

GAISLER

SpaceWire
Remote Terminal Controller

AT7913E
User’s Manual

RS232/422SRAM, PROM

Features

• SPARC V8 integer unit with 7-stage pipeline,
4 kbyte instruction and 4 kbyte data cache

• Double precision IEEE-754 floating point unit
• EDAC protected interface to multiple 8/32-

bits PROM/SRAM memory banks and I/O
• Advanced on-chip debug support unit
• UARTs, Timers, Watchdog, GPIO, Digital

ADC/DAC interfaces, Interrupt controller
• Two SpaceWire links with RMAP
• Redundant CAN 2.0 interface with DMA
• FIFO interface with DMA
• Up to 50 MHz system frequency
• Up to 200 Mbit/s SpaceWire data rate
• 349-pin MCGA with 50 mil pin spacing
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and R

Aeroflex Gaisler AB
Kungsgatan 12 tel +46 31 7758650
411 19 Göteborg fax +46 31 421407
Sweden www.Aeroflex.com/Gaisler

Company confidential material and document. This docume
All information is provided as is. There is no warranty th
implicit nor explicit.

LE

I

Memory
Controller

AMBA APB

UARTs

GPIO IRQ

TIMERs

AHB / APB
bridge

Debug
Support

Unit

Debug
Serial Link

ADC/DAC
Ctrl I/F

24bit General
Purpose I/O32bit Timers

UART

FIFO
Ctrl I/F

FIFOADC/DACDiscrete signals

AMBA APB

R
S2

32
/4

22

S

AHB I/FAHB I/F AHB I/F

EEPROM, FLASH-PROM

AHB I/F
Description

The SpaceWire Remote Terminal Controller
(RTC) is a bridge between the SpaceWire
network and the CAN bus, providing a fully
integrated system. Additional features are
provided to carter for autonomy of remote
terminals and to relieve the central processing
chain of repetitive standard acquisitions and
management duties.
UAG RTC-100-0012, December 2009, Version 2.4

nt may not be distributed under any circumstances.
at it is correct or suitable for any purpose, neither

AHB I/F

ON2-FT SPARC V8

-Cache

MEIKO AHB
arbiter /

D-Cache

Integer Unit Floating
Point

AHB I/F

decoder

AMBA AHB

CAN
Controller

On-Chip
Memory

AMBA AHB

CAN

paceWire-RTC

Network

AHB I/F AHB I/F

Unit

SpaceWire
Link

AHB I/F

SpaceWire
Network

http://www.gaisler.com

2

GAISLER

Table of contents

1 INTRODUCTION ...4
1.1 Scope ... 4
1.2 Licensing ... 4
1.3 Reference documents... 4
1.4 Source reference .. 4
1.5 System overview ... 4
1.6 Block diagram ... 5
1.7 Description of typical systems using the device.. 6

2 FUNCTIONAL OVERVIEW..7
2.1 General functionality ... 7
2.2 General interfaces.. 8

3 PROCESSOR AND PERIPHERALS ...9
3.1 LEON integer unit ... 9
3.2 Cache sub-system .. 13
3.3 On-chip peripherals ... 17
3.4 External memory access .. 33
3.5 Hardware debug support.. 40
3.6 Vendor and device id ... 48

4 ON-CHIP MEMORY ..49
4.1 Overview ... 49
4.2 Operation ... 49
4.3 Vendor and device id ... 50
4.4 Registers .. 50

5 FIFO INTERFACE ..52
5.1 Overview ... 52
5.2 Interface... 54
5.3 Waveforms... 55
5.4 Transmission.. 57
5.5 Reception... 59
5.6 Operation ... 61
5.7 Registers .. 62

6 ADC / DAC INTERFACE...70
6.1 Overview ... 70
6.2 Operation ... 71
6.3 Registers .. 74

7 32-BIT TIMERS ..80
7.1 Overview ... 80
7.2 Operation ... 80
7.3 Vendor and device id ... 80
7.4 Registers .. 81

8 24-BIT GENERAL PURPOSE INPUT OUTPUT..84
8.1 Overview ... 84
8.2 Registers .. 84
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

3

GAISLER

9 CAN INTERFACE ..88
9.1 Overview ... 88
9.2 Interface... 89
9.3 Protocol.. 89
9.4 Status and monitoring.. 90
9.5 Transmission.. 90
9.6 Reception... 93
9.7 Global reset and enable ... 95
9.8 Interrupt ... 95
9.9 Vendor and device id ... 95
9.10 Registers .. 96
9.11 Memory mapping .. 107

10 SPACEWIRE LINK INTERFACE..108
10.1 System overview ... 108
10.2 Functions ... 108
10.3 Interfaces ... 108
10.4 Module overview... 109
10.5 Definitions ... 113
10.6 Functional behaviour ... 126
10.7 Register definition summary ... 161
10.8 Vendor and device id ... 181

11 AMBA AHB CONTROLLER...182
11.1 Overview ... 182
11.2 Operation ... 182

12 AMBA AHB/APB BRIDGE ...184
12.1 Overview ... 184
12.2 Operation ... 184
12.3 Vendor and device id ... 184

13 MEMORY AND REGISTER MAP, INTERRUPT ASSIGNMENT185
13.1 Addressing information ... 185
13.2 Plug & Play information.. 186
13.3 Registers .. 187
13.4 Interrupts.. 193

14 INTERFACES AND SIGNALS..195

15 REVISION CONTROL...198
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

4

GAISLER

1 INTRODUCTION

1.1 Scope

This document establishes the User’s Manual for the SpaceWire Remote Terminal Controller (RTC)
device developed in the scope of the "TopNet SpaceWire Controller / Remote User Interface" activity
initiated by the European Space Agency.

1.2 Licensing

Note that the CAN protocol is developed by Robert Bosch GmbH and protected by patents. For licens-
ing issues please contact:
Dr. Gerhard Holfelder
Corporate Licensing Department
Robert Bosch GmbH - AE/EIS
Tübinger Str. 123
72762 Reutlingen
Germany
Phone+49-711-811-33150, Fax+49-711-811-33182, EmailGerhard.Holfelder@de.bosch.com

1.3 Reference documents

[AMBA] AMBATM Specification, Rev 2.0, ARM IHI 0011A, 13 May 1999, Issue A, first
release, ARM Limited

[GRLIB] GRLIB IP Library User's Manual, Version 1.0.7, Gaisler Research
[SPARC] The SPARC Architecture Manual, Version 8, Revision SAV080SI9308, SPARC

International Inc.
[SPWSTD] SpaceWire - Links, Nodes Routers and Networks, ECSS-E-ST-50-12C
[CANSTD] CAN Specification Version 2.0 Part B, BOSCH
[ISO11898] ISO 11898:1993 and Amendment 1 (ISO 11898:1995) Road Vehicles - Interchange

of Digital Information - Controller Area Network (CAN) for high-speed communi-
cation, First Edition 1993, ISO

[ISO11898E] ISO 11898:1993(E) and Amendment 1, 1995, ISO

1.4 Source reference

TheSpaceWire Remote Terminal Controller (RTC) design is based on the following sources:
[LEON2FT-SRC] LEON-2 FT VHDL model, version 1.0.9.16.1-r85, 2007
[GRLIB-SRC] GRLIB VHDL source code, version 1.0.7, 2006
[CANESA-SRC] HURRICANE source code, version 5.1.6, dated 21 Nov 2006
[DUNDEE-SRC] SPWB source code, version 2.0

1.5 System overview

The SpaceWire Remote Terminal Controller (RTC) device is a bridge between the SpaceWire network
(backbone) and the CAN bus, providing a fully integrated system. Additional features are provided to
carter for autonomy of remote terminals and to relieve the central processing chain of repetitive stan-
dard acquisitions and management duties. The SpaceWire-RTC device can be used both in non-intelli-
gent nodes and in nodes with local intelligence.
The SpaceWire-RTC device includes an embedded microprocessor, a CAN bus controller, ADC/DAC
interfaces for analogue acquisition/conversion, standard interfaces and resources (UARTs, timers, gen-
eral purpose input output).
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

5

GAISLER

1.6 Block diagram

SpaceWire Remote Terminal Controller (RTC) block diagram is shown hereafter.

Figure 1. SpaceWire Remote Terminal Controller (RTC) block diagram

The block diagram shows the functional modules that constitute the SpaceWire-RTC. The SpaceWire-
RTC is based on the following on-chip buses:
• AMBA AHB bus
• AMBA APB bus

The on-chip bus selection is based on the ESA baseline/directive for using the open standard AMBA
Specification (Rev 2.0) as a standard bus. See [AMBA] for details.
Although not directly shown in the block diagram, several of the modules on the AMBA AHB bus also
have secondary AMBA APB interfaces for configuration and control purposes. These AMBA APB
interfaces are logically connected to the AMBA APB bus shown in the block diagram. For the modules
that are shown in the block diagram as only connected to the AMBA APB bus, there are no other hid-
den connections to the AMBA AHB bus.
The AMBA AHB bus is controlled by an AHB controller with plug&play support. The controller
implements the AMBA AHB bus with the following sideband information:
• cacheability information
• interrupt bus
• configuration information
• diagnostic information

The AMBA APB bus is controlled by an AHB/APB bridge with plug&play support. The bridge imple-
ments the AMBA APB bus with the following sideband information:
• interrupt bus
• configuration information
• diagnostic information

AHB I/F

LEON2-FT SPARC V8

I-Cache

MEIKOMemory
Controller

AMBA APB

RS232/422

AHB
arbiter /

UARTs

GPIO IRQ

TIMERs

D-Cache

Integer Unit

AHB / APB
bridge

Floating
Point

AHB I/F

Debug
Support

Unit

Debug
Serial Link

decoder

AMBA AHB

ADC/DAC
Ctrl I/F

24bit General
Purpose I/O32bit Timers

CAN
Controller

On-Chip
Memory

UART

FIFO
Ctrl I/F

AMBA AHB

FIFO CANADC/DACDiscrete signals

AMBA APB

R
S2

32
/4

22

SpaceWire-RTC

Network

AHB I/F AHB I/F

SRAM, PROM

AHB I/FAHB I/F AHB I/F

EEPROM, FLASH-PROM

Unit

AHB I/F

SpaceWire
Link

AHB I/F

SpaceWire
Network
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

6

GAISLER

1.7 Description of typical systems using the device

The SpaceWire Remote Terminal Controller (RTC) device can be integrated in the instrument control-
ler Unit (ICU) that acts as the payload data processor and mainly receives payload data from instru-
ments and produces processed data to be down linked. The main data communication is performed via
the SpaceWire network. The ICU is however controlled and monitored via the CAN network from the
On-Board Computer (OBC). The CAN controller in the SpaceWire-RTC device acts as a remote termi-
nal that is being managed by the OBC.
Alternatively, the SpaceWire-RTC device can be integrated in the On-Board Computer (OBC). Since
the OBC acts as the network manager on the CAN network, the CAN controller carters capability such
as node management and time distribution. The OBC also communicates or manages the SpaceWire
network via SpaceWire links.
As can be seen from the above application scenarios, the capabilities of the SpaceWire-RTC device are
not limited only to support the CAN bus in the ICU, but also allows it to be used in an OBC. This
reduces future development costs since the same device is used in both payload and avionics. This also
promotes the usage of hybrid SpaceWire and CAN networks and the TopNet concept.
To bring the concept a step further, one could envisage applications in which the SpaceWire-RTC
device actually replaces the processor in an ICU. The integer processing capacity of the LEON2 pro-
cessor in the SpaceWire-RTC device is in par with what can be expected from current monolithic pro-
cessor devices. This provides for savings in terms of power and board area, since a single device with
external memory is sufficient to form the core of an ICU.
The main application of the SpaceWire-RTC device is however in instruments or individual experi-
ments of the payload. It provides an abundance of interfaces, each with a high degree of programma-
bility and configurability. It is able to acquire analogue and digital data, generated by connected
peripherals and to generate discrete commands towards the same peripherals.
The SpaceWire-RTC device can be operated stand-alone or with a number of external devices such as
SRAM, PROM and FIFO memories, ADC and DAC converters. The device can be managed locally
by the on-chip processor, or remotely via its SpaceWire link interfaces.
SpaceWire-RTC device can operate as a single-chip system, with software being uploaded to its on-
chip memory via the SpaceWire link interface, forming a compact solution for remotely controlled
applications. Or it can operate in a full-size system, with software being decompressed from local
PROM and executed from multiple fast and wide SRAM memory banks.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

7

GAISLER

2 FUNCTIONAL OVERVIEW

2.1 General functionality

The SpaceWire-RTC ASIC implements the following functions:
• Processor

• The SpaceWire-RTC ASIC includes the LEON2-FT SPARC V8 Integer Unit, featuring an
instruction cache of 4 kbytes, and a data cache of 4 kbytes, and a Meiko Floating Point Unit.

• Debug Support Unit
• The SpaceWire-RTC ASIC includes the LEON2-FT Debug Support Unit (DSU) with a

Trace Buffer of 512 lines of 16 bytes.
• Debug Serial Link UART

• The SpaceWire-RTC ASIC includes the LEON2-FT serial debug interface for AMBA
AHB.

• The SpaceWire-RTC ASIC includes the LEON2-FT peripherals:
• Interrupt Controller and Secondary Interrupt Controller
• 32-bit Timers (three)
• UART Serial Links (two)
• 16-bit General Purpose Input Output

• Memory Interface
• The SpaceWire-RTC ASIC includes the LEON2-FT Memory Controller, including EDAC

protection and support for SRAM, PROM, EEPROM, and a memory mapped I/O area.
• On-Chip Memory

• The SpaceWire-RTC ASIC includes 64 kbytes EDAC protected on-chip memory.
• FIFO Interface

• The SpaceWire-RTC ASIC can simultaneously interface two FIFO devices, one for input
and one for output. The interface features one DMA channel in either direction.

• ADC/DAC Interface
• The SpaceWire-RTC ASIC can simultaneously interface ADC and DAC devices.

• 32-bit Timers
• The SpaceWire-RTC ASIC includes two additional 32-bit timers, being cascadable and

with optional external clock input.
• 24-bit General Purpose Input Output

• The SpaceWire-RTC ASIC includes 24 additional general-purpose input output channels,
supporting input, output and pulse generation.

• CAN Interface
• The SpaceWire-RTC ASIC includes the ESA HurriCANe CAN controller. The interface

features one DMA channel in either direction and is compatible with the CANopen
application layer protocol.

• SpaceWire Link Interface
• The SpaceWire-RTC ASIC includes two University of Dundee SpaceWire links. The

interface implements DMA channels and Remote Memory Access Protocol (RMAP).
• JTAG Interface

• The SpaceWire-RTC ASIC includes a JTAG interface with TAP controller for boundary
scan testing.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

8

GAISLER

2.2 General interfaces

The SpaceWire-RTC ASIC provides the following external and internal interfaces:
• Debug Serial Link UART

• A simple communication protocol is provided to transmit access parameters and data on the
internal AMBA bus. A command comprises a control byte, followed by and a 32-bit address,
followed by optional write data.

• Interrupt Controller
• External interrupts can be selected from the 16-bit General Purpose Input Output or the data bus

of the Memory Interface.
• 32-bit Timers

• Watchdog with external trigger signal.
• UART Serial Links

• Two Universal Asynchronous Receiver and Transmitters (UART), supporting optional parity,
internal or external clock source, hardware handshake and programmable baud rate.

• 16-bit General Purpose Input Output
• Programmable input output channels, shared with the interrupt controller inputs and the UART

serial links.
• Memory Interface

• Supports two PROM banks, four SRAM banks and one memory mapped I/O. Features 23 byte-
address bits, 32 data bits and 8 check bits. Unused data bits can be used as general purpose input
output.

• FIFO Interface
• Supports one input and one output external FIFO device, with 8- or 16-bit wide data. Unused

data bits can be used as general purpose input output.
• ADC/DAC Interface

• Supports one ADC and one DAC device, with 8- or 16-bit wide data, and 8-bit address. Unused
address and data bits can be used as general purpose input output.

• 32-bit Timers
• Supports external clock source and external triggers.

• 24-bit General Purpose Input Output
• Dedicated programmable input output channels, with input interrupts.

• CAN Interface
• Supports nominal and redundant transmit and receive pair, with non-simultaneously operation.

• SpaceWire Link Interface
• Supports nominal and redundant SpaceWire links, with simultaneously operation.

• JTAG Interface
• Supports standard TAP signal interface.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

9

GAISLER

3 PROCESSOR AND PERIPHERALS

3.1 LEON integer unit

The LEON integer unit (IU) implements SPARC integer instructions as defined in SPARC
Architecture Manual version 8. It is a new implementation, not based on any previous designs.
The implementation is focused on portability and low complexity.

3.1.1 Overview

The LEON integer unit has the following features:
• 5-stage instruction pipeline
• Separate instruction and data cache interface
• Support for 8 register windows
• Multiplier 16x16
• Radix-2 divider (non-restoring)

Figure 2 shows a block diagram of the integer unit.

3.1.2 Instruction pipeline

The LEON integer unit uses a single instruction issue pipeline with 5 stages:
1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from the

instruction cache. Otherwise, the fetch is forwarded to the memory controller. The instruction is valid
at the end of this stage and is latched inside the IU.

Figure 2. LEON integer unit block diagram

alu/shift mul/div
y

regfile

D-cache
address/dataout
datain

32
32

operand2rs1

imm, tbr, wim, psr

Ywres

result ytmp

Decode

Execute

Memory

Write

rs2rs1

rd
tbr, wim, psr

30 jmpl address

32 ex pc

30

+1

d_pc

jmpa

f_pc

Add

call/branch address

tbr‘0’

e_pc

m_pc

w_pc

d_inst

e_inst

m_inst

w_inst

Fetch

I-cache
addressdata
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10

GAISLER

2. DE (Decode): The instruction is decoded and the operands are read. Operands may come from the
register file or from internal data bypasses. CALL and Branch target addresses are generated in this
stage.

3. EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g., LD) and
for JMPL/RETT, the address is generated.

4. ME (Memory): Data cache is accessed. For cache reads, the data will be valid by the end of this stage,
at which point it is aligned as appropriate. Store data read out in the execution stage is written to the
data cache at this time.

5. WR (Write): The result of any ALU, logical, shift, or cache read operations are written back to the
register file.

Table 1 lists the cycles per instruction (assuming cache hit and no load interlock):

3.1.3 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL
UMULCC and SMULCC. These instructions perform a 32x32-bit integer multiply, producing
a 64-bit result. SMUL and SMULCC performs signed multiply while UMUL and UMULCC
performs unsigned multiply. UMULCC and SMULCC also set the condition codes to reflect
the result.

3.1.4 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV/UDIV/SDIVCC/UDIVCC).
The divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding
and overflow detection is performed as defined in the SPARC V8 standard.

3.1.5 Register file SEU protection

To prevent erroneous operations from SEU errors in the main register file, each word is
protected using a 7-bit EDAC checksum. Checking of the EDAC bits is done every time a
fetched register value is used in an instruction. If a correctable error is detected, the erroneous
data is corrected before being used. At the same time, the corrected register value is also written
back to the register file. A correction operation incurs a delay 4 clock cycles, but has no other
software visible impact. If an un-correctable error is detected, a register error trap (tt=0x20) is
generated.
The implemented protection scheme has an impact on double-store instructions: the write-
buffer will delay the request of the memory bus one clock cycle in order to not start any
memory store cycle before the second store data word has been checked and (potentially)
corrected.

TABLE 1. Instruction timing

Instruction Cycles
JMPL 2
Double load 2
Single store 2
Double store 3
SMUL/UMUL 5
SDIV/UDIV 35
Taken Trap 4
Atomic load/store 3
All other instructions 1
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

11

GAISLER

The register file protection operation is controlled using application-specific register 16
(%asr16). The register is accessed using the RDASR/WRASR instructions.

[0]: DI - disable checking. If set, will disable the register-file checking function.
[1]: TE - Test enable.
[8:2] TCB[6:0] - Test checkbits.
[11:9] CNT[2:0] - Error counter. This field will be incremented for each corrected error.

The protection can be disabled by clearing the DI bit (this bit is set to ‘1’ after reset). By setting
the TE bit, errors can be inserted in the register file to test the protection function. Since a 7-bit
EDAC is used, when the test mode is enabled the register checksum is XORed with the TCB
field before written to the register file. The CNT field is incremented each time a register
correction is performed, but saturates at “111”.

3.1.6 Processor reset operation

The processor is reset by asserting the RESET input for at least one clock cycle. The following
table indicates the reset values of the registers which are affected by the reset. All other
registers maintain their value (or are undefined).

Execution will start from address 0.

3.1.7 Exceptions

LEON adheres to the general SPARC trap model. The table below shows the implemented traps
and their individual priority. When PSR (processor status register) bit ET=0, an exception trap
causes the processor to halt execution and enter error mode, and the external error signal will
then be asserted.

TABLE 2. Processor reset values

Register Reset value
PC (program counter) 0x0
nPC (next program counter) 0x4
PSR (processor status register) ET=0, S=1
CCR (cache control register) 0x0

TABLE 3. Trap allocation and priority

Trap TT Pri Description
reset 0x00 1 Power-on reset

write error 0x2b 2 write buffer error

instruction_access_error 0x01 3 Error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 CP instruction while Co-processor disabled

Figure 1: Register file protection control register (%asr16)

012345678910111231
DITETCB[6:0]CNT[2:0]RESERVED
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

12

GAISLER

3.1.8 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each breakpoint
consists of a pair of application-specific registers (%asr24/25, %asr26/27, %asr28/30 and
%asr30/31) registers; one with the break address and one with a mask:

Any binary aligned address range can be watched - the range is defined by the WADDR field,
masked by the WMASK field (WMASK[x] = 1 enables comparison). On a breakpoint hit, trap

watchpoint_detected 0x0B 7 Hardware breakpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

register_hadrware_error 0x20 9 register file EDAC error (LEON-FT only)

mem_address_not_aligne
d

0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access_exception 0x09 13 Access error during load or store instruction

tag_overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

interrupt_level_1 0x11 31 Asynchronous interrupt 1

interrupt_level_2 0x12 30 Asynchronous interrupt 2

interrupt_level_3 0x13 29 Asynchronous interrupt 3

interrupt_level_4 0x14 28 Asynchronous interrupt 4

interrupt_level_5 0x15 27 Asynchronous interrupt 5

interrupt_level_6 0x16 26 Asynchronous interrupt 6

interrupt_level_7 0x17 25 Asynchronous interrupt 7

interrupt_level_8 0x18 24 Asynchronous interrupt 8

interrupt_level_9 0x19 23 Asynchronous interrupt 9

interrupt_level_10 0x1A 22 Asynchronous interrupt 10

interrupt_level_11 0x1B 21 Asynchronous interrupt 11

interrupt_level_12 0x1C 20 Asynchronous interrupt 12

interrupt_level_13 0x1D 19 Asynchronous interrupt 13

interrupt_level_14 0x1E 18 Asynchronous interrupt 14

interrupt_level_15 0x1F 17 Asynchronous interrupt 15

trap_instruction 0x80 - 0xFF 16 Software trap instruction (TA)

TABLE 3. Trap allocation and priority

Trap TT Pri Description

01231

DL

WADDR[31:2]
%asr24, %asr26
%asr28, %asr30

0231
DSWMASK[31:2]

%asr25, %asr27
%asr29, %asr31

Figure 3. Watch-point registers

IF
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

13

GAISLER

0x0B is generated. By setting the IF, DL and DS bits, a hit can be generated on instruction fetch,
data load or data store. Clearing these three bits will effectively disable the breakpoint function.

3.1.9 Floating-point unit

The Meiko FPU is attached using an integrated interface inside the IU pipeline. The integrated
FPU interface does not implement a floating-point queue, and the processor is stopped during
the execution of floating-point instructions. This means that QNE bit in the %fsr register
always is zero, and any attempts of executing the STDFQ instruction will generate a FPU
exception trap.

3.2 Cache sub-system

3.2.1 Overview

The LEON processor implements a Harvard architecture with separate instruction and data
buses, connected to two independent cache controllers. In addition to the address, a SPARC
processor also generates an 8-bit address space identifier (ASI), providing up to 256 separate,
32-bit address spaces. During normal operation, the LEON processor accesses instructions and
data using ASI 0x8 - 0xB as defined in the SPARC standard. Using the LDA/STA instructions,
alternative address spaces can be accessed. The table shows the ASI usage for LEON. Only
ASI[3:0] are used for the mapping, ASI[7:4] have no influence on operation.

Access to ASI 4 and 7 will force a cache miss, and update the cache if the data was previously
cached. Access with ASI 0 - 3 will force a cache miss, update the cache if the data was
previously cached, or allocated a new line if the data was not in the cache and the address refers
to a cacheable location.

TABLE 4. ASI usage

ASI Usage
0x0, 0x1, 0x2, 0x3 Forced cache miss (replace if cacheable)
0x4, 0x7 Forced cache miss (update on hit)
0x5 Flush instruction cache
0x6 Flush data cache
0x8, 0x9, 0xA, 0xB Normal cached access (replace if cacheable)
0xC Instruction cache tags
0xD Instruction cache data
0xE Data cache tags
0xF Data cache data

TABLE 5. Default cache table

Address range Area Cached
0x00000000 - 0x1FFFFFFF PROM Cacheable
0x20000000 - 0x3FFFFFFF I/O Non-cacheable
0x40000000 -0x7FFFFFFF RAM Cacheable
0x80000000 -0x9FFFFFFF Internal (AHB) Non-cacheable
0xA0000000 -Ax7FFFFFFF On-Chip RAM Cacheable
0xB0000000 -0xFFFFFFFF Internal (AHB) Non-cacheable
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

14

GAISLER

3.2.2 Instruction cache

3.2.2.1 Operation

The instruction cache is configured as a direct-mapped cache. The set size is 4 kbyte and
divided into cache lines of 32 bytes. Each line has a cache tag associated with it consisting of
a tag field, valid field with one valid bit for each 4-byte sub-block. On an instruction cache miss
to a cachable location, the instruction is fetched and the corresponding tag and data line
updated.
If instruction burst fetch is enabled in the cache control register (CCR) the cache line is filled
from main memory starting at the missed address and until the end of the line. At the same time,
the instructions are forwarded to the IU (streaming). If the IU cannot accept the streamed
instructions due to internal dependencies or multi-cycle instruction, the IU is halted until the
line fill is completed. If the IU executes a control transfer instruction (branch/CALL/JMPL/
RETT/TRAP) during the line fill, the line fill will be terminated on the next fetch. If instruction
burst fetch is enabled, instruction streaming is enabled even when the cache is disabled. In this
case, the fetched instructions are only forwarded to the IU and the cache is not updated.
If a memory access error occurs during a line fill with the IU halted, the corresponding valid
bit in the cache tag will not be set. If the IU later fetches an instruction from the failed address,
a cache miss will occur, triggering a new access to the failed address. If the error remains, an
instruction access error trap (tt=0x1) will be generated.

3.2.2.2 Instruction cache tag

A instruction cache tag entry consists of several fields as shown in figure 4:

Field Definitions:
[31:12]: Address Tag (ATAG) - Contains the tag address of the cache line.
[11:8]: Unused. No affect when written to. Undefined when read.
[7:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits

are set when a sub-block is filled due to a successful cache miss; a cache fill which results in a memory
error will leave the valid bit unset. A FLUSH instruction will clear all valid bits. V[0] corresponds to
address 0 in the cache line, V[1] to address 1, V[2] to address 2 and so on.

3.2.3 Data cache

3.2.3.1 Operation

The data cache is configured as a direct-mapped cache. The set size is 4 kbyte and divided into
cache lines of 16 bytes. Each line has a cache tag associated with it consisting of a tag field,
valid field with one valid bit for each 4-byte sub-block. On a data cache read-miss to a cachable
location 4 bytes of data are loaded into the cache from main memory. The write policy for
stores is write-through with no-allocate on write-miss. In a multi-set configuration a line to be
replaced on read-miss is chosen according to the replacement policy. If a memory access error
occurs during a data load, the corresponding valid bit in the cache tag will not be set. and a data
access error trap (tt=0x9) will be generated.

3.2.3.2 Write buffer

The write buffer (WRB) consists of three 32-bit registers used to temporarily hold store data
until it is sent to the destination device. For half-word or byte stores, the stored data replicated
into proper byte alignment for writing to a word-addressed device, before being loaded into one
of the WRB registers. The WRB is emptied prior to a load-miss cache-fill sequence to avoid
any stale data from being read in to the data cache.

Figure 4. Instruction cache tag layout

0781231
VALIDATAG 0000

Tag for 4 kbyte set, 16bytes/line

11
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

15

GAISLER

Since the processor executes in parallel with the write buffer, a write error will not cause an
exception to the store instruction. Depending on memory and cache activity, the write cycle
may not occur until several clock cycles after the store instructions has completed. If a write
error occurs, the currently executing instruction will take trap 0x2b.
Note: the 0x2b trap handler should flush the data cache, since a write hit would update the
cache while the memory would keep the old value due the write error.

3.2.3.3 Data cache snooping

The data cache can optionally perform snooping on the AHB bus. When snooping is enabled,
the data cache controller will monitor write accesses to the AHB bus performed by other AHB
masters (DMA). When a write access is performed to a cacheable memory location, the
corresponding cacheline will be invalidated in the data cache if present. Cache snooping has no
overhead and does not affect performance. It can be dynamically enabled/disabled through bit
23 in the cache control register. Cache snooping requires the target technology to implement
dual-port memories, which will be used to implement the cache tag RAM.

3.2.3.4 Data cache tag

A data cache tag entry consists of several fields as shown in figure 5:

Field Definitions:
[31:12]: Address Tag (ATAG) - Contains the address of the data held in the cache line.
[11:4]: Unused. No affect when written to. Undefined when read.
[3:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits

is set when a sub-block is filled due to a successful cache miss; a cache fill which results in a memory
error will leave the valid bit unset. V[0] corresponds to address 0 in the cache line, V[1] to address 1,
V[2] to address 2 and V[3] to address 3.

3.2.4 Cache flushing

The instruction and data cache is flushed by executing the FLUSH instruction, setting the FI
bit in the cache control register, or by writing to any location with ASI=0x5. The flushing will
take one cycle per cache line and set during which the IU will not be halted, but during which
the instruction cache will be disabled. When the flush operation is completed, the cache will
resume the state (disabled, enabled or frozen) indicated in the cache control register.

3.2.5 Diagnostic cache access

Tags and data in the instruction and data cache can be accessed through ASI address space 0xC,
0xD, 0xE and 0xF by executing LDA and STA instructions. Address bits making up the cache
offset will be used to index the tag to be accessed while the least significant bits of the bits
making up the address tag will be used to index the cache set.
Diagnostic read of tags is possible by executing an LDA instruction with ASI=0xC for
instruction cache tags and ASI=0xE for data cache tags. A cache line and set are indexed by
the address bits making up the cache offset and the least significant bits of the address bits
making up the address tag. Similarly, the data sub-blocks may be read by executing an LDA
instruction with ASI=0xD for instruction cache data and ASI=0xF for data cache data. The sub-
block to be read in the indexed cache line and set is selected by A[4:2].
The tags can be directly written by executing a STA instruction with ASI=0xC for the
instruction cache tags and ASI=0xE for the data cache tags. The cache line and set are indexed

Figure 5. Data cache tag layout

03111231
VALIDATAG

4
00000000
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

16

GAISLER

by the address bits making up the cache offset and the least significant bits of the address bits
making up the address tag. D[31:10] is written into the ATAG field (see above) and the valid
bits are written with the D[7:0] of the write data. Bit D[9] is written into the LRR bit (if
enabled) and D[8] is written into the lock bit (if enabled). The data sub-blocks can be directly
written by executing a STA instruction with ASI=0xD for the instruction cache data and
ASI=0xF for the data cache data. The sub-block to be read in the indexed cache line and set is
selected by A[4:2].
Note that diagnostic access to the cache is not possible during a FLUSH operation and will
cause a data exception (trap=0x09) if attempted.

3.2.6 Cache parity protection

The caches are provided with two parity bits per tag and per 4-byte data sub-block. The tag
parity is generated from the tag value and the valid bits. Similarly, the data sub-block parity is
derived from the sub-block data. The parity bits are written simultaneously with the associated
tag or sub-block and checked on each access. Two parity bits are configured, with the bits
corresponding to the parity of odd and even data (tag) bits.
If a tag parity error is detected during a cache access, a cache miss will be generated and the
tag (and data) will be automatically updated. All valid bits except the one corresponding to the
newly loaded data will be cleared. If a data sub-block parity error occurs, a miss will also be
generated but only the failed sub-block will be updated with data from main memory.

3.2.7 Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache Control
Register (CCR) (figure 5). Each cache can be in one of three modes: disabled, enabled and
frozen. If disabled, no cache operation is performed and load and store requests are passed
directly to the memory controller. If enabled, the cache operates as described above. In the
frozen state, the cache is accessed and kept in sync with the main memory as if it was enabled,
but no new lines are allocated on read misses.

[31:30]: Data cache replacement policy (DREPL) - 00 - no replacement policy (direct-mapped cache), 01
- random, 10 - least-recently replaced (LRR), 11 - least-recently used (LRU)

[29:28]: Instruction cache replacement policy (IREPL) - 00 - no replacement policy (direct-mapped
cache), 01 - random, 10 - least-recently replaced (LRR), 11 - least-recently used (LRU)

[27:26]: Instruction cache associativity (ISETS) - Number of sets in the instruction cache - 1: 00 - direct
mapped, 01 - 2-way associative, 10 - 3-way associative, 11 - 4-way associative

[25:24]: Data cache associativity (DSETS) - Number of sets in the data cache - 1: 00 - direct mapped, 01
- 2-way associative, 10 - 3-way associative, 11 - 4-way associative

[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the data cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
[20:19]: Cache parity bits (CPC) - Indicates how many parity bits are used to protect the caches (00=none,

01=1, 10=2)
[18:17]: Cache parity test bits. (CPTE). These bits are XOR’ed to the data and tag parity bits during

diagnostic writes.

Figure 6. Cache control register

ICSDCSIFIB

012345141516

DPIP DF

67891011

ITE IDE DTE DDE

121318

CPTE

17

CPC

1920
DSETS

31 21
FIFD

2223
DSISETSIREPLDREPL

30 29 28 27 26 25 24
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

17

GAISLER

[16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in

progress.
[14]: Data cache flush pending (DP). This bit is set when a data cache flush operation

is in progress.
[13:12]: Instruction cache tag error counter (ITE) - This field is incremented every time an instruction

cache tag parity error is detected.
[11:10]: Instruction cache data error counter (IDE) - This field is incremented each time an instruction

cache data sub-block parity error is detected.
[9:8]: Data cache tag error counter (DTE) - This field is incremented every time a data cache tag parity

error is detected.
[7:6]: Data cache data error counter (DDE) - This field is incremented each time an instruction cache data

sub-block parity error is detected.
[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an

asynchronous interrupt is taken.
[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen

when an asynchronous interrupt is taken.
[3:2]: Data Cache state (DCS) - Defines the current data cache state according to the following: X0=

disabled, 01 = frozen, 11 = enabled. Set to ‘00’ at reset.
[1:0]: Instruction Cache state (ICS) - Defines the current data cache state according to the

following: X0= disabled, 01 = frozen, 11 = enabled. Set to ‘00’ at reset.
If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt
is taken. This can be beneficial in real-time system to allow a more accurate calculation of
worst-case execution time for a code segment. The execution of the interrupt handler will not
evict any cache lines and when control is returned to the interrupted task, the cache state is
identical to what it was before the interrupt.
If a cache has been frozen by an interrupt, it can only be enabled again by enabling it in the
CCR. This is typically done at the end of the interrupt handler before control is returned to the
interrupted task.

3.3 On-chip peripherals

3.3.1 On-chip registers

A number of system support functions are provided directly on-chip. The functions are
controlled through registers mapped APB bus according to the following table:

TABLE 6. On-chip registers

Address Register Address

0x80000000 Memory configuration register 1 0x800000B0 Secondary interrupt mask register

0x80000004 Memory configuration register 2 0x800000B4 Secondary interrupt pending regis-
ter

0x80000008 Memory configuration register 3 0x800000B8 Secondary interrupt status register

0x8000000C AHB Failing address register 0x800000B8 Secondary interrupt clear register

0x80000010 AHB status register

0x80000014 Cache control register 0x800000C4 DSU UART status register

0x80000018 Power-down register 0x800000C8 DSU UART control register

0x8000001C Write protection register 1 0x800000CC DSU UART scaler register

0x80000020 Write protection register 2

0x80000024 LEON configuration register 0x800000D0 Write protect start address 1

0x80000040 Timer 1 counter register 0x800000D4 Write protect end address 1
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

18

GAISLER

3.3.2 Interrupt controller

The LEON interrupt controller is used to prioritize and propagate interrupt requests from
internal or external devices to the integer unit. In total 15 interrupts are handled, divided on two
priority levels. Figure 7 shows a block diagram of the interrupt controller.

0x80000044 Timer 1 reload register 0x800000D8 Write protect start address 2

0x80000048 Timer 1 control register 0x800000DC Write protect end address 2

0x8000004C Watchdog register

0x80000050 Timer 2 counter register

0x80000054 Timer 2 reload register

0x80000058 Timer 2 control register

0x80000060 Prescaler counter register

0x80000064 Prescaler reload register

0x80000070 UART 1 data register

0x80000074 UART 1 status register

0x80000078 UART 1 control register

0x8000007C UART 1 scaler register

0x80000080 UART 2 data register

0x80000084 UART 2 status register

0x80000088 UART 2 control register

0x8000008C UART 2 scaler register

0x80000090 Interrupt mask and priority register

0x80000094 Interrupt pending register

0x80000098 Interrupt force register

0x8000009C Interrupt clear register

0x800000A0 I/O port input/output register

0x800000A4 I/O port direction register

0x800000A8 I/O port interrupt config. register 1

0x800000AC I/O port interrupt config. register 2

TABLE 6. On-chip registers

Address Register Address
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

19

GAISLER

3.3.2.1 Operation

When an interrupt is generated, the corresponding bit is set in the interrupt pending register.
The pending bits are ANDed with the interrupt mask register and then forwarded to the priority
selector. Each interrupt can be assigned to one of two levels as programmed in the interrupt
level register. Level 1 has higher priority than level 0. The interrupts are prioritised within each
level, with interrupt 15 having the highest priority and interrupt 1 the lowest. The highest
interrupt from level 1 will be forwarded to the IU - if no unmasked pending interrupt exists on
level 1, then the highest unmasked interrupt from level 0 will be forwarded. When the IU
acknowledges the interrupt, the corresponding pending bit will automatically be cleared.
Interrupt can also be forced by setting a bit in the interrupt force register. In this case, the IU
acknowledgement will clear the force bit rather than the pending bit.
After reset, the interrupt mask register is set to all zeros while the remaining control registers
are undefined.
Note that interrupt 15 cannot be maskable by the integer unit and should be used with care -
most operating system do safely handle this interrupt.

3.3.2.2 Interrupt assignment

Table 7 shows the assignment of interrupts.

TABLE 7. Interrupt assignments

Interrupt Source
15 Parallel I/O [7]
14 SpaceWire 1
13 SpaceWire 0

Parallel I/O [6]
12 CAN interface

Parallel I/O [5]
11 DSU trace buffer
10 Second interrupt controller

Parallel I/O [4]
9 Timer 2

Figure 7. Interrupt controller block diagram

Irq & trig
select

IRQ
Pending

16 4,5,6,7

15

4 IRL[3:0]

Priority
select

IRQ
mask

LeonPio[15:0]
IRQ
Force

Priority
encoder

DSU trace 11

Timer 2 9

Timer 1 8

UART 1 3

UART 2 2

AHB error 1

2’nd IRQ
controller

32 10

10,12,13,15
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

20

GAISLER

3.3.2.3 Control registers

The operation of the interrupt controller is programmed through the following registers:

Field Definitions:
[31:17]: Interrupt level (ILEVEL[15:1]) - indicates whether an interrupt belongs to priority level 1

(ILEVEL[n]=1) or level 0 (ILEVEL[n]=0).
[15:1]: Interrupt mask (IMASK[15:1]) - indicates whether an interrupt is masked (IMASK[n]=0) or

enabled (IMASK[n]=1).
[16], [0]: Reserved. No effect when written to. Undefined when read.

Field Definitions:
[15:1]: Interrupt pending (IPEND[15:1]) - indicates whether an interrupt is pending (IPEND[n]=1).
[31:16], [0]: Reserved. No effect when written to. Undefined when read.

Field Definitions:
[15:1]: Interrupt force (IFORCE[15:1]) - indicates whether an interrupt is being forced (IFORCE[n]=1).
[31:16], [0]: Reserved. No effect when written to. Undefined when read.

8 Timer 1
7 Parallel I/O[3]
6 Parallel I/O[2]
5 Parallel I/O[1]
4 Parallel I/O[0]
3 UART 1
2 UART 2
1 AHB error

TABLE 7. Interrupt assignments

Interrupt Source

Figure 8. Interrupt mask and priority register

0115161731
IMASK[15:1]ILEVEL[15:1] RR

Figure 9. Interrupt pending register

01151631
IPEND[15:1]RESERVED R

Figure 10. Interrupt force register

01151631
IFORCE[15:1]RESERVED R
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

21

GAISLER

Field Definitions:
[15:1]: Interrupt clear (ICLEAR[15:1]) - if written with a ‘1’, will clear the corresponding bit(s) in the

interrupt pending register. A read returns zero.
[31:16], [0]: Reserved. No effect when written to. Undefined when read.

3.3.3 Secondary interrupt controller

The secondary interrupt controller is used add up to 32 additional interrupts, to be used by on-
chip units in system-on-chip designs. Figure 7 shows a block diagram of the interrupt
controller.

3.3.3.1 Operation

The incoming interrupt signals are filtered. The filtering condition is positive edge-triggered.
When the condition is fulfilled, the corresponding bit is set in the interrupt pending register.
The pending bits are ANDed with the interrupt mask register and then forwarded to the priority
selector. If at least one unmasked pending interrupt exists, the interrupt output will be driven,
generating interrupt 10 (by default). The highest unmasked pending interrupt can be read from
the interrupt status register (see below).
Interrupts are not cleared automatically upon a taken interrupt - the interrupt handler must reset
the pending bit by writing a ‘1’ to the corresponding bit in the interrupt clear register. It must
then also clear interrupt 10 in the primary interrupt controller. Testing of interrupts can be done
by writing directly to the interrupt pending registers. Bits written with ‘1’ will be set while bits
written with ‘0’ will keep their previous value.
After reset, the interrupt mask register is set to all zeros while the remaining control registers
are undefined.

Figure 11. Interrupt clear register

01151631
ICLEAR[15:1]RESERVED R

Figure 12. Secondary interrupt controller block diagram

Filtering

IRQ
Pending

32 32 5 IRL[4:0]

IRQ
mask

IRQ[31:0]

Priority
encoder

IRQ10
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

22

GAISLER

3.3.3.2 Control registers

The operation of the secondary interrupt controller is programmed through the following
registers:

[31:0]: Interrupt mask - indicates whether an interrupt is masked (IMASK[n]=0) or enabled
(IMASK[n]=1).

[31:0]: Interrupt pending - indicates whether an interrupt is pending (IPEND[n]=1).

[4:0]: Interrupt request level - indicates the highest unmasked pending interrupt.
[5]: Interrupt pending - if set, then IRL is valid. If cleared, no unmasked interrupt is pending.

[31:0]: Interrupt clear - if written with a ‘1’, will clear the corresponding bit(s) in the interrupt pending
register.

3.3.3.3 Interrupt assignment

Table 8 shows the assignment of interrupts for the secondary interrupt controller.

TABLE 8. Secondary interrupt controller assignments

Interrupt Source
31 GPIO / Gpio[23] 24-bit GPIO input interrupt
30 GPIO / Gpio[22] 24-bit GPIO input interrupt
29 GPIO / Gpio[21] 24-bit GPIO input interrupt
28 GPIO / Gpio[20] 24-bit GPIO input interrupt

Figure 13. Secondary interrupt mask register

031
IMASK[31:0]

Figure 14. Secondary interrupt pending register

031
IPEND[31:0]

Figure 15. Secondary interrupt status register

04531
IRL[4:0]RESERVED IP

Figure 16. Secondary interrupt clear register

031
ICLEAR[31:0]
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

23

GAISLER

Note: Interrupt 17, 15 and 13 are available in primary interrupt controller and should therefore
be used restrictively in the secondary interrupt controller. The secondary interrupt
controller uses edge detection, whereas the aforementioned interrupt sources use level.
The interrupt handling software must thus ensure that the sources for the
aforementioned interrupts do not have an additional pending interrupt when clearing
the corresponding bit in the pending interrupt register in the secondary interrupt
controller. This limitation does not exist for the primary interrupt controller.

Note: Interrupts 31 down to 24 are connected to the inputs of the 24-bit General Purpose Input
Output interface. The secondary interrupt controller uses edge detection. The 24-bit
General Purpose Input Output interface must therefore only be programmed for edge
detection, not for level, to ensure that multiple interrupts can be detected.

27 GPIO / Gpio[19] 24-bit GPIO input interrupt
26 GPIO / Gpio[18] 24-bit GPIO input interrupt
25 GPIO / Gpio[17] 24-bit GPIO input interrupt
24 GPIO / Gpio[16] 24-bit GPIO input interrupt
23-20 - Unused
19 CAN/RxSync Synchronization message received
18 CAN/TxSync Synchronization message transmitted
17 CAN/IRQ Common output from interrupt handler
16 SpaceWire 1/ Tick Synchronization received
15 SpaceWire 1 / Interrupt Common output from interrupt handler
14 SpaceWire 0 / Tick Synchronization received
13 SpaceWire 0 / Interrupt Common output from interrupt handler
12 FIFO/RxParity Parity error during reception
11 FIFO/RxError AHB access error during reception
10 FIFO/RxFull Circular reception buffer full
9 FIFO/RxIrq Successful reception of data block
8 FIFO/TxError AHB access error during transmission
7 FIFO/TxEmpty Circular transmission buffer empty
6 FIFO/TxIrq Successful transmission of data block
5 ADC/DAC DAC conversion ready
4 ADC/DAC ADC conversion ready
3 32-Bit Timer/Timer 2 Timer expired
2 32-Bit Timer/Timer 1 Timer expired
1 GPIO/PULSE Pulse command completed
0 - Unused

TABLE 8. Secondary interrupt controller assignments

Interrupt Source
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

24

GAISLER

3.3.4 Timer unit

The timer unit implements two 32-bit timers, one 32-bit watchdog and one 10-bit shared
prescaler (figure 17).

3.3.4.1 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the
prescaler underflows, it is reloaded from the prescaler reload register and a timer tick is
generated for the two timers and watchdog. The effective division rate is therefore equal to
prescaler reload register value + 1.
The operation of the timers is controlled through the timer control register. A timer is enabled
by setting the enable bit in the control register. The timer value is then decremented each time
the prescaler generates a timer tick. When a timer underflows, it will automatically be reloaded
with the value of the timer reload register if the reload bit is set, otherwise it will stop (at
0xffffffff) and reset the enable bit. An interrupt will be generated after each underflow.
The timer can be reloaded with the value in the reload register at any time by writing a ‘one’ to
the load bit in the control register.
The watchdog operates similar to the timers, with the difference that it is always enabled and
upon underflow asserts the external signal WDOG. This signal can be used to generate a system
reset.
To minimise complexity, the two timers and watchdog share the same decrementer. This means
that the minimum allowed prescaler division factor is 4 (reload register = 3).

