives an example where the functionality described above has been used to rename and

regroup the mesh items resulting in a more intuitive list which is easier to operate. For instance,

all buildings in the city mesh can easily be activated if a common group holding all thebuildings

is first created. Once generated, the buildings can then be activated by left clicking on the newly

constructedBuildinggroup in the mesh list.

6.3.1 Surface Modes

Once a single or a set of surfaces has been activated, these surfaces can be manipulated by the mesh

editor to obtain a number of rendering effects. The mesh, or more precisely, each surface item,

consists of aninsideface, anoutsideface and a wireframe representation.

Inside face - Each surface item has both an inside and outside state associated with the surface.

The current state of a surface depends on the view vector. A surfaceitem is tagged as an

inside surface if the surface is considered to be in the ”back” plane of themesh geometry. By

default, all inside surfaces are rendered.

Outside face - A surface item is marked as an outside surface if the surface is considered to be in

the ”front” plane of the mesh geometry. By default, the outside surfaces are not rendered.

Wireframe - This surface mode depicts the surface items using a wireframe representation. By

default, wireframes are rendered for all surface items.

60 FFI-rapport 2014/01616



Figure 6.7 Individual mesh items can be renamed and regrouped into a more intuitive mesh list

which is easier to operate.

(a) Inside faces only (b) inside and outside faces (c) Wireframe only

Figure 6.8 Illustration of the different surface modes.

All of these visualization modes can be toggled on and off individually for separate surface items

using the mesh editor in addition to specifying attributes associated with the different modes. The

result of using the different surface modes can be seen in figure 6.8. Note that theoutsidesurface

items in figure 6.8(b) have been rendered slightly semi-transparent in order to see theinsidesurfaces.

Each surface mode comes with a number of attributes which can be set by the user. When activat-

ing multiple surface items, it might be necessary to press theSyncbutton to be able to access the

attributes. The surface modes support the following attributes:

Visible - Only visible surfaces are rendered.

Lighting - When lighting is activated, the Phong [29] illumination model is used to render the

surface. Otherwise, each surface item is rendered using a constant color. The Phong model,

in VoluViz, is implemented as a fragment program giving each fragment of a surface element

the color

C = Cambient + Cdiffuse + Cspecular,

= kaCa + kdCd(l · n) + ksCs(r · v)s,
(6.1)

FFI-rapport 2014/01616 61



(a) With lighting (b) No lighting

Figure 6.9 A model of a human torso [39] rendered both with and without an illumination model.

wherel is the light direction vector,n is the normal vector,r is the reflection vector,v is the

viewing vector,s is the specular power andka, kd andks are the ambient, diffuse and specular

coefficients. Figure 6.9 demonstrates the effect of applying an illumination model to a model

of a human torso.

Diffuse color sets the diffuse color contribution in the Phong illumination model in addition to the

transparency of the surface (by the alpha value).

Specular color sets the specular color contribution in the Phong illumination model. Any color

can be used. However, it is recommended to use gray scale colors. Otherwise, the surface

will rendered with colored light reflected from the light source.

Specular power sets the specular power contribution in the Phong illumination model.

Opaque Silhouette - When activated, this mode renders the surface in a silhouette mode so that

surface elements near the silhouette of the surface item is always visible independent of the

global transparency value selected for that particular surface. The opacity (or alpha value) for

each surface element is given by the formula

a = (1 − asurface)(1 − ‖(v · n‖)2 (6.2)

Silhouette rendering can be very useful in visualizations where the geometry only acts as a

contextand where thefocusis on conveying results from a simulation. This is illustrated in

figure 6.10 for simulation data from a modeling of the electrical activity of the human heart

[39].

Back-to-front sorting both sorts and renders all the surface items in a back-to-front order. Aback-

to-front sorting of the surfaces can be desirable when rendering semi-transparent surfaces.

62 FFI-rapport 2014/01616



(a) (b)

Figure 6.10 Silhouette rendering. (a) A visualization scene where the torsois rendered by combining

low opacity with silhouette rendering whereas the human heart is renderedopaque. (b)

Visualization of the electrical activity of the human heart embedded in the torso [39].

Here, a silhouette rendering of the torso is used to give contextual information without

occluding the volume data.

Otherwise, the rendering may lead to visual artifacts. Note however that activating this feature

may decrease the rendering performance considerably.

Draw in front of the volume - As the rendering engine handles the geometry and the volumes

separately, this mode needs to be activated for semi-transparent surfaces that occlude the

volume data. This typically apply to theoutsidefaces of a mesh file if they are made visible.

In addition to the local surface attributes listed above, the mesh editor supports the following global

parameters:

Visible sets the visibility state on the whole surface mesh.

Clip to plane clips the geometry set by the clip plane. See section 5.3.5 for more details on acti-

vating and handling the clip plane.

