Programming in Java

A C Norman, Lent Term 2007

Part Ia

Contents

1 Preface 7
1.1 Whatis programmingabout? 7
1.2 What abougoodprogramming? 8
1.3 Waystosavetimeandeffort 9
1.3.1 Useexistingresources 9
1.3.2 Avoiddead-ends 10
1.3.3 Create newre-usableresources. 10
1.3.4 Documentation and Testtrails 10
1.3.5 Do not make the same mistaketwice 10
1.4 WheredoesJavafitin? 12
2 General advice for novices 13
3 Introduction 15
3.1 Introduction 15
311 Books 18
3.2 Practicalwork 21
3.21 EXErCiSeS v v v i it e e 24
3.3 ACook-bookKick-start 28
331 Codelayout 33
332 EmMacs. e 34
3.3.3 Drawingto awindow: JApplets 37
3.3.4 HTML and appletviewer 42
3.35 EXercises 43
4 Basic use of Java 49
4.1 Datatypes, constants and operations 49.
411 ReservedWords 49
412 BaSiCTYPES v v v i i e 51
4.1.3 EXErciSes i e 65
4.2 Operatorsand expressionso e 71

4.3

4.4

4.5

4.6

4.7

4.8

CONTENTS

421 EXErCiSeS e e 74
Control structures 77
4.3.1 EXErciSes e e 77
Control structuresPart2 82
4.4.1 Expression Statements 82
442 Blocks 82
443 Nullstatements 83
444 if .. 83
445 while ,continue andbreak 84
446 do. 84
447 for 85
448 switch ,case anddefault 85
449 return . e e e e 87
4.4.10 try ,catch andthrow ,finally 87
44,11 assert e e 88
4412 Variabledeclarations 88
4.4.13 Method definitions 89
4414 EXErCISES v i v i e e e e e e e e e a0
Javaclassesandpackages 98
451 EXErciSes e e 108
Inheritance 115
4.6.1 Inheritance and the standard libraries 16 1
4.6.2 Name-spacesandclasses 120
4.6.3 Program developmentwithclasses 125
GENENICS . . . v o o e e 129
47.1 EXErCiSeS e e e e 130
Important features of the class libraries 139
48.1 Fileinputandoutput 140
4.8.2 Bigintegers e 147
48.3 Collections 150
484 SimpleuseofThreads 150
485 Networkaccess i 153
4.8.6 Menus, scroll barsand dialogboxes 155
4.8.7 EXErCiSes e 160
Designing and testing programs in Java 167
5.1 Different sorts of programmingtasks 171
5.2 Analysis and description of the objective 179
5.2.1 ImportantQuestions 179
5.2.2 Informal specifications 180
5.2.3 Formaldescriptions. 181

CONTENTS 5

5.2.4 Executable specifications 181
5.3 Ethical Considerations 182
5.4 How much of the work has been done already? 183
5.5 What skills and knowledge are available? 185
5.6 Design of methods to achieveagoal 186
5.6.1 Top-DownDesign 186
5.6.2 Bottom-Up Implementation 189
5.6.3 Data Centred Programming 190
5.6.4 lterative Refinement 190
5.6.5 Which of the aboveisbest? 191
5.7 Howdoweknowitwillwork? 191
5.8 While you are writing the program 194
5.9 Documentingaprogramorproject 195
5.10 How dowe knowitdoeswork? 197
5.11 Isitefficient? 200
5.12 Identifyingerrors 201
5.13 Correctionsand otherchanges 4. 20
5.14 Portability of software 205
5.15 Team-work e 206
5.16 Lessonslearned 207
517 FinalWords 208
5.18 Challengingexercises 208
6 A representative application 219
6.1 Alispinterpreter 219
6.1.1 EXercises 233
7 What you do NOT know yet 235
8 Model Examination Questions 237
8.1 JavavsML 237
82 MatrixClass 238
83 HashTables 238
84 CompassRoOse. e 239
8.5 LanguageWords 239
8.6 Exceptionabuse 240
8.7 QUEUES e 240
8.8 LOOPS e 240
89 Snap e 240
8.10 Partitions 241
8.11 Laziness e 241

CONTENTS

8.12 Cryptarithmetic 242
8.13 Bandits 242
8.14 Exception 244
8.15 Features 245
8.16 Morefeatures 245
8.17 Debate 246
8.18 Design 246
8.19 Filter (Coffee?) 246
8.20 Parsetrees 247
8.21 Big Addition 248
8.22 ListsinJava 248
8.23 Pound, ShillingsandOunces 248
8.24 Details 249
8.25 Nameuwvisibility 0. 250
8.26 SeveralSmallTasks 250
8.27 Some TinyQuestions e 251
Java 1.5 or 5.0 versus previous versions 253
9.1 Anenhancetor loop, 253
9.2 GEeNEeriCS v v o e 254
9.3 assert 254
9.4 Staticimports 254
9.5 Auto-boxing. 254
9.6 Enumerations 254
9.7 printf . L 255
9.8 Scanner 255
9.9 \Variable numbers of arguments for methods 255
9.10 Annotations 256
9.11 Enhanced concurrencycontrol 6 25

Chapter 1

Preface

1.1 Whatis programming about?

There are two stories you can tell yourself about what thiss®is going to do for
you. The firstis the traditional one that it is so you can lesome Java. Acquire
knowledge and skills. The second, which may be more int@gess to see this
course as part of your journey as you start to become (or st éggoreciate what
itis to be) a Computer Scientist. This second perspectiggests that there may
be something for you here whether or not you believe you asady skilled in
Java, and it challenges you to look beyond the mere detailsettought patterns
that link them together.

In the early days of computers programming involved a fulenstanding of
the way that the hardware of your computer worked, your @egrwhen run,
took over essentially the whole machine and it had to inckadeything needed
to manage input and output. In extreme cases one starteddbess of load-
ing code into a computer by using hand-switches to placediierns directly
into the machine’s memory. After a while operating systerase along and
provided serious insulation from that level of extreme amass of hardware, and
high-level languages make it possible to express progmaridéast semi-human-
understandable form. But still the emphasis was on “wriingrogram”, which
tended to be a stand-alone application that solved somégonob

Libraries of pre-written sub-programs grew up, but for ayMeng time the
ones that anybody could rely on having access to were ei#tieerr specialist or
the functionality that they provided was at a rather low aodry level. There
were libraries that could really help you with serious tagksch as building a
windowed user-interface) but none of them gained reallpgl@acceptance, and
only a few were of any use on more than one brand of computerlibifaries that
were standard with typical programming languages providethirly limited file

7

8 CHAPTER 1. PREFACE

and terminal access input and output, modest string hamndlia really not a lot
else. Operating systems made their capabilities availakilee form of libraries
that programs could call on, but overall coherent designrasesand use of these
“libraries” led to inherently non-portable code.

Building a new library was not part of the common experientprogram-
mers, and indeed large-scale re-use of code was the excegtieer than the rule.

There has been an ideal or a dream of re-usable software can{sdfor ages,
but it is only recently that it has started to become somgthivat can be not
just feasible but reasonably convenient. Java is one oftiguiages that encour-
ages this move, and the whole Object Oriented Programmirvgment that Java
forms part of provides a context.

So in the old world one thought of a program as a large contglictéhing
that called upon facilities from a few fixed libraries thatuybappened to have
available. Today instead of that you should often start geptavith the intention
of developing a set of new re-usable and general librargggtiemselves build on
and extend existing software components. You will desigiséHibraries so that
once they exist the program you had to write becomes a fairlgle application
of them: it will do some minor customisation and link togetllgferent units
within the overall structure of your libraries, but with kd will of itself be
fairly small and straightforward. If you do this well you Wiind that the library
you have created will serve you well in future projects, amay even become
something worth circulating (or selling) of itself. Witheake ideas in mind you
will want to make it well-structured, robust and you may eteal motivated to
accompany it with some coherent documentation!

So overall the mind-set for the 21st Century is that you desaigd write re-
usable components and libraries, and that writing merelsédone programs is a
terribly old-fashioned and dull thing to do!

1.2 What aboutgood programming?

The first and utterly overriding character of a good prograrthat it must be fit
for its purpose. Good programming must not only lead to a gmodram, but
should do so in a way that reaches a successful conclusi@ablseand without
taking more time and effort than is really required.

These comments may seem bland and self-evident, but theyrbal/conse-
guences! The first is that you can not judge a program untilkmaaw what its
purpose is. Even though almost all the exercises you willhi® year will be
both small and will never have any part of their code re-usedllibe proper for
you to practise writing them as if they are much larger andemmportant. That
will mean that you are expected to accompany the code yoe with both notes

1.3. WAYS TO SAVE TIME AND EFFORT 9

about its external behaviour and how to use it and with contsiéiat describe its
internal structure and organisation. For certain sortsooéty code it will make
sense to use the documentation arrangements that the mailibdaries use. This
involves things called “documentation comments” and atytdalled javadoc
that will be described later.

Without this documentatiogou may believe that your programs meet their
purpose but you do not have any basis for expecting othelasgites.

1.3 Ways to save time and effort

Working with computers can swallow up an astonishing amaditime. To be
able to get everything you need done you will want to find waysconomising.
The key to doing this effectively is to concentrate on teghes that save time in
the long run. Some ideas that appear to speed things up iménersn can end
up costing more later on!

1.3.1 Use existing resources

You are encouraged to use code-fragments from these nateyg iway you want.
You can sometimes get a fresh project off the ground by etiipaat least frag-
ments from a previous piece of work you have done. The Jaxarids are your
friend: they contain facilities to do many of the things yolill find yourself need-
ing. In general before you ever write anything from scrathyburself consider
whether there is something that can give you a head-start.

Everybody might reasonably worry that the above paragraptdde seen as
an invitation to plagiarise! Do not take it that way: cougl&vith a very firm re-
mark that when you use other material you should acknowlgdgesources, and
you should not pillage the material of those who are unvgllio make their work
available to you. As far as tickable exercises for this cearg concerned you are
encouragedo discuss what you are doing with friends and supervisorg,cal-
lect code-sketches and fragments from them, provided thatwou submit your
work to the department you really understand everythingourysubmission and
you have learned enough that (if necessary) you could ttetantly and comfort-
able re-create your submission in a sound-proof boothlyisilt-off from further
help. So rather than sit and suffer in isolation, seek wedssfriends, demonstra-
tors, books and code libraries to give you guidance so lorygasearn from then
and do not just blindly copy!

10 CHAPTER 1. PREFACE

1.3.2 Avoid dead-ends

Sometimes you can start designing or writing some code an@@ago things
seem to get harder and harder. Something is not working anchgee no idea
why. You do not want to get in such a state! Clear advance pigremd a well
organised set of working habits are the best way to avoid teesmlf you find
yourself in what feels like a dead-end then avoid (a) panj@a(tendency to try
almost random changes in the hope that things will improwe (&h temptation
to work all afternoon, evening and night until you solve ten Go back and
look at your plan. If necessary refine it so you can make pssgietiny steps.
Explain your plan and your code to somebody else (eitherisgueor in the form
of written documentation). But do not just get bogged dovakirtg a break and
coming back fresh can often save overall time.

1.3.3 Create new re-usable resources

An ideal that this course would like to instil in you is one @éating re-usable
bodies of code. This will take more care and time when youifimplement them
(and of course anything re-usable deserves proper docatrenand testing) but
that can be well paid back when you get a chance to call on inadd a mini-
mum this can include keeping all your working code from bdth tickable and
other exercises in these notes so you can use parts of thempkates in future
projects.

1.3.4 Documentation and Test trails

Neatly formatted code with clear comments and a well set olléation of test
cases can seem slower to write then a jumble of code thattithposvn together.
However long experience suggests that the jumble of codeichrtess likely to
work first time, and that especially as your projects getéidigat early investment
in good habits pay dividends.

1.3.5 Do not make the same mistake twice

Especially while learning a new language, such as Java, ylbomake mistakes.
As you design and write gradually larger and larger bodiesode you will make
mistakes. Observe and appreciate these, and try to obseuwvseyf as you un-
cover and correct them. Possibly even keep a small notelddtkigs | have had
in my code”. Then each time you make a mistake seek some sahatean pre-
vent the same one from causing significant trouble in theéutdour fingers will

always leave typos in everything you write and your mind darags wander: the

1.3. WAYS TO SAVE TIME AND EFFORT 11

idea is not to avoid glitches totally, it is to build up a perabtoolkit of ways to
overcome them without pain or waste.

12 CHAPTER 1. PREFACE

1.4 Where does Java fit in?

There are those who believe that Object Oriented De-
sign and Programming i¥he Answer to reliable =~ ==
large-scale system building, a silver buli¢hat cures &
the major woes of the last fifty years of over-costly arj
haphazard use of computers. Java is one of the mg
practical and widely-used languages that fall withjj
the Object Oriented family. Key attitudes that co
with this are that projects should be structured into p®
tentially re-usable blocks (the Jaetss construct
that you will learn about later being a major way of&
achieving this). These blocks should each take respot
sibility for just one aspect of the overall behaviour yd
are trying to code up. The decomposition should
arranged so that interaction between blocks is as i@l
and disciplined as possible. '
Overall at least a rough caricature is that MEigure 1.1: Silver Bullet
stresses absolute correctness via mathematically style@ded.
structure, and encourages very concise programming
styles. Java on the other hand follows a view that languagstaacts that support
large-scale structuring of projects are the key. It alseetgpthat having the user
write out types and qualifiers explicitly will help others tead your program.
ML as taught last term provides a fairly basic library, butstiypyou spend the
Michaelmas Term writing stand-alone programs and fragménith Java there
is heavy emphasis on a rich (and perhaps hence complicdieatylthat supports
a very full range of computing needs.

1Brad Cox in Byte magazine October 1990, pp 209-218 puts shimgnuch these extreme
words.

Chapter 2

General advice for novices

Following tradition, | provide ten items of guidance for thenefit of those who
are relatively new to programming. | hope that each of theiflebes re-inforced
during the course as a whole, but here they are collectedtegat the beginning:

1 Understand the task you are about to solve before stactiwgite a pro-
gram about it. Work through methods and procedures by harnmhper
etc. Plan some test cases. |dentify cases that will représemdaries
or oddities. In general prepare a plan before you start gamgvhere
near a computer;

2 Sketch the structure of the whole of your code out inforgnsdlyou have
full overview before fussing about exact syntax etc. Ensune know
what you expect that the computer will do. This initial sketan be
very informal, and may be in terms of diagrams rather thahang that
looks much like real programming. The key word here is “dunce’.
This applies with way greater force when your code startsdavgyou
should always design a good way to factor your code into ressy
self-contained and independent components (each will béadass” in
your code) right from the start;

13

14

CHAPTER 2. GENERAL ADVICE FOR NOVICES

10 If you find you are spending a seriously long time trying taken sense

3 Write outkey parts of above in the form of comments before you st
the real code. Concentrate in these comments on the “whdt"vaimy”
of your code rather the details of “how”. This will really fpaivhen you
show your work to somebody else because you need help! | xylbéen
this one again: The first thing you will type into a computerantyou
start writing any program will be a set of overview commeht explain
its strategy and structure;

4 At least for a first version of anything, favour clarity anbveous cor-
rectness over pretty well everything else. Clever trickernes about
efficiency, generalisations etc can come later;

5 Neat consistent layout and thoughtfully named fields, ogthvariables
etc. are a good investment of your time. Cryptic is bad eveinséves
keystrokes in the short term;

6 If atask is too big to solve in just one gulp look for ways oé&king it
down into sub-tasks. As you do this think about ways you walHfble to
test code you write for each sub-task and work on the whotegthiep
by step;

7 When you try to compile your code and see a syntax error dpanat.
Learn to interpret the compiler’s diagnostics. And only toyremove
one error at a time: count it as a success if next time you toptopile
thefirst error has give so you can then concentrate on the second,;

8 When you have compiled your program and run it and it givesngr
answers or behaves badly do not panic. First work to undetstéat is
wrong and only after you have found where the problem is thindut
ways to fit it. Do not just try random changes! Eg. confirm whaitiy
program actually does by adding assert and extra printstates;

9 Whenever you find you have to change your program review cemsn
consider if it will now do exactly what you want, and re-ruhyaur test
cases. Experience shows that changes (for whatever causefioduce
new problems while you are in the process of fixing old ones;

of anything then find help from friends or a supervisor or akbdao not
just keep building up your frustration not getting anywhere

art

Chapter 3

Introduction

3.1 Introduction

We have been using Java as a first-year teaching languagenh€ambridge
since 1997-8. We teach this course following on from “Fouiwstes of Computer
Science” which used ML, and there are a number of things ittesnided to do:

1. Provide all of our students with exposure to a common @ogning lan-
guage that can be used by later courses and practical wdnk iG$T,;

2. Introduce the syntax that is (almost) common to severtdd@most widely
used practical programming languages today (the syntaavafidas a great
deal in common with that of C and C++, so having learned Javaare
guite a long way to understanding those languages too);

3. Discuss the process of designing, writing and debuggiograms and raise
some awareness of issues of style;

4. Present the Object Oriented aspects of a programmingida@ggas means
to enforce modularity in large programs;

5. Teach basic use of Java, a language that has significavainele in the
outside world today.

Note that in our Partd course “Software Engineering I1” provides significant ex-
tra coverage on issues of structuring programs (espe@akdg that are large or
developed by collaborative work in a group), and in Partdurse there is a lec-
ture course once entitled “Further Java” and now renameaéQuoent Systems
and Applications”: it should not be imagined that | will co\al aspects of the
language or its use here!

15

16 CHAPTER 3. INTRODUCTION

The nature of teaching a course involving programming inesparticular lan-
guage means that some features need to be mentioned wek befqlace where
they can be fully explained, and so it will not make sense &pkeae presentation
in lectures totally linear and tied to these notes, but faresuision purposes the
structure shown here should suffice. With each section IhaWle a few examples
or exercises. Especially at the start of the course thedeftgin be pretty silly,
but the ones right at the end can be viewed as samples of thef sprestion that
might arise in the examination. Although | want some of myregkes to be nice
and easy | would like to have others that are interestingehgés for those who
already think they know it all (ha ha). It is always very handudge the amount
of trouble these will give you all, so if they are either tosgar too difficult
| apologise. Examination questions will be set on the supiposthat you have
attempted a reasonable sampling of the exercises.

The aim of these notes is that they should serve both as gredarstudents
and to supervisors, and so there is no separate supengsaais. Originally | had
intended that they would be structured into sixteen sestammresponding to the
sixteen lectures available. As | prepared the notes | caleduhat such a rigid
arrangement was not tenable. Thus the lectures can be edpeatover roughly
the material in these notes in roughly the same order, withpmoximation to
one-sixteenth of the entire notes corresponding to eathrkdc

It might be noted that a Java course for the Diploma studemts during the
Michaelmas term. The lecture notes associated with thatseomay provide a
presentation of Java which is different from mine and thuy ownplement my
lectures or shed light on issues that | fail to.

The course this year will be based on use of the version of Saneetimes
known as “Java 5.0” and sometimes as “Java 1.5”. This shawodb® counted as
the current and widely-used version, but if you use comguddrer than the main
university ones here you may come across earlier releatsssePavoid them for
course-related work to avoid confusion.

Some members of the audience for this course will alreadg saynificant
practical experience with Java. Others will have writtets lof programs before
but in C, C++ or Pascal, but the only thing | can properly assurare is that
everybody has attended the Foundations of Computer Sctencese given in the
Michaelmas term and hence that everybody is used to wribdg i the language
ML. While those who have seen Java before will undoubtedly fire first few
lectures and exercises here very easy, | hope that theyndlhfiaterial that is new
and worth-while being introduced in due course. In the fiestnthat this course
was given it was observed by one Director of Studies at a lBajkege that some
of his students who did already know Java concluded on thss baat they need
not attend the lectures, but that their examination resatteated that this had
not been a perfect judgement call.

3.1. INTRODUCTION 17

DR

- FORTRAN compidar
- flew yerson of 00N
- 12 somipde aoolets

Teach vourself
to write a

FAX TR Ii#ll"‘hlf
I"\l'-l.!l’il n"'.l

- '] o i
n_:l-l:--;l-i-:-l.hﬂ-;r'-nq—_'- ~.1..-§.i++1-l--|.

IN 21 DAY S

o programming sxperiencs raquired

Figure 3.1: Reproduced courtesy Kevin McCurley.

18 CHAPTER 3. INTRODUCTION

3.1.1 Books

All bookshops these days seem to devote many metres of ghete to books that
purport to teach you Java in a given small number of days, lfpyal even if you
are an “idiot”, or to provide “comprehensive and detailedVerage of even those
parts of Java that the language definers have left delibgratgue. | believe that
this is a course where it is important for every student toehiéneir own copy
of a supporting textbook/manual. But the issue of which btwokuy will end
up a somewhat personal choice since differing levels ofildett suit different
students! Browse the following in libraries and bookshdp# to students in
higher years and seek advice from your Directors of Studidssaipervisors about
what is liable to suit you.
My first recommendation has as most of its pages what is irctetfi@d copy

of the on-line detailed documentation of the Java librarg. aresult it is not a
smooth consistent read, but | find that very many people rtesdriformation in
printed form while they are getting used to navigating thedry and understand-
ing what it can do for them. Java in a Nutshelfifth edition (Feb 2005)

Java Foundation Classes in a Nutshell (1999)

David Flanagan

O’'Reilly
Note that the fifth edition is due to be published as your ec@begins!

There are two books[11, 6] that | think you might reasonablystder and that
are probably easier for self study in that they do not get palhaenmeshed in
full detail.

Thinking in Java

Bruce Eckel

Prentice-Hall, 2002hird edition
and

Java Gently

Judy Bishop

Addison Wesley, 2003hird edition

Eckel's book is distributed (at no cost) wavw.eckelobjects.com so if
you are actually prefer reading computer screens to reddidcounts as a great
bargain!

Some Directors of Studies will strongly point you towarde thook[2] that
was that main text for this course a couple of years ago:

Objects First with Java: a Practical Introduction using BEJ
David Barnes and Michael Kolling
Prentice Hall/Pearson, 200&cond edition

3.1. INTRODUCTION 19

IN ANUTHOUSE

A Desktop Cuick Irreverence
to Microsoft Java

G'REALLT Herin MoCurley;

Figure 3.2: Not (quite) the main course book.

20 CHAPTER 3. INTRODUCTION

This book emphasises issues of overall program structutedasign above
concern for the exact details of the Java language or itarigs and so is almost
exactly the antithesis of the Nutshell books! It was usedhasrain teaching text
here in 2003-4, and you may find the BlueJ softwatg(/www.bluej.org)
provides a useful environment within which to develop arsd y@ur code. Note
that this year’s edition of both the book and the softwarede&loped from the
versions available last year.

There will be plenty of other useful books, and any individstadent may
find a different one especially to their own taste. If selggta book other than
the one | suggest that you make sure that what you learn froemibe related to
the lectures that | give. Since this year we are using a rakerversion of Java
beware that old editions of books may not be sufficiently ugate.

Java is a “buzzword-compliant” language, and when peopde that you are
learning it they will instantly pick up all sorts of expedtats. Even though this
course is sixteen lectures long | will not be able to fulfil@ithese, and that is in
part why the Computer Science Tripos has a course entitled¢@rent Systems
and Applications” in Partd that follows on from this one. There are three issues
that | should mention right here at the start of the notesniy ¢o protect myself
and the department against misunderstandings as to ourgairp

Java is for use animating Web pages:
Some of the huge first flush of enthusiasm that greeted thegemesz of
Java was because it could be used to make rather naff anifriaiess dance
on web pages. This was of course amazing when web pages haolsig
been so rigidly static, but it is not a good model for the calnssues in
Computer Science. This will typically not be the sort of usdava that we
try to teach you here;

Java is the best programming language:
The Computer Laboratory shows by its actions that it viewsadlits pref-
erence for a first language to teach its students, with Jagasasond one.
Later on in the course we will provide coverage ranging frameftmen-
tion to detailed explanations of quite a few other languagestainly C,
C++, Lisp and Prolog. The Software engineering coursesioeatscheme
called just ‘Z’ that is in effect a programming language, sod will see
from past examination papers that we have high regard foruléo8l What
is shown by that is that the Computer Laboratory view is thié¢cnt lan-
guages may prove best for different tasks, and that the apthoice will
change as the years go by (it happens that we no longer teactuolents
either Fortran or COBOL, and our coverage of assembly cogeasent

3.2. PRACTICAL WORK 21

because it forms an important link between the concerns miwere de-
signers, operating system experts and compiler writetsnatbecause we
expect students to do project work in it). At present Javauisaboice for
the first “traditional’-style programming language we teathis does not
mean it will automatically be the only or best choice &irfuture practical
work and projects;

Students should be taught about “programming in the large”:

As this is a first year course | will be concentrating on thedamental
building blocks of program construction. This is in line wthe Engineer-
ing Council “EA1” concern about introducing students to thedamental
tools, materials and techniques in their subject. | viewsiself-evident
that until a student can write small programs competentty @ainlessly it
would not make sense to expect them to be able to work in gronpasrge
projects. However in all the practical work associated \hils course you
should expect the assessors to demand that all code youisvritell laid
out, properly commented, that it displays a sensible prograng style and
that you are in a position to justify its correctness. In shioat a generally
professional approach has been taken even though manyextehases are
short and somewhat jokey toy problems.

3.2 Practical work

The main environment the laboratory expects you to use ferdburse is PWF
Linux. At the start of Term you should be given an introductibat explains how
to re-boot certainly the PWF systems in Cockroft 4 or in thellhaboratory in
the Gates Building so they run Linux. PWF workstations ineotparts of the
University may not have been configured with this dual-bqaitam, but if they
have then you can use them. Although Java runs perfectlyillgagpp Windows
we want you to do much of your practical work on Linux so thatlwg time you
come to the Operating System course later in the year yourhade significant
personal use of both Windows and Linux.

At least for the first half of the Term we would also encourage to use the
emacs editor and build and run your Java programs using the somntevimaitive
command-line driven toolgvac , java andappletviewer . Use of these will
be explained later. The reasoning behind this is not thaiatgntees to make your
Java-specific experience as comfortable as possible, batibe the technologies
involved are ones you need to find out about at some stage!ifiéptg | note
that

e emacs is a rich and powerful editor. You can use it in a simple waylehi

22 CHAPTER 3. INTRODUCTION

you are beginning work, but it has extension mechanismsataw it to
morph to provide specialist support for different sorts o€dment, and it
can provide a single environment (and set of keystrokestm)ehat covers
not just editing your program but also compiling and runntngeading and
sending e-mail and many other tasks. It probably countseastist widely
used general-purpose Unix/Linux editor and versions fardbivs are also
available. Your really simple use of it now will help those ywdu who
choose to use if in more elaborate ways later on.

e The use of thgavac andjava commands explicitly (as distinct from you
using them implicitly through an all-encompassing spéstialava devel-
opment environment) means that when you see any curiousageser
complaints you know where they come from. It also introdugas to a
typical model for how software is built (thedit, compile testcycle). When
you are more experienced you will no doubt move on and usgriatied
environments In some respects these help by doing things for you — but
especially since you have survived the Foundations of Coenscience
course last Term it now seems proper that you get to see how toigs
for yourself.

For reference material it may prove most convenient to usex@documenta-
tion, and in particular the web-browsable HTML version. disi available to you
in $CLTEACH/acnl/java/docs , so you can launch a browser and start looking
at it by going

firefox $CLTEACH/acnl/java/docs/index.html &

and around the first thing you may want to do is to set yourdatfiakmark on that
page. There is hugeamount of documentation there. The bits | find most useful
are the “Java 2 Platform API Specification” which documemigp@inful detail)
all of the library facilities that are provided, and the “dawtorial” which links
to a Sun website with much helpful explanation, and which gy find a very
good complement to the textbooks | have suggested. All the tiam writing
any Java code at all | will have a web-browser open on the “AeLttion of the
documentation, since it is useful to have a quick way to cliet&ils of the library
very close at hand.

You can obviously run PWF Linux in one of the big shared waaken areas,
and there is a great deal to be said for at least starting afffithy: you can com-
pare notes with other students when you have problems. Butgo also access

IMicrosoft’s Visual Studio is perhaps a definitive exampler 8ava you can install either
Netbeans (from Sun) or Eclipse (from IBM) free of charge. élhas very different objectives but
may also prove useful to some.

3.2. PRACTICAL WORK

Figure 3.3: Remember about RSI, posture etc, please.

23

24 CHAPTER 3. INTRODUCTION

PWF by usingssh and an “X-windows server” to access of of the lab’s PWF
linux systems that are set up for remote usdineg2.pwf.cl.cam.ac.uk or
linux.pwf.cam.ac.uk . If your own computer is set up to run Linux those will
already be present for you. If you run Windows you can get gavdions free of
charge by installing a Unix-compatibility layer fromttp://mww.cygwin.com :
but getting everything to work nicely there may be messy ghdbhat those of a
nervous disposition would do better to work in Cockroft 4 aemf the College
computer rooms where PWF Linux is directly available!

Itis also perfectly in order for you to install Java on younmogomputer. Apart
from the fact that the Java development kit uses around 45@ddbnstalling it
should not prove hard, it does not cost anything and perfoceahould work
well under either Windows, Linux or MacOS on any even reablyngecent pc.
If you do that you must be willing to take full responsibilitgr installing and
maintaining everything, and should take care to back uprgbortant files. For
just running small Java exercises there should not be mufdrehce in the ex-
perience you have using your own rather than a public magéhirevever if you
habitually use a PWF system somewhere other than in Cockroftthe Intel
laboratory your own system might reduce your need to waitewou re-boot a
public machine into Linux, and if you experiment with one loé integrated Java
environments you nay find performance much better on yoursystem. If you
have a Macintosh note that Java 1.5 has only very recentlyrbe@vailable, so
please double-check that that is the version you have.

To fetch a Java compiler you will need to connect to

http://java.sun.com/j2se

where you can find the Java “SDK Standard Edition, versiofi, @a0d its ac-
companying documentation. You should be aware that thegogciou have to
download is around 50 Mbytes for the main kit, with the docatagon being an
additional large download and the “Netbeans” developmevitenment yet more
that youmaywant to explore but are not obliged to worry about. Sun camplyup
either Windows (2000/XP) or Linux versions of all of these.