3.3.4.2 Registers

Figures 18 to 22 shows the layout of the timer unit registers.

Figure 17. Timer unit block diagram

prescaler reload

-1

prescaler value timer1 value

timer2 value

watchdog

timer1 reload

timer2 reload

-1

tick

irq 8

irq 9

WDOG

Figure 18. Timer 1/2 and Watchdog counter registers

031
TIMER/WATCHDOG VALUE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

25

GAISLER

[2]: Load counter (LD) - when written with ‘one’, will load the timer reload register into the timer counter
register. Always reads as a ‘zero’.

[1]: Reload counter (RL) - if RL is set, then the counter will automatically be reloaded with the reload
value after each underflow.

[0]: Enable (EN) - enables the timer when set.
[31:3]: Reserved. No effect when written to. Undefined when read.

[31:10]: Reserved. No effect when written to. Undefined when read.

[31:10]: Reserved. No effect when written to. Undefined when read.

Figure 19. Timer 1/2 reload registers

031
TIMER RELOAD VALUE

Figure 20. Timer 1/2 control registers

012331
LD RL ENRESERVED

Figure 21. Prescaler reload register

091031
RESERVED RELOAD VALUE

Figure 22. Prescaler counter register

091031
RESERVED COUNTER VALUE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

26

GAISLER

3.3.5 UARTs

Two identical UARTs are provided for serial communications. The UARTs support data frames
with 8 data bits, one optional parity bit and one stop bit. To generate the bit-rate, each UART
has a programmable 12-bits clock divider. Hardware flow-control is supported through the
RTSN/CTSN hand-shake signals. Figure 23 shows a block diagram of a UART.

3.3.5.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. When ready to
transmit, data is transferred from the transmitter holding register to the transmitter shift register
and converted to a serial stream on the transmitter serial output pin (TXD). It automatically
sends a start bit followed by eight data bits, an optional parity bit, and one stop bits (figure 24).
The least significant bit of the data is sent first

Following the transmission of the stop bit, if a new character is not available in the transmitter
holding register, the transmitter serial data output remains high and the transmitter shift register
empty bit (TSRE) will be set in the UART control register. Transmission resumes and the
TSRE is cleared when a new character is loaded in the transmitter holding register. If the
transmitter is disabled, it will continue operating until the character currently being transmitted
is completely sent out. The transmitter holding register cannot be loaded when the transmitter
is disabled.
If flow control is enabled, the CTSN input must be low in order for the character to be
transmitted. If it is deasserted in the middle of a transmission, the character in the shift register
is transmitted and the transmitter serial output then remains inactive until CTSN is asserted
again. If the CTSN is connected to a receivers RTSN, overrun can effectively be prevented.

Figure 23. UART block diagram

RXD TXD

CTSN

RTSN

Receiver shift register Transmitter shift register

Receiver holding register Transmit. holding register

Internal I/O Bus

Serial port
Controller8*bitclkBaud-rate

generator

Figure 24. UART data frames

Start D0 StopD6D5D4D3D2D1 D7

Start D0 D6D5D4D3D2D1 D7 StopParity

Data frame, no parity:

Data frame with parity:
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

27

GAISLER

3.3.5.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the UART
control register. The receiver looks for a high to low transition of a start bit on the receiver serial
data input pin. If a transition is detected, the state of the serial input is sampled a half bit clocks
later. If the serial input is sampled high the start bit is invalid and the search for a valid start bit
continues. If the serial input is still low, a valid start bit is assumed and the receiver continues
to sample the serial input at one bit time intervals (at the theoretical centre of the bit) until the
proper number of data bits and the parity bit have been assembled and one stop bit has been
detected. The serial input is shifted through an 8-bit shift register where all bits have to have
the same value before the new value is taken into account, effectively forming a low-pass filter
with a cut-off frequency of 1/8 system clock.
During reception, the least significant bit is received first into the receiver shift register (RSR).
The data is then transferred to the receiver holding register (RHR) and the data ready (DR) bit
is set in the UART status register. If RHR was not empty when a character was received, the
transfer from RSR, and setting of DR, will not occur until RHR has been emptied by a read
access to the UART data register. The parity, framing, break and overrun error bits are set at the
received character boundary, at the same time as the data ready (DR) bit would have been set,
but no new character is transferred to RHR.
The parity error (PE) bit is set or cleared for each received character. The parity error (PE) bit
is also cleared when a '0' is written to it via the UART status register.
The break (BR) bit is set when all-zero bits have been received and the stop bit is zero. The
break (BR) bit is not cleared when a new character has been received, it is cleared when a '0' is
written to it via the UART status register.
The framing error (FE) bit is set when any non-zero bits have been received and the stop bit is
zero. The framing error (FE) bit is not cleared when a new character has been received, it is
cleared when a '0' is written to it via the UART status register.
If both receiver holding (RHR) and shift (RSR) registers contain an un-read character when a
new start bit is detected, then the character held in the receiver shift register (RSR) will be lost
and the overrun (OV) bit will be set in the UART status register. The overflow bit (OV) is not
cleared when a new character has been received, it is cleared when a '0' is written to it via the
UART status register.
If flow control is enabled, then the RTSN will be negated (high) when a valid start bit is
detected and the receiver holding register contains an un-read character. When the holding
register is read, the RTSN will automatically be reasserted again.

3.3.5.3 Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate. The
scaler is clocked by the system clock and generates a UART tick each time it underflows. The
scaler is reloaded with the value of the UART scaler reload register after each underflow. The
resulting UART tick frequency should be 8 times the desired baud-rate. If the EC bit is set, the
scaler will be clocked by the LeonPio[3] input rather than the system clock. In this case, the
frequency of LeonPio[3] must be less than half the frequency of the system clock.

3.3.5.4 Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this
mode, the transmitter output is internally connected to the receiver input and the RTSN is
connected to the CTSN. It is then possible to perform loop back tests to verify operation of
receiver, transmitter and associated software routines. In this mode, the outputs remain in the
inactive state, in order to avoid sending out data.

3.3.5.5 Interrupt generation

The UART will generate an interrupt under the following conditions: when the transmitter is
enabled, the transmitter interrupt is enabled and the transmitter holding register moves from
full to empty; when the receiver is enabled, the receiver interrupt is enabled and the receiver
holding register moves from empty to full; when the receiver is enabled, the receiver interrupt
is enabled and a character with either parity, framing, break or overrun error is received.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

28

GAISLER

3.3.5.6 UART registers

[7:0] : Receiver holding register (read access)
[7:0] : Transmitter holding register (write access)
[31:8]: Reserved. No effect when written to. Undefined when read.

0: Receiver enable (RE) - if set, enables the receiver.
1: Transmitter enable (TE) - if set, enables the transmitter.
2: Receiver interrupt enable (RI) - if set, enables generation of receiver interrupt.
3: Transmitter interrupt enable (TI) - if set, enables generation of transmitter interrupt.
4: Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity)
5: Parity enable (PE) - if set, enables parity generation and checking.
6: Flow control (FL) - if set, enables flow control using CTS/RTS.
7: Loop back (LB) - if set, loop back mode will be enabled.
8: External Clock (EC) - if set, the UART scaler will be clocked by LeonPio[3]
[31:9]: Reserved. No effect when written to. Undefined when read.

0: Data ready (DR) - indicates that new data is available in the receiver holding register.
1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty.
3: Break received (BR) - indicates that a BREAK has been received.
4: Overrun (OV) - indicates that one or more character have been lost due to overrun.
5: Parity error (PE) - indicates that a parity error was detected.
6: Framing error (FE) - indicates that a framing error was detected.
[31:7]: Reserved. No effect when written to. Undefined when read.

Figure 25. UART data register

07831

RESERVED DATA

Figure 26. UART control register

0123456731

RESERVED RETERITIPSPEFLLB

8

EC

Figure 27. UART status register

0123456731

RESERVED DRTSTHBROVPEFE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

29

GAISLER

[31:12]: Reserved. No effect when written to. Undefined when read.

3.3.6 Parallel I/O port

A partially bit-wise programmable 32-bit I/O port is provided on-chip. The port is split in two
parts - the lower 16-bits are accessible via the LeonPio[15:0] signal while the upper 16-bits
uses D[15:0] and can only be used when all areas (rom, ram and I/O) of the memory bus are in
8-bit mode (See “8-bit PROM and SRAM access” on page 35.).
The lower 16 bits of the I/O port can be individually programmed as output or input, while the
high 16 bits of the I/O port only be configures as outputs or inputs on byte basis. Two registers
are associated with the operation of the I/O port; the combined I/O input/output register, and I/
O direction register. When read, the input/output register will return the current value of the I/
O port; when written, the value will be driven on the port signals (if enabled as output). The
direction register defines the direction for each individual port bit (0=input, 1=output).

IODIRn - I/O port direction. The value of IODIR[15:0] defines the direction of I/O ports 15 - 0. If bit n is
set the corresponding I/O port becomes an output, otherwise it is an input. IODIR[16] controls D[15:8]
while IODIR[17] controls D[7:0]
The I/O ports can also be used as interrupt inputs from external devices. A total of eight
interrupts can be generated, corresponding to interrupt levels 4, 5, 6, 7, 10, 12, 13, and 15. The
I/O port interrupt configuration register 1 and 2 define which port should generate each
interrupt and how it should be filtered.

[31:18]: Reserved. No effect when written to. Undefined when read.

Figure 28. UART scaler reload register

0111231

RESERVED SCALER RELOAD VALUE

Figure 29. I/O port block diagram

Q

Q

Q

D

D

D PAD

Direction

Output
Value

Input
Value

Figure 30. I/O port direction register

0171831

IODIR[17:0]
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

30

GAISLER

ISELn - I/O port select. The value of this field defines which I/O port (0 - 31) should generate parallel I/
O port interrupt n.

PL - Polarity. If set, the corresponding interrupt will be active high (or edge-triggered on positive edge).
Otherwise, it will be active low (or edge-triggered on negative edge).

LE - Level/edge triggered. If set, the interrupt will be edge-triggered, otherwise level sensitive.
EN - Enable. If set, the corresponding interrupt will be enabled, otherwise it will be masked.

To save pins, I/O pins are shared with other functions according to the table below:

3.3.7 LEON configuration register

Since LEON is extensively configurable, the LEON configuration register (read-only) is used
to indicate which options were enabled in the design. For each option present, the
corresponding register bit is hardwired to ‘1’. Figure 32 shows the layout of the register.

[31]: Reserved. No effect when written to. Undefined when read.

TABLE 9. UART/IO port usage

I/O port Function Type Description Enabling condition

LeonPio[15] TXD1 Output UART1 transmitter data UART1 transmitter enabled

LeonPio[14] RXD1 Input UART1 receiver data -

LeonPio[13] RTS1 Output UART1 request-to-send UART1 flow-control enabled

LeonPio[12] CTS1 Input UART1 clear-to-send -

LeonPio[11] TXD2 Output UART2 transmitter data UART2 transmitter enabled

LeonPio[10] RXD2 Input UART2 receiver data -

LeonPio[9] RTS2 Output UART2 request-to-send UART2 flow-control enabled

LeonPio[8] CTS2 Input UART2 clear-to-send -

LeonPio[3] UART clock Input Use as alternative UART clock -

LeonPio[2] Prom EDAC Input Defines prom edac at boot time -

LeonPio[1:0] Prom width Input Defines prom width at boot time -

Figure 31. I/O port interrupt configuration register 1 & 2

0456781213141516202122232428293031

ISEL0 (IRQ4)PLLEENISEL1 (IRQ5)PLLEENISEL2 (IRQ6)PLLEENISEL3 (IRQ7)PLLEEN

0456781213141516202122232428293031

ISEL4 (IRQ 10)PLLEENISEL5 (IRQ12)PLLEENISEL6 (IRQ13)PLLEENISEL7 (IRQ15)PLLEEN

IOICFG1

IOICFG2

Figure 32. LEON configuration register

UDIV/SDIV inst.
SMUL/UMUL inst.
Watchdog present
Memory status reg.
FPU
PCI core
Write protection

01234567891011121415161719202425262728293031

NWINDOWS ICSZ ILSZ DCSZ DLSZ

UMAC/SMAC inst
Number of watchpoints
SDRAM controller
DSU present
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

31

GAISLER

[30]: Debug support unit (0=disabled, 1=present)
[29]: SDRAM controller present (0=disabled, 1=present)
[28:26]: Number of implemented watchpoints (0 - 4)
[25]: UMAC/SMAC instruction implemented
[24:20]: Number of register windows. The implemented number of SPARC register windows -1.
[19:17]: Instruction cache size. The size (in kbytes) of the instruction cache. Cache size = 2ICSZ.
[16:15]: Instruction cache line size.The line size (in 32-bit words) of each line. Line size = 2ILSZ.
[14:12]: Data cache size. The size (in kbytes) of the data cache. Cache size = 2DCSZ.
[11:10]: Data cache line size. The line size (in 32-bit words) of each line. Line size = 2DLSZ.
[9]: UDIV/SDIV instruction implemented
[8]: UMUL/SMUL instruction implemented
[7]: Watchdog implemented
[6]: Memory status and failing address register present
[5:4]: FPU type (00 = none, 01=Meiko)
[3:2]: PCI core type (00=none, 01=InSilicon, 10=ESA, 11=other)
[1:0]: Write protection type (00=none, 01=standard)
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

32

GAISLER

3.3.8 Power-down

The processor can be powered-down by writing (an arbitrary) value to the power-down register.
Power-down mode will be entered on the next load or store instruction. To enter power-down
mode immediately, a store to the power-down register should be performed followed by a
‘dummy’ load. During power-down mode, the integer unit will effectively be halted. The
power-down mode will be terminated (and the integer unit re-enabled) when an unmasked
interrupt with higher level than the current processor interrupt level (PIL) becomes pending.
All other functions and peripherals operate as nominal during the power-down mode. A
suitable power-down routine could be:

struct pwd_reg_type { volatile int pwd; };

power_down()
{

struct pwd_reg_type *lreg = (struct pwd_reg_type *) 0x80000018;
while (1) lreg->pwd = lreg->pwd;

}
In assembly, a suitable sequence could be:

power_down:
set 0x80000000, %l3
st %g0, [%l3 + 0x18]
ba power_down
ld [%l3 + 0x18], %g0

3.3.9 AHB status register

Any access triggering an error response on the AHB bus will be registered in two registers;
AHB failing address register and AHB status register. The failing address register will store the
address of the access while the AHB status register will store the access and error types. The
registers are updated when an error occur, and the EV (error valid) is not set. When the EV bit
is set, interrupt 1 is generated to inform the processor about the error. After an error, the EV bit
has to be reset by software.
Figure 33 shows the layout of the AHB status register.

[9]: EE - EDAC correctable error. Set when a correctable EDAC error is detected.
[8]: EV - error valid. Set when an error occurred.
[7]: RW - Read/Write. This bit is set if the failed access was a read cycle, otherwise it is cleared.
[6:3]: HMASTER - AHB master. This field contains the HMASTER[3:0] of the failed access.
[2:0] HSIZE - transfer size. This field contains the HSIZE[2:0] of the failed transfer.
[31:9]: Reserved. No effect when written to. Undefined when read.

Figure 33. AHB status register

02367831

EV RW HMASTER HSIZERESERVED

9

EE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

33

GAISLER

3.4 External memory access

3.4.1 Memory interface

The memory bus provides a direct interface to PROM, memory mapped I/O devices,
asynchronous static ram (SRAM). Chip-select decoding is done for two PROM banks, one I/O
bank, and four SRAM banks. Figure 34 shows how the connection to the different device types
is made.

3.4.2 Memory controller

The external memory bus is controlled by a programmable memory controller. The controller
acts as a slave on the AHB bus. The function of the memory controller is programmed through
memory configuration registers 1, 2 & 3 (MCFG1, MCFG2 & MCFG3) through the APB bus.
The memory bus supports various types of devices: prom, sram and local I/O. The memory bus
can also be configured in 8-bit mode for applications with low memory and performance
demands. The controller decodes a 2 Gbyte address space, divided according to table 10:

TABLE 10. Memory controller address map

Address range Size Mapping
0x00000000 - 0x1FFFFFFF 512 M Prom
0x20000000 - 0x3FFFFFFF 512M I/O
0x40000000 -0x7FFFFFFF 1 G SRAM

Figure 34. Memory device interface

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
I/O

CS
OE
WE

A

D
SRAM

MemCsN[4:0]
MemOeN[4:0]
MemWrN[3:0]

RomCsN[1:0]
IoOeN

IoWrN

IoCsN

A D

SpaceWire-RTC

MemA[22:0]

MemD[31:0]
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

34

GAISLER

3.4.3 PROM access

Accesses to PROM have the same timing as RAM accesses, the differences being that PROM
cycles can have up to 30 waitstates.

Two PROM chip-select signals are provided, RomCsN[1:0]. RomCsN[0] is asserted when the
lower half (0 - 0x10000000) of the PROM area as addressed while RomCsN[1] is asserted for
the upper half (0x10000000 - 0x20000000).

3.4.4 Memory mapped I/O

Accesses to I/O have similar timing to ROM/RAM accesses, the differences being that a
additional waitstates can be inserted by de-asserting the IoBrdyN signal. The I/O select signal
(IoCsN) is delayed one clock to provide stable address before IoCsN is asserted.

3.4.5 SRAM access

The SRAM area can be up to 32 MByte, divided on up to four RAM banks. The size of banks
1-4 (MemCsN[3:0] is programmed in the RAM bank-size field (MCFG2[12:9]) and can be set
in binary steps from 8 kbyte to 32 Mbyte. A read access to SRAM consists of two data cycles
and between zero and three waitstates. On non-consecutive accesses, a lead-out cycle is added
after a read cycle to

Figure 35. Prom read cycle

data1 data2

D1

lead-out

A1

SysClk

MemA

RomCsN

MemD

IoOeN

Figure 36. I/O read cycle

lead-in data

D1

lead-out

A1

SysClk

MemA

IoCsN

MemD

IoOeN

IoBrdyN
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

35

GAISLER

prevent bus contention due to slow turn-off time of memories or I/O devices. Figure 37 shows
the basic read cycle waveform (zero waitstate).

For read accesses to MemCsN[3:0], a separate output enable signal (MemOeN[n]) is provided
for each RAM bank and only asserted when that bank is selected. A write access is similar to
the read access but takes a minimum of three cycles:

Each byte lane has an individual write strobe to allow efficient byte and half-word writes. If the
memory uses a common write strobe for the full 32-bit data, the read-modify-write bit MCFG2
should be set to enable read-modify-write cycles for sub-word writes.

3.4.6 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be
performed in burst mode. Burst transfers will be generated when the memory controller is
accessed using an AHB burst request. These includes instruction cache-line fills, double loads
and double stores. The timing of a burst cycle is identical to the programmed basic cycle with
the exception that during read cycles, the lead-out cycle will only occurs after the last transfer.

3.4.7 8-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, it is not
necessary to always have full 32-bit memory banks. The SRAM and PROM areas can be
individually configured for 8-bit operation by programming the ROM and RAM size fields in
the memory configuration registers. Since read access to memory is always done on 32-bit
word basis, read access to 8-bit memory will be transformed in a burst of four read cycles.

data1 data2

D1

lead-out

A1

SysClk

MemA

MemCsN

MemD

MemOeN

Figure 37. Static ram read cycle (0-waitstate)

Figure 38. Static ram write cycle

lead-in data lead-out

D1

A1

SysClk

MemA

MemCsN

MemD

MemWrN
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

36

GAISLER

During writes, only the necessary bytes will be writen. Figure 39 shows an interface example
with 8-bit PROM and 8-bit SRAM.

3.4.8 8-bit I/O access

Similar to the PROM/RAM areas, the I/O area can also be configured to 8-bit mode. However,
the I/O device will NOT be accessed by multiple 8 bits accesses as the memory areas, but only
with one single access just as in 32-bit mode. To accesses an I/O device on a 8-bit bus LDUB/
STB instructions should be used.

3.4.9 Memory EDAC

The memory controller in LEON2-FT is provided with an EDAC that can correct one error and detect
two errors in a 32-bit word. For each word, a 7-bit checksum is generated according to the equations
below. Correction is done on-the-fly and no timing penalty occurs during correction. If an un-correct-
able error (double-error) is detected, an memory exception is signalled to the IU. If a correctable error
occurs, no exception is generated but the event is registered in the failing address and memory status
register and interrupt 1 is generated. The interrupt can then be attached to a low priority interrupt han-
dler that scrubs the failing memory location. The EDAC can be used during access to PROM or RAM
areas by setting the corresponding EDAC enable bits in the Error control register (see below). The
equations below show how the EDAC checkbits are generated:
CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
CB2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
CB3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

If the memory is configured in 8-bit mode, the EDAC checkbit bus (CB[7:0]) is not used but it
is still possible to use EDAC protection. Data is always accessed as words (4 bytes at a time)
and the corresponding checkbits are located at the address acquired by inverting the word
address (address[27:2]) and using it as a byte address. The same chip-select is kept active. A
word written as four bytes to addresses 0, 1, 2, 3 will have its checkbits at address 0x0FFFFFFF,
addresses 4, 5, 6, 7 at 0x0FFFFFFE and so on. All the bits up to the maximum banksize will be

Figure 39. 8-bit memory interface example

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
SRAM

MemCsN[0]
MemOeN[0]
MemWrN[0]

RomCsN[0]
IoOeN

A D

SpaceWire-RTC

MemA[22:0]

MemD[31:24]

D[31:24]

D[31:24]

A[27:0]

A[27:0]

IoWrN

8-bit PROM

8-bit RAM
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

37

GAISLER

inverted while the same chip-select is always asserted. This way all the banksize can be
supported and no memory will be unused (except for a maximum of 4 B in the gap between the
data and checkbit area). The 8-bit mode applies to RAM and PROM. Only byte-writes should
be performed to ROM with EDAC enabled. In this case, only the corresponding byte will be
written.
The operation of the EDAC can be tested trough the Error control register (see below). If the
WB (write bypass) bit is set, the value in the TCB field will replace the normal checkbits during
memory write cycles. If the RB (read bypass) is set, the memory checkbits of the loaded data
will be stored in the TCB field during memory read cycles. NOTE: when the EDAC is enabled,
the RMW bit in memory configuration register 2 must be set.

3.4.10 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and local I/O accesses.

[3:0]: Prom read waitstates. Defines the number of waitstates during prom read cycles (“0000”=0,
“0001”=2, “0010”=4, ... “1111”=30).

[7:4]: Prom write waitstates. Defines the number of waitstates during prom write cycles (“0000”=0,
“0001”=2, “0010”=4, ,... “1111”=30).

[9:8]: Prom width. Defines the data with of the prom area (“00”=8, “10”=32).
[10]: Reserved
[11]: Prom write enable. If set, enables write cycles to the prom area.
[17:12]: Reserved
[19]: I/O enable. If set, the access to the memory bus I/O area are enabled.
[23:20]: I/O waitstates. Defines the number of waitstates during I/O accesses (“0000”=0,

“0001”=1, “0010”=2,..., “1111”=15).
[25]: Bus error (MemBExcN) enable.
[26]:Bus ready (IoBrdyN) enable.
[28:27]: I/O bus width. Defines the data with of the I/O area (“00”=8, “10”=32).
[29]: Asynchronous bus ready (ABRDYN). If set, the IoBrdyN input can be asserted without relation to

the system clock. Reset to ‘0’ at power-up.
[30]: PROM area bus ready enable (PBRDYN). If set, a PROM access will be extended until IoBrdyN is

asserted. Reset to ‘0’ at power-up.
[18], [24], [31]: Reserved. No effect when written to. Undefined when read.

During power-up, the prom width (bits [9:8]) are set with value on LeonPio[1:0] inputs. The
PROM waitstates fields are set to 30 (maximum). External bus error and bus ready are disabled.
All other fields are undefined.

I/O enable

Prom write enable
Prom width

Figure 40. Memory configuration register 1

03478910111217181920232425262731
Prom read wsProm write ws

I/O width
I/O ready enable
MemBExcN
enable

I/O waitstates
282930

AR PR
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

38

GAISLER

3.4.11 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM.

[1:0]: Ram read waitstates. Defines the number of waitstates during ram read cycles (“00”=0, “01”=1,
“10”=2, “11”=3).

[3:2]: Ram write waitstates. Defines the number of waitstates during ram write cycles (“00”=0, “01”=1,
“10”=2, “11”=3).

[5:4]: Ram with. Defines the data with of the ram area (“00”=8, “1X”= 32).
[6]: Read-modify-write. Enable read-modify-write cycles on sub-word writes to 32-bit areas with

common write strobe (no byte write strobe).
[7]: Bus ready enable. If set, will enable IoBrdyN for ram area. Unused.
[12:9]: Ram bank size. Defines the size of each ram bank (“0000”=8 Kbyte, “0001”=16 Kbyte...

“1111”=256 Mbyte).
[8], [31:13]: Reserved. No effect when written to. Undefined when read.

3.4.12 Memory configuration register 3 (MCFG3)

MCFG3 contains the control and monitor the memory EDAC. It also contains the configuration
of the register file EDAC.

[31:30]: Regfile check bits (RFC) - Indicates how many checkbits are used for the register file (00=none,
01=1, 10=2, 11=7 (EDAC)). Fixed.

[29:28]: Reserved. No effect when written to. Undefined when read.
[27]: Memory EDAC (ME) - Indicates if a memory EDAC is present
[26:12]: Unused. No effect when written to. Undefined when read.
[11]: WB - EDAC diagnostic write bypass
[10]: RB - EDAC diagnostic read bypass
[9]: RAM EDAC enable (RE) - Enable EDAC checking of the RAM area
[8]: PROM EDAC enable (PE) - Enable EDAC checking of the PROM area. At reset, this bit is initialised

with the value of LeonPio[2]
[7:0]: TCB - Test checkbits. This field replaces the normal checkbits during store cycles when WB is set.

TCB is also loaded with the memory checkbits during load cycles when RB is set.

IoBrdyN enable
Read-mod.-write
Ram width
Write waitstates
Read waitstates

0123456891231
SRAM bank sz

Figure 41. Memory configuration register 2

7

Figure 42. Memory configuration register 3

07

TCB[7:0]

8

PE

9

RERFC

3031 27

ME RB

1011

WB
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

39

GAISLER

3.4.13 Write protection

Write protection is provided to protect the RAM area against accidental over-writing. It is imple-
mented with two methods: the address/mask method as implemented in the original LEON2 model,
and an extended version using start/end addressing.

3.4.13.1 Address/mask write protection

The address/mask write protection is implemented with two block protect units capable of dis-
abling or enabling write access to a binary aligned memory block in the range of 32 Kbyte - 1
Gbyte. Each block protect unit is controlled through a control register (figure 44). The units
operate as follows: on each write access to RAM, address bits (29:15) are xored with the tag
field in the control register, and anded with the mask field. A write protection hit is generated
if the result is zero, and the corresponding unit is enabled in block protection mode (BP = 1)
or if the result is not zero and the unit is enabled in segment mode (BP = 0).

[14:0] Address mask (MASK) - this field contains the address mask
[29:15] Address tag (TAG) - this field is compared against address(29:15)
[30] Block protect (BP) - if set, selects block protect mode
[31] Enable (EN) - if set, enables the write protect unit

3.4.13.2 Start/end address write protection

The start/end address write protect scheme contains two identical units that compare the AHB
write address against a start and an end address. If operated in block protect mode (BP = 1) and
the AHB write address is equal or higher than the start address and lower or equal to the end
address, a write protect hit is generated. If operated in segment mode (BP = 0), a write protect
hit is generated when the write address is lower than the START address, or higher than the
END address.

[31:30]: Reserved. No effect when written to. Undefined when read.
START [29:2] Contains the first address in the protected block
END [29:2] Contains the last address in the protected block
BP - Block protect. If set, selects block protect mode
US - User mode. If set, write protection is enabled for user-mode accesses
SU - Supervisor mode. If set, write protection is enabled for supervisor-mode access.

The start address is calculated as 0x40000000 + START*4. The end address is calculated as
0x40000000 + END*4.

Figure 43. Write protection register 1 & 2

01415293031
MASK[14:0]TAG[14:0]BPEN

Figure 44. Start/end address Write protection registers

029 131
START1 [29:2] BP 0

END1 [29:2] US SU

START2 [29:2] BP 0

END2 [29:2] US SU

00

00

00

00
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

40

GAISLER

3.4.13.3 Generation of write protection

The results from the two write protection schemes is combined together according to the
following scheme:
If all enabled units operate in block protect mode, then a write protect error will be generated
if any of the enabled units signal a write protection hit.
If at least one of the enabled units operates in segment mode, then a write protect error will be
generated only if all units operating in segment mode signal a write protection hit.
A write protection error will result in that the AHB write cycle is ended with an AHB error
response and the data is not written to the memory.
The ROM area can be write protected by clearing the write enable bit MCFG1.

3.4.14 Using IoBrdyN

The IoBrdyN signal can be used to stretch access cycles to the I/O area. The accesses will
always have at least the pre-programmed number of waitstates as defined in memory
configuration registers 1 & 2, but will be further stretched until IoBrdyN is asserted. IoBrdyN
should be asserted in the cycle preceding the last one.
If bit 29 in memory configuration register 1 is not set, then BRDYN is sampled synchronously
on the rising edge if the system clock and should be asserted in the cycle preceding the last one.
If bit 29 is set, the BRDYN can be asserted asynchronously with the system clock. In this case,
the read data must be kept stable until the de-assertion of IoOeN.
The use of IoBrdyN can be enabled separately for the I/O area.

3.4.15 Access errors

An access error can be signalled by asserting the MemBExcN signal, which is sampled together
with the data. If the usage of MemBExcN is enabled in memory configuration register 1, an
error response will be generated on the internal AMBA bus. MemBExcN can be enabled or
disabled through memory configuration register 1, and is active for all areas (PROM, I/O an
RAM).

3.5 Hardware debug support

3.5.1 Overview

The LEON processor includes hardware debug support to aid software debugging on target
hardware. The support is provided through two modules: a debug support unit (DSU) and a
debug communication link (DCL). The DSU can put the processor in debug mode, allowing

Figure 45. Read cycle with MemBExcN

data1 data2

D1

lead-out

A1

SysClk

MemA

MemCsN

MemD

IoOeN

MemBExcN
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

41

GAISLER

read/write access to all processor registers and cache memories. The DSU also contains a trace
buffer which stores executed instructions and/or data transfers on the AMBA AHB bus. The
debug communications link implements a simple read/write protocol and uses standard
asynchronous UART communications (RS232C).

3.5.2 Debug support unit

3.5.2.1 Overview

The debug support unit is used to control the trace buffer and the processor debug mode. The
DSU is attached to the AHB bus as slave, occupying a 2 Mbyte address space. Through this
address space, any AHB master can access the processor registers and the contents of the trace
buffer. The DSU control registers can be accessed at any time, while the processor registers and
caches can only be accessed when the processor has entered debug mode. The trace buffer can
be accessed only when tracing is disabled/completed. In debug mode, the processor pipeline is
held and the processor state can be accessed by the DSU. Entering the debug mode can occur
on the following events:
• executing a breakpoint instruction (ta 1)
• integer unit hardware breakpoint/watchpoint hit (trap 0xb)
• rising edge of the external break signal (LeonDsuBre)
• setting the break-now (BN) bit in the DSU control register
• a trap that would cause the processor to enter error mode
• occurrence of any, or a selection of traps as defined in the DSU control register
• after a single-step operation
• DSU breakpoint hit
The debug mode can only be entered when the debug support unit is enabled through an
external pin (LeonLeonDsuEn). When the debug mode is entered, the following actions are
taken:
• PC and nPC are saved in temporary registers (accessible by the debug unit)
• an output signal (LeonDsuAct) is asserted to indicate the debug state
• the timer unit is (optionally) stopped to freeze the LEON timers and watchdog

The instruction that caused the processor to enter debug mode is not executed, and the
processor state is kept unmodified. Execution is resumed by clearing the BN bit in the DSU
control register or by de-asserting LeonDsuEn. The timer unit will be re-enabled and execution
will continue from the saved PC and nPC. Debug mode can also be entered after the processor
has entered error mode, for instance when an application has terminated and halted the
processor. The error mode can be reset and the processor restarted at any address.

LEON SPARC V8
Integer unit

I-Cache D-Cache

AMBA AHB

LEON processor

Debug
Support Unit

Debug
Comm. Link

AHB interface

Debug I/F

Trace
Buffer

Figure 46. Debug support unit and comm. linkLeonDsuTx
LeonDsuRx

LeonLeonDsuEn
LeonDsuBre
LeonDsuAct
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

42

GAISLER

3.5.2.2 Trace buffer

The trace buffer consists of a circular buffer that stores executed instructions and/or AHB data
transfers. A 30-bit counter is also provided and stored in the trace as time tag. The trace buffer
operation is controlled through the DSU control register and the Trace buffer control register
(see below). When the processor enters debug mode, tracing is suspended. The size of the trace
buffer is 512 lines.
The trace buffer is 128 bits wide, the information stored is indicated in table 11 and table 12
below:

During instruction tracing, one instruction is stored per line in the trace buffer with the
exception of multi-cycle instructions. Multi-cycle instructions are entered two or three times in
the trace buffer. For store instructions, bits [63:32] correspond to the store address on the first
entry and to the stored data on the second entry (and third in case of STD). Bit 126 is set on the
second and third entry to indicate this. A double load (LDD) is entered twice in the trace buffer,
with bits [63:32] containing the loaded data. Multiply and divide instructions are entered twice,
but only the last entry contains the result. Bit 126 is set for the second entry. For FPU operation

TABLE 11. Trace buffer data allocation, AHB tracing mode

Bits Name Definition
127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

126 - Unused

125:9
6

Time tag The value of the time tag counter

95:92 IRL Processor interrupt request input

91:88 PIL Processor interrupt level (psr.pil)

87:80 Trap type Processor trap type (psr.tt)

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR

TABLE 12. Trace buffer data allocation, Instruction tracing mode

Bits Name Definition
127 Instruction breakpoint hit Set to ‘1’ if a DSU instruction breakpoint hit occurred.

126 Multi-cycle instruction Set to ‘1’ on the second and third instance of a multi-cycle
instruction (LDD, ST or FPOP)

125:9
6

Time tag The value of the time tag counter

95:64 Load/Store parameters Instruction result, Store address or Store data

63:34 Program counter Program counter (2 lsb bits removed since they are always
zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode

31:0 Opcode Instruction opcode
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

43

GAISLER

producing a double-precision result, the first entry puts the MSB 32 bits of the results in bit
[63:32] while the second entry puts the LSB 32 bits in this field. When a trace is frozen,
interrupt 11 is generated.
The DSU time tag counter is incremented each clock as long as the processor is running. The
counter is stopped when the processor enters debug mode, and restarted when execution is
resumed.

[31:30]: Reserved. No effect when written to. Undefined when read.

The trace buffer control register contains two counters that contain the next address of the trace
buffer to be written. Since the buffer is circular, it actually points to the oldest entry in the
buffer. The counters are automatically incremented after each stored trace entry.

[31:27]: Reserved. No effect when written to. Undefined when read.
[11:0] : Instruction trace index counter
[23:12] : AHB trace index counter
[24] : Trace instruction enable
[25] : Trace AHB enable
[26] : AHB trace buffer freeze. If set, the AHB trace buffer will be frozen when the processor enters debug mode

When both instructions and AHB transfers are traced (‘mixed mode tracing’), the buffer is
divided on two halves. Instructions are stored in the lower half and AHB transfers in the upper
half of the buffer. The MSB bit of the AHB index counter is then automatically kept high, while
the MSB of the instruction index counter is kept low. When the AF bit in the trace control
register is set, AHB tracing is stopped when the processor is in debug mode. When AF is
cleared, tracing continues until the AHB trace enable bits are cleared.

3.5.2.3 DSU memory map

DSU memory map can be seen in table 13 below.

TABLE 13. DSU address space

Address Register
0x90000000 DSU control register

0x90000004 Trace buffer control register

0x90000008 Time tag counter

0x90000010 AHB break address 1

0x90000014 AHB mask 1

0x90000018 AHB break address 2

0x9000001C AHB mask 2

0x90010000 - 0x90020000 Trace buffer

..0 Trace bits 127 - 96

...4 Trace bits 95 - 64

...8 Trace bits 63 - 32

...C Trace bits 31 - 0

0x90020000 - 0x90040000 IU/FPU register file

Figure 47. Time tag counter

031

DSU TIME TAG VALUE
29

00

Figure 48. Trace buffer control register

031

AHB INDEX
11

INST . INDEX
24 1223
TITA

2526
FA
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

44

GAISLER

The addresses of the IU/FPU registers depends on how many register windows has been
implemented and if and FPU is present. The registers can be accessed at the following
addresses (NWINDOWS = number of SPARC register windows):
• %on : 0x90020000 + (((psr.cwp * 64) + 32 + n) mod (NWINDOWS*64))
• %ln : 0x90020000 + (((psr.cwp * 64) + 64 + n) mod (NWINDOWS*64))
• %in : 0x90020000 + (((psr.cwp * 64) + 96 + n) mod (NWINDOWS*64))
• %gn : 0x90020000 + (NWINDOWS*64) + 128 (FPU present)
• %fn : 0x90020000 + (NWINDOWS*64) (Meiko)

3.5.2.4 DSU control register

The DSU is controlled by the DSU control register:

0: Trace enable (TE). Enables the trace buffer.
1: Delay counter mode (DM). In mixed tracing mode, setting this bit will cause the delay counter to decrement on AHB

traces. If reset, the delay counter will decrement on instruction traces.
2: Break on trace (BT) - if set, will generate a DSU break condition on trace freeze.
3: Freeze timers (FT) - if set, the scaler in the LEON timer unit will be stopped during debug mode to preserve the time for

the software application.
4: Break on error (BE) - if set, will force the processor to debug mode when the processor would have entered error condition

(trap in trap).
5: Break on IU watchpoint - if set, debug mode will be forced on a IU watchpoint (trap 0xb).
6: Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint instruction (ta 1) is executed.
7: Break now (BN) -Force processor into debug mode. If cleared, the processor will resume execution.
8: Break on DSU breakpoint (BD) - if set, will force the processor to debug mode when an DSU breakpoint is hit.
9: Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.
10: Break on error traps (BZ) - if set, will force the processor into debug mode on all except the following traps:

priviledged_instruction, fpu_disabled, window_overflow, window_underflow, asynchronous_interrupt, ticc_trap.
11: Delay counter enable (DE) - if set, the trace buffer delay counter will decrement for each stored trace. This bit is set

automatically when an DSU breakpoint is hit and the delay counter is not equal to zero.
12: Debug mode (DM). Indicates when the processor has entered debug mode (read-only).
13: EB - value of the external LeonDsuBre signal (read-only)
14: EE - value of the external LeonDsuEn signal (read-only)

0x90080000 - 0x90100000 IU special purpose registers

0x90080000 Y register

0x90080004 PSR register

0x90080008 WIM register

0x9008000C TBR register

0x90080010 PC register

0x90080014 NPC register

0x90080018 FSR register

0x9008001C DSU trap register

0x90080040 - 0x9008007C ASR16 - ASR31 (when implemented)

0x90100000 - 0x90140000 Instruction cache tags

0x90140000 - 0x90180000 Instruction cache data

0x90180000 - 0x901C0000 Data cache tags

0x901C0000 - 0x90200000 Data cache data

TABLE 13. DSU address space

Address Register

Figure 49. DSU control register

0123456731

DCNT TEBTFTBEBWBSBN
8

BB
9

BX
10

BZ
11

DE
12

DM
13

EB
14

EE
20 15

PE
17

LRDR
18 16

SS
19
RE DM
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

45

GAISLER

15: Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0’.
16: Single step (SS) - if set, the processor will execute one instruction and the return to debug mode.
17: Link response (LR) - is set, the DSU communication link will send a response word after AHB transfer.
18: Debug mode response (DR) - if set, the DSU communication link will send a response word when the processor enters

debug mode.
19: Reset error mode (RE) - if set, will clear the error mode in the processor.
31:20 Trace buffer delay counter (DCNT). Note that the number of bits actually implemented depends on the size of the trace

buffer.

3.5.2.5 DSU breakpoint registers

The DSU contains two breakpoint registers for matching either AHB addresses or executed
processor instructions. A breakpoint hit is typically used to freeze the trace buffer, but can also
put the processor in debug mode. Freezing can be delayed by programming the DCNT field in
the DSU control register to a non-zero value. In this case, the DCNT value will be decremented
for each additional trace until it reaches zero, after which the trace buffer is frozen. If the BT
bit in the DSU control register is set, the DSU will force the processor into debug mode when
the trace buffer is frozen. Note that due to pipeline delays, up to 4 additional instruction can be
executed before the processor is placed in debug mode. A mask register is associated with each
breakpoint, allowing breaking on a block of addresses. Only address bits with the
corresponding mask bit set to ‘1’ are compared during breakpoint detection. To break on
executed instructions, the EX bit should be set. To break on AHB load or store accesses, the
LD and/or ST bits should be set.

BADDR : breakpoint address (bits 31:2)
EX : break on instruction
BMASK : Breakpoint mask (see text)
LD : break on data load address
ST : beak on data store address

3.5.2.6 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused
the processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU
control register, the trap type will be 0xb (hardware watchpoint trap).

[31:12]: Reserved. No effect when written to. Undefined when read.
[11:4] : 8-bit SPARC trap type
[12] : Error mode (EM). Set if the trap would have cause the processor to enter error mode.
[3:0]: Reserved. No effect when written to. Undefined when read.

01231

LD

BADDR[31:2]Break address reg.

0231
STBMASK[31:2]

Break mask reg.

Figure 50. DSU breakpoint registers

EX

1

0

Figure 51. DSU trap register

03431

RESERVED 0000
11

TRAP TYPE
12

EM
13
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

46

GAISLER

3.5.3 DSU communication link

3.5.3.1 Operation

The DSU communication link consists of a UART connected to the AHB bus as a master
(figure 52). A simple communication protocol is supported to transmit access parameters and
data. A link command consist of a control byte, followed by a 32-bit address, followed by
optional write data. If the LR bit in the DSU control register is set, a response byte will be sent
after each AHB transfer. If the LR bit is not set, a write access does not return any response,
while a read access only returns the read data. Data is sent on 8-bit basis as shown in figure 54.
Through the communication link, a read or write transfer can be generated to any address on
the AHB bus.

A response byte can optionally be sent when the processor goes from execution mode to debug
mode. Block transfers can be performed be setting the length field to n-1, where n denotes the

Figure 52. DSU communication link block diagram

LeonDsuRx LeonDsuTxReceiver shift register Transmitter shift register

AHB master interface AHB data/response

AMBA AHB

Serial port
Controller

8*bitclkBaud-rate
generator AMBA APB

Figure 53. DSU UART data frame

Start D0 StopD6D5D4D3D2D1 D7

Figure 54. DSU Communication link commands

DSU Write Command

11 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16] Data[31:24] Data[7:0]Data[15:8]Data[23:16]Send

Receive

10 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16]Send

DSU Read command

Resp. byte (optional)

Receive Data[31:24] Data[7:0]Data[15:8]Data[23:16] Resp. byte (optional)

bit 7:3 = 00000

bit 1:0 = AHB HRESP

Response byte encoding

bit 2 = DMODE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

47

GAISLER

number of transferred words. For write accesses, the control byte and address is sent once,
followed by the number of data words to be written. The address is automatically incremented
after each data word. For read accesses, the control byte and address is sent once and the
corresponding number of data words is returned.
The UART receiver is implemented with same glitch filtering as the nominal UARTs.

3.5.3.2 DSU UART control register

31:2: Reserved. No effect when written to. Undefined when read.
0: Receiver enable (RE) - if set, enables both the transmitter and receiver.
1: Baud rate locked (BL) - is automatically set when the baud rate is locked.

3.5.3.3 DSU UART status register

0: Data ready (DR) - indicates that new data has been received and not yet read-out by the AHB master
interface.

1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty.
3: Reserved. No effect when written to. Undefined when read.
4: Overrun (OV) - indicates that one or more character have been lost due to overrun.
5: Reserved. No effect when written to. Undefined when read.
6: Framing error (FE) - indicates that a framing error was detected.
31:7: Reserved. No effect when written to. Undefined when read.

3.5.3.4 Baud rate generation

The UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The scaler
is clocked by the system clock and generates a UART tick each time it underflows. The scaler
is reloaded with the value of the UART scaler reload register after each underflow. The
resulting UART tick frequency should be 8 times the desired baud-rate.
If not programmed by software, the baud rate will be automatically be discovered. This is done
by searching for the shortest period between two falling edges of the received data
(corresponding to two bit periods). When three identical two-bit periods has been found, the
corresponding scaler reload value is latched into the reload register, and the BL bit is set in the
UART control register. If the BL bit is reset by software, the baud rate discovery process is
restarted. The baud-rate discovery is also restarted when a ‘break’ or framing error is detected
by the receiver, allowing to change to baudrate from the external transmitter. For proper
baudrate detection, the value 0x55 should be transmitted to the receiver after reset or after
sending break.
The best scaler value for manually programming the baudrate can be calculated as follows:
scaler = (((system_clk*10)/(baudrate*8))-5)/10

Figure 55. UART control register

01231

RESERVED ENBL

Figure 56. UART status register

0123456731

RESERVED DRTSTHOVFE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

48

GAISLER

[31:14]: Reserved. No effect when written to. Undefined when read.

3.5.4 Common operations

3.5.4.1 Instruction breakpoints

Instruction breakpoints can be inserted by writing the breakpoint instruction (ta 1) to the
desired memory address (software breakpoint) or using any of the four integer unit hardware
breakpoints. Since cache snooping is only done on the data cache, the instruction cache must
be flushed after the insertion or removal of software breakpoints. To minimize the influence on
execution, it is enough to clear the corresponding instruction cache tag valid bit (which is
accessible through the DSU).
The two DSU hardware breakpoints should only be used to freeze the trace buffer, and not for
software debugging since there is a 4-instruction delay from the breakpoint hit before the
processor enters the debug mode.

3.5.4.2 Single stepping

By setting the SS bit and clearing the BN bit in the DSU control register, the processor will
resume execution for one instruction and then automatically return to debug mode.

3.5.4.3 Booting from DSU

By asserting LeonDsuEn and LeonDsuBre at reset time, the processor will directly enter debug
mode without executing any instructions. The system can then be initialised from the
communication link, and applications can be downloaded and debugged. Additionally, external
(flash) proms for standalone booting can be re-programmed.

3.6 Vendor and device id

The AMBA AHB master of the LEON2 caches has vendor id 0x04 (ESA) and device id
0x002.
The AMBA AHB slave of the LEON2 memory controller has vendor id 0x04 (ESA) and
device id 0x00F.
The AMBA AHB slave of the LEON2 DSU has vendor id 0x01 (Gaisler Research) and device
id 0x002.
The AMBA AHB master of the LEON2 DSU AHB UART has vendor id 0x04 (ESA) and
device id 0x013.
The AMBA APB slave of the LEON2 peripherals has vendor id 0x04 (ESA) and device id
0x003.