Clip to range clips the geometry specified by the subset selection. See section 5.3.4 for more

details on picking of subsets.

Use wireframe when moving - When activated, a wireframe representation of the mesh is used

whenever the render window is activated by a mouse or key event. This decreases the render-

ing workload and increases the interactivity of the application.

FFI-rapport 2014/01616 63



Figure 6.11 Rendering of a surface mesh model of an industrial plant [11] using Phong illumination

model with two different light vector directions.

6.4 Setting the Light source

The light source can be activated by pressing and holding theCtrl button in the render window.

This displays an icon of the light source giving its location and direction. To rotate the light source

pressCtrl and hold the left mouse button while moving the mouse. The light source is used when

rendering geometries and gives the light direction vector in the illumination model given by equation

(6.1). Figure 6.11 demonstrates the effect of changing the light direction vector.

64 FFI-rapport 2014/01616



References

[1] HDF5, 2014. /http://www.hdfgroup.org/HDF5/.

[2] Qt documentation, 2014. http://qt-project.org/doc.

[3] X11 color names, 2014. http://en.wikipedia.org/wiki/X11color names.

[4] Ø. Andreassen and A. Helgeland. Seminar in Data Visualization, 2014.

http://prosjekt.ffi.no/unik-4660/lectures04/oversikt.html.

[5] Ø. Andreassen, C. E. Wasberg, A. Helgeland, M. Tutkun, J. C. Kielland, B. A. P. Reif, Ø. Lund-

berg, and A. Skaugen. Studies of aerodynamically induced vibrations onthe P-3C maritime

surveillance aircraft and proposed vibration reducing measures. Technical Report FFI-rapport-

2013-00245, Forsvarets Forskningsinstitutt, 2013.

[6] J. Blinn. Models of Light Reflection for Computer Synthesized Pictures. In Computer Graph-

ics (Proc. Siggraph ’77), pages 192–198, 1977.

[7] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering andTomographic Recon-

struction Using Texture Mapping Hardware. InProc. 1994 Symp. Volume Visualization, pages

91–98, October 1994.

[8] T. J. Cullip and U. Neumann. Accelerated Volume Reconstruction with 3D Texture Mapping

Hardware. Technical Report TR93-027, Department of Computer Science, University of North

Carolina, May 1994.

[9] J. M. Danskin and P. Hanrahan. Fast Algorithms for Volume Ray Tracing. In Proc. Workshop

on Volume Rendering 1992, pages 91–98, 1992.

[10] M. Endreg̊ard, B. A. Petterson Reif, T. Vik, and O. Busmundrud. Consequence assessment of

indoor dispersion of sarin–a hypothetical scenario.Journal of Hazardous Materials, 176(1-

3):381–388, April 2010.

[11] H. E. Fossum, B. A. P. Reif, M. Tutkun, and T. Gjesdal. On the use of computational fluid dy-

namics to investigate aerosol dispersion in an industrial environment: A casestudy.Boundary-

layer meteorology, 144(1):21–40, 2012.

[12] T. Gjesdal, A. Helgeland, M. Mortensen, and B. A. P. Reif. CFD analysis report - NG-NFU.

Technical Report FFI-rapport-2011-00463, Forsvarets Forskningsinstitutt, 2011.

[13] T. Gjesdal, C. E. Wasberg, and B. A. Pettersson Reif. Spectral element benchmark simulations

of natural convection in two-dimensional cavities.Int. J. Numer. Meth. Fluids, 50(11):1297–

1319, 2006.

[14] M. Hadwiger, J. M. Kniss, C. Rezk-Salama, D. Weiskopf, and K. Engel. Real-time Volume

Graphics. A. K. Peters, Ltd., 2006.

FFI-rapport 2014/01616 65



[15] C. D. Hansen and C. Johnson.Visualization Handbook. Academic Press, 2004.

[16] A. Helgeland and Ø. Andreassen. Visualization of Vector Fields Using Seed LIC and Vol-

ume Rendering.IEEE Transactions on Visualization and Computer Graphics, 10(6):673–682,

November-December 2004.

[17] A. Helgeland, B. A. P. Reif, Ø. Andreassen, and C. E. Wasberg. Visualization of vorticity and

vortices in wall-bounded turbulent flows.IEEE Transactions on Visualization and Computer

Graphics, 13:1055–1067, 2007.

[18] V. Interrante and C. Grosch. Visualizing 3D Flow.IEEE Computer Graphics and Applications,

18(4):49–53, July-Aug. 1998.

[19] J. Jeong and F. Hussain. On the identification of a vortex.J. Fluid Mech., 285:69–94, 1995.