The Eclipse development environment can be foumttat/www.eclipse.org

3.2.1 Exercises
Tickable Exercise 1

The first part of this tickable exercise is issued as part efittroduction to the
use of Linux on the PWF. The task set here is thus “Part B” ottiraplete Tick.

2Great thanks are due to the Computing Service for ensuratghis is the case.

3.2. PRACTICAL WORK 25
Log on to the PWF. Create a new directory and select it as yawewt one,
€g

mkdir Tick1B
cd TicklB

Issue the following commands that copy two files form the CotaplLab’s
teaching filespace into your new directory.

cp $CLTEACH/acnl1/TickBase.class .
cp $CLTEACH/acnl/TickBasel.class .

You should be able to check that the files are present. Thesélés provide
a basis upon which the exercise builds.

Now inspect Figure 3.4 which is documentation associated the two files
that you have just copied. A more extensive version of theesanaterial is avail-
able on-line as

www.cl.cam.ac.uk/Teaching/current/ProgJava/notes/Ti ckDoc/
Now prepare a file that callefickl.java containing the text

/I Tick 1. Your Name Goes Here

public class Tickl extends TickBase

{
public static void main(String [Jargs)
{
(new Tick1()).setVisible(true);
}
public String myName()
{
return "Your Name";
}
}

Obviously you will put your own name in the places that aregasted by
what | have written here!
Compile your program and then run it:

javac Tickl.java
java Tickl

26

Class TickBase

public class TickBase

The "TickBase" class provides a foundation for Java Tick 1. It i:
intended to be used by writing a new class that extends it and
provides it with a "main" method, as in

public class Tickl extends TickBase
{

public static void main(String []args)
{
(new Tickl()).setVisible(true);

public String myName()
{

return "Arthur Norman";

1
1

and this will lead to an application that can be launched and will
display a certificate confirming success.

Field Summary

Constructor Summary

TickBase ()

The sample version of "main" uses a constructor called
TickBase() that makes an instance of the object that displays
certificates.

CHAPTER 3. INTRODUCTION

Method Summary

java.awt.Color /myColour ()
By overriding the myColour
method you can change the colour used in
the certificate.

java.lang.String myName ()
Override the myName method with
a version that returns whatever your own
name is to personalise the certificate that
you receive,

Constructor Detail

TickBase

public TickBase ()
The sample version of "main" uses a constructor called
TickBase() that makes an instance of the object that
displays certificates.

Method Detail

myName

public java.lang.String myName ()
Override the myName method with a version that returns
whatever your own name is to personalise the certificate
that you receive. To receive a tick you are required to do
this.

myColour

public java.awt.Color myColour()
By overriding the myColour method you can change the
colour used in the certificate. The default is Color. BLUE

Figure 3.4: Documentation of Tick 1 Part B.

3.2. PRACTICAL WORK 27

If all has gone well a window should appear, and it should rsome text
and a pattern on it. There is a menu that you can select. If ppy the files
to your own machine you can try thgint menu, but on the PWF there are
technical reasons why that is not supported, and these te&deujust Java. So
select the menu item labellgmbstscript . You should then see a dialog box
asking you to choose a file name. | suggest that you selectatmetitkl.ps
and | very strongly suggest that you use the extengien whatever name you
actually choose. When you accept the file-name you have ohbeé'select file”
dialog box disappears and you can not see that anything magchdppened, but
the file you indicated should have been created for you. Itlshoontain an
image of the screen window in the Postscript document farr@atse the little
Java window, and you can send this to a printer using the cordma

Ipr tickl.ps

The resulting sheet of paper is what goes to your ticker.
As an optional extra you can arrange to change the coloupaféf) the text
generated by adding lines roughly like the following to ydava source file:

public java.awt.Color myColour()

{
i RED GREEN BLUE

return new java.awt.Color(0.7f, 0.1f, 1.0f);

}

where the three floating point numbers given (note that yae bawrite a letter
‘f” at their end) should each be in the range 0.0 to 1.0 and ¢inas/the proportions
or red, green and blue in the colour.

You can also check what happens if you present your nameferelift ways.
For instance | tried “A C Norman” as well as “Arthur Normanf ylou wanted
to keep your program in a file called sklyTick.java rather tharTickl.java
you would have to change its name within the file too. Verifgttyou can do that.

Discussion

This exercise is intended to send several signals and nessshgut Java:

e One can build new programs building on existing compondvasdo quite
a lot for you. Here you copied in the TickBase class files, lowtryown pro-
gram then builds on them and can customise the behaviouegdrtivided
code in various ways. Through doing this a very short fragroénode let
you create a window and print its contents;

28 CHAPTER 3. INTRODUCTION

e To use the software component TickBase you do not need tdsse¢arnal
structure: all you need is documentation about how to usésgtpart of
stressing this | am not going to provide you with the sourcgecof Tick-
Base, but by the end of this course you will probably be ablestoreate
it;

e Part of the way of using components like this involves theaJesyword
extends , and part of the way that the code runs involves the keywewl
These are both key parts of the Object Oriented structurava, And you
should look forward to finding out more about just what thegllsemean
later on.

e The page of documentation included as part of these notissytal that
TickBase is interested in @myName(). This documentation is in the style
of the bulk of the Java on-line documentation, and was cteayeusing a
simple tool calledavadoc that interpreted some special comments in the
TickBase source code. However the full output from javadoan the web
page listed a little earlier and perhaps gives a bit more ad@a of just how
much complexity is involved under the surface. The lessat lthearn is
that if you use javadoc for anything other than a full-scalggxt you will
need to edit its output heavily to remove material that yawdi@nce does
not really need to see.

(End of tickable exercise)

3.3 A Cook-book Kick-start

In this section | will try to get you started with Java. Thisane that all sorts of
aspects of it will be described in an order that is not realgydal, but is motivated
by that fact that some features of the language must be Oesdceiarly if you are
to get any programs at all written. | will not provide muchtjisation for the
recipes that | give. Later on it will be possible to re-vidiese examples and
understand what the various odd keywords are all saying drad @ptions might
be available, but for now you can just copy them out parrdtitas

| would like you to type in all the examples for yourselves arydthem out,
since that will educate your fingers into following the rulleat Java imposes, and
it will also (each time your fingers stray) give you exposuréddva error messages
and the joys of finding and fixing mistakes.

My first example in fact is an echo of the first part of Java Ticlknildly silly
tradition in teaching programming languages is that theé firegram presented
should just print outHello ”. The way of doing this in Java looks like this:

3.3. A COOK-BOOK KICK-START 29

System.out.printf("Hello™);

which is a call to a library function calleprintf 3 that will display the given

string. The prefix System.out ” is not part of the name of the function — it
happens to be providing the instruction that that printeghatushould be sent to
the standard output stream, ie typically straight to youeeac or terminal. In

essential terms the line shown above is the whole impor&migh your first Java

program. However there is actually quite a lot more to beutised before you
can try it!

The first thing is that Java is @ompiledprogramming language, so unlike
the situation you have seen in ML it is essential to place ywogram in a file
before it can be used. In this case you should use a file ceb#dljava and
it is essential that the file name should start with the welib since that is the
name that we will soon repeat within the file. The spellingdtidoe with a capital
letter as showh and the file-name should be completed with the suiva .

If you startemacs and use the menu selection “Files/Open File” you get a
chance to create a new file for this project, and if you Pnagtice that when you
type in the string in the example it is displayed in an altegr@lour (to help
remind you to match your quote marks), and when you type theegbarenthesis
after the string the matching bracket gets flashed to helpkgep that side of
things under control.

It is possible to make very extensive customisations of emaicyou put a
file called.emacs in your home directory it can contain directives that apply
whenever emacs starts. In particular if you put a line

(global-font-lock-mode t)

then you will get syntax colouring enabled every time: | fihtbtconvenient. For
now | suggest that you avoid putting large amounts of othmresl stuff there!

You will also see that the menu-bar at the top of ¢heacs window has en-
tries that let you do all the things that editors ought to — arate besides. See
figures 3.5 and 3.7: note that the printed form of my notes béllin black and
white but the downloadable version on the lab’s web page

http://www.cl.cam.ac.uk/Teaching/2005/ProgJava

will show relevant information in colour. Also note that tsemple programs
being edited and tested in the picturesofacs in use may be ones taken from
previous years’ versions of this course.

3Many Java texts use a functigmintin here rather thaprintf

4Well actually if you are working on a Windows system the calgtion is not so important,
but even there you are strongly advised to keep to it so thahwbu transfer your programs back
to Unix before showing them to the assessors they still work!

SProvided the “global font lock” options is selected.

30 CHAPTER 3. INTRODUCTION

A “Java mode” is automatically selected when you edit a fil@séname ends
in java and this is the first pay-off you see from this convention. dfiyselect
a “global font lock” this can colour your code so that langai&gywords, strings,
comments and so on are all displayed in different coRutsalso assists with
indentation and provides editing commands that move argutiee file in a way
that understands Java syntax. A major featurensdics is that it is amazingly
customisable, and configuration files can provide it withcggdesupport for many
languages and layout conventions. If you browse enough sitethe web you
may find many extra options that you can install: hold backarald these until
you have got really used to the default setup! Please!

xXterm

acnl:ACN1$ emacs Pouers,java &
[11 1017

‘ emacs@pcd08.cl.pwi.cam.ac.uk [=[El
Buﬂ‘ers Files Tools Edit Search Hule Java]Help

// powers program for Java nd Cosuendt ud Region {fwe Lwel
Hnconrent Region
Fill Comnent Paragraph

public class Powers

public static void main(S Indent Expressien [S
{ SUStEW-UUF-p‘“iUtln(T Indent Line or Region
for (int i=0; i<40; i

£ System.out.printl Up Cond,ltlona]..) {C-c C-u)
prEP(i , Backward Conditional {C-c C-p)
3 Foruard Conditional {C-c C-n)
3 Backward Statenent (H-a)
Foruard Statenent {H-e>

// sub-function to compute
static int power(int x, ijNascs Expand Region
if (n == 0) return 1 paoksiashify {63
int y = power(x, n/2);
Bt z = yxy;
if ((n % 2) '= 0) z = zxx;
return z;

3

// end of Powers.java

Jl--(00S)-- Powers.java (Javal--L17--All
M;rmnu—bar Java Backward Statement
Figure 3.5: Two windows, with emacs editing a program.

Your complete first Java program needs a great pile of guffdinaounds the
one interesting line we have and turns it into something ¢hatbe executed. In
essence two things need to be documented. The first is somgétiat indicates
the external name that the program will be known by. This alilays be exactly
the same as the start of the name of the file it is stored in. Yay consider it
silly to have to re-state information that looks as if it slibalready be available,
but for now please suspend disbelief and accept that a prodyat lives in a file
calledHello.java will have to contain the text

At a minimum this can be very helpful if you accidentally filclose a string or comment!

3.3. A COOK-BOOK KICK-START 31

public class Hello

{
}

where the... will be filled in soon with material that includes our call to
System.out.printin

The second piece of information needed is an indication @&re/ldava should
start its processing, and the convention that the languageses here is that it
expects to find a procedurevith the namemain. The definition of a suitable
procedure then involves the incantation

public static void main(String[] args)

{
}

of which the only word that is currently worth describing radin ”, which is a
reminder of the historical tendency to refer to the placenelagprogram started as
being the “main program” while what are now known as funcion procedures
might have been called “sub-programs”.

Comments can be introduced by “ and every good program starts with a
note that explains a few key facts about it. Obviously theglmnthe program
the more that it will be proper to put in comments at both tlaetstnd throughout
your code, but note that assessors will certainly expeat yame and the exercise
identification to be at the head of every submission you make.

Putting this all together we get the full contents of the fidlo.java as

/I This is the file "Hello.java" prepared by A C Norman
/[and the program just prints a fixed message. 1998-2006.

public class Hello

{
public static void main(String[] args)
{
System.out.printf("Hello%n");
}
}

’In these notes | will use the terms “function”, “procedureida'method” pretty-well inter-
changeably. Some other languages use these words to mdéfated differences — typically
the term “procedure” would be something that did not retusalae, while a “function” would.
The word “method” comes out of ideas of so-called Object @gd Programming and indicated
a function that is defined within a “class”. Although | havet get explained what a class is we
have seen the keywordass towards the head of our Java programs.

32 CHAPTER 3. INTRODUCTION

Figure 3.6: Style does matter.

3.3. A COOK-BOOK KICK-START 33

There is a yet further odd addition in what | have just showme %narranges
to put a newline at the end of your message.

For a very short program that hardly does anything intergdthat seems to
have a lot of “magic” keywords. But in only a few weeks time yaill know what
they all mean, and why they make sense. For now just keep adilebntains the
above basic sample code and copy it every time you want tbastegw program
so you do not have to waste time keying in all the junk repégpted

3.3.1 Code Layout

Many people have quite strong views about code layout anenitadion. That
includes me! The style you will see in these notes almostydvpdaces any}”
vertically below the {” that it matches. | try to indent anything that is within
such braces by four space positions. Beyond that my guidingiple is to try to
keep my code so that it looks pretty on the screen or pagdijcgeet in its use of
the page and is as easy to navigate over as | can manage. Raybward effort
is not a high priority, since actually typing in programs il a very small part
of the total pain that goes into getting a complete and rotasking program.
The defaultemacs idea about indentation and brace layout is differs from mine
whichever you choose to follow please be consistent andbtrgake your code
easy for yourself and others to read.

The comment above about efficiency in the use of the page mukeonvhen
reading your code it is especially convenient if all the lyitar want to see fit
within one screen-full of the editor’'s window. Thus | courtessive splitting of
constructs over multiple lines as unhelpful, just as agdawathes of blank lines.
| prefer comments in blocks (which may often make up signifiqgearagraphs)
that describe the code that follows them. And the commerdsldibe readable
English in proper sentences intended to help some poormpésed with revising
or updating the code to correct some imaginary bug or add deewre.

Java provides some encouragement for special commentrthattroduced
with the sequence/ %+ "8 and going on over possibly many lines until the next
“x/”, These are there to support extra software tools that extinase comments
and format them as separate documentation for the prograthisi course | will
illustrate that scheme later on.

Well all the above discussion has just left us with alfl@lo.java . Unlike
(typical teaching use of) ML, Java expects programs to beqssed by a sepa-
rate compiler before they are executed. This compiler isognam that checks
the syntax and types of the code you show to it, and trandladesthe human-

80rdinarily as well as// ” comments that just run to the end of the line you can writeglon
comments starting with/“x .

34 CHAPTER 3. INTRODUCTION

readabl@ source file such adello.java into a more compaét digested binary

file (calledHello.class in this case) that can subsequently be executed repeat-
edly without any need to re-do all the potentially time-aaméng checking. To
carry out this conversion you need to say

javac Hello.java

Thejavac command tends to be jolly taciturn unless it finds somethimg i
your program that offends it. It does not say anything andf& & has run you
may like to usds to verify that the fileHello.class has been created. Finally
we can run it:

java Hello

Note that wherjavac was used to compile the program it was essential to
guote thejava extension, while when the program was to be run you must not
use theclass extension that the pre-digested version of the program was g
This level of apparent inconsistency is not at all restddte Java, and the exact
rules on matters such as this are liable to differ betwedareifit vendor’s sets of
Java tools. What | describe here relates just to Sun’s SDK!

3.3.2 Emacs

The editoremacs is the preferred text editor to use while taking this courke.
think it may be best for most people to start by keeping twodeims available
on their screens, one tlenacs edit window and the second a command-prompt
from which they can issue the build and run commands dire@tigen working
with an edit and a command window note that you have to go/Eitee Buffert!
to getemacs to ensure that the file on disc is brought up to date with rdgpehbe
version you have been editing in its buffer. Provided yourdslbefore issuing the
javac command from your other window it is reasonable and most&oiewt to
keepemacs loaded throughout your session. Itis also possible to clanapid run
Java (or other) programs while remaining entirely witbimacs, and to get any
reports of syntax errors generated by a compiler to re-posihe editor’s caret
close to where the error was detected. But for the rather gmadrams you will
be working with during this Partl course all is excessive and using one window
to edit and one to compile as in Figure 3.5 remains simplest.

The next program to be shown is a rather simple extensioreafiie we have
already discussed, but instead of just printing a fixed ngesgarints a table of
squares. In a file calle8Squares.java you should place:

%Well, at least it is readable if you include enough comments!

10Actually for really tiny programs like this one the binanefinay be bigger than the source it
relates to, but for and program big enough to be interestimatwsay will hold true.

110r the equivalent keyboard sequence, Ctrl-x Ctrl-s.

3.3. A COOK-BOOK KICK-START 35

public class Squares

{
public static void main(String[] args)
{ for (int i=0; i<10; i++)
{ System.out.printf("The square of %d is %d%n",
i, 1 *i);
}
}
}

There are two new things here. The first is the iteration state
for (int i=0; i<10; i++) { ... }

which arranges to declare a variable calleand set it first to O, then to 1, then 2
and so on for so long @810 remains true. The curious syntax is inherited
from theC programming language and means “increment i”: a less ayydy of
achieving the same effect would be to write “i=i+1” instedthe single= sign in
Java is an assignment operator and changes the value ofrthlganamed on its
left. The wordint is short for “integer” and specifies the type tihathould have.
Type Java typént denotes integers which are explicitly limited to a range tha
is consistent with representation as 32-bit values. UriMkeJava expects you to
specify the type of pretty well everything you mention, anakaw you introduce a
new variable you can change its value later usimgoperation without having to
worry about any special extra works likef .

The second new feature is the string argumerngristf ~ where emdedded
percent signs stand for where the numeric values you waplagied need to be
substituted in. Thésdindicates that what you want displayed is expected to be an
integer: other letters could be used when you were needipgribother sorts of
item. Once again | need to make a remark this year that is tattidhe transition
to Java 1.5: in previous years and in many books you will seectide written as

System.out.printin("The square of " + i + " is " + (i *1));

where the plus signs in fact indicate string concatenatiah Java is converting
integers to printable form fairly automatically. | preféetuse oprintf ~ because
the%dindicates very explicitly that | am about to print an integeot some other
sort of thing). It can also be extended to give me quite refomdrol over the
layout of the table | generate.

Note that when | came to want to type in the Squares prograimeokat | did
not type itin from scratch. Instead a copied the earlier¢ietbgram and adjusted
the few lines in its middle to perform the new operations. i¢gfy it will also
be necessary to change a few comments to make them relate t@whreality,
but creating new code by making incremental extensionsdasoa very useful

36 CHAPTER 3. INTRODUCTION

technique and can save a lot of time and effort. It also mdaatsréemembering
all those boring bits is at least slightly less necessary.

One further development of the Squares example will ilatstra few more
Java idioms. This code (which I will putin a fiRowers.java) computes powers
and does so by a repeated-squaring technique that may biéafdnom the ML-
based course last term:

public class Powers

{

public static void main(String[] args)
{
/1 will use printin for simple fixed text
System.out.printin("Table of powers");
for (int i=0; i<10; i++)
/l .. and printf to incorporate values within a template
{ System.out.printf("%d"%d = %d%n", i, i,
power(i, i));
}
}
static int power(int x, int n)
{ if (n == 0) return 1;
int y = power(x, n/2);
if (n % 2) !'= 0) return x * Yy,
else return y *vy;

}
which produces the results

Table of powers

00 =1

1'1 =1

22 =4

33 = 27

4°4 = 256

55 = 3125

66 = 46656

777 = 823543
88 = 16777216
979 = 387420489

The new features shown here are the definition of a functiehcatis to it.
Observe that the types of the arguments for the function laadype of its result
are all explicitly given (asnt here). The code does distinctly more arithmetic,

3.3. A COOK-BOOK KICK-START 37

where+, -, = and/ stand for addition, subtraction, multiplication and digrs
The percent sigfgives a remainder. Numeric comparisons are written wijth
<, >= and<= for the obvious comparisons, and the rather less obwveu®r an
equality test and= for inequality.

Conditional statements appear as

if (condition) statement
or

if (condition) statement
else statement

Note that the parentheses around the condition are parteofdiia syntax
(inherited fromC) and they may not be omitted.

You need to use the wordturn explicitly to indicate what value your pro-
cedure should hand back.

It is a very common beginner’s error to get mixed up about wheaces and
semicolons are needed — and mix-ups on this front can cawssasprouble
with theelse after anif statement. In doubt just remember that you can group
several statements (or indeed just one) together to makegée doig statement
just by enclosing them (or it) in brace$ “..}”. The braces | have around the
call toprintf just after thefor were put in not because they are essential (the
call toprintf counts as a single statement and could be the thing thdbdthe
loop performed in a repetitive way) but because | think trecbks there make it
easier to see just what the range of thre is. Similarly it is often good style to
use braces that are in some sense redundant after the keywqudt to ensure
that the structure of your code is utterly evident to any eead

The series of small examples above show enough of Java gyatdin form the
basis for exercises that use integer arithmetic and a feursee sub-functions.
With luck they contain enough examples of usage that you ocango away and
write all sorts of little programs that perform calculatsowith at most minor
recourse to the textbook to check exact details.

3.3.3 Drawing to a window: JApplets

| will therefore move onto another cook-book example whibbvgs a different
sort of Java program. The ones seen so far are refereed @naisadbne applica-
tions. The next one will be described as an “applet”. It hagwaen higher load
of mumbo-jumbo to surround the small bits that are its essletdre, but illus-
trates how you can start to use Java for graphics programamaddgpo interact with
windows, mice and the like. As with my Hello program | will gté&y quoting

38

T emacs@PANAMINT]

Buffers Files Tools Edit Search Mule Java | Help
// powers program for

Customize

CHAPTER 3. INTRODUCTION

=lofx|

-

[#] Global Font Lock (highlights syntasx)
[1 Auta Fill {word wrap) in Text modes

public class Powers ?mmed (08 {1 Automeic File Defeampression
{ Danutabs ‘ [1 Transient Mark Mode {highlights region)
esctibe
5 . s : []Line Truncation
P ublic static voi C R SR e ST VA [] Case Folding in searches
{ SY stem.out. PTX1 sendBugReport... []Use Direckory Mames in Buffer Names
for (int i=0; Shew Yersion [] 5ave Place in Files between Sessions
{ SY stem.out Gettu.ﬂg e \n'.e.rsmns (C-h C-d) [l Bebiia r e
Copying Conditions {iZ-h C-c) [1 Debuig o Guit
PC (MoniWarranty (C-h C-w) T =
// sub-function to compute x to the power n
static int power(int x, int n)
{ if (n == 0) return 1;
int y = power(x, n/2);
int z = y*y;
if ((n % 2)00Psfji= 0) z = z*x;
return z;

// end of Powers.java
--\-- Powers.java
cd d:/univ/notes/java/
javac Powers.java
Powers.java:18: ')' expected

if ((n % 2)00PS != 0) z

Powers.java:18:
found int
required: boolean

if ((n % 2)00PS != 0) z

ey

2 errors

-—** “*compilation¥

(Java)--L18--All

incompatible types

(Compilation

zkx;

zkx;

:exit [1])--L1--Top-

Figure 3.7: emacs on Windows, with the “Global Font Lock”ioptfor syntax

colouring.

the important bit of the code that lives in the middle. In tbése it will arrange

to keep track of where your mouse

last was when you pressbdtitsn, and will

respond to new mouse clicks by drawing a straight line on ¢hees to join the

old to new position.

Since at this stage | want to make this key part of the code &soghort and
easy as possible | have omitted any comments — after all | ayatdb give an
explanation here in the accompanying text!

3.3. A COOK-BOOK KICK-START 39

In the Hello program we used a function call@ihtf by referencing it rela-
tive to some library objec®ystem.out . Here we need to suspend disbelief for a
short while and image two things, one calkethat allows us to call library func-
tions that reveal the position of the mougetX andgetY) and another called
g that is analogous t8ystem.out but which supports a functiafrawLine for
putting a straight line up on the screen. Suppose furthezithatt there are integer
variabledastX andlasty that will be used to store the previous position where
the mouse was clicked. It now makes sense to show the kerrieealrawing
program:

int x = e.getX(), y = e.getY();
g.drawLine(lastX, lastY, X, V);
lastX X;
lastY y;

Look under the linklava Platform Core API on the web-browsable doc-
umentation. Clicking at the top of the screen throuiglex makes it almost as
quick to look upgetX , getY anddrawLine as it would be to check for them
in the index of a book. In either case you are liable to find lear documen-
tation the explanation of other related functions, suchragRect , drawOval ,
filArc ~ , drawString and many many more.

Once one has sorted out how to use one of these in generaktifeltew on
naturally, so it can be useful to browse the documentati@asionally to make
yourself familiar with the collection of operations thaeaupported.

The next natural question is one of where the mysteregoasdg came from,
and how it could be arranged that the above code is activatexy ¢éime the
mouse button is pressed. Well just as a simple stand-algrieaton has a spe-
cial function calledmain, one that deals with the mouse will have one called
mousePressed . This gets the objea passed down to it from the system. all
one needs to know is that the type used to declare this variahlouseEvent .
Access to the screen is obtained by declagrtg be of typeGraphics and ini-
tialising it with the value returned by a call tetGraphics 12. These types and
conventions are to some extent part of a large design thadrliesl the Java li-
braries, but at this stage the only proper way to cope witmtiseto copy them
carefully from existing working programs and check detiaifhe documentation.
When you look at the documentation | expect your main infeaponse to be one
close to “Wow” as you see just how many types and functiona pavvides you
with. Overall there is more complexity and power in thesedites than there is
in the language itself. Anyway here is the full version of theuse click handler
function — not too messy provided one is happy to take thatipcalls on trust!

2In this initial example | usgetGraphics but often the object you want will come to you
in other ways.

40 CHAPTER 3. INTRODUCTION

public void mousePressed(MouseEvent e)
{
/' 1 have to obtain access to a drawing context
Graphics g = getGraphics();
/l 1 also need to extract (x,y) co-ordinates from
/I the mouse event.
int x = e.getX(), y = e.getY();
g.drawLine(lastX, lastY, X, y);
lastX = x;
lastY = v;
}

| can now give the whole fil®raw.java which includes the above important
function definition, but which also has the relevant junk isaneeded to connect
it in to the Java run-time environment. You will see that | édkis time used
comments fromi = to+/ for some of the big block comments. The arrangement
with columns of vertical stars is purely a convention thaké land which makes
the range of the comment clearly visible. The lines starimgprt arrange for
convenient access to several extra Java libraries. Yodindlimport statements
at the top of most of my sample programs from now on and thet&igsaof things
you need to “import” will seem jolly mysterious. All | can say this stage is
that you can start by copying the lines | give and that in a wareko you will
understand how to check the Java on-line documentatiornrt@sbexactly what
you need exactly when.

The qualifications €xtends and implements) on the declaration of the
Draw class ensure that this program can draw to the screen andnce$p the
mouse. When a file contains a class that extelAgplet the rules for it start-
ing up are not like ordinary programs. Instead of definimgjn it defines the
functions shown here.

[*
* Draw.java A C Norman
*
* Simple applet to draw lines on a screen
* in response to mouse clicks. See also "Draw.html".
* [
[*

* At the start of almost any Java program it will

* be necessary to incant a few “import" statements to
* provide Java with more convenient access to various
* standard libraries.

* [

3.3. A COOK-BOOK KICK-START 41

import javax.swing. *
import java.awt. *
import java.awt.event. *

public class Draw extends JApplet
implements MouselListener

{
private int lastY = 0, lastY = 0;
public void init()
{
/I 1 need to activate the mouse event handlers.
this.addMouseL.istener(this);
}
[*

* Each time the mouse button is pressed | will draw a
* line on the screen from the previous mouse position
* (or (0,0) at the start) to where the mouse now is.
* [
public void mousePressed(MouseEvent e)
{
/l 1 have to obtain access to a drawing context
Graphics g = getGraphics();
/1 also need to extract (x,y) co-ordinates
/I from the mouse event.
int x = e.getX(), y = e.getY();
g.drawLine(lastX, lastY, X, y);
lastX = x;
lastY y;

* The full mouse event model uses the four extra

* procedures shown below. To keep this code as short
* and simple as | can | will not cause them to do

* anything, but the Java event handler scheme demands
* that they exist. Hence these definitions of functions

* that do nothing at all!

public void mouseReleased(MouseEvent e) {}
public void mouseClicked(MouseEvent e) {}

42 CHAPTER 3. INTRODUCTION

public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

}

/* end of Draw.java */

Without a prototype such as the above to start from it colkd gehuge amount
of reading of the manuals to find all of the Java types and fansto put together.
However once you have the prototype to work from there isadtlsome chance
that variations on the theme can be constructed by makingnmental changes,
and the details of these changes can be sorted out by lookthg manuals close
to the place where the features that are currently used genaented. The ver-
sion | have given here uses the claagplet while you may find some books use
Applet (without the initial letter J) that is an older version of setimng similar.

3.3.4 HTML and appletviewer

The earlier examples were run using commands sugivasHello . This one

is not a stand-alone application but a JApplet, and so has tamusing a thing
calledappletviewer . What is more it needs yet another file to be prepared: one
that will let it know how large an area of the screen should déteaside for the
drawing to appear in. This new file must be cal@dw.html , and its contents
are as follows:

<HTML>
<BODY>
<APPLET code="Draw.class" width=400 height=400>
Java is not available.
</APPLET>
</BODY>
</HTML>

This file consists of a set of nested sections, where thedftarsection is a
word contained in angle brackets and the correspondingrearter is the same
word but with 7 ” in front of it. Once again the most interesting part is in thigl-
dle where theAPPLETtag is used to provide a reference to the compiled version of
our program (idbraw.class) and to specify the width and height of the window
in which it is to work. The text “Java is not available” shouldver appear when
you use this file! It is there so that it can be displayed as eor enessage if this
HTML 13 file is inspected using software that does not understaral Jeor the
purposes of this course the only use you will make of the fite say

B8Hypertext Mark-Up Language.

3.3. A COOK-BOOK KICK-START 43

appletviewer Draw.html

which should cause a 400 by 400 (pixel) window to appear withihich you
can click the mouse to good effect. The window thapletviewer should
provide a pull-down menu that contains an emjoit or close than can be
used to terminate the program. Observe (with quiet gloor)appletviewer
demands that you quote threml suffix, and that inside the HTML file you have
to specify the full name of your class file (ie including telass suffix), while
to run simple stand-alone Java applications you just gay®dse part of the file-
name. Ah well!