Figure 57. DSU UART scaler reload register

0131431

RESERVED SCALER RELOAD VALUE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

49

GAISLER

4 ON-CHIP MEMORY

4.1 Overview

The On-Chip Memory is implemented with the FTAHBRAM core. The FTAHBRAM is a version of
the normal AHBRAM core with added Error Detection And Correction (EDAC). One error is cor-
rected and two errors are detected, which is done by using a (32, 7) BCH code. Configuration is possi-
ble through an APB interface. Some of the features available are: single error counter, diagnostic reads
and writes and autoscrubbing (automatic correction of single errors during reads). Figure below shows
a block diagram of the internals of the RAM.

4.2 Operation

The on-chip fault tolerant RAM is accessed through an AHB slave interface.
Run-time configuration is done by writing to a configuration register accessed through an APB inter-
face. The fields of the configuration register are shown in detail later in this section.
The following can be configured during run-time: EDAC can be enabled and disabled. Read and write
diagnostics can be controlled through separate bits. The single error counter can be reset.
If EDAC is disabled (EN bit in configuration register set to 0) write data is passed directly to the RAM
area and read data will appear on the AHB bus immediately after it arrives from memory. If EDAC is
enabled write data is passed to an encoder which outputs a 7 - bit checksum. The checksum is stored
together with the data in memory and the whole operation is performed without any added waitstates.
This applies to word stores (32 - bit). To ensure correct checksum, RAM locations containing data
prior to enabling the EDAC, must first be refreshed by reading and writing a complete word before
enabling the EDAC. If a byte or halfword store is performed, the whole word to which the byte or half-
word belongs must first be read from memory (read - modify - write). A new checksum is calculated
when the new data is placed in the word and both data and checksum are stored in memory. This is
done with 1 - 2 additional waitstates compared to the non EDAC case. Note that autoscrubbing is only
performed on read/write access to a memory location, thus it is recommended to read in-frequently
accessed memory periodically in order to reduce accumulation of SEU bit errors.

AHB/APB
Bridge

AHB Bus

APB Bus

AHB SRAM
AHB Slave

Interface

Syncram

Encoding

cbdata

Decoding

data

error

Mux

Configuration Register

Config bits TCB

cb

Mux

Figure 58. The FT AHB RAM block diagram

Mux
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

50

GAISLER

Reads with EDAC disabled are performed with 0 or 1 waitstates while there could also be 2 waitstates
when EDAC is enabled. There is no difference between word and subword reads. Table 14 shows a
summary of the number of waitstates for the different operations with and without EDAC.

When EDAC is used, the data is decoded the first cycle after it arrives from the memory and appears
on the bus the next cycle if no uncorrectable error is detected. The decoding is done by comparing the
stored checksum with a new one which is calculated from the stored data. This decoding is also done
during the read phase for a subword write. A so-called syndrome is generated from the comparison
between the checksum and it determines the number of errors that occurred. One error is automatically
corrected and this situation is not visible on the bus. Two or more detected errors cannot be corrected
so the operation is aborted and the required two cycle error response is given on the AHB bus (see the
AMBA manual for more details). If no errors are detected data is passed through the decoder unal-
tered.
As mentioned earlier the AHB RAM provides read and write diagnostics when EDAC is enabled.
When write diagnostics are enabled, the calculated checksum is not stored in memory during the write
phase. Instead, the TCB field from the configuration register is used. In the same manner, if read diag-
nostics are enabled, the stored checksum from memory is stored in the TCB field during a read (and
also during a subword write). This way, the EDAC functionality can be tested during run-time. Note
that checkbits are stored in TCB during reads and subword writes even if a multiple error is detected.
An additional feature is the single error counter. A single error counter (SEC) field is present in the
configuration register. It is incremented each time a single databit error is encountered (reads or sub-
word writes). The number of bits of this counter is 8. It is accessed via the configuration register. Each
bit can be reset to zero by writing a one to it. The counter saturates at the value 255.
Autoscrubbing is an error handling feature and cannot be controlled through the configuration register.
Every single error encountered during a read results in the word being written back with the error cor-
rected and new checkbits generated. It is not visible externally except for that it can generate an extra
waitstate. This happens if the read is followed by an odd numbered read in a burst sequence of reads or
if a subword write follows. These situations are very rare during normal operation so the total timing
impact is negligible.

4.3 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x50.

4.4 Registers

Table 15 shows the FTAHBRAM registers.

Figure 59 below shows the register bit fields. All fields except TCB are initialised at reset. The EDAC
is initially disabled (EN = 0), which also applies to diagnostics (RB and WB are zero). Additionally, if
the single error counter is enabled, the error counter (SEC) is set to zero and interrupts are disabled (IE
= 0).

TABLE 14. Summary of the number of waitstates for the different operations for the AHB RAM.

Operation
Waitstates with EDAC
Disabled

Waitstates with EDAC
Enabled

Read 0 - 1 0 - 2
Word write 0 0
Subword write 0 1 - 2

TABLE 15. FT AHB RAM unit registers

Register Address
Configuration Register 0x80010000
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

51

GAISLER

[31: 21] - Reserved. Write access has no effect. Read data is undefined.
[20: 13] - Single error counter. Incremented each time a single error is corrected (includes errors on

checkbits). Each bit can be set to zero by writing a one to it.
[12 : 10] - Log2 of the current memory size
[9] - Write Bypass (WB) : When set, the TCB field is stored as check bits when a write is performed to

the memory.
[8] - Read Bypass (RB) : When set during a read or subword write, the check bits loaded from memory

are stored in the TCB field.
[7] - EDAC Enable : When set, the EDAC is used otherwise it is bypassed during read and write

operations.
[6:0] - Test Check Bits (TCB) : Used as checkbits when the WB bit is set during writes and loaded with

the check bits during a read operation when the RB bit is set.

Figure 59. Configuration register bit fields

31

TCBENWB RB

6 078910

RESERVED

12
SEC

20
MEMSIZE

13
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

52

GAISLER

5 FIFO INTERFACE

5.1 Overview

The FIFO interface is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing FIFO data in memory external to the
FIFO interface. This memory can be located on-chip or external to the chip.
The FIFO interface supports transmission and reception of blocks of data by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of data can be ongoing simultaneously.
After a data transfer has been set up via the AMBA APB interface, the DMA controller initiates a burst
of read accesses on the AMBA AHB bus to fetch data from memory that are performed by the AHB
master. The data are then written to the external FIFO. When a programmable amount of data has been
transmitted, the DMA controller issues an interrupt.
After reception has been set up via the AMBA APB interface, data are read from the external FIFO. To
store data to memory, the DMA controller initiates a burst of write accesses on the AMBA AHB bus
that are performed by the AHB master. When a programmable amount of data has been received, the
DMA controller issues an interrupt.
The block diagram shows a possible usage of the FIFO interface.

5.1.1 Function

The core implements the following functions:
• data transmission to external FIFO
• circular transmit buffer
• direct memory access for transmitter
• data reception from external FIFO
• circular receive buffer
• direct memory access for receiver
• automatic 8- and 16-bit data width conversion
• general purpose input output

Figure 60. Block diagram of the GRFIFO environment.

FIFO
Interface

D[8:0]

WR*

FULL*

RD*

EMPTY*

ATMEL
M6720X

ATMEL
M6720X

HALF*

AMBA
AHB
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

53

GAISLER

5.1.2 Transmission

Data to be transferred via the FIFO interface are fetched via the AMBA AHB master interface from
on-chip or off-chip memory. This is performed by means of direct memory access (DMA), implement-
ing a circular transmit buffer in the memory. The transmit channel is programmable via the AMBA
APB slave interface, which is also used for the monitoring of the FIFO and DMA status.
The transmit channel is programmed in terms of a base address and size of the circular transmit buffer.
The outgoing data are stored in the circular transmit buffer by the system. A write address pointer reg-
ister is then set by the system to indicate the last byte written to the circular transmit buffer. An inter-
rupt address pointer register is used by the system to specify a location in the circular transmit buffer
from which a data read should cause an interrupt to be generated.
The FIFO interface automatically indicates with a read address pointer register the location of the last
fetched byte from the circular transmit buffer. Read accesses are performed as incremental bursts,
except when close to the location specified by the interrupt pointer register at which point the last bytes
might be fetched by means of single accesses.
Data transferred via the FIFO interface can be either 8- or 16-bit wide. The handling of the transmit
channel is however the same. All transfers performed by the AMBA AHB master are 32-bit word
based. No byte or half-word transfers are performed.
To handle the 8- and 16-bit FIFO data width, a 32-bit read access might carry less than four valid
bytes. In such a case, the remaining bytes are ignored. When additional data are available in the circu-
lar transmit buffer, the previously fetched bytes will be re-read together with the newly written bytes to
form the 32-bit data. Only the new bytes will be transmitted to the FIFO, not to transmit the same byte
more than once. The aforementioned write address pointer indicates what bytes are valid.
An interrupt is generated when the circular transmit buffer is empty. The status of the external FIFO is
observed via the AMBA APB slave interface, indicating Full Flag and Half-Full Flag.

5.1.3 Reception

Data received via the FIFO interface are stored via the AMBA AHB master interface to on-chip or off-
chip memory. This is performed by means of direct memory access (DMA), implementing a circular
receive buffer in the memory. The receive channel is programmable via the AMBA APB slave inter-
face, which is also used for the monitoring of the FIFO and DMA status.
The receive channel is programmed in terms of a base address and size of the circular receive buffer.
The incoming data are stored in the circular receive buffer. The interface automatically indicates with a
write address pointer register the location of the last stored byte. A read address pointer register is used
by the system to indicate the last byte read from the circular receive buffer. An interrupt address
pointer register is used by the system to specify a location in the circular receive buffer to which a data
write should cause an interrupt to be generated.
Write accesses are performed as incremental bursts, except when close to the location specified by the
interrupt pointer register at which point the last bytes might be stored by means of single accesses.
Data transferred via the FIFO interface can be either 8- or 16-bit wide. The handling of the receive
channel is however the same. All transfers performed by the AMBA AHB master are 32-bit word
based. No byte or half-word transfers are performed.
To handle the 8- and 16-bit FIFO data width, a 32-bit write access might carry less than four valid
bytes. In such a case, the remaining bytes will all be zero. When additional data are received from the
FIFO interface, the previously stored bytes will be re-written together with the newly received bytes to
form the 32-bit data. In this way, the previously written bytes are never overwritten. The aforemen-
tioned write address pointer indicates what bytes are valid.
An interrupt is generated when the circular receive buffer is full. If more FIFO data are available, they
will not be moved to the circular receive buffer. The status of the external FIFO is observed via the
AMBA APB slave interface, indicating Empty Flag and Half-Full Flag.

5.1.4 General purpose input output

Data input and output signals unused by the FIFO interface can be used as general purpose input out-
put, providing 0, 8 or 16 individually programmable channels.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

54

GAISLER

5.1.5 Interfaces

The core provides the following external and internal interfaces:
• FIFO interface
• AMBA AHB master interface, with sideband signals as per [GLRIB] including:

• cachability information
• interrupt bus
• configuration information
• diagnostic information

• AMBA APB slave interface, with sideband signals as per [GLRIB] including:
• interrupt bus
• configuration information
• diagnostic information

The interface is intended to be used with the following FIFO devices from ATMEL:
 Name: Type:

M67204H 4K x 9 FIFO ESA/SCC 9301/049, SMD/5962-89568
 M67206H 16K x 9 FIFO ESA/SCC 9301/048, SMD/5962-93177
 M672061H 16K x 9 FIFO ESA/SCC 9301/048, SMD/5962-93177

5.2 Interface

The external interface supports one or more FIFO devices for data output (transmission) and/or one or
more FIFO devices for data input (reception). The external interface supports FIFO devices with 8-
and 16-bit data width. Note that one device is used when 8-bit and two devices are used when 16-bit
data width is needed. The data width is programmable. Note that this is performed commonly for both
directions.
The external interface supports one parity bit over every 8 data bits. Note that there can be up to two
parity bits in either direction.The parity is programmable in terms of odd or even parity. Note that odd
parity is defined as an odd number of logical ones in the data bits and parity bit. Note that even parity
is defined as an even number of logical ones in the data bits and parity bit. Parity is generated for write
accesses to the external FIFO devices. Parity is checked for read accesses from the external FIFO
devices and a parity failure results in an internal interrupt.
The external interface provides a Write Enable output signal. The external interface provides a Read
Enable output signal. The timing of the access towards the FIFO devices is programmable in terms of
wait states based on system clock periods.
The external interface provides an Empty Flag input signal, which is used for flow-control during the
reading of data from the external FIFO, not reading any data while the external FIFO is empty. Note
that the Empty Flag is sampled at the end of the read access to determine if the FIFO is empty. To
determine when the FIFO is not empty, the Empty Flag is re-synchronized with Clk.
The external interface provides a Full Flag input signal, which is used for flow-control during the writ-
ing of data to the external FIFO, not writing any data while the external FIFO is full. Note that the Full
Flag is sampled at the end of the write access to determine if the FIFO is full. To determine when the
FIFO is not full, the Full Flag is re-synchronized with Clk.
The external interface provides a Half-Full Flag input signal, which is used as status information only.
The data input and output signals are possible to use as general purpose input output channels.This
need is only realized when the data signals are not used by the FIFO interface. Each general purpose
input output channel is individually programmed as input or output. The default reset configuration for
each general purpose input output channel is as input. The default reset value each general purpose
input output channel is logical zero. Note that protection toward spurious pulse commands during
power up shall be mitigated as far as possible by means of I/O cell selection from the target technol-
ogy.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

55

GAISLER

5.3 Waveforms

The following figures show read and write accesses to the FIFO with 0 and 4 wait states, respectively.

FifoWrN

FifoRdN

FifoEmpN

FifoFullN

FifoHalfN

SysClk

WS

Write Read

Sample

Settings: WS=0

Figure 61. FIFO read and write access waveform, 0 wait states (WS)

Write Read

WS WS WS WS

Write ReadWrite Read

WS WS WS

Idle Idle Idle

FifoFullN
Sample
FifoFullN

Sample
FifoEmpN

Sample
FifoEmpN

Sample
FifoFullN

Sample
FifoFullN

Sample
FifoEmpN

FifoD
FifoP
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

56

GAISLER

FifoWrN

FifoRdN

FifoD

FifoEmpN

FifoFullN

FifoHalfN

SysClk

WS

Write Read

Settings: WS=4 (with additional gap between accesses)

Figure 62. FIFO read and write access waveform, 4 wait states (WS)

Idle

Sample
FifoFullN

Sample
FifoEmpN

Gap IdleGap Write

WS WSWS WS WSWS WSWS WS WSWS WS

FifoP
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

57

GAISLER

5.4 Transmission

The transmit channel is defined by the following parameters:
• base address
• buffer size
• write pointer
• read pointer
The transmit channel can be enabled or disabled.

5.4.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the FIFO controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the AMBA
AHB master interface.
The size of the buffer is defined by the FifoTxSIZE.SIZE field, specifying the number of 64 byte
blocks that fit in the buffer.
E.g. FifoTxSIZE.SIZE = 1 means 64 bytes fit in the buffer.
Note however that it is not possible to fill the buffer completely, leaving at least one word in the buffer
empty. This is to simplify wrap-around condition checking.
E.g. FifoTxSIZE.SIZE = 1 means that 60 bytes fit in the buffer at any given time.

5.4.2 Write and read pointers

The write pointer (FifoTxWR.WRITE) indicates the position+1 of the last byte written to the buffer.
The write pointer operates on number of bytes, not on absolute or relative addresses.
The read pointer (FifoTxRD.READ) indicates the position+1 of the last byte read from the buffer. The
read pointer operates on number of bytes, not on absolute or relative addresses.
The difference between the write and the read pointers is the number of bytes available in the buffer for
transmission. The difference is calculated using the buffer size, specified by the FifoTxSIZE.SIZE
field, taking wrap around effects of the circular buffer into account.
Examples:
• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE=2 and

FifoTxRD.READ=0.
• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =0 and

FifoTxRD.READ =62.
• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =1 and

FifoTxRD.READ =63.
• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =5 and

FifoTxRD.READ =3.

When a byte has been successfully written to the FIFO, the read pointer (FifoTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
write pointer FifoTxWR.WRITE and read pointer FifoTxRD.READ are equal, there are no bytes
available for transmission.

5.4.3 Location

The location of the circular buffer is defined by a base address (FifoTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

5.4.4 Transmission procedure

When the channel is enabled (FifoTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a transmission will be started. Note that the channel should not be enabled if a
potential difference between the write and read pointers could be created, to avoid the data transmis-
sion to start prematurely.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

58

GAISLER

A data transmission will begin with a fetch of the data from the circular buffer to a local buffer in the
FIFO controller. After a successful fetch, a write access will be performed to the FIFO.
The read pointer (FifoTxRD.READ) is automatically incremented after a successful transmission, tak-
ing wrap around effects of the circular buffer into account. If there is at least one byte available in the
circular buffer, a new fetch will be performed.
If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.
Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the TxError, TxEmpty and TxIrq which are issued on the unsuccessful trans-
mission of a byte due to an error condition on the AMBA bus, when all bytes have been transmitted
successfully and when a predefined number of bytes have been transmitted successfully.
Note that 32-bit wide read accesses past the address of the last byte or halfword available for transmis-
sion can be performed as part of a burst operation, although no read accesses are made beyond the cir-
cular buffer size.
All accesses to the AMBA AHB bus are performed as two consecutive 32-bit accesses in a burst, or as
a single 32-bit access in case of an AMBA AHB bus error.

5.4.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (FifoTxADDR.ADDR) field.
While the channel is disabled, the read pointer (FifoTxRD.READ) can be changed to an arbitrary
value pointing to the first byte to be transmitted, and the write pointer (FifoTxWR.WRITE) can be
changed to an arbitrary value.
When the channel is enabled, the transmission will start from the read pointer and continue to the write
pointer.

5.4.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while data is being fetched will result in a
TxError interrupt.
If the FifoCONF.ABORT bit is set to 0b, the channel causing the AHB error will re-try to read the data
being fetched from memory till successful.
If the FifoCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (FifoTx-
CTRL.ENABLE is cleared automatically to 0 b). The read pointer can be used to determine which data
caused the AHB error. The interface will not start any new write accesses to the FIFO. Any ongoing
FIFO access will be completed and the FifoTxSTAT.TxOnGoing bit will be cleared. When the channel
is re-enabled, the fetch and transmission of data will resume at the position where it was disabled,
without losing any data.

5.4.7 Enable and disable

When an enabled transmit channel is disabled (FifoTxCTRL.ENABLE=0b), the interface will not start
any new read accesses to the circular buffer by means of DMA over the AMBA AHB bus. No new
write accesses to the FIFO will be started. Any ongoing FIFO access will be completed. If the data is
written successfully, the read pointer (FifoTxRD.READ) is automatically incremented and the FifoTx-
STAT.TxOnGoing bit will be cleared. Any associated interrupts will be generated.
Any other fetched or pre-fetched data from the circular buffer which is temporarily stored in the the
local buffer will be discarded, and will be fetched again when the transmit channel is re-enabled.
The progress of the any ongoing access can be observed via the FifoTxSTAT.TxOnGoing bit. The
FifoTxSTAT.TxOnGoing must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the TxEmpty interrupt described
hereafter.
The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No data transmission is started while the channel is not enabled.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

59

GAISLER

5.4.8 Interrupts

During transmission several interrupts can be generated:
• TxEmpty: Successful transmission of all data in buffer
• TxIrq: Successful transmission of a predefined number of data
• TxError: AHB access error during transmission

The TxEmpty and TxIrq interrupts are only generated as the result of a successful data transmission,
after the FifoTxRD.READ pointer has been incremented.

5.5 Reception

The receive channel is defined by the following parameters:
• base address
• buffer size
• write pointer
• read pointer
The receive channel can be enabled or disabled.

5.5.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the FIFO controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the AMBA
AHB master interface.
The size of the buffer is defined by the FifoRxSIZE.SIZE field, specifying the number 64 byte blocks
that fit in the buffer.

E.g. FifoRxSIZE.SIZE=1 means 64 bytes fit in the buffer.
Note however that it is not possible for the hardware to fill the buffer completely, leaving at least two
words in the buffer empty. This is to simplify wrap-around condition checking.
E.g. FifoRxSIZE.SIZE=1 means that 56 bytes fit in the buffer at any given time.

5.5.2 Write and read pointers

The write pointer (FifoRxWR.WRITE) indicates the position+1 of the last byte written to the buffer.
The write pointer operates on number of bytes, not on absolute or relative addresses.
The read pointer (FifoRxRD.READ) indicates the position+1 of the last byte read from the buffer. The
read pointer operates on number of bytes, not on absolute or relative addresses.
The difference between the write and the read pointers is the number of bytes available in the buffer for
reception. The difference is calculated using the buffer size, specified by the FifoRxSIZE.SIZE field,
taking wrap around effects of the circular buffer into account.
Examples:
• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =2 and

FifoRxRD.READ=0.
• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =0 and

FifoRxRD.READ=62.
• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =1 and

FifoRxRD.READ=63.
• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =5 and

FifoRxRD.READ=3.

When a byte has been successfully received and stored, the write pointer (FifoRxWR.WRITE) is auto-
matically incremented, taking wrap around effects of the circular buffer into account.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

60

GAISLER

5.5.3 Location

The location of the circular buffer is defined by a base address (FifoRxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

5.5.4 Reception procedure

When the channel is enabled (FifoRxCTRL.ENABLE=1), and there is space available for data in the
circular buffer (as defined by the write and read pointer), a read access will be started towards the
FIFO, and then an AMBA AHB store access will be started. The received data will be temporarily
stored in a local store-buffer in the FIFO controller. Note that the channel should not be enabled until
the write and read pointers are configured, to avoid the data reception to start prematurely
After a datum has been successfully stored the FIFO controller is ready to receive new data. The write
pointer (FifoRxWR.WRITE) is automatically incremented, taking wrap around effects of the circular
buffer into account.
Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the RxError, RxParity, RxFull and RxIrq which are issued on the unsuccessful
reception of data due to an AMBA AHB error or parity error, when the buffer has been successfully
filled and when a predefined number of data have been received successfully.
All accesses to the AMBA AHB bus are performed as two consecutive 32-bit accesses in a burst, or as
a single 32-bit access in case of an AMBA AHB bus error.

5.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (FifoRxADDR.ADDR) field.
While the channel is disabled, the write pointer (FifoRxWR.WRITE) can be changed to an arbitrary
value pointing to the first data to be received, and the read pointer (FifoRxRD.READ) can be changed
to an arbitrary value.
When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.

5.5.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while data is being stored will result in an
RxError interrupt.
If the FifoCONF.ABORT bit is set to 0b, the channel causing the AHB error will retry to store the
received data till successful
If the FifoCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (FifoRx-
CTRL.ENABLE is cleared automatically to 0b). The write pointer can be used to determine which
address caused the AHB error. The interface will not start any new read accesses to the FIFO. Any
ongoing FIFO access will be completed and the data will be stored in the local receive buffer. The
FifoRxSTAT.ONGOING bit will be cleared. When the receive channel is re-enabled, the reception and
storage of data will resume at the position where it was disabled, without losing any data.

5.5.7 Enable and disable

When an enabled receive channel is disabled (FifoRxCTRL.ENABLE=0b), any ongoing data storage
on the AHB bus will not be aborted, and no new storage will be started. If the data is stored success-
fully, the write pointer (FifoRxWR.WRITE) is automatically incremented. Any associated interrupts
will be generated. The interface will not start any new read accesses to the FIFO. Any ongoing FIFO
access will be completed.
The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No data reception is performed while the channel is not enabled.
The progress of the any ongoing access can be observed via the FifoRxSTAT.ONGOING bit. Note that
the there might be data left in the local store-buffer in the FIFO controller. This can be observed via the
FifoRxSTAT.RxByteCntr field. The data will not be lost if the channel is not reconfigured before re-
enabled.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

61

GAISLER

To empty this data from the local store-buffer to the external memory, the channel needs to be ren-
abled. By setting the FifoRxIRQ.IRQ field to match the value of the FifoRxWR.WRITE field plus the
value of the FifoRxSTAT.RxByteCntr field, an emptying to the external memory is forced of any data
temporarily stored in the local store-buffer. Note however that additional data could be received in the
local store-buffer when the channel is re-enabled.
The FifoRxSTAT.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers).

5.5.8 Interrupts

During reception several interrupts can be generated:
• RxFull: Successful reception of all data possible to store in buffer
• RxIrq: Successful reception of a predefined number of data
• RxError: AHB access error during reception
• RxParity: Parity error during reception

The RxFull and RxIrq interrupts are only generated as the result of a successful data reception, after
the FifoRxWR.WRITE pointer has been incremented.

5.6 Operation

5.6.1 Global reset and enable

When the FifoCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing data transfers will be aborted.

5.6.2 Interrupt

Seven interrupts are implemented by the FIFO interface:
Name: Description:
TxIrq Successful transmission of block of data
TxEmpty Circular transmission buffer empty
TxError AMBA AHB access error during transmission
RxIrq Successful reception of block of data
RxFull Circular reception buffer full
RxError AMBA AHB access error during reception
RxParity Parity error during reception

5.6.3 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x35.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

62

GAISLER

5.7 Registers

The GRFIFO is programmed through registers mapped into APB address space. Any blank register is
considered as reserved and has no effect when writen to, and returns undefined data when read.

TABLE 16. GRFIFO registers

Register Address
Configuration Register 0x80050000
Control Register 0x80050008
Transmit Channel Control Register 0x80050020
Transmit Channel Status Register 0x80050024
Transmit Channel Address Register 0x80050028
Transmit Channel Size Register 0x8005002C
Transmit Channel Write Register 0x80050030
Transmit Channel Read Register 0x80050034
Transmit Channel Interrupt Register 0x80050038
Receive Channel Control Register 0x80050040
Receive Channel Status Register 0x80050044
Receive Channel Address Register 0x80050048
Receive Channel Size Register 0x8005004C
Receive Channel Write Register 0x80050050
Receive Channel Read Register 0x80050054
Receive Channel Interrupt Register 0x80050058
Data Input Register 0x80050060
Data Output Register 0x80050064
Data Direction Register 0x80050068
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

63

GAISLER

5.7.1 Configuration Register [FifoCONF] R/W

Field: Description:
31:7 RESERVED No affect when written to. Undefined when read.
6: ABORT Abort transfer on AHB ERROR
5-4: DW Data width:

00b = none
01b = 8 bitFIFOO.Dout[7:0],

FIFOI.Din[7:0]
10b = 16 bitFIFOO.Dout[15:0]

FIFOI.Din[15:0]
11b = spare/none

3: PARITY Parity type:
0b = even
1b = odd

2-0: WS Number of wait states, 0 to 7

All bits are cleared to 0 at reset.
Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses on the affected channel will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the affected
channel is re-enabled setting the FifoTxCTRL.ENABLE or FifoRxCTRL.ENABLE bit, respectively.
Note that a wait states corresponds to an additional clock cycle added to the period when the read or
write strobe is asserted. The default asserted width is one clock period for the read or write strobe when
WS=0. Note that an idle gap of one clock cycle is always inserted between read and write accesses,
with neither the read nor the write strobe being asserted.
Note that an additional gap of one clock cycle with the read or write strobe de-asserted is inserted
between two accesses when WS is equal to or larger than 100b.

5.7.2 Control Register [FifoCTRL] R/W

31:2: RESERVED No affect when written to. Undefined when read.
1: RESET Reset complete FIFO interface, all registers
0: RESERVED No affect when written to. Undefined when read.

All bits are cleared to 0 at reset.
Note that RESET is read back as 0b.

TABLE 17. Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Abor
t

DW Par-
ity

WS

TABLE 18. Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res
et
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

64

GAISLER

5.7.3 Transmit Channel Control Register [FifoTxCTRL] R/W

31:1: RESERVED No affect when written to. Undefined when read.
0: ENABLE Enable channel

All bits are cleared to 0 at reset.
Note that in the case of an AHB bus error during an access while fetching transmit data, and the Fifo-
Conf.ABORT bit is 1b, then the ENABLE bit will be reset automatically.
At the time the ENABLE is cleared to 0b, any ongoing data writes to the FIFO are not aborted.

5.7.4 Transmit Channel Status Register [FifoTxSTAT] R

31:7: RESERVED No affect when written to. Undefined when read.
6: TxOnGoing Access ongoing
5: RESERVED No affect when written to. Undefined when read.
4: TxIrq Successful transmission of block of data
3: TxEmpty Transmission buffer has been emptied
2: TxError AMB AHB access error during transmission
1: FF FIFO Full Flag
0: HF FIFO Half-Full Flag

All bits are cleared to 0 at reset.
The following sticky status bits are cleared when the register has been read:
• TxIrq, TxEmpty and TxError.

5.7.5 Transmit Channel Address Register[FifoTxADDR] R/W

31-10: ADDR Base address for circular buffer
9:0 RESERVED No affect when written to. Undefined when read.

All bits are cleared to 0 at reset.

TABLE 19. Transmit Channel Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ena
ble

TABLE 20. Transmit Channel Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxO
nGo-
ing

TxIrq TxE
mpty

TxEr
ror

FF HF

TABLE 21. Transmit Channel Address Register

31 10 9 0

ADDR
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

65

GAISLER

5.7.6 Transmit Channel Size Register [FifoTxSIZE] R/W

31-17: RESERVED No affect when written to. Undefined when read.
16-6: SIZE Size of circular buffer, in number of 64 byte blocks
5-0: RESERVED No affect when written to. Undefined when read.

All bits are cleared to 0 at reset.
Valid SIZE values are 0, and between 1 and 1024. Note that the resulting behavior of invalid SIZE val-
ues is undefined.
Note that only SIZE*64-4 bytes can be stored simultaneously in the buffer. This is to simplify wrap-
around condition checking.

5.7.7 Transmit Channel Write Register[FifoTxWR] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: WRITE Pointer to last written byte + 1

All bits are cleared to 0 at reset.
The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last byte to
transmit.
Note that it is not possible to fill the buffer. There is always one word position in buffer unused. Soft-
ware is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).
Note that the LSB may be ignored for 16-bit wide FIFO devices.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

5.7.8 Transmit Channel Read Register [FifoTxRD] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: READ Pointer to last read byte + 1

All bits are cleared to 0 at reset.
The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last byte transmitted.
Note that the READ field can be used to read out the progress of a transfer.
Note that the READ field can be written to in order to set up the starting point of a transfer. This should
only be done while the transmit channel is not enabled.

TABLE 22. Transmit Channel Size Register

31 17 16 6 5 0

SIZE

TABLE 23. Transmit Channel Write Register

31 16 15 0

WRITE

TABLE 24. Transmit Channel Read Register

31 16 15 0

READ
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

66

GAISLER

Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until completed.
Note that the LSB may be ignored for 16-bit wide FIFO devices.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

5.7.9 Transmit Channel Interrupt Register[FifoTxIRQ] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: IRQ Pointer+1 to a byte address from which the read of transmitted data shall result in

an interrupt
All bits are cleared to 0 at reset.
Note that this indicates that a programmed amount of data has been sent. Note that the LSB may be
ignored for 16-bit wide FIFO devices.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

5.7.10 Receive Channel Control Register [FifoRxCTRL] R/W

31-1: RESERVED No affect when written to. Undefined when read.
0: ENABLE Enable channel

All bits are cleared to 0 at reset.
Note that in the case an AHB bus error occurs during an access while storing receive data, and the
FifoConf.ABORT bit is 1b, then the ENABLE bit will be reset automatically.
At the time the ENABLE is cleared to 0b, any ongoing data reads from the FIFO are not aborted.

5.7.11 Receive Channel Status Register [FifoRxSTAT] R

31-11: RESERVED No affect when written to. Undefined when read.
10-8: RxByteCntr Number of bytes in local buffer
6: RxOnGoing Access ongoing
5: RxParity Parity error during reception
4: RxIrq Successful reception of block of data
3: RxFull Reception buffer has been filled
2: RxError AMB AHB access error during reception
1: EF FIFO Empty Flag
0: HF FIFO Half-Full Flag

TABLE 25. Transmit Channel Interrupt Register

31 16 15 0

IRQ

TABLE 26. Receive Channel Control Register

31 2 1 0

Ena
ble

TABLE 27. Receive Channel Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxByteCntr RxO
nGo-
ing

RxP
arity

RxIr
q

RxF
ull

RxEr
ror

EF HF
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

67

GAISLER

All bits are cleared to 0 at reset.
The following sticky status bits are cleared when the register has been read:
• RxParity, RxIrq, RxFull and RxError.

The circular buffer is considered as full when there are two words or less left in the buffer.

5.7.12 Receive Channel Address Register[FifoRxADDR] R/W

31-10: ADDR Base address for circular buffer
9-0: RESERVED No affect when written to. Undefined when read.

All bits are cleared to 0 at reset.

5.7.13 Receive Channel Size Register [FifoRxSIZE] R/W

31-17: RESERVED No affect when written to. Undefined when read.
16-6: SIZE Size of circular buffer, in number of 64 byte blocks
5-0: RESERVED No affect when written to. Undefined when read.

All bits are cleared to 0 at reset.
Valid SIZE values are 0, and between 1 and 1024. Note that the resulting behavior of invalid SIZE val-
ues is undefined.
Note that only SIZE*64-8 bytes can be stored simultaneously in the buffer. This is to simplify wrap-
around condition checking.

5.7.14 Receive Channel Write Register[FifoRxWR] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: WRITE Pointer to last written byte +1

All bits are cleared to 0 at reset.
The field is implemented as relative to the buffer base address (scaled with SIZE field).
The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last byte received.
Note that the WRITE field can be used to read out the progress of a transfer.
Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.
Note that the LSB may be ignored for 16-bit wide FIFO devices.

TABLE 28. Receive Channel Address Register

31 10 9 0

ADDR

TABLE 29. Receive Channel Size Register

31 17 16 6 5 0

SIZE

TABLE 30. Receive Channel Write Register

31 16 15 0

WRITE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

68

GAISLER

Co
5.7.15 Receive Channel Read Register [FifoRxRD] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: READ Pointer to last read byte +1

All bits are cleared to 0 at reset.
The field is implemented as relative to the buffer base address (scaled with SIZE field).
The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last byte that has been read out.
Note that it is not possible to fill the buffer. There are always at least two word positions unused in
the buffer. Software is responsible for not over-reading the buffer on wrap around (i.e. setting
WRITE=READ).
Note that the LSB may be ignored for 16-bit wide FIFO devices

5.7.16 Receive Channel Interrupt Register[FifoRxIRQ] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: IRQ Pointer+1 to a byte address to which the write of received data shall result in

an interrupt

All bits are cleared to 0 at reset.
Note that this indicates that a programmed amount of data has been received.
The field is implemented as relative to the buffer base address (scaled with SIZE field).
Note that the LSB may be ignored for 16-bit wide FIFO devices.
Note that by setting the IRQ field to match the value of the Receive Channel Write Regis-
ter.WRITE field plus the value of the Receive Channel Status Register.RxByteCntr field, an emp-
tying to the external memory is forced of any data temporarily stored in the local buffer.

TABLE 31. Receive Channel Read Register

31 16 15 0

READ

TABLE 32. Receive Channel Interrupt Register

31 16 15 0

IRQ
pyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

69

GAISLER

5.7.17 Data Input Register [FifoDIN] R

31-16: RESERVED No affect when written to. Undefined when read.
15-0: DIN Input data FIFOI.Din[15:0]

All bits are cleared to 0 at reset.
Note that only the part of FIFOI.Din[15:0] not used by the FIFO can be used as general purpose input
output, see FifoCONF.DW.
Note that only bits dwidth-1 to 0 are implemented.

5.7.18 Data Output Register [FifoDOUT] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: DOUT Output data FIFOO.Dout[15:0]

All bits are cleared to 0 at reset.
Note that only the part of FIFOO.Dout[15:0] not used by the FIFO can be used as general purpose
input output, see FifoCONF.DW.
Note that only bits dwidth-1 to 0 are implemented.

5.7.19 Data Register [FifoDDIR] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: DDIR Direction: FIFOO.Dout[15:0]

0b = input = high impedance,
1b = output = driven

All bits are cleared to 0 at reset.
Note that only the part of FIFOO.Dout[15:0] not used by the FIFO can be used as general purpose
input output, see FifoCONF.DW.
Note that only bits dwidth-1 to 0 are implemented.

TABLE 33. Data Input Register

31 16 15 0

DIN

TABLE 34. Data Output Register

31 16 15 0

DOUT

TABLE 35. Data Direction Register

31 16 15 0

DDIR
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

70

GAISLER

6 ADC / DAC INTERFACE

6.1 Overview

The block diagram shows a partitioning of the combined analogue-to-digital converter (ADC) and dig-
ital-to-analogue converter (DAC) interface.
The combined analogue-to-digital converter (ADC) and digital-to-analogue converter (DAC) interface
is assumed to operate in an AMBA bus system where an APB bus is present. The AMBA APB bus is
used for data access, control and status handling.
The ADC/DAC interface provides a combined signal interface to parallel ADC and DAC devices. The
two interfaces are merged both at the pin/pad level as well as at the interface towards the AMBA bus.
The interface supports simultaneously one ADC device and one DAC device in parallel.
Address and data signals unused by the ADC and the DAC can be used for general purpose input out-
put, providing 0, 8, 16 or 24 channels.
The ADC interface supports 8 and 16 bit data widths. It provides chip select, read/convert and ready
signals. The timing is programmable. It also provides an 8-bit address output. The ADC conversion
can be initiated either via the AMBA interface or by internal or external triggers. An interrupt is gener-
ated when a conversion is completed.
The DAC interface supports 8 and 16 bit data widths. It provides a write strobe signal. The timing is
programmable. It also provides an 8-bit address output. The DAC conversion is initiated via the
AMBA interface. An interrupt is generated when a conversion is completed.

6.1.1 Function

The core implements the following functions:
• ADC interface conversion:
• ready feed-back, or
• timed open-loop
• DAC interface conversion:
• timed open-loop
• General purpose input output:

Figure 63. Block diagram of the GRADCDAC environment
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

71

GAISLER

• unused data bus, and
• unused address bus
• Status and monitoring:
• on-going conversion
• completed conversion
• timed-out conversion

Note that it is not possible to perform ADC and DAC conversions simultaneously. On only one con-
version can be performed at a time.

6.1.2 Interfaces

The core provides the following external and internal interfaces:
• Combined ADC/DAC interface
• programmable timing
• programmable signal polarity
• programmable conversion modes
• AMBA APB slave interface

The ADC interface is intended for amongst others the following devices:
Name: Width: Type:
AD574 12-bit R/C*, CE, CS*, RDY*, tri-state
AD674 12-bit R/C*, CE, CS*, RDY*, tri-state
AD774 12-bit R/C*, CE, CS*, RDY*, tri-state
AD670 8-bit R/W*, CE*, CS*, RDY, tri-state
AD571 10-bit Blank/Convert*, RDY*, tri-state
AD1671 12-bit Encode, RDY*, non-tri-state
LTC1414 14-bit Convert*, RDY, non-tri-state

The DAC interface is intended for amongst others the following devices:
 Name: Width: Type:

AD561 10-bit Parallel-Data-in-Analogue-out
AD565 12-bit Parallel-Data-in-Analogue-out
AD667 12-bit Parallel-Data-in-Analogue-out, CS*
AD767 12-bit Parallel-Data-in-Analogue-out, CS*
DAC08 8-bit Parallel-Data-in-Analogue-out

6.2 Operation

6.2.1 Interfaces

The internal interface on the on-chip bus towards the core is a common AMBA APB slave for data
access, configuration and status monitoring, used by both the ADC interface and the DAC interface.

The ADC address output and the DAC address output signals are shared on the external interface. The
address signals are possible to use as general purpose input output channels. This is only realized when
the address signals are not used by either ADC or DAC.
The ADC data input and the DAC data output signals are shared on the external interface. The data
input and output signals are possible to use as general purpose input output channels. This is only real-
ized when the data signals are not used by either ADC or DAC.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

72

GAISLER

Each general purpose input output channel shall be individually programmed as input or output. This
applies to both the address bus and the data bus. The default reset configuration for each general pur-
pose input output channel is as input. The default reset value each general purpose input output chan-
nel is logical zero.
Note that protection toward spurious pulse commands during power up shall be mitigated as far as pos-
sible by means of I/O cell selection from the target technology.

6.2.2 Analogue to digital conversion

The ADC interface supports 8 and 16 bit wide input data.
The ADC interface provides an 8-bit address output, shared with the DAC interface. Note that the
address timing is independent of the acquisition timing.

The ADC interface shall provide the following control signals:
• Chip Select
• Read/Convert
• Ready

The timing of the control signals is made up of two phases:
• Start Conversion
• Read Result

The Start Conversion phase is initiated by one of the following sources, provided that no other conver-
sion is ongoing:
• Event on one of three separate trigger inputs
• Write access to the AMBA APB slave interface

Note that the trigger inputs can be connected to internal or external sources to the ASIC incorporating
the core. Note that any of the trigger inputs can be connected to a timer to facilitate cyclic acquisition.
The selection of the trigger source is programmable. The trigger inputs is programmable in terms of:
Rising edge or Falling edge. Triggering events are ignored if ADC or DAC conversion is in progress.
The transition between the two phases is controlled by the Ready signal. The Ready input signal is pro-
grammable in terms of: Rising edge or Falling edge. The Ready input signaling is protected by means
of a programmable time-out period, to assure that every conversion terminates. It is also possible to
perform an ADC conversion without the use of the Ready signal, by means of a programmable conver-
sion time duration. This can be seen as an open-loop conversion.
The Chip Select output signal is programmable in terms of:
• Polarity
• Number of assertions during a conversion, either
• Pulsed once during Start Conversion phase only,
• Pulsed once during Start Conversion phase and once during Read Result phase, or
• Asserted at the beginning of the Start Conversion phase and de-asserted at the end of the Read

Result phase

The duration of the asserted period is programmable, in terms of system clock periods, for the Chip
Select signal when pulsed in either of two phases.
The Read/Convert signal is de-asserted during the Start Conversion phase, and asserted during the
Read Result phase.

The Read/Convert output signal is programmable in terms of: Polarity. The setup timing from Read/
Convert signal being asserted till the Chip Select signal is asserted is programmable, in terms of sys-
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

73

GAISLER

tem clock periods. Note that the programming of Chip Select and Read/Convert timing is implemented
as a common parameter.
At the end of the Read Result phase, an interrupt is generated, indicating that data is ready for readout
via the AMBA APB slave interface. The status of an on-going conversion is possible to read out via
the AMBA APB slave interface. The result of a conversion is read out via the AMBA APB slave inter-
face. Note that this is independent of what trigger started the conversion.
An ADC conversion is non-interruptible. It is possible to perform at least 1000 conversions per sec-
ond.

6.2.3 Digital to analogue conversion

The DAC interface supports 8 and 16 bit wide output data. The data output signal is driven during the
conversion and is placed in high impedance state after the conversion.
The DAC interface provides an 8-bit address output, shared with the ADC interface. Note that the
address timing is independent of the acquisition timing.
The DAC interface provides the following control signal: Write Strobe. Note that the Write Strobe sig-
nal can also be used as a chip select signal. The Write Strobe output signal is programmable in terms
of: Polarity. The Write Strobe signal is asserted during the conversion. The duration of the asserted
period of the Write Strobe is programmable in terms of system clock periods.
At the end the conversion, an interrupt is generated. The status of an on-going conversion is possible to
read out via the AMBA APB slave interface. A DAC conversion is non-interruptible.

ADCs

ADRc

ADTrig

ADRdy

ADData

ADAddr

SysClk

WS WS

Start conversion

WS WS

Read result

Sample dataSettings: RCPOL=0
CSPOL=0
RDYPOL=1
TRIGPOL=1
RDYMODE=1
CSMODE=00
ADCWS=0

Figure 64. Analogue to digital conversion waveform, 0 wait states (WS)
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

74

GAISLER

6.2.4 Interrupt

Two interrupts are implemented by the ADC/DAC interface:
Name: Description:
ADC ADC conversion ready
DAC DAC conversion ready

6.2.5 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x36.

6.3 Registers

The GRADCDAC is programmed through registers mapped into APB address space.

Any blank register is considered as reserved and has no effect when writen to, and returns undefined
data when read.

TABLE 36. GRADCDAC registers

Register Address
Configuration Register 0x80040000
Status Register 0x80040004
ADC Data Input Register 0x80040010
DAC Data Output Register 0x80040014
Address Input Register 0x80040020
Address Output Register 0x80040024
Address Direction Register 0x80040028
Data Input Register 0x80040030
Data Output Register 0x80040034
Data Direction Register 0x80040038

ADWr

ADData

ADAddr

SysClk

WS WS

Conversion

Settings: WRPOL=0
DACWS=0

Figure 65. Digital to analogue conversion waveform, 0 wait states (WS)

WS
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

75

GAISLER

6.3.1 Configuration Register [ADCONF] R/W

31-24: RESERVED No affect when written to. Undefined when read.
23-19: DACWS Number of DAC wait states, 0 to 31 [5 bits]
18: WRPOL Polarity of DAC write strobe:

0b = active low
1b = active high

17-16: DACDW DAC data width
00b = none
01b = 8 bitADData[7:0]
10b = 16 bitADData[15:0]
11b = none/spare

15-11: ADCWS Number of ADC wait states, 0 to 31 [5 bits]
10: RCPOL Polarity of ADC read convert:

0b = active low read
1b = active high read

9-8: CSMODE Mode of ADC chip select:
00b = asserted during conversion and read phases
01b = asserted during conversion phase
10b = asserted during read phase
11b = asserted continuously during both phases

7: CSPOL Polarity of ADC chip select:
0b = active low
1b = active high

6: RDYMODE:Mode of ADC ready:
0b = unused, i.e. open-loop
1b = used, with time-out

5: RDYPOL Polarity of ADC ready:
0b = falling edge
1b = rising edge

4: TRIGPOL Polarity of ADC triggers:
0b = falling edge
1b = rising edge

3-2: TRIGMODE ADC trigger source:
00b = none
01b = ADTrig
10b = 32-bit Timer 1
11b = 32-bit Timer 2

1-0: ADCDW ADC data width:
00b = none

TABLE 37. Configuration register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DACWS WR
POL

DACDW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCWS RCP
OL

CSMODE CSP
OL

RDY
MO
DE

RDY
POL

TRI
GPO
L

TRIGMODE ADCDW
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

76

GAISLER

01b = 8 bitADData[7:0]
10b = 16 bitADData[15:0]
11b = none/spare

The ADCDW field defines what part of ADData[15:0] is read by the ADC. The DACDW field defines
what part of ADData[15:0] is written by the DAC. Parts of the data input/output signals used neither
by ADC nor by DAC are available for the general purpose input output functionality.Note that an ADC
conversion can be initiated by means of a write access via the AMBA APB slave interface, thus not
requiring an explicit ADC trigger source setting.

The ADCONF.ADCWS field defines the number of system clock periods, ranging from 1 to 32, for the
following timing relationships between the ADC control signals:
• ADRC stable before ADCS period
• ADCS asserted period, when pulsed
• ADTrig[2:0] event until ADCS asserted period
• Time-out period for ADRdy: 2048 * (1+ADCONF.ADCWS)
• Open-loop conversion timing: 512 * (1+ADCONF.ADCWS)

The ADCONF.DACWS field defines the number of system clock periods, ranging from 1 to 32, for the
following timing relationships between the DAC control signals:
• ADData[15:0] stable before ADWR period
• ADWR asserted period
• ADData[15:0] stable after ADWR period

6.3.2 Status Register [ADSTAT] R

31-7: RESERVED No affect when written to. Undefined when read.
6: DACNO DAC conversion request rejected (due to ongoing DAC or ADC conversion)
5: DACRDY DAC conversion completed
4: DACON DAC conversion ongoing
3: ADCTO ADC conversion timeout
2: ADCNO ADC conversion request rejected (due to ongoing ADC or DAC conversion)
1: ADCRDY ADC conversion completed
0: ADCON ADC conversion ongoing

When the register is read, the following sticky bit fields are cleared:
• DACNO, DACRDY,
• ADCTO, ADCNO, and ADCRDY.