[20] D. Küchemann. Report on the I.U.T.A.M. Symposium on Concentrated Vortex Motions in

Fluids. J. Fluid Mech., 21:1–20, 1965.

[21] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp Factorization of the

Viewing Transformation. InComputer Graphics (Proc. Siggraph ’94), pages 451–458, 1994.

[22] M. Levoy. Efficient Ray Tracing of Volume Data.ACM Trans. Graphics, 9(3):245–261, July

1990.

[23] Y. Levy, D. Degani, and A. Seginer. Graphical visualization of vortical flows by means of

helicity. AIAA J, 28(8):1347–1352, 1990.

[24] W. E. Lorensen and H. E. Cline. MARCHING CUBES: A High Resolution 3D Surface Con-

struction Algorithm. InComputer Graphics Proc., volume 21 ofAnnual Conference Series,

pages 163–169, July 1987.

[25] A. Lu, C. J. Morris, J. Taylor, D. S. Ebert, C. D. Hansen, P. Rheingans, and M. Hartner.

Illustrative interactive stipple rendering.IEEE Transactions on Visualization and Computer

Graphics, 9(2):127–138, 2003.

[26] N. Max. Optical models for direct volume rendering.IEEE Transactions on Visualization and

Computer Graphics, 1(2):99–108, 1995.

[27] C. Montani, R. Scateni, and R. Scopigni. Discretized Marching Cubes. InProc. IEEE Visual-

ization ’94, pages 281–287. IEEE Computer Society Press, 1994.

[28] National Center for Atmospheric Research (NCAR). The Weather Research & Forecasting

Model. http://wrf-model.org.

[29] B.-T. Phong. Illumination for Computer Generated Pictures.Communications of the ACM,

18(6):311–317, 1975.

66 FFI-rapport 2014/01616



[30] T. Porter and T. Duff. Compositing digital images. InComputer Graphics (Proc. Siggraph

’84), pages 253–259, 1984.

[31] P. Rheingans and D. S. Ebert. Volume Illustration: Nonphotorealistic Rendering of Volume

Models. IEEE Transactions on Visualization and Computer Graphics, 7(3):253–264, 2001.

[32] R. J. Rost.OpenGL Shading Language. Addison Wesley Longman Publishing Co., Inc., 2004.

[33] N. Sauber, H. Theisel, and H.-P. Seidel. Multifield-graphs: An approach to visualizing corre-

lations in multifield scalar data.IEEE Transactions on Visualization and Computer Graphics,

12:917–924, 2006.

[34] H. Shen and C. Johnson. Sweeping simplicies: A Fast IsosurfaceExtraction Algorithm for

Unstructured Grids. InProc. IEEE Visualization ’95, pages 143–150, 1995.

[35] D. Shreiner and The Khronos OpenGL ARB Working Group.OpenGL Programming Guide:

The Official Guide to Learning OpenGL, Versions 3.0 and 3.1. Addison-Wesley Professional,

7th edition, 2009.

[36] A. Stompel, E. B. Lum, and K.-L. Ma. Feature-Enhanced Visualizationof Multidimensional,

Multivariate Volume Data Using Non-photorealistic Rendering Techniques. In Proc. 10th

Pacific Conf. Computer Graphics and Applications, pages 394–403, 2002.

[37] M. Stone.Field Guide to Digital Color. A. K. Peters, Ltd., 2002.

[38] B. Stroustrup.The C++ Programming Language. Addison-Wesley Longman Publishing Co.,

Inc., 3rd edition, 2000.

[39] J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal, andA. Tveito. Computing the

electrical activity in the heart. Springer-Verlag, 2006.

[40] S. M. F. Treavett and M. Chen. Pen-and-Ink Rendering in VolumeVisualisation. InIEEE

Proc. Visualization ’00, pages 203–210, 2000.

[41] K. Valen-Sendstad, K.-A. Mardal, and A. Logg.Computational hemodynamics, volume 84

of Lecture Notes in Computational Science and Engineering, chapter 23, pages 439–454.

Springer, 2012.

[42] K. Martin W. Schroeder and B. Lorensen.The Visualization Toolkit. Prentice Hall, 2nd edition,

1998.

[43] J. Werne and D. C Fritts. Stratified shear turbulence: Evolution and statistics. Geophys. Res.

Letters, 26:439–442, 1999.

[44] L. Westover. Footprint Evaluation for Volume Rendering. InComputer Graphics (Proc. Sig-

graph ’90), pages 367–376, 1990.

FFI-rapport 2014/01616 67



[45] E. Wingstedt, T. Vik, and B. A. P. Reif. Transport and dispersionof non-neutral toxic indus-

trial chemicals in an urban enviroment. Technical Report FFI-rapport 2012/00267, Forsvarets

Forskningsinstitutt, 2012.

68 FFI-rapport 2014/01616


	Tom side