The Draw program shown here is a useful prototype, but thet glasing
problem it exhibits is that if you rearrange your windows Mhising it so as to
obscure part of what you have drawn then that bit does notegpainted when
you reveal the window again.

When you move towards larger programs (ones spread ovemvany files)
you will probably need to read up about a tool caljd and find out (it is easy!)
how you can package many Java class files into a single ar@mdenow HTML
files refer to such archives. | will not explain that in thigtHa course.

3.3.5 Exercises

Tickable Exercise 2

Do both parts A and B please.
Part A

The following Java function is a rather crude one for findingetor of a
numbem and returning it, or returning if the number is prime.

static int factorof(int n)
{ int factor = 1;

for (int i=2; i *j<=n; i++)
{ if (n % i == 0) factor = i,
}

return factor;

}

The code works by checking each possible factor from 2 upsyatdpping
when the trial factor exceeds the square root of the numbeglested.
This stopping condition is reasonable because if a numbgmot prime
than it must have at least one factor in the range ¢n.

44 CHAPTER 3. INTRODUCTION

Write a stand-alone Java program that incorporates thesatmmle and that
prints out a list of all the prime numbers from 2 to 100.

Optional: Changefactorof to make it more efficient by first letting it
check whether 2, 3 or 5 is a factor and then instead of trgihgpossible
factor up to the square root oflet it just try those thatare 1, 7, 11, 13, 17,
19, 23 or 29 mod 30. le do not bother with numbers that are thes
divisible by 2, 3 or 5. This should lead to making jugB8 = 26.66% of the
number of test divisions that the original version did. Dtiesnew version
run faster, and if so by about what factor?

Part B: Binomial Coefficients
This exercise is a deliberate incitement to write a veryfioieint program.
Later on there will be an example that prompts you to write &imfaster
program that can computer the same answers! The binomitilaiestst*
may be defined by the rules

" = " +"ic
nCO = 1
nCn - 1

This definition could naturally turn into an ML function detion

fun binom(n, r) =
if r = 0 orelse r = n then 1
else binom(n-1, r-1) + binom(n-1, r);

Write the corresponding Java code and use it to tabél&efor n from 0
to 12.

If you are using Java on Unix you should giinfe java Binom " to run
the example and when your program has run you will get a regdrow
long the computation took. Keep all the output so you can ampoth
results and timing data with the method described later on.

(End of tickable exercise)

14There is some question as to whether | should use the nof@jdrere or(?) | hope this

will not confuse you too much!

3.3. A COOK-BOOK KICK-START 45

A better drawing program

The drawing program as presented is very clumsy. There anender of ways it
could be improved. The suggestions made here are not thectooute towards
a properly finished professional quality drawing prograrhroay still count as
useful practise with Java.

1. In the 400 by 100 window, interpret mouse clicks in the t@ppbcels as
button activity that can select options. The x co-ordinasy iipe split into
(say) 4 ranges to give four buttons. In mousePressed add:

if (y < 50)

{ if (x < 100) .. actionl
else if (x < 200) .. action2
else if (x < 300) .. action3
else .. action4

}

else
{ normal mouse processing

}

2. The crude buttons as above could select whether furtlgedaie mouse
clicks drew lines (as before) or useeawOval to draw circles. Another
button might select a drawing colour using

g.setColor(Color.blue); // or red, black etc

3. My code, which was trying to be as short as possible, didtmeait the
first mouse click specially, and so all trails started at X0,0hat should
be changed.

4. drawString(string, X, V) places text in a window at the given posi-
tion. It could be used to label the “buttons”.

| think that the code that you could potentially achieve heogld be pretty good
for this stage in the course!

46 CHAPTER 3. INTRODUCTION

Turtle Graphics

The following code shows some

more new features of Java. It deErrErr ST I
fines apaint method (ie function) &
in an applet. The appletviewer ar-
ranges that this function is invoked
every time the applet's window is
uncovered or otherwise needs re-
drawing, and so it leads to pictures
that are a lot more robust than the
mouse-driven Draw program shown
earlier. The code also uses a new
type, double which is for floating
point numbers, and some calls to the

Maths library to compute sines and cosines. The odd notétigr indicates

that the code wants to convert the floating point valueto an integerit) so it

is of the correct type to be passed ordtawLine .

Put the code in a fil&urtle.java and prepare a suitable associated file
Turtle.html . Experiment with the code and see how the image changes de-
pending on the values of the three variables marked. For wadses ofinc |
seem to find that a closed figure is drawn provitkad large enough, but | have
some trouble producing an explanation of why or a charaaBon of exactly
what values ofnc will lead to this behaviour. | also find the degree of symme-
try hard to explain. Generally this is an illustration of tfaet that quite short
programs can have behaviour that is complicated to explain!

[*
* Turtle.java A C Norman
* illustration of Turtle Graphics and the "paint” method.
* [

import javax.swing. *
import java.awt. *
import static java.lang.Math. *

public class Turtle extends JApplet
{
public void paint(Graphics Q)
{ /I Try changing the following 3 numbers...
double size = 5.0, inc = 11.0;
int N = 5000;
double x = 200.0, y=200.0,

3.3. A COOK-BOOK KICK-START 47

thl = 0.0, th2 = 0.0, th3 = 0.0;
for (int i=0; i<N; i++)
{ th3 = th3 + inc;

th2 = th2 + th3;
thl = thl + th2;
double x1 = x+size *cos(Pl *th1/180.0);

double yl1 = y+size =*sin(Pl *th1/180.0);
g.drawLine((int)x, (int)y, (int)xl1, (int)yl);

X = x1;
y =yl
}
}
}
/* end of Turtle.java */

The code is really using angles in degrees (not in radians) tlze variables
thl , th2 andth3 hold values that are angles. As coded above some of these

angles can grow to ridiculously large values, it might madese to insert lines
based on the prototype

if (th2 >= 180.0) th2 = th2 - 360.0;

in suitable places with a view to keeping all the angles thatsed in the range
—1800to+1800.

The import static java.lang.Math. * line makes it possible to use
sin , cos andPI in the simple way shown.

Note that in Java (and indeed with many window systems) the-grdinate
starts at 0 at the top of the screen and increases as you go @bwermakes sense
(sort of) when the screen is containing text, in that countines you normally
start at the top. For pictures it can be a little muddling lwydu are used to it, and
can mean that things sometimes come out upside down therfiesybu try them.

48

CHAPTER 3. INTRODUCTION

Chapter 4

Basic use of Java

4.1 Datatypes, constants and operations

The first section of these notes introduced a few small bupdeta Java programs,
but when you type them into the computer you still have to takgeat deal on
trust. But with those examples to use as a framework | can naw 8 more
systematic introduction of the Java language and its est®atlibraries. Actually
in the lectures | expect to skim over this material very rgpigiou will in reality
learn about the Java data types and syntax as you write pnsgr&lowever |
view it as important that you have reference material in yoamdout that shows
what everything is so that if you have trouble in your codiog yrave somewhere
reasonably close at hand where you can check some detaiksevdoif you need
a gentle path to settle into Java programming | do suggesythatry various of
the example programs and exercises here so that you getaiaad tomfortable
with a good range of Java syntax.

4.1.1 Reserved Words

The first thing to do is to catalogue the words that are reseiifgou accidentally
try to use one of these names as the name of one of your variaddienctions you
can expect most curious error messages from Java! So evaghtthdo not want
to explain what all of these mean yet it may help you if | prevallist of words
to be avoided. In some cases of course the presence of a werd/tiealert you

to the availability of some operation, and you can then lopkhe details in the
manual. A clever editor might display words from this listdame alternative
colour to help you notice any unintentional uses. An evenenotever one might
use different colours for the one (suchias) that name basic types, the ones
such ador that introduce syntax and ones likee that are just the names of

49

50 CHAPTER 4. BASIC USE OF JAVA

"Mickey Mouse" programs are
very different from industrial-

Figure 4.1: Start with some small examples...

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 51

important built-in constants.

abstract assert boolean break byte
case catch char class const
continue default do double else
enum extends false final finally
float for goto if implements
import instanceof int interface long

native new null package private
protected public return short static
strictfp super switch synchronizedhis

throw throws transient true try

void volatile while

A joke about the above table of reserved words is that at ptds&a does not
actually use them all — specificalbpnst andgoto do not represent any oper-
ation supported by Java. By prohibiting people from usireséhwords as names
for variables the Java designers have left themselvedalflikibility to extend
the language in the future if they want to or are forced to, @y can perhaps
give better error messages when people who are used to shardartiguage that
does include these keywords first tries out Java.

There are some other words which are used for names thatperfgportant
system functions. If you unintentionally define a functiothmone of these names
you might find that you have introduced side-effects of amg@magnitude when
the system calls your function instead of the one it was expgicBeware here,
because although incorrect use of a genuine reserved waneesdlt in a syntax
error it could be that defining a function with one of the fallng names would
have subtle or delayed bad consequences rather than a@gceicktant crash.

clone equals finalize getClass hashCode
notify notifyAll toString wait

OK so the above information is more negative then positiue] hope it will
rescue a few of you from otherwise most mysterious behawidan you might
otherwise have tried to use one of the reserved words forgwarpurposes.

4.1.2 Basic Types

Earlier examples used the ward to declare integer variables, and the range of
values that can be represented goes from areth8illion to around4+-2 billion.

To be more precise the smallest vatitl is —231 = —2147483648 and the largest
oneis 21— 1=2147483647. You are not expected to remember the decinmal for
of the numbers, but you should be aware of roughly how big drey Integer

52 CHAPTER 4. BASIC USE OF JAVA

overflow is ignored: the result of an addition, subtractiomultiplication will
always be just what you would get by representing the trueltr@es a binary
number and just keeping the lowest 32 bits. A way to see thesmprences of this

is to change th@owers program so it goes up to higher powers, say 20. The final
section of the output | getis

88 = 16777216
979 = 387420489

10°10 = 1410065408
11°11 = 1843829075
12712 = -251658240
13713 = -1692154371
14°14 = -1282129920
15715 = 1500973039
16°16 = 0

17°17 = 1681328401
18718 = 457441280

19°19 = -306639989

where the value shown for 1®is clearly wrong and where we subsequently get
values that probably count as rubbish. Note both the fa¢taerflow can turn
positive values into negative ones (and vice versa) andabaa case (obvious in
retrospect) where 16 shows up as zero. Since 16 i$the binary representation
of 16'% is clearly a 1 followed by a string of 64 zeros, and in parécuhe least
significant 32 bits are all zero. This lack of detection okger overflow is some-
times convenient but it is also a potential major source é&ttigg wrong answers
without even knowing it.

Java provides several alternative integer-style primitiata-types which rep-
resent different trade-offs between expected speed, sjpacaccuracy. They are:

byte: 8-bitintegers in the range128 to+127,;
short: 16-bit integer, range-21°= —32768 to 2°— 1 = 32767;
int: 32-bit integers as discussed already;

long: 64-bit integers, is range is from2°3 to 2°° — 1 which means that almost
all numbers with up to 19 decimal digits can be represented.

It may be helpful to those who are not already used to the pirgaresentation
of signed values if | tabulate the representation used ®byte datatype. The
wider integral types use just the natural generalisation:

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 53

Number Representation in binary
—27 26 25 24 23 22 o1 20

127 0 1 1 1 1 1 1 1
126 0 1 1 1 1 1 1 0

3 0 0O0O0O0O0OT1I1
2 00O0O0O0O0OTZ1IO0
1 0 0 0 0 0 0 0 1
O OO0 O0OO0OO0OO0OTO0OTO
-1 11111111
-2 11111110
-3 11111101
—4 11111100

—-126 1 00 0O0OT1O
—-127 1 00 0 0 O0O01
—-128 1 00 0 O0OOOGO

One way to understand how the negative numbers arose is thatee€l is the
bit-pattern that has the property that if you add 1 to it anmtbrg the final carry
you get the representation that means 0. It can also helgpfmse that negative
number “really’ have an infinite string of 1 bits glued onteitheft hand end. The
representation used is known as “two’s complement”.

When you write an integer literal in your Java code you camentin decimal,
octal or hexadecimal (base-16). You can also make youresrititeger either of
typeint or typelong ; there is no direct way to write eithertgte or short .
Decimal numbers are written in the utterly ordinary way yoand expect. You
add a suffix L” if you want to make the value lang and you should always do
this if the value is outside the range of ordinary availablartint , but you might
sometimes like to do it for even small values when using themgontext where
arithmetic on them should be donelomg precision. Examples are:

12345 an ordinary int

1234567890123L a long value

10L a long but with a smallish value

1000000L *1000000L an expression where the L suffix
matters

1000000 * 1000000 without the L this would overflow.

My belief is that hardly anybody ever wants to write a numimeoctal these
days, but Java allows it, taking any number that starts Withs being in octal.

1But this may be just a matter of fashion, and perhaps elseninethe world octal is still
appreciated.

54 CHAPTER 4. BASIC USE OF JAVA

Thus037 is the octal way of writing the number 31. Thesuffix can be used to
specify long octal values. Observe a slight jollity. If youit® the numbep it
is interpreted as being in octal. Fortunately zero is zeratewder radix is used to
write it!

Hexadecimal is much more useful. Each hexadecimal digitdstdor four
bits in the number. Letters fromto F are used to stand for the digits with weight
10...15. Hexadecimal numbers are written with the préfx Note that the suffix
L forlong , theXin hexadecimal numbers and the extended digits fadmF can
all be written in either upper or lower case. | strongly recoamd use of upper
case forL since otherwise it is painfully easy for a casual reader talcfei10l
(long ten) andL01 (one hundred and one).

Here are some numbers written in hexadecimal

0X0 this is zero, not gravy powder
Oxe otherwise 14

OXFfffffff -1 as an int

OxBadFace what other words can you spell?
OX 7frfffff largest int

0x80000000 most negative int

0x00010000 2 to the power 16

OxTffffffffffffffL largest long

| rather suspect that the main importancéyk andshort is for when you
have huge blocks of thenwhere the fact that they take up less space can be of
practical value.

Floating point values also come in two flavours, one with gdarange and
precision than the other. The more restricted one is céilbad . A float uses
32-bits of memory and can represent values up to about 3*4ei#8a precision
of six to seven significant figures. Until you have sat throtiggcourse on numer-
ical analysis please avoid use df iThe more sensible floating point type is called
double and uses 64 bits to store numbers with magnitude up to abde808,
with an accuracy of sixteen or seventeen significant figufé® internal repre-
sentation of floating point values and the exact behavioall ikircumstances was
originally taken from an International Standard referrechs IEEE 754. Some
bit-patterns are reserved to represents” and “—o” while others are values that
are explicitly not representations of valid floating poiatuwes — these are known
as NaNs (Not A Number). A few possibly unexpected effectseaiiom this. For

2See the description later on of arrays.

Sie 3.4 x 10%,

4In fact a number of the Java library functions require argutief typefloat , so it is not
possible to avoid this type. Its use is satisfactory in agimstances where the precision it supports
is all that is justifiable, for instance when specifying thigghtness of a colour.

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 55

instance floating point division never fails: 0.0/0.0 yeel NaN, while any other
value divided by 0.0 results in an infinity. Alsoufis a floating point value then
it is possible for the expressian == u to evaluate tdfalse (!) because the
rules for all numeric comparison operators is that theyrrefalse when at least
one of their arguments is a NaN. Another oddity is that onehaae two floating
point valuesu andv such that botlu == v and(1.0/u) != (1.0/v) I This
oddity is achieved by having = -0.0 andv = +0.0 . These delicacies are al-
most certainly exhibited by most other languages you witheaacross, but Java
documents them carefully since it is very keen indeed to nsake that Java pro-
gram will give exactly the same results whatever computey iin on. Even if
it does very delicate things with the marginal and curiousesaof floating point
arithmetic. Recent versions of the Java language use a kdtritfp to
indicate places wherall the consequences of IEEE floating point must be hon-
oured: specifically its use means that the results compturtedid be identical
whatever machine run on, and will have rounding errors é&xad expected.
Without strictfp and on some computers Java will deliver results that are both
more accurate and are computed faster!

Here are some floating point constants:

0.0 this is double (by default)

0.0F if you REALLY want a float

1.3e-11 specify an exponent (double)

22.9ellF float not double

22.9el11D be explicit that a double is required
lel no "." needed if there is an "e"

2. "" can come at end

2 "." can come at start

2D must be a double because of the D

| would suggest that you always make your floating point camtststart with
a digit and contain a decimal point with at least one digeaittsince | think that
makes things more readable.

In Java the result of a comparison is of typmlean , and the boolean con-
stants arerue andfalse . Asin ML (and unlike the situation in C, in case you
know about that)hoolean is a quite separate type front .

Despite the fact that this section is about the Java primiyiges and not about
the operations that can be performed on data, it will makeesofmy examples
easier if | next mention the ways in which Java can convemnfane type to
another. In some cases where no information will be lost (ewyerting from a
byte orshort toanint)the conversion will often happen without you having to
worry much about it and without anything special having touogten. However
the general construction for making a type conversion iledalcast and it is
written by using a type name in parentheses as an operatorhawe already

56 CHAPTER 4. BASIC USE OF JAVA

already seen a couple of examples inthew program whergint)x was used
to convert the floating point valueinto an integer. The opposite conversion can
then of course be written as in
for (int i=1; i<10; i++)
System.out.printf("%22.89%n", 1.0/(double)i);

where the(double) is a cast to conveit to floating point. The format spec-
ifier® %22.8g is for printing a floating point value in a General format s
precision of 8 significant figures and padding with blanks eke22 characters
printed in all. Until you understand exactly when automabaversions apply it
may be safest to be explicit. Java allows you to write cast¢hiase conversions
that it thinks are sufficiently reasonable. You can cast betwany of the flavours
of integer. When you promote from a narrower integer to a watee the value
is always preserved. When you cast from a wider integer torieowar one the
result is what you get from considering the binary represtgon of the values
concerned, and the cast just throws away unwanted high-bitde Casts from
integers tdloat anddouble preserve value as best they €aBasts from float-
ing point values to integers turn NaNs into 0, and infinitie®ieither the most
positive or most negative integer. Floating point valuest tire too large to be
anint orlong also turn into the largest available integer. The exactsribe
casts from floating point values tyte andshort are something to look up in
the reference manual in the improbable case it matters to foere are no casts
betweerboolean and other types. You need to use explicit expressions such as
(i = 0) tomap from an integer to a truth-vafue

The typechar can be used to declare a variable that holds a single characte
To write a constant suitable for putting into such a variajae just write the
relevant character within single quote marks, as in

char mychar = 'A’;
if (myChar == 'q’) ...

It is frequently necessary to use characters that do not featly or clearly
between quotes. For instance the single quote charactdy asa “character” to
represent the end of a line. A set of escape codes are uséet ey, where instead
of a single character one writes a short sequence startthghd escape character
“\'". The supported escape sequences are:

5In this case the cast is not needed: Java will do the requinedecsion so that it can perform
the division.

6You will see a bunch of common format specifiers just in exasplere. You can look up full
details in the on-line documentation, or find a medium-sggtbpsis later in these notes.

Casts fromint orlong tofloat orfromlong todouble can notalways preserve
an exact result because the floating point format may not baeeigh precision available. The
closest floating point value to the true result will be delede

8Unlike the position in C where there is not much distinctietvieen integers and booleans.

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 57

\n newline, linefeed (very commonly used)
\" double quote mark

\ single quote mark

\\ use when a single \ is wanted

\b backspace

\t tab

\f newpage, formfeed (unusual)

\r carriage-return

Carriage returns are used in Windows text files and as lineraépn in some
Internet protocols, but when creating simple text files youndt generally see
or need to mention it: Java does any necessary conversioysutgo that on
Windows, Macintosh and Unix an end of line in a file is talkeduatbin your
programs as justn’

In addition it is possible to writ& nnnwherennn stands for 1, 2 or 3 octal
digits: this indicates the character with the specified ati@r-code in a standard
encoding. Use of octal escapes is not at all common. Furtbrerdava allows
inclusion of characters from an astonishingly large charaset by use of a nota-
tion\u followed by four hexadecimal digits. The 16-bit number esgEnted by
the hexadecimal digits is taken as being in a set of charactendings known
as Unicode. Casts betweén andchar give direct access to this encoding.
For examplew2297 and(char)0x2297 both give the characterg”. In fact
the Unicode escapes do not just apply within Java charatteals but can be
usedanywhere in a Java program where you want an unusual symbol — and
this means that in some sense you can have variables nanteSwiek, Rus-
sian and Eastern glyphs in them. Unicode gradually becomioig widely used,
but most computers still do not have full Unicode fonts ileth and so exotic
characters will not always be displayed properly even thauighin Java they are
handled carefully. The following applet displays the clotees that are available
using the viewer it is run under. It uses a cé@star) to convert an integer to
a character and some fresh library calls ¢éegFont(new Font(...)) and
drawString). It also illustrate something that you will probably waatretrofit
to most of the little examples in these notes. It allocatBsféeredimage that
it draws into, and then thgaint method just displays whatever is in the bitmap.
This does wonders for arranging that when you obscure byswf window the
content gets re-painted nicely!

It also makes a crude modification of the earldeaw program so that mouse
clicks at various places in the window adjust the range ofadtars displayed.

[*
* Unicode.java A C Norman

*

58 CHAPTER 4. BASIC USE OF JAVA

* Display the Unicode characters as supported
* by the current browser.

*/

import java.awt. *

import java.awt.event. *
import javax.swing. *
import java.awt.image. *

public class Unicode extends JApplet
implements MouselListener
{
private boolean isFilled = false;
private int fontSize = 20; // or whatever!
private int page = O;
private Bufferedimage p =
new Bufferedimage(
32x*fontSize,
35x* fontSize,
Bufferedimage. TYPE_BYTE_BINARY);

public void init()

{

addMouselListener(this);
}
public void mousePressed(MouseEvent e)
{

if (e.getX() < 200) page++;

else page--;

if (page > 63) page = O;

if (page < 0) page = 63;

isFilled = false;

repaint(); // force screen to re-draw
}

public void paint(Graphics Q)
{
if (lisFilled) filllmage();
/I Note drawlmage may need repeating!!!
while (!g.drawlmage(p, O, O, this));
}

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 59

void filllmage()

{
Graphics g = p.getGraphics();
g.setColor(Color.WHITE); // background
g.fillRect(0, 0, 32 *fontSize, 35 *fontSize);
g.setFont(new Font("Serif",
Font.PLAIN, fontSize));
g.setColor(Color.BLACK); /I text
g.drawString("page = " +
Integer.toHexString(32 * 32* page),
0, fontSize);
for (int y=0; y<32; y++)
{ for (int x=0; x<32; x++)
{ char ¢ = (char)((32 * page+y) * 32+X);
g.drawString(String.value Of(c),
fontSize =*Xx,
fontSize *(y+2));
}
}
isFilled = true;

}

public void mouseReleased(MouseEvent e) {}
public void mouseClicked(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

}

/* end of Unicode.java */

The output from this program will depend on the range of fonssalled on
the computer you run it on. PWF Linux has a range of Europearaciers, math-
ematical symbols and oddments available. While prepahiegd notes | ran the
code on my home Windows XP system where all sorts of fonts hegemulated
over the years, and the image included here (figure 4.2.)oim there. | also
use a program called Vmware which lets me install many “alftacomputers on
my single home one: using that | installed essentially thsiga of Linux used
on the PWF but told the Linux installer to include support &ravailable lan-
guages: by moving some files into a directojrg/lib/fonts/fallback "
could get results very similar to those that | get from Window message | hope
you will absorb here is that Java itself provides portabfgpsut for international
and special-purpose character sets you may need to configummtime before
you can takdull advantage of it. Also before you distribute applicationging

60 CHAPTER 4. BASIC USE OF JAVA

page = 3000
‘ON®7VO<><>FJFJ[%F=[{KEHﬂHﬂ~“””
[N E===w0000007K ¢/ \@NX00000000
D@@umiiiiﬁﬁﬂﬁ%§<QQHQQé§LUT¢ﬁﬁ%%t
ﬁ%%o?ﬁff&B&Km@@dﬁuUUq&xxaxaﬁg&i&
CHOE2nDLI5NoNAbbA2aA 000000 ° SN[
D77 AA DT T AXAAFF 777 7 AT S OAXL LY
FFFyYYTTMNRFZXR NN EEET7 T IARNGKRRY I
LAAEYXYY2233aT7NNLO7TE2T T 4 TEDLT « — N N[
00000490 C2E53HL& T UKTEALPFRATSLYTEETN
4 XBL AL I)L—AUDODD0O0O000 TTTIALLALS L TE & &1 21 2H 2A 2E &L
BHEHMWMRANRORRKZAESLS FH EH A A]y 1 A+
TT—-]] WICIALAZREC BRBATSTHTATA B HTHL BATMAC BA HE 5 "8 A1 AL AL AH AR A
000 ororEsgso kil Wwla] - oo = =W EHRERTHEIRETREA
0000000000000 0000000000000000000
0000000000000 0000000000000000000
0000000000000 0000000000000000000
MNOOE@EB)NO)FREREH)E)E @)D ENEHEDEHEHEDEHEHEHENEHEHE O O O
OIOEEEEIR) GO ()) FK) PR (3 L) ()49 7))) e B 51) ()) o 7 () () o)
BREEO D D000D0D0000D0D0N0N0N0DN0N0N0N0N0NnoNoOoononoo
OLOEOONORRGEE@@CHDCHEDEDEDEDEDEEHEDEDEDEH D O O &
C0eEEBEOOWBHRIBPDE@DEHBDBEHEBEEH@EGH BB DB EED
EREEOEOEEERGeE®®®L U U U000 000000n
LA2H3A4A5H6ATHSHORIAIARAD U O O @DOODHEDHDDPDHORB®DE)
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@D
z]7’w717 4/771-12:;—1'/1'—?)‘7{77{?:1#1:77 :Fﬁf *:_L«*r)k:F «T—u*ui:r—u7777é»2uf7 :1;1/13—-2‘4'
B s e
T S I3) A T S EE L b U Ol L 28 3 AR DI 6 T

SRS LA 125 135 Ui 1o 16 TR 18R 195 2021 A 226235 U hPada AUbar oV pe O 01 01 [0 T BRI KE Wk
pAnAuAmAkAKBMBGBcalkca pFnF uF ugmgke HzkHMHGHz THz ./ M¢ A€ k¢ fmnmyummmemk mm
ciit i kot i el 1 ki 6 m/SPa kPalPaGPAradrd ad% spsnsusmspVnV uVmVkV MV pWnW (W mW kW MW
kQMQamBacccdCkgCo.dBGyhalPinKKKMkt Im In loglx mbmilmolpHpmPPMPR sr SvWh O [
102A304A5H06A 7THSA9RI0B11H12A13H14B 158165 17H18H19A 208210220 230240 250260 27828290 30A31H [

Figure 4.2: Unicode characters in the range 0x3000 to Ox33ff

on that you have to concern yourself with how well your custosh operating
systems will deal with the fonts!

We have already seen string literals in our code, just writtghin double
guote-marks. The associated typesigng . Although the use of capitals and
lower case is just a convention in Java the fact that the tg@®#ring rather
thanstring is a hint that this does not have exactly the same status aggbs
int , char and so on. In facBtring is the name of a quite complicated data-
type (in Java we will find that this is known ascéass) and this class pro-

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 61

vides access to a number of string conversion and manipualétinctions. We
have already seen+” can be used to give string concatenation. Java also ar-
ranges that if one argument feris a String it will take steps to convert the
other to String format so that this concatenation can takeepl You can look
up “Class java.lang.String " in the on-line documentation or a reference
manual to see that there are standard library functionsafee-conversion and all
sorts of other string operations.

For now the points to observe are that

1. Strings are represented by a data-type that exportsidmscto find the
length of a string, concatenate strings and perform varcounsersions;

2. Strings are read-only, so if you want to change one youdtrfeake a new
string containing the adjusted text;

3. Strings are not the same as arfaykcharacters;

4. It is not necessary to memorise every single string operahbat Java pro-
vides.

Java supports arrays. An array is just a block of values wheeshas the
ability to use an integendexto select which one is to be referenced. The types for
arrays are written with the array size in square bracketserpty pair of square
brackets means that the size is not being specified at that, poit it will be made
definite somewhere else in the program. We saw an array déolaias early as
theHello program where the functiomain was passed an array 8frings
In this case the array will be used to pass down to the Javaapph any words
given on the command line after the parts that actually lauhe application:

/I File "Args.java"
I Display arguments from command line

public class Args

{
public static void main(String[] args)
{
for (String s : args)
System.out.printin(s)
}
}

This introduces a new version of tf@ statement. It can be compiled and then
run by saying

SWhich will be covered in the next section of these notes!

62 CHAPTER 4. BASIC USE OF JAVA

javac Args.java
java Args one two three

it prints out

one
two
three

The points to notice here are that the type of argumennthat was an array
of strings, and théor loop will obey its body once for each string in that array.
An alternative and older-fashioned way of achieving theesaffiect would be to
find the length of the array and count, indexing into the atoagxtract values
explicitly:

for (int i=0; i<args.length; i++)
System.out.printin(argsli])

In this case the array held Strings, but Java arrays can barddaén forms to
hold any sort of Java data. This includes having arrays afarwhich is the Java
way of modelling multi-dimensional structures.

In Java a distinction is made between declaring a varialdedan hold an
array and actually creating the array that will live thereeclaring the variable
happens just as for declaring integer or floating point \deis, and you do not at
that stage specify how big the array will be:

{ int[] a;

has declare®? a to be ready to store an integer array (of unspecified size and
currently unknown contents), much as

{ double d;

says thatl will subsequently be able to store double-precision flgagaint val-
ues. There are two ways that the actual concrete array caa sumexistence.
The first is to combine the declaration with an initializeatinakes the array and
fills in its elements:

10The syntax that | will try to use throughout these notes hasledlarations written as a
type followed by the name of the variable that is to be dedar€husint[] is the type of
an array able to hold integers. When you declare a variabenddrray type Java allows you
to put the brackets either next to the base type (as | will gdlyedo) or after the name of the
variable that is being declared, asiit myArray[]; . This latter case is perhaps useful
when you want to declare a bunch of variables at once, somars@nd some arrays, as in
int simple,row([],grid[][];

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 63

{ int] p = {2,3,5,7,11,13,17};

where the values within the braces can in fact be arbitranteger-valued)
expressions. The second way of creating an array uses a keéywe which
is Java’s general mechanism for allocating space for thingse wordnew is
followed by a type that describes the structure of the itetvetallocated.