Note that the status bits can be used for monitoring the progress of a conversion or to ascertain that the
interface is free for usage.

TABLE 38. Status register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DAC
NO

DAC
RDY

DAC
ON

ADC
TO

ADC
NO

ADC
RDY

ADC
ON
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

77

GAISLER

6.3.3 ADC Data Input Register [ADIN] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: ADCIN ADC input data ADData[15:0]

A write access to the register initiates an analogue to digital conversion, provided that no other ADC or
DAC conversion is ongoing (otherwise the request is rejected).
A read access that occurs before an ADC conversion has been completed returns the result from a pre-
vious conversion.
Note that any data can be written and that it cannot be read back, since not relevant to the initiation of
the conversion.
Note that only the part of ADData[15:0] that is specified by means of bit ADCONF.ADCDW is used
by the ADC. The rest of the bits are read as zeros.
Note that only bits 15 to 0 are implemented.

6.3.4 DAC Data Output Register [ADOUT] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: DACOUT DAC output data ADData[15:0]

A write access to the register initiates a digital to analogue conversion, provided that no other DAC or
ADC conversion is ongoing (otherwise the request is rejected).
Note that only the part of ADData[15:0] that is specified by means of ADCONF.DACDW is driven by
the DAC. The rest of the bits are not driven by the DAC during a conversion.
Note that only the part of ADData[15:0] which is specified by means of ADCONF.DACDW can be
read back, whilst the rest of the bits are read as zeros.
Note that only bits 15 to 0 are implemented.

TABLE 39. ADC Data Input Register

31 16 15 0

ADCIN

TABLE 40. DAC Data Output Register

31 16 15 0

DACOUT
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

78

GAISLER

6.3.5 Address Input Register [ADAIN] R

31-8: RESERVED No affect when written to. Undefined when read.
7-0: AIN Input address ADAddr[7:0]

All bits are cleared to 0 at reset.
Note that only bits 7 to 0 are implemented.

6.3.6 Address Output Register [ADAOUT] R/W

31-8: RESERVED No affect when written to. Undefined when read.
7-0: AOUT Output address ADAddr[7:0]

All bits are cleared to 0 at reset.
Note that only bits 7 to 0 are implemented.

6.3.7 Address Direction Register [ADADIR] R/W

31-8: RESERVED No affect when written to. Undefined when read.
7-0: ADIR Direction: ADAddr[7:0]

0b = input = high impedance,
1b = output = driven

All bits are cleared to 0 at reset.
Note that only bits 7 to 0 are implemented.

TABLE 41. Address Input Register

31 8 7 0

AIN

TABLE 42. Address Output Register

31 8 7 0

AOUT

TABLE 43. Address Direction Register

31 8 7 0

ADIR
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

79

GAISLER

6.3.8 Data Input Register [ADDIN] R

31-16: RESERVED No affect when written to. Undefined when read.
15-0: DIN Input data ADData[15:0]

All bits are cleared to 0 at reset.
Note that only the part of ADData[15:0] not used by the ADC can be used as general purpose input
output, see ADCONF.ADCDW.
Note that only bits 15 to 0 are implemented.

6.3.9 Data Output Register [ADDOUT] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: DOUT Output data ADData[15:0]

All bits are cleared to 0 at reset.
Note that only the part of ADData[15:0] neither used by the DAC nor the ADC can be used as gen-
eral purpose input output, see ADCONF.DACDW and ADCONF. ADCDW.
Note that only bits 15 to 0 are implemented.

6.3.10 Data Register [ADDDIR] R/W

31-16: RESERVED No affect when written to. Undefined when read.
15-0: DDIR Direction: ADData[15:0]

0b = input = high impedance,
1b = output = driven

All bits are cleared to 0 at reset.
Note that only the part of ADData[15:0] not used by the DAC can be used as general purpose input
output, see ADCONF.DACDW.
Note that only bits 15 to 0 are implemented.

TABLE 44. Data Input Register

31 16 15 0

DIN

TABLE 45. Data Output Register

31 16 15 0

DOUT

TABLE 46. Data Direction Register

31 16 15 0

DDIR
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

80

GAISLER

7 32-BIT TIMERS

7.1 Overview

The Modular Timer Unit implements one prescaler and two decrementing timers. The unit is capable
of asserting interrupt on when timer(s) underflow. Interrupt is configured to be separate for each timer.

7.2 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the prescaler
underflows, it is reloaded from the prescaler reload register and a timer tick is generated. Timers share
the decrementer to save area.
The operation of each timers is controlled through its control register. A timer is enabled by setting the
enable bit in the control register. The timer value is then decremented on each prescaler tick. When a
timer underflows, it will automatically be reloaded with the value of the corresponding timer reload
register if the restart bit in the control register is set, otherwise it will stop at -1 and reset the enable bit.
Since configured to signal interrupt for each timer the timer unit will signal an interrupt on appropriate
line when a timer underflows (if the interrupt enable bit for the current timer is set). The interrupt
pending bit in the control register of the underflown timer will be set and remain set until cleared by
writing ‘0’.
To minimize complexity, timers share the same decrementer. This means that the minimum allowed
prescaler division factor is 3 (reload register = 2) where 2 is the number of implemented timers.
By setting the chain bit in the control register timer n can be chained with preceding timer n-1. Decre-
menting timer n will start when timer n-1 underflows.
Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register.

7.3 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x38.

Figure 66. General Purpose Timer Unit block diagram

prescaler reload

-1

prescaler value timer 1 value

timer 2 value

timer 1 reload

timer 2 reload

-1

tick

pirq

pirq+1
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

81

GAISLER

7.4 Registers

Table 47 shows the timer unit registers. The number of implemented registers depend on number of
implemented timers.

Figures 67 to 72 shows the layout of the timer unit registers. Any blank register is considered as
reserved and has no effect when writen to, and returns undefined data when read.

[31:10] - Reserved. No effect when written to. Undefined when read.

[31:10] - Reserved. No effect when written to. Undefined when read.

[31:12] - Reserved. No effect when written to. Undefined when read.

TABLE 47. GRTIMER unit registers

Register Address
Scaler value 0x80030000
Scaler reload value 0x80030004
Configuration register 0x80030008
Timer latch configuration register 0x8003000C
Timer 1 counter value register 0x80030010
Timer 1 reload value register 0x80030014
Timer 1 control register 0x80030018
Timer 1 latch register 0x8003001C
Timer 2 counter value register 0x80030020
Timer 2 reload value register 0x80030024
Timer 2 control register 0x80030028
Timer 2 latch register 0x8003002C

Figure 67. Scaler value

091031
“000...0” SCALER Value

Figure 68. Scaler reload value

091031
“000...0” SCALER Reload Value

Figure 69. GRTIMER Configuration register

031

“000...0” IRQ
2378

TIMERS

9

SIDFEEEL

1011
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

82

GAISLER

[11] - Enable latching (EL). If set, on the next matching interrupt, the latches will be loaded with the
corresponding timer values. The bit is then automatically cleared, not to load a timer value until set
again.

[10] - Enable external clock source (EE). If set the prescaler is clocked from the external clock source.
[9] - Disable timer freeze (DF). If set the timer unit cannot be freezed, otherwise DSU freezes the timer

unit.
[8] - Separate interrupts (SI). Reads ‘1’ if the timer unit generates separate interrupts for each timer,

otherwise ‘0’. Read-only.
[7:3] - APB Interrupt: Timer n will drive APB Interrupt IRQ+n. Read-only.
[2:0] - Number of implemented timers. Read-only.

[31:0] - Timer Counter value. Decremented by 1 for each prescaler tick.

[31:0] - Timer Reload value. This value is loaded into the timer counter value register when ‘1’ is written
to load bit in the timers control register.

[31:7] - Reserved. No effect when written to. Undefined when read.
[6] - Debug Halt (DH): Value of GPTI.DHALT signal which is used to freeze counters (e.g. when a system

is in debug mode). Read-only.
[5] - Chain (CH): Chain with preceding timer. If set for timer n, decrementing timer n begins when timer

(n-1) underflows.
[4] - Interrupt Pending (IP): Sets when an interrupt is signalled. Remains ‘1’ until cleared by writing ‘0’

to this bit.
[3] - Interrupt Enable (IE): If set the timer signals interrupt when it underflows.
[2] - Load (LD): Load value from the timer reload register to the timer counter value register.
[1] - Restart (RS): If set the value from the timer reload register is loaded to the timer counter value

register and decrementing the timer is restarted.
[0] - Enable (EN): Enable the timer.

Figure 70. Timer counter value registers

031
TIMER COUNTER VALUE

Figure 71. Timer reload value registers

031
TIMER RELOAD VALUE

Figure 72. Timer control registers

031

“000...0” EN

1

RS

2

LD

3

IE

4

IP

5

CH

6

DH

7

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

83

GAISLER

[31:0] - Specifies what bits of the AMBA APB interrupt bus shall cause the Timer Latch Register to latch
the timer values.

[31:0] - Latched Timer Counter Value (LTCV). Value latch from corresponding timer

Figure 73. Timer latch configuration register

031
SELECT

Figure 74. Timer latch register

031
LTCV
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

84

GAISLER

8 24-BIT GENERAL PURPOSE INPUT OUTPUT

8.1 Overview

The General Purpose Input Output interface is assumed to operate in an AMBA bus system where the
APB bus is present. The AMBA APB bus is used for control and status handling. The General Purpose
Input Output interface provides a configurable number of channels. Each channel is individually pro-
grammed as input or output. Additionally, a configurable number of the channels are also programma-
ble as pulse command outputs. The default reset configuration for each channel is as input. The default
reset value each channel is logical zero.
The pulse command outputs have a common counter for establishing the pulse command length. The
pulse command length defines the logical one (active) part of the pulse. It is possible to select which of
the channels shall generate a pulse command. The pulse command outputs are generated simulta-
neously in phase with each other, and with the same length (or duration). It is not possible to generate
pulse commands out of phase with each other. Each channel can generate a separate internal interrupt.
The interrupt are individually programmed as enabled or disabled, as active high or low level sensitive,
or as rising or falling edge sensitive.

8.1.1 Function

The core implements the following functions:
• Input and input interrupts
• Output and output pulse commands
• Status and monitoring

8.1.2 Interfaces

The core provides the following external and internal interfaces:
• Discrete input and output interface
• AMBA APB slave interface, with sideband signals as per [GRLIB] including:
• interrupt bus
• configuration information
• diagnostic information

8.1.3 Vendor and device id

• The module has vendor id 0x01 (Gaisler Research) and device id 0x37.

8.2 Registers

The GRPULSE is programmed through registers mapped into APB address space.

Any blank register is considered as reserved and has no effect when writen to, and returns undefined
data when read.

TABLE 48. GRPULSE registers

Register Address
Input Register 0x80020000
Output Register 0x80020004
Direction Register 0x80020008
Interrupt Mask Register 0x8002000C
Interrupt Polarity Register 0x80020010
Interrupt Edge Register 0x80020014
Pulse Register 0x80020018
Pulse Counter Register 0x8002001C
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

85

GAISLER

8.2.1 Input Register [GpioIN] R

31-24: Reserved. No effect when written to. Undefined when read.
23-0: (IN)- Input Data

Note that only bits 23 to 0 are implemented.

8.2.2 Output Register [GpioOUT] R/W

31-24: Reserved. No effect when written to. Undefined when read.
23-0: OUT Output Data

All bits are cleared to 0 at reset.
Note that only bits 23 to 0 are implemented.

8.2.3 Direction Register [GpioDIR] R/W

31-24: Reserved. No effect when written to. Undefined when read.
23-0: DIR Direction:

0b=input,
1b=output

All bits are cleared to 0 at reset.
Note that only bits 23 to 0 are implemented.

8.2.4 Pulse Register [GpioPULSE] R/W

31-24: Reserved. No effect when written to. Undefined when read.
23-0: PULSE Pulse enable:

0b=output,
1b=pulse command output

All bits are cleared to 0 at reset.
Only channels configured as outputs are possible to enable as command pulse outputs.
Note that only bits 7 to 0 are implemented.

TABLE 49. Input Register

31 24 23 0

IN

TABLE 50. Output Register

31 24 23 0

OUT

TABLE 51. Direction Register

31 24 23 0

DIR

TABLE 52. Pulse Register

31 8 7 0

PULSE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

86

GAISLER

8.2.5 Pulse Counter Register [GpioCNTR] R/W

31-24: Reserved. No effect when written to. Undefined when read.
23-0: CNTR Pulse counter value

All bits are cleared to 0 at reset.
The pulse counter is decremented each clock period, and does not wrap after reaching zero.
Command pulse channels, with the corresponding output data and pulse enable bits set, are (asserted)
while the pulse counter is greater than zero.
Setting CNTR to 0 does not give a pulse.
Setting CNTR to 1 does give a pulse with of 1 Clk period.
Setting CNTR to 255 does give a pulse with of 255 Clk periods.
Note that only bits 19 to 0 are implemented.

8.2.6 Interrupt Mask Register [GpioMASK] R/W

31-24: Reserved. No effect when written to. Undefined when read.
23-16: (MASK) - Interrupt enable, 0b=disable, 1b=enable
15-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
Note that only bits 23 to 16 are implemented and are mapped on interrupts 31 to 24.

8.2.7 Interrupt Polarity Register [GpioPOL] R/W

31-24: Reserved. No effect when written to. Undefined when read.
23-16: (POL) - Interrupt polarity, 0b=active low or falling edge, 1b=active high or rising edge
15-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
Note that only bits 23 to 16 are implemented and are mapped on interrupts 31 to 24.

TABLE 53. Pulse Counter Register

31 20 19 0

CNTR

TABLE 54. Interrupt Mask Register

31 24 23 16 15 0

MASK

TABLE 55. Interrupt Polarity Register

31 24 23 16 15 0

POL
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

87

GAISLER

8.2.8 Interrupt Edge Register [GpioEDGE] R/W

31-24: Reserved. No effect when written to. Undefined when read.
23-16: (EDGE) - Interrupt edge or level, 0b=level, 1b=edge
15-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
Note that only bits 23 to 16 are implemented and are mapped on interrupts 31 to 24.
Note that the secondary interrupt controller uses edge detection. The Interrupt Edge Register must
therefore only be programmed for edge detection, not for level, to ensure that multiple interrupts can
be detected from the same source.

TABLE 56. Interrupt Edge Register

31 24 23 16 15 0

EDGE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

88

GAISLER

9 CAN INTERFACE

9.1 Overview

The CAN controller is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing CAN messages in memory external to
the CAN controller. This memory can be located on-chip, as shown in the block diagram, or external to
the chip. The CAN protocol is based on the ESA HurriCANe CAN Controller core.
The CAN controller supports transmission and reception of sets of messages by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of sets of messages can be ongoing simultaneously.
After a set of message transfers has been set up via the AMBA APB interface the DMA controller ini-
tiates a burst of read accesses on the AMBA AHB bus to fetch messages from memory, which are per-
formed by the AHB master. The messages are then transmitted by the ESA HurriCANe CAN
Controller. When a programmable number of messages have been transmitted, the DMA controller
issues an interrupt.
After the reception has been set up via the AMBA APB interface, messages are received by the ESA
HurriCANe CAN Controller. To store messages to memory, the DMA controller initiates a burst of
write accesses on the AMBA AHB bus, which are performed by the AHB master. When a programma-
ble number of messages have been received, the DMA controller issues an interrupt.
The CAN controller can detect a SYNC message and generate an interrupt. The SYNC message iden-
tifier is programmable via the AMBA APB interface. The CAN controller supports the draft ECSS
high-resolution time distribution protocol.
The CAN controller can transmit and receive messages on either of two CAN busses, but only on one
at a time. The selection is programmable via the AMBA APB interface. Note that it is not possible to
receive a CAN message while transmitting one.

9.1.1 Function

The core implements the following functions:
• CAN protocol
• Message transmission
• Message filtering and reception
• SYNC message reception
• Status and monitoring
• Interrupt generation
• Redundancy selection

Figure 75. Block diagram of the internal structure of the GRHCAN.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

89

GAISLER

9.1.2 Interfaces

The core provides the following external and internal interfaces:
• CAN interface
• AMBA AHB master interface, with sideband signals as per [GRLIB] including:
• cacheability information
• interrupt bus
• configuration information
• diagnostic information
• AMBA APB slave interface, with sideband signals as per [GRLIB] including:
• interrupt bus
• configuration information
• diagnostic information

9.1.3 Hierarchy

The CAN controller core can be partitioned in the following hierarchical elements:
• ESA HurriCANe CAN Controller
• Redundancy Multiplexer / De-multiplexer
• Direct Memory Access controller
• AMBA APB slave
• AMBA AHB master

9.2 Interface

The external interface towards the CAN bus features two redundant pairs of transmit output and
receive input (i.e. 0 and 1). The active pair (i.e. 0 or 1) is bselectable by means of a configuration reg-
ister bit. Note that all reception and transmission is made over the active pair.
For each pair, there is one enable output (i.e. 0 and 1), each being individually programmable. Note
that the enable outputs can be used for enabling an external physical driver. Note that both pairs can be
enabled simultaneously. Note that the polarity for the enable/inhibit inputs on physical interface driv-
ers differs, thus the meaning of the enable output is undefined.
Redundancy is implemented by means of Selective Bus Access, as specified in [CANWG]. Note that
the active pair selection above provides means to meet this requirement.

9.3 Protocol

The CAN protocol is based on the ESA HurriCANe CAN bus controller core described in [CANESA].
The CAN controller complies with [CANSTD], except for the overload frame generation. Note that
the ESA HurriCANe CAN bus controller core does not implement overload frame generation. Version
5.1, dated 18 May 2005, has been used. No other CAN protocol capabilities than those implement by
the ESA HurriCANe CAN bus controller core are provided.
The Remote Frame Response function implemented by the ESA HurriCANe CAN bus controller is no
implemented. The remote frame response is instead envisaged to be implemented by means of proces-
sor support and software.
Note that there are three different CAN types generally defined:
• 2.0A, which considers 29 bit ID messages as an error
• 2.0B Passive, which ignores 29 bit ID messages
• 2.0B Active, which handles 11 and 29 bit ID messages

Only 2.0B Active is implemented.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

90

GAISLER

9.4 Status and monitoring

The CAN interface provides status and monitoring functionalities, including:
• Transmitter active indicator
• Bus-Off condition indicator
• Error-Passive condition indicator
• Over-run indicator
• 8-bit Transmission error counter
• 8-bit Reception error counter
The status is available via a register and is stored in a circular buffer for each received message.

9.5 Transmission

The transmit channel is defined by the following parameters:
• base address
• buffer size
• write pointer
• read pointer
The transmit channel can be enabled or disabled.

9.5.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the AMBA
AHB master interface.
Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).
The size of the buffer is defined by the CanTxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.
E.g. CanTxSIZE.SIZE =2 means 8 CAN messages fit in the buffer.
Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.
E.g. CanTxSIZE.SIZE =2 means that 7 CAN messages fit in the buffer at any given time.

9.5.2 Write and read pointers

The write pointer (CanTxWR.WRITE) indicates the position+1 of the last CAN message written to the
buffer. The write pointer operates on number of CAN messages, not on absolute or relative addresses.
The read pointer (CanTxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.
The difference between the write and the read pointers is the number of CAN messages available in the
buffer for transmission. The difference is calculated using the buffer size, specified by the CanTx-
SIZE.SIZE field, taking wrap around effects of the circular buffer into account.
Examples:
• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2,

CanTxWR.WRITE=2 and CanTxRD.READ=0.
• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE

=0 and CanTxRD.READ =6.
• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE

=1 and CanTxRD.READ =7.
• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE

=5 and CanTxRD.READ =3.
When a CAN message has been successfully transmitted, the read pointer (CanTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

91

GAISLER

write pointer CanTxWR.WRITE and read pointer CanTxRD.READ are equal, there are no CAN mes-
sages available for transmission.

9.5.3 Location

The location of the circular buffer is defined by a base address (CanTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

9.5.4 Transmission procedure

When the channel is enabled (CanTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a message transmission will be started. Note that the channel should not be
enabled if a potential difference between the write and read pointers could be created, to avoid the
message transmission to start prematurely.
A message transmission will begin with a fetch of the complete CAN message from the circular buffer
to a local fetch-buffer in the CAN controller. After a successful data fetch, a transmission request will
be forwarded to the HurriCANe codec. If there is at least an additional CAN message available in the
circular buffer, a prefetch of this CAN message from the circular buffer to a local prefetch-buffer in the
CAN controller will be performed. The CAN controller can thus hold two CAN messages for transmis-
sion: one in the fetch buffer, which is fed to the HurriCANe codec, and one in the prefetch buffer.
After a message has been successfully transmitted, the prefetch-buffer contents are moved to the fetch
buffer (provided that there is message ready). The read pointer (CanTxRD.READ) is automatically
incremented after a successful transmission, i.e. after the fetch-buffer contents have been transmitted,
taking wrap around effects of the circular buffer into account. If there is at least an additional CAN
message available in the circular buffer, a new prefetch will be performed.
If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.
If the single shot mode is enabled for the transmit channel (CanTxCTRL.SINGLE=1), any message for
which the arbitration is lost, or failed for some other reason, will lead to the disabling of the channel
(CanTxCTRL.ENABLE=0), and the message will not be put up for re-arbitration.
Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the Tx, TxEmpty and TxIrq which are issued on the successful transmission of
a message, when all messages have been transmitted successfully and when a predefined number of
messages have been transmitted successfully. The TxLoss interrupt is issued whenever transmission
arbitration has been lost, could also be caused by a communications error. The TxSync interrupt is
issued when a message matching the SYNC Code Filter Register.SYNC and SYNC Mask Filter Regis-
ter.MASK registers is successfully transmitted. Additional interrupts are provided to signal error con-
ditions on the CAN bus and AMBA bus.

9.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanTxADDR.ADDR) field.
While the channel is disabled, the read pointer (CanTxRD.READ) can be changed to an arbitrary value
pointing to the first message to be transmitted, and the write pointer (CanTxWR.WRITE) can be
changed to an arbitrary value.
When the channel is enabled, the transmission will start from the read pointer and continue to the write
pointer.

9.5.6 AMBA AHB error

Definition:
• a message fetch occurs when no other messages is being transmitted
• a message prefetch occurs when a previously fetched message is being transmitted
• the local fetch buffer holds the message being fetched
• the local prefetch buffer holds the message being prefetched
• the local fetch buffer holds the message being transmitted by the HurriCANe codec
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

92

GAISLER

• a successfully prefetched message is copied from the local prefetch buffer to the local fetch buffer
when that buffer is freed after a successful transmission.

An AHB error response occurring on the AMBA AHB bus while a CAN message is being fetched will
result in a TxAHBErr interrupt.
If the CanCONF.ABORT bit is set to 0b, the channel causing the AHB error will skip the message
being fetched from memory and will increment the read pointer. No message will be transmitted.
If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (CanTx-
CTRL.ENABLE is cleared automatically to 0 b). The read pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to read a
message that caused the AHB error.
If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBErr bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBErr.
An AHB error response occurring on the AMBA AHB bus while a CAN message is being prefetched
will not cause an interrupt, but will stop the ongoing prefetch and further prefetch will be prevented
temporarily. The ongoing transmission of a CAN message from the fetch buffer will not be affected.
When the fetch buffer is freed after a successful transmission, a new fetch will be initiated, and if this
fetch results in an AHB error response occurring on the AMBA AHB bus, this will be handled as for
the case above. If no AHB error occurs, prefetch will be allowed again.

9.5.7 Enable and disable

When an enabled transmit channel is disabled (CanTxCTRL.ENABLE=0b), any ongoing CAN mes-
sage transfer request will not be aborted until a CAN bus arbitration is lost or the message has been
sent successfully. If the message is sent successfully, the read pointer (CanTxRD.READ) is automati-
cally incremented. Any associated interrupts will be generated.
The progress of the any ongoing access can be observed via the CanTxCTRL.ONGOING bit. The
CanTxCTRL.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the Tx and TxLoss interrupts
described hereafter.
The channel can be re-enabled again without the need to reconfigure the address, size and pointers.
Priority inversion is handled by disabling the transmitting channel, i.e. setting CanTxC-
TRL.ENABLE=0 b as described above, and observing the progress, i.e. reading via the CanTxC-
TRL.ONGOING bit as described above. When the transmit channel is disabled, it can be re-configured
and a higher priority message can be transmitted. Note that the single shot mode does not require the
channel to be disabled, but the progress should still be observed as above.
No message transmission is started while the channel is not enabled.

9.5.8 Interrupts

During transmission several interrupts can be generated:
• TxLoss: Message arbitration lost for transmit (could be caused by

communcations error, as indicated by other interrupts as well)
• TxErrCntr: Error counter incremented for transmit
• TxSync: Synchronization message transmitted
• Tx: Successful transmission of one message
• TxEmpty: Successful transmission of all messages in buffer
• TxIrq: Successful transmission of a predefined number of messages
• TxAHBErr: AHB access error during transmission
• Off: Bus-off condition
• Pass: Error-passive condition

The Tx, TxEmpty and TxIrq interrupts are only generated as the result of a successful message trans-
mission, after the CanTxRD.READ pointer has been incremented.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

93

GAISLER

9.6 Reception

The receive channel is defined by the following parameters:
• base address
• buffer size
• write pointer
• read pointer
The receive channel can be enabled or disabled.

9.6.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the AMBA
AHB master interface.
Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).
The size of the buffer is defined by the CanRxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.

E.g. CanRxSIZE.SIZE=2 means 8 CAN messages fit in the buffer.
Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.
E.g. CanRxSIZE.SIZE=2 means that 7 CAN messages fit in the buffer at any given time.

9.6.2 Write and read pointers

The write pointer (CanRxWR.WRITE) indicates the position+1 of the last CAN message written to the
buffer. The write pointer operates on number of CAN messages, not on absolute or relative addresses.
The read pointer (CanRxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.
The difference between the write and the read pointers is the number of CAN message positions avail-
able in the buffer for reception. The difference is calculated using the buffer size, specified by the Can-
RxSIZE.SIZE field, taking wrap around effects of the circular buffer into account.
Examples:
• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2,

CanRxWR.WRITE=2 and CanRxRD.READ=0.
• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, CanRxWR.WRITE

=0 and CanRxRD.READ=6.
• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, CanRxWR.WRITE

=1 and CanRxRD.READ=7.
• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, CanRxWR.WRITE

=5 and CanRxRD.READ=3.

When a CAN message has been successfully received and stored, the write pointer (Can-
RxWR.WRITE) is automatically incremented, taking wrap around effects of the circular buffer into
account. Whenever the read pointer CanRxRD.READ equals (CanRxWR.WRITE+1) modulo (Can-
RxSIZE.SIZE*4), there is no space available for receiving another CAN message.
The error behavior of the HurriCANe codec is according to the CAN standard, which applies to the
error counter, buss-off condition and error-passive condition.

9.6.3 Location

The location of the circular buffer is defined by a base address (CanRxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

94

GAISLER

9.6.4 Reception procedure

When the channel is enabled (CanRxCTRL.ENABLE=1), and there is space available for a message in
the circular buffer (as defined by the write and read pointer), as soon as a message is received by the
HurriCANe codec, an AMBA AHB store access will be started. The received message will be tempo-
rarily stored in a local store-buffer in the CAN controller. Note that the channel should not be enabled
until the write and read pointers are configured, to avoid the message reception to start prematurely
After a message has been successfully stored the CAN controller is ready to receive a new message.
The write pointer (CanRxWR.WRITE) is automatically incremented, taking wrap around effects of the
circular buffer into account.
Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the Rx, RxFull and RxIrq which are issued on the successful reception of a mes-
sage, when the message buffer has been successfully filled and when a predefined number of messages
have been received successfully. The RxMiss interrupt is issued whenever a message has been
received but does not match a message filtering setting, i.e. neither for the receive channel nor for the
SYNC message described hereafter.

The RxSync interrupt is issued when a message matching the SYNC Code Filter Register.SYNC and
SYNC Mask Filter Register.MASK registers has been successfully received. Additional interrupts are
provided to signal error conditions on the CAN bus and AMBA bus.

9.6.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanRxADDR.ADDR) field.
While the channel is disabled, the write pointer (CanRxWR.WRITE) can be changed to an arbitrary
value pointing to the first message to be received, and the read pointer (CanRxRD.READ) can be
changed to an arbitrary value.
When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.

9.6.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while a CAN message is being stored will
result in an RxAHBErr interrupt.
If the CanCONF.ABORT bit is set to 0b, the channel causing the AHB error will skip the received
message, not storing it to memory. The write pointer will be incremented.
If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (CanRx-
CTRL.ENABLE is cleared automatically to 0b). The write pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to writ a
message that caused the AHB error.

If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBErr bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBErr.

9.6.7 Enable and disable

When an enabled receive channel is disabled (CanRxCTRL.ENABLE=0b), any ongoing CAN mes-
sage storage on the AHB bus will not be aborted, and no new message storage will be started. Note that
only complete messages can be received from the HurriCANe codec. If the message is stored success-
fully, the write pointer (CanRxWR.WRITE) is automatically incremented. Any associated interrupts
will be generated.
The progress of the any ongoing access can be observed via the CanRxCTRL.ONGOING bit. The
CanRxCTRL.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the Rx and RxMiss interrupts
described hereafter.
The channel can be re-enabled again without the need to reconfigure the address, size and pointers.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

95

GAISLER

No message reception is performed while the channel is not enabled

9.6.8 Interrupts

During reception several interrupts can be generated:
• RxMiss: Message filtered away for receive
• RxErrCntr: Error counter incremented for receive
• RxSync: Synchronization message received
• Rx: Successful reception of one message
• RxFull: Successful reception of all messages possible to store in buffer
• RxIrq: Successful reception of a predefined number of messages
• RxAHBErr: AHB access error during reception
• OR: Over-run during reception
• OFF: Bus-off condition
• PASS: Error-passive condition

The Rx, RxFull and RxIrq interrupts are only generated as the result of a successful message reception,
after the CanRxWR.WRITE pointer has been incremented.
The OR interrupt is generated when a message is received while a previously received message is still
being stored. A full circular buffer will lead to OR interrupts for any subsequently received messages.
The last message stored which fills the circular buffer will not generate an OR interrupt. The overrun is
reported with the CanSTAT.OR bit, which is cleared when reading the register.
The error behavior of the HurriCANe codec is according to the CAN standard, which applies to the
error counter, buss-off condition and error-passive condition.

9.7 Global reset and enable

When the CanCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing CAN message transfer request will be aborted,
potentially violating the CAN protocol.
When the CanCTRL.ENABLE bit is cleared to 0b, the HurriCANe core is reset and the configuration
bits CanCONF.SCALER, CanCONF.PS1, CanCONF.PS2, CanCONF.RSJ and CanCONF.BPR may be
modified. When disabled, the CAN controller will be in sleep mode not affecting the CAN bus by only
sending recessive bits. Note that the HurriCANe core requires that 10 recessive bits are received before
any reception or transmission can be initiated. This can be caused either by no unit sending on the
CAN bus, or by random bits in message transfers.

9.8 Interrupt

Three interrupts are implemented by the CAN interface:
Name: Description:
IRQ Common output from interrupt handler
TxSYNC Synchronization message transmitted
RxSYNC Synchronization message received

9.9 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x34.
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

96

GAISLER

9.10 Registers

The GRHCAN is programmed through registers mapped into APB address space.

Any blank register is considered as reserved and has no effect when writen to, and returns undefined
data when read.

TABLE 57. GRHCAN registers

Register Address
Configuration Register 0x80080000
Status Register 0x80080004
Control Register 0x80080008
SYNC Mask Filter Register 0x80080018
SYNC Code Filter Register 0x8008001C
Pending Interrupt Masked Status Register 0x80080100
Pending Interrupt Masked Register 0x80080104
Pending Interrupt Status Register 0x80080108
Pending Interrupt Register 0x8008010C
Interrupt Mask Register 0x80080110
Pending Interrupt Clear Register 0x80080114
Transmit Channel Control Register 0x80080200
Transmit Channel Address Register 0x80080204
Transmit Channel Size Register 0x80080208
Transmit Channel Write Register 0x8008020C
Transmit Channel Read Register 0x80080210
Transmit Channel Interrupt Register 0x80080214
Receive Channel Control Register 0x80080300
Receive Channel Address Register 0x80080304
Receive Channel Size Register 0x80080308
Receive Channel Write Register 0x8008030C
Receive Channel Read Register 0x80080310
Receive Channel Interrupt Register 0x80080314
Receive Channel Mask Register 0x80080318
Receive Channel Code Register 0x8008031C
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

97

GAISLER

9.10.1 Configuration Register [CanCONF] R/W

31-24: SCALER Prescaler setting, 8-bit: system clock / (SCALER +1)
23-20: PS1 Phase Segment 1, 4-bit: (valid range 1 to 15)
19-16: PS2 Phase Segment 2, 4-bit: (valid range 2 to 8)
14-12: RSJ ReSynchronization Jumps, 3-bit: (valid range 1 to 4)
9:8: BPR Baud rate, 2-bit:

00b = system clock / (SCALER +1) / 1
01b = system clock / (SCALER +1) / 2
10b = system clock / (SCALER +1) / 4
11b = system clock / (SCALER +1) / 8

4: SILENT Listen only to the CAN bus, send recessive bits.
3: SELECTIONSelection receiver input and transmitter output:

Select receive input 0 as active when 0b,
Select receive input 1 as active when 1b
Select transmit output 0 as active when 0b,
Select transmit output 1 as active when 1b

2: ENABLE1 Set value of output 1 enable
1: ENABLE0 Set value of output 0 enable
0: ABORT Abort transfer on AHB ERROR

All bits are cleared to 0 at reset.

Note that constraints on PS1, PS2 and RSJ are defined as:
• PS1 +1 >= PS2
• PS2 >= RSJ

Note that CAN standard TSEG1 is defined by PS1+1.
Note that CAN standard TSEG2 is defined by PS2.

Note that the SCALER setting defines the CAN time quantum, together with the BPR setting:
system clock / (SCALER+1) / BPR

where SCALER is in range 0 to 255, and the resulting division factor due to BPR is 1, 2, 4 or 8. Note
that the resulting bit rate is:

system clock / (SCALER+1) / BPR * (1 + PS1+1 + PS2)
where PS1 is in the range 1 to 15, and PS2 is in the range 2 to 8.
Note that RSJ defines the number of allowed re-synchronization jumps according to the CAN stan-
dard, being in the range 1 to 4.
Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses to the AMBA AHB bus will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the CanSTAT
register is read.

TABLE 58. Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SCALER PS1 PS2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSJ BPR Silen
t

Sele
ction

Ena
ble
1

Ena
ble
0

Abor
t

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

98

GAISLER

9.10.2 Status Register [CanSTAT] R

31-24: Reserved. No effect when written to. Undefined when read.
23-16: TxErrCntr Transmission error counter, 8-bit
15-8: RxErrCntr Reception error counter, 8-bit
4: ACTIVE Transmission ongoing
3: AHBErr AMBA AHB master interface blocked due to previous AHB error
2: OR Overrun during reception
1: OFF Bus-off condition
0: PASS Error-passive condition

All bits are cleared to 0 at reset.
The OR bit is set if a message with a matching ID is received and cannot be stored via the AMBA
AHB bus, this can be caused by bandwidth limitations or when the circular buffer for reception is
already full.
The OR and AHBErr status bits are cleared when the register has been read.
Note that TxErrCntr and RxErrCntr are defined according to CAN protocol.
Note that the AHBErr bit is only set to 1b if an AMBA AHB error occurs while the CanCONF.ABORT
bit is set to 1b.

9.10.3 Control Register [CanCTRL] R/W

31-2: Reserved. No effect when written to. Undefined when read.
1: RESET Reset complete core when 1
0: ENABLE Enable HurriCANe controller, when 1. Reset HurriCANe controller, when 0

All bits are cleared to 0 at reset.
Note that RESET is read back as 0b.

Note that ENABLE should be cleared to 0b while other settings are modified, ensuring that the Hurri-
CANe core is properly synchronized.
Note that when ENABLE is cleared to 0b, the CAN interface is in sleep mode, only outputting reces-
sive bits.
Note that the HurriCANe core requires that 10 recessive bits be received before receive and transmit
operations can begin.

TABLE 59. Status register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TxErrCntr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxErrCntr Activ
e

AHB
Err

OR Off Pass

TABLE 60. Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res
et

Ena
ble
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

99

GAISLER

9.10.4 SYNC Code Filter Register [CanCODE] R/W

31-29: Reserved. No effect when written to. Undefined when read.
28-0: SYNC Message Identifier

All bits are cleared to 0 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

9.10.5 SYNC Mask Filter Register [CanMASK] R/W

31-29: Reserved. No effect when written to. Undefined when read.
28-0: MASK Message Identifier

All bits are set to 1 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

A RxSYNC message ID is matched when:
((Received-ID XOR CanCODE.SYNC) AND CanMASK.MASK) = 0

A TxSYNC message ID is matched when:
((Transmitted-ID XOR CanCODE.SYNC) AND CanMASK.MASK) = 0

9.10.6 Transmit Channel Control Register[CanTxCTRL] R/W

31-3: Reserved. No effect when written to. Undefined when read.
2: SINGLE Single shot mode
1: ONGOING Transmission ongoing
0: ENABLE Enable channel

All bits are cleared to 0 at reset.
Note that if the SINGLE bit is 1b, the channel is disabled (i.e. the ENABLE bit is cleared to 0b) if the
arbitration on the CAN bus is lost.
Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

TABLE 61. SYNC Code Filter Register

31 30 29 28 0

SYNC

TABLE 62. SYNC Mask Filter Register

31 30 29 28 0

MASK

TABLE 63. Transmit Channel Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sin-
gle

Ong
oing

Ena
ble
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

100

GAISLER

At the time the ENABLE is cleared to 0b, any ongoing message transmission is not aborted, unless the
CAN arbitration is lost or communication has failed.
Note that the ONGOING bit being 1b indicates that message transmission is ongoing and that configu-
ration of the channel is not safe.

9.10.7 Transmit Channel Address Register[CanTxADDR] R/W

31-10: ADDR Base address for circular buffer
9-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.

9.10.8 Transmit Channel Size Register[CanTxSIZE] R/W

31-21: Reserved. No effect when written to. Undefined when read.
20-6: SIZE The size of the circular buffer is SIZE*4 messages

5-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
Valid SIZE values are between 0 and 16384.
Note that each message occupies four 32-bit words.
Note that the resulting behavior of invalid SIZE values is undefined.
Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

9.10.9 Transmit Channel Write Register[CanTxWR] R/W

31-20: Reserved. No effect when written to. Undefined when read.
19-4: WRITE Pointer to last written message +1
3-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last mes-
sage to transmit.
Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

TABLE 64. Transmit Channel Address Register

31 10 9 0

ADDR

TABLE 65. Transmit Channel Size Register

31 21 20 6 5 0

SIZE

TABLE 66. Transmit Channel Write Register

31 20 19 4 3 0

WRITE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

101

GAISLER

9.10.10 Transmit Channel Read Register [CanTxRD] R/W

31-20: Reserved. No effect when written to. Undefined when read.
19-4: READ Pointer to last read message +1
3-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message transmitted.
Note that the READ field can be use to read out the progress of a transfer.
Note that the READ field can be written to in order to set up the starting point of a transfer. This should
only be done while the transmit channel is not enabled.
Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until CAN bus arbitration is lost.
When the Transmit Channel Read Pointer catches up with the Transmit Channel Write Register, an
interrupt is generated (TxEmpty). Note that this indicates that all messages in the buffer have been
transmitted.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

9.10.11 Transmit Channel Interrupt Register[CanTxIRQ] R/W

31-20: Reserved. No effect when written to. Undefined when read.
19-4: IRQ Interrupt is generated when CanTxRD.READ=IRQ, as a consequence of a

message transmission
3-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
Note that this indicates that a programmed number of messages have been transmitted.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

9.10.12 Receive Channel Control Register[CanRxCTRL] R/W

31-2: Reserved. No effect when written to. Undefined when read.
1: ONGOING Reception ongoing (read-only)
0: ENABLE Enable channel

TABLE 67. Transmit Channel Read Register

31 20 19 4 3 0

READ

TABLE 68. Transmit Channel Interrupt Register

31 20 19 4 3 0

IRQ

TABLE 69. Receive Channel Control Register

31 2 1 0

OnG
oing

Ena
ble
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

102

GAISLER

All bits are cleared to 0 at reset.
Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENALBE bit will be reset automatically.
At the time the ENABLE is cleared to 0b, any ongoing message reception is not aborted
Note that the ONGOING bit being 1b indicates that message reception is ongoing and that configura-
tion of the channel is not safe.

9.10.13 Receive Channel Address Register[CanRxADDR] R/W

31-10: ADDR Base address for circular buffer
9-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.

9.10.14 Receive Channel Size Register[CanRxSIZE] R/W

31-21: Reserved. No effect when written to. Undefined when read.
20-6: SIZE The size of the circular buffer is SIZE*4 messages

5-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
Valid SIZE values are between 0 and 16384.
Note that each message occupies four 32-bit words.
Note that the resulting behavior of invalid SIZE values is undefined.
Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

9.10.15 Receive Channel Write Register[CanRxWR] R/W

31-20: Reserved. No effect when written to. Undefined when read.
19-4: WRITE Pointer to last written message +1
3-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).
The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message received.

TABLE 70. Receive Channel Address Register

31 10 9 0

ADDR

TABLE 71. Receive Channel Size Register

31 21 20 6 5 0

SIZE

TABLE 72. Receive Channel Write Register

31 20 19 4 3 0

WRITE
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

103

GAISLER

Note that the WRITE field can be use to read out the progress of a transfer.
Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the receive channel is not enabled.

9.10.16 Receive Channel Read Register [CanRxRD] R/W

31-20: Reserved. No effect when written to. Undefined when read.
19-4: READ Pointer to last read message +1
3-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).
The READ field is written to in order to release the receive buffer, indicating the position +1 of the last
message that has been read out.
Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).

9.10.17 Receive Channel Interrupt Register[CanRxIRQ] R/W

31-20: Reserved. No effect when written to. Undefined when read.
19-4: IRQ Interrupt is generated when CanRxWR.WRITE=IRQ, as a consequence of a

message reception
3-0: Reserved. No effect when written to. Undefined when read.

All bits are cleared to 0 at reset.
Note that this indicates that a programmed number of messages have been received.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

9.10.18 Receive Channel Mask Register [CanRxMASK] R/W

31-29: Reserved. No effect when written to. Undefined when read.
28-0: AM Acceptance Mask, bits set to 1b are taken into account in the comparison between

the received message ID and the CanRxCODE.AC field

All bits are set to 1 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

TABLE 73. Receive Channel Read Register

31 20 19 4 3 0

READ

TABLE 74. Receive Channel Interrupt Register

31 20 19 4 3 0

IRQ

TABLE 75. Receive Channel Mask Register

31 30 29 28 0

AM
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

104

GAISLER

9.10.19 Receive Channel Code Register [CanRxCODE] R/W

31-29: Reserved. No effect when written to. Undefined when read.
28-0: AC Acceptance Code, used in comparison with the received message

All bits are cleared to 0at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.
A message ID is matched when:

((Received-ID XOR CanRxCODE.AC) AND CanRxMASS.AM) = 0

TABLE 76. Receive Channel Code Register

31 30 29 28 0

AC
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

105

GAISLER

9.10.20 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.
When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:
• Set up the software interrupt-handler to accept an interrupt from the module.
• Read the Pending Interrupt Register to clear any spurious interrupts.
• Initialise the Interrupt Mask Register, unmasking each bit that should generate the module interrupt.
• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-

handler to determine the causes of the interrupt.
• Handle the interrupt, taking into account all causes of the interrupt.
• Clear the handled interrupt using Pending Interrupt Clear Register.

Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Interrupt
Mask Register.
Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.
Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.
Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.
Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

The interrupt registers comprise the following:
• Pending Interrupt Masked Status Register [CanPIMSR] R
• Pending Interrupt Masked Register [CanPIMR] R
• Pending Interrupt Status Register [CanPISR] R
• Pending Interrupt Register [CanPIR] R/W
• Interrupt Mask Register [CanIMR] R/W
• Pending Interrupt Clear Register [CanPICR] W
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

106

GAISLER

31-17: Reserved. No effect when written to. Undefined when read.
16: TxLoss Message arbitration lost during transmission (could be caused by

communcations error, as indicated by other interrupts as well)
15: RxMiss Message filtered away during reception
14: TxErrCntr Transmission error counter incremented
13: RxErrCntr Reception error counter incremented
12: TxSync Synchronization message transmitted
11: RxSync Synchronization message received
10: Tx Successful transmission of message
9: Rx Successful reception of message
8: TxEmpty Successful transmission of all messages in buffer
7: RxFull Successful reception of all messages possible to store in buffer
6: TxIRQ Successful transmission of a predefined number of messages
5: RxIRQ Successful reception of a predefined number of messages
4: TxAHBErr AHB error during transmission
3: RxAHBErr AHB error during reception
2: OR Over-run during reception
1: OFF Bus-off condition
0: PASS Error-passive condition

All bits in all interrupt registers are reset to 0b after reset.

Note that the TxAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the
CanCONF.ABORT field setting.

Note that the RxAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the
CanCONF.ABORT field setting.

TABLE 77. Interrupt registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Tx
Loss

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rx
Miss

Tx
Err
Cntr

Rx
Err
Cntr

Tx
Sync

Rx
Sync

Tx Rx Tx
Emp
ty

Rx
Full

Tx
IRQ

Rx
IRQ

Tx
AHB
Err

Rx
AHB
Err

OR Off Pass
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

107

GAISLER

9.11 Memory mapping

The CAN message is represented in memory as shown in table appendix 78.

Values: Levels according to CAN standard: 1b is recessive,
0b is dominant

Legend: Naming and number in according to CAN standard
IDE Identifier Extension: 1b for Extended Format,

0b for Standard Format
RTR Remote Transmission Request: 1b for Remote Frame,

0b for Data Frame
bID Base Identifier
eID Extended Identifier
DLC Data Length Code, according to CAN standard:

0000b 0 bytes
0001b 1 byte
0010b 2 bytes
0011b 3 bytes
0100b 4 bytes
0101b 5 bytes
0110b 6 bytes
0111b 7 bytes
1000b 8 bytes
OTHERS illegal

TxErrCntr Transmission Error Counter
RxErrCntr Reception Error Counter
AHBErr AHB interface blocked due to AHB Error when 1b
OR Reception Over run when 1b
OFF Bus Off mode when 1b
PASS Error Passive mode when 1b
Byte 00 to 07 Transmit/Receive data, Byte 00 first Byte 07 last

TABLE 78. CAN message representation in memory.

AHB addr

0x0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDE RTR - bID eID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

eID

0x4 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DLC TxErrCntr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxErrCntr Ahb
Err

OR Off Pas
s

0x8 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Byte 0 (first transmitted) Byte 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 2 Byte 3

0xC 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Byte 4 Byte 5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 6 Byte 7 (last transmitted)
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

108

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10 SPACEWIRE LINK INTERFACE
This chapter gives an overview of the functions of the SpaceWire (SPW2) Module. It is
written as a descriptive text used to increase the understanding of the functions.