{ int[] fairly_big = new int[1000];

In this case the array contents will be left in a default statéact Java is very
keen to avoid leaving anything undefined or uncertain, sin@ants all programs
to execute in exactly the same way every time and on everyimaco it demands
that a fresh integer array starts off holding O in every eleimé has analogous
rules to specify the initial value of any other field or arrdgneent that has not
had a value given more explicitly.

Note that all Java arrays use subscripts that start at O, sorap of length
1000 will accept subscripts O, ..., 999. Attempts to go aetshe bounds will be
trapped by the Java run-time system. Subscripts must beeirty . You may
notusdong values as subscripts. If you writebar , byte orshort expression
as a subscript Java will convertitto am for you as if there had been a suitable
cast visible.

When an array is passed as an argument to a function the éafletion can

update the members of the array, but if it creates a whole newy &y something
such as

args = new String [5];

this will replace the array wholesale within the currentdtion but have no effect
on the calling routine. The terminology that Java uses fotha is that it will
pass a “reference” to the array as the actual argument.

The following example shows the creation of an array, codefths in entries
in it, a slightly dodgy illustration of the fact that two-densional arrays can be
viewed as arrays of one-dimensional arrays and a crude d#ratian of how you
might print multiple values of a single line by building up tairsg that maps the
entire contents of the line.

64 CHAPTER 4. BASIC USE OF JAVA

/I Arrayl.java
/I Create a 3 by 3 array, swap rows in it (!)
/[and print tolerably neatly.

public class Arrayl

{
public static void main(String[] args)
{
int Il a = new int[3][3]; // 3 by 3 array
int [] b; /I array of length 3
for (int i=0; i<3; i++) /I fill in all of a
for (int j=0; j<3; j++) a[i]] = i+10 *];

/I The next line recognises that a[i] are 1l-dimensional
/I arrays of length 3. It swaps two of them around!
b = a[0]; a[0] = a[2]; a[2] = b;

for (int i=0; i<3; i++) /I Print each row
{ String s = ™, /I Build row up here
for (int j=0; j<3; j++)
s=s+" "+ aflf
System.out.printin(s); // Then print it
}
}
}
which prints
2 12 22
1 11 21
0 10 20

The things to notice in the above example are firstly thatideisa andb are
declared with array types, but these types neither spe@és s1or imply that a
genuine array actually exists, and secondly the way in witietiwo-dimensional
array is dismembered. Observe also the syntax associatiedemi for allocating
space for the array, and the fact that nothing special hace tddme at the end
to discard the space so allocated. Java will recycle mem@yiqusly used by
arrays (and indeed any other structures) once it knows kiggt &re no longer
needed. This is of course just like the situation in ML.

We have seen a number of other types in the sample programsel\ss
String there wasGraphics , Font andMouseEvent . Java 1.2 defines over 500
such non-simple types! Thus one thing you can be certain tfas| will not
discuss all of them, and neither will the follow-on Java cgunext year. Each of
these has (in some sense) the same status and possibsities programs you
have written where you start off by declaring a nelass . Each ofString

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 65

Graphics and so on represents a class and its implementation mighbevéh
Java stored in a file that starts off

public class Whatever ...

You have seen with the classes that you define for yoursdifaltdass is a
context within which you can define a collection of functipasd so it should be
no surprise that each of the 500+ Java library classes mewadvhole bunch of
associated functions (eg f8tring we have mentioned thealueOf operation,
and forGraphics we have usedrawLine anddrawString). There are thus
literally thousands of library functions available. Thenganisation into classes
provides some structure to the collection, but in the endprobably have to find
out about the ones you need to use by searching through then@gmtation. These
notes will introduce a sampling of library classes and thecfions they support
with a view to directing you towards interesting areas oJamnctionality. Very
often | find that the best way to start to understand the usenavapart of the
class library is to study and then try to modify some existinde that uses it.

The Java designers suggest use of a convention where thes mdmoelinary
variables and functions start with a lower case letter wtidss-names start with
a capital. They further recommend use of words spelt in giitaks for things that
should be thought of as constants (suctPaghat we used earlier). The syntax
associated with declaring something immutable will be cegidater on once we
have got through the use of other important words sugbublic andstatic
which are of course still unexplained.

4.1.3 Exercises
Tickable Exercise 3

The functionSystem.currentTimeMillis() returns dong value that is the
count of the number of milliseconds from midnight on 1st Zagul970 to the
moment at which it is executed. Thus something like

long start = System.currentTimeMillis();
for (int i=0; i<13; i++)
{ System.out.printin(binom(2 *i, 1));
}
long timeSpent = System.currentTimeMillis()-start;
System.out.printin("Done in " + timeSpent +
" milliseconds");

in the middle of a program can be used to record how long itsaeun. Note
that this is the time as measured by a stop-watch (or hous)glasd will depend

66 CHAPTER 4. BASIC USE OF JAVA

guite strongly on how many other people are using the compititee same time.
On a single-user computer it can give a tolerably reliabdiciation of the cost of
a computation and even on a shared machine it is better theriarmation at all.

1. Adapt the Binomial Coefficients program suggested in tie®ipus set of
examples so that it reports the time it takes to get as farspdading®“Cy»,
which (I think) has the value 2704156. Your submission todlsessors
should include a table of the values ¥, for n from 1 to 12, and the
number of milliseconds that your program took to run.

2. Remove the definition of the sub-function that you usedtoapute the bi-
nomial coefficients, and add to your program a line that desland create
an array callea of size 25 by 25. Set thgf0][0] to 1. Now the first row
of the matrix holds values dC;.

Now fill in subsequent rows one at a time using the rules
cn][0] = c[n][n]=1
cn[r] = cn—21[r—1]+c[n—1[r]

so that the matrix gradually gets filled up with binomial dae¢nts. Keep
going until the 24th row has been filled in. Then print out tladues of
c[2 *i][i] fori from 0 to 12, and again measure how long this takes.

3. [From here on is optional[The above calculation can be done using a one-
dimensional array, so that at each stage in the calculatioolds just one
row of binomial coefficients, ie values BE; for a single value ofh. At each
stage by filling its values in in reverse order something like

cli] = 1;
for (int j=i-1; j>0; j=j-1) c[i] = ..

the new values can replace the old ones in such a way thangaghover-
written too early. Thdor loop shown here seis first to the value-1 |,
then toi-2 , and so on all the way down to 3, 2 and finally 1. | could of
course have writtep- or-j where here | pugj-1 !

Write this version of the program using an array of lengthé8@ make the
array contairlong values rather than jugit . First arrange that on every
even row it prints the middle element from the part of theyathat is in use,
so it duplicates the output printed by the previous two eXasiprhen make
the loop continue further and thus find (by inspection) tmgdat value of
such thaf'C; can be represented exactly as a Jaug . The value is less
than 40.

(End of tickable exercise)

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 67

A Numerical Monster

A very fine paper called “Numeri-
cal Monsters” by Essex et al[12] ex
plains how many calculations th
you might think were straight-
forward have extra depth when dong

using finite precision computer arith
metic. One example is the function \\\\ \ \ \

y= (¢ —2x+1) — (x—1)?
Inideal arithmetig/ would always be \\ \ \ \ \ \
zero. If however the function is com
puted using floating point arithmetig
as shown (and provided an ovel
clever compiler does not do alge
braic re-arrangement of the formuld.
the Java compiler is well-behaved in
this respect) an interesting graph can emerge. For instaercgraph shown here
was produced using a very simple Java program and plottingifothe range 1-
3.0e-8&x<1.0+3.0e-8 ang from -1.5e-16 to +1.5e-16. Write your own version
of a program to re-create this graph, and investigate the iweaows near other
values ofx. Two cases | will suggest investigating are 1.6e&2.0e8,|y|<10
and 14999.99999999263X <14999.99999999257y|<3.2e-8. Your challenge
is to understand exactly how the finite nature of computehetic leads to the
precise patterns generated, and how these patterns wawyldf \details of the
arithmetic model were altered.

The Dutch National Flag

Provided that at the start of your program you have written
import java.util. *

The code

int | a = new int [1000];
Random r = new Random();
for (int i=0; i<1000; i++) afi] = (byte) r.nextint();

first makes an array of length 1000. It then creates a new randanber genera-
tor (calledr), and finally calls the random number generator 1000 timddi to
entries in the array. The cast to tyjpge ensures that each entry in the array will

68 CHAPTER 4. BASIC USE OF JAVA

end up in the range from 128 to+127. There will of course be duplicate values
in the array.

The task you have to achieve is to rearrange the numbers grtag so that
they fall into three bands. The first band, say all the elesy&ntn 0 tom, should
contain all the numbenrswith x < —40. The second bandn 1 to n) will be for
—40< x < 40, while the final bandn(+ 1 to 999) is forx > 40. This is known as
the Dutch National Flag problem because its originator (EjkisDa) presented it
in terms of values that had one of the three colours that histcy's flag- used,
rather than the numeric ranges | have suggested here.

The problem would probably be easy if you could allocatedHlresh arrays
and copy each item from the original into one or the other ef#) based on its
“colour”. At the end you could then copy the three chunks batk the original
array at the positions they needed to go. But this challengaes the idea of
efficiency too, and your final solution must not use any extrays, and it should
ideally inspect or move each value as few times as it can. thatgust sorting the
values in the array into ascending order would satisfy theatlves that concern
where values must end up, but since the problem does notastgtking at all
about any desired order of the items that fall within any @& three bands a
solution based on sorting is over-elaborate and too expensi

It may well be useful to try your hand at the Polish Flag prable- my ency-
clopaedia shows the Polish flag as having just two sttfpd$us the Polish Flag
problem is to rearrange the values in the original chaotigyeso that all negative
ones (say) come before all positive ones, but without arthéurconstraint on the
re-ordering apart that it should be achieved reasonablyiexffiy.

The Mauritian Flag seems to go Red, Blue, Yellow and then &ree

Matrix Operations

Setup two 5 by 5 arrays of tyguble[][] . Fillin the first so that®the element
at position(i, j) has value 1(i + j + 1.0). Fill in the other so that the the elements
on the diagonal have the value 1.0 while all other elements®o.

The program wanted now will be one that gradually turns the firatrix into
one that has just 1.0 elements down its diagonal and zer@sletse. The permit-
ted operations are

1. Multiply all the elements in a row by the same non-zeroealu

2. Subtract a multiple of one row from another.

11Red, White and Blue in that order
12Red and White
13This form of matrix is known as a Hilbert Matrix.

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 69

and whenever one of these operations is performed on thenfatsix it must also
be performed on the second.

The first matrix can be made diagonal by tidying up first the dodumn, then
the second, then the third and so on. To tidy up coluyou first multiply rowi
by 1/a; j, since this will leavé’ the element on the diagonal as 1.0. Then for every
row apart from rowi you subtract a suitable multiple of rowso as to make the
element in columm vanish.

Do this and display the elements of the second matrix, whidulsl in fact
have ended up as the inverse of the original Hilbert matrix!

Encryption

The following code fragment starts with a string calkeg and fills out an array
k with repeated copies of the character codes from the kel/kuhtis 256 entries
init:

String key = "My Secret Key";
int keyLength = key.length();
int | K = new int [256];
for (int i=0; i<256; i++)
K[i] = (intkey.charAt(i % keyLength) % 256;

All the values stored ik have been reduced so as to be in the range 0 to 255.
Observe the use of functiofength() andcharAt() fromtheString class. |
have used a fixed string as the keyword here.

The repeated use of the fixed numeric constant “256” in thike¢e a stylistic
oddity. In some ways once the arriaynas been declared it might be nicer to use
k.length to talk about the number of elements it has. | took the viewrwhe
writing this that the exact size of the array is part of theecgpecification of the
algorithm | am implementing. .. When you write this prograinatever else you
dopleasedo not use your password as text in the program you write!

The program you have to write here may be related to an enornyptethod
known as RC4 that was once a trade secret of Rt which was published
anonymously and presumably improperly a couple of years &04 is used
as the encryption technology in a large number of generagduypackages and
although its security may not have been proved it is widelyelbed to be re-
spectable. Itis also fast.

14For now assume please that the diagonal element was norsa¢hat the division behaved
properly and did not end up yielding and IEEE infinity.

15The major American encryption and security company. You fit@the view consideration
of the proper uses of such code as an exercise relating tortiiesBional Practise and Ethics
course.

70 CHAPTER 4. BASIC USE OF JAVA

The first part of the procedure is to create an agr@y 256 integers, and ini-
tialise it. It is first set so that the value at positios justi (i runs from 0 to 255).
Now your code should scramble this up using they kesging the following pro-
cess:

For i from O to 255 do
Let j be (s[i] + K[i]) reduced to 8 bits
Swap the items at positions i and j in the array s

The term “reduced to 8 bits” can be implemented by just takigremain-
dert® when the value concerned is divided by 256.

At the end of this the array holds a working collection of scrambled data.
This is used to generate a sequence of 8-bit numbers whictbeaombined
with a message to encrypt it. Starting with variahlesd j both zero the next
encryption-number is obtained as follows:

Increment i modulty 256
Setjto] + g[i], again modulo 256
Swap s[i] with sJj]

Let t be s[i] + s[j] modulo 256
The result is s[t]

The algorithm is clearly short enough to be utterly memabbhe sequence
of numbers it generates can be added to the (8-bit) charemties of a message
to give the encoded version, and if the recipient knows tlyetlkat was used then
decryption is just generating and subtracting the sameeseguof values. It is
vital that a key used with this method shouldverbe re-used, and competent
security tends to involve really careful attention to masyadls that do not belong
in this coursé®.

Code the scheme described above. Print the first dozen owdjués from
it for your chosen key. You may like to check with a friend te setheir im-
plementation generates the same sequence as yours whartlggveame key —
by the nature of this code there is not obviously going to be aher way of
characterising the correct output!

1In the next section we will also see that it can be achieved hjing something like
(sli] + K[i]) & Oxff

17*modulo” means just the remaindering operation.

18yt which will be covered later in the CST.

4.2. OPERATORS AND EXPRESSIONS 71

4.2 Operators and expressions

The examples shown already have included uses of the usiinshatic operators,
both as used on integers and on floating point values. Noweisirtie to present
a systematic list of the operators that Java provides anavéyethey are used
in expressions. One of the critical things in any prograngranguage is the
syntactic priority of operators. For instance in normalgesthe expressioa+
b x c must be read as if it had bean- (b x c) rather than aga+b) x c. To stress
the importance of knowing which operators group most tightiill list things
ordered by their syntactic precedence rather than by wiegtdio. The simple
arithmetic cases will be listed but not discussed at anytdeeagth.

++, -- . We have already see use of as a postfix operator that increments
a variable. The full story is that the expressiora has the side-effect of
increasing the value of the varialdeby 1 and its overall value is that in-
cremented value while++ increments but the value of the expression is
theoriginal value ofa. The use of- is similar except that it subtracts one
rather than adds one to the variable mentioned. These apesaan apply
to either integer or floating point variables;

+, - (unary) Unary+ does not do anything but is there for completeness. Unary
- negates its (hnumeric) argument;

~: The”~ operator treats its integer operand as a binary number agadesweach
bit in the representation. If you look back at the earlietddbat illustrated
binary numbers you can check that will have the same value as ;

I': The! operator may only be applied to a boolean operand, and it lsongnts
the logical value concerned, so thate isfalse ;

(type): Casts are included here to show their precedence and toqugititat
as far as syntax is concerned a cast acts just as a unaryaperat

* [, % Multiplication, division and remaindering on any arithticevalues. The
odd case is théoperation when applied to floating point arguments. If
X % yis computed then Java finds artegervalueq that is the quotient
x/y truncated towards zero, and then defines the remairiolek = qy+r.
If integer and floating point values both appear in the sanpeession the
integers are promoted to the floating type before the aritierisgperformed.
Similarly if integers of different lengths are mixed or if #ts and doubles
come together the arithmetic is performed in the wider oftthetypes;

+, - . Both integers and floating point can be added and subtracteth as one
might expect;

72 CHAPTER 4. BASIC USE OF JAVA

+ (string): If the + operator is used in a context where at least one argument is
a string then the other argument will be converted to a siliimgecessary)
and the operation then denotes string concatenation. Véedsn this used
as a way of forcing a conversion from a numeric type to a streagly for
printing. Note that the concatenation step will generailyoive allocating
extra memory and copying data from each of the two origimahgs, so
it will tend to be much more expensive that the arithmeticsuskthe +
operator.

<<, >>,>>>: Consider an integer as represented in binary. Ther<laperator
shifts every bit left by a given number of places, filling intl¢ right hand
end with zeros. Thus the program fragment:

for (int i=0; i<32; i++)
System.out.printf("%d : %d%n", i, (1 << i));

will print out numbers each of which have representatioashiave a single
1 bit, with this bit in successive places. The result is adablpowers of 2,
except that the penultimate line of output will display asegative integer
and the final one will be zero! There are two right-shift opersa The
usual one>>, treats numbers as signed values. A signed value is treated
as if they were first converted to binary numbers with an unéichnumber
of bits. For positive values this amounts to sticking an itéimun of O
digits to the left while for negative ones it involved preseglthe number
with lots more 1 digits. Next the value is shifted right, antafly the value
is truncated to its proper width. The effect is that posiimegers get 0
bits moved into the vacated high order positions while negaines get 1s.
When shifting arint the shift amount will be forced to lie in the range 0
to 31, while for typelong it can only be from 0 to 63. The special right
shift written as>>> shifts right but always fills vacated bits with 0. Itis very
useful when an integer is being thought of not as a numerigevalit as a
collection of individual bits;

<, <=, >, >=: The usual arithmetic comparisons are available, and | la&ve
ready remarked that there are a few delicacies with regaflddating point
comparisons and NaNs, infinities and signed zeros;

instanceof: This will be discussed later;

==, I=: Equality and inequality tests. For the primitive typesythest to see if
things have the same value. For other types (arrays and jbet-daippes that
are introduced later on) the test determines if the thingspaoed are “the
same object”;

4.2. OPERATORS AND EXPRESSIONS 73

&: On integer operands tt&operator forms a number whose binary value has a
1-bit only where both of the inputs have a 1. For positive galdor instance
a & Oxf anda % 16will always yield the same result. Long tradition of
languages where the “and” operator is significantly fastentdivision and
remainder means that many old-fashioned programmers \ailemvhat is
now maybe excessive use of this idiom. T&eperator can also be applied
to boolean operand, in which case is means just “and”;

" . Exclusive or. See below to compare inclusive and exclusiye

| : Inclusive or. Note that for integer valueg™b | b&a == ab and the
same identity holds for boolean values except thhas to be used for the
complement/negation operation rather tharHere are the truth tables for
inclusive and exclusive or:

1] | ” O 1 w~n O 1
0 |01 0 |0]1
1 (1|1 1 /1|0

&& In a boolean expression suchAas& Bif the value ofA was false there is
perhaps no need to evalu@eThe simple “and” notation does not take ad-
vantage of this, but the alternate foan&& Bdoes. Apart from efficiency
this can only make a difference if evaluating the sub-exgoesB would
have side-effects. In general | think it is probably goodesty use&&
rather than jus& whenever a boolean expression is being used to control an
if or similar statement, whil& is probably nicer to use when calculations
are being performed on boolean variables;

|| : This is the version of the “or” operator that avoids progegss right hand
operand in cases where the left hand one shows that the fila should
betrue . Its use is entirely analogous to that&x;

?: It is sometimes nice to embed a conditional value within goression, and
Java lets you do that using the slightly odd-looking syrd&xb : c. This
expectsa to be of typeboolean , while the other two operands can have
any type provided that they are compatiblea i true the result is the first
of these expressions, otherwise it is the second. For iostdre messy-
looking expression

(@a==0 ? "zero" : "non-zero")
has the valuézero" if a is zero andnon-zero* otherwise. The phrase

(@ || b) could be replaced by the equivalent foen ? true : b) ,
while (a && b) has the same meaning@s? b : false) ;

74 CHAPTER 4. BASIC USE OF JAVA

=: Assignment in Java is just an operator. Thus you can asseignvariable
anywhere within an expression. The value of a sub-expreshiat is an
assignment is just the value assigned. Thus silly things({lca+a) +
(b=b-1)) are good syntax if not good sense. A more benign use of the
fact that assignments are just expressions arises inthei@d = b = c
= d = 0) . The assignment operator associates to the right so thepéxam
meanga = (b = (c = (d = 0)))) and thus assigns zero to all of the
four variables named;

*=, /=, %5 +=, -= , <<=, >>=, >>>= &=, "= |=: These operators combine
assignment with one of the other operators that have betsd lsarlier.
They provide a short-hand notation when the same thing woltlidrwise
appear to the left and immediately to the rightin an assigrnnfeor instance
a = a+3 can be shortened @ += 3 The abbreviation has slightly more
real value when the assignment concerned is to some vanathle name
much longer than just, or especially if it is into an array element, since the
short form only has to evaluate the array subscript expyassnce. This
can lead to a difference in meaning in cases where evalugitegubscript
has a side-effect, as in the artificial fragment

int [] a

int [] b

int p=0,qg =1,

for (int i=0; i<10; i++)
a[p++] += b[g++];

where index variableg andq step along through the arragsandb and it
is important that they are each incremented just once eahdround the
loop.

4.2.1 Exercises
Bitwise operations on integers

Investigate, either on paper or by writing test programsheaf the following
operations. Explain what they all mean, supposing that énables used are all
of typeint :

1.7a + 1,
2. at++ + ++b;

3.a & (-a) ;

4.2. OPERATORS AND EXPRESSIONS 75

4.a & ((1<<b)-1) ;
5. (@>>>0) | (a<<(32-)) :

6. a + (a<<2) ;

7. (int)(byte)a ;

8. (a & 0x80000000) = 0 ;

9. (at++ != b++) && (at+ == b++)
10. (~a != -b) | (~a == --b) ;
11.(a <0 ?-a: a

Counting bits in a word

Write a function that counts the number of non-zero bits & ltimary represen-
tation of an integer. You can first do this using a test for €aithn the style

a & (1<<n) !'= 0 . Next see if any of the examples in the previous exercise
give you a way to identify a single bit to subtract off and cou@onsider also the
expression

(c[a & Oxff] + c[(a>>8) & Oxff] +
c[(a>>16) & Oxff] + c[(a>>24) & Oxff])

for some suitable array.

What does this do?

This exercise and the few following it introduce a few fragmseof amazingly
twisted and “tricky” code. Please do not view the inclusidthese programming
techniques here as an indication that you will be examinethem or that you
are being encouraged to use such obscure constructionsiroym programs.
It is more that puzzling through these examples can refine yoderstanding of
the interactions between the Java arithmetic operatiocis as+ and%and the
ones that work on the binary representations of numbe&,aed>>. In a few
circumstances the ultra-cunning bit-bashing might save tin a really critical
part of some program and so could be really important, bubsiralways clarity
of exposition is even more important than speed. Certaisgyaf these tricks will
not make your programs any shorter, in that the bulk of thements needed to
justify and explain them will greatly exceed the length ofrmetraight-forward
code that has the same effect!

76 CHAPTER 4. BASIC USE OF JAVA

Start off witha any positive value. Execute the followitttand discuss what
value gets left ira at the end. Hint: look at the binary representatioa ¢d start
with.

a>>>1) & 03333333333;
a>>>1) & 03333333333;
a>>>3) + a) & 0707070707,
% 63;

DV N~ ~

And this. ..

a &= 0x3f;
a = (@ =~ 02020202) & 0104422010) % 255;

[In each case it will help if you look at the numbers in binfry.

Integers used to represent fractions

Considera as a value expressed in binary but now as a positive fradti@hae

in the range 0 to 1. This means that there will be an impligiaby point just to
its left. ThenOxffffffff will be just a tiny bit less than 19x80000000 will
stand for 1/2 an@x40000000 for 1/4. In terms of this representation interpret
the effect of executing the following four statements onerahe other.

a += a >>> 2;
a += a >>> 4;
a += a >>> §;
a += a >>> 16;

Division and Shifts

If a is a positive integer thaa/2 anda>>1 give the same result. What is the
relationship between their valuesifs negative. Carry on the analysis for division
by 4, 8, 16,...and the corresponding right shifts.

19Djscussions with Alan Mycroft caused this and some of theoturious examples here to
re-surface. For a collection of real programming odditreguding some of these try searching
for “Hakmem” on the World Wide Web or find “The Hacker’s Deligli5] in a library

4.3. CONTROL STRUCTURES 77

Some Exclusive-Or operations

What is the final effect oa andb of the sequence

>

>

» oo
>
nwor n
cRroT

Sieve for primes

Create an array of typeoolean and length 1000. Set all elementsttae to
start with. Then set items 0 and 1ftdse
Repeat the following two steps

1. Find the firstrue item in the array. If there are none left then exit. Print
out the index of the value you have found, and call.it

2. Set each item in the array that is at a position that is aiphelof p to be
false , forinstance as in

for (i=p; i<1000; i+=p) map[i] = false;

The numbers you have printed should be the primes up to 1000.

If you wanted to find the primes up to several million (for exste to count
them rather than to tabulate them) it would make sense to thakaaray represent
just the odd numbers not all numbers. It might also save fsogmit amounts of
space to represent the array as an arrayhonrather tharboolean and pack
information about 32 odd-numbers into eaaoh . You might note that some
programming languages can implement boolean arrays iméatvithout much
user intervention — Java does not.

4.3 Control structures

4.3.1 Exercises
Ambiguous If

Consider the sample code fragment

if (@ == 0)
if (b == 0) System.out.printin("Both 0");
else System.out.printin("Some other case");

78 CHAPTER 4. BASIC USE OF JAVA

Exotic and flowery coding styles

are usually a bad idea...
£n

Figure 4.3: Keep control structures simple!

4.3. CONTROL STRUCTURES 79

and wonder exactly what happens if one or otheaar b is non-zero. Write
sample programs that test the actual behaviour of the realctanpiler either to
discover how Java resolves the near-ambiguity in syntaxtiiiexample repre-
sents.

Periodic Forests of Stunted Trees

The forms explained here were investigated by J C P Miller wias a lecturer
here in the Computer Laboratory. Their study leads on irabaherror correcting
codes and so is perhaps less detached from the seriousdacide of computer
science than one might think.

A root-line for a forest is a periodic binary sequence. Sih¢ghard to draw
things that repeat indefinitely it is useful to display sueluences by showing
one or two cycles and than agreeing that the ends of displayldte treated as
being joined up to make a circle. Here is a sample root-line:

XXX XX XXX XD XXX

A forest grows from a root-line by the simple rule that a blragoows when and
only when exactly one cell in the row beneath it is presens (§han exclusive OR
operation). | am drawing lines upwarddollowing this rule from the root-line |
showed above yields

? ?

ZXXXXXXXXXXXXXXXXXX?
XXX X . X . X . X.X.X.X?
XXX XX XX XX X?
2Z.XXX . XXX . XXX XXX XXX .?
XXX X XX . X, . X . XX.X..7?
20X XXX XL XXX XL, XX X?

and the pattern seems to have died. In many cases after a nafmbes the orig-

inal row will re-appeat’. Triangular clearings appear on the way. The challenge
is to understand when a pattern will die and when it will répbaaw the vertical
repetition period relates to the original horizontal ona] &ow large the largest
clearings will be. Write a Java application or Applet thdtetma command-line
argument or otherwise accepts information from the usdrarfarm of a string of
Xand. characters. It should then display the generated forest.

201f you print things toSystem.out it would probably be easier to print with growth down-
wards. If you draw things to the screen in an Applet puttiregtiher way up is easy. Observe that |
have drawn question marks to show where the pattern dependista beyond the initial segment
of pattern. If you can allow for the (infinite) repetition dfe base-line you do not need these.

21you will see that | have only drawn a finite section of the irtéimiepeating base-line, and so
the forest is drawn as getting narrower as you grow it upwatasvever it should be understood
to be of infinite width and so patters can re-occur exactly.

80 CHAPTER 4. BASIC USE OF JAVA

Life

The world consists of an infinite sheet of graph paper. Each
square may at any one time be either black or white. Ev-
ery square has eight neighbours Every so often all square% 4
simultaneously follow the following rules: 5

1. A square that is black at present remains black it
has two or three black neighbours. Otherwise it turlnsl 8
white;

2. A white square becomes black if it has exactly three
black neighbours.

These rules define a behaviour which was invented by John &ponw
| (who at the time was in the Mathematics department here) dmichw
is known as Life. One starts off with a board that has a smattlyer
of black seed points and display the position as the geoasgo
by. There are many astonishingly complicated things thath@open
and people have designed starting positions that illesttegm. The
challenge here is to make the computer run the rules anchgisipé world-state.
A useful starting configuration to try has just five black salfranged as at the
head of this paragraph. It explodes and seethes for quitegaviiile before the
situation stabilises. One thing to note is that all decisianout the next generation
are expected to be taken simultaneously, so any progranuplaates the world
incrementally is liable to get wrong answers. A further peob is that the the
ideal playing surface for Life is infinite, while computeent not to be. Two
resolutions to this are usually considered. One places arutable wall of white
cells as a border around the world so that all activity is aomd within them.
The other scheme often used is to use a finite playing areaomsiders its left
hand column to be adjacent to its right most one and its togetadjacent to its
bottom row. This amounts (depending on how you think of itpkaying Life on
a torus or to ensuring that all initial positions are regkchin a periodic manner
across an infinite plane.

The easiest program for this will set typo boolean arrays. The first holds the
current generation, while the second will be filled in witle thext. My version
of a program that does this, complete with code to set up thalipattern that |
have suggested and to draw the board positions in an appidbwiis around 75
lines long. | used a 200 by 200 board and kept the outermost amd columns
permanently blank. That means that when accessing neighboan read from
them without going outside my array. Clearly the first exaediere is to reproduce
something like that.

4.3. CONTROL STRUCTURES 81

There are then three follow-up challenges. The first look& bathe optional
part of the binomial coefficient tickable exercise: can yeti@vay with just one
boolean array rather than two, possibly keeping a booleetov& store just one
row of backup information but mostly updating the world iag¢. To do so would
save around half of the memory that the simple program uses.

The second challenge ob-
serves that representing th

playing area as arrays of typ .=:= -
boolean is probably wasteful.| [l . ™ w BB

. . . HEE EE N ER | | [| |
This would be a typical appli- EE B EER Amge .
cation where packing 32 cell m
into anint and using lots of .

bitwise and, or and shift oper -
ations to deal with them woul

be common practice. Itwould g
of course be possible to achieve ™R
this by having nice abstract
procedures to reference the bit Figure 4.4: Gosper’s Glider Gun.

at position (x,y) in an array

even though the array was be-

ing represented in a packed way. But it would perhaps givespéed savings to
look for ways to exploit the fact that bitwise operations ntegers can handle 32
bits all at once and to try to use this to compute new valuesdweeral cells at the
same time.

Finally, and given that this program tends to run a littlend}o one looks at
where the time goes. Much of it will be wastage on parts of thart that are
totally white and hence where nothing is going to happentdigpeed your code
up by avoiding as much of such wasted as is reasonable.

Eight Queens

Count the number of ways of placing eight queens on a chessl Isoaso that
no pair are in the same row, column or diagonal as each otles.ig a classical
puzzle to go in an introduction to programming and there ai®df clever tricks
that can be used. It is the sort of thing that most supervisdrbave come across
before so | will not provide a fully worked through solutiorere, but | might
observe that the search might well be done by a recursivetibmthat when
called at deptim will try to place a queen on row of the chess-board.

82 CHAPTER 4. BASIC USE OF JAVA

Permutations

In Java arrays can be passed as arguments and newly creitgs @n be re-
turned as results. Write a function that accepts an arrafyiofys as its argument,
and which hands back and array whose elements are themaetags of strings
giving all possible permutations of the input. For instarideuse curly brackets
to denote arrays here one might lika" , "b" , "c" } to turn into{{"a" , "b" ,
"¢}, {"a","c" ,"b" } {"b" ,"a" ,"c" }, {"b","c" ,"a" }, {"¢" ,"a","b" },
{"c" ,"b" ,"a" }}.

As with several of the other Java exercises | might suggestthu design and
test an ML version first.

4.4 Control structures Part 2

There are two aspects of syntax that | will put off until a yael section. One if
the syntax associated with the woeldss that we have seen wrapped around
every program we have written. The other is the matter of thethat ap-
pears between or possibly within so many namesyatem.out.printin and
g.drawString . A few other bits of syntax will just not be covered in this firs
course, although you may find traces of them in the grammand&sudission of
them in textbooks — and possibly also in next year’s “Conent'Systems and
Applications” course.

But | will talk through each of the important components of yntax and
give at least one illustration of each.

4.4.1 Expression Statements

Certain sorts of Java expression can be used as a stateméirthat i necessary
is to stick a semicolon on the end of it. The cases permittedvliere evaluating
the expression might have a side-effect. Thus an assigrerpression, a function
call or a pre- or post-increment expression can be used. &gample, consider
the statement++; which just incrementg. An example such as+2+3; is not
considered valid: it would calculates the vakiand then throws it away!

4.4.2 Blocks

Several statements can be placed one after the other to nsitkgl@ large state-
ment. Braceg§ ...} are used around the statements to group them. In various
earlier languages the keyworbsgin andend were used instead of braces, but
Java prefers the version where you type in fewer key-strokg®u see a block

4.4. CONTROL STRUCTURES PART 2 83

with semicolons in the semicolons are just parts of expoesstatements and
nothing special to do with the fact that there is a block thémgain some earlier
languages differed by using semicolons between statenmeatslock rather than
as termination of expression statements. Blocks can bechasty way you want.
You may insert extra braces to stress the grouping of angcodin of statements
you feel deserves that, in much the same way that extra peseg can always
be used to emphasis the grouping within expressions. | tthiete are enough
examples of blocks throughout these notes that | do not reegide a special one
here.

4.4.3 Null statements

If you insert a stray semicolon into a Java program it (mgsdlyes not matter
much, since a semicolon alone can be interpreted as an etafgynent that does
nothing. The most striking example of the use of a null statens in something
like

if (@ > 7);
else System.out.printin("Gotcha");

where thef needs a statement beforeeatse part but no real action is needed.
If you really need such a place-holder | would suggest that the follovamtgarer
and flags your unusual intent more clearly.

if @>7) { * NOTHING /}
else System.out.printin("Gotcha");

Better yet rearrange your code to make tests happen in avyecsginse:

if (a <= 7) System.out.printin("Gotcha");

444 if

It takes a little while to get used to the fact that the coodittested byif is
written in parentheses. Some people prefer a style wherstébement after an
if is always written as a block, even if it is only a single statei so that the
range that thé& controls is made very explicit. This point of view has somesse
behind it, especially if the statement after theis more than half a line long.

The control expression used By must be of typéoolean and so equality
tests are written as ia==0 and nota=022. Using a single rather than double
equals sign is a common slip.

22\Which would be an assignment and would have tiyfie i.

84 CHAPTER 4. BASIC USE OF JAVA

445 whil e, conti nue andbr eak

A while loop executes its command repeatedly for so long as the mgped-
pression remainsue . Its syntax is very much like that @f . Within the iterated
command you can embed a statemémedk; ”, and execution of that will cause

a premature exit from the loop. The commamndtinue; 23 can be useful if the
iterated command is a long block, and it causes the loop toegaat once to its
next cycle. Bothbreak; andcontinue; are very convenient at times, but it is
often good style to avoid them when reasonably conveniemthaothe boolean
expression at the top of thehile loop represents a total statement about the cir-
cumstances in which it will loop and when it will terminateh&following sample
shows a fairly typicaWhile loop. Look back at your Discrete Mathematics notes
for explanation of why it computes a highest common factal angive clues to

a reason for carrying out the extra computations. You maylé&s to code up an
extended Euclidean algorithm as a function that callsfi{saly in ML rather than
Java) and observe that usewdfile loops does not always lead to the shortest or
most transparent code.

int a =72, b = 30;
intu=1,v=0;
while (b !'= 0)

{ int g =a/ b
intr=a-q =b;
a = b;
b =r;
intt=u-qg =*v
u=yv;
vV =t

}

/Il Here a is the HCF. What are u, v?

Note thatbreak can be used to exit other loops, and it is also used with
switch statements, which will be described soon.

446 do

Sometimes the most natural way to write a loop puts the test tefmination
condition at the end of the loop rather than at the start. Thisumstance is
supported by thdo statement, although I find it much less useful thduile . In
fact | will often express

do

230bserve that the syntax for each of these command includersiasion, The identifier men-
tioned in the full grammar is something | will not discusséner

4.4. CONTROL STRUCTURES PART 2 85

{

} Whiié (xxx);
by writing it instead as

while (true)

{

if (Ixxx) break;

}

since | think thato puts the details of what the loop is about rather too far down
the page. Anyway that also gave me a chance to include an éxarha break
statement for you! The issues of programming style heredcgide rise to a
variety of discussions. A good policy is to try rather hardtake it very clear and
obvious just when each loop you write is going to terminate, mdeed to make

it clear (in comments as necessary) why you know it will euatly terminate.

447 for

Iteration withfor has been seen in several examples. What is shown in the Java
syntax is that each of the three components within the plaeset and separated
by semicolons is optional. The most extreme case is when aon@resent:
for ;) { ... } means just the same asile (true) { ... }

In for (A;B;C) the expressior is an initializer evaluated just once at the
start of the loopB is a boolean expression and is used just aswhile statement
to determine when to terminate. Finaflyets evaluated between each cycle of the
loop, and it often increments some variable. The idiom (i=0;i<N;i++)
executes its command times counting from O tiN-1. The alternative way of
writing things isfor (i=1;i<=N;i++) . It loops the same number of times but
is maybe slightly less commonly used. Of course with the s@aogersion the
variablei starts at 1 not O: this typically makes it less suitable f& as an array
subscript because in Java subscripts start at O.

448 swtch,case anddef aul t

There are occasions when one wants to dispatch to manyahffeode fragments
based on the value of some expression. This could be achigwedting a chain
of if .. else statements, but ofteswitch provides a much neater way of
expressing things.

The construction starts witbwitch (Expressiop. The expression given
must be of typehar , byte , short orint . Note thatong is not allowed. The

86 CHAPTER 4. BASIC USE OF JAVA

switch -header is followed by a block enclosed in braces, and withigblock
there can be special switch labels. The usual sort reade“ Constant” and
control arrives just after the colon if the integer value lo¢ iswitch expression
agrees with the constant aftesise . It is often useful to specify what action
should be taken if none of the cases that have explicit cgeehappen, and for
this a label Yefault: " can be set. Case (and default) labels do not disturb the
usual sequential execution of statements, and so unlessisimgy special is done
after one case is processed control will proceed to the mextthis is usually not
what is wanted. Areak; can be used to exit from the entire switch block. Many
programmers would count it is good style to put an explicihozent in whenever
abreak is not being used, to show that its omission was deliberatenan an
accident.

If no explicit default label is given but a switch is executaguch a way that
none of the cases match it just acts as if there had been atdafal just before
its final close brace.

It is generally a good thing to usavitch whenever you have more than
three or four options to select between, in that it tends tonlbeh clearer and
easier to understand than length strings of neistestatements. In the following
rather silly example it is imagined that the user has pravithe functionshow
Observe that the case labels do not have to be in any spediat, @nd that a
single statement can be attached to several labels.

switch ((int)n)
{
case 2: show("the only even ");
/[drop through
case 3. case 5. case 7.
case 11: case 13: case 17:
show("prime\n");
break;
case 4. case 9:
case 16: show("square\n");
break;
case 8: show("cube\n™);
break;
default:show("dull or too large\n™);
/I now just drop off the end

}

4.4. CONTROL STRUCTURES PART 2 87

449 return

When a function has done all it needs to it will want to retunmresult. This is
achieved using theeturn statement. Function definitions (see later) always in-
dicate what type of result is required. They may have use#eleordvoid to
indicate that no result is needed. Such is the casemaih . Forvoid functions
one just writes feturn; ", while in all other cases the syntax igseturn Ex-
pression”.

4410 try,catchandthrow,finally

Real programming languages need to be able to implementthatiean recover
from errors and handle unusual cases tidily. The handlihgrse in Java uses
the throw statement to raise exceptions. Throw statements specifybgact
which should generalf# be of typeException 2°. The effect is that control
exits from the current block or procedure and any enclosimgspall the way
until a suitable handler is found. If no such handler is pneskee computation
is terminated. The system has a number of built-in exceptibwill generate.
For instance an attempt to divide by the integer O raises aeption of type
ArithmeticExpression . Various functions that read from files can raise ex-
ceptions to indicate that the file did not exist, the curresetrulid not have permis-
sion to read it or an attempt was made to read data beyonddts en

Handling exceptions involves prefixing a block with the woyd and adding
on the end of it one or more clauses that describe what to dousual cases.
A clause that startsatch (Argumeny is followed by another block which gets
obeyed if the system detects an exception whose type mdtateteclared for the
Argument A singletry may be followed bycatch handlers for several different
types of exception.

try
{ z =1/0; } /I raises an exception!
catch (ArithmeticException e) { ... }

After all catch clauses you can put the keywdichlly followed by another
block. The intent here is that this block will get executedneowhatever, and it
will usually be used to tidy files or data-structures thatghagram might other-
wise have left in a mess. A typical scheme to provide robuststo files would
go something like

<open the file for reading>
try

24| do not want to give the full and precise rules here!
25To be more precise of some type derived frException

88 CHAPTER 4. BASIC USE OF JAVA

{ while (true) <read-more-from-file>

}

catch (<end-of-file-exception>)

{ /Il whole file read here. Good!
<success code>

}
finally

{ [/l must tidy up even if some failure
/I other than end-of-file intruded
<close the file>

}

Later on | will give concrete examples that fill in the functioalls and so on in
this framework.

Some programmers viegatch andthrow as neat and convenient language
features to be used wherever they fit. Certainly the file-hageéxample above
makes very good use of them. Others, and | tend to fit into tsgory, would
like to see them used rather sparingly in code since they esutrin all sorts
of loops and functions terminating unexpectedly early dretdéfore undermine
attempts to make absolute statements about their endgesult

4411 assert

A statement of the formassert Expression will evaluate the expression (which
really ought not to have any side-effects. If its valudalse and if some magic
flag was supplied when the Java launcher was run then an exceptraised.
Assertions can have a second expression that can be usea tmgie details of
what you thought had gone wrong. It is proper style to incltekan at places in
your code where there is some reasonably cheap consistieack that you could
apply and when used well they are a huge aid to testing andydéeim

If you run your program normally the assertions will not beecked, and
furthermore having them in your source file will not hurt ggrhance enough to
notice. If however you run the java command with the extra feeg the extra
checks will be done. Usage such as

java -ea:.CheckThisClass SomeClass

will arrange to check just the assertions in the named class.

4.4.12 Variable declarations

Variable declarations can occur anywhere within a blockeyTare also allowed
in the first component of for statement. The scope of a variable that is declared

4.4. CONTROL STRUCTURES PART 2 89

within a block runs from the declaration onwards until thel ef the block. A
declaration made infar statement has a scope that covers the remainder of the
for statement, including the end-test and increment expmessie well as the
iterated block. In fact the scope of a declaration appeairsctade the initialiser

for that variable, but if you try to use the variable there gbould expect at least

a warning message. So things like

{ int X = x+5;

}

should not be attempted! A local consists of a type, then #meof the variable
being declared, and optionally one or more pairs of squaeleats (to denote the
declaration of an array). Any initializer follows ars™ sign, and for arrays the
initializers are written in braces so that many individualues can be given so
as to fill in the whole array. A local variable declaration denpreceded by the
wordfinal , and this marks the variable that is being declared as ohaithaot
subsequently change. A convention is that constants shiukpelt entirely in
upper case, as have the examgtesandPLAIN that have been seen so far. Here
is an example:

final double E = 2.718281828459045235;
E = 1/E; /I NOT valid because of "final"

4.4.13 Method definitions

A function definition starts with some optional qualifier wler The available
words are

public protected private static
abstract final native synchronized

and if present these can be written in any order. | will explahat they mean
later on. Next comes the type of result the function will ratuwhich is either
an type or the special worebid to indicate “no result”. Next is the name of
the function that is being declared, followed by a list ofrfiad arguments (in
parentheses). A formal argument must be given a type, andoeayeceded by
final if the body of the function will never update it. The grammiaown earlier
indicated that pairs of square brackets may be written #ieformal parameter
list, but this should not be used in any new c&tdf the execution of the function
can cause an exception to be raised and this exception isdaugit somewhere
then the fact must be mentioned by following the list of folparameters by the

281t is a concession to some earlier versions of Java whereultldze used for functions that
returned arrays.

90 CHAPTER 4. BASIC USE OF JAVA

keywordthrows and then a list of exception types. Finally there is a bloek (i
some statements within braces) that forms the body of thetifumthat is being
defined.

For the moment you wilgtill have to take the qualifiepiblic andstatic
on trust. They relate to the construction of the class thatthole file defines.

4.4.14 Exercises
Concerning3n+1

Take any numben. If it is even then halve it, while if it is odd replace it with
3n+ 1. Repeat this process to see what happens in the long runafous very
small integers you will find that you end up ina cycle14 — 2 — 1... butitis
not at first clear whether this is the ultimate fate when yaut$tom an arbitrary
integer.

Write a program that generates the sequence starting fromieteger from
1 to 1000. If the sequence ends at 1 record the number of stépskito get
there. If you have taken over 10000 steps on some particedprence then stop
and report just that value: after all maybe the sequencérgdrom that seed
goes on for ever, either by diverging to infinity or by findingyele different from
the one that includes 1. If on the way you generate an odd nutafger than
(Integer.MAX _VALUE-1)/3 you should also stop the calculation there since
otherwise you would suffer from integer overflow and subsequvork would be
nonsense. The constanteger. MAX _VALUEIs another Java built-in constant
useful in cases such as this.

Arrange that you only print anything when a new record is brokor the
length of a sequence or when you would reach integer overffoweach record-
breaker display the seed, the number of steps taken befemeached (or the fact
that an overflow occurs) and the largest value in the sequemeeerned.

Tickable Exercise 4

As you start this exercise note that ticks 1, 2, 3 and 4 areghigifairly easy. Tick
5 is going to be a somewhat larger piece of work so as soon aka@ifinished
this one you might like to look ahead and get started on it!

In ML a function calledquicksort ~ could be defined as

fun select ff [] =]
| select ff (a :: b) =
if (ff a) then a :: select ff b
else select ff b;

4.4. CONTROL STRUCTURES PART 2 91

fun quicksort [] = []
| quicksort (a :: b) =
quicksort (select (fln p => p < a) b) @
[a] @

quicksort (select (fln p => p >= a) b);

The idea is to use the first element of the input list aszat One then selects out
first all the remaining values that are less than this pivad,all the values that are
at least as large. Recursive calls sort the two sub-lists glemerated, and a final
and completely sorted list is obtained by concatenating#hnieus parts that have
been collected.

The ML version is very elegant and shows some of the impoitigats behind
the Quicksort algorithm. However it misses out several othimgs that are im-
portant in the real Quicksort method, mostly issues concgrase of memory.
In this exercise you are to implement a version of Quicksodava. You should
write a procedure with signatuie

void quickSortinner(int] v, int i, int j)

which will sort that part of the array that has subscripts fromtoj . It will

be up to you to decide if these limits are inclusive or exelesiThe procedure
should work by first seeing if the sub-array it has to work oangpty. If so it can
return without doing anything! Otherwise it should take tinst (active) element
of the array as a pivot and rearrai§jehe remaining items so that the array gets
partitioned at a poink such that the pivot has been moved to posikoall items

to the left are smaller than the pivot and all items to thetrggle at least as large
as it. It should do this re-arrangement without using moaa th few extra simple
variables: ie it is not acceptable to create a whole freshyaand copy material
via it. quickSortinner can then call itself recursively in a way suggested by
the ML code to complete the sorting process.

You should also define a function called jusickSort that takes only one
argument — the array to be sorted. Remember thatéhgth selector can tell
you how large the array is.

To show that your code works you should demonstrate thevalig tests:

1. Create an array of length 10 and show the effect of sortwdeén its initial
contents are (a) the numbers 1 to 10 starting of in the rigt¢roto begin
with, (b) 1 to 10 in exactly the opposite order to begin witt), ten num-
bers generated byextint() from the random number package (d) ten
numbers all of which are zero;

2'The signature of a function is just the specification of thesyof its arguments and result.
28Remember the National Flag exercise.

92 CHAPTER 4. BASIC USE OF JAVA

2. Measure the time taken to sort various length vectorsrafom data where
you should use lengths 16, 32, 64, ...up until the sortingtalkes several
seconds. For each test compute the quotient of the time taketthe value
Nlog(N) whereN is the number of items being sorted.

Optional part for those who are keen: Read the Java documentatiorhéor t
Array.sort(int []) method that Java 2 provides. Write code to time it and
compare the results with the code you wrote yourself. Wheasomegng times
work with arrays long enough that each test takes severaindsc Observe
that the fact that the Java libraries provide you with sgrtnethods (see also
Collections.sort) means that most Java users will never need to implement
their own Quicksort: you are doing it here as an exercise agcdurse itis good for
Computer Scientists to understand what goes on insidei@s;asince next time
around it may be their job to implement libraries for some fewguage.

As a furtheroptional extension to this exercise consider the following and
adjust your code accordingly, then repeat all your tests:

1. The ML quicksort partitions items by comparing them witle vvalue that
happened to be first in the list. In the plausible cases wheretiginal
data is already in ascending or descending order this leagessive cost.
Selecting as the “pivot” the median of the first, last and rfreddement from
the array being sorté8 does better;

2. Itis probably best to stoguickSort ~ from recursing once it gets down to
sub-arrays of length 3 or 4. The end result is thalmostsorts the array,
but a final pass of bubble-sort can finish off the job nice arsd. fés this
born out in your code?

3. The partitioning code here can be delicate! Unless yoicareful it can
escape beyond the bounds of the array, or it can get muddted aihether
the two final values in the middle of the array need exchangingpt. Sim-
ple implementations can be made safe by making all the end#ions in
your loops composite ones rather like

while (k>=i && V[K] > pivot) ...

while if we could get away with it it should be faster to go sdhmeg more
like

while (v[k] > pivot) ...

29Always supposing there are at least 3 items in the list.

4.4. CONTROL STRUCTURES PART 2 93

Investigate how well you can trim down your inner loops whiaining
code that always works! The Pa# tourse on Data Structures and Algo-
rithms and the textbook by Cormen et al[9] are where thisllelvdetailed
study really belongs!

(End of tickable exercise)

Highest Common Factors

Implement code to compute Highest Common Factors usingubbkd&an Algo-
rithm. Extend it to use the extended algorithms that at titeveifi allow you to
solve equations of the form

Au+Bv=1

Tickable Exercise 5

The work called for here will be done in sections, and it isestpd that while
working towards the tick you will be able to design, code agst £ach section
before moving on to the next. The idea involves creating &@ge of routines
that can compute with (univariate) polynomials. For thepmges of this exercise
a polynomial

(ag+aix+axx+...+ax")/b

will be represented as an instance of a the class:

class Poly
{
private String variableName;
private long [] coeffs;
private long denominator;
. constructors and methods as needed

}

wherevariableName holds X, the array callectoeffs stores the coefficients
ap to ap and thdong denominator holds the value shown dsabove. Because
Java lets you enquire as to the length of an array it is notssacg to store the
degreen explicitly. In this representation common factors shouéddancelled
out between numerator and denominator, and the higheseeegefficienta,
should never be zero. In this exercise all polynomials wdlib terms of the
same variablex, so thevariableName should always be set ta" and it will
not play much of a part in any of the calculations! Step by st@py out the
following tasks, testing what you have done as best you cgoago:

94 CHAPTER 4. BASIC USE OF JAVA

Create simple polynomials: Write functions that can create the “polynomial”
that represents just a given integer, a given fraction ardsiimple poly-
nomial “x”;

Debug-quality printing: Write code that takes a polynomial and displays its co-
efficients. For this part of the exercise it is not at all intpot that the
display format you design be tidy or that it respects linagths. So for
instance you may generate output such as

(L*x0 + 0*x"1 + -3 *x72)/2

with various unnecessary symbols in there. The object italide to see
your polynomials clearly enough that you can test and detrateswhat
comes next!

Special-case multiplication: Write code to multiply a polynomial by an integer,
to divide it by an integer, and to multiply it by. Note that in the first
two cases you will need to do calculations (involving greatmmmon di-
visors'®®) to reduce the coefficients to lowest terms. In the lattee ¢hs
result will be of one higher degree than the input and so wlidpresented
with a coefficient vector one item longer. These routinesukhaot alter
their input, but should create new polynomial data to regmethe results;

Addition and Subtraction: Take two polynomials and create another that repre-
sents their sum (or difference). This involves more fun vetisuring that
the result is over a common denominator, and subtractingpmipnomi-
als can lead to a result of lower degree if the leading termsealgas can
adding if the leading terms start off as similar but with opip®signs);

Multiply: If you have one polynominal of degrem and one of degreae then
their product is of degrem+ n. Write code that computes it;

Differentiate: in fact differentiation of a polynomial by its variable istiha@r an
easy operation (and so would be integration, which you woeled in an
optional extra to this exercise). If the polynomial consaam original terms
aX then the derivative contains jugt;)x 1

Proof of pudding part 1. LetPy=1,P; =xand from there on define a sequence
using the recurrence relationship

Ph=(2n—1)xR_1— (n—1)P,_2)/n

300therwise known as highest common factor.

4.4. CONTROL STRUCTURES PART 2 95

Using your polynomial manipulation program calculate atultate the val-
ues up to (and includindz;

Proof of pudding part 2: Now instead define
I
"7 200! dxn

(This is known as Rodrigues formula, in case you wondered tlag poly-
nomials you are computing are Legendre Polynomials)

Using this recipe compute and display values upito The two sequences
of polynomials you have computed ought to match!

(x*—1)"

Testing to destruction: extend your tables until the values computed by the two
recipies forP, are incorrect because of some internal integer overflow, and
report where your program first displays a result that isacelst incorrect;

Optional extra (a): Write code that evaluates a polynomial at an integer value of
its variable, ie ak = n. Write code that computes the (indefinite) integral of
a polynomial with respect to its variable. Combine these twvallow you
to evaluate definite integrals. Display a table showing eslof

1
|~ RO9PI(Y)

=1
fori andj running from O to 5 (say);

Optional extra (b): Lety be one of the polymonial$}) that you have just com-

puted. Evaluate
(1—x%)y" —2xy +n(n+1)y

Tabulate this for various small valuesmof

Note: the examples worked with here are Legendre polynamaad provide an
example taken from Sturm-Liouville theory. Optional ex@ashows that they are
orthogonal over the range froml to +1 and this in fact makes them useful for
producing certain sorts of good numerical approximatienfsihctions. Optional
extra (b) is showing you that these polynomials are solstioha differential
equation: many other interesting sequences of functiotishsaecurrence for-
mulae, have orthogonality propertiaad are solutions to differential equations!
Abramowitz and Stegun’s book of tables[1] is probably theiest place to sug-
gest you look to find out more.

(End of tickable exercise)

96 CHAPTER 4. BASIC USE OF JAVA

Pollard Rho integer factorisation

In previous years this was Tickable exercise 5. There aradnd few delicacies
with regard to integer overflow (which do not greatly damagesian exercise but
which could raise questions about it). You may still likerngpit!

The explanation of this exercise is quite long, and it maylo&s$ messy, but |
can assure you that the code that has to be written is toleshblt and managable
once you have sorted out what needs doing.

Randomised factorisation: Implement the following algum that (possibly)
finds a factor of an integer that it is given:

A single trial that looks for a factor dfl is performed by selecting a random
positive numbeR and computings= R %N. This is a number between 0
andN — 1. If the number is O deem this trial a failure. Next compute th
highest common factor @andN. If this is 1 then again the trial is deemed
a failure. However if the HCF is not 1 then it is a facto™find because it
is also a factor o6it must be less thaN. This counts as success!

The complete factorisation algorithm works by running a bemof trials.
If for a numberN the firsty/N trials all fail then we will pretend thal
is prime. Otherwise a factor of it has been found, and digdhis intoN
gives us its co-factor. Smaller factors of each of these ban be sought
using the same technique.

Use this procedure to try to factorise the numbérs 2 for i from 2 up-
wards, stopping when your program starts to take more thanansl or so
to run.

The Birthday problem: Suppose we have a sequence of numbefsvehich
are less thaiN, and these values are generated in some way such that each
numberx, is some fixed function ok,_1. A concrete example would be if
Xn = (X2_; — 1) %N. For mostN and forx, = 2 this sequenc® is in fact
pretty unpredictable.

Any such sequence must eventually repeat a value, and ohas it nec-
essarily continues in a loop. If consecutive values behaleamough as if
they are random up to this point then the expected lengtheo§#guence

31There is a significant delicacy here: when you compﬁLq its value can be almost as large
asNZ? even though the remaindering will rapidly bring it down toraadler range. This can lead
to integer overflow and a particularly un-wanted effect istth value you generate may end up
unexpectedly negative (whex? is outside the valid range of integers). | suggest you mostly
ignore this here (!) and at most take an absolute value torertbat the sequences you generate
consist of positive numbers. Also there is not much spedialiistarting withxg = 2 and other
randomish starting values might work just as well.

4.4. CONTROL STRUCTURES PART 2 97

before a repeat is related to the problem of how many peoplehgwe to
have in a room before you should expect to find that two of thearesa
birthday. In this case the room is on a planet in a galaxy faafay, where

the length of the year ibl, and the statistics suggest that we need around
v/N of our aliens.

For this exercise you are to imagine one algorithm that detcycle and
implement a second and much better one.

The algorithm you just have to imagine guarantees to find E@% soon
as it arises. It allocates a big array and stores valuessrathay as they are
generated. As each one is generated it also checks throeginds already
seen to see if the new value has occurred before, and if sarddble loop
detected. This method is easy to visualise but it needs ay as long as
the longest potential loop, and the search means that bifioieg a loop
at stepn it has done about? /2 comparisons with old values. This is slow.

The second method, which you should implement, records dhe\ofx;

each time reaches the next power of 2 and compares newly generated val-
ues against this one stored value. It argues that if theréogpathen even-
tually the loop will be totally traversed between consa@ipowers of 2,

and thus will be detected. Furthermore this will be at worfstcior of two
beyond the place where the first repeat happened.

Having coded the second loop-detection algorithms try ge@quences gen-
erated byx, = Xx2_; — 1 modN for variousN and verify that for a reason-
able proportion of values & andxg a loop is found after very roughlyN
steps.

Pollard Rho: This builds on the previous two parts, so plemseot start it until
you have completed them. But then re-work the loop deteciiae so that
instead of comparing each neywith a saved valug, using an equality
test compute the HCF df andx, — Xo«. Stop if this is not 1, ie if a factor
of N has been found. In the case when= X, the method has failed: you
may either give up in that case or try starting again with éedent value
for Xo.

Implement this using the Javeng type. If the numbeiN is composite

it is probable (although not guaranteed) that this will findaator of N
within around+/N trials, and will thus be able to find a factor any Java
long value quite rapidly. Of course N starts off as a prime this scheme
will never manage to find a factor of it! To test this you shoptébably
create numbers that are known to be composite by multipyiggther two

int -sized values.

98 CHAPTER 4. BASIC USE OF JAVA

Optionat The scheme above does not of itself find a complete decotposi
of an integer into prime factors — it just splits compositanners into
two. A complete fatorisation method needs to extend it witst & filter so
that numbers that are prime are not attacked, and seconthyregursive
calls that try to factor the two numbers that Pollard Rhotsmlir num-
ber into. Investigate the Jawginteger class that provides arithmetic
on long integers and which also provides a test for (probgtlienality.
Re-implement your code to usiginteger rather tharlong and to use
isProbablyPrime to avoid trying to factor when it is futile. Thus produce
code that can produce complete factorisations of reaspteigle numbers.
How many digits long a number can you factorise in say 20 sg£?n

Some of you no doubt consider yourselves to be Java expeastsinay like
to arrange that the caI(:uIatiO(ﬁf1 — 1 modN is computed exactly even
whenN is almost as large as a Jaeag can be, and that overflow does
not interfere. An easy way to do this is to use the Java libbagyinteger
support, but what | would prefer here would be code expresséckly in
terms of use ofong arithmetic.