10.1 System overview
The SpaceWire (SPW2) Module is intended to fit into systems where there is a need for
communication via SpaceWire links.

The figure below shows how the SpaceWire Module would fit into a typical application.
Note that the routers are optional and direct SpaceWire links may be used instead.

Router
ACPU

ASIC SpaceWire
Module

(Node 0)

RAM

SpaceWire
Application A

(Node 1)

SpaceWire
Application C

(Node 3)

Router
B

SpaceWire
Application B

(Node 2)

1

3

24

1

3

24

Figure 10-1 System overview

10.2 Functions

• SPW2 SpaceWire Interface
Each SPW2 module handles a bi-directional non-redundant SpaceWire link. In
reception the module optionally supports VCTP (SPW Virtual Channel Transfer
Protocol), basic RMAP (Remote Memory Access Protocol) commands and
redirects non-supported commands and protocols to the software. The module
supports multiple independent transmit send lists with dual pointers for header
and data.

10.3 Interfaces
The SpaceWire (SPW2) Module interfaces one SpaceWire link. The SpaceWire link
encodes data using one signal pair of data and strobe in each direction.

The SpaceWire link provides full duplex operation, which means the SpaceWire
Module may transmit and receive data simultaneously.

The SpaceWire link handled by the SpaceWire Module is non-redundant. Two
SpaceWire (SPW2) Modules could be used, each with its own SpaceWire link, if
redundancy is required.

109

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.4 Module overview
This section provides an introduction to the functions implemented by the SpaceWire
(SPW2) Module.

10.4.1 SpaceWire Link

SpaceWire is a bi-directional, serial, point-to-point data link. The SpaceWire link is
used for transferring data from one node to another node. The nodes may be part of a
network or work stand-alone. In a network routers are needed to direct transmitted
packets to the correct destinations. In this case a transmitted packet contains a header
that indicates to the router(s) which destination the packet is targeted for.

The SpaceWire Module implements a single SpaceWire link. This link can be used for
either transmitting data in both directions on one or more virtual channels, or to
implement a remote memory access protocol. Both transmission and reception are
supported by direct memory access to the on-chip bus on which the SpaceWire Module
is implemented. The SpaceWire Module only locally implements the buffering
resources that are strictly necessary for its functionality, all other data storage is
performed via the on-chip bus.

10.4.2 Transmit protocols

The SpaceWire (SPW2) module supports the transmission of any type of SpaceWire
packets, not limited to any type of higher protocols. It implements virtual channels that
allow transfer from one or many dedicated areas in memory. The virtual channels allow
multiple communication channels over a single SpaceWire link.

The selection of the virtual channel from which data are to be transmitted on the
SpaceWire link is performed by round-robin arbitration. Each virtual transmit channel
has a separate send list stored in memory. The send list entries define what data is to be
sent from memory. The send list entry structure is shown in 10.5.9.6. Note that
automatically generated RMAP responses have higher priority than packets defined in
the virtual channel send lists, thus bypassing the round-robin priority scheme.

Each send list entry specifies the position and size of the header and the position and
size of the data to be transmitted. The header and data to be transmitted, as well as the
send lists, can be located anywhere in memory. The SpaceWire Module performs direct
memory accesses to read data to be transmitted from a memory area.

10.4.3 Receive protocols

The SpaceWire (SPW2) module supports the reception of several protocols as explained
hereafter.

The SpaceWire Link operates on packets. A packet includes an optional destination path
address, a destination logical address, a protocol identifier, a cargo and an end of packet
marker, as defined in 10.5.9.2. The basic packet structure is used for implementing the
more advanced structures discussed hereafter.

110

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

The SpaceWire Virtual Channel Transfer Protocol (VCTP), as defined in 10.5.9.5, is
used to implement virtual channels on a single SpaceWire link. The Remote Memory
Access Protocol (RMAP), as defined in [RMAP] and in 10.5.9.4, is used to implement
remote memory access to resources in the node via the SpaceWire link. Both the VCTP
and the RMAP protocols can coexist on the same SpaceWire link simultaneously.

Both protocols use the SpaceWire Transfer Protocol Packet Structure, in which the
Protocol Identifier is used for making the distinction between different protocols,
including VCTP and RMAP. Additionally, other protocols can also be supported, but
require processing support from the node in which the SPW2 module is embedded.

10.4.3.1 SpaceWire Virtual Channel Transfer Protocol (VCTP)

The SpaceWire Virtual Channel Transfer Protocol (VCTP) protocol allows transfer to
one or many dedicated areas in memory. The virtual channels allow multiple
communication links over a single SpaceWire link.

The selection of the virtual channel to which the received data from the SpaceWire link
belong is made using the Virtual Channel Identifier carried in the packet. Each virtual
receiver channel has a separately programmable memory area to which received data
are stored. This area can be located anywhere in memory. The SpaceWire Module
performs direct memory accesses to write received data to a memory area.

10.4.3.2 Remote Memory Access Protocol (RMAP)

The Remote Memory Access Protocol (RMAP) protocol is used for writing to and
reading from memory, registers, FIFO memory, mailboxes, etc., in a destination node
on a SpaceWire network. Input/output registers, control/status registers are assumed to
be memory mapped and accessed as memory.

All read and write operations defined in the RMAP protocol are posted operations i.e.
the source does not wait for an acknowledgement or reply to be received. This means
that many read and write accesses can be outstanding at any time. It also means that
there is no timeout mechanism implemented in RMAP for missing acknowledgements
or replies. If an acknowledgement or reply timeout mechanism is required it must be
implemented in the source user application.

The RMAP protocol is realised in three ways in the SpaceWire Module, with hardware
support, with software support or with both.

The hardware implements a subset of the RMAP commands. A detailed list of
command constraints is provided in 10.6.4.1 and 10.6.4.2. Automatic RMAP responses
are generated to RMAP commands that are implemented in hardware. A received
packet is not stored in memory for RMAP commands that are executed in hardware.

Commands not supported by hardware can optionally be relayed to software for further
processing. If no hardware support is required, all commands can be relayed to software
for processing. Commands are relayed to software using a dedicated virtual receive
channel, similar to what has been described for the VCTP protocol. Responses can be
generated by software using a virtual transmit channel as described in 10.4.2.

111

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Any received RMAP responses are also relayed to software in the same way as RMAP
commands, using the same virtual receive channel.

10.4.3.3 Additional protocols

Other protocols than the VCTP and RMAP protocols can be implemented with software
support. The commands are relayed to the software using a dedicated virtual receive
channel. This relaying to software can be controlled automatically using the Transfer ID
field of the packet header, but it can also be enforced by configuring the SPW2 to route
all incoming packets to the software.

10.4.4 Block Diagram

SPW2

C
O

D
E

C SpaceWire
link

Rx FIFO

Tx FIFO

RxVC and RMAP
handling

TxVC sendlist
handling and

arbiter

RMAP
response

Rx DMA
FIFO

Tx DMA
FIFO

AHB
master

AHB
master

Register I/F

TimeCode I/F

BusClk clock zone SpwClk clock zone

A
M

B
A

 A
H

B
 b

us
A

M
B

A
 A

P
B

 b
us

Figure 10-2 SpaceWire functional block diagram

The SpaceWire (SPW2) Module is used for transmitting and receiving data over a
SpaceWire link. It provides support for transmitting any type of protocol or data
structure using SpaceWire packets.

It provides hardware support for receiving two types of SpaceWire Transfer Protocols,
and can relay packets of other protocols to software. The SpaceWire Virtual Channel
Transfer Protocol (VCTP) implements multiple virtual channels on a single SpaceWire
link. The Remote Memory Access Protocol (RMAP) implements remote memory
access to resources in the node via the SpaceWire link.

The SpaceWire (SPW2) Module implements the higher-level transfer protocols,
whereas the SpaceWire link itself is implemented by the encapsulated University of
Dundee SpaceWire CODEC.

112

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Data to be sent are read by the SpaceWire Module from memory via direct memory
access. An AMBA AHB master dedicated to transmission performs this over the
internal AMBA AHB bus. Data are then temporarily stored in a TxFIFO when
forwarded to the SpaceWire CODEC for transmission over the link. Multiple Virtual
Transmit Channels (TxVC) can be used, each with its private send list stored in memory
from which data are read. All TxVC share the same link. Round-robin arbitration
between the TxVC is performed to ensure fair bandwidth allocation between the
channels. The arbitration is performed for each packet sent.

Data received over the link by the SpaceWire CODEC are temporarily stored in an
RxFIFO. Data are then stored to memory by the SpaceWire Module via direct memory
access. An AHB master dedicated to reception performs this over the internal AMBA
AHB bus. Multiple Virtual Receive Channels (RxVC) can be used, each with its private
memory area to which data are written. All RxVC share the same link.

The SpaceWire Module implements hardware support for the RMAP. RMAP is used for
remotely accessing resources on the local AMBA bus. The RMAP implementation can
receive commands and generate responses, utilizing the aforementioned RxFIFO and
the TxFIFO, and the two AMBA AHB masters. RMAP has priority over any TxVC.

The SpaceWire Module is configured, controlled and monitored via an AMBA APB bus
slave interface, accessing all module internal registers.

The SpaceWire CODEC uses a separate clock, the SpwClk, as its clock while the rest of
the SpaceWire Module uses the BusClk. The SpaceWire CODEC requires a clock
frequency that is a multiple of 10 MHz to produce a data rate of 10 Mbit/s required for
reliable start-up procedures. The SpaceWire CODEC clock is also used for sending data
at high transfer rates.

113

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.5 Definitions
This section and the following subsections define the typographic and naming
conventions used throughout this document.

10.5.1 Bit Numbering

The following conventions are used for bit numbering:
• The Most Significant Bit (MSB) of a vector has the leftmost position.
• The Least Significant Bit (LSB) of a vector has the rightmost position.
• Unless otherwise indicated, the MSB of a vector has the highest bit number and the

LSB the lowest bit number.

10.5.2 Names

The following conventions are used for all names (for signals and registers some extra
conventions are defined below):
• A name may never start with a digit, e.g. 1553 could instead be M1553.
• A dollar sign ($) in a name is used as a wildcard representing a number. (If the

dollar sign ($) is used in a context it must then be defined somewhere else in the
document)

• An asterisk (*) in a name is used as a wildcard representing one or more characters.

10.5.3 Radix

The following conventions is used for writing numbers:
• Binary numbers are indicated by the subscript “2”, e.g. 12, 1011_1010_1011_11102,

0100102 etc.
• Decimal numbers are indicated by the subscript “10”, e.g. 67,872310, 4786010.
• Hexadecimal numbers are indicated by the subscript “16”, e.g. E16, BABE16.
• Unless the Radix is explicitly declared as above the number should be considered to

be decimal number.

10.5.4 Signal Names

The following conventions are used for signal names:
• Signal names are written in italics, e.g. SignalName.
• Active low signals have a capital N appended to their name, e.g. SignalNameN.
• Bus indices are indicated with brackets, e.g. SignalName[12:3].
• Signals maybe grouped into subsignals, e.g. SignalName.SubSignal.
• Signals with two functions are named with the name and then the first functionality

followed by the second function, e.g. SignalNameFunction1Function2N. The second
function is the valid when the signal is deasserted (thus the suffix N in the name).

10.5.5 Externally Accessible Register Names

The following convention is used for externally accessible registers.
• Register names are underlined, e.g. RegisterName.
• Fields of a register are indicated by the name of the register and the field, separated

by a period and underlined, e.g. RegisterName.Field.

114

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.5.6 Graphics legend

Standard graphics for state- and mode- graphs.

Idle

State or modes are pictured as circulars. Double circle indicates the
Reset/Initial state or mode.

Request
Lock
Wait

Single circle indicates State or modes.

 Normal transition
 Exceptional transition

10.5.7 Terminology

10.5.7.1 General

ASIC Module An ASIC internal module

Issue an Interrupt The corresponding bit has been set in the pending interrupt register
in the ASIC/FPGA module

Reset Assertion An internal reset activation as seen by ASIC/FPGA modules

GoStop Assertion An internal go-stop activation as seen by ASIC/FPGA modules

10.5.7.2 Basic Data Types

Byte 8 bits of data

HalfWord 16 bits of data

Word 32 bits of data

10.5.7.3 Registers

Register Read A read access to a ASIC external accessible register

Register Write A write access to a ASIC external accessible register

Set Indicates that the bit in the register is 1

Clear Indicates that the field or bit in the register is 0

Reset Indicates that the field or bit in the register is set to its default Value
(indicated in the Register definition chapter)

10.5.7.4 Register Access

Read (R) Register read where the register is read as is, the read has no effect
on the register

Read and Clear
(RC)

Register read where the register is read as is and the register content
is cleared

Read Masked
(RM)

Register read where the register is read and masked with the content
of the corresponding mask register

Read and Clear
Masked (RCM)

Register read where the register is read and masked with the content
of the corresponding mask register and unmasked register bits are
cleared

115

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Read Masked and
Clear (RMC)

Register read where the register is read and masked with the content
of the corresponding mask register and the register content is
cleared

Write (W) Register write where the register content is updated according to the
provided parameter

Write and Trigger
(WT)

Register write where the register content is updated according to the
provided parameter and hardware processing is triggered (activated)

Set (S) Register write where the bits that are set in the provided parameter
is also set in the register, bits that are cleared in the provided
parameter is unaffected in the register

Clear (C) Register write where the bits that are set in the provided parameter
is cleared in the register, bits that are cleared in the provided
parameter is unaffected in the register

Arm (A) Register write where the bits that are set in the provided parameter
is set ready to receive a new value, once executed

Execute (E) Register write where the register bits that have previously been
armed are updated according to the provided parameter

Trigger (T) Register write where hardware processing is triggered (activated)
(no parameter or fixed parameter)

10.5.7.5 Signals

Assert To put a signal into its active state. A signal is asserted when in its
active state

Deassert To put a signal into its inactive state. A signal is deasserted when in
its inactive state

10.5.7.6 Direct memory access

DMA Channel A unit for accessing memory

DMA Error Signal to DMA Channel for failing memory access

DMA Read A transfer of data to a DMA channel from a DMA controller, e.g.
read data from memory

DMA Write A transfer of data from a DMA channel to a DMA controller, e.g.
write data to memory.

10.5.7.7 SPW2 Specific

Active

RxVC[$]/

TxVC[$]

Virtual receive or transmit channel, RxVC[$] or TxVC[$] is
currently receiving or transmitting data.

Inactive

RxVC[$]/

TxVC[$]

No data is currently being received or transmitted on virtual receive
or transmit channel, RxVC[$] or TxVC[$].

Early EOP EOP has been received after less data than expected from the
RMAP command header

116

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Late EOP EOP has been received after more data than expected from the
RMAP command header.

Early EEP EEP has been received after less data than expected from the
RMAP command header

Late EEP EEP has been received after more data than expected from the
RMAP command header.

10.5.8 Abbreviations

AHB Advanced High-performance Bus
AMBA Advanced Microcontroller Bus Architecture TM

APB Advanced Peripheral Bus
ASIC Application Specific Integrated Circuit
BPS Bit Per Second
CMOS Complementary Metal Oxide Semiconductor
CRC Cyclic Redundancy Code
DMA Direct Memory Access
EEP Error End of Packet
EOP End Of Packet
EOM End Of Message
EOB End Of Block
ESA European Space Agency
FFPR First Failing Packet Register
FPGA Field Programmable Gate Array
HW Hardware
Id Identifier
IO Input/Output
IP Intellectual Property
LS Least Significant
LSB Least Significant Bit
LSW Least Significant Word
LVDS Low Voltage Differential Signalling
MS Most Significant
MSB Most Significant Bit
MSW Most Significant Word
MTBF Mean Time Between Failures
NA Not Applicable
PROM Programmable Read Only Memory
RAM Random Access Memory
SPW SpaceWire
RMAP Remote Memory Access Protocol
RxVC Virtual Receive Channel
SRAM Static Random Access Memory
SW Software
TBC To Be Confirmed
TBD To Be Determined
TxVC Virtual Transmit Channel
VC Virtual Channel
VCID Virtual Channel Identifier

117

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

VCTP SPW Virtual Channel Transfer Protocol
VCTPID SPW Virtual Channel Transfer Protocol Identifier
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits

10.5.9 Data Structures

10.5.9.1 SPW2 Data Structure Definitions

Destination Path Address is a SpaceWire path address, which defines the route to a
destination node by specifying, for each router encountered on the way to the
destination, the output port that a packet is to be forwarded through. A path address
comprises one byte for each router on the path to the destination. Once a path address
byte has been used to specify an output port of a router it is deleted to expose the next
path address byte for the next router. All path address bytes will have been deleted by
the time the packet reaches the destination.

Destination Logical Address (DLA) byte is the logical address of the destination. This
may be used to route the packet to the destination or, if path addressing is being used, to
simply confirm that the final destination is the correct one i.e. that the logical address of
the destination matches the logical address in the packet. If the logical address of the
destination is unknown then the default logical address of 254 may be used. The
destination may choose to accept or reject packets with a logical address of 254. The
SPW2 requires a perfect DLA match for accepting a packet, but its DLA reset value is
254. Note also that for received RMAP responses and when configured to forced
unknown protocol interpretation the SPW2 does not check the DLA.

Protocol ID byte identifies the particular protocol being used for communication. For
the Remote Memory Access protocol [RMAP] the protocol identifier has the value 1
(0116). For Virtual Channel Transfer Protocol (VCTP) the default protocol identifier is
240.

Command & Type byte determines the type of the packet i.e. a command, a response
or an acknowledgement. This byte also includes two bits that determine the length in
words of the Source Path Address field. For example, if these bits are set to the value
two then the Source Path Address will consist of eight bytes. If they are set to zero then
there is no Source Path Address field at all.

Destination Key provides a one byte key which must be matched by the destination
application in order for the RMAP command to be accepted.

Source Path Address bytes provide the destination path address for the response or
acknowledgement of a command. The source path address is not needed if logical
addressing is being used. The Source Path Address, if used, is normally set to the
address from the destination node back to the source node which sent the command.
Leading all-zero bytes of the return address are ignored. If a packet is to be sent to
address zero then this is done by setting the entire Source Path Address to zero. This
will result in a single zero path address byte being sent in front of the logical address.

Source Logical Address byte is the destination logical address to be used in a response
or acknowledgement to a command. The Source Address is normally set to the logical

118

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

address of the source node that is sending the command. The Source Address byte may
be set to 254 (0FE16), which is the default logical address, if the command source node
does not have a logical address.

Transaction Identifier bytes are used to identify command, response, and acknowledge
transactions that make up a particular read or write operation. The source of the
command gives the command a unique transaction identifier. This transaction identifier
is returned in the response or acknowledgement to the command. This allows the
command source to send many commands without having to wait for a response to each
command before sending the next command. When a response or acknowledge comes
in it can be quickly associated with the command that caused it by the transaction
identifier.

Extended Address byte is used to extend the 32-bit memory address to 40-bits
allowing a 1 Terabyte address space to be accessed directly in each node. Note that the
SPW2 RMAP protocol handler supports only 4 bits of extended addressing, i.e. a
64 GiB address space; and thus bits 7-4 of the Extended Address in commands directed
to the SPW2 should always be zero.

Memory Address bytes form the bottom 32-bits of the memory address to which the
data in a write command is to be written or from where data is to be read for a read
command. Input/output registers and control/status registers are assumed to be memory
mapped.

Data Length bytes form the 24-bit length of the data that is to be written or read. The
length is the length in bytes with the most-significant byte of the length sent first.

Header CRC byte is an 8-bit Cyclic Redundancy Check (CRC) used to confirm that the
header is correct before executing the command. The header CRC is formed using the
CRC-8 code used in ATM (Asynchronous Transfer Mechanism). CRC-8 has the
following polynomial: x8 + x2 + x1 + 1, with a starting value of 0016. Each byte in the
header starting with the destination logical address and ending with the byte before the
header CRC itself is used in the calculation of the CRC. The CRC is implementing a
Galois version Linear Feedback Shift Register.

Data bytes are the data that is to be written in a write command or the data that is read
in a read response.

Data CRC is an 8-bit Cyclic Redundancy Check (CRC) used to confirm that the data is
correct before being written in a verified write command or was correctly transferred in
a non-verified write command or read reply. The data CRC starts with the byte after the
header CRC and covers all the data bytes. The same CRC encoding is used as for the
header CRC. Note that for a zero length data field the CRC is the starting value, i.e.
0016.

EOP character is the End Of Packet marker of the SpaceWire packet.

EEP character is the Error End of Packet marker of an erroneous SpaceWire packet.

119

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.5.9.2 SpaceWire Packet Structure

A SpaceWire packet consists of a destination address (path address + logical address), a
cargo and an end of packet (EOP or EEP) marker.

<destination address><cargo><end of packet>

where:
• The destination address consists of a list of one or more bytes, called destination

identifiers: <destination address> = <id 0><id 1> ... <id N-1>
• The cargo contains zero or more bytes
• The end of packet is either an EOP, indicating a normal termination of a packet, or

an EEP, indicating a packet in which an error has occurred.

Note that SpaceWire packets without any cargo, containing only a single EOP, are
possible to transmit with the SpaceWire (SPW2) Module. If the SpaceWire (SPW2)
Module receives such a packet, it will be discarded without any side effects.

10.5.9.3 SpaceWire Transfer Protocol Packet Structure

The structure of the SpaceWire Transfer Protocol is defined in [RMAPID], and it is
used for RMAP and other transfer protocol packets. The SPW2 module supports
structures using non-extended protocol identification as shown in the figures below.

 Destination

Logical Address
Protocol ID Remaining

Header
Data cargo EOP

 Header Data
 1 byte 1 byte 0 – 253 bytes 0 – 16 MiB-1

Figure 10-3 Transfer Protocol packet structure using logical addressing

Destination
Path Address

Destination
Logical Address

Protocol ID Remaining
Header

Data cargo EOP

Header Data
1 – 12 bytes 1 byte 1 byte 0 – 253 –

Path Address
Length bytes

0 – 16 MiB-1

Figure 10-4 Transfer Protocol packet structure using path addressing
Where:
• The path address consists of a list of zero or more bytes, called path address: <path

address> = <id 0><id 1> ... <id N-1>, they are stripped of the packet during its path
through a routed network and only the logical address remains when the packet
arrives at its destination node.

• The Logical Address consists of one byte.
• The Protocol ID consists of one byte.
• The cargo contains zero or more bytes of header and/or data. The SPW2 receiver

limits the minimum packet size (header + data) to 4 bytes, and the SPW2 transmitter
limits the maximum header size to 255 bytes.

• The end of packet is either an EOP, indicating a normal termination of a packet, or
an EEP, which might appear before the nominal EOP position, indicating a packet in
which an error has occurred.

120

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.5.9.4 SpaceWire Transfer Protocol RMAP packet structure

The supported packet structures for the RMAP SpaceWire transfer protocol, using
Protocol ID equal to 0116, are shown in the paragraphs below.

 Destination

Logical
Address

Protocol ID Remaining
RMAP
Header

Optional RMAP
Data and Data
CRC

EOP

 Header Data
 1 byte 1 byte Command or

Response
specific size
(6 – 26 bytes)

0 –16 MiB-1

Figure 10-5 RMAP Transfer Protocol packet structure using logical addressing

Destination
Path Address

Destination
Logical
Address

Protocol ID Remaining
RMAP
Header

Optional RMAP
Data and Data
CRC

EOP

 Header Data
1-12 bytes 1 byte 1 byte Command or

Response
specific size
(6 – 26 bytes)

0 –16 MiB-1

Figure 10-6 RMAP Transfer Protocol packet structure using path addressing
Note that a zero byte data cargo for read or write commands is allowed.

10.5.9.4.1 RMAP Write Command format

The write command:
Dest. Path Addr Dest. Path Addr Dest. Path Addr Dest. Path Addr
Dest. Path Addr Dest. Path Addr Dest. Path Addr Dest. Path Addr
Dest. Path Addr Dest. Path Addr Dest. Path Addr Dest. Path Addr
Dest. Logical Addr Protocol ID Command & Type Dest. Device Key
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Logical Addr Transaction ID (MS) Transaction ID (LS) Extended Addr
Addr (MS) Addr Addr Addr (LS)
Data length (MS) Data length Data length (LS) Header CRC8
Data Data Data Data
Data Data Data Data
Data Data CRC8 EOP

Figure 10-7 RMAP transfer protocol packet structure for Write command
Note that the shaded fields are optional and/or can contain a variable number of bytes.
E.g. the amount of Destination Path Address bytes may be any number from 0 to 12.
Note that Header CRC8 is the last byte of the header. Note that the Data CRC8 byte is
not optional.

121

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.5.9.4.2 RMAP Write Response format

The write command response:
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Logical Addr Protocol ID Command & Type Status
Dest. Logical Addr Transaction ID (MS) Transaction ID (LS) Header CRC8
EOP

Figure 10-8 RMAP transfer protocol packet structure for Write response
Note that the shaded fields are optional and/or can contain a variable number of bytes.
E.g. the amount of Source Path Address bytes may be any number from 0 to 12.
Note that there is no data cargo and thus no data CRC in this packet.

10.5.9.4.3 RMAP Read Command format

The read command:
Dest. Path Addr Dest. Path Addr Dest. Path Addr Dest. Path Addr
Dest. Path Addr Dest. Path Addr Dest. Path Addr Dest. Path Addr
Dest. Path Addr Dest. Path Addr Dest. Path Addr Dest. Path Addr
Dest. Logical Addr Protocol ID Command & Type Dest. Device Key
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Logical Addr Transaction ID (MS) Transaction ID (LS) Extended Addr
Addr (MS) Addr Addr Addr (LS)
Data length (MS) Data length Data length (LS) Header CRC8
EOP

Figure 10-9 RMAP transfer protocol packet structure for Read command
Note that the shaded fields are optional and/or can contain a variable number of bytes.
E.g. the amount of Destination Path Address bytes may be any number from 0 to 12.
Note that there is no data cargo and thus no data CRC in this packet.

10.5.9.4.4 RMAP Read Response format

The read command response:
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Path Addr Source Path Addr Source Path Addr Source Path Addr
Source Logical Addr Protocol ID Command & Type Status
Dest. Logical Addr Transaction ID (MS) Transaction ID (LS) Reserved = 0
Data Length (MS) Data Length DataLength (LS) Header CRC8
Data Data Data Data
Data Data Data Data
Data Data CRC8 EOP

Figure 10-10 RMAP transfer protocol packet structure for Read response
Note that the shaded fields are optional and/or can contain a variable number of bytes.
E.g. the amount of Source Path Address bytes may be any number from 0 to 12.
Note that Header CRC8 is the last byte of the header. Note that the Data CRC8 byte is
not optional.

122

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.5.9.4.5 Command and Type field

The Command & Type field used in the RMAP command and response headers:
Command & Type

 Packet Type Command
7 6 5 4 3 2 1 0

Reserved Command Write Verify Data Ack Increment Source Path Addr Len

0 1
MSB LSB

Field: Value Description
Source Path Addr
Len

002
012
102
112

No Source Path Addr Words
One Source Path Addr Word
Two Source Path Addr Words
Three Source Path Addr Words
(Leading bytes equal to zero are removed. But if Source Path
Addr Len /= 0 and all bytes of the Source Path Address are zero,
a single byte is kept.)

Increment 1
0

Increment Address (Data are written to consecutive addresses)
Non-Incrementing Address (Data are written to the same address.
Not supported by protocol handler.)

Ack 1
0

Acknowledge: Send Response.
 NoAcknowledge: Don’t send a Response
(NoAcknowledge is only possible for write commands.)

Verify Data 1

0

Check data CRC before writing. Only supported for 4 bytes
word-aligned by hardware protocol handler. (Commands of other
sizes or with mis-aligned addresses are rejected.)

Don’t check data CRC before write.

Write 1
0

Write command
Read command

Command 1
0

The header is a command header.
The header is a response header. Packet is passed on to software.

Reserved 0 Must always be 0.

Note that commands of formats not supported by the RMAP hardware implementation
in the SpaceWire (SPW2) Module (like e.g. Non-Incrementing Address) are passed on
to the software if the RMAP hardware support is turned off, provided that software
support for transfer protocols is enabled.

For more details on RMAP see 10.6.4.

123

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.5.9.4.6 Extended Address field

The Extended Address field as supported by the RMAP hardware implementation in the
SpaceWire (SPW2) Module:
Extended Address

7 6 5 4 3 2 1 0
- DMA Page

MSB LSB

Field: Value Description
DMA page 00002 -

11112
Extended Address range, i.e. address bits A35:A32 above the
normal 32 bit range

Note that the SpaceWire (SPW2) Module does not support an Extended Address value
above F16. This gives a total address range of 64 GiB.

10.5.9.5 SpaceWire Virtual Channel Transfer Protocol packet structure
(VCTP)

The virtual channel transfer protocol is a legacy SpaceWire packet protocol where the
last byte before the data cargo of a packet contains the virtual channel identification
information.

 Logical

Address
Protocol
ID

Dummy Virtual
Channel ID

Data cargo EOP

 1 byte 1byte 1 byte 1 byte 0 – 16 MiB

Figure 10-11 VCTP transfer protocol packet structure using logical addressing

Path
Address

Logical
Address

Protocol
ID

Dummy Virtual
Channel ID

Data cargo EOP

1-12 bytes 1 byte 1 byte 1 byte 1 byte 0 – 16 MiB

Figure 10-12 VCTP transfer protocol packet structure using path addressing

The Protocol ID used for identifying a VCTP packet is defined in the SPW VC Transfer
Protocol ID Register. The default value is F016.

The Virtual Channel ID indicates on which virtual channel the data shall be stored. The
SPW2 supports a configurable number of independent virtual receive channels
(maximum of 7).

It is strongly recommended that the dummy byte is set equal to the virtual channel
identifier, i.e. a copy. This allows the dummy byte to represent the VCID if the packet is
trapped in the SPW First Failing Packet Register of a SpaceWire (SPW2) Module,
where only the first 3 bytes of a received packet are stored.

Note that at least one byte must be present in the data cargo. If not, then an early EOP
error indication is generated in the receiver.

124

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.5.9.6 Transmitter Send List entry structure

The Virtual Transmit Channels, TxVC[$], use send lists to define what data is to be
transmitted. A send list contains one or more send list entries, as defined hereafter.

SPW Send List entry

Byte
offset

 31 28 27 26 25 24 23 8 7 0

016 Header Page - Header Type - Header Size
416 Header Address
816 Data Page - Data Type Data Size
C16 Data Address

 MSB LSB

Field: Value: Description:
Header Page 0 - 15 Header Page Address, i.e. address bits A35:A32 enabling 64 Gbyte

addressing space
Header Type 002

012-112

Send header and attach data without EOP in-between.
(Note that automatic RMAP checksum is not supported since the routing
byte(s) is included in header but should not be included in the checksum.)
Illegal values. (Will be handled as 002 by the SPW2.)

Header Size 0 – 255 Header size in bytes

Header
Address

0 – 4 GiB -1 Header start address, (byte address).

Data Page 0 – 15 Data Page Address, i.e. address bits A35:A32 enabling 64 Gbyte
addressing space

Data Type 002
012

102-112

Nominal or RMAP read command, puts EOP at the end. No data CRC.
RMAP write command, CRC checksum is generated over the data and is
put at the end followed by EOP.
Illegal values. (Will be handled as 002 by the SPW2.)

Data Size 0 – 16 MiB -1 Data size in bytes

Data Address 0 – 4 GiB -1 Data start address, (byte address)

Figure 10-13 Send list entry structure

Note that the send list elements must be word aligned.

10.5.10 Applicable Documents

 [DERATE] Derating Requirements applicable to electronic, electrical and
electro-mechanical components for ESA space systems
ESA PSS-01-301, Issue 2

[ESA_DAR] ESA ASIC Design and Assurance Requirements
QC/172/RdM, Issue 1, June 1992

[CCSDS] Packet Telemetry Standard,
PSS-04-106, Issue 1

[SPW] ECSS-E-STD-50-12C Space Engineering,
SpaceWire – Links, Nodes, Routers and Networks

[RMAPID] ECSS-E-ST-50-50C SpaceWire protocol identification
[RMAP] ECSS-E-ST-50-51C SpaceWire - Remote memory access

protocol
[AMBA] AMBA Specification, Rev 2.0
[SPW2] SpaceWire (SPW2) Module Specification,

125

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

P-ASIC-SPC-00113-SE

10.5.11 Reference Documents

[ESA_DMR] ESA ASIC Design and Manufacturing Requirements
WDN/PS/700, Issue 2, October 1994

[CODEC_Desc] SpaceWire CODEC VHDL Functional Description,
Issue 1.2, 3-March-2004

[CODEC] SpaceWire CODEC VHDL User Manual,
Issue 1.1, 19-April-2004

126

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6 Functional behaviour
This section describes the SpaceWire (SPW2) Module software interface. The
description is divided into subsections, which treats different parts of the SpaceWire
(SPW2) Module.

The description is divided into:
- General

Short introductory description of the SPW2 module
- SpaceWire link

Describes the low level handling of the SpaceWire link
- SpaceWire transfer protocol support in the receiver

Describes protocol identification and support enabling
- Remote Memory Access Protocol (RMAP)

Describes the handling of incoming RMAP commands
- Virtual Receive Channels, RxVC

Describes the handling of incoming VCTP packets
- Virtual Transmit Channels, TxVC

Describes the handling of send lists and transmission of VCTP packets and
RMAP commands

- Time-Codes
Describes the handling of time-codes

- First Failing Packet Register
Describes the handling of the First Failing Packet Register

- SpaceWire CODEC
Describes the handling of the SpaceWire CODEC

- Initialisation
Describes the initialisation sequence for the module

- Operation/Usage
Describes how the module shall be used during normal operation

- Error Handling
Describes how to handle internal errors in the module, e.g. address error.

- Usage Constraints
Describes actions that are not allowed and the resulting consequences.

- Examples
Gives a few examples how to perform different tasks using the module.

- Interrupt Handling
Describes the interrupt handling of the module

10.6.1 General

The SpaceWire (SPW2) Module comprises receive and transmit capabilities supporting
several protocols. The core of the module is the SpaceWire link codec, described in
[CODEC], which implements the low level SpaceWire protocol receive and transmit
handling. On packet level the receiver implements two transfer protocols in hardware
and provides support for processing of other unknown protocols in software.

127

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

The receiver comprises an identification stage which identifies the different transfer
protocols and routes the data to the corresponding handler. The identification is based
on the Protocol Identifier concept described in [RMAPID]. During the identification
several types of error conditions can be detected and are reported in the First Failing
Packet Register, described in 10.6.8. This register is also used for reporting errors
detected during the reception of the rest of the packet.

After the identification, the incoming packet is handled by one of the following:
� Remote Memory Access Protocol (RMAP) handler implemented in hardware, or
� Virtual Receive Channel (RxVC), or
� Other protocols, which are redirected to software.

The Remote Memory Access Protocol (RMAP) protocol is implemented in hardware
with some constraints, as described in 10.6.4.1. Each received command that has passed
the identification process is checked for header checksum consistency and for a
matching Destination Key. Also the data checksum is checked for write commands that
require verification before the command is executed. For all other write commands, the
data is checked in parallel with the execution and a potential error is reported in the
RMAP response if required by the incoming command. Data are read or written from
and to the internal bus using directed memory accesses. An RMAP response is
generated for all read commands and for write commands if so required by the incoming
command. No software support is required for these operations. Any failures logged in
the First Failing Packet Register, described in 10.6.8.

The Virtual Channel Transfer Protocol (VCTP) protocol implements one or more virtual
receive channels (RxVC). The Virtual Channel Identifier in the VCTP header is used for
routing the packet to the corresponding RxVC.

Note that unknown protocols, and RMAP commands and responses, can be routed to a
dedicated virtual receive channel RxVC[0] for further processing. As an additional
service, any RMAP command or response received on RxVC[0] is also checked for
combined header and data checksum errors, which are reported as an interrupts to
software. Any failure is logged in the First Failing Packet Register, described in 10.6.8.

The transmitter comprises one or more Virtual Transmit Channels (TxVC). Any type of
packets can be transmitted using these channels. The transmitters provide support for
data checksum generation for RMAP commands and responses.

The SpaceWire (SPW2) Module is able to perform simultaneous transfers as described
hereafter:
� Transmit an RMAP command and simultaneously receive an RMAP response.
� Receive, verify and execute an RMAP command, and simultaneously start

transmitting an RMAP response if so required by the command.
� Transmit an RMAP command and simultaneously receive a Virtual Channel

Transfer Protocol packet, VCTP.
� Receive, verify and start executing an RMAP command, and simultaneously

transmit a Virtual Channel Transfer Protocol packet, VCTP.
� Transmit a Virtual Channel Transfer Protocol packet, VCTP, and simultaneously

receive an RMAP response.
� Transmit an RMAP response and simultaneously receive a Virtual Channel Transfer

Protocol packet, VCTP.

128

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

� Simultaneously receive and transmit Virtual Channel Transfer Protocol packets,
VCTP.

� Receive, verify and execute an RMAP command, and simultaneously transmit an
RMAP command to another node.

� Transmit an RMAP response, and simultaneously receive an RMAP response to a
previously transmitted RMAP command.

There are no known limitations to the simultaneous receive and transmit capabilities of
the SpaceWire (SPW2) Module.

10.6.2 SpaceWire Link

The SpaceWire link is implemented using the University of Dundee SpaceWire
CODEC, which implements low level transmission and reception over the SpaceWire
link.

The SpaceWire CODEC contains a Link Interface Control State Machine, referred to as
LICSM, that controls the overall operation of the link interface. The LICSM provides
link initialisation, normal operation and error recovery services.

The SpaceWire CODEC contains status and configuration signals that are read and set
via the internal register bus. Time-codes to be received or transmitted by the SpaceWire
CODEC are read or written via registers. The detailed description of the SpaceWire
CODEC can be found in [CODEC].

10.6.2.1 Link configuration and start-up

Link start-up works as seen in the figure below. Link start and disable is controlled by
the SPW CODEC Configuration Register. Note that when reset this register enables the
auto start mode. This means that the CODEC at start-up will remain in the Ready state,
where the Tx remains reset, until a NULL token is received from the node at the other
end of the link. Thus, it is possible for the SpaceWire link to autonomously start-up
after reset and to allow RMAP commands to be executed without the need for any
interaction from software in the destination node. This also means that for the start-up to
proceed to the Run state, the other node must be set in the LinkStart mode, in which the
transition from Ready to Started takes place without waiting for a NULL token.

129

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

000
ErrorReset

Reset Tx
Reset Rx

001
ErrorWait

Reset Tx
Enable Rx

010
Ready
Reset Tx

Enable Rx

011
Started

Send NULLs
Enable Rx

100
Connecting

Send FCTs or NULLs
Enable Rx

101
Run

Send any character or
control code
Enable Rx

Reset

After 6.4 us

After 12.8 us

Not LinkDis and
(LinkStart or

(AutoStart and got NULL))
Got NULL

Got FCT

Rx error or
got FCT or

got N-char or
got Time-Code

Rx error or
got FCT or

got N-char or
got Time-Code

Rx error or
got FCT or

got N-char or
got Time-Code or

after 12.8 us

Rx error or
got N-char or

got Time-Code or
after 12.8 us

Rx error or
credit error or

LinkDis

Figure 10-14 Space Wire link state diagram

The SpaceWire link is always (if implemented in the system accordingly) able to start-
up at a 10 Mbit/second rate without the need for any configuration by software. This
makes it possible to configure or initialise a destination node after reset using RMAP
commands without the destination node being operational.

10.6.2.2 Link transfer and receive rates

The SpaceWire Module supports full data bandwidth on the receiver and transmitter for
the following clock frequency relations between BusClk and SpwClk:
� SpwClk has a frequency not higher than 2.5 times the BusClk frequency. If this

relation is not fulfilled, the SPW2 will still be functionally correct, but the full
nominal data bandwidth can not be maintained. (Occasional NULL-tokens will be
interspersed with the data.)

Since the SPW2 implements double data rate (DDR) this corresponds to a maximum
SpaceWire transmit bit rate of 5*BusClk [Mbit/second].

The nominal transmit data rate is configured via the SPW Clock Division Register. The
input SpwClk frequency can be divided by a denominator in the range of 0.5 to 32 to
produce the nominal transmit data rate. Note that the DDR implementation only gives a
50/50 duty cycle when an even value is written in SPW Clock Division Register, i.e. for
division rates 0.5, 1.5, 2.5, 3.5 etc, thus affecting signal timing.

The transmit data rate of 10 Mbit/second ± 10%, which is required for a reliable link
start-up, is possible to derive after reset from the SpwClk clock and the clock prescaler,
controlled by the configuration inputs SpwClk10MBit and SpwClkMul. The reset value
of the SPW Clock Division Register corresponds to the link start-up bit rate.

The SpwClkMul configuration input allows for divisions by (1/4, 1/3, 1/2, 1/1).
The SpwClk10MBit configuration input allows for divisions by (1/10, 1/8, 1/6, 1/5, 1/4,
1/3, 1/2, 1/1).

130

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

The configuration inputs SpwClk10MBit and SpwClkMul support the following SpwClk
frequency values:

10, 20, 30, 40, 50, 60, 80, 90, 100, 120, 150, 160, 180, 200, 240, 300 and
320 MHz

Note that 1/4 * 1/10 = 1/40, which would give a SpwClk value of 400 MHz, is not a
legal value, since the SPW Clock Division Register can’t be programmed to a division
rate higher than 32.

A variance of ± 10 % of the above values is allowed, still meeting the SpaceWire link
start-up frequency requirement.

A switch to the nominal transmit data rate is automatically performed when the link
start-up has been completed. After a link disconnection, the link start-up transmit data
rate is automatically used again until the link start-up has been completed. Note that
NULL characters are sent with the nominal transmit data rate after the completion of the
link start-up.

The nominal transmit data rate is changed immediately when a write access is made to
the SPW Clock Division Register. The nominal data rate can be changed without
disrupting the link even after link start-up.

10.6.2.3 Link status

The SPW CODEC Status Register reflects the state of the CODEC. Note that all fields
except LinkState, TxParked and RxParked are included for debug purposes only, and
should not be used in normal operation.

The detected link interface errors are issued as interrupts after the corresponding events
are reported from the SpaceWire CODEC and are reported in the SPW Link Interrupt
Status Register. See 10.7.1.1 for details.

10.6.3 SpaceWire transfer protocol support in the receiver

The receiver in the SpaceWire (SPW2) Module supports the Protocol Identification
process defined in [RMAPID]. The identification is performed on all data received over
the SpaceWire link, and the result is used for routing the incoming data to the
corresponding protocol handler. Note that the SpaceWire (SPW2) Module does not
support any type of protocol based on other kinds of protocol identification concepts.
However, the Protocol Identification process can be bypassed by setting the SPW RxVC
Config Register [0].ForceUnk, thus causing all packets of four bytes or more to be
treated as an unknown transfer protocol (see 10.6.5).

The following SpaceWire Transfer Protocols are explicitly identified by the hardware:
� Virtual Channel Transfer Protocol, VCTP, the default Protocol ID being F016.
� RMAP Transfer Protocol, Protocol ID being 0116. Note that this Protocol ID is

reserved for RMAP, even if RMAP support is turned off in the module, and should
never be used for e.g. VCTP.

Unknown protocols, i.e. protocols not explicitly identified by hardware, are redirected
to softwre via RxVC[0].

131

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

The Virtual Channel Transfer Protocol supports one or more virtual channels. A virtual
channel identifier is used for identifying the corresponding virtual channel. A virtual
channel identifier of zero is not allowed, as explained below, neither are virtual channel
identifiers above 7.

A special case is the virtual channel RxVC[0] which is used for the reception of other
transfer protocols than VCTP. This includes RMAP commands and responses.

Received RMAP commands are either handled by a protocol handler in hardware, or
forwarded to virtual receive channel RxVC[0] for further software processing.

Received RMAP responses are also forwarded to virtual receive channel RxVC[0] for
further software processing.

Note that the virtual receive channel RxVC[0] is always implemented, even if no
RMAP hardware handler is implemented. Note that when the RMAP hardware handler
is implemented, the dedicated virtual transmit channel TxVC[0] is also implemented.
This virtual transmit channel is used for automatic RMAP response generation and
cannot be accessed by the software. In the transmit bandwidth arbitration, TxVC[0] has
priority over any other TxVC[$] channel. TxVC[0] can however not starve the other
TxVC[$] channels, since there is always time to transmit on the other channels while an
RMAP command is being received.

10.6.3.1 Enabling of protocol support

Enabling of the Virtual Channel Transfer Protocol, VCTP, support is performed
individually per virtual channel and is described in more detail in 10.6.5.1. The only
input used for the identification processes is whether a virtual receive channel is
implemented and if it is enabled by software.

Enabling of the Remote Memory Access Protocol, RMAP, support is performed in two
ways:
� Enabling of hardware supported RMAP
� Enabling of software supported RMAP

Enabling of RMAP command support in hardware is done by means of the SPW RxVC
Config Register[0].RMAPEn bit. This enables both hardware execution of RMAP
commands and hardware generation of the corresponding RMAP responses. The reset
value for this bit is RMAP enabled for both modules. It is thus possible to disable
hardware handling of RMAP commands during operation.

Enabling of RMAP command and response support in software is done by means of the
SPW RxVC Config Register[0].When enabled, all RMAP commands that are not
handled by the RMAP command support in hardware, see 10.6.4.1 for details, are
forwarded to RxVC[0] for further software processing. Note that if the RMAP
command support in hardware is not enabled or implemented, then all RMAP
commands can still be forwarded to RxVC[0]. When enabled, all RMAP responses are
forwarded to RxVC[0] for further software processing. Software handling is by default
disabled at reset.

If neither hardware nor software RMAP support is enabled, the Spw2 will auto-generate
responses when required, giving Authorisation Error.

132

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Enabling of support for unknown transfer protocols is done in the same way as for
software support for RMAP commands and responses, using the same resources.

10.6.3.2 Identification of received protocol

The SpaceWire (SPW2) Module identifies an incoming packet using the first bytes of
the packet. The identification is only performed when four bytes have been received. No
identification will take place if an EOP or EEP has been detected before this, and the
packet will be rejected with a header error being reported. Packets with no data,
containing only a single EOP or EEP, do not trigger the identification process and are
discarded without any error being reported.

The following steps are performed during the identification:
1. Check exact match of the first byte (DLA) with the internally programmed DLA.
2. Check the second byte (Protocol ID).
3. Check the third byte, if applicable, for a valid RMAP command
4. Check fourth byte, if applicable, for a valid VCID.
5. Reject and discard the packet and issue an interrupt, if no enabled RxVC[$],

RxVC[0] or RMAP hardware handler could be identified.

The identification process results in one of the following:
� The received packet belongs to the VCTP protocol and is forwarded to the

corresponding RxVC[$] channel when it is implemented and enabled;
� The received packet is a hardware supported RMAP command, and is forwarded to

the RMAP handler when it is enabled;
� The received packet is a RMAP command not supported in hardware, or the

hardware is disabled, and is forwarded to RxVC[0] when it is enabled;
� The received packet belongs to an unknown protocol, or forced unknown protocol

interpretation is configured through SPW RxVC Config Register [0].ForceUnk, and
is forwarded to RxVC[0] when it is enabled;

� The received packet is rejected, and all data is discarded until the next EOP or EEP.

The SpaceWire (SPW2) Module rejects packets:
� If the packet DLA does not match the corresponding programmable field in the SPW

RxVC Config Register[0]. Note that for RMAP commands a response will be
generated if the packet is otherwise correct and an ackowledge is requested; and a
received RMAP response will be stored if enabled for RxVC[0]. DLA is not
checked if forced unknown protocol interpretation is configured.

� If the packet Protocol ID does not correspond to neither RMAP nor VCTP, and no
software handling is enabled for RxVC[0].

� If the packet belongs to the VCTP protocol and has a virtual channel address that is
outside the implemented or allowed range, or if the virtual channel is disabled.

� If the RMAP command byte is either illegal, or not supported in hardware, and no
software handling is enabled for RxVC[0].

Errors are reported in the First Failing Packet Register and SPW Link Interrupt Status
Register, described in detail in 10.6.8 and 10.7.1.1.

133

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Note that the identification process is always performed, even if no hardware support
for RMAP commands is implemented or enabled. The continued checking of the full
RMAP header is done by the RMAP handler in either hardware or software. E.g. the
Destination Key is checked by hardware in hardware supported commands, and by
software in software supported commands (see 10.6.4). The identification is considered
finished after the four first bytes have been examined.

Note that the RMAP command/header CRC checksum need not be correct during the
identification. The CRC checksum is checked subsequently by the RMAP handler in
either hardware or software

134

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

NewPacket
(Req from RXFifo)

No Match

ID=240

Packet IDentification

Check DLA
Exact Match = DLA register
(254 default)

Virtual Channel
(VC)

Single EOP/EEP

Match

Check ID

ID = 1 => RMAP transfer protocol
ID = 240 => VC transfer protocol
ID= other => To SW if enabled

Remove
EOP/EEP

FFPR +
Flush

DLAErr
HeadErr

EOP/EEP in first word

FFPR +
Flush

PtclIDErr

ID(Other)
to SW

ID=1

RMAP
(Cmd byte)

AuthErr
HeadErr

VC not supp/disabled

ID(Other)
NoSW

VC=OK

Activate
RxVC(VC)

Strip DLA,ID &VC

EOP/EEP

No
Transfer byte

Yes

RMAP
Resp

No Strip
(At least 1 data

byte)

EOP/EEP

No
Transfer byte

Yes

No HW
support
(type or
enabled)

Cmd HW
supported

Early
EOP/
EEP

Check RMAP Cmd
header

Read all bytes in
header

No

Error

Yes

Header
OK

Execute

WriteData

EOP/EEP or
Blockend

No

Transfer byte

Yes OK

All channels
Inactive

FFPR +
Flush

Illegal or
neither

HW nor SW
support

Activate RxVC(0)

FFPR +
Flush +

Generate
Response

No Match
and ID = 1

Yes Error

RMAP
Resp

Figure 10-15 Receiver packet identification and qualification flow diagram

135

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.4 Remote Memory Access Protocol (RMAP)

10.6.4.1 Hardware supported RMAP commands

The SpaceWire (SPW2) Module supports in hardware the Remote Memory Access
Protocol [RMAP] with the following constraints:
� Increment Address setting only, with no support for No-Increment Address setting.
� Extended Address support, using the 4 least significant bits only (thus limiting the

address range to 2(32+4)=64 GiB).
� Verified Write commands only for 4 byte block sizes and with word-aligned

addressing.
� No Read-Modify-Write command support.

The following RMAP commands are handled in hardware when enabled:
� Read commands with Incrementing Address, an Extended Address less or equal to

0F16, and a mandatory acknowledge request.
� Write commands with Incrementing Address, an Extended Address less or equal to

0F16, and with or without an acknowledgement request.
� Verified-Write commands with Incrementing Address, an Extended Address less or

equal to 0F16, with exactly a 4 byte block size, with word-aligned addressing, and
with or without an acknowledgement request.

The SpaceWire (SPW2) Module supports in hardware only Big-Endian Byte and
HalfWord to/from Word conversions. I.e. first byte at address zero is written to bit
positions (31:24) in a Word and fourth byte at address 3 is written to bit positions (7:0)
in the same Word. Little-Endian conversion is not supported.

10.6.4.2 Software supported RMAP commands and responses

Since the protocol identification described in 10.6.3.2 is performed only on the four first
bytes of a packet, only the Type and Command field byte is used for determine which
commands can be handled in hardware and which should be forwarded to memory for
further software processing, provided that this support is enabled.

The following RMAP commands are therefore forwarded to software when hardware
support is enabled:
� Read commands with No-Increment Address setting.
� Write and Verified-Write commands with No-Increment Address setting.
� All Read-Modify-Write commands.

The following RMAP commands are therefore not forwarded to software when
hardware support is enabled and are thus rejected during header verification:
� Any otherwise hardware supported command with and Extended Address value

larger than 0F16.
� Verified Write commands with any other block size than 4 bytes, or with a non-

word-aligned address.

RMAP commands and responses with the Reserved bit of the Command & Type field
set, and RMAP responses with the Ack bit cleared, are rejected and thus not forwarded
to software.

136

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.4.3 Header and data verification

The SpaceWire (SPW2) Module supports command header and data field verification
according to [RMAP], as well as combined response header and data verification which
is used for RMAP commands and responses forwarded to software.

8-bit CRC checking is used for both header and data (implemented as a Galois version
LFSR, with the least significant bit being used first). The generator polynomial is g(x) =
x8 + x2 + x1 + 1. The least significant bit is used first in the CRC generation algorithm as
the SpaceWire protocol sends the least significant bit of a byte first on the link.

Note that the Galois version LFSR generates the result zero if the checksum itself is
included in the generation. This characteristic allows the calculation of a checksum over
the header field, the header checksum, and the data field, which should match the
checksum calculated over the data field alone. Note also that the checksum is only
calculated for the bytes received at the destination, i.e. the eventual Destination Path
Address bytes (which are stripped off along the way) are not included.

76543210

X^8X^7X^3 X^4 X^5 X^6X^2X^1X^0

Ser
Out

+

++

Ser
In

D0D1D2D3D4D5D6D7

Parallel Out
(after 8 shifts)

Figure 10-16 Galois LFSR implementation of CRC8 polynomial

Here is an implementation example of a CRC computation table in C:

static natural8 RMAP_CRCTable[256] = {
 0x00, 0x91, 0xe3, 0x72, 0x07, 0x96, 0xe4, 0x75,
 0x0e, 0x9f, 0xed, 0x7c, 0x09, 0x98, 0xea, 0x7b,
 0x1c, 0x8d, 0xff, 0x6e, 0x1b, 0x8a, 0xf8, 0x69,
 0x12, 0x83, 0xf1, 0x60, 0x15, 0x84, 0xf6, 0x67,
 0x38, 0xa9, 0xdb, 0x4a, 0x3f, 0xae, 0xdc, 0x4d,
 0x36, 0xa7, 0xd5, 0x44, 0x31, 0xa0, 0xd2, 0x43,
 0x24, 0xb5, 0xc7, 0x56, 0x23, 0xb2, 0xc0, 0x51,
 0x2a, 0xbb, 0xc9, 0x58, 0x2d, 0xbc, 0xce, 0x5f,
 0x70, 0xe1, 0x93, 0x02, 0x77, 0xe6, 0x94, 0x05,
 0x7e, 0xef, 0x9d, 0x0c, 0x79, 0xe8, 0x9a, 0x0b,
 0x6c, 0xfd, 0x8f, 0x1e, 0x6b, 0xfa, 0x88, 0x19,
 0x62, 0xf3, 0x81, 0x10, 0x65, 0xf4, 0x86, 0x17,
 0x48, 0xd9, 0xab, 0x3a, 0x4f, 0xde, 0xac, 0x3d,
 0x46, 0xd7, 0xa5, 0x34, 0x41, 0xd0, 0xa2, 0x33,
 0x54, 0xc5, 0xb7, 0x26, 0x53, 0xc2, 0xb0, 0x21,
 0x5a, 0xcb, 0xb9, 0x28, 0x5d, 0xcc, 0xbe, 0x2f,
 0xe0, 0x71, 0x03, 0x92, 0xe7, 0x76, 0x04, 0x95,
 0xee, 0x7f, 0x0d, 0x9c, 0xe9, 0x78, 0x0a, 0x9b,
 0xfc, 0x6d, 0x1f, 0x8e, 0xfb, 0x6a, 0x18, 0x89,
 0xf2, 0x63, 0x11, 0x80, 0xf5, 0x64, 0x16, 0x87,

137

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

 0xd8, 0x49, 0x3b, 0xaa, 0xdf, 0x4e, 0x3c, 0xad,
 0xd6, 0x47, 0x35, 0xa4, 0xd1, 0x40, 0x32, 0xa3,
 0xc4, 0x55, 0x27, 0xb6, 0xc3, 0x52, 0x20, 0xb1,
 0xca, 0x5b, 0x29, 0xb8, 0xcd, 0x5c, 0x2e, 0xbf,
 0x90, 0x01, 0x73, 0xe2, 0x97, 0x06, 0x74, 0xe5,
 0x9e, 0x0f, 0x7d, 0xec, 0x99, 0x08, 0x7a, 0xeb,
 0x8c, 0x1d, 0x6f, 0xfe, 0x8b, 0x1a, 0x68, 0xf9,
 0x82, 0x13, 0x61, 0xf0, 0x85, 0x14, 0x66, 0xf7,
 0xa8, 0x39, 0x4b, 0xda, 0xaf, 0x3e, 0x4c, 0xdd,
 0xa6, 0x37, 0x45, 0xd4, 0xa1, 0x30, 0x42, 0xd3,
 0xb4, 0x25, 0x57, 0xc6, 0xb3, 0x22, 0x50, 0xc1,
 0xba, 0x2b, 0x59, 0xc8, 0xbd, 0x2c, 0x5e, 0xcf,
};
Computation of the CRC of Data(1 to M) should be done as follows:
CRC(0) = 0
CRC(N) = RMAP_CRCTable[CRC(N-1) xor Data(N)], for N = 1 to M

10.6.4.3.1 Hardware supported RMAP commands

When the hardware support is enabled, the SpaceWire (SPW2) Module automatically
verifies the command header and data CRC according to [RMAP] for all hardware
supported commands as follows:
� Check header CRC checksum for RMAP command.
� Check data CRC checksum for RMAP command.
� Reject the RMAP command if the header CRC checksum is erroneous.
� Reject the RMAP command if the data CRC checksum is erroneous for a Verified-

Write command.
� Reject superfluous write data in case of late EOP or EEP.

When the hardware support is enabled, the SpaceWire (SPW2) Module automatically
generates the RMAP response header and data CRCs according to [RMAP], for the
hardware supported commands only.

10.6.4.3.2 Software supported RMAP commands and responses

The SpaceWire (SPW2) Module automatically verifies the combined command header
and data CRCs for non-hardware supported commands as follows:
� Check CRC for the complete RMAP command, as calculated over header, header

checksum and data.
� Issue the CRCDataErr Interrupt if the total checksum is not correct and RMAP

software handling is enabled. The interrupt is issued after all data have been stored
to memory.

� Remove the data CRC checksum byte before the command is stored in memory for
further software processing. Note that the header CRC is not removed, even in read
commands.

The SpaceWire (SPW2) Module automatically verifies the combined response header
and data CRCs as follows:
� Check CRC for the complete RMAP responses, as calculated over header, header

checksum and data.
� Issue the CRCDataErr Interrupt if the total checksum is not correct and RMAP

software handling is enabled. The interrupt is issued after all data have been stored
to memory.

138

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

� Remove the data CRC checksum byte before the response is stored in memory for
further software handling.

Note that the RMAP response headers cannot be checked explicitly, as the position of
the checksum is unknown to the hardware. Note that verification of the data consistency
for other transfer protocol cannot be performed since the protection algorithms are
unknown.

10.6.4.4 Destination Key verification

When the hardware support is enabled, the SpaceWire (SPW2) Module supports the
RMAP command Destination Key for hardware supported command as follows:
� An exact match between the RMAP command Destination Key field and the SPW

RMAP Destination Key Register (default 0016) must occur for an RMAP command
to be executed.

� If an incoming RMAP command with a non-matching Destination Key arrives, the
RMAP command is rejected during the header check and the Invalid Destination
Key error response is generated when a reply is requested by the incoming RMAP
command.

10.6.4.5 RMAP responses

The SpaceWire Module generates automatically RMAP responses according to
[RMAP] for commands executed by the hardware. Responses are only generated if an
acknowledgement is requested in the received RMAP command.

The SpaceWire Module generates the following errors in accordance with [RMAP]:
� RMAP Command not supported:

RMAP Command field combination unused according to [RMAP].
� Invalid destination key:

If there is not an exact match of the destination key field.
� General error code:

If error during data transfer to internal bus, e.g. due to illegal address or data
protection error detected on internal bus.

� Invalid data CRC:
If RMAP data CRC error.

� Early EOP: If early EOP in data, i.e. EOP has been received with less data than
expected from the RMAP command header.

� Cargo Too Large: If late EOP or EEP in data, i.e. EOP or EEP has been
received with more data than expected from the RMAP command
header..

� Early EEP: If early EEP in data, i.e. EEP has been received with less data than
expected from the RMAP command header.

� Authorisation error:
If RxVC Config Register[0].RMAPEn and RxVC Config
Register[0].RXEn are disabled, or if RxVC Config
Register[0].RMAPEn and RxVC Config Register[0].TrPtclSW are
disabled. I.e. either hardware or software support, or both, are disabled
for the specific RMAP command. Or if a command was supposed to
be handled by hardware, based on the Command & Type field, but
was later found to be not supported; e.g. verified write to a mis-
aligned address.

139

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

� Invalid destination logical address:
If header CRC decoded correctly but non-matching DLA.

The SpaceWire (SPW2) Module generates RMAP responses as follows:
� The common Tx DMA channel (which is shared with the virtual transmit channels)

is used for RMAP responses,.
� In case a DMA error occurs when reading data via the Tx DMA; an EEP is inserted

and the DMA is released.

No RxVC interrupts are issued when an RMAP command is rejected, since it is up to
the RMAP source to handle this situation using the RMAP response information. The
PktRej interrupt is issued, though, every time the SPW First Failing Packet Register is
triggered.

10.6.5 Virtual Receive Channels, RxVC

The Virtual Channel Transfer Protocol, VCTP, implements Virtual Receive Channels,
RxVC[$]. Each virtual channel allows transfers from the SpaceWire link to its own
programmable area in memory. This area constitutes a memory buffer and can be
located anywhere in memory. Access to the memory area is performed by means of
direct memory access. Each virtual receive channel features a set of DMA handling
registers, which are used for configuring, controlling and monitoring the virtual channel.

A channel is individually enabled and triggered by software via the DMA handling
registers. The selection of the virtual channel to which the received data from the
SpaceWire link is to be routed is made using the Virtual Channel Identifier, VCID. An
incoming packet is matched to fit into any of the triggered and enabled channels and if a
match occurs a data transfer to memory starts. The matching is done during the
identification of the packet, as previously described.

For each incoming packet, the four first bytes are stripped and the remainder of the
packet is stored in the memory buffer consecutively until a halt event occurs (i.e. a
predefined number of packets are received, an upper buffer boundary is reached or an
error occurs). The channel then has to be re-triggered to continue its operation. The
concept of triggering is essential as incoming packets otherwise could stall the
SpaceWire network from the source to the destination, including any pending RMAP
commands.

A virtual channel identifier of zero is not allowed for the virtual channel transfer
protocol, VCTP, as explained below, neither are virtual channel identifiers above 7 (or
less if so configured at module instantiation).

An additional virtual receive channel, RxVC[0], is provided for the handling of the
RMAP transfer protocol and for any future transfer protocols. The RxVC[0] virtual
receive channel is treated in the same way as the virtual channels described above,
except that the first four bytes of a packet are not stripped.

The dedicated RxVC[0] is used for the following purposes:
� For all RMAP responses
� For any RMAP command not supported in hardware (or for all RMAP commands

when hardware support is not enabled).
� For all unknown transfer protocols.

140

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Note that RMAP commands that are supported by hardware do not use RxVC[0].

When SPW RxVC Config Register [0] .WordAlign is cleared, the first byte of a packet
is written at the address directly after the last byte of the previous one. Bytes outside a
packet with mis-aligned start or end will not be modified. When the bit is set, the end of
every packet is padded (with arbitrary content) up to the closest 32-bit word boundry;
i.e. the first byte of a packet will always be word-aligned.
 The last byte of a packet will always be written before, and never simultaneously
with, the first byte of the next. I.e. if a packet ends in mid-word and the next packet
arrives directly after, the word will still be accessed at least twice.
 Four consecutive bytes of the same packet will, if word-aligned, be written in a single
word access.
 When possible the SPW2 will perform burst writes in order to preserve internal bus
bandwidth.

10.6.5.1 Configuration

The Virtual Channel Transfer Protocol, VCTP, uses a Protocol Identifier equal to the
SPW VC Transfer Protocol ID Register, the default value being F016.

Each virtual receive channel, RxVC[$], provides the following configurability through a
set of registers, see 10.7.1.6 for details :
� An RxVC Enable/Disable bit.
� An RxVC Word Alignment Enable/Disable bit.
� An RxVC DMA Base Address and an RxVC DMA Page Address, supporting up to 64

Gbyte addressing space.
� An RxVC DMA Block Size and a counter, RxVC DMA Offset, supporting blocks of

up to 16 Mbytes-1.
� An RxVC Packet Count Trigger configuring the number of packets to be received

before finalising a block transfer.

10.6.5.2 Status

Each virtual receive channel, RxVC[$], provides the following status monitoring:
� An RxVC Current Packet Status Register that holds the present packet start address,

which can be used for recovery purposes if packet reception fails.
� An RxVC Status Register indicating the present packet count position, whether the

RxVC channel is triggered (started), and whether the channel is active (transfer
ongoing).

10.6.5.3 Interrupts

When a valid RxVC[$] has been identified and the selected channel has started the
handling of the received packet, the RxVC, when triggered, can issue interrupts as
defined in SPW Rx VC Interrupt Status Register [$]. See 10.7.1.6 for details. Further
reception is halted for the virtual channel until re-triggered by software.

141

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.6 Virtual Transmit Channels, TxVC

The SpaceWire (SPW2) Module implements Virtual Transmit Channels, TxVC[$].
Each virtual channel allows transfers from memory to the SpaceWire link. Each
transmitter virtual channel has a uniquely defined send list stored in memory. The send
list entries define what data is to be sent from memory. Each send list entry specifies the
position and size of the header and the position and size of the data to be transmitted.
The SpaceWire (SPW2) Module performs direct memory accesses to read the send list,
header and data to be transmitted. Each virtual transmit channel features a set of DMA
handling registers, which are used for configuring, controlling and monitoring the
channel.

All TxVC are handled by a common DMA handler. The selection of the virtual channel
from which data are to be transmitted on the SpaceWire link is performed by round-
robin arbitration for each send list entry.

Note that for the SPW2 module receiver, a virtual channel identifier of zero is not
allowed for the virtual channel transfer protocol, VCTP, as explained hereafter, neither
are virtual channel identifiers above 7 (or less if so configured at module instantiation).

Note that RMAP responses automatically generated when RMAP hardware support is
enabled utilize a virtual transfer channel that is not under the control of the software.
The RMAP response is included in the arbitration of the SpaceWire link, and has the
highest priority.

Note that TxVC and RxVC are independent and there is no connection between e.g.
TxVC[3] and RxVC[3].

All (read) memory accesses of the TxVC are on word format. When possible the SPW2
will perform burst reads in order to preserve internal bus bandwidth.

10.6.6.1 Configuration

Each virtual transmit channel, TxVC[$], provides the following configurability:
� TxVC Send List Pointer Register, a pointer to the first word in the send list entry

(called current position during transmission).
� TxVC Send List Size Register, the size of send list, counted in number of send list

entries (indicating the remaining size during transmission).
� TxVC Enable/Disable bit

The number of send lists is equal to the number of TxVC channels. The SpaceWire
Module supports send lists containing from 0 element up to 255 elements and send list
locations within a 32 bit addressing range. Note that extended addressing cannot be
used, when defining a send list location, i.e. page address equal to zero is assumed.

A send list entry consists of four words, the first word being the Header Size, Type and
Page word. The fields and usage of the fields is defined in 10.5.9.6.

Note that send list sizes of zero and send list entries with header and/or data sizes being
zero are supported. If both header and data sizes are set to zero, only a single EOP will
be transmitted. If both header and data sizes are set to zero and CRC checksum
generation is enabled, an all-zero byte followed by an EOP will be transmitted.

142

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Direct memory access using word based data width is always used to fetch header or
data.

An example of a send list structure is shown below.

SendList
(Stored in
memory)

1
(1:st SendList Entry)

SendList Handling

HeaderAddress

HeaderSize,Page,Type

DataAddress

DataSize,Page,Type

PathPathPath

DLA ProtID

CRC8
HeaderAddr

Header Addr+Size

Header
Example

(Stored in memory)

D2D1D0

DX

DataAddr Data Addr+Size

Data
Example

(Stored in memory)

TxVC[$] SendList Pointer Reg

SendListPointer
(Stored in TxVC[$]) Current

SendList
Pointer

3

N

TxVC[$] SendList Size Reg

 Figure 10-17 TxVC send list handling

10.6.6.2 Arbitration

The arbitration between virtual transmit channels is performed as follows:
� A new TxVC is arbitrated after each completed transmission of a send list entry.
� The arbitration only takes into account the TxVC[$] that have been triggered.
� The arbitration uses a round robin activation algorithm for the TxVC[$] channels,

except for the RMAP response sent on TxVC[0], which always has the highest
priority.

10.6.6.3 Transmission

The transmission on a virtual transmit channel adheres to the following procedure:

At start of send list:
� After a write access to the SPW TxVC Send List Size Register[$], the SPW TxVC

Status Register[$].ChTrig is set, indicating that the transmission is triggered. This is
only needed when a new send list is started.

For each send list entry:

143

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

� TxVC arbiter defines when an atomic send list entry handling can start by setting
SPW TxVC Status Register[$].ChAct.

� The TxVC[$] uses the SPW TxVC Send List Pointer Register[$] as address and
fetches the first two words of the send list entry (i.e. header address, size, type, and
page) and loads and starts the common DMA handler with this content.

� The header bytes fetched are directly passed on to the TxFIFO for transmission.
Note that both the DMA start address and size can be misaligned and only the
portion starting from DMA start address and the exact number of bytes are
transmitted. A null size is also possible, in which case no bytes are fetched.

� Next, the second part of the send list entry (i.e. data address, size, type, and page)
are fetched, followed by a reload and start of the common DMA handler channel
with this content.

� The data fetched is directly passed on to the TxFIFO for transmission. Note that
both the DMA start address and size can be misaligned and only the portion starting
from DMA start address and the exact number of bytes is transmitted. A null size is
also possible, in which case no bytes are fetched.

� During data fetch, the CRC8 checksum is calculated over the full data transmission.
The result is added after the last data byte transmitted, when the Data Type field is
set to an RMAP write command.

� Finally, an EOP is transmitted.
� The SPW TxVC Send List Size Register[$] is decremented by one.
� The SPW TxVC Send List Pointer Register[$] is incremented by 16.
� The SPW TxVCStatus Register[$].ChAct is then cleared, i.e. allowing the TxVC

arbiter to reassign another channel.

At send list completion:
� When the last send list entry is completed, the TxEOB interrupt is issued and the

SPW TxVC Status Register[$].ChTrig is disabled. Note that this applies even for
zero-length send lists.

Note that there is no automatic generation of the CRC checksum for the header.

10.6.6.4 Status

Each virtual transmit channel, TxVC[$], provides the following status monitoring:
• A TxVC Send List Size Register which indicates the number of remaining packets

in the send list.
• A TxVC Send List Pointer Register which points to the current send list element.
• A TxVC Status Register indicating if the channel is triggered (started), and

whether the channel is active (transfer ongoing).

10.6.6.5 Interrupts

Each TxVC, while transmitting, can issue interrupts as defined in SPW TxVC Interrupt
Status Register [$]. See 10.7.1.7 for details. Further transmission is halted for the virtual
channel.

144

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.7 Time-Codes

The SpaceWire Time-Code is used to support the distribution of system time across a
SpaceWire network. The time-code interface is implemented by the SpaceWire CODEC
and is specified in [CODEC]. The SpaceWire module adds a software interface for
transmitting and receiving time-codes as well as qualifying the generation of an internal
time reference pulse.

The time-code information is carried in a single byte. Six bits of time information are
held in the least significant six bits of the time-code (T0-T5) and the two most
significant bits (T6, T7) contain control flags that are distributed isochronously with the
time-code.

10.6.7.1 Time-Code transmission

A time-code is transmitted over the SpaceWire link when the input signal SpwTxTick of
the SpaceWire Module is activated (caused by an interrupt on the SpaceWire-RTC
common interrupt bus, see 10.6.11.8.1). The time information transmitted is defined by
the SPW Tx Time-Code Register.TxTimeCnt field and the SPW Tx Time-Code
Register.TxCtrl field.

The SPW Tx Time-Code Register.TxTimeCnt is increased by one, modulo 64, before
the new value is transmitted on the SpaceWire Link. It is possible to configure the start
value of the time information (T0-T5) to be transmitted by writing to the SPW Tx Time-
Code Register.TxTimeCnt field.

The SPW Tx Time-Code Register.TxCtrl field only reflects the status of the input signal
SpwTxTimeCtrl of the SpaceWire Module, and contains the control flags (T6, T7).

The TxTime-Code interrupt is issued when the time-code is transmitted.

10.6.7.2 Time-code reception

The received time-code can be read from the SPW Rx Time-Code Status Register,
comprising the time information (T0-T5), and the control flags (T6, T7). The register is
updated for every time-code received, independently of the value.

When time information that has been received with a value exactly one higher, modulo
64, than the previously received time information, which is locally stored in the SPW
Rx Time-Code Register.RxCnt field, a pulse is generated on the SpaceWire Module
output signal SpwRxTick which in turn is connected to the SpaceWire-RTC common
interrupt bus, and the RxTime-Code interrupt is issued.

145

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

TXTime
Code

Counter

SPW
Module

Destination
Node

En
SPWTxTick

Data

TxTime
Code
Reg

Rd/Wr

CODEC

TIME_IN(7:6)

TIME_IN(5:0)

DelayTICK TICK_IN

TIME_IN(7:0)

TICK_OUT

TIME_OUT(7:0)

RXTime
Code
Reg

En

RxTime
Code
Reg

TIME_OUT(5:0)

TIME_OUT(7:6)

DelayTICK

RXTime
Code

Counter +1
=

TIME_OUT

&

SPWRxTick

Rd

Data

RXTime
Code Irq

TXTime
Code Irq

Interrupt

En

SPWRxTimCtrl

SPWTxTimCtrl

Rd

Figure 10-18 Time-Code handling block diagram

146

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.7.3 Alternative Time-code reception

The SPW2 core RxTimeTick signal is connected to the interrupt bus. The tick can thus
be used to latch the counter values in the Timer core, using the above function. The
time-code information can be readout through the SPW Receive Time-Code Status
Register [SPW_RTCSR] in the SPW2 core.

10.6.7.4 Alternative Time-code transmission

Time-code transmission can be peformed in two ways: through software control, using
the SPW SW Transmit Time-Code Register [SPW_SWTTCR], through hardware
control, via the interrupt bus, using the SPW Transmit Time-Code Mask Register
[SPW_TTCMR] and the SPW Transmit Time-Code Register [SPW_TTCR].

The time-code information corresponding to the first of the above events occuring will
be transmitted. Any subsequent event occuring before the time-code has been
transmitted will be ignored. This also applies if the subsequent event is of the same type
as the preceding one.

10.6.7.4.1 Alternative Time-code transmission through software control

The time-code is transmitted as soon as a write access is performed to the SPW SW
Transmit Time-Code Register [SPW_SWTTCR]. The SPW_SWTTCR.TxTimeCtrl
field defines the value of the corresponding time-code control flags (bits T6 and T7) to
be transmitted.

10.6.7.4.2 Alternative Time-code transmission through hardware control

The time-code is transmitted when an interrupt occurs on the interrupt bus and the
corresponding interrupt is not masked by the SPW Transmit Time-Code Mask Register
[SPW_TTCMR]. The TxTimeCtrl field of the SPW Transmit Time-Code Register
[SPW_TTCR] defines the value of the time-code control flags (bits T6 and T7) to be
transmitted.

The mask register, SPW Transmit Time-Code Mask Register [SPW_TTCMR], can be
written and read via the APB bus. A time-code is sent only when an edge is detected on
the filtered interrupt. Any interrupt in the system can be used for initiating time-code
transmission. Note: The SPW2 core TxTimeTick input signal is generated from the
interrupt bus.

The time-code information to be transmitted can be written and read via the APB bus
through the SPW Transmit Time-Code Register [SPW_TTCR].

Note: The SPW_TTCR register has been augmented to allow the
SPW_TTCR.TxTimeCtrl field (i.e. bits 6 and 7) to be written as well. These bits can
thus be controlled via the augmented register instead of being input via discrete inputs
to the SPW2 core.

147

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.8 First Failing Packet Register

The SPW First Failing Packet Register is used for recording failure events during
reception of SpaceWire packets. It is used for all types of transfer protocols and
provides failure information that is either common to all transfer protocols or specific to
a particular transfer protocol.

Most of the failure causes are detected during the Protocol Identification, described in
10.6.3.2, the RMAP command header CRC verification described in 10.6.4.3, and other
failure causes are detected during the data reception as described in 10.6.4.3. As soon as
a failure cause is detected, the remains of the packet are discarded. Note that only one
unique error code is set per packet; if more than one error is found in a packet only the
first detected one is recorded.

The SPW First Failing Packet Register is triggered, if cleared and ready, when a packet
has been rejected and then records the three first bytes of the packet and the cause of the
failure. Note that the three first bytes of every packet received, correct or not, are
continuously saved, and further saving is stopped when a failure occurs.

If less than three bytes have been received, due to an EOP or EEP, the type of exit
character will be stored after the data bytes (EOP=0, EEP=1), and the possible
remaining byte in the SPW First Failing Packet Register will be cleared to zero and the
HeadErr failure cause will be recorded.

The SPW First Failing Packet Register keeps its value after a detected failure until a
read access has been performed to the register. After a read access the function is ready
to once again capture on a failure event.

The SPW First Failing Packet Register contains the following information:
� Destination Logical Address (1:st received byte)
� Protocol Identifier (2:nd received byte)
� Protocol dependent information (3:rd received byte)
� Failure Type, which caused the trigger event (see below).

The contents of the 3:rd received byte is protocol dependent:
� For RMAP commands and RMAP responses, it comprises the Packet Type,

Command and Source Path Address Length fields.
� For VCTP, it comprises the Dummy field.
� For unknown protocols, it comprises the contents of the 3:rd received byte.

Once the protocol identification has succeeded (i.e. the first bytes of a packet were
correct), then erroneous VCTP data transfers or protocol handled by software (RMAP
or unknown) do not trigger the SPW First Failing Register as hardware cannot
distinguish where the header checksum is located or if a data CRC exists. Neither do
EOP or EEP in these cases cause a triggering to occur.

Note that a disconnection of the SpaceWire Link does not trigger the SPW First Failing
Packet Register.

148

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.9 SpaceWire CODEC

The SpaceWire (SPW2) Module is based on the University of Dundee SpaceWire
CODEC. The CODEC implements the SpaceWire link protocol.

The SpaceWire CODEC is responsible for making a connection with the SpaceWire
interface at the other end of a link and managing the flow of data across the link. The
interface transmits and receives SpaceWire characters, which can be link characters (L-
Chars) or normal characters (N-Chars). L-Chars are characters that are used to manage
the flow of data across a link (NULL and FCT). N-Chars are the characters that are used
to pass information across the link (data characters, EOP, EEP and time-codes).

The following subsections define the functional blocks that constitute the SpaceWire
interface.

The SpaceWire CODEC is completely encapsulated by the SpaceWire Module, and all
communication with the SpaceWire CODEC goes through registers and data structures
defined for the SpaceWire Module.

Note that the TxFIFO and the RxFIFO are located outside the SpaceWire CODEC, as
shown in 10.4.4.

10.6.9.1 Initialisation State Machine

The SpaceWire CODEC state machine is responsible for initiating a connection on the
link and performing related synchronisation. The state machine determines its next state
by monitoring receiver signals that indicate the type of characters received and any
receiver errors. The state machine enables the transmitter to send NULL characters,
FCT characters and N-char characters.

10.6.9.2 Receiver

The receiver is responsible for decoding the received data-strobe encoded bit-stream
into SpaceWire characters. The receiver reports the type of characters received and any
errors encountered to the initialisation state machine. The receiver is implemented in
two parts, a decoder that decodes characters in the receiver clock domain and a
synchroniser that synchronises receiver signals to the BusClk clock domain. This
method ensures all receiver outputs are synchronous to the BusClk clock.

10.6.9.3 Receiver Credit Count

The receiver credit counter keeps a record of the buffer space available in the receiver
RxFIFO and the number of characters that have been requested from the link. This
allows the SpaceWire CODEC to implement flow control.

10.6.9.4 Receiver Error Recovery

The receiver error recovery block recovers the receiver credit counters and the receiver
RxFIFO after an error occurs. After an error an EEP marker is added to the receiver
RxFIFO. The receiver credit counter must be updated because all previously transmitted
FCT characters are discarded at the other end of the link due to error recovery.

149

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.9.5 Transmitter

The transmitter is responsible for transmitting L-Chars and N-chars over a link using
data-strobe encoding. The interface state machine determines which type of character
the transmitter can send over the link. The transmitter accepts N-char characters and end
of packet markers from the transmitter TxFIFO. N-char characters are transmitted when
there is data in the TxFIFO and the transmitter has credit to send at least one more N-
char. The transmitter sends an FCT character for each block of space for eight N-chars
in the receive RxFIFO. As the host system reads out data from the receive RxFIFO the
transmitter sends more FCT characters to indicate that the receiver has room to receive
eight more N-chars. The transmitter sends NULL characters when there is no other
information to send.

10.6.9.6 Transmitter Clock Generator

The transmitter clock enable generator is responsible for generating the variable
transmitter bit rate and default data signalling rate dependent on the configuration.

10.6.9.7 Transmitter Credit Counter

The transmitter credit counter holds a count register that indicates the number of
SpaceWire N-char characters that can be sent along the link.

10.6.9.8 Transmitter Error Recovery

The transmitter error recovery module recovers the transmitter TxFIFO after an error
occurs. In a network situation the first byte of a packet is interpreted as the packet
address, therefore the error recovery block reads from the transmitter TxFIFO until the
next end of packet marker is read from the TxFIFO. The transmitter is allowed to start
up when error recovery is taking place but the transmitter is prevented from reading
from the transmit TxFIFO until error recovery is complete.

10.6.9.9 CODEC interconnections

The SpaceWire (SPW2) Module includes the University of Dundee SpaceWire
CODEC. The CODEC is connected internally to the rest of the SpaceWire (SPW2)
Module using buffer memory.

On the receiver side, four levels of buffering are used.
� The first FIFO, the RxFIFO, is directly controlled by the CODEC and has byte

width. The SpaceWire Credit Count is defined using this RxFIFO.
� The second FIFO is a byte-to-word re-formatter used to transfer words between the

SpwClk to BusClk clock domains, with room for 8 bytes. (Byte transfers would limit
the throughput.) Also note that a transfer is initiated at packet end, even if a word
has not been filled yet.

� The third buffer is used for storing RMAP command headers and four bytes of data
cargo, allowing them to be verified, and is also used for other types of transfer,
storing multiple words before transfer.

� The fourth buffer is used for allowing multiple words to be written to memory while
still receiving more data from the previous FIFOs.

150

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Incoming packets are inspected as their header reaches the end of the second level
reciver FIFO. I.e., if the first packet to arrive is directed to an enabled but not triggered
channel, it will remain in the first two FIFOs, blocking the following packets. And if the
first packet to arrive is directed to a disabled or not implemented channel, it will be
flushed out immediately, letting the next packets through.

On the transmitter side, three levels of buffering are used.
� The first buffer is used to allow multiple words to be read from memory before

being transferred to the second FIFO.
� The second FIFO is a word-to-byte re-formatter used to transfer words between the

BusClk and SpwClk clock domains.
� The third FIFO, the TxFIFO, is directly controlled by the CODEC and has byte

width. The SpaceWire Credit Count is defined using this.

Note that there is additional protocol dependent data buffering on both the receiver and
transmitter side before reaching the internal bus. The buffer size figures above should
thus be regarded as estimates, and should never be used for computing exactly the
amount of data located in various buffers at a given time.

151

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.10 Initialisation

10.6.10.1 SpaceWire link configuration

The SpaceWire link is configured at reset to automatically start-up. It is possible to
configure the link not to automatically start-up after a link disconnection. This is done
with the SPW CODEC Configuration Register. See 10.6.2.

10.6.10.1.1 SpaceWire transmit Clock configuration

The SpaceWire link nominal data transfer rate is configured with the SPW Clock
Division Register. The default nominal transfer rate after reset matches the link start-up
transfer data rate, which is configured with configuration inputs. After successful start-
up, the link will use the nominal transfer data rate. The nominal data transfer rate can be
changed during nominal operation. In the case of a link disconnection, the following
link start-up will take place using the link start-up transfer data rate. See 10.6.2.

10.6.10.2 SpaceWire logical address configuration

A SpaceWire node in a SpaceWire network has dedicated logical address when logical
addressing is used. After a typical network start-up, all nodes have a default logical
address of FE16, and explicit path addressing is used to reach each node. The logical
address can then be programmed for each node. When completed, path addressing is not
longer required in the network and only logical addressing is used.

The SpaceWire (SPW2) Module logical address is stored in SPW RxVC Config
Register [0]. Note that although this register is dedicated to RxVC[0], the Destination
Logic Address field is used for all communication to the SpaceWire (SPW2) Module.

10.6.10.3 SpaceWire Virtual Transfer Protocol configuration

The SpaceWire (SPW2) Module implements the SpaceWire Virtual Channel Transfer
Protocol (VCTP). The Protocol Identifier of this protocol is configured using the SPW
VC Transfer Protocol ID Register. The default reset value is such that it falls within the
range of Protocol Identifiers available for general use as defined in [RMAPID].

Each virtual receive channel RxVC[$] can be configured individually whether received
packets should be stored contiguously in memory, or whether the end of each packet is
to be padded up to the closest 32-bit word boundary. Padding is done with unknown
arbitrary content. The configuration is done in the SPW RxVC Config Register [$].

10.6.10.4 RMAP hardware support configuration

The SpaceWire (SPW2) Module implements hardware support for the reception and
execution of Remote Memory Access Protocol (RMAP) commands. The hardware
support is enabled and disabled using the SPW RxVC Config Register [0].

152

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

The RMAP protocol provides a Destination Key in the RMAP command header that
must match that of the receiving node before the command is executed. The destination
key for the command executed automatically in hardware is configured using the SPW
RMAP Destination Key Register. Note that the destination key is not checked by
hardware for RMAP commands or responses that are forwarded to software for further
processing.

10.6.10.5 RMAP software support configuration

The SpaceWire (SPW2) Module implements software support for the reception of
Remote Memory Access Protocol (RMAP) commands and header. The software
support is enabled and disabled using the SPW RxVC Config Register [0].

The virtual receive channel RxVC[0] can be configured individually whether received
packets should be stored contiguously in memory, or whether the end of each packet is
to be padded up to the closest 32-bit word boundary. Padding is done with unknown
arbitrary content. The configuration is done in the SPW RxVC Config Register [0].

10.6.10.6 Unknown protocol support configuration

The SpaceWire (SPW2) Module implements software support for the reception of
unknown transfer protocols. The software support is enabled and disabled using the
SPW RxVC Config Register [0]. The user can configure the SPW2 to interpret all
incoming messages of four bytes or more as being of an unknown protocol by setting
SPW RxVC Config Register [0].ForceUnk.

153

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.11 Operation/Usage

10.6.11.1 Link Abort handling

If SPW CODEC Status Register.LinkState makes a transition from the Run state, e.g.
due to an Rx error, a credit count error, etc. (see 10.6.2 for details), this is called a link
abort event, and the LinkAbort link interrupt is issued. The CODEC will at this point
insert an EEP after the last received byte, and discard the remainder of the packet
currently being transmitted. The TxVCs and RxVCs will retain their trigging status; i.e.
once the link is up again the RxVCs will continue to receive packets (except for the
eventual channel being untriggered due to the EEP in the truncated packet), and the
TxVCs will only experience the link abort as a temporary link congestion. Note that if
there was data left in the Rx FIFO when the link was disconnected, this will be handled
by the RxVCs and written to memory while the link is still down.

Note that this ‘pretend that nothing happened’ handling of link abort is the one
recommended by the standard. The host system should employ an acknowledge
protocol or read back written values to ensure that a packet reached the recipient, and
not assume that every transmitted packet reaces the recipient as long as the link stays
up.

Note also that the FCT (Flow Control Token) needed for the other node of the link to go
the the Run state (see 10.6.2.1) will only be transmitted if there is room for at least 8
more bytes in the Rx FIFO. This means that if the Rx FIFO was flooded when the link
abort occurred, no FCT will be transmitted from the flooded node. Thus the un-flooded
node will go to Connecting, time-out, return to ErrorReset and try to connect again.
In other words, a congested link will remain congested after a link abort and will fail to
connect. This is the behaviour recommended by the standard. Note also that the flooded
node might reach the Run state, since it can receive an FCT from the other node, but will
go to ErrorReset when the other node disconnects.

10.6.11.1.1 RxFifoFlush and TxFifoFlush usage

Some systems use legacy protocols where the reception order of packets is essential. In
these systems there is a need to flush all Tx and also maybe Rx data when a link abort
occurs, and (partially) restart the send-lists after reconnection. This can be accomplished
by using the TxFifoFlush and RxFifoFlush SPW CODEC Configuration Register bits.
Note that using this flush functionality is a deviation from the recommendation in the
standard.

When TxFifoFlush is set, currently active Tx packets are flushed and all currently
triggered Tx channels become un-triggered. Setting RxFifoFlush has the same effect on
the Rx packets and RxVC channels. If any RxVC or TxVC (except TxVC[0]) channel
was either active or triggered when the corresponding flush configuration bit was set,
the corresponding FlushAbort channel interrupt is issued. As long as any FlushAbort
interrupt is still pending, either in an SPW RxVC Interrupt Status Register [$] or an
SPW TxVC Interrupt Status Register [$], no virtual channel RxVC, or TxVC (except
TxVC[0]) can be (re-)triggered.

154

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Note that this trigger blocking mechanism does not apply to hardware supported RMAP
command handling; once the flush configuration bits are cleared, hardware supported
commands will be handled and automatically generated responses will be transmitted
even if there are still FlushAbort interrupts pending.

Since the TxFifoFlush and RxFifoFlush causes an indiscriminate discarding of data, it
shall only be used when the link is disconnected, and should always continue until all
data has been flushed from the system. This shall be accomplished in the following
manner:

1. Ensure that the link will not connect during the flushing by one of these methods:
- Disconnect the link by setting SPW CODEC Configuration Register.LinkDis.
or
- Directly after initial connection clear the LinkStart and AutoStart bits in
 SPW CODEC Configuration Register, thus blocking automatic
 reconnection.

2. Await the LinkAbort interrupt.
3. Set the TxFifoFlush and/or RxFifoFlush bit in SPW CODEC Configuration

Register. As a side effect, this will trigger the FlushAbort interrupts of the
corresponding active or triggered channels.

4. Wait until the flushed data pipe has been completely emptied. This is observable
through the TxParked and/or RxParked bits in SPW CODEC Status Register.

5. Clear the TxFifoFlush, RxFifoFlush and LinkDis bits, and set the AutoStart or
LinkStart bit in SPW CODEC Configuration Register.

6. Wait until the link is connected. This is observable through SPW CODEC Status
Register.LinkState.

7. Re-trig the relevant channels. Note that all FlushAbort interrupt status bits for
both Rx and Tx must be cleared before any Rx or Tx channel can be triggered.

10.6.11.2 Virtual Receive Channels (RxVC)

The SpaceWire (SPW2) Module implements zero or more (not counting RxVC[0]
which is always present) Virtual Receive Channels RxVC[$] adhering to the SpaceWire
Virtual Channel Transfer Protocol (VCTP).
To setup reception on RxVC[$], the following steps need to be performed:
� Setup the word padding option and enable the channel using the SPW RxVC

Config Register [$].
� Setup up the location in memory for the buffer to which packets are to be

received. The location is defined using the SPW RxVC DMA Page Register [$]
and the SPW RxVC DMA Base Address Register [$].
� Setup optionally the maximum number of packets that should be received using

the SPW RxVC Packet Counter Register [$].
� Setup the size of the buffer, limiting the amount of data that should be received,

using the SPW RxVC DMA Block SizeRegister [$]. This also triggers the
channel, which is now ready to receive packets.

The progress of the reception can be observed using the following registers:
� The address of the next data to be stored, relative to the SPW RxVC DMA Base

Address Register [$],can be observed using the SPW RxVC DMA Offset Register
[$].
� The start address of the currently received packet can be observed using the SPW

RxVC Current Packet Status Register [$].

155

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

� The number of packets received since the channel was last trigger can be observed
using the SPW RxVC Status Register [$].
� SPW RxVC Status Register [$] can also be used for observing if the channel is

triggered and if the channel is active receiving a message.
 Note that if ChAct is set but not ChTrig, then there is a packet in the Rx FIFOs
waiting to be handled. The decision to handle this packet has already been made,
so if the RxVC is disabled at this point, the packet will remain in the Rx FIFOs
until the channel is triggered, thus blocking the reception of the next packets.

The overall progress of reception can be observed using the SPW Status Register, which
indicates which channel is active receiving a message.

During nominal reception, interrupts are issued to indicate that the pre-set number of
packets has been received (CntTrig interrupt), or that the allocated memory buffer has
been filled (RxEOB interrupt). If an error is detected which un-triggers the channel,
then this is reported by issuing an error interrupt (CRCDataErr, FlushAbort, DmaWrErr
and RxEEP interrupts).This information can be observed using the SPW RxVC
Interrupt Status Register [$].

When reception has been halted due to an error (e.g. DmaWrErr), SPW RxVC Status
Register [$].PktCnt will indicate the number of received error free packets and SPW
RxVC Current Packet Status Register [$] will point to the start of the faulty packet.
Note that due to system behaviour, DmaWrErr may be detected after the SPW RxVC
DMA Offset Register [$] has been incremented. The current offset decremented by one
will point to the packet with the faulty access, but not necessarily to the faulty address.

The progress of the reception can also be observed using the SPW First Failing Packet
Register, indicating if an error has occurred in the first four bytes of a VCTP.

When a packet is stored to memory, the first four bytes of the received packet are
stripped, removing the protocol header with the virtual channel routing information.

To disable or prematurely un-trigger a virtual receive channel do the following:
� Clear SPW RxVC Config Register [$].RxEn.
� Check SPW RxVC Status Register [$].ChAct to see if the channel had started to

receive a packet before before being disabled. If that is the case wait (and if
necessary re-trigger the channel) until the entire packet has been received.