4.5 Java classes and packages

What has been described thus far should provide a foundfmramderstanding
the small-scale structure of Java programs. If you have ngtm®d it you are
equipped to write programs that have up to (say) half a doabffunctions and
that are limited to living in a single source file. So far theéaddnat Java can work
with has been limited to the primitive typég and so on, together with arrays
of them. The time has now come to discuss the Java ide&lasa This is used
both to support the construction of user-defined data-&tres and to impose an
order on programs that are large enough that they shouledydpe spread across
several source files. A discussion of Java classes will declan explanation of
what all the © ” characters are doing in the sample programs seen so faofAll
this counts as “Object Oriented Programming”.

One of the aspects of programming language design that lnaggto be
especially important is that control of the visibility of mas. This whole issue
tends to look rather frivolous — a distraction — while youngrams are only a
page or two long but it makes a critical difference to big (pedhaps especially
collaborative) projects. There are several interlockiegsons to want to keep
name-spaces under control. One as so that a large chunk efcamdbe given
a cleanly defined interface consisting of the functionatligt it makes visible to
the outside world. Everything not so exported is then deepnisdte to the group
who maintain that body of code, and they may change inteiarés pf their design

4.5. JAVA CLASSES AND PACKAGES 99

... old-fashioned approaches
to software construction ...

Figure 4.5: Classes and Packages make Java “modern”.

100 CHAPTER 4. BASIC USE OF JAVA

with complete confidence that this can not hurt anybody else.

A second reason for keeping name-spaces well controlleal tiseg different
parts of a large program are free to re-use the most obviauesfor their func-
tions and variables, secure that this can not introducepewat®d clashes.

Related to both of these is the fact that when trying to uridedscode limits
on the visibility of names can allow you to concentrate on fhe range in the
code where something is relevant.

Java controls access to names at three levels. At the fir@stighas scope
rules that are much like those of most other programmingdaggs. If a local
variable is declared within a block that variable can onlydferenced using code
textually within that block. Java understands the idea #&he¢-declaration of a
variable in an inner block would create a different variallth the same name,
and that within the inner block the new variable would shattosvold one, as in

int func(int a)

{
{ inta=4b=25 I 2?2?72
for (int a=0; a<10; at+) b++; [/ 2?2?27
System.out.printf("%d %d%n", a, b);
}
return a;
}

and it views this as something that could be codified and thatdcomputer has
a totally logical interpretation. But that it is a potentea@use of real confusion to
human programmers so it should be prohibited! Thus the abrample will be
rejected by the Java compiler and all the interesting coergatience discussion
of exact rules about scope can be set aside. You may like &9 hotvever, the
variables do not clash in any way if their scopes do not opeda the following
is valid:

int func(int a)

{
{ int i = 4
for (int j=0; j<a; j++) i++;
System.out.printin(@a + " " + i);
}
for (int i=0; i<10; i++) a *= 2
for (int i=0; i<a; i++) a--;
return a;
}

The scopes associated with each declaratianake disjoint.
The other two aspects of Java name-space control are meresting. The
important words used here atlassandpackage

4.5. JAVA CLASSES AND PACKAGES 101

All names of Java variables and proceddfdive in some class. In general
you have to gain access to the class before you can use itsengfl\ member
of the current class can be referred to just by giving its @ahifjad name, but in
other cases you need to have access to an object of the reglass and refer to
the member using a dot * as a selector on it. This is what was happening in cases
such agy.drawLine whereg was a variable of typ&raphics anddrawLine
was a member of that class. When a class is defined the userreag@which
of its members can be referenced by other classes in thisenasmthat internal
details of the class can not even be accessed using thisfsaxplocit naming.
The wordpublic flags a component of a class that should be universally eisibl
while private marks one that should not.

Classes thus contribute in two ways to the avoidance of coorfitover names.
Firstly they mean that most references to things outsidecthieent class will
include a dot selector that indicates fairly explicitly wicantext the name is to be
taken from, and secondly they can arrange that some nam&sjatrtotally local
to the class within which they are used and oamerbe accessed from anywhere
else. It is perhaps worth reminding you at this stage of thaifijer final that
can turn a variable declaration into the definition of a canstThere are further
refinements in the control of name visibility and use thatJanovides, and the
keywordsprotected , abstract andstatic relate to some of them: these will
be discussed later on.

Classes themselves have names, and so a scheme is neededttoesthe
name-space that they live in. A collection of classes candieed in a “package”.
When classes are declared only those that have been givpatiie attributeé®
are visible outside the package. Furthermore since theisdbat any other Java
code® can access the public classes of a package there is a somawitats
linkage between package names and the filing system on yoopwer. This
linkage is mediated by a thing called the “class path” whiah st the places
that Java should search to find the compiled code if you refardlass defined
in some package. You can expect that any reasonable dedsalsdtup will have
your class path set up for you already so that you can accleskthke standard
Java libraries and so that code in the current directory eawmsbd. The full names
of classes generally contain dots. Various names startitly tve component
java are reserved for the system, and ones starting suthare for use by Sun

32From now on | will increasingly move towards the Java notatiod call these “methods”.

33we will see later that in some cases, when the name has betareteasstatic , one
can refer to the item via the name of its containing class. iBthie more general case it will be
necessary to have an instance of the class and access thedttdrat.

34Making a claspublic s a similar idea to making a member of that clpstblic , but of
course we are talking now about a different level in the $tmecof a program.

35|deally anywhere in the world!

102 CHAPTER 4. BASIC USE OF JAVA

Computers, who designed Java. The various further partadkage names are
intended to group packages into hierarchies. For instanesy @ackage whose
name starts witfava.awt is to do with the Java Abstract Window Toolkit, which
is the part of Java that provides facilities to pop up windowgour display. The
packaggava.awt.event is the sub-part of this that contains classes relating
to events — we have seen an example where these could be dautiesl user
clicking with the mouse but there are others. The Java dontatien contains a
list of all the predefined packages that are part of the Janey end then lets you
browse the complete set of classes defined in each. Eachoflessrse provides
a number of variables and methods: the number of standamahyilmethods is
huge!

Specifying full names in the package hierarchy could beceang tedious, so
Java provides a user-configurable way of setting up shadtf@ms of reference.
Recall that various sample programs we have seen began wvethiextion of
import statements

import javax.swing. *
import java.awt. *
import java.awt.event. *

This adjusted Java’s hame resolution scheme so that theMtaseEvent (say)
could be referred to by that short name. Withoutithport it would still have
been possible to write the same program but it would have beeessary to use
a fully spelt-out fava.awt.event.MouseEvent ” to name the class, and that
would involve knowing exactly which of the standard partstloé Java library
MouseEvent belongs in. The #” in the import statements show tells Java to
support short names for all the classes in the packages ndme@lso possible
to put a single class name in anport statement. This could be useful if only
one member of a package was to be used and you did not wank toongusion
with other names from that package. Some Java programnkersita view that
import with a “+” introduces risk of giving them access to classes otherdinas
the know about, and so always spell their imports out fulgspite that being a
little more verbose. Note that the syntax of Java only allteswild-card %”

to be placed right at the end of anport where it means “all the classes in this
package”.

If you issueimport statements that attach to two or more packages that define
identically named classes then Java will refuse to get naatidt just insists that
you use fully spelt-out names for the classes that couldaike be ambiguously
resolved. This is probably safer than a scheme where theg(dirgiossibly the
last?)import statement took precedence.

Java comes with around 200 and huge numbers of pre-definesksleand so
getting to know them all is a big job. You are not expected tesdceespecially

4.5. JAVA CLASSES AND PACKAGES 103

as future Java releases will add yet more, and it is probabkewhen you work
on any big Java project you may find yourself using substatiiad-party class
libraries. But it does make a lot of sense for you to have a gaedview of what
is available to you so that when relevant you can use existigljtested library
code rather than starting to write something of your won.

As well as being a way of organising the name-space all Jasse$ count
as data-types. When something’s type is a class it is usuaif¢o to the thing
as an “object”. Thought of in terms of objects, a class defamesta structure
that contains fields that are the variables defined in it apgéias also to be able
to contain definitions of functions that will access thes&l§e If the variables
were declared public then any code anywhere can access titeso @ahere do not
really have to be any (explicit) methods defined within thessl There will in
fact always be a few implicitly defined ones that are to do \lid creation and
deletion of objects.

Taking a minimal approacfi to class definition | can now set up a definition
that would let me represent binary trees where each nodeitréle contains an
integer:

/I Compare the ML version, which would be
/[datatype Tree =

/ nullTree |

1l makeTree of int *Tree * Tree;
/I or some such.

class BinaryTreeOfintegers

{
public int value;
public BinaryTreeOfintegers left;
public BinaryTreeOfintegers right;
}

Comparison with the ML version reminds us that it is impottarbe able to have
some way of telling when the left and right children of suchieetdo not really
exist. In ML that was achieved with an explicit alternativenstructor, which |
callednullTree . In Javaanyvariable which has a cla$sas its type can either
hold a proper instance of that class (ie an object) or it cdd the special value
null . This value is provided as a keyword in Java. le the waridl is hard-
wired into the Java language and not just some curious {dreedkevariable. It
also has the odd property that the same value may be usedmyitboat of class

36The class | define here would work, but it misses out on explipia lot of structuring and
security features that classes can provide, and jgsia minimal start.
370r array.

104 CHAPTER 4. BASIC USE OF JAVA

or array variable to set the variable to a state where it “c@$old an any object
at all”.
Once a class has been defined it will be useful to declareblasaising it and

create objects to go in them. Here | will create a rather stredl using the above
class definition:

BinaryTreeOfintegers al, a2, a3;

/I al, a2, a3 are all un-initialised here, and

/[Java complains if you try to compile a program
/I that relies on the values of variables that

/I might not have been given a value.

al = new BinaryTreeOfIntegers();

a2 = new BinaryTreeOfIntegers();

a3 = new BinaryTreeOfIntegers();

al.value = 1;

a2.value = 2;
a3.value = 3;
alleft = a2;
al.right = a3;

/I the next 2 lines are not needed in that
/I null is the default value given to a field
/I that would hold an object.

a2.left = a2.right null;

a3d.left = a3.right null;

Note (but do not worry about, for now) the parentheses afterctass name fol-
lowing new. And also observe how dreadfully clumsy all this is.

Note that Java provides default initialisers for instanagable in classes and
elements in arrays, but not for local variables within methorhe default values
used are zero for numeric fields, false for booleas, for characters anaull
for all references.

Anybody who is a C or C++ programmer is liable to have a quadtiaask at
this stage, but those who have mostly seen ML should seeishsireasonable.
You can also see.” being used as a selector to access the components of a class
object. The C programmers can read my footfdtdava objects are created in
much the same way as Java arrays are, uséng and there is no need to take

38In C or C++ one would distinguish rather carefully betweernracture and a pointer to the
structure. And in C terms all Java class variables hold posntHowever in Java it is not really
useful to think this way since all Java operations have besigded to prevent any explicit tricks
involving pointers. Please try to think of Java objects asaria the style of ML data. In C
you the explicit visibility of the difference between a stture that is directly at hand and one
that is referred to via a pointer leads to a distinction betwthe use of " and “-> " to access

4.5. JAVA CLASSES AND PACKAGES 105

any special action when you have finished with one. The Javdime system is
expected to tidy up memory for you. However grossly excesslyject creation
can either consume time or utterly run you out of memory. Tist fbop in the
following code does not do anything very useful with the clget creates, and it
discards them all rather rapidly. It may be a bit inefficiéftie second loop creates
a million objects and chains them all together so that norspate concerned can
be recycled. At one million you may get away with this, butdftried to do this
a few hundred times more your computer’s memory would notdbe ta keep up
with the demands of the program and an exception would bedagsreport this
fact.

for (int i=0; i<1000000; i++)
{ BinaryTreeOfintegers x =
new BinaryTreeOflntegers();
x.value = i;
/I x is implicitly discarded here

}

BinaryTreeOfintegers w;
for (int i=0; i<1000000; i++)
{ BinaryTreeOfintegers x =
new BinaryTreeOflntegers();
x.right = w; // chain on to w
w = X;

}

There are very few cases in Java where it would be considered style to
define a class that only had variables defined withit iMostly an attempt will
be made to collect almost all of the methods that work withdlass as part of
it. Very frequently the variables in the class can then beenadate , and
thepublic methods provide a clean and abstract interface to evegytfiihere
is something of a convention about providing and naming oasHo access the
data stored in an instance of a class: methods that updasbles have names
starting withset , ones that retrieve boolean values startwhile others that
retrieve information start witlyet . Here is the previous example expanded to
follow these conventions, and adjusted so that the caseaéao variables can
be illustrated:

components. Again Java does not need this and so only hasotai#on, even though in some
sense it uses dot where a C programmer would naturally reme@mfarrow.

39The most plausible good case | can think of is when all theabées are marked 4inal
so they are constants and the class is just used to encaptheatame-space within which these
constants are defined.

106 CHAPTER 4. BASIC USE OF JAVA

/[Compare the previous Java version where
/I the variables were public but there were
/[no methods.
class BinaryTreeOfBools
{

private boolean value;

private BinaryTreeOfBools left;

private BinaryTreeOfBools right;

public void setValue(boolean n) { value = n; }
public void setLeft(BinaryTreeOfBools t)

{ left = t; }

public void setRight(BinaryTreeOfBools t)

{ right = t; }

public boolean isValueTrue()

{ return (value==true); }

public BinaryTreeOfBools getLeft()
{ return left; }

public BinaryTreeOfBools getRight()
{ return right; }

For small classes this just adds way too much extra verbiagéeels silly. How-
ever for a large and compilicated class with many other nusl@aving a regular
and predictable naming can be a real help. It also provideayathat you can
give read-only access to some variables or you can checkatity ©f values
to be assigned to others, ending up with much finer-grainettaloover access
than even use of theublic andprivate qualifiers give you. The term “bean”
is sometimes used for Java classes that follow this set oferdions, and some
programming tools exploit it. Because it makes small prograo much bulkier
| will not use this style in every example in these notes, lmu gan notice that
many of the Java library classes clearly have and you mighk @bout it again
when you move on to writing large classes for yourself.

Here is a sample Java class that might be useful within otlograms and that
illustrate methods that actually do something useful. & start at code that will
enable Java code to work with complex numbers. An odd-lapkmogramming
style that it illustrates is one where to combine two complembers, sag andb,
one will call a method associated with one of them, passiagther as argument.
Thus the sum of the two values will be requested.plis(b) . Itis not possible
(in Java) to redefine or extend the basi¢ ‘Operator to make it “add” objects
from some new user-defined class, hence use of a method namesadd is

4.5. JAVA CLASSES AND PACKAGES 107

necessary hef@

public class Complex
{ private double x, v;
/I define setX, setY, getX, getY here if you want.

public Complex(double realPart, double imagPart)
{ X = realPart;

y = imagPart;
}
public double modulus()
{ return Math.sqgrt(x * X+Y *Y);
}

public Complex plus(Complex a)
{ return new Complex(x + a.x, y + a.y);

}

public Complex times(Complex a)
{ return new Complex(x *axX -y *a.y,
X*ay + y *a.x);
}
}

This would be placed in a filEomplex.java and compiled usingavac in the
usual way to make a filEomplex.class . Because | have not put inpackage
statement this class will live in a default package, and wdtber Java programs
run and they want a class call@mplex they might manage to find this one if
its class file is still in the current directory.

The Complex class illustrates one new concept. Observe the method -defini
tion that uses the name of the class as its own name and whashnad specify a
separate return type:

public Complex(double realPart, double imagPart)
{ X = realPart;
y = imagPart;

}

It has no return statement in it. A method whose name mattia¢st the class is
aconstructorand you will typically use it witmew to create fresh instances of the
class thing concerned. If you do not specify an explicit taredor function then
a default one is supplied — it has no arguments and does nadesd variables
in their default state. Itis valid to have several conswteprovided that the types

40In contrast the language C++ does allow you to extend the imganf all the operators that
are denoted by punctuation marks. Many people believe theiseness and elegance that can be
achieved that way is more then balanced out by the potentiakivere confusion.

108 CHAPTER 4. BASIC USE OF JAVA

of their arguments are different. Observe here how the nasttitat are members
of the class all have access to thizwate variables, but no code outside the class
will have.

Sometimes when referencing a variable it is useful to stredyou are talking
about one in the current instance. The keywbisl always refers to the object
from which you invoked a method, and so the constructor aeg@ltis methods
above could have been written out in a way that some wouldidenslearer:

public Complex(double x, double vy)
{ this.x = x;

thisy = vy;
}

public Complex plus(Complex a)
{ return new Complex(this.x + a.x, this.y + a.y);

}

Explicit use ofthis can be used to avoid mixups if the name of a formal pa-
rameter for a method matches the name of a variable in the.clasnsider the
following and the muddle that would arise without the uséhaf , but also note
how much nicer it is to select names that avoid any hint of sitla

public Complex plus(Complex x)
{ return new Complex(this.x + x.x, this.y + Xx.y);

}

4.5.1 Exercises
Complete theConpl ex class

The class as shown here does not support division, and doé=mwve an equal-
ity test. If you define a method calladString() in it then will be called to
“print” the number when you uset” to concatenate it with a string. Finish off
the Complex class adding in these and whatever other facilities youvidebe
generally useful.

Polar Complex Numbers

The Complex represents complex numbers in Cartesian form, ig-asy. But
the internal variableg andy that it uses are botprivate so nobody outside
the class can tell this! An alternative representation ehglex numbers would
store a number as a pdir 6) where the complex value concerned had modulus
and argumen®. In other words one would have= re’®. At the cost of comput-
ing a few arc-tangents and the like it is possible to creae\aarkedcomplex

4.5. JAVA CLASSES AND PACKAGES 109

class that has exactly the same external behaviour as t@alrone but which

stores internal values in polar form. The constructor fiomcand addition become
messier, multiplication becomes easier and the modulugitmbecomes utterly
trivial. Implement and test the polar version of the class.

Wolves and Caribou

On a certain island there live some wolves and some carilvoyedrn there are
obviouslyw, wolves andc, caribou. What happens the next year depends...

e Wolves hunt, and the total number of dinners they get is ptapwal to
wWnkn. The number of baby wolves is automatically proportiondghssnum-
ber of dinners their (potential) parents are able to eat awer above the
amount needed to keep the parents active. The wolf minimch ifgake
and reproductive capability may be modelled as

Wnt1 = Wn + kiwn(Ch — k2)

e In each year the stock of caribou would increase by a fd¢tovere it not
for the depredations of the wolves, since each dinner forldigzone less
member of the herd. Thus

Cn+1 = kaCn — kiwnCn

e Baby wolves eat, hunt and reproduce as from yearl, and there are no
losses of caribou other than as described above. In patisa do not have
to worry about over-grazing etc.

At the beginning of time the island is stocked with a herd d@@0 caribou,
and a medium-sized pack of ravening wolves. Over a numbeeafsyvarious
things could happen. Either wolves or caribou or both coigdodit, or the pop-
ulations could stabilise. For some values of the constardsratial wolf popula-
tion various of these do indeed occur. For instance if attde there are twice as
many wolves as caribou the next year there will only be wolgégone should
adjust the equations given so that negative populationsigstd into zero ones),
and the year after that the wolves all expire of hunger.

In fact for many configurations the populations do not stedjlbut they do of-
ten get locked into stable cycles that last several yearns. ifirtprobable situation
has been observed by real naturalists not only in the sttonakescribed here but
with regard to disease spread (mumps and children say) Aedmdtural systems.
Write java code to investigate.

110 CHAPTER 4. BASIC USE OF JAVA

Packages ang ar files

Make a sub-directory called (sagy251 and put some Java source files there. Put
package ex251 atthe top of the files. Now compile the code, eg sayavgc
ex251/ *.java . By unless you explicitly set aelasspathJava looks for classes
that are in a given package by using the package name as #atided a chain of
sub-directories down from the current directory. So nowugeseveral different
packages and create files that illustrate the uspratcted and others that
fail to compile because you have not made allowance forlsleiteross-package
visibility. Now look up aboutar files and prove to yourself that you can take
a complete Java program (consisting of many classes) arsbldate it into a
single (jar) file that can then let anybody else run it in a $argnd convenient
way.

These activities are not essential for any of the examplgraros that you
have to write for this year’s Java course, but starting t@stigate and practise
now will put you in a good position for some of next year’s woakd particularly
the Group Project. | am also aware that this exercise is gslon to read ahead
in these notes...

Tickable Exercise 6

The following definition of gpaint method uses the rudimentatgmplex class
as shown earlier in this section. The Mandelbrot set can hbavmr
by considering the sequence defined
by z0 = 0 andz,;1 = Z + ¢ where
both z and ¢ are complex numbers, 2= :

For most values of eventually val-
ues ofz, become large. If one count
and finds the smallest such that
|zo| > K for some suitableK then
thatn will depend on the value of
that was used. The well-known pic
tures arise by using different colour
to display the values afi associated
with values ofc = x+iy asx and
y vary. Because drawing this in-
volves a significant calculation for
every single point within the ap-
plet's window it can be painfully
time-consuming. To arrange that the™
screen looks more interesting this

4.5. JAVA CLASSES AND PACKAGES 111

code arranges to draw a crude blocky version first and thedugtty refine it
into the correct high-resolution image. You may have seemes@eb browsers do
similar things to give better apparent responsiveness \daghing and displaying
pictures from web sites! The code draws a part of the Mandek®t centred
around (idX, midY) and with widthrange , these referring to the values of the
constantc in the iteration. If the value ot has not grown large withiIMIT
steps it is supposed that it never will. The code illustrates of theColor class.
Colours are sometimes specified in terms of the amounts af Rad and Green
that go to make them up. Printers will tend to think in term<ghin, Magenta
and Yellow*! while in yet other circumstances one uses Hue (running tiirdloe
colours of the rainbow), Saturation (eg white through pinggo a full-blooded
rich red) and Brightness (all colours fading to black at Zemghtness, just as all
wash out to white (or grey) at zero saturation).

Insert this program in a suitable framework and investigditer areas of the
display by altering the relevant variables. You should barathat if you increase
the screen size AdMIT the code can becomery time-consuming. Indeed it
might very well be sensible while testing to decrease thesfiresolution used to
say 8 rather than 1. And because faint method computes the whole picture
each time it is called any disturbance of the screen is lisdpgovoke a complete
re-calculation (at great cost). | find that the appletviedees not exit until the
end of a call tgpaint() and so even quitting from it can involve an amazingly
long delay!

public void paint(Graphics Q)
{ /'l Paint first in crude 16 *16 blocks and then

/I in finer and finer tiles. This is so that

/I SOMETHING appears on the screen rather rapidly.

for (int resolution=16; resolution>=1; resolution/=2)

{ double midX = -0.25, midY = 0.85; // Adjust these
double range = 0.004; /I Adjust this
int screenSize = 400; /I Match .html
int s2 = screenSize/2;
for (int y=0; y<screenSize; y+=resolution)
for (int x=0; x<screenSize; x+=resolution)

{ int n = 0;
int LIMIT = 250; /[Maybe adjust this?
Complex z = new Complex(0.0, 0.0);
Complex ¢ =

new Complex((range =*(x-s2))/s2 + midX,
(range *(y-s2))/s2 + midY);
/I Important loop follows.

41Printing inks favour analysis in terms of subtractive cotorather than additive ones.

112 CHAPTER 4. BASIC USE OF JAVA

while (n++ < LIMIT && z.modulus() < 4.0)
{ z = ztimes(z); I/l z =z * Z;
z = z.plus(c); Il'z =2z + c

/[Draw in black if count overflowed

if (n >= LIMIT) g.setColor(Color.black);

/I ... otherwise select a colo(u)r based on

/I the Hue/Saturation/Brightness colour model.

/I This gives me a nice rainbow effect. If

/I your display only supports 256 (or fewer)

/I colours it will not be so good.

else g.setColor(Color.getHSBColor(

/I cycle HUE as n goes from 0 to 64
(float)(n % 64)/64.0f,

/I vary saturation from 0.2 to 1.0 as n varies
(float)(0.6+0.4 *

Math.cos((double)n/40.0)),

/I leave brightness at 1.0
1.0f));

/I screen coords point y downwards, so flip to

/[agree with norman human conventions.

g.fillRect(x, screenSize-y, /I posn

resolution, resolution); // size

Complete the program based on the above and test it.

Next checkGraphics.getClipBounds andRectangle.contains in the
Java documentation. Adjust the program so that wlam is called it first finds
the clip rectangle associated with the re-paint operafidirs is a rectangle on the
screen such that only points within this area need to be ggladied. Arrange
that the loop orx andy that at present re-computes the colour for every point on
the whole screen just loops round doing nothing for pointside the clipping
rectangle and so only does the expensive operations fotgooiside it. Try the
new version, and in particular move other windows to obseuorall parts of it and
then move them away so you can see the effect of the partérang-operations.

Note that the above program will display best if your screeset up to support
lots of colours. On a display with either 16-bit colour (655&lours) or true-
colour (24 or 32 bit) and at high resolution the effect islfagtunning. If only
256 colours are supported the shapes will remain nice anglyoyt the delicate
shading will be lost. While preparing these notes | have stdplithe program

4.5. JAVA CLASSES AND PACKAGES 113

to display a 1200 by 1200 image at best-possible resolutid®ibit colour, and
although it takes utterly ages for the screen to refresinkthiis almost worth it!
The program that | give has a bug that you can see if you watdfiudly when
it re-paints at the various different resolutions. It retato the fact that in Java the
x-co-ordinate increases from left to right (as expected)tbe y-co-ordinate is
zero at the top of the screen and largest at the bottom. fgemd correct the
behaviour that | count as a defect.
Optional: Add aBufferedimage to make the re-painting of the screen cleaner. |
might like to be able to reset the view to some standard orreeatlick of a mouse,
and to be able to drag with the mouse to select a sub-part otiinent picture for
zooming in on. Those who are feeling keen can investigatetpessibilities.
There is also quite some incentive to find ways of speedingawidg of the
images here!

(End of tickable exercise)

Fractions

Create a class similar to tl@mmplex one but that implements rational numbers,
is fractions. You will probably want to make the internal regentation a pair of
long values rather than justt , and keep everything reduced to lowest terms by
cancelling out highest common factors.

Series fortan(x)

It may be well known that

1 2 17 62
t =X+ X+ x4+ X+ xO
anx) x+3 +15x +315x +2835X +

but fewer people are happy about being able to predict wieahéxt few coef-
ficients in the expansion are. However if we have a computegnam able to
compute with rational numbers it is in fact easy to generat@many more coeffi-
cients as are desired. The coefficients satisfy a recurfenceila

to = O
t1 = 1
1 n—1

th = - tith—i—
n nigjlnll

Use this to confirm the series as | have tabulated it and dighanext few
terms. The result here may be derived from the fact that thieadive of tan(x)
is 1+ tar?(x), and is also related to (but rather harder than!) the disoussf
“generating functions” in the probability course.

114 CHAPTER 4. BASIC USE OF JAVA

Complex elementary functions

Perhaps you already did this when making your completemeisi the complex
numbers class. ..

It might be useful to be able to construct complex numbeheelty specifying
real and imaginary parts or by giving argument and moddluzailing any better
scheme you could distinguish between the two constructoaslling declarations

public static final int CARTESIAN
public static final int POLAR

0;
1;

in the Complex class and then having the constructor taketaa argument that
specifes which option is being used. It would then also ma&kese to provide
data access methods that make it equally easy to accessrtii®enin polar or
cartesian interpretation.

If that is done it becomes reasonably easy to support comm@esions of
several of the elementary functions. Observe the idestitie

Vi = id”?

log(re®) = log(r)+i6

expix+iy) = exp(x)eY
sin(zy = (exp(iz) —exp(—iz))/2i
cojz) = (exp(iz)+exp(—iz))/2

o)

p’ = expqlog(p))

The expressions for sin and cos can be inverted to find waysithgithe inverse
trigonometric functions as messy complex logarithms. Amaddy be seen that the
neatest way of using these formulae to implement compléxegaversions of the
elementary functions really does benefit from being abldipovery comfortably
between the cartesian and polar views of the values. Impieinai|.

| should observe carefully that the code you have just writddiable to be a
very long way from the last word in elementary function libes, for the follow-
ing reasons, which are given in descending order of impogan

1. Several of the complex-valued elementary functions hasach-cuts. For
instance the square root function has a principal value isiciscontinu-
ous as you cross the negative real axis, and the variousateg functions
will also have cuts. Your code can not automatically be agslta imple-
ment these cuts in the way that will be considered proper pg®s in the
field. Probably the most readily accessible description biictv cuts are
desirable is ifCommon Lisp, the Languadpy Guy Steele[21];

42|e by giving the polar version.

4.6. INHERITANCE 115

2. Your implementation will probably suffer from arithmetoverflow (and
hence give back answers that are infinities or NaNs) sulslignbefore
the desired result would overflow. For instance the idemgiten for cos
computes an intermediate result that is twice as big as takdimswer, and
hence can suffer in this way thereby returning incorrectvans;

3. In many cases the naive use of the formula given can leadrious loss
of numerical accuracy when values of similar magnitude abéracted one
from the other. For instance this problem would arise in thiewdation of
sin(z) for znear zero;

4. Direct use of these formulae will not even give an efficgattof recipes for
the desired functions!

however the numerical analysis to address these problecestanly beyond the
scope of this course.

Binary Trees

Start from theBinaryTreeOfintegers class sketched above and extend it so
that as well as defining variables in the class it provided afsmethods to work
with them. The methods you introduce should arrange thabargry tree built
is always structured so that all integers stored in the ldfttsee that hangs off a
node are smaller than the integer in the node itself, whilenedgers in the right
tree are greater (or equal). You should provide a construbsd creates such
a tree out of all the integers in an integer array, and andtimestion that first
counts the size of a tree, then allocates an array that bidgalty copies all the
integers back into the array so that they end up in ascenddey.d would fairly
strongly suggest that you design and implement the key pétitss in ML before
you move on to the Java version. Your code is an implememtatidree-sort:
you should compare it with quicksort for clarity, amount ofde that has to be
written, robustness (ie are there any truly bad sorts oftiitpzan be given) and
performance.

4.6 Inheritance

There is one more major feature of the Java class mechanisprovides yet
further refined control over name visibility and it can oftema huge help when
organising the structure of large projects. It is callgteritanceand the idea of it
is to allow the user to define new classes as variants onmxishes. When this
happens the new class starts off with all the components atbads of the one

116 CHAPTER 4. BASIC USE OF JAVA

upon which it is based, and it counts as having defined a quéa-tycan however
define extra variables and/or methods and implement moi@adised versions
of some of the methods already present in its parent class.iStvhat has been
happening every time we have used the wat@nds , and so for instance every
applet we have written has defined a new class extendingitaeyiclas#\pplet .
This library class implements all the major functionality fjetting a window to
appear, and to get the visual effects we wanted all that wedatewas to provide
our sub-class with its own version opaint method.

There seem to be three interlocking reasons why inheritanegortant when
large programs are to be written:

1. Class libraries can be provided in forms that implemdrthal generic be-
haviour of really quite complicated programs, but by makangew program
that inherits from such a class and that overrides some ofigtfiods lots
of flexibility is left for the programmer to create a systerattdoes exactly
what they want. Prior to languages that supported inhex@dnere was a
severe conflict between having libraries that containegel@nough com-
ponents to give large time-savings and those that were allegtnough to
be realistically useful;

2. Class inheritance serves a linguistic purpose in Jayauftart from a sin-
gle base class it is possible to derive several other cldss®gt. All these
count as specialisations of the original one, and a variedgpable of hold-
ing a member of the base class can therefore automaticéytoanstances
of any of the derived ones. This is how Java can support datatgres that
can have several variants. Furthermore the name-visibilies in Java can
use the way in which inheritance groups classes into fastitidurther re-
fine access to class members.

3. It often becomes possible to implement a set of basic etafsst, and test
them, and then leave those alone (and hence stable) whikendgenew
classes that add extra functionality. This both providesspectable strat-
egy for organising system development, and means thatihaegnificant
chance that the basic classes that are developed will balusdghe next
project;

| will try to illustrate these three points in turn.

4.6.1 Inheritance and the standard libraries

The richest and most valuable place where this happens ilibtiagies relate to
applications that pop up windows. Examples given beforevalger code being

4.6. INHERITANCE 117

derived from a class calleéipplet . One of the things that has been seen about
Applet and hence any class derived fromitis that the meplaatt has a special
status, in that it is invoked whenever the screen needs teftesshed. The fact that
by deriving a new class you get an opportunity to write youn@aint method
and that in your new class your own definition takes the pld@standard one
(which probably does nothing much!) is obviously criticilyou could not alter
the re-painting behaviour of an applet the whole structuwald/lose its point. If
you look at the documentation for tigplet class you will find that it is listed
as having around a couple of dozen associated methods. Edwdse will define
a default behaviour for an Applet and each can be repfddedh derived class if
some special behaviour is needed. However these two-dozrods are very far
from being the whole story. For instangaint is not listed among them. This is

becausepplet is descended frorjava.awt.Panel which in turn is derived
from java.awt.Container which itself inherits fronjava.awt.Component
andjava.lang.Object . Each of these super-classes define (often many) meth-

ods of their own. The lower-down ones sometimes replace aofewe higher

level methods with more specialised versions, but they t@ed to provide lots
of new methods of their own. Thus in this case paint method is defined as
an aspect of €ontainer , and is only part oApplet via inheritance. The end
effect is that something that is as easy to get started winasplet in fact

comes complete with perhaps hundreds of bits of pre-defiedvour almost
any of which can be adjusted by the simple expedient of claigisome method.

Sometimes of course this arrangement whereby libraryifiasilare structured
into hierarchies of classes means that the very simplexy tne might want to do
involves explicit construction of objects from varioussdas in a way that looks
less smooth. To print simple text as the output from a simpla ktand-alone
application one can invok8ystem.out.printin . The long name is because
System is a class (its full name igva.lang.System), andout is then a vari-
able in that class. The fieldut has as its typérintStream and the class
PrintStream provides a method callegtintin . Itis possible to reference the
variableout just by giving its class (without having to have a variableostype
is that class) because it was defined as bstatz . The recipe as typed in by
the programmer is not too bulky but the full explanation ofywitworks is a bit
clumsy. “Simple” inputis if anything worse. There is a statariableSystem.in
which is of typelnputStream , and for an application to accept input from the
keyboard one needs to use it. However the digsgStream only provides the
most basic reading functions, and various derived classeaeeded if flexible,
efficient and convenient reading is to occur. A suggestetbpaob for a single

43The fuller story is that any member of a class that has beekeadasfinal can not be
redefined in a derived class. The usdinfl thus provides the designer of a class with a way
to guarantee some aspects of class behaviour even in delasses.

118 CHAPTER 4. BASIC USE OF JAVA

integer from the standard input ends up something like

BufferedReader in =
new BufferedReader(
new InputStreamReader(System.in),

1);
int n;
try
{ n = Integer.parselnt(in.readLine());
}
catch (IOException e)
{n=-11}
catch (NumberFormatException e)
{n=201}
System.out.printin("l got: " + n + "...");

This creates amputStreamReader out of System.in , and then builds from
that aBufferedReader ~ where here | have indicated that a buffer size of 1 should
be used. For reading directly from the keyboard a ridicuipemall buffer size
means that the program gets characters as soon as they idablavdf the “, 1~
was omitted thaBufferedReader would use some default buffer size and you
would have to have keyed in that many characters before imgygiver happened!
The BufferedReader class then provides @adLine method, and the string
that it returns can be interpreted as an integer by the stadtbodparseint in
theinteger class. BotheadlLine andparselnt may raise exceptions if any-
thing goes wrong, and so a proper program should be prepareandle these.
The above tends to look very heavy-handed because “reatjr@ns will gen-
erally want to decode much more complicated input than hustsingle number
shown above, and will really need to put in tbetch clauses so that they can
respond cleanly to erroneous input. Even the bufferingrobrg really quite im-
portant — direct keyboard input may need to be unbufferechab interaction
works well while input of large amounts of input from a file miag muchfaster

if buffering is used.

Java in fact provides another rather larger class BudfieredReader ~ which
may be useful in many applications that want to accept foes¥at input. This is
the clasgava.io.StreamTokenizer 44 which can help you read in a mixture
of numbers and words. Here is a demonstration:

import java.io. *

44pctually | think thatStreamTokenizer is very useful while you are getting started, but
although it can be customised quite substantially it is rexilflle enough for most really serious
uses. In the Compiler Construction course in Parydu may learn about a package called JLex
that is harder to set up but which provides enormously moveepand flexibility.

4.6. INHERITANCE 119

StreamTokenizer in =
new StreamTokenizer(
new BufferedReader(
new InputStreamReader(System.in),
1));

in.eollsSignificant(true); // see newlines

in.ordinaryChar(’/); /I °F is not special
in.slashSlashComments(true); // ’// for comment
try

{ int type;

/[The next line loops reading tokens until end of file.
while ((type = in.nextToken()) !=
StreamTokenizer. TT_EOF)
{ switch (type)
{
/I There are a number of predefined "token types" in
/I StreamTokenizer, so | process each of them.
case StreamTokenizer. TT_WORD:
System.out.printin("word " + in.sval);
/I If the user says "quit" then do so. NB "break" only
/I exits the switch statement here.
if (in.sval.equalsignoreCase("quit"))
break;
continue;
/I in.sval and in.nval get set when string or numeric
/I tokens are parsed and contain the value.
case StreamTokenizer. TT_NUMBER:
System.out.printin(*number
continue;
/I the method lineno() tells us which line we are on.
case StreamTokenizer. TT_EOL:
System.out.printin("start of line " +
in.lineno());

+ in.nval);

continue;
/I quotes and doublequotes contain strings.
case '\": [/l drop through
case \":
System.out.printin("string
continue;
/I Other characters end up here. Eg +, - etc.
default:

+ in.sval);

120 CHAPTER 4. BASIC USE OF JAVA

System.out.printin("sym " + (char)type);
continue;

}
break; // here if "quit" typed in

}

}
catch (IOException e)

{ System.out.printin("lIO exception");

}

The level of complexity here seems much more reasonablelriiiie@ code that
sets up aStreamTokenizer is not very different from that which set up the
simpler buffered stream before, and is clearly a small ceadrto pay to be able
to have Java split your input up into words and numbers. StleamTokenizer
provides methods that allow you to customise its behaviotinagt it can recognise
one of several possible styles of comments and accept \gastoung delimiters.
The calls

in.eolIsSignificant(true); /[see newlines
in.ordinaryChar(’/"; /I °F is not special
in.slashSlashComments(true); // '/’ for comment

illustrate a little of this. The first call tells the tokenizthat newlines should
be returned to the caller. By default they are counted asespéce and so not
passed back. The second call makes a sihgig#o an ordinary character, where
by default it introduces a comment if followed by a secomat ax. The final line
enables recognition of comments that are started hyAs always you need to
browse the full documentation to discover what all the otgions are!

Two lessons emerge. The first is that the bigger and more poweasses
in the Java libraries may really save you time if you find outvito use them,
while direct use of very low level facilities may end up fegjipretty clumsy.
The other is that these high level facilities are often vesyifile, but if you need
some feature that they do not support you may have to drop @olewel. For
instanceStreamTokenizer does not know how to handle numbers expressed in
hexadecimal or octal, and it always reads numbers in tigpele which is not
good enough if what you needed walsag value.

4.6.2 Name-spaces and classes

When you derive one class from another it is sometimes d#sirbthe methods
and fields of the base class are visible in the derived onenlmiber cases it may
not be. This aspect of name visibility needs to be considerednjunction with
the consequences of classes falling into different packatgra confronts all this
by defining four levels of name visibility within classes:

4.6. INHERITANCE 121

... 0 magic wand
can often help!

Figure 4.6: Classes and inheritance are a sort of magic.

122 CHAPTER 4. BASIC USE OF JAVA

private: is the most restrictive one. A method or variable that has e
clared asprivate can be referenced from within the class in which it is
defined, but not from anywhere else. In particular code that enother
class can not see it regardless of whether the other clasghs same pack-
age as or was derived from the original one;

package:relaxes things so that code in any class that is in the samkagacan
reference a value. This is the default arrangement, andlisated bynot
using any of the other visibility qualifiers. Note that the/w®rd package
is used at the head of a file to specify which package that aldseeside
in, and it is not valid in method or variable declarations;

protected: When a name is declared petected it becomes visible in
derived classes even if they are in other packages. Becawisgy dhis first
course you will probably not be creating new packages ydiutlsis case
will mostly be relevantwhere alibrary class has sgmutected members
and you derive a few class from it. Your class will probablyithe default
package but despite that you will be able to access the manhaived,;

public: is the final case, and it makes names generally availablediega of
packages and inheritance.

It seems tidy to document the other possible qualifiers fofastations here,
even though they are not concerned with name visibility. ebat their conse-
guences are rather mixed, and since this is a first Java cibiss®t essential to
be fully comfortable with them all.

final: When a variable is declardohal nobody will be allowed to assign
a new value to it. When a methodfisal then it can not be overridden
in any derived class. In both cases the effect is to make tfeititen in its
visible form the one that can be relied upon everywhere else;

static: The default situation for items defined within classes is$ tha items
only come into existence when an object of the class-typeeiated. This
makes obvious sense for data fields. For instance after tiardgon

class IntList
{ public int head;
public IntList tail;

}

it is clear that the only context in which the head and taibisstan be used
is in association with an object of typetList asin

4.6. INHERITANCE 123

int sum(IntList Xx)
{ int r = 0;
while (x != null)
{ r += Xx.head;
X = X.tail;
}
}

For consistency the same access rule is then applied to nnéormions
(ie methods) in a class. If however an item in a class has beelaregd
static itis as if a single globally allocated instance of the clastsgre-
ated automatically, and the field can then be referred tdivelto just the
class name. For instance (a nonsense code fragment!)

class MyConsts
{ static final double ZETA2 =
1.6449340668482264365;
static final double CATALAN =
0.91596559417721901505;
static int square(int Xx)
{ return x *x; }

}

double a = MyConsts.CATALAN -
Myconsts.ZETA2 +
(double)MyConsts.square(1729);

abstract: Sometimes it is useful to define a base class not becausesifisiu
as such, but because the various other classes that getai&owm it might
be. Consider the ML declaration

datatype option = A of int | B of double;

One way of producing a Java equivalent would be to start bynihefia
rather vacuous class calléption and then deriving from it two new
classes one to correspond to each of the two cases in the Mlower

abstract class Option

{
class OptionA extends Option
{ int a;

}

124 CHAPTER 4. BASIC USE OF JAVA

class OptionB extends Option
{ double d;

}

The base class here only exists to be extended, and it wosithbi create
an object that was of that tyfe The qualifierabstract ~ prevents anybody
from creating objects of the base class. It marks thingstiust be inherited
from before meaningful use can be made of them. In cases sutisat is
often useful to discriminate as to which derived class ai@adr instance
belongs to. Thenstanceof operator can be used to do this. Again my
illustrative code is artificial:

Option x = new OptionA(); // or maybe OptionB?

if (x instanceof OptionB) ...
else ...

It is very often neater and easier to define different overgs of a com-
mon (abstract) method in the two derived classes so thatdheat be-
haviour is achieved for each. If that is ddf¢heif statement and use of
instanceof could be replaced by a simple call to the method concerned. It
is of course not essential to make a base class in such exaabpteact

but doing so prevents any possible embarrassment if soneearedted an
instance of it in its raw and useless form, so it is generailystdered to be
good style.

native: If a method is defined asative then Java somehow expects there to
be an implementation of it that was coded in some language ttan Java.
This can be used by system builders to interface Java coda tinlewer
level and perhaps machine-specific system calls, but wilbeadiscussed
further in these notes.

synchronized: related to Java code where several threads of computatipn ma
be active at once. Although the very basic aspects of thisbeicovered
in this course a proper treatment needs to wait until you hadea Parts
course on concurrent systems.

interface: The keywordnterface is not a modifier for use in class defini-
tions but a keyword whose use is very much like thatiads . Aninterface

450f course objects of typ®ptionA andOptionB are also of typdption , so what |
mean is it would be silly to goew Option()

46A similar stylistic issue arises in ML where user of pattenatching in function definitions
can often reduce the number of expli€it statements that have to be written.

4.6. INHERITANCE 125

can be declared much as an abstract class is. Classes cafinieel te ex-
tend other classes, but a restriction that Java applieaisathew class can
only be an extension of a single parent class. Interfacesqe@n approx-
imation to being able to extend several parent classes — aclems can
specify that itimplements one or more interfaces. When a class indicates
that it will implement an interface it has to contain (cortejedefinitions of

all the (abstract) methods that the interface specifies.

At (very) long last we have covered all the magic that aroséhainitial
Hello.java program and can see what each keyword present there was indi-
cating.

4.6.3 Program development with classes

In Java, as in other Object Oriented languages, the wholeesbba large pro-
gram needs to be designed in terms of terms of the packagedamses that will
be built. It is worth putting particularly careful thoughtto the way in which
hierarchies of classes will be derived from one anothernhaifitance.

There are two application areas that were pioneers innitiag the benefits
and strengths of object oriented programming (which is whiatis). It can thus
be worthwhile considering examples of these as some of tHesaones you
work with when getting used to the idiom. The first applicatarea was that
of simulatiorf’, while the other was graphics and especially the displayeof g
metric figures in windows. The following example, which ikea fromJava in
a Nutshelland shows how use of several classes rather than just onelloay a
the programmer to keep distinct aspects of their task sepaBait doing this the
size of unit that has to be debugged is reduced, and the gagsib re-using
parts of the code later on in another project is increase@. ekample supposes
that a graphical design and modelling package is beingemittVithin it it will
keep data-structures that represent circles, squareslaadsthapes. For much of
its time it will work on these busily computing their aredseit circumferences,
whether they intersect and similar properties. It may aljasd their sizes and
positions. As well as performing all these calculationsdbenplete package will
also have a user interface that can draw the objects. Théreenoptions to con-
trol the colour of each individual circle (and so on) as wslt@determine whether
the items are drawn just as outline figures or as filled-in ekap

Without use of inheritance and thus without serious usee#va class mech-
anism the code would probably have to consist of a single ctay calle&shape,
which would contain a master variable indicating what sbst@pe was involved,

4"Indeed the way that object-oriented C++ developed fromitheler language C was initially
specifically for use in this area.

126 CHAPTER 4. BASIC USE OF JAVA

Big programs need planning
like military campaigns.

Figure 4.7: See also the “Software Engineering” courses.

4.6. INHERITANCE 127

then other variables that could be used to specify the exaetnpeters of that
shape (eg its radius if it was a circle). The method functguch asarea would
need to dispatch on the type of the figure and do differentutations in each
case. Further code would arrange to be able to draw pictoreptesent the data.
All the geometric and graphical parts of the code would bénéndame class and
thus the same source file — something which would not causel&an tiny cases
but would become clumsy for a fully elaborated version.

With inheritance it would be natural to start with a basicesléagain | will call
it Shape) which will probably beabstract . Its purpose is to allow the program
to declare variable of typ8hape and then store circles, squares, stars and all
other possible sorts of shape in that single sort of varialike methods declared
for Shape can be given as just declarations, rather than as full diefisit

public abstract class Shape

{

public abstract double area();
public abstract double circumference();

}

which makes these methods available in any object of aape but expects
that concrete variants on the class will provide the realémgntations.
For each sub-class &hape a new class could then be derived:

class Circle extends Shape

{
protected double radius;
public Circle() { radius = 1.0; }
public area() { return Math.PI *radius =*radius; }
public circumference()
{ return 2.0 *Maths.Pl =+radius; }
public double getRadius() { return radius; }
}

Note that this can introduce new public members that arealetant for general
Shape quantities, but which do make sense when you know you h&iela

Next aninterface would be set up, defining the methods relevant for draw-
ing*® things on the screen:

48Java is an American language, and so the character of beihgviRete or Blue isColor
rather tharColour . Given that the library uses this spelling it seems best tlsw nationalistic
pride and adopt it elsewhere in the code. ..

128 CHAPTER 4. BASIC USE OF JAVA

public interface Drawable

{
public void setColor(Color c);
public void draw(Graphics g);
I/l etc etc.

}

Now it is reasonable to derive a new class for a version of sadhof shape but
in a form that supports the drawing operations:

class DrawableCircle extends Circle
implements Drawable

{
Color c;
public void setColor(Color c)
{ this.c = ¢c; }
public void draw(Graphics Q)
{ ... Il whatever, maybe

g.drawOval(...);

}

/l etc etc.

}

Itis now possible to use the drawing methods as well as theerdanipulation
methods in one of these ultimate data-structures.

Often when producing a derived class and overriding a mettn@tewly ex-
tended method needs to use the corresponding operationtéparent class. For
instance if a class defines a method that is used to initiaBseariables then a
derived class may add extra variables that need initialeglao, but it would be
clumsy to insist that it also had to repeat all the code topstta variables in the
base class. And indeed if some of those weieate or protected it might
not be able to. The solution is hidden in the keywsuoger . This is a bit like
this in that it always refers to the current object, but it viewasta member of
the immediate parent class. Thus code like

class SubClass extends MyClass
{ private int variable;
public void init()
{ super.init(); // init as a MyClass
variable = -1; /I finish off as SubClass

}
}

and the wordsuper is only of relevance when extending a class and overriding
methods. In the case of some library classes and methodsthengntation will

4.7. GENERICS 129

explain to you that you must use it, see for instance the nagthiat in the class
Container

4.7 Generics

The material here is now for Java 1.5 and | expect my coveraiécogrow over
the next year or so. This year | will do hardly more than jusntion it and let
Part 1B coverage consider filling in the gaps. This seems especrdigonable
since textbooks that catch up with this are still somewhat.ra

In ML you got used to having types that were polymorphic. Fatance a
sort function that took a predicate and a list might have ypd t

(asxa — bool) xalist — alist

to indicate that the elements of the input and output liststha same type and
the ordering predicate was compatible with that. A par&cdiéature of ML to

recall is the availability of parameterised types suclubks. In Java instead of
saying “type” we will say “class”, and instead of saying “paiorphic” we say

“generic”. A generic class is established by putting typgaldes within angle

brackets. You can then use the type variable within the elagiit were a regular
type name: small

class MyClass<E>

{
E myMethod(E argl, int arg2)
{ MyClass<String> newvar = ...
}

}

With your ML experience of polymorphism you can now probatde at once
how to use this capability to write implementations of vas@eneric data struc-
tures (trees, lists and the like) and provide useful fumdithat traverse, search or
sortthem. In fact that Java libraries have done a great déaédbin their so-called
Collection classes.

In ML polymorphism is all-or-nothing. If you have a type-iable a it can
stand for absolutely any ML type. To improve security you msayetimes like
to have a way of expressing more limited flexibility (eg genever all sorts of
numbers, but not over non-numeric data). Java providesabdép using a type
wildcard written as question mark, and can limit the rangthefwildcard using
notation like

130 CHAPTER 4. BASIC USE OF JAVA

public void sum(List<? extends Number> arg)
{ for (n:arg)

{ ..}
}

Here thesum method takes an argument that is some soitistff 4° but it
insists that the polymorphism thaist provides has been used in a way that
means you know that all the objects in the list are some ssbcdaNumber.

You will use generics every time you use the Java Collectias$2s. You can
use it in your own code too. There is a fair amount more thatula&csay about
exactly how it interacts with the type-hierarchy that cleseeritance provides and
when a generic class is a sub-class of another, but | belatdhe details there
do not belong in dirst Java course!

4.7.1 Exercises
Objects everywhere

The Java libraries make extensive use of classes in hieear(dnd also a more
modest number of interfaces). The arrangement in the basf €lasses is that
everythingis ultimately descended from a base class cabdegct . The most
immediate consequence is that an objedmyfclass from the basic libraries may
be stored in a variable of typ@bject . It is exactly as if whenever you define
a new class and do not give an explietends clause as part of its definition
Java just sticks inéxtends Object ” for you. Of course when you extend some
other class it in turn will somehow haw@bject as an ancestor-class so this way
as previously stateelveryinstance ofinyclass is arObject .

A few basic methods are defined fobject , of which perhaps the most inter-
esting at present getClass ~ which returns an thing from the claStass . If x is
anyObject thenx.getClass().getName() is a string that is the name of the
class ofx! The general parts of the Java libraries that allow you testigate the
classes thabbject s belong to and then retrieve lists of the variables and nakstho
that they provide are referred to Reflection as it were a Java program can look
at itself as if in a mirror.

Check the documentation and write Java code that accep@bjant and
prints out as detailed and as readable description of it aggasonably can.

Note thatObject underpins the polymorphism of Java generics, but now that
generics are available programmers will @dgect directly much less than they
used to.

49A Collection class that does just what you expect!

4.7. GENERICS 131

Primitive is second class?

The ability to treat things as “Objects” does not (direcdyjend to the Java prim-
itive types. To work around that the libraries contain adsswith names that
are rather like those of the primitive types except that they capitalised. le
Boolean , Character , Byte , Short , Integer , Long, Float andDouble . As
of the most recent revision of Java you will find that the cdermarranges to con-
vert betweerint andinteger (and the other primitive types and their associated
wrapper classes) when it believes that that will help yote Gbnversion naturally
involves some run-time cost so it is perhaps advisable toNa@eawhen it hap-
pens. The sort of circumstance where it is especially caemethat this happens
is when you want to store a primitive object (eg an integeatifay point number
or character) in &lashmap or aVector (or indeed any of the collection classes).
It was then natural for the Java designers to set methodsiat=t with these
to implement a wide range of basic conversions and tests @wdlues, as in
Integer.doubleValue andDouble.isNaN (and many more).
The numerictypes the clasdeteger etc do notinherit directly fromdbject
but via a class calleNumber Eg

Number a, b;
a= 2 /Il new Integer(2);
b = 11.7; // new Double(11.7);

can be written as shown, but behaves as if the constructtine icomments have
been used. If thé&lumber objects are used in a context where primitive num-
bers are needed (eg you try to perform arithmetic using thitemyalues will be
unpackaged for you.

Write a class that defines lists tumbers, with suitable set of facilities for
constructing such lists and a methsaoh that can add up the values in a list return-
ing the result as double . You may need to usex“ instanceof Integer " to
sort out which flavour of number is present in some particodate.

Some text output using Objects

SinceObject is an almost universal type it can be used to pass arbitraey da
to a function. This is in fact what happens wiphintf , but one extra thing
happens there. If a method is declared with three dots diféetype at the end of
its argument list, as in

PrintStream printf(String format, Object... args)
{ /I whatever definition you need

}

132 CHAPTER 4. BASIC USE OF JAVA

indicates that the final argumentgantf will actually be passed as an array of
Object values. But thecalls to it will just appear to permit a variable number
of arguments, and each argument will be converted to (if enigivie type) or
interpreted as (if a class typ@pject .

While this scheme can be used in your own code to supportbtanimbers
of arguments, and it can also be used with more restrictpesyharObject it
will almost always count as poor style since it can easilyuocedtype-safety and
cause confusion if you mix it with method overloading. Butesit is useful it
really helps make code concise. Without it instead of wgitin

int i=1, j=2;

System.out.printf("%d, %d", i, j);
you would need to wrap i and j up in the typeeger explicitly, and create an
array to pass the multiple arguments explicitly.

int i=1, j=2;

myOwnMethod("%d, %d",

new Object [] {new Integer(i), new Integer(j)});

But note very well that within the code thatimplements tlsisgch agrintf
everything has to work understanding that the concise aadl$n fact mapped by
the java compiler onto the clumsy looking code that packagegrimitive types
and makes an array.

Now seems a good time to provide a summary of more of the fammgatp-
tions available withprintf , and also to note that the meth8ding.format
does exactly the same job of layout but returns a formattetystather than doing
any direct printing. We have already seetd" for laying out integers, and know
that"%n" generates a newline.

Within a format string the charact&%" introduces a format specifier. After
the percent sign a number of optional elements can appear:

e An argument index followed by a dollar sigf)(Without one of these the
values to be converted are taken one at a time from the argsmpeavided.
An index such as29) tells the formatter to use the second argument now,
even if that is out of order. Often you may want to display tame data
several times, eg in different formats. In that caseig very useful: it tells
the system to re-use the argument most recently dealt with;

e Some flag characters. Just what is valid here will depend stnybat sort
of layout is being performed, but various punctuation mak#ags can, for
instance, force left-justification of text within a field)(ensure that num-
bers are always displayed with an explicit sigt), (include leading zeros
(0) or be more fussy about the actual types of argumet)tsYou need to
check fine details in the documentation when you use flags!

4.7. GENERICS 133

¢ a field-width, written as an unsigned non-zero integer. Yoousd expect
that if this is specified that the output from the conversialhlvave exactly
that number of characters;

e A dot followed by a integer precision. Egt(). For some conversions this
sets an upper limit on the number of characters to be gemeifabe floating
point conversions it controls either significant figuredw humber of digits
after the decimal point.

e (and finally!) a character (or in some cases a pair of chargjctkat in-
dicated just what sort of conversion is to be performed. &gstihe more
important cases are the lettarseach of which is discussed briefly below!

The full set of format letters and options can be found in thilne documen-
tation, but key cases are

s, S: This takes any value at all and tried to convert it] to a stritighe argu-
ment implements thEormattable interface then itformatTo method is
used to do the conversion, otherwise its sto&tring method is used.
When you define a class of your own you may often wish to overad
define one or both of these methods so that you can easilyipsitances
of your class. Many of the Java library classes implemergdimeethods in
ways that at least try to be helpful. If you write a capidhe material that
is displayed is forced into upper case. Similar effects el other use of
upper case format letters;

d: Thisis the case most often seen in these notes so far, and animteger. But
you can also displaBiginteger values with this (and the) format;

X, X:. Integers can be displayed in hexadecimal rather than natewaal no-
tation this way;

c: character

e, f, g, E, F, G Floating point and their display involve lots of compli-
cation! The “e” formats always use scientific notation withexplicit ex-
ponent. The “f” formats use the specified precision as thelbmuraf digits
to display after the decimal point (eg it is a good thing to f®eprinting
pounds and pence witl#o.2f"), while “g” tries to select between those

two formats to select one that will be natural and will takeasgittle space
as possible.

% If you want to print a percent sign you will need to write twoamow!

134 CHAPTER 4. BASIC USE OF JAVA

n: Unix and Windows have different ideas about what consstaténewline”.
The format codéosnmakes allowance for that for you.

t x: Java provides an amazingly rich range of ways of formatimgs$ and dates.
YOu can use these formats when printing objects of typey, Calendar
or Date . | think there is too much to list here, but a very few of theiops
available are
t Y year displayed as 4 digits, eg “2005";

t A full name of day of the week, eg “Monday”;

TA as above, but upper case: “MONDAY”;

t a short name of day: “Mon”;

t M minute within the hour, as 2 digits;

t m number of the month as 2 digits, counting January as number 1;
t T time formatted for the 24-hour clock &&tH:%tM:%tS" ;

t D date formatted a%6tm/%td/%ty"

A bigger exercise

There are twelve shapes that can be made by joining five sgjtagether by their
edges to get a connected unit. Itis possible to pack thepestitngpentominoes

into a six by teR® rectangle in a number of ways. Here is one such packing, which
will also serve to show you the shapes of all the pieces:

S0also into a five by twelve or three by twenty.

4.7. GENERICS 135

The object of this exercise is to find other solutions to thezpai
The suggested strategy is to represent the 10 by 6 board@3iofthe 64 bits
in along . You can them treat these as if they are arranged as a retdaagtay,
and then a singleong value can represent a possible position of a piece. In this
representation the twelve pieces can be described by tag arr

final long [] rawPieces =

{ 0x000001f, 0x0100407, 0x000040f, 0x0300403,
0x0401c01, 0x2008007, 0x0201c02, 0x0000c07,
0x0301808, 0x0000cOe, 0x000100f, 0x0301802

h

where the values look pretty ugly but are at least all in qaitamall table. A
bulkier but perhaps cleaner way to set up the initial tablehapes would be to
use a function such as:

long piece(String linel, String line2, String line3)

{ return (row(linel) << 2 * poardWidth) |
(row(line2) << boardWidth) |
row(line3);

}

long row(String line)

{ long r;

for (int i=0; i<line.length(); i++)
{ r<<=1
if (line.charAt(i) == 'X) r |= 1,
}
}

piece("X ",
XXX,
"X,

Theinit method for the applet should start by setting up a table firsilo
the twelve pieces normalised so that they are down in onescarinthe board,
and then a larger table showing each piece in every locatah® board that it
could possibly be. Doing this will involve writing code thiaflects and rotates
pieces — not especially nice when using bits packed intmg — and which
avoids setting up entries that are redundant because of syrmiithe code that is
involved in getting this far is quite messy enough to keep yosy for a while.