To disable or prematurely un-trigger a virtual receive channel in mid-packet, the
complete SpaceWire link needs to be disconnected and the Rx flushed using the SPW
CODEC Configuration Register.

10.6.11.3 Virtual Transmit Channels (TxVC)

The SpaceWire (SPW2) Module implements zero or more (not counting TxVC[0]
which is always present) Virtual Transmit Channels TxVC[$].

To setup transmission on TxVC[$], the following steps need to be performed:
� Create a send list containing send list entries, each defining the size and length of

a header and a data field.
� Setup the channel’s pointer to point to the location of the first send list entry. This

is done using the SPW TxVC SendList Pointer Register [$].

156

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

� Setup the size of the send list, defining the number of send list entries. This is
done using the SPW TxVC SendList Size Register [$]. This also triggers the
channel, which is now ready to transmit packets.

The progress of the transmission can be observed using the following registers:
� The address to the send list entry of the latest successfully transmitted packet can

be observed using the SPW TxVC SendList Pointer Register [$].
� The number of remaining send list entries in the send list can be observed using

the W TxVC SendList Size Register [$].
� SPW TxVC Status Register [$] can also be used for observing if the channel is

triggered and if the channel is active transmitting a message.

The overall progress of transmission can be observed using the SPW Status Register,
which indicates which channel is active transmitting a message.

During nominal transmission, interrupts are issued to indicate that a send list has been
completed (TxEOB interrupt). If an error is detected which un-triggers the channel, then
this is reported by issuing an error interrupt (FlushAbort and DmaRdErr interrupts).This
information can be observed using the SPW TxVC Interrupt Status Register [$].

To disable or prematurely un-trigger a virtual transmit channel, the complete SpaceWire
link needs to be disconnected and the Tx flushed using the SPW CODEC Configuration
Register.

10.6.11.4 RMAP command reception in hardware

Reception of RMAP commands that are executed in hardware does not require any
software support, more than the enabling of this support, as described in 10.6.10.4.

The progress of the reception of RMAP commands can be observed using the SPW
First Failing Packet Register, indicating if an error has occurred. This is also indicated
by the issuing of the PktRej link interrupt.

For hardware supported RMAP commands, responses are generated and transmitted
automatically, when required by the protocol. New packets of all protocol types can be
received and handled in parallel with the response transmission. The only limitation is
that the automatic response generation mechanism can only handle one response at a
time. Thus, if a second RMAP that requires an automatic response is received while an
older automatic response is being transmitted, then the reception mechanism will stall
until the older response is finished. In other words, if multiple hardware supported
RMAP commands that generate automatic responses are received in quick succession,
this might cause congestion on the Rx.

10.6.11.5 RMAP command and response reception in software

When transfer protocol support is enabled for RxVC[0], using the SPW RxVC Config
Register [0], any RMAP command not handled by hardware, as described in 10.6.11.4,
and any RMAP response will be stored in the memory buffer allocated to this channel.

157

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

The reception handling is similar to what has been described for the Virtual Receive
Channels (RxVC) in 10.6.11.2. The only differences are that the first four bytes of a
received packet are not deleted and that the last byte in a packet containing the RMAP
data CRC checksum is deleted before the packet is saved to memory.

As an additional service, an interrupt is issued and the channel is un-triggered if the
combined CRC as calculated over the RMAP header, the RMAP header CRC checksum
byte and the RMAP data field does not match the received data CRC checksum. This
information can be observed using the SPW RxVC Interrupt Status Register [0].

10.6.11.6 RMAP command and response transmission from software

Any virtual transmit channel TxVC[$] can be used to transmit RMAP commands or
responses from software. The transmit handling is similar to what has been described
for the Virtual Transmit Channels (TxVC) in 10.6.11.3. The only difference is that an
additional service is provided which calculates the RMAP data CRC checksum byte and
adds it to the end of the data field before adding the EOP. This service is enabled in the
send list entry. Note that the RMAP header CRC checksum byte must be calculated by
software.

10.6.11.7 Reception of unknown protocols in software

When transfer protocol support is enabled for RxVC[0], using the SPW RxVC Config
Register [0], any unknown transfer protocols will be stored in the memory buffer
allocated to this channel. Note that the identification of an unknown protocol is made
either by the Protocol ID byte, or forcedly for all packets of four bytes or more by
setting the SPW RxVC Config Register [0].ForceUnk bit.

The reception handling is similar to what has been described for the Virtual Receive
Channels (RxVC) in 10.6.11.2. The only difference is that the first four bytes of a
received packet are not deleted before the packet is saved to memory.

158

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.11.8 Time-Codes

10.6.11.8.1 Time-Code transmission

Time-code transmission can be triggered either by the internal SpwTxTick signal which
is asserted by an interrupt on the common SpaceWire-RTC interrupt bus not being
masked by the SPW Transmit Time-Code Mask Register (hardware triggered time-
code), or by writing the SPW SW Transmit Time-Code Register (software triggered
time-code). When triggered by SpwTxTick the control part of the time-code is defined
by the SPW Transmit Time-Code Register; and when triggered by a register write it is
defined by the register write data. The counter part of the time-code is defined using the
SPW Transmit Time-Code Register, which when read yields the last transmitted time-
code (both control and counter part). The TxTime-Code link interrupt is issued when a
time-code is transmitted.

10.6.11.8.2 Time-Code reception

Time-codes are received using the SPW Receive Time-Code Status Register. The
RxTime-Code link interrupt is issued when a time-code has been received; and also the
internal SpwRxTick signal is asserted, which in turn is connected to the SpaceWire-RTC
common interrupt bus.

10.6.12 Error Handling

10.6.12.1 CODEC Status

The overall status of the SpaceWire codec can be observed via the SPW CODEC Status
Register. Note that all fields except LinkState are included for debug purposes only, and
should not be used in normal operation. Error events are captured by the corresponding
link interrupts.

10.6.12.2 First Failing Packet

The First Failing Packet Register indicates failures that can occur during reception of a
packet. When an error has occurred, the register is not updated due to new errors until
the register has been read. In addition to an error code identifying the cause for the
failure, the register also contains the first three received bytes received in a packet.

10.6.13 Usage Constraints

10.6.13.1 Functional

None. TBC

10.6.13.2 Timing

None. TBC

10.6.14 Examples

None. TBC

159

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.6.15 Interrupt Handling

The interrupt handling in the SpaceWire (SPW2) Module is implemented in two layers.

The top layer contains the SPW Pending Interrupt Masked Status Register, the
SPW Pending Interrupt Status Register and the SPW Interrupt Mask Register. These
register are used for masking or propagating the interrupts from the lower layer.

The lower layer contains three groups of interrupt registers:
� One SpaceWire Link group
� One or more multiple Virtual Receive Channel RxVC[$] groups
� One or more multiple Virtual Transmit Channel TxVC[$] groups

Each lower group contains an Interrupt Status Register, an Interrupt Status Set Register
and an Interrupt Status Clear Register. These register are used for observing, setting and
clearing the interrupts belonging to the group. When an interrupt is issued, it is
propagated to the top layer set of register for further propagation outside the module.

The interrupt registers give complete freedom to the software, by providing means to
mask interrupts, clear interrupts, force interrupts and read interrupt status.

All of the interrupt registers are listed in Table 10-1, along with the effect of reading
and writing them.
Register Acronym Read Write
SPW Pending Interrupt Masked Status
Register

SPW_PIMSR Reads PISR
and IMR

-

SPW Pending Interrupt Status Register
SPW Link Interrupt Status Register
SPW RxVC Interrupt Status Register[$]
SPW TxVC Interrupt Status Register[$]

SPW_PISR
SPW_LISR
SPW_RxISR[$]
SPW_TxISR[$]

Reads
corresponding
ISR

-

SPW Interrupt Mask Register SPW_IMR Reads IMR Writes IMR
SPW Link Interrupt Status Set Register
SPW RxVC Interrupt Status Set Register[$]
SPW TxVC Interrupt Status Set Register[$]

SPW_LISSR
SPW_RxISSR[$]
SPW_TxISSR[$]

- Sets selected bits in
corresponding ISR

SPW Link Interrupt Clear Register
SPW RxVC Interrupt Status Clear Register[$]
SPW TxVC Interrupt Status Clear Register[$]

SPW_LISCR
SPW_RxISCR[$]
SPW_TxISCR[$]

- Clears selected bits
in corresponding
ISR

Table 10-1 Interrupt Register Summary

When an interrupt occurs the corresponding bit in the Interrupt Status Register is set.
The normal sequence to initialise and handle a module interrupt is:

• Set up the software interrupt-handler to accept an interrupt from the module.
• Read the SPW Pending Interrupt Status Register and clear any spurious interrupts

by writing the corresponding Interrupt Status Clear Register.
• Initialise the SPW Interrupt Mask Register, unmasking each bit that should generate

the module interrupt.
• When an interrupt occurs, read the SPW Pending Interrupt Status Register in the

software interrupt-handler to determine the causes of the interrupt.
• Handle the interrupt, taking into account all causes of the interrupt.
• Clear the handled interrupt using the corresponding Interrupt Status Clear Register.

160

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Masking interrupts: After reset, all interrupt bits are masked, since the SPW Interrupt
Mask Register is zero. To enable generation of a module interrupt for an interrupt bit,
set the corresponding bit in the SPW Interrupt Mask Register.

Clearing interrupts: Selected bits can be cleared by writing ones to the bits that shall be
cleared to the corresponding Interrupt Status Clear Register.

Forcing interrupts: When an Interrupt Status Set Register is written, the resulting value
is the original contents of the corresponding Interrupt Status Register logically OR-ed
with the write data. This means that writing the register can force (set) an interrupt bit,
but never clear it.

Reading interrupt status: Reading the Interrupt Status Register yields the data without
clearing the contents.

Reading interrupt status of unmasked bits: Reading the SPW Pending Interrupt Masked
Status Register yields the contents of the SPW Pending Interrupt Status Register
masked with the contents of the SPW Interrupt Mask Register, without clearing the
contents.

10.6.16 Interrupt bus

In the SpaceWire-RTC, all interrupts from the peripheral units, such as CAN and SPW,
are routed through a 32-bit wide interrupt bus. This bus is an input and an output to all
cores in the design. The bus is also connected to the secondary interrupt controller in the
LEON2FT core.

The interrupt bus is used for example in the Timer core, which takes the full bus and
combines it with a local mask register to form a latch signal. This latch signal is used to
latch the timer values on the occurrence of the filtered interrupt. Thus any interrupt in
the system (excluding specific LEON2FT peripheral interrupts only connected to the
primary interrupt controller) can be used to latch the timers.

161

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.7 Register definition summary
This chapter contains all commands and registers available for the SpaceWire (SPW2)
Module.

The registers of the SpaceWire (SPW2) Module are addressed according to the tables
below. The external address of each unique register is its register address added to the
external base address of the module, or to the external address of each of the DMA
channels, which is implementation specific.

Unused register bits are zero on register reads and don't care on register writes.

Register byte
address:

Register name: Acronym:

0000_000016 SPW Pending Interrupt Masked Status Register [SPW_PIMSR]
0000_000816 SPW Pending Interrupt Status Register [SPW_PISR]
0000_001016 SPW Interrupt Mask Register [SPW_IMR]
0000_001416 SPW Link Interrupt Status Register [SPW_LISR]
0000_001816 SPW Link Interrupt Status Set Register [SPW_LISSR]
0000_001C16 SPW Link Interrupt Status Clear Register [SPW_LISCR]
0000_002016 SPW CODEC Configuration Register [SPW_CCR]
0000_002416 SPW Clock Division Register [SPW_CDR]
0000_002816 SPW RMAP Destination Key Register [SPW_RDKR]
0000_002C16 SPW Transmit Time-Code Register [SPW_TTCR]
0000_003016 SPW VC Transfer Protocol ID Register [SPW_VCTPIDR]
0000_003416 SPW SW Transmit Time-Code Register [SPW_SWTTCR]
0000_004016 SPW Status Register [SPW_SR]
0000_004416 SPW CODEC Status Register [SPW_CSR]
0000_004816 SPW Receive Time-Code Status Register [SPW_RTCSR]
0000_008016 SPW First Failing Packet Register [SPW_FFPR]

162

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Register byte address: Register name: Acronym:
0000_0MN016
MN = 16 + 4*$

SPW RxVC Config Register [$]
0 ≤ $ ≤ RxVC

[SPW_RxCnf [$]]

0000_0MN416
MN = 16 + 4*$

SPW RxVC Packet Counter Register [$]
0 ≤ $ ≤ RxVC

[SPW_RxPR[$]]

0000_0MN816
MN = 16 + 4*$

SPW RxVC DMA Page Register [$]
0 ≤ $ ≤ RxVC

[SPW_RxDPage[$]]

0000_0MNC16
MN = 16 + 4*$

SPW RxVC DMA Base Address Register [$]
0 ≤ $ ≤ RxVC

[SPW_RxDBAR[$]]

0000_0MN016
MN = 16 + 4*$+1

SPW RxVC DMA Block SizeRegister [$]
0 ≤ $ ≤ RxVC

[SPW_RxDBSR[$]]

0000_0MN416
MN = 16 + 4*$+1

SPW RxVC DMA Offset Register [$]
0 ≤ $ ≤ RxVC

[SPW_RxDOR[$]]

0000_0MN816
MN = 16 + 4*$+1

SPW RxVC Status Register [$]
0 ≤ $ ≤ RxVC

[SPW_RxSR[$]]

0000_0MNC16
MN = 16 + 4*$+1

SPW RxVC Current Packet Status Register [$]
0 ≤ $ ≤ RxVC

[SPW_RxCPSR[$]]

0000_0MN016
MN = 16 + 4*$+2

SPW RxVC Interrupt Status Register [$]
0 ≤ $ ≤ RxVC

[SPW_RxISR[$]]

0000_0MN416
MN = 16 + 4*$+2

SPW RxVC Interrupt Status Set Register [$]
0 ≤ $ ≤ RxVC

[SPW_RxISSR[$]]

0000_0MN816
MN = 16 + 4*$+2

SPW RxVC Interrupt Status Clear Register [$]
0 ≤ $ ≤ RxVC

[SPW_RxISCR[$]]

0000_03N016
N = 2*$

SPW TxVC SendList Pointer Register [$]
0 ≤ $ ≤ TxVC

[SPW_TxSLPR[$]]

0000_03N416
N = 2*$

SPW TxVC SendList Size Register [$]
0 ≤ $ ≤ TxVC

[SPW_TxSLSR[$]]

0000_03N816
N = 2*$

SPW TxVC Status Register [$]
0 ≤ $ ≤ TxVC

[SPW_TxSR[$]]

0000_03NC16
N = 2*$

SPW TxVC Interrupt Status Register [$]
0 ≤ $ ≤ TxVC

[SPW_TxISR[$]]

0000_03N016
N = 2*$+1

SPW TxVC Interrupt Status Set Register [$]
0 ≤ $ ≤ TxVC

[SPW_TxISSR[$]]

0000_03N416
N = 2*$+1

SPW TxVC Interrupt Status Clear Register [$]
0 ≤ $ ≤ TxVC

[SPW_TxISCR[$]]

10.7.1 SpaceWire (SPW2) Module Registers

10.7.1.1 Interrupt registers

SPW Pending Interrupt Masked Status Register [SPW_PIMSR] RM
SPW Pending Interrupt Status Register [SPW_PISR] R
SPW Interrupt Mask Register [SPW_IMR] R/W

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rx7 Rx6 Rx5 Rx4 Rx3 Rx2 Rx1 Rx0 Tx7 Tx6 Tx5 Tx4 Tx3 Tx2 Tx1 Tx0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
- - - - - - - - Link

Abort
Pkt
Rej

Tx
Time-
Code

Rx
Time-
Code

Cr
Err

ESC
Err

Par
Err

Diss
Err

 0 0 0 0 0 0 0 0
 LSB

Function: Note that the individual bits in the register group are set and cleared using
the corresponding SPW_LISSR and SPW_LISCR, SPW_RxISSR[$] and

163

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

SPW_RxISCR[$], or SPW_TxISSR[$] and SPW_TxISCR[$] registers. See
10.6.15.

Timing:
Constraints:
Field: Description:
DisErr Link interface disconnection error detected
ParErr Link interface parity error detected
ESCErr Link interface ESC error detected
CrErr Link interface credit error detected
RxTime-Code Time-code received
TxTime-Code Time-code transmitted
PktRej A packet has been rejected and discarded, First Failing Packet Register has been triggered
LinkAbort SPW CODEC Status Register.LinkState has made a transition from Run to Error Reset
Tx$ TxVC $ interrupt, see SPW TxVC interrupt registers for details
Rx$ RxVC $ interrupt, see SPW RxVC interrupt registers for details

SPW Link Interrupt Status Register [SPW_LISR] R
SPW Link Interrupt Status Set Register [SPW_LISSR] S
SPW Link Interrupt Status Clear Register [SPW_LISCR] C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
- - - - - - - - - - - - - - - -

MSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
- - - - - - - - Link

Abort
Pkt
Rej

Tx
Time-
Code

Rx
Time-
Code

Cr
Err

ESC
Err

Par
Err

Diss
Err

 0 0 0 0 0 0 0 0
 LSB

Function: Contains the interrupts related to the link itself.
Timing: All the link specific interrupts are issued as soon as detected by the

SpaceWire codec. Note that LinkAbort is issued together with any link
specific interrupt if the error occurred while SPW CODEC Status
Register.LinkState was in Run state. Note also that when the user
disconnects the link by writing the SPW CODEC Configuration
Register.LinkDis, the resulting LinkAbort interrupt will be issued up to 2 µs
later.

All the time-code specific interrupts are issued on either the successful
reception or transmission of the time-code.

The PktRej interrupt is issued either directly when an error is detected during
protocol identification (i.e. discarded without writing to memory), or when
the last byte has been written to memory.

Constraints:

164

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Field: Description:
DisErr Link interface disconnection error detected
ParErr Link interface parity error detected
ESCErr Link interface ESC error detected
CrErr Link interface credit error detected
RxTime-Code Time-code received
TxTime-Code Time-code transmitted
PktRej A packet has been rejected and been discarded, First Failing Packet Register has been

triggered
LinkAbort SPW CODEC Status Register.LinkState has made a transition from Run to Error Reset

10.7.1.2 Configuration registers

SPW CODEC Configuration Register [SPW_CCR] R/W

31 5 4 3 2 1 0

- Tx
Fifo

Flush

Rx
Fifo

Flush

Auto
Start

Link
Dis

Link
Start

 0 0 1 0 0
MSB LSB

Function: This register configures the start-up behaviour of the SpaceWire CODEC,

controlling the Link Interface Control State Machine.

The link can be disconnected during normal operation by setting the LinkDis
bit.

Timing:
Constraints: Note that one node on the link must be configured to LinkStart for NULL

tokens to start to flow, and to thus get a link connection. The other node
should be configured to AutoStart, lest the nodes send NULL tokens while
the opposite node is in ErrorReset or ErrorWait.

The RxFifoFlush and TxFifoFlush bits shall only be used when the link is
not in the Run state. To ensure this the user shall use one of the methods
described in 10.6.11.1.1.

Field: Value: Description:
LinkStart 0 SpaceWire link cannot proceed to Started state unless AutoStart is

set.
 1 SpaceWire link can proceed to Started state, if the link has the

LinkDis bit cleared. See 10.6.2.
LinkDis 0 SpaceWire link is enabled
 1 SpaceWire link is disabled, i.e. the LICSM proceeds directly to the

ErrorReset state when reaching the Run state. See 10.6.2.
AutoStart 0 No Auto start of the CODEC.
 1 Auto start the CODEC, provided that the LinkDis bit is cleared.

The CODEC will wait in state Ready until the first NULL
character is received. See 10.6.2.

RxFifoFlush 0 Rx flush mechanism off.
 1 All data in Rx pipe (FIFOs, etc.) is flushed and all active and/or

triggered RxVC are aborted.
TxFifoFlush 0 Tx flush mechanism off.
 1 All data in Tx pipe (FIFOs, etc.) is flushed and all active and/or

165

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

triggered TxVC are aborted.

SPW Clock Division Register [SPW_CDR] R/W

31 6 5 0

- TxNomDiv
 XX16

MSB LSB

Function: This register configures the transmitter baud rate.
Timing: The data rate during a link connection is the link start-up rate.
Constraints:
Field: Description:
TxNomDiv The nominal transmitter bit rate is SpwClk / (0.5*(TxNomDiv + 1)). (Double

Data Rate)

The reset value XX of the field matches the link start-up data rate as
configured with the configuration inputs SpwClk10MBit and SpwClkMul.
The reset value will be TxNomDiv=(2/(factorSpwClk10MBit * factorSpwClkMul))-1.

SPW RMAP Destination Key Register [SPW_RDKR] R/W

31 8 7 0

- DestKey
 0

MSB LSB

Function: This register configures the RMAP Destination Key.
Timing:
Constraints:
Field: Description:
DestKey RMAP Destination key. Any incoming hardware supported RMAP

command must have matching Destination Key in order to be accepted. If
not, the complete packet is rejected during header check.

SPW Transmit Time-Code Register [SPW_TTCR] R/W

31 8 7 6 5 0

- TxTimeCtrl TxTimeCnt
 - 0

MSB LSB

Function: This registers is used for initiating the Time-Code transmission counter.
Timing: Writes are ignored while a time-code transmission is taking place. Written

values should thus be validated by a read.
Constraints: Values written to the TxTimeCtrl field are only visible if followed by an

assertion of the SpwTxTick.

166

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Field: Description:
TxTimeCnt New TxTimeCnt start value, (TxTimeCnt + 1) will be transmitted at the next

SpwTxTick.
TxTimeCtrl When read: TxTimeCtrl value transmitted due to a previous SPWTxTick or

SPW_SWTTCR write.
When written: TxTimeCtrl value to be transmitted

SPW VC Transfer Protocol ID Register [SPW_VCTPIDR] R/W

31 8 7 0

- VCTPID
 F016
MSB LSB

Function: This register configures the SpaceWire Virtual Channel Transfer Protocol

Identifier.
Timing:
Constraints: See [RMAPID] for constraints on Protocol ID usage. Note that RMAP in the

SpaceWire (SPW2) Module has a Protocol ID value of 0116 and this is thus
not a valid value for VCTPID.

Field: Description:
VCTPID Configuration of SpaceWire Transfer protocol ID for the VCTP protocol.

SPW SW Transmit Time-Code Register [SPW_SWTTCR] W

31 8 7 6 5 0

- TxTimeCtrl -
 -

MSB LSB

Function: This registers is used for triggering a Time-Code transmission.
Timing: Writes are ignored while a time-code transmission is taking place. A

minimum separation of 10 µs between writes is recommended.
Constraints:
Field: Description:
TxTimeCtrl New TxTimeCtrl value to be transmitted when written.

SPW Transmit Time-Code Mask Register [SPW_TTCMR] R/W

31 0

Select
0

MSB LSB

Function: This registers is used for selecting interrupts for Time-Code transmission.
Timing:
Constraints:
Field: Description:
Select Specifies what bits of the AMBA APB interrupt bus shall cause a tick on the

SpwTxTick input to the SpaceWire module.

167

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.7.1.3 Status register

SPW Status Register [SPW_SR] R

31 24 23 16

- ActiveRxVC
 0

MSB
15 8 7 2 1 0

ActiveTxVC - RxVC
Act

TxVc
Act

0 0 0 0
 LSB

Function: This register provides status information on active virtual receive and

transmit channels.
Timing:
Constraints: The ActiveTxVC and ActiveRxVC values are limited by the number of

implemented virtual channels. An ActiveTxVC value of 0 indicates that the
hardware supported RMAP is transmitting an RMAP response.
An ActiveRxVC value of 0 indicates that a command or reply is received for
further software processing.

Field: Value: Description:
0 All TxVCs are inactive TxVCAct
1 A TxVC is active. This bit is set when any TxVC[$]

becomes active.
0 All RxVCs are inactive RxVCAct
1 An RxVC is active. This bit is set when any RxVC[$]

becomes active.
ActiveTxVC 0 - 7 The last selected TxVC. This field is set to $, indicating

which virtual channel TxVC[$] is the active one. The
value is only valid while the TxVCAct bit is set.

ActiveRxVC 0 - 7 The last selected RxVC. This field is set to $, indicating
which virtual channel RxVC[$] is the active one. The
value is only valid while the RxVCAct bit is set.

10.7.1.4 CODEC Status register

SPW CODEC Status Register [SPW_CSR] R
31 20 19 18 17 16

- Tx
Parked

Rx
Parked

Tx
Empty

Rx
Empty

 1 1 1 1
MSB
15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
Seq
Err

Time

Seq
ErrN
Char

TxCr
ed
1

Got
Time

Got
N

Char

Got
FCT

Got
Null

Inf
Run

LinkState Tx
Cred
Err

Rx
Cred
Err

Esc
Err

Par
Err

Dis
Err

0 0 0 0 0 0 0 0 0 0 0 0 0 0
 LSB

Function: This register provides status information on the SpaceWire CODEC.
Timing:
Constraints: All fields of this register, except LinkState, RxParked and TxParked, are

included for test and debug purposes only.

168

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Field: Value: Description:
DisErr 1 Disconnect error status
ParErr 1 Parity error status
EscErr 1 Escape error status
RxCredErr 1 Receiver credit error status: The receiver has received more data characters then

requested
TxCredErr 1 Transmitter credit error status: The transmitter has credit to send more than the

allowed 56 data characters.
0002 CODEC link state machine in ErrorReset state
0012 CODEC link state machine in ErrorWait state
0102 CODEC link state machine in Ready state
0112 CODEC link state machine in Started state
1002 CODEC link state machine in Connecting state

LinkState

1012 CODEC link state machine in Run state
InfRun 1 Interface state machine is in the Run state.
GotNull 1 Receiver got NULL. Remains asserted after first NULL.
GotFCT 1 Receiver got FCT. Remains asserted after first FCT
GotNChar 1 Receiver got N-chars. Remains asserted after first N-Char
GotTime 1 Receiver got Time-codes. Remains asserted after first Time-code
TxCred1 1 Transmitter has credit to send at least one more data character
SeqErrNChar 1 N-char sequence error (N-char received before link state is Run)
SeqErrTime 1 Time-code sequence error (Time-code received before link state is Run)

0 The receive buffer is not empty RxEmpty
 1 The receive buffer is empty

0 The transmit buffer is not empty TxEmpty
 1 The transmit buffer is empty

0 Rx not parked RxParked
1 No data in Rx pipe, all reception mechanisms idle and link is disconnected
0 Tx not parked TxParked
1 No data in Tx pipe, all transmission mechanisms idle and link is disconnected

SPW Receive Time-Code Status Register [SPW_RTCSR] R

31 8 7 6 5 0

- RxTimeCtrl RxTimeCnt
 0 0

MSB LSB

Function: This register is used for Time-Code reception.
Timing: Due to module implementation limitations a time-code received less than

1.4 µs after a previous one may be lost.
Constraints:
Field: Description:
RxTimeCnt The last received time-code, i.e. time information.
RxTimeCtrl The last received time-ctrl, i.e. control flags.

169

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.7.1.5 Other registers

SPW First Failing Packet Register [SPW_FFPR] RC

31 24 23 16

DLA PtcId
0 0

MSB
15 8 7 0

 FFB3 ErrCode
 0 0

 LSB

Function: This register holds diagnostic information related to the reception and

identification of a packet.
Timing: DLA, PtcId and FFB3 are, as long as no errors have been detected,

updated for every subsequent packet. The register is frozen when an
error is detected in the four first bytes (i.e. rejected during the
identification process, e.g. VCTP to a disabled channel) of a packet or in
a hardware supported RMAP command. The register is not updated for
any new errors, until after being read.

Constraints:

170

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Field: Value: Description:
0 No Error No error detected since the last register read

access

1 DestErr Error while DMA accessing the internal bus, e.g.
illegal address.

2 CmdErr Unused RMAP command according to [RMAP]

3 DKeyErr: Destination Key error, for RMAP commands
supported by hardware

4 DCRCErr Data CRC error, for RMAP commands
supported by hardware.

Combined header and data CRC error, for
RMAP commands supported by software.

5 EEOP Early EOP in data for RMAP commands
supported by hardware, i.e. EOP has been
received with less data than expected from the
RMAP command header.

6 CTL Cargo too large. Late EOP or EEP in data for
RMAP commands supported by hardware, i.e.
EOP/EEP has been received with more data than
expected from the RMAP command header.

7 EEEP

Early EEP in data for RMAP commands. For
RMAP commands supported in hardware, EEP
has been received with less data or exactly as
much as expected from the RMAP command
header.

9 VBOvrR Verify Buffer Over-Run. A verified write of
more than 4 bytes was attempted.
Note that a verified write with a size not
divisable by 4 gives an AuthErr.

10 AuthErr Authorisation error:
Rejected RMAP commands when hardware
support enabled:
- Read or Write with extended address exceeding
0F16
- Verified-Write with non-word aligned address
- Verified-Write with size 0 or size not divisable
by 4

Rejected RMAP commands when software
support is disabled and hardware support is
enabled:
- Read-Modify-Write
- Non-Incrementing Read or Write

Any RMAP command when neither software
nor hardware support is enabled.

Rejected VCTP packet when the corresponding
RxVC[$] channel was not enabled.

ErrCode

12 DLAErr Non-matching Destination Logical Address.

171

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

16 HeadErr One of the following errors was detected while
receiving the packet header:

EOP or EEP detected before the first four bytes
could be received.

For RMAP commands supported by hardware,
there was a header CRC error or an unexpected
number of header bytes in the received packet.

For VCTP packets, the received Virtual Channel
Identifier was not within the implemented RxVC
range

17 PtclIDErr Protocol Identifier not supported

Other Other values Other values cannot occur.

FFB3 0 -
255

First Failing Packet Byte 3:
If RMAP this field represents the Command byte.
If VCTP this field is a dummy byte which is recommended to
contain a copy of VCID.

PtcId 0 -
255

First Failing Packet Byte 2:
This field represents the Protocol ID byte.

DLA 0 -
255

First Failing Packet Byte 1:
Destination Logical Address (DLA)

172

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.7.1.6 SpaceWire RxVC registers

The virtual receive channels have each a register set as defined below. RxVC[0] is
dedicated to RMAP commands and responses and unknown protocols to be processed
in software. The RMAP hardware supported commands that are executed directly on
reception do not use the RxVC[0] register set except for the configuration fields DLA
and RMAPEn. Thus, the RMAP hardware command execution is not visible, as seen
from the application software.

SPW RxVC Config Register [0] [SPW_RxCnf[0]] R/W

31 15 8 4 3 2 1 0
- DLA - Force

Unk
TrPtcl

SW
RMAP

En
Word
Align

Rx
En

 FE h 0 0 1 0 0
MSB LSB

Function: This register configures some common resources used by all reception

channels and the reception of packets with other Protocol IDs than
configured for the SpaceWire Virtual Channel Transfer Protocol in the SPW
VC Transfer Protocol ID Register.

Timing:
Constraints: The word alignment function assumes that the RxVC DMA Base Address

[$] is programmed with a word aligned start address.

173

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Field: Value: Description:
0 The virtual receive channel is disabled. No packets are received on this virtual

receive channel and no data are stored to memory. Note that this bit is only used
during the identification process described in 5.5.3.2. I.e., when disabled any
ongoing packet will be completed.
Except for RMAP commands supported in hardware, all packets are rejected. If
the RMAPEn bit is not set, then RMAP commands supported in hardware are
also rejected.
RMAP commands intended for further software processing are thus discarded.
All RMAP responses are discarded
All unknown transfer protocols are discarded.
This ensures that no congestion occurs on the SpaceWire link.

RxEn

1 The virtual receive channel is enabled.
If the RMAPEn bit is not set, then RMAP commands supported in hardware are
received on RxVC[0] and stored in memory, provided that the TrPtclSW bit is
set, else they are rejected.
All RMAP commands unsupported in hardware are received on RxVC[0] and
stored in memory, provided that the TrPtclSW bit is set, else they are rejected.
All RMAP responses are received on RxVC[0] and stored in memory.
All unknown transfer protocols are received on RxVC[0] and stored in memory,
provided that the TrPtclSW bit is set, else they are rejected.

0 No padding takes place and a packet will start at the byte address following the
previous packet.

WordAlign

1 The end of each packet is padded up to the closest 32-bit word boundary.
Padding is done with arbitrary content.
The first byte of a packet will thus always be aligned to a 32-bit word address.

0 RMAP hardware support is disabled.
RMAP commands are received on RxVC[0] and stored in memory, provided
that the RxEn and TrPtclSW bits are both set, else they are rejected.

RMAPEn

1 RMAP hardware support is enabled, as well as RMAP command identification.
RMAP commands supported in hardware are not received on RxVC[0] and
thus not stored in memory, but are handled in hardware.
RMAP commands unsupported in hardware are received on RxVC[0] and
stored in memory, provided that the RxEn and TrPtclSW bits are both set.

0 Software support for transfer protocols is disabled.
RMAP commands are neither received on RxVC[0] nor stored in memory. If
the RAMPEn bit is not set, all RMAP commands are rejected, otherwise only
RMAP commands not supported in hardware are rejected.
RMAP response storage is unaffected by the value of this bit.
Unknown transfer protocols are neither received on RxVC[0] nor stored.

TrPtclSW

1 Software support for transfer protocols is enabled.
If the RMAPEn bit is not set, then RMAP commands supported in hardware are
received on RxVC[0] and stored in memory, provided that the RxEN bit is set,
else they are rejected.
All RMAP commands unsupported in hardware are received on RxVC[0] and
stored in memory, provided that the RxEN bit is set, else they are rejected.
RMAP response storage is unaffected by the value of this bit.
All unknown transfer protocols are received on RxVC[0] and stored in
memory, provided that the RxEN bit is set, else they are rejected.

0 Incoming packets are interpreted, tested and handled as defined by RxEn,
TrPtclSW and RMAPEn.

ForceUnk

1 All incoming packets of 4 bytes or more are handled like packets of unknown
protocol; i,e. they are received on RxVC[0] and stored in memory, provided
that TrPrtclSW and RxEN are set, otherwise they are rejected.

DLA 0-255 SpaceWire Destination Logical Address (DLA). The DLA of any incoming
packet must match the DLA field, otherwise it will be rejected.

The handling of transfer protocols through RxVC[0] is summarised as follows:

174

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Detailed SPW RxVC Config Register[0] bit usage:
 RMAPEn=1 (Enabled)
 RxEn=1 (Enabled) RxEn=0 (Disabled)
 TrPtclSW=1

(Enabled)
TrPtclSW=0
(Disabled)

TrPtclSW=1
(Enabled)

TrPtclSW=0
(Disabled)

RMAP HW supported OK OK OK OK
RMAP not HW supported WrMem Reject Reject Reject
RMAP Response WrMem WrMem Reject Reject
Unknown protocol WrMem Reject Reject Reject
 RMAPEn=0 (Disabled)
 RxEn=1 (Enabled) RxEn=0 (Disabled)
 TrPtclSW=1

(Enabled)
TrPtclSW=0
(Disabled)

TrPtclSW=1
(Enabled)

TrPtclSW=0
(Disabled)

RMAP HW supported WrMem Reject Reject Reject
RMAP not HW supported WrMem Reject Reject Reject
RMAP Response WrMem WrMem Reject Reject
Unknown protocol WrMem Reject Reject Reject

Legend:

OK means RMAP command executed by hardware, WrMem means that the packet is written to memory
using RxVC[0] channel and Reject means that the full packet is rejected.

RMAP not HW supported means that the RMAP command byte content is not supported by the handler
implemented in hardware. If a command is considered to be RMAP HW supported, but the address
alignment or block size is not supported, the command will be rejected instead of transferred to software
for further processing. See 10.6.4.1 and 10.6.4.2 for details.

SPW RxVC Config Register [$] [SPW_RxCnf[$]] R/W

31 2 1 0
- Word

Align
Rx
En

 0 0
MSB LSB

Function: This register configures the reception of SpaceWire Virtual Channel Transfer

Protocol packets.
Timing:
Constraints: Valid index range is (1 <= [$] <= RxVC_G).

The word alignment function assumes that the RxVC DMA Base Address
[$] is programmed with a word aligned start address.

Note that all RxVC use the DLA configured in SPW RxVC Config Register
[0].

175

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Field: Value: Description:
0 The virtual receive channel is disabled. All packets are discarded. No packets

are received on this virtual receive channel and no data are stored to memory.
Note that this bit is only used during the identification process described in
5.5.3.2. I.e., when disabled any ongoing packet will be completed.

RxEn

1 The virtual receive channel is enabled.
0 No padding takes place and a packet will start at the byte address following the

previous packet.
WordAlign

1 The end of each packet is padded up to the closest 32-bit word boundary.
Padding is done with arbitrary content.
The first byte of a packet will thus always be aligned to a 32-bit word address.

SPW RxVC Packet Counter Register [$] [SPW_RxPR[$]] R/W

31 8 7 0

- PktCntTrig
 0

 LSB

Function: This register is used for configuring the number of packets to be received for

a block transfer.
Timing:
Constraints:
Field: Value: Description:

0 The packet counter is not enabled. Any number of packets can be
received.

PktCntTrig

1-255 Number of SpaceWire packets to be received on the RxVC until
the packet trigger (CntTrig) interrupt is issued. (After this, the
virtual channel does not receive any further packets until triggered
by software again.)

SPW RxVC DMA Page Register [$] [SPW_RxDPage[$]] R/W

31 4 3 0
- DMA Page
 0

MSB LSB

Function: This register defines the page address for the virtual receive channel.
Timing:
Constraints:

Field: Description:
DMA Page Extended Address for a DMA access, corresponding to A35:A32 which

allow a total of 64 Gbyte addressing space.

SPW RxVC DMA Base Address Register [$] [SPW_RxDBAR[$]] R/W

31 0
DMA Base Address

0
MSB LSB

Function: This register defines the base address for the virtual receive channel.
Timing:

176

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Constraints:
Field: Description:
DMA Base
Address

Byte base address for a DMA access.

SPW RxVC DMA Block Size Register [$] [SPW_RxDBSR[$]] R/WT

31 24 23 0

- DMA Block Size
 0

MSB LSB

Function: This register is used for configuring the maximum number of bytes to be
received for a block transfer.

Writing to this register is used as an automatic start of a DMA block transfer.
The RxVC[$] is triggered by software when a write access is made to the this
register unless the SPW RxVC Config Register [0].RxEn bit is cleared or
any RxVC or TxVC FlushAbort interrupt is pending. All relevant counters
are automatically cleared for the virtual receive channel and any previous
halt condition is released. The SPW RxVC Status Register $.ChTrig bit is
automatically set.

Timing:
Constraints: This register should not be written if the channel is already triggered.

The block size should never be written with the value 0.
Field: Description:
DMA Block
Size

Total number of bytes to be received during a DMA block transfer.

SPW RxVC DMA Offset Register [$] [SPW_RxDOR[$]] R/W

31 24 23 0
- DMA Offset
 0

MSB LSB

Function: This register indicates the next byte address to be written, relative to the
DMA Base Address.

Timing: This register is reset automatically when the channel is triggered and is
incremented automatically as the reception progresses.

Constraints: This register must not be written to during reception.
The writability of this register is implemented for test and debug purposes
only.

Field: Description:
DMA Offset Byte address pointer relative to DMA Base Address.

The DMA access address is DMA Base Address + DMA Offset.

177

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

SPW RxVC Status Register [$] [SPW_RxSR[$]] R

31 9 8 7 0

- Ch
Trig

Ch
Act

PktCnt

 0 0 0
MSB LSB

Function: This register is used for monitoring the activity of the virtual receive
channel.

Timing: The PktCnt field is reset to zero when the SPW RxVC DMA BlockSize
Register[$] register is written

Constraints:
Field: Value: Description:
PktCnt Any Number of packets received on RxVC $

The PktCnt field is incremented, if the value is below the value in the SPW
RxVC Packet Count Register[$], when an EOP control character is received,
the packet reception was correctly finalised and the last data has been written
to memory. If an error is encountered the packet counter will remain
unchanged and indicate the number of packets correctly received, excluding
the failing packet.

0 RxVC $ is inactive ChAct
1 RxVC $ is active. This indicates that a SpaceWire packet is being received on

the channel. See 10.6.11.2.
0 RxVC $ is not triggered ChTrig
1 RxVC $ is triggered (SPW DMA Block Size Register [$] written)

Note that the channel will not be triggered in the case all FlushAbort interrupt
bits have not been cleared.

SPW RxVC Current Packet Status Register [$] [SPW_RxCPSR[$]] R

31 24 23 0

- CurPktStart
 0

MSB LSB

Function: This register is used to indicate the start byte address of the packet currently
being received, relative to the DMA base address.

The register contents can be used for setting up a new DMA block transfer
after e.g. a link disconnect error. I.e., if the truncated packet is going to be
resent after reconnection, then the SPW RxVC DMA Base Address Register
[$] can be incremented with the value in SPW RxVC Current Packet Status
Register [$] in order to overwrite the faulty packet.

Timing: The CurPktStart field is reset to zero when the SPW RxVC DMA Block Size
Register[$] is written.

Constraints:

178

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Field: Value: Description:
CurPktStart Any The current packet’s start offset

The CurPktStart field is set to SPW RxVC DMA Offset Register[$] when an
EOP control character is received, the packet reception is correctly finalised
and the last data has been written to memory. I.e. if an error is encountered,
the current packet start address remains unchanged and indicates the failing
packet.

SPW RxVC Interrupt Status Register [$] [SPW_RxISR[$]] R
SPW RxVC Interrupt Status Set Register [$] [SPW_RxISSR[$]] S
SPW RxVC Interrupt Status Clear Register [$] [SPW_RxISCR[$]] C

31 6 5 4 3 2 1 0

- CRC
Data
Err

Flush
Abort

Dma
Wr
Err

Rx
EEP

Cnt
Trig

Rx
EOB

 0 0 0 0 0 0
 LSB

Function: RxVC[$] interrupt status, set and clear registers.
Timing: An RxVC channel may issue interrupts when it is active or triggered.

The RxEOB, CntTrig, RxEEP, and CRCDataErr interrupts are issued after
the last access to memory.

The DmaWrErr interrupt is issued directly after an error has been detected on
the internal bus.

The FlushAbort interrupt is issued directly after the flush has been
commanded.

Constraints: CRCDataErr is only available for RxVC[0].
Field: Description:
RxEOB RxVC DMA Offset has reached the RxVC DMA Block Size
CntTrig The configured number of packets, SPW RxVC Packet Counter Register.PktCntTrig, has

been received and stored in memory. Can only occur if the configured number of packets
has been set higher than zero.

RxEEP An EEP has been received.
DmaWrErr Error when writing to memory, i.e. access error on internal bus, e.g. illegal address. The

remainder of the packet is discarded until EOP or EEP. The interrupt is issued immediately.
FlushAbort An SPW CODEC Configuration Register.RxFifoFlush was commanded while the channel

was active or triggered. The remainder of the packet is discarded and the channel
untriggered.

CRCDataErr A CRC8 checksum error has been detected on RxVC[0], either in the header or data field of
an RMAP command or response, both intended to be processed by software.

179

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

10.7.1.7 SpaceWire TxVC registers

The Tx channels each has a register set as defined below. TxVC[0] is dedicated to
RMAP read and responses and uses the same structure but need no register accesses to
execute a transmission. The TxVC[0] registers, with the exception of SPW TxVC Status
Register [0], are included for debug and test purposes only and should not be used in
normal operation.

SPW TxVC SendList Pointer Register [$] [SPW_TxSLPR[$]] R/W
31 0

SendList Pointer
0

MSB LSB

Function: This register is used to define the position of the send list for the virtual
transmit channel, and for monitoring the transmit progress by indicating the
current sent list entry.

The SendList Pointer field points to the first word in the send list entry
(called current position during transmission). The pointer is incremented by
16 after the send list entry has been successfully transmitted.

Timing: .
Constraints: This register must not be written to during transmission.

The pointer must be word-aligned.
For TxVC[0], writes to this register have no effect.

Field: Description:
Send List
Pointer

Address to the present element in the send list.

SPW TxVC SendList Size Register [$] [SPW_TxSLSR[$]] R/WT
31 8 7 0

- SendList Size
 0

MSB LSB

Function: The SendList Size field indicates the size of the send list, counted in number
of send list entries. It can be used for monitoring the progress by indicating
the remaining number of entries in the send list.

A write access to the SPW TxVC Sendlist Size [$] register triggers the
TxVC[$] send list fetch operation. The TxVC[$] channel will participate in
the arbitration and eventually start the transmission on the SpaceWire link.

The size is decremented by one after the send list entry has been successfully
transmitted.

Timing: .
Constraints: This register must not be written to during transmission.

For TxVC[0], writes to this register have no effect.

180

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Field: Description:
Send List
Size

Number of remaining send list entries.

SPW TxVC Status Register [$] [SPW_TxSR[$]] R

31 2 1 0

- Ch
Trig

Ch
Act

 0 0
MSB LSB

Function: This register is used for monitoring the activity of the virtual transmit
channel.

Timing:
Constraints:
Field: Value: Description:

0 TxVC $ is inactive ChAct
1 TxVC $ is active, i.e. is currently transmitting.
0 TxVC $ is not started ChTrig
1 TxVC $ is started (SPW TxVC Send List Size [$] written)

Note that for all TxVC except TxVC[0] the channel will not be triggered in
the case all FlushAbort interrupt bits have not been cleared.

SPW TxVC Interrupt Status Register $ [SPW_TxISR$] R
SPW TxVC Interrupt Status Set Register $ [SPW_TxISSR$] S
SPW TxVC Interrupt Status Clear Register $ [SPW_TxISCR$] C

31 4 3 2 1 0

- Flush
Abort

Dma
Rd
Err

Tx
EOB

 0 0 0
 LSB

Function: TxVC[$] interrupt status, set and clear registers. No interrupts are ever
issued in TxVC[0].

Timing: A TxVC channel may issue interrupts when it is active or triggered.

The TxEOB interrupt is issued after the last access to memory.

The DmaRdErr interrupt is issued directly after an error has been detected on
the internal bus.

The FlushAbort interrupt is issued directly after the flush has been
commanded.

Constraints: For TxVC[0], writes to these registers have no effect.

181

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

Field: Description:
TxEOB All messages transmitted, the send list has been completed.

DmaRdErr Error when reading from memory, i.e. access error on internal bus, e.g.

illegal address. An EEP is inserted and the ongoing send list is stopped. The
atomic send list entry handling is released, allowing the TxVC arbiter to
reassign another channel. The interrupt is issued immediately. The send list
pointer and the send list size remain unchanged in the case an error occurs
while reading a send list entry.

FlushAbort An SPW CODEC Configuration Register.TxFifoFlush was commanded
while the channel was active or triggered. The channel is untriggered and the
ongoing transmission is stopped.

10.8 Vendor and device id

The module has vendor id 0x04 and device id 0x12.

182

GAISLER

11 AMBA AHB CONTROLLER

11.1 Overview

The AHB controller is a combined AHB arbiter, bus multiplexer and slave decoder. The controller sup-
ports up to 16 AHB masters, and 16 AHB slaves.

Figure 76. AHB Controller block diagram

11.2 Operation

11.2.1 Arbitration

The AHB controller supports a round-robin arbitration algorithm. In round-robin mode, priority is
rotated one step after each AHB transfer. If no master requests the bus, the last owner will be granted
(bus parking). During incremental bursts, the AHB master should keep the bus request asserted until
the last access or it might loose bus ownership.

11.2.2 Decoding

Access to unused addresses will cause an AHB error response.

11.2.3 Plug&play information

GRLIB devices contain a number of plug&play information words which are included in the AHB
records they drive on the bus (see the GRLIB user’s manual for more information). These records are
combined into an array which is connected to the AHB controller unit. The plug&play information is
mapped on a read-only address area mapped on address 0xFFFFF000 - 0xFFFFFFFF.
The master information is placed on the first 2Kbyte of the block, while the slave information id placed
on the second 2Kbyte block. Each unit occupies 32 bytes, which means that the area has place for 64
masters and 64 slaves.

MASTER MASTER

SLAVESLAVE

ARBITER/
DECODER

AHBCTRL
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

183

GAISLER

Figure 77. AHB plug&play information record

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

31 20 19 16 15 4 3 0

Identification Register 00

10 9

HADDR P MASK TYPEC0 0ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

Bank Address Registers

USER-DEFINED

USER-DEFINED

USER-DEFINED

00

04

08

10

14

18

1C

0C

18 17

BAR0

BAR1

BAR2

BAR3

C = Cacheable
P = Prefetchable TYPE

0010 = AHB Memory space
0011 = AHB I/O space

0001 = APB I/O space
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

184

GAISLER

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

12 AMBA AHB/APB BRIDGE

12.1 Overview

The APB bridge is a APB bus master. The controller supports up to 16 slaves.

Figure 78. APB Bridge block diagram

12.2 Operation

12.2.1 Decoding

A slave can occupy any binary aligned address space with a size of 256 bytes - 1 Mbyte.

12.2.2 Plug&play information

GRLIB APB slaves contain two plug&play information words which are included in the APB records
they drive on the bus (see the GRLIB User’s manual for more information). These records are com-
bined into an array which is connected to the APB bridge. The plug&play information is mapped on a
read-only address area at the top 4 kbytes of the bridge address space. Each plug&play block occupies
8 bytes. The plug&play information is mapped on a read-only address area mapped on address
0x800FF000 - 0x800FF1FF.

Figure 79. APB plug&play information

12.3 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x06.

APB SLAVE

APB SLAVEAHB Slave

APB Bridge

Interface

•••

AHB BUS

APBI

APBO[0]

APBO[n]
AHBSI

AHBSO[n]

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 45 0

ADDR C/P MASK TYPE

31 20 19 16 15 4 3 0

BAR

Configuration wordAPB Plug&play record
0x00

0x04

10 9

00

185

GAISLER

13 MEMORY AND REGISTER MAP, INTERRUPT ASSIGNMENT

13.1 Addressing information

The SpaceWire-RTC global memory map is shown in the table below. The global address map is
defined by the addresses on the internal AMBA AHB bus.

The SpaceWire-RTC effective memory map is shown in the table below. The address map is defined
by the addresses on the internal AMBA AHB bus. The address ranges shown correspond to a system
equipped with the supported maximum number of memory devices each with the supported maximum
size. The constraining of the addressable memory is made by the width of the external memory address
bus.

The SpaceWire-RTC global register map is shown in the table below. The global register address map
is defined by the addresses on the internal AMBA APB bus.

Address range Size Mapping Module

0x00000000 - 0x1FFFFFFF 512 M Prom Memory controller
0x20000000 - 0x3FFFFFFF 512 M Memory bus I/O
0x40000000 - 0x7FFFFFFF 1 G SRAM
0x80000000 - 0x800FEFFF On-chip registers APB controller / bridge
0x800FF000 - 0x800FF1FF 512 Plug and play information
0x90000000 - 0x9FFFFFFF 256 M Debug support unit DSU
0xA0000000 - 0xAFFFFFFF 64 K On-chip RAM On-chip RAM
0xFFFFF000 - 0xFFFFFFFF 4 K Plug and play information AHB controller

Table 79: Global address map (AMBA AHB bus)

Address range Size Mapping Cacheable Module

0x00000000 - 0x00FFFFFF 16 M Prom Yes Memory controller
0x20000000 - 0x207FFFFF 8 M Memory bus I/O No
0x40000000 - 0x41FFFFFF 32 M SRAM Yes
0xA0000000 - 0xA000FFFF 64 k On-chip RAM Yes On-chip RAM

Table 80: Effective memory address map with cacheability

Address range Size Mapping Module

0x80000000 - 0x800000FF 256 LEON2-FT registers LEON2-FT
0x80010000 - 0x800100FF 256 On-Chip Memory FTAHBRAM
0x80020000 - 0x800200FF 256 24-bit GPIO GPPULSE
0x80030000 - 0x800300FF 256 32-bit Timers GRTIMER
0x80040000 - 0x800400FF 256 ADC/DAC interface GRADCDAC
0x80050000 - 0x800500FF 256 FIFO interface GRFIFO
0x80060000 - 0x80060FFF 4096 SpaceWire Interface - 0 SPW2
0x80070000 - 0x80070FFF 4096 SpaceWire Interface - 1 SPW2
0x80080000 - 0x800803FF 1024 CAN interface GRHCAN

Table 81: Global register address map (AMBA APB bus)
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

186

GAISLER

13.2 Plug & Play information

The SpaceWire-RTC plug&play information for the masters on the internal AMBA AHB bus is shown
in the table below.

The SpaceWire-RTC plug&play information for the slaves on the internal AMBA AHB bus is shown
in the table below.

The SpaceWire-RTC plug&play information for the slaves on the internal AMBA APB bus is shown
in the table below.

Address range Size Mapping Module

0xFFFFF000 - 0xFFFFF01F 32 LEON2-FT Caches LEON2-FT
0xFFFFF020 - 0xFFFFF03F 32 LEON2-FT DSU UART LEON2-FT
0xFFFFF040 - 0xFFFFF05F 32 FIFO interface GRFIFO
0xFFFFF060 - 0xFFFFF07F 32 SpaceWire Interface - 0 Rx SPW2
0xFFFFF080 - 0xFFFFF09F 32 SpaceWire Interface - 0 Tx SPW2
0xFFFFF0A0 - 0xFFFFF0BF 32 SpaceWire Interface - 1 Rx SPW2
0xFFFFF0C0 - 0xFFFFF0DF 32 SpaceWire Interface - 1 Tx SPW2
0xFFFFF0E0 - 0xFFFFF0FF 32 CAN interface GRHCAN

Table 82: Plug&play information for AHB masters

Address range Size Mapping Module

0xFFFFF800 - 0xFFFFF81F 32 APB Controller APB Controller
0xFFFFF820 - 0xFFFFF83F 32 Memory controller LEON2-FT
0xFFFFF840 - 0xFFFFF85F 32 DSU LEON2-FT
0xFFFFF860 - 0xFFFFF87F 32 On-Chip Memory FTAHBRAM

Table 83: Plug&play information for AHB slaves

Address range Size Mapping Module

0x800FF000 - 0x800FF007 8 LEON2-FT registers LEON2-FT
0x800FF008 - 0x800FF00F 8 On-Chip Memory registers FTAHB
0x800FF010 - 0x800FF017 8 24-bit GPIO GPPULSE
0x800FF018 - 0x800FF01F 8 32-bit Timers GRTIMER
0x800FF020 - 0x800FF027 8 ADC/DAC interface GRADCDAC
0x800FF028 - 0x800FF02F 8 FIFO interface GRFIFO
0x800FF030 - 0x800FF037 8 SpaceWire Interface - 0 SPW2
0x800FF038 - 0x800FF03F 8 SpaceWire Interface - 1 SPW2
0x800FF040 - 0x800FF047 8 CAN interface GRHCAN

Table 84: Plug&play information for APB slaves
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

187

GAISLER

13.3 Registers

13.3.1 Processor and peripherals

TABLE 85. LEON2-FT registers

Address Register Address

0x80000000 Memory configuration register 1 0x800000B0 Secondary interrupt mask register

0x80000004 Memory configuration register 2 0x800000B4 Secondary interrupt pending register

0x80000008 Memory configuration register 3 0x800000B8 Secondary interrupt status register

0x8000000C AHB Failing address register 0x800000B8 Secondary interrupt clear register

0x80000010 AHB status register

0x80000014 Cache control register 0x800000C4 DSU UART status register

0x80000018 Power-down register 0x800000C8 DSU UART control register

0x8000001C Write protection register 1 0x800000CC DSU UART scaler register

0x80000020 Write protection register 2

0x80000024 LEON configuration register 0x800000D0 Write protect start address 1

0x80000040 Timer 1 counter register 0x800000D4 Write protect end address 1

0x80000044 Timer 1 reload register 0x800000D8 Write protect start address 2

0x80000048 Timer 1 control register 0x800000DC Write protect end address 2

0x8000004C Watchdog register

0x80000050 Timer 2 counter register

0x80000054 Timer 2 reload register

0x80000058 Timer 2 control register

0x80000060 Prescaler counter register

0x80000064 Precaler reload register

0x80000070 Uart 1 data register

0x80000074 Uart 1 status register

0x80000078 Uart 1 control register

0x8000007C Uart 1 scaler register

0x80000080 Uart 2 data register

0x80000084 Uart 2 status register

0x80000088 Uart 2 control register

0x8000008C Uart 2 scaler register

0x80000090 Interrupt mask and priority register

0x80000094 Interrupt pending register

0x80000098 Interrupt force register

0x8000009C Interrupt clear register

0x800000A0 I/O port input/output register

0x800000A4 I/O port direction register

0x800000A8 I/O port interrupt config. register 1

0x800000AC I/O port interrupt config. register 2
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

188

GAISLER

13.3.2 On-Chip Memory

13.3.3 FIFO Interface

TABLE 86. On-Chip Memory registers

Register Address

Configuration Register 0x80010000

TABLE 87. FIFO Interface registers

Register Address

Configuration Register 0x80050000

Control Register 0x80050008

Transmit Channel Control Register 0x80050020

Transmit Channel Status Register 0x80050024

Transmit Channel Address Register 0x80050028

Transmit Channel Size Register 0x8005002C

Transmit Channel Write Register 0x80050030

Transmit Channel Read Register 0x80050034

Transmit Channel Interrupt Register 0x80050038

Receive Channel Control Register 0x80050040

Receive Channel Status Register 0x80050044

Receive Channel Address Register 0x80050048

Receive Channel Size Register 0x8005004C

Receive Channel Write Register 0x80050050

Receive Channel Read Register 0x80050054

Receive Channel Interrupt Register 0x80050058

Data Input Register 0x80050060

Data Output Register 0x80050064

Data Direction Register 0x80050068
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

189

GAISLER

13.3.4 ADC/DAC Interface

13.3.5 32-bit Timers

TABLE 88. ADC/DAC Interface registers

Register Address

Configuration Register 0x80040000

Status Register 0x80040004

ADC Data Input Register 0x80040010

DAC Data Output Register 0x80040014

Address Input Register 0x80040020

Address Output Register 0x80040024

Address Direction Register 0x80040028

Data Input Register 0x80040030

Data Output Register 0x80040034

Data Direction Register 0x80040038

TABLE 89. 32-bit Timers registers

Register Address

Scaler value 0x80030000

Scaler reload value 0x80030004

Configuration register 0x80030008

Timer latch configuration register 0x8003000C

Timer 1 counter value register 0x80030010

Timer 1 reload value register 0x80030014

Timer 1 control register 0x80030018

Timer 1 latch register 0x8003001C

Timer 2 counter value register 0x80030020

Timer 2 reload value register 0x80030024

Timer 2 control register 0x80030028

Timer 2 latch register 0x8003002C
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

190

GAISLER

13.3.6 24-bit General Purpose Input Output

13.3.7 CAN Interface

TABLE 90. 24-bit General Purpose Input Output registers

Register Address

Input Register 0x80020000

Output Register 0x80020004

Direction Register 0x80020008

Interrupt Mask Register 0x8002000C

Interrupt Polarity Register 0x80020010

Interrupt Edge Register 0x80020014

Pulse Register 0x80020018

Pulse Counter Register 0x8002001C

TABLE 91. CAN Controller registers

Register Address

Configuration Register 0x80080000

Status Register 0x80080004

Control Register 0x80080008

SYNC Mask Filter Register 0x80080018

SYNC Code Filter Register 0x8008001C

Pending Interrupt Masked Status Register 0x80080100

Pending Interrupt Masked Register 0x80080104

Pending Interrupt Status Register 0x80080108

Pending Interrupt Register 0x8008010C

Interrupt Mask Register 0x80080110

Pending Interrupt Clear Register 0x80080114

Transmit Channel Control Register 0x80080200

Transmit Channel Address Register 0x80080204

Transmit Channel Size Register 0x80080208

Transmit Channel Write Register 0x8008020C

Transmit Channel Read Register 0x80080210

Transmit Channel Interrupt Register 0x80080214

Receive Channel Control Register 0x80080300

Receive Channel Address Register 0x80080304

Receive Channel Size Register 0x80080308

Receive Channel Write Register 0x8008030C

Receive Channel Read Register 0x80080310

Receive Channel Interrupt Register 0x80080314

Receive Channel Mask Register 0x80080318

Receive Channel Code Register 0x8008031C
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

191

GAISLER

13.3.8 SpaceWire Link Interface - 0

TABLE 92. SpaceWire Link - 0 registers

Address Register
0x80060000 SPW Pending Interrupt Masked Status Register
0x80060008 SPW Pending Interrupt Status Register
0x80060010 SPW Interrupt Mask Register
0x80060014 SPW Link Interrupt Status Register
0x80060018 SPW Link Interrupt Status Set Register
0x8006001C SPW Link Interrupt Status Clear Register
0x80060020 SPW CODEC Configuration Register
0x80060024 SPW Clock Division Register
0x80060028 SPW RMAP Destination Key Register
0x8006002C SPW Transmit Time-Code Register
0x80060030 SPW VC Transfer Protocol ID Register
0x80060034 SPW SW Transmit Time-Code Register
0x80060040 SPW Status Register
0x80060044 SPW CODEC Status Register
0x80060048 SPW Receive Time-Code Status Register
0x80060050 SPW Transmit Time-Code Mask Register
0x80060080 SPW First Failing Packet Register
0x80060100 SPW RxVC Config Register [0]
0x80060104 SPW RxVC Packet Counter Register [0]
0x80060108 SPW RxVC DMA Page Register [0]
0x8006010C SPW RxVC DMA Base Address Register [0]
0x80060110 SPW RxVC DMA Block SizeRegister [0]
0x80060114 SPW RxVC DMA Offset Register [0]
0x80060118 SPW RxVC Status Register [0]
0x8006011C SPW RxVC Current Packet Status Register [0]
0x80060120 SPW RxVC Interrupt Status Register [0]
0x80060124 SPW RxVC Interrupt Status Set Register [0]
0x80060128 SPW RxVC Interrupt Status Clear Register [0]
0x80060140 SPW RxVC Config Register [1]
0x80060144 SPW RxVC Packet Counter Register [1]
0x80060148 SPW RxVC DMA Page Register [1]
0x8006014C SPW RxVC DMA Base Address Register [1]
0x80060150 SPW RxVC DMA Block SizeRegister [1]
0x80060154 SPW RxVC DMA Offset Register [1]
0x80060158 SPW RxVC Status Register [1]
0x8006015C SPW RxVC Current Packet Status Register [1]
0x80060160 SPW RxVC Interrupt Status Register [1]
0x80060164 SPW RxVC Interrupt Status Set Register [1]
0x80060168 SPW RxVC Interrupt Status Clear Register [1]
0x80060320 SPW TxVC SendList Pointer Register [1]
0x80060324 SPW TxVC SendList Size Register [1]
0x80060328 SPW TxVC Status Register [1]
0x8006032C SPW TxVC Interrupt Status Register [1]
0x80060330 SPW TxVC Interrupt Status Set Register [1]
0x80060334 SPW TxVC Interrupt Status Clear Register [1]
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

192

GAISLER

13.3.9 SpaceWire Link Interface - 1

TABLE 93. SpaceWire Link - 1 registers

Address Register
0x80070000 SPW Pending Interrupt Masked Status Register
0x80070008 SPW Pending Interrupt Status Register
0x80070010 SPW Interrupt Mask Register
0x80070014 SPW Link Interrupt Status Register
0x80070018 SPW Link Interrupt Status Set Register
0x8007001C SPW Link Interrupt Status Clear Register
0x80070020 SPW CODEC Configuration Register
0x80070024 SPW Clock Division Register
0x80070028 SPW RMAP Destination Key Register
0x8007002C SPW Transmit Time-Code Register
0x80070030 SPW VC Transfer Protocol ID Register
0x80070034 SPW SW Transmit Time-Code Register
0x80070040 SPW Status Register
0x80070044 SPW CODEC Status Register
0x80070048 SPW Receive Time-Code Status Register
0x80070050 SPW Transmit Time-Code Mask Register
0x80070080 SPW First Failing Packet Register
0x80070100 SPW RxVC Config Register [0]
0x80070104 SPW RxVC Packet Counter Register [0]
0x80070108 SPW RxVC DMA Page Register [0]
0x8007010C SPW RxVC DMA Base Address Register [0]
0x80070110 SPW RxVC DMA Block SizeRegister [0]
0x80070114 SPW RxVC DMA Offset Register [0]
0x80070118 SPW RxVC Status Register [0]
0x8007011C SPW RxVC Current Packet Status Register [0]
0x80070120 SPW RxVC Interrupt Status Register [0]
0x80070124 SPW RxVC Interrupt Status Set Register [0]
0x80070128 SPW RxVC Interrupt Status Clear Register [0]
0x80070140 SPW RxVC Config Register [1]
0x80070144 SPW RxVC Packet Counter Register [1]
0x80070148 SPW RxVC DMA Page Register [1]
0x8007014C SPW RxVC DMA Base Address Register [1]
0x80070150 SPW RxVC DMA Block SizeRegister [1]
0x80070154 SPW RxVC DMA Offset Register [1]
0x80070158 SPW RxVC Status Register [1]
0x8007015C SPW RxVC Current Packet Status Register [1]
0x80070160 SPW RxVC Interrupt Status Register [1]
0x80070164 SPW RxVC Interrupt Status Set Register [1]
0x80070168 SPW RxVC Interrupt Status Clear Register [1]
0x80070320 SPW TxVC SendList Pointer Register [1]
0x80070324 SPW TxVC SendList Size Register [1]
0x80070328 SPW TxVC Status Register [1]
0x8007032C SPW TxVC Interrupt Status Register [1]
0x80070330 SPW TxVC Interrupt Status Set Register [1]
0x80070334 SPW TxVC Interrupt Status Clear Register [1]
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

193

GAISLER

13.4 Interrupts

13.4.1 Interrupt assignment - primary interrupt controller

Table 94 shows the assignment of interrupts for the primary interrupt controller.

TABLE 94. Interrupt assignments - primary interrupt controller

Interrupt Source
15 Parallel I/O[7]
14 SpaceWire 1
13 SpaceWire 0

Parallel I/O[6]
12 CAN interface

Parallel I/O[5]
11 DSU trace buffer
10 Second interrupt controller

Parallel I/O[4]
9 Timer 2
8 Timer 1
7 Parallel I/O[3]
6 Parallel I/O[2]
5 Parallel I/O[1]
4 Parallel I/O[0]
3 UART 1
2 UART 2
1 AHB error
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

194

GAISLER

13.4.2 Interrupt assignment - secondary interrupt controller

Table 95 shows the assignment of interrupts for the secondary interrupt controller.

Note: Interrupt 17, 15 and 13 are available in primary interrupt controller and should therefore
be used restrictively in the secondary interrupt controller. The secondary interrupt
controller uses edge detection, whereas the aforementioned interrupt sources use level.
The interrupt handling software must thus ensure that the sources for the
aforementioned interrupts do not have an additional pending interrupt when clearing
the corresponding bit in the pending interrupt register in the secondary interrupt
controller. This limitation does not exist for the primary interrupt controller.

Note: Interrupts 31 down to 24 are connected to the inputs of the 24-bit General Purpose Input
Output interface. The secondary interrupt controller uses edge detection. The 24-bit
General Purpose Input Output interface must therefore only be programmed for edge
detection, not for level, to ensure that multiple interrupts can be detected.

TABLE 95. Secondary interrupt controller assignments

Interrupt Source Comment
31 GPIO / Gpio[23] 24-bit GPIO input interrupt
30 GPIO / Gpio[22] 24-bit GPIO input interrupt
29 GPIO / Gpio[21] 24-bit GPIO input interrupt
28 GPIO / Gpio[20] 24-bit GPIO input interrupt
27 GPIO / Gpio[19] 24-bit GPIO input interrupt
26 GPIO / Gpio[18] 24-bit GPIO input interrupt
25 GPIO / Gpio[17] 24-bit GPIO input interrupt
24 GPIO / Gpio[16] 24-bit GPIO input interrupt
23-20 - Unused
19 CAN/RxSync Synchronization message received
18 CAN/TxSync Synchronization message transmitted
17 CAN/IRQ Common output from interrupt handler
16 SpaceWire 1/ Tick Synchronization received
15 SpaceWire 1 / Interrupt Common output from interrupt handler
14 SpaceWire 0 / Tick Synchronization received
13 SpaceWire 0 / Interrupt Common output from interrupt handler
12 FIFO/RxParity Parity error during reception
11 FIFO/RxError AHB access error during reception
10 FIFO/RxFull Circular reception buffer full
9 FIFO/RxIrq Successful reception of data block
8 FIFO/TxError AHB access error during transmission
7 FIFO/TxEmpty Circular transmission buffer empty
6 FIFO/TxIrq Successful transmission of data block
5 ADC/DAC DAC conversion ready
4 ADC/DAC ADC conversion ready
3 32-Bit Timer/Timer 2 Timer expired
2 32-Bit Timer/Timer 1 Timer expired
1 GPIO/PULSE Pulse command completed
0 - Unused
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

195

GAISLER

14 INTERFACES AND SIGNALS

Signal Type Description Comment

LeonErrorN IO,
open-drain
output

LEON Error This active low output is asserted when
the processor has entered error state and
is halted. This happens when traps are
disabled and an synchronous (un-
maskable) trap occurs.

LeonWDN IO,
open-drain
output

LEON watchdog This active low output is asserted when
the watchdog times-out.

LeonDsuEn I DSU enable The active high input enables the DSU
unit. If de-asserted, the DSU trace buffer
will continue to operate but the processor
will not enter debug mode.

LeonDsuTx O DSU UART transmit This active high output provides the data
from the DSU communication link
transmitter.

LeonDsuRx I DSU UART receive This active high input provides the data
to the DSU communication link receiver.

LeonDsuBre I DSU break A low-to-high transition on this active
high input will generate break condition
and put the processor in debug mode.

LeonDsuAct O DSU active This active high output is asserted when
the processor is in debug mode and
controlled by the DSU.

LeonPio[15:0] IO LEON Parallel Input / Output These bi-directional signals can be used
as inputs or outputs to control external
devices.

Gpio[23:0] IO General Purpose Input /
Output

TimeClk I External timer clock
TimeTrig[2:1] O External timer trigger Asserted for 8 system clock periods
CanTx[1:0] O CAN transmit
CanRx[1:0] I CAN receive
CanEn[1:0] O CAN transmit enable
ADData[15:0] IO ADC/DAC data
ADAddr[7:0] IO ADC/DAC address
ADWr O DAC write strobe
ADCs O ADC chip select
ADRc O ADC read/convert
ADRdy I ADC ready
ADTrig I ADC trigger
MemA[22:0] O Memory interface address These active high outputs carry the

address during accesses on the memory
bus. When no access is performed, the
address of the last access is driven (also
internal cycles).

MemD[31:0] IO Memory interface data MemD[31:0] carries the data during
transfers on the memory bus. The
processor only drives the bus during
write cycles. During accesses to 8-bit
areas, only MemD[31:24] are used.

Table 96: SpaceWire-RTC signals

Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

196

GAISLER

MemCB[7:0] IO Memory interface checkbits MemCB[6:0] carries the EDAC
checkbits, MemCB[7] takes the value of
TB[7] in the error control register. The
processor only drive MemCB[7:0]
during write cycles to areas programmed
to be EDAC protected.

MemCsN[3:0] O SRAM chip select These active low signals provide an
individual output enable for each SRAM
bank.

MemOeN[3:0] O SRAM output enable These active low outputs provide the
chip-select signals for each SRAM bank.

MemWrN[3:0] O SRAM byte write strobe These active low outputs provide
individual write strobes for each byte
lane. MemWrN[0] controls
MemD[31:24], MemWrN[1] controls
MemD[23:16], etc.

RomCsN[1:0] O PROM chip select These active low outputs provide the
chip-select signal for the PROM area.
RomCsN[0] is asserted when the lower
half of the PROM area is accessed (0 -
0x10000000), while RomCsN[1] is
asserted for the upper half.

IoCsN O I/O area chip select This active low output is the chip-select
signal for the memory mapped I/O area.

IoOeN O I/O area output enable This active low output is asserted during
read cycles on the memory bus.

IoRead O I/O area read This active high output is asserted during
read cycles on the memory bus.

IoWrN O I/O area write This active low output provides a write
strobe during write cycles on the
memory bus.

IoBrdyN I I/O area ready This active low input indicates that the
access to a memory mapped I/O area can
be terminated on the next rising clock
edge.

MemBExcN I Memory exception This active low input is sampled
simultaneously with the data during
accesses on the memory bus. If asserted,
a memory error will be generated.

FifoD[15:0] IO FIFO data
FifoP[1:0] IO FIFO parity
FifoRdN O FIFO read strobe
FifoWrN O FIFO write strobe
FifoFullN I FIFO full
FifoEmpN I FIFO empty
FifoHalfN I FIFO half-full, half-empty
SpwClkSrc I SpaceWire transmitter clock

source
SpwClkMult[1:0] I SpaceWire clock

configuration
SpwClk10Mbit[2:0] I SpaceWire clock

configuration

Signal Type Description Comment

Table 96: SpaceWire-RTC signals
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

197

GAISLER

SpwClkPllCnfg[2:0] I SpaceWire clock
configuration

SpwClkMuxSel I SpaceWire clock
configuration

External clock when 1, internal PLL
when 0.

SpwDIn_P[1:0] I, LVDS
positive

SpaceWire Data input,
positive

SpwDIn_N[1:0] I, LVDS
negative

SpaceWire Data input,
negative

SpwSIn_P[1:0] I, LVDS
positive

SpaceWire Strobe input,
positive

SpwSIn_N[1:0] I, LVDS
negative

SpaceWire Strobe input,
negative

SpwDOut_P[1:0] O, LVDS
positive

SpaceWire Data output,
positive

SpwDOut_N[1:0] O, LVDS
negative

SpaceWire Data output,
negative

SpwSOut_P[1:0] O, LVDS
positive

SpaceWire Strobe output,
positive

SpwSOut_N[1:0] O, LVDS
negative

SpaceWire Strobe output,
negative

Signal Type Description Comment

Table 96: SpaceWire-RTC signals
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

198

GAISLER

15 REVISION CONTROL

The table below shows changes between revisions.

TABLE 97. Revision control

Revision Date Sections Comment
2.4 2009 Dec 3.4.10 Removed note on obsolete PROM size register field

4.2 On-chip memory protection clarified
4.2, 4.4 Error counter and autoscrubbing clarified for on-chip memory
1.3, 10.5.10 ECSS document referneces updated for SpaceWire, RMAP etc.

2.3 2009 Mar 3.3.5.2 Clarified that there is a receiver shift register (not to be mistaken with the
8-bit serial shift register used for filtering).
Clarified error bit generation and handling.

3.3.5.5 Clarified that a break detection can generate a receiver interrupt.
2.2 2008 Dec Front page, all RUAG name and logo introduced
2.1 2008 Oct Front page, all Aeroflex Gaisler name, address and logo introduced
2.0 2008 Oct 3.4 IoScN renamed to IoCsN.

3.4.3, 3.4.10 Number of PROM wait states changed from 15 to 30
1.9 2008 June General Unused bits in registers usage clarified.

3.1.3 Multiplier description restricted to implementation
3.2.1 Cache information updated to implementation
3.2.2.2 Cache information updated to implementation
3.4.5 Maximum SRAM area corrected
3.4.9 SDRAM reference removed
10.6.7.4 Restructured
10.8 ESA removed as vendor identifier
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

199

GAISLER

1.8 2008 May 3.3.1 Updated LEON2 on-chip register map:
0x800000A8 I/O port interrupt config. register 1
0x800000AC I/O port interrupt config. register 2

3.3.3.3 Updated secondary interrupt controller assignment list (adding GPIO
interrupts). Added notes on interrupt usage.

5.5.1 Clarified that the hardware (not the software) cannot fill the receiver
buffer completely.

5.7.11 The incorrect "RxEmpty" was changed to "RxFull".
The buffer full condition has been increased from "less than two words"
to "two words or less”.

5.7.13 The number of bytes that can be stored in the buffer has been reduced by
4.

5.7.15 The number of unused words in the buffer has been increased by one.
6.1.1 It has been clarified that simultaneous ADC and DAC conversion is not

possible.
6.2.2 It has been clarified that triggering events are ignored if conversion

already in progress.
6.3.2 The cause of a conversion rejection has been clarified.
6.3.3 The cause of a conversion rejection has been clarified.
6.3.4 The cause of a conversion rejection has been clarified.
7.1 Incorrect text about prescaler and timer relation removed. All timers are

decremented each timer tick.
7.2 Incorrect text about prescaler and timer relation removed. All timers are

decremented each timer tick.
8.2.8 It has been clarified that interrupts on GPIO can only be used in edge

detection operation to ensure no list interrupts.
9.11 Corrected CAN message memory format.
10 Restructured to include SpaceWire (SPW2) module information.
10.6.2.2, 10.2.1.2 Updates regarding external SpwClk10MBit and SpwClkMul signals.
10.6.3.1, 10.2.1.6 Defined reset value for RMAPEn.
10.6.7.1,10.6.11.8.1,
10.7.1.2

Defined HW-triggered time-code transmission

10.6.7.2, 10.6.11.8.2 Defined HW-supported time-code reception
10.6.7.3 Added information on alternative time-code handling
10.6.16 Added information on interrupts
10.7.12 Added SPW Transmit Time-Code Mask Register
13.2 Corrected CAN controller plug&play address
13.3.1 Updated LEON2 on-chip register map:

0x800000A8 I/O port interrupt config. register 1
0x800000AC I/O port interrupt config. register 2

13.4.2 Added notes on interrupt usage (see 3.3.3.3).
14 SpwClkPllCnfg[2] pin added
Appendix A SpaceWire (SPW2) module information moved to section 10

TABLE 97. Revision control

Revision Date Sections Comment
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

200

GAISLER

1.7 2007 Feb 1.4 Source references added
2.1, 2.2, 3.3.4 LEON2 timers extended to 32 bit
3.1 LEON2 multiplier specified
3.2 LEON2 cache section adapted to SpaceWire-RTC implementation
3.3.1 Write protection registers added
3.3.2.2, 3.3.6, 13.4 New PIO interrupts added
3.4 LEON2 memory controller updates added
3.5 LEON2 DSU section adapted to SpaceWire-RTC implementation
9.4 GRHCAN TxLoss interrupt explained

1.6 2006 Dec 2.2 Memory interface address width corrected
7.4, 13.3.5 Timer 2 registers added
10.4, 13.3.8, 13.3.9 Time-code transmission revised

1.5 2006 May 13.3.5 Added Timer 1 registers
1.4 2006 Mar 2.2, 8, 13.3.6, 13.4.2 Interrupts added to GRGPIO

6 ADC timing extended
1.3 2006 Feb 5 GRCHAN timing configuration constrained
1.2 2006 Feb 5 GRFIFO size specified

7.4 Timer configuration register corrected
9.10 GRCHAN TSEG2 configuration constrained
11 SpwClk configuration pins changed

1.1 2006 Feb - Added MEIKO FPU
1.0 2006 Jan All New document

TABLE 97. Revision control

Revision Date Sections Comment
Copyright © 2006, 2007, 2008, 2009 Aeroflex Gaisler and RUAG RTC-100-0012, December 2009, Version 2.4

	1 INTRODUCTION
	1.1 Scope
	1.2 Licensing
	1.3 Reference documents
	1.4 Source reference
	1.5 System overview
	1.6 Block diagram
	1.7 Description of typical systems using the device

	2 FUNCTIONAL OVERVIEW
	2.1 General functionality
	2.2 General interfaces

	3 PROCESSOR AND PERIPHERALS
	3.1 LEON integer unit
	3.1.1 Overview
	3.1.2 Instruction pipeline
	3.1.3 Multiply instructions
	3.1.4 Divide instructions
	3.1.5 Register file SEU protection
	3.1.6 Processor reset operation
	3.1.7 Exceptions
	3.1.8 Hardware breakpoints
	3.1.9 Floating-point unit

	3.2 Cache sub-system
	3.2.1 Overview
	3.2.2 Instruction cache
	3.2.3 Data cache
	3.2.4 Cache flushing
	3.2.5 Diagnostic cache access
	3.2.6 Cache parity protection
	3.2.7 Cache Control Register

	3.3 On-chip peripherals
	3.3.1 On-chip registers
	3.3.2 Interrupt controller
	3.3.3 Secondary interrupt controller
	3.3.4 Timer unit
	3.3.5 UARTs
	3.3.6 Parallel I/O port
	3.3.7 LEON configuration register
	3.3.8 Power-down
	3.3.9 AHB status register

	3.4 External memory access
	3.4.1 Memory interface
	3.4.2 Memory controller
	3.4.3 PROM access
	3.4.4 Memory mapped I/O
	3.4.5 SRAM access
	3.4.6 Burst cycles
	3.4.7 8-bit PROM and SRAM access
	3.4.8 8-bit I/O access
	3.4.9 Memory EDAC
	3.4.10 Memory configuration register 1 (MCFG1)
	3.4.11 Memory configuration register 2 (MCFG2)
	3.4.12 Memory configuration register 3 (MCFG3)
	3.4.13 Write protection
	3.4.14 Using IoBrdyN
	3.4.15 Access errors

	3.5 Hardware debug support
	3.5.1 Overview
	3.5.2 Debug support unit
	3.5.3 DSU communication link
	3.5.4 Common operations

	3.6 Vendor and device id

	4 ON-CHIP MEMORY
	4.1 Overview
	4.2 Operation
	4.3 Vendor and device id
	4.4 Registers

	5 FIFO INTERFACE
	5.1 Overview
	5.1.1 Function
	5.1.2 Transmission
	5.1.3 Reception
	5.1.4 General purpose input output
	5.1.5 Interfaces

	5.2 Interface
	5.3 Waveforms
	5.4 Transmission
	5.4.1 Circular buffer
	5.4.2 Write and read pointers
	5.4.3 Location
	5.4.4 Transmission procedure
	5.4.5 Straight buffer
	5.4.6 AMBA AHB error
	5.4.7 Enable and disable
	5.4.8 Interrupts

	5.5 Reception
	5.5.1 Circular buffer
	5.5.2 Write and read pointers
	5.5.3 Location
	5.5.4 Reception procedure
	5.5.5 Straight buffer
	5.5.6 AMBA AHB error
	5.5.7 Enable and disable
	5.5.8 Interrupts

	5.6 Operation
	5.6.1 Global reset and enable
	5.6.2 Interrupt
	5.6.3 Vendor and device id

	5.7 Registers
	5.7.1 Configuration Register [FifoCONF] R/W
	5.7.2 Control Register [FifoCTRL] R/W
	5.7.3 Transmit Channel Control Register [FifoTxCTRL] R/W
	5.7.4 Transmit Channel Status Register [FifoTxSTAT] R
	5.7.5 Transmit Channel Address Register [FifoTxADDR] R/W
	5.7.6 Transmit Channel Size Register [FifoTxSIZE] R/W
	5.7.7 Transmit Channel Write Register [FifoTxWR] R/W
	5.7.8 Transmit Channel Read Register [FifoTxRD] R/W
	5.7.9 Transmit Channel Interrupt Register [FifoTxIRQ] R/W
	5.7.10 Receive Channel Control Register [FifoRxCTRL] R/W
	5.7.11 Receive Channel Status Register [FifoRxSTAT] R
	5.7.12 Receive Channel Address Register [FifoRxADDR] R/W
	5.7.13 Receive Channel Size Register [FifoRxSIZE] R/W
	5.7.14 Receive Channel Write Register [FifoRxWR] R/W
	5.7.15 Receive Channel Read Register [FifoRxRD] R/W
	5.7.16 Receive Channel Interrupt Register [FifoRxIRQ] R/W
	5.7.17 Data Input Register [FifoDIN] R
	5.7.18 Data Output Register [FifoDOUT] R/W
	5.7.19 Data Register [FifoDDIR] R/W

	6 ADC / DAC INTERFACE
	6.1 Overview
	6.1.1 Function
	6.1.2 Interfaces

	6.2 Operation
	6.2.1 Interfaces
	6.2.2 Analogue to digital conversion
	6.2.3 Digital to analogue conversion
	6.2.4 Interrupt
	6.2.5 Vendor and device id

	6.3 Registers
	6.3.1 Configuration Register [ADCONF] R/W
	6.3.2 Status Register [ADSTAT] R
	6.3.3 ADC Data Input Register [ADIN] R/W
	6.3.4 DAC Data Output Register [ADOUT] R/W
	6.3.5 Address Input Register [ADAIN] R
	6.3.6 Address Output Register [ADAOUT] R/W
	6.3.7 Address Direction Register [ADADIR] R/W
	6.3.8 Data Input Register [ADDIN] R
	6.3.9 Data Output Register [ADDOUT] R/W
	6.3.10 Data Register [ADDDIR] R/W

	7 32-BIT TIMERS
	7.1 Overview
	7.2 Operation
	7.3 Vendor and device id
	7.4 Registers

	8 24-BIT GENERAL PURPOSE INPUT OUTPUT
	8.1 Overview
	8.1.1 Function
	8.1.2 Interfaces
	8.1.3 Vendor and device id

	8.2 Registers
	8.2.1 Input Register [GpioIN] R
	8.2.2 Output Register [GpioOUT] R/W
	8.2.3 Direction Register [GpioDIR] R/W
	8.2.4 Pulse Register [GpioPULSE] R/W
	8.2.5 Pulse Counter Register [GpioCNTR] R/W
	8.2.6 Interrupt Mask Register [GpioMASK] R/W
	8.2.7 Interrupt Polarity Register [GpioPOL] R/W
	8.2.8 Interrupt Edge Register [GpioEDGE] R/W

	9 CAN INTERFACE
	9.1 Overview
	9.1.1 Function
	9.1.2 Interfaces
	9.1.3 Hierarchy

	9.2 Interface
	9.3 Protocol
	9.4 Status and monitoring
	9.5 Transmission
	9.5.1 Circular buffer
	9.5.2 Write and read pointers
	9.5.3 Location
	9.5.4 Transmission procedure
	9.5.5 Straight buffer
	9.5.6 AMBA AHB error
	9.5.7 Enable and disable
	9.5.8 Interrupts

	9.6 Reception
	9.6.1 Circular buffer
	9.6.2 Write and read pointers
	9.6.3 Location
	9.6.4 Reception procedure
	9.6.5 Straight buffer
	9.6.6 AMBA AHB error
	9.6.7 Enable and disable
	9.6.8 Interrupts

	9.7 Global reset and enable
	9.8 Interrupt
	9.9 Vendor and device id
	9.10 Registers
	9.10.1 Configuration Register [CanCONF] R/W
	9.10.2 Status Register [CanSTAT] R
	9.10.3 Control Register [CanCTRL] R/W
	9.10.4 SYNC Code Filter Register [CanCODE] R/W
	9.10.5 SYNC Mask Filter Register [CanMASK] R/W
	9.10.6 Transmit Channel Control Register [CanTxCTRL] R/W
	9.10.7 Transmit Channel Address Register [CanTxADDR] R/W
	9.10.8 Transmit Channel Size Register [CanTxSIZE] R/W
	9.10.9 Transmit Channel Write Register [CanTxWR] R/W
	9.10.10 Transmit Channel Read Register [CanTxRD] R/W
	9.10.11 Transmit Channel Interrupt Register [CanTxIRQ] R/W
	9.10.12 Receive Channel Control Register [CanRxCTRL] R/W
	9.10.13 Receive Channel Address Register [CanRxADDR] R/W
	9.10.14 Receive Channel Size Register [CanRxSIZE] R/W
	9.10.15 Receive Channel Write Register [CanRxWR] R/W
	9.10.16 Receive Channel Read Register [CanRxRD] R/W
	9.10.17 Receive Channel Interrupt Register [CanRxIRQ] R/W
	9.10.18 Receive Channel Mask Register [CanRxMASK] R/W
	9.10.19 Receive Channel Code Register [CanRxCODE] R/W
	9.10.20 Interrupt registers

	9.11 Memory mapping

	10 SPACEWIRE LINK INTERFACE
	10.1 System overview
	10.2 Functions
	10.3 Interfaces
	10.4 Module overview
	10.4.1 SpaceWire Link
	10.4.2 Transmit protocols
	10.4.3 Receive protocols
	10.4.3.1 SpaceWire Virtual Channel Transfer Protocol (VCTP)
	10.4.3.2 Remote Memory Access Protocol (RMAP)
	10.4.3.3 Additional protocols

	10.4.4 Block Diagram

	10.5 Definitions
	10.5.1 Bit Numbering
	10.5.2 Names
	10.5.3 Radix
	10.5.4 Signal Names
	10.5.5 Externally Accessible Register Names
	10.5.6 Graphics legend
	10.5.7 Terminology
	10.5.7.1 General
	10.5.7.2 Basic Data Types
	10.5.7.3 Registers
	10.5.7.4 Register Access
	10.5.7.5 Signals
	10.5.7.6 Direct memory access
	10.5.7.7 SPW2 Specific

	10.5.8 Abbreviations
	10.5.9 Data Structures
	10.5.9.1 SPW2 Data Structure Definitions
	10.5.9.2 SpaceWire Packet Structure
	10.5.9.3 SpaceWire Transfer Protocol Packet Structure
	10.5.9.4 SpaceWire Transfer Protocol RMAP packet structure
	10.5.9.4.1 RMAP Write Command format
	10.5.9.4.2 RMAP Write Response format
	10.5.9.4.3 RMAP Read Command format
	10.5.9.4.4 RMAP Read Response format
	10.5.9.4.5 Command and Type field
	10.5.9.4.6 Extended Address field

	10.5.9.5 SpaceWire Virtual Channel Transfer Protocol packet structure (VCTP)
	10.5.9.6 Transmitter Send List entry structure

	10.5.10 Applicable Documents
	10.5.11 Reference Documents

	10.6 Functional behaviour
	10.6.1 General
	10.6.2 SpaceWire Link
	10.6.2.1 Link configuration and start-up
	10.6.2.2 Link transfer and receive rates
	10.6.2.3 Link status

	10.6.3 SpaceWire transfer protocol support in the receiver
	10.6.3.1 Enabling of protocol support
	10.6.3.2 Identification of received protocol

	10.6.4 Remote Memory Access Protocol (RMAP)
	10.6.4.1 Hardware supported RMAP commands
	10.6.4.2 Software supported RMAP commands and responses
	10.6.4.3 Header and data verification
	10.6.4.3.1 Hardware supported RMAP commands
	10.6.4.3.2 Software supported RMAP commands and responses

	10.6.4.4 Destination Key verification
	10.6.4.5 RMAP responses

	10.6.5 Virtual Receive Channels, RxVC
	10.6.5.1 Configuration
	10.6.5.2 Status
	10.6.5.3 Interrupts

	10.6.6 Virtual Transmit Channels, TxVC
	10.6.6.1 Configuration
	10.6.6.2 Arbitration
	10.6.6.3 Transmission
	10.6.6.4 Status
	10.6.6.5 Interrupts

	10.6.7 Time-Codes
	10.6.7.1 Time-Code transmission
	10.6.7.2 Time-code reception
	10.6.7.3 Alternative Time-code reception
	10.6.7.4 Alternative Time-code transmission
	10.6.7.4.1 Alternative Time-code transmission through software control
	10.6.7.4.2 Alternative Time-code transmission through hardware control

	10.6.8 First Failing Packet Register
	10.6.9 SpaceWire CODEC
	10.6.9.1 Initialisation State Machine
	10.6.9.2 Receiver
	10.6.9.3 Receiver Credit Count
	10.6.9.4 Receiver Error Recovery
	10.6.9.5 Transmitter
	10.6.9.6 Transmitter Clock Generator
	10.6.9.7 Transmitter Credit Counter
	10.6.9.8 Transmitter Error Recovery
	10.6.9.9 CODEC interconnections

	10.6.10 Initialisation
	10.6.10.1 SpaceWire link configuration
	10.6.10.1.1 SpaceWire transmit Clock configuration

	10.6.10.2 SpaceWire logical address configuration
	10.6.10.3 SpaceWire Virtual Transfer Protocol configuration
	10.6.10.4 RMAP hardware support configuration
	10.6.10.5 RMAP software support configuration
	10.6.10.6 Unknown protocol support configuration

	10.6.11 Operation/Usage
	10.6.11.1 Link Abort handling
	10.6.11.1.1 RxFifoFlush and TxFifoFlush usage

	10.6.11.2 Virtual Receive Channels (RxVC)
	10.6.11.3 Virtual Transmit Channels (TxVC)
	10.6.11.4 RMAP command reception in hardware
	10.6.11.5 RMAP command and response reception in software
	10.6.11.6 RMAP command and response transmission from software
	10.6.11.7 Reception of unknown protocols in software
	10.6.11.8 Time-Codes
	10.6.11.8.1 Time-Code transmission
	10.6.11.8.2 Time-Code reception

	10.6.12 Error Handling
	10.6.12.1 CODEC Status
	10.6.12.2 First Failing Packet

	10.6.13 Usage Constraints
	10.6.13.1 Functional
	10.6.13.2 Timing

	10.6.14 Examples
	10.6.15 Interrupt Handling
	10.6.16 Interrupt bus

	10.7 Register definition summary
	10.7.1 SpaceWire (SPW2) Module Registers
	10.7.1.1 Interrupt registers
	10.7.1.2 Configuration registers
	10.7.1.3 Status register
	CODEC Status register
	10.7.1.5 Other registers
	10.7.1.6 SpaceWire RxVC registers
	10.7.1.7 SpaceWire TxVC registers

	10.8 Vendor and device id

	11 AMBA AHB CONTROLLER
	11.1 Overview
	11.2 Operation
	11.2.1 Arbitration
	11.2.2 Decoding
	11.2.3 Plug&play information

	12 AMBA AHB/APB BRIDGE
	12.1 Overview
	12.2 Operation
	12.2.1 Decoding
	12.2.2 Plug&play information

	12.3 Vendor and device id

	13 MEMORY AND REGISTER MAP, INTERRUPT ASSIGNMENT
	13.1 Addressing information
	13.2 Plug & Play information
	13.3 Registers
	13.3.1 Processor and peripherals
	13.3.2 On-Chip Memory
	13.3.3 FIFO Interface
	13.3.4 ADC/DAC Interface
	13.3.5 32-bit Timers
	13.3.6 24-bit General Purpose Input Output
	13.3.7 CAN Interface
	13.3.8 SpaceWire Link Interface - 0
	13.3.9 SpaceWire Link Interface - 1

	13.4 Interrupts
	13.4.1 Interrupt assignment - primary interrupt controller
	13.4.2 Interrupt assignment - secondary interrupt controller

	14 INTERFACES AND SIGNALS
	15 REVISION CONTROL