136 CHAPTER 4. BASIC USE OF JAVA

The overall structure of the code that searches for solsitioight then be

=~

| search(i) looks for ways of placing piece

/i on the board. The array entry mapsi][j]

/I is a bitmap showing the j-th place that

/I piece i could bit, and the variable "board"

/I shows which parts of the board have already
| been filled. There are 12 pieces, known as
/' 0 to 11.

void search(int i, long board)
{ if (i == 12)
{ /Il Here a solution has been found
. record it somehow ...
return;

=~

}
for (int trial=0; trial<maps|i].length; trial++)
{ if ((mapsli][trial] & board) == 0)
{ /Il no overlap with existing pieces
/I so put this in and next try to
/[fit in piece i+1.
search(i+1, board | maps]i][trial]);

}

The first challenge would be just to count the solutions, amthe place in
the above which is incomplete could be replaced by a singkerstent that in-
cremented a variable. But since it is easy to fitRect to draw filled-in
rectangles in Java it would seen natural to try to draw sontbefolutions and
that would mean doing something distinctly harder.

Thesearch function | have sketched tries the twelve pieces one afteln ea
other, and at each stage considers each piece at ever pasittbe board where it
would still fit. A different search strategy would be to scha board at each stage
and find the first vacant square. The program would then ityeatid try every
piece that could be used to fill in that square. | believe that $econd search
strategy is rather closer to the one most people would userthyaoriginal one
was.

A curve to plot

Use Java to plot a picture of the following curvetasries from O to Zc
X = cogt)(1+cog4d))
y = sin(t)+cogt)sin(40t)

4.7. GENERICS 137

Find a copy ofA Book of Curvesk. H. Lockwood, Cambridge 1963, and in a
similar style re-create variants on as many of the pictusgga can.

Reading hexadecimal numbers

We have seen various ways of decoding numeric inputnteger.parselnt
and the whole set of joys associated witreamTokenizer . You can note from
the full documentation that there is a two-argument versibparseint that
allows you to specify what radix the input string was supposebe in. You
may also like to check details of the class si8alinner which has a method
nextint that can also accept an argument indicating what radix tirea

Now imagine that these facilities did not exist, or that fome strange reason
you could not use them. Implement your own functions thatlmgiven strings
as arguments and which will make it possible to convert thegs intoint and
long values, allowing for the possibility of octal or hexadeclmsgecifications.

Displaying floating point numbers

In versions of Java prior to 1.5/5.0 the functionalitypohtf ~ was not available.
This exercise is to re-create some of it thereby getting ach#o feel what work
is involved in making worthwhile extensions to the existiifigaries.

The methodouble.toString allows you to generate a printable represen-
tation of a floating point number. However compared to thetifiggpoint layout
flexibility available in many other languages it seems pathély simple-minded.

A typical programming language will provide for three wayganting floating
point values:

F format: here numbers are written as illustrated in theofalhg examples

-1.000
1234567890000000000.0
0.000000005656

and even if the values are very large or very small their ntageiis indi-
cated by having suitable numbers of leading or trailing getois typically
possible to specify how many digits will be printed followithe decimal
point, and to indicate the width that the whole number willgaelded to
with either leading or trailing blanks.

E format: For very large or small numbers it may be convertienise scientific
notation. So withe format an explicit exponent will always be displayed:

138 CHAPTER 4. BASIC USE OF JAVA

-1.0e000
1.234568E018
5.656000e-009

Observe that there is always exactly one digit before thent®cpoint

(sometimes a scaling option is provided to allow the usepéaiy a differ-

ent number of digits before the point), and the exponentisgd present
and probably always displayed in a way where the largestipessponent
value could be fitted in. A “precision” specifier can indicatav many sig-
nificant digits are to be shown, and the number will be paddi zeros

or rounded to meet that requirement. Numbers close to 1dttefook a

bit ugly this way! Again it is useful to be able to place the rnenin a

fixed-width field, either right or left-justified.

G format: Large numbers are best showrEifiormat while modest size ones
do best inF. SoG is a composite scheme that looks at the value of a num-
ber and decides which of the other two formats would lead éortiost
compact representation, and it then uses that. It is roughigt Java’s
Double.toString method provides, but again we would really like op-
tions to indicate precision and field width.

Implement functions which convert Jagtauble values to strings in each of the
above formats.

| might suggest that you start by usitaftring to do the basic conversion
and then let your code restrict its worry to unpicking thangt and re-formatting
the characters. If you decide you want to do the numeric tegsttonversion from
scratch you should be aware that preserving numeric accigagite hard!

Write a test-suite that compares the strings your code gégsewith the ones
thatString.format produces. Then worry about NaNs, infinities, careful round-
ing and the like!

Double as bit-patterns

Double.doubleToLongBits takes adouble as an argument and returns a
long . Thelong isthe internal IEEE-format bit-pattern that represengsitiuble
The matching functiofongBitsToDouble accepts dong and manufactures a
double inthe same dubious sort of way. Investigate whether thexeyigouble
value x in Java so that

(double)Double.doubleToLongBits(x) == x

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 139

Continued fractions
Any positive number can be expanded a®atinued fractioras in

1
X=Xo+——1—
X1+X2+...

where the valueg; are calledpartial quotientsand are all positive integers. If
the original number is rational the continued fraction teraes at some stage.
Otherwise it goes on for ever, and can be viewed as providmg@leernative
to the usual decimal expansion of numbers. Instead of wriéinvalue as say
1.414213562...the partial quotients would be listed [2,2, ...]. Gosh in fact
for this number it looks as if the continued fraction is astbmgly regular!

The sequence of partial quotients in the expansion of a numseeeasy to
compute - the first is just obtained by casting the number tiatan The rest can
be obtained from the reciprocal of what you get by subtrgdimat value from the
original number. Write code to do this and tabulate the fiogiesh partial quotients
you get in the expansions of the following numbers:

V3

(V5+1)/2
V7
e=2.71828 ..

Tt

4.8 Important features of the class libraries

The coverage thus far has shown the use of some small palhts déva libraries,
but has also missed a great deal out. In this course | will agé lanything like
enough time to describe everything that is available. Hawekhere are a few
bits of functionality that either seem to be generally usefiough or sufficiently
fun to be worth covering. The little bits of explanation gmMeere are thus to be
viewed as a sampler of what Java can do for you. If you can wwdugh all these
demonstrations and navigate the documentation of theaddbsat they introduce
you should have got a reasonably broad idea of the systemnaooking up the
documentation details while working on these cases youasilh side-effect be
noticing what other classes are present. | will only give st basic possible
demonstrations of the things illustrated here. Full competise of them can only
come with serious work on rather larger bodies of code. | agb totally ignore

140 CHAPTER 4. BASIC USE OF JAVA

several of the newer parts of the Java class libraries, oe tmdre precise, | will
leave fuller details of some of these facilities and of theeotones to next year’s
“Concurrent Systems and Applications” course and/or your private study.

4.8.1 File input and output

The character input and output shown so far has used thegfireed “standard”
streamsSystem.in andSystem.out . Obviously in many real applications it is
necessary to access named files.

In many programming languages there is a logical (and magtistinction
made between files that will contain text and those while dlused to hold
binary information. Files processed as binary are thouglssequences of 8-
bit bytes, while ones containing text model sequences afachers. In Java this
distinction has two main manifestations, one of which is esmat frivolous but
can matter on an every-day basis in the UK while the othervgidér importance
but will not impinge on immediate coursework:

1. Windows and some internet protocols use a pair of chasctarriage-
return and line-feed, to mark the end of a line. Unix and Linsg a single
character (newline). In text mode Java makes whatever tagfuds are
needed so that external files adhere to platform conventimris/our Java
code sees just the character

2. In many parts of the world (and in particular in the Far [Etestt documents
need to cope with alphabets that involve many thousandsnolbsis. Uni-
code is designed to be able to cope with these, but there carvhaety
of ways of encoding text as streams of bytes. When workinguoh san
environment Java can be configures so it knows how to pack apdck
Unicode using various of the major encoding conventiong.dBwiously it
will only even try to do this when it knows that the programmants data
to be viewed as character-based rather than binary.

Java uses names typically based on the v8iream for binary access, and
Reader andWriter for text. So when you read the documentation expect to find
two broadly parallel sets of mechanisms, one for each sfydeaess!

Java input and output can seem clumsy to start with becansesthll of
the functions involved are able to throw exceptions, and #xpected that Java
code using them should be prepared to handle these. Thigastigoodbecause
experience with earlier languages indicates that mostrammers do not find
it easy or natural to put error-checks after simple 1/0O opena, even though
logically almost any of them could fail. For instance wrgia single character

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 141

to a file could unexpectedly fail if the disc on which the fileell became futf,

or it it was on a floppy disc and the disc was removed from theedor had a
scratch, or if there was a hardware glitch in a disc interf&sferent but equally
delicate issues arise with output that goes directly toaterj across a network to
a remote file-system, or with input from a semi-reliable desuch as a bar-code
scanner. The Java use of exceptions encourages all progrnantorconsider 1/O
failure right from the start.

There is one final complication about Java input and outpaittalight to be
mentioned up front. One use of Java is in applets to be emieddhin web
pages, and hence sometimes fetched from remote web-sitesultl be bad if
code from an untrusted site could read and write all your!flesJava introduces
the idea of a security manager and can classify code as #itisézd or untrusted.
Untrusted code will not be permitted to access the localffiiystem. The short
form way around this is to make everything you do an applcatiot an applet:
security restrictions are then (by default) not imposedyoifi do need to make
applets that access disc or do other things that defaultasnbck out you need
to impose security on an application then you will need to fond about the
creation of custom Security Policies and signed Java coat#l. not describe that
here.

Java provides a rich and somewhat elaborate set of capadiltut perhaps
a good place to start will be simple reading of text files. TlasgFileReader
does almost everything you are liable to need: here is a mind@monstration
that shows that you can use a method catked to read characters, and that it
returns the integer -1 at end of file.

import java.io. *

public class ReadDemo

{

public static void main(String [] args)
throws 10Exception

{
Reader r = new FileReader("filename");
int c;
while ((c = r.read()) '= -1)
{ System.out.printf(
"Char code %x is \"%<c\"%n", c);
}
r.close();
}
}

510r the user’s quota expired.

142 CHAPTER 4. BASIC USE OF JAVA

There are a significant number of things about this small fb#amnple code
that deserve further explanation, and by trying to be mihtiveacode is not really
very good: an improved version is given soon.

Firstly note thafFileReader is in thejava.io package so we have an im-
port statement to make use if it easy. Next observe that alatiosput and output
functions can raise exceptions, and this code just admieatiand notes that its
main method might therefor fail. | view it as bad style to do thislatrongly
believe that exceptions should be handled more locally.

Now FileReader is a subclass oReader , which is the general class that
reads from character streams. So | credtédedReader using a constructor that
takes a file-name as its argument but store what | get as jRstder . This
helps stress to me and remind me that the rest of my code wewdtally valid
if using some other sort dReader , such as one that gets its input from a pipe,
from a string, from characters packed in an array, from a agtwonnection,
by running a character decoder on a stream of bytes or otberwihe way | do
things here supposes that the data in the file concernedoesiedan the standard
local character-set that Java has been set up for. For geéis imported from
elsewhere in the world you have to do things a more complilcatey!

Theread method hands back either the numeric code for a charactéreor
value -1 to denote end-of-file. It perhaps seems odd thatutme anint not a
char , but doing so allows it to hand back -1 which does not stanadfgrnormal
character. You can of course caseitite to achar any time you want to!

After having read the file you are expected to call tlkse method. If you
fail to do this for an input file you may just leave some machesources cluttered
and unless you try to open and read very many files withoutrgcany of them
you will probably not feel any pain. However for output filésiay sometimes be
that the last bit of your data is not actually sent to the filelyou do theclose .
You should get into the habit of ensuring that every file yoarogdoes get closed.

A much improved version of the same code can be arrived at hyllimg
the possible exceptions. You may note thi@NotFoundException is a sub-
class ofiOException ~ which is why thethrows clause above was sufficient, but
which also allows us to see how the improved code is moreggetVhen you get
an exception out of Java it can often be useful to print ithat it is liable to carry
some text that explains further what went wrong. I fisally to guarantee that
theclose method of theReader will always be invoked.

import java.io. *
public class BetterReadDemo

{

public static void main(String [] args)

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 143

{
Reader r;
try
{ r = new FileReader("filename");
}
catch (FileNotFoundException e€)
{ System.out.printf(e);
return;
}
int c;
try
{ while ((c = r.read()) '= -1)
{ System.out.printf(
"Char code %x is \"%<c\"%n", c);
}
}
catch (IOException e)
{ System.out.printf("Reading failed (%s)%n", e);
return;
}
finally
{ r.close();
}
}
}

Output to a file is somewhat similar, and if you only ever wanivite indi-
vidual characters and simple strings theWriter will suffice. However you
may like to be able to usgrintin ~ andprintf ~ when writing data to your file,
and they come in a class call@dintwriter . Unlike the clas$=ileWriter
PrintWriter hides all exceptions so you do not need to catch them, butgou c
check for error using theheckError ~ method and you still need to ensure that
close is called.

import java.io. *

public class PrintDemo

{

public static void main(String [] args)

{
try
{ PrintWriter w = new PrintWriter("filename");

try

144 CHAPTER 4. BASIC USE OF JAVA

{ w.printf("Hoorah%n");
assert !'w.checkError();

}

finally

{ w.close();
}

}

catch (FileNotFoundException e€)
{ System.out.printin("Sorry!");

}

This time you must make a PrintWriter and not just anriter to gain
access t@rintf and so on.

If errors arise on &rintWriter the flag marking them persists so you do not
need to useheckError after every single print statement — every so often and
once when you have generated all that you want to end up inléheifi suffice.
Although | have usedssert here | probably feel that error checking should be
done always an that something along the lines of

if (w.checkError())
throw new |OException(“failure on PrintWriter");

might well be better policy.

The long-winded but more flexible way to access files is ta $tarcreating
an instance ofava.io.File . An object of this type can be created using either
a constructor that takes a sin@eing that names the file (as a complete path,
if necessary), or with a two-argument constructor where angement specifies
the directory to look in and the other the file-name withirt ttiaectory. AFile
object supports methodsists , canRead andcanWrite and also one called
isFile , which test for a “normal” file, ie one that is not a directoryamy of the
exotic things that in Unix masquerade as sort-of-files. Yaugass &ile rather
than a string when openingrileReader or FileWriter

Other methods available via tifde class include ones to check the length
of a file’?, rename it, create new directories, list all the files in actiory and
delete files. You can also create a file by giving just a locah@deg such as
“java.tex") and callgetAbsolutePath to obtain a fully-rooted file-path that
identifies it. The exact result you get will clearly be systdapendent, and on
one computer | tried that | got back

52The length reported is liable to count in bytes, and so farfiss it can well be that the length
reported differs from system to system.

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 145

"e:\UNIV\notes\java\java.tex"
while on another it was
"lhome/acnl/javanotes/java.tex”

The fact that all these facilities are so conveniently sufggbmay make Java
one of the more useful programming languages for writingrfilnagement util-
ities. Once again if you look at Java code and compare it agather languages
for very tiny tasks and where previously you would have nidseat all error
handling Java can look clumsy — but when you look at more sgaland well-
engineered examples it starts to feel much nicer.

Binary data access are useful for cases when your data really data and
not composed of characters. There classes cgll@do.FilelInputStream
and (of courselrileOutputStream that take &ile or a string as an argument
and create streams. They of course throw exceptions if #geddn not be opened
as requested. Once a file has been opened you should in dse aalirthe rele-
vantclose method to tidy up.

Earlier examples have shown an extra layer of Java constractanging to
buffer input in the expectation that that may speed it up veldone that here too.

Putting these together we might arrive at something like thicopy a file in
binary mode:

String fromName = "source.file";
String toName = "destination.file";
File fromFile = new File(fromName),
toFile = new File(toName);
if (fromFile.exists() ||
IfromFile.canRead() ||
toFile.exists() ||
ItoFile.canWrite())
{ System.out.printin("Can not copy");
return;
}
InputStream fromStream =
new BufferedinputStream(
new FilelnputStream(fromFile));
try
{ OutputStream toStream =
new BufferedOutputStream(
FileOutputStream(toFile));
try
{ for ()

{ toStream.write(fromStream.read());

146 CHAPTER 4. BASIC USE OF JAVA

}

}
catch (EOFException e)

{} /I Use exception to break out of for loop

finally
{ toStream.close();
}

}
catch (IOException e€)

{ System.out.printf("lIO error " + e);

}

finally

{ fromStream.close();
}

This code is in fact not yet complete! It needs yet more trgkdato guard against

FileNotFoundException cases where the two streams are created. But itillus-
trates how th&EOFException can be used to stop processing at end of file, and

demonstrates very clearly that in real file-processingiagipbns most of what
you write will be to do with setting everything up and arramgto handle excep-
tions, while the central interesting bit of the code may bstast as just

for ;)
{ toStream.write(fromStream.read());
}

Overall it may seem pretty grim, but in large programs the glcation will
still remain at the level of the dozen or so lines shown abather than growing
out of control. Itis also probable that the visible pain isdnase writing high qual-
ity file-manipulation code is in fact nothing like as easy aslier programming
languages have tried to make it out to be!

There is a potential down-side in Java being so very indistext you catch
all these errors, in that it can encourage a style of copfattjtst wraps all your
codein

try
{
}

catch (Exception e)

{1

where the block is set up so it catchabsorts ofException not just the very
special ones that you know are liable to arise, and rathardbang anything it just
ignores the error. This very much defeats the purpose Jadmang to achieve! If
you are (quite reasonably!) in a rush some time at least go:

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 147

try
{
}

catch (Exception e)

{ System.out.printf("Exception: %s%n", e);
System.exit(1);

}

so that the exceptions you catch are reported and make yogrgm stop.

The above example use&RlfferedinputStream which should not have
any effect at all on what your program actually does, but mayehan impact
on performance when you work with big files. For binary dataréhare more
interesting classes that you could use just as easily: omaspress and and de-
compress data, encryption and checksumming capabilF@stext data you can
useLineNumberReader in place ofBufferedReader and it will keep track of
which line you are on in your input. See the claskierinputStream and
FilterReader in the documentation for further details.

4.8.2 Big integers

The Discrete Mathematics course had an extended sectiorevithdiscussed

highest common factors, modular arithmetic and eventub#yRSA encryption

scheme. To refine your understanding of all that you coultequioperly want

to code it all up. To make any pretence at all of reasonablerggdthis means

that you need to do a lot of arithmetic on integers that areden 1024 and 1536
bits long. This sort of range of values is about what is reslilvecause there is
a serious possibility that numbers smaller than that mighfalctorisable by the
best current algorithms and fastest current computersnfeimentation of RSA

will also need to generate a couple of primes, each with attatf that number

of bits.

Java has thought of that and it provides a clasa.math.Biglnteger
which does essentially everything you could need! And nb&t drintf lets
you print these big values easily.

In this class there are half a dozen constructors. The mariewdones con-
struct big integers from strings byte arrays, and aalueOf method allows you
to create a big integer fromlang . The two interesting constructors create ran-
dom big numbers. They both accept an argument that is antdlhpec the class
Random which actually gives them their randomness. One createslatiaay
n-bit number while the other creates abit number which is (almost certainly)
prime. For the second of these it is possible to tune the degfreertainty that a
prime has indeed been found by giving a “certainty” arguntieat tells the con-

148 CHAPTER 4. BASIC USE OF JAVA

structor how hard to work to check things. | might suggest thaalue of 50
would be sufficient for all reasonable purposes.

| should provide a rather heavy health warning here. If yoa te Java-
providedRandom class to help you create private keys or other values of cryp-
tographic significance you will be throwing away almost b# security that the
RSA method could give you, since this random number genecatoes too close
to having a predictable behaviour. Specifically there is@nclke that to arrange
to get the same “random” values that you do it may suffice fonedmody to run
a similar Java program having reset their computer so ttet thn appears to
happen at the exact time of day that yours did. This may be Imatrés nothing
like as hard as factorising 1536-bit integers. If you evented to use serious
encryption youmustinstead usgava.security.SecureRandom . Anybody
really serious about security would think at length befousting even the things
in java.security : how is it possible to tell that they do what they are supposed
to and that they do not include secret weaknesses? And etleyifire honest it
is astonishingly easy to lose all the security you thought lyad by some appar-
ently minor clumsiness in how you use your cryptographiogives. A course
on security later in the Tripos gives much more informatibauwt all of this!

Note that some of the functionality in the Java security amchgption pack-
ages may be missing or limited unless your installation wasiged some level
of assertion that you are not a national of a country that t8&3dvernment does
not like and that you are not a terrorist. But as is the way of such attempt
at blocking access to technology, there are easy to find krogplacements not
hampered by (so many) export license issues. You might&idware that good
encryption is viewed by some as something with significaoctisgy implications
and that it should not be given any opportunity to cross mggonal borders until
you at the very very least know what all the rules are! Jawdfifgovides ways
that those who satisfy the correct eligibility conditioraause the standard Java
libraries and obtain unlimited security, via the instadlatof special “JCE policy
files”.

Once you have made suitable objects of claiggnteger the library pro-
vides you with methods to add, subtract, multiply and dixtitesm, to even raise
one big number to a huge power modulo another number (whataagvay about
the expected use of this class!). The function that computest the Discrete
Mathematics notes called a Highest Common Factor is herevkras a Great-
est Common Divisordcd), but the change of name does not hide any change of
behaviou??,

53Thejavasecurity package provides easy to use functions for generating keysa@m-
puting message digests and digital signatures. There endatd extension to Java that supplies
encryption and further functionality: this part may be s&dbjto export regulation and has to be
fetched and installed as a separate item from the main SDK.

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 149

import java.math. *
import java.util. *

Random r = new Random(); // inadequate!

/I use the SecureRandom class instead!!!
/I Create two big primes p and g
Biginteger p =

new Biginteger(768, // length in bits

50, // only 1 in 2°50 prob of non-prime
r); // random number source

Biginteger g = new Biginteger(768, 50, r);
/I form their product, n, which can be public
Biginteger n = p.multiply(q);
/[compute phi = (p-1) *(g-1)
Biginteger bigOne = Biginteger.ONE;
Biginteger pMinusOne = p.subtract(bigOne);
Biginteger gMinusOne = g.subtract(bigOne);
Biginteger phi = pMinusOne.multiply(qMinusOne);
/I select a random exponent whose HCF with phi
Ilis 1.
Biginteger e;
do
{ e = new Biginteger(1536, r);
} while (!phi.gcd(e).equals(bigOne));
/[now (n, e) is the public key

/I Set up a message to encrypt
Biginteger msg =

new Biginteger("12341234"); // silly message
/[Encrypt with public key. One line of code!
Biginteger k = msg.modPow(e, n);

The code is clearly about as short as it possibly could beimrgame warn you
that cryptographically satisfactory random number geioesaare hard to come
by, and that such issues as managing the secure distribaftipnblic keys and
keeping private ones truly private mean that security m@®lvery much more
than just these few lines of code. But Java is clearly makiegsy to make a start
on it.

How do you know that the Authorities and not bugging your catepwhile
you run the above code? How do you know that no traces of tlietdgatormation
remain anywhere when you have logged off or even powered dogvcomputer?
The Computer Lab’s security group has a fine track-recorceafa@hstrating that

150 CHAPTER 4. BASIC USE OF JAVA

even apparently safe computing habits leak information soiféiciently skilful
and ingenious snoopetr.

4.8.3 Collections

Java has an interface calledllection and a whole range of interesting classes
derived form it. The general idea is th@vllection covers ideas like “set”,
“list” and “vector”. In some cases the elements in a collattcan be ordered
(in which case the objects included must all implementGhenparable inter-
face?), but might not be. Collections may be implemented as linlistd or as
vectors, but the library classes arrange that when a vestosed it will be en-
larged as necessary so that the user does not have to spéniiyta the size of
the collection too early. One sub-case @dalection is aMap, which provides
for general ways to organize various sorts of table or dnarg. | am not pro-
viding any sample code usir@pllection s in this little section since | believe
that when you browse the documentation you will find them a@asyope with.
However it may make sense for me to list more of the names gketaworth
looking at: Collection , Collections , Set, HashSet , TreeSet , Vector ,
LinkedList

The collection classes are keyed to the Java statement to make it trivial to
iterate over the values in a collection: as has been seerriougeof the sample
programs here.

Very typically when you create an instance of a CollectioasSlyou will use
the generics capability to indicate the type of the objeotswill keep in it, eg

Vector<String> v = new Vector<String>();

and if you do so Java will know that the values you extract Wl of the type
indicated.

4.8.4 Simple use of Threads

A threadis a stream of computation that can go on in parallel with ih&he
term is used when the activities are part of a single progeard,where there is
no need for security barriers to protect one thread from the.nThe more gen-
eral term used when the extra overhead of protection is welsgegocess Java
is one of the first languages to make a big point of having ttseaipported as

54An especially interesting issue here is the way that Javacearpare strings. To support the
needs of different nationalities a cla&Ssllator is provided, and methods in it can order strings
based on propdrocale -specific understandings of where accented or non-Engtitrs should
go. Alphabetic ordering with international texts is a mooenplicated business that almost all of
you would have imagined.

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 151

a standard facility. Many systems in the past have had terdad usually in
rather non-portable form. Almost any program that has tolemgnt a compli-
cated windowed user interface or which accesses remoteutensp will need to
use threads so that one high priority thread can ensurelbaiger always gets
responses to requests, while several lower priority onep ka with some bigger
calculation. There are very many subtleties in any progtaahexhibits concur-
rency. | will not describe these here, and in consequencpdatthat people who
try to make substantial use of threads based on just thess wil get themselves
into deep water. There are two typical bad effects that cigie.an one the system
just locks up as a chain of threads each wait for the othersrtgptete some task.
In the other two threads both attempt to update some datetsteuat around the
same time and their activities interfere, leaving data inraupted state. The Java
keywordsynchronized is involved in some of the resolutions of these sorts of
problem.

The example here is supposed to do not much more than to alertoythe
possibility of writing multi-threaded Java programs, andgshow how easy it is.
| will start by defining a class that will encapsulate the hatar | want in the
rather silly thread that | will use here:

class Task extends Thread
{
boolean resultShown;
String result;
int identification;
Task(int i)
{ identification
resultShown

= |,

= false;

}

public void run()

{ try { sleep(20+100 * jdentification % 77); }
catch (InterruptedException e) { return; }

result = String.valueOf(identification);

}

The two critical things are that my class extertigead and that it implements
run . The methodun will be to a thread much whahain is to a complete
program. In this case | make my thread do something ratheinmain It goes to

sleep for an amount of time that depends on the argument #mpassed to its
constructor, and it then sets one of its variabtesult , to a string version of
that value. When created my task also sets a flag that | willatse on to record

whether | have picked up its result.

550ften a slow business.

152 CHAPTER 4. BASIC USE OF JAVA

To demonstrate use of threads | will create half a dozennestof the above,
and then wait around until each has finished its work. As lagogiach task com-
pleting I will pick up itsresult and display it. When | have done that | will set
theresultShown flag so that | do not display any result twice. | could surely
find a cleverer way of achieving that, but the solution | useehg at least quite
concise. Once all my threads have finished | will let my maiogoam terminate.
| let my top-level class inherit frorMhread just because | want to uséeep in
it so that while waiting for the sub-tasks to finish | am mosdie.

public class Threads extends Thread

{
static final int THREADCOUNT = 6;

public static void main(String[] args)
{
/I Create and start six threads
Task [] spawn = new Task [THREADCOUNT];
for (int i = 0; IKTHREADCOUNT,; i++)
{ spawn[i] = new Task(i);
spawn(i].start();
}
System.out.printin("All running now");
int stillGoing = THREADCOUNT;
/I Scan looking for terminated threads
while (stillGoing '= 0)
{ for (int i=0; i<KTHREADCOUNT; i++)
{ if (Ispawn[i].isAlive() &&
Ispawn([i].resultShown)
/I print result the first time | notice a thread dead
{ System.out.printin("Result from " +

i + " =" + spawn[i].result);
spawn[i].resultShown = true;
stillGoing--;

}
}

System.out.printin("One scan done");
/I sleep for 7 milliseconds between scans to avoid waste

try { sleep(7); }
catch (InterruptedException e) { break; }

}
System.out.printin("All done");

}

Observe thatleep can raise an exception if the sleeping task receives an in-

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 153

terrupt from elsewhere, and I (have to) catch this and quite flesults | obtain
follow, and you can see traces that show the main programmstg@anound look-

ing for threads that have finished and also you can see thaliffeeent threads
terminate in some curious order. Of course a more worthvexidéenple would put
real computation into each of the threads and their ternonatould be based on
how long that took rather than on the artificial sleeping ldhased here!

java Threads

All running now
One scan done
One scan done
One scan done
Result from 0O
Result from 4
One scan done
Result from 1 = 1
One scan done
One scan done
Result from 5 = 5
One scan done
Result from 2 = 2
One scan done
One scan done
One scan done
Result from 3 = 3
One scan done
All done

The reason my example is respectably simple and troubéeidréhat the threads
only communicate by receiving data when first created anddbyating some-
thing back when they have finished. Inter-process commtiaicheyond that can
be astonishingly hard to get right.

4.8.5 Network access

Java really hit the news as a language for animating your oeln pages. One
part of doing this is the set of graphical operations thatigports. Another less
instantly visible but equally important thing is the alyiltio connect to remote
computers and retrieve data from them. The set of rules themp HTTP® are

what defines the World Wide Web. Standard Java librariesgeoxarious degrees
of ability to connect using it. The small program shown hankd through to a

56HyperText Transfer Protocol.

154 CHAPTER 4. BASIC USE OF JAVA

fixed location named as its fire command-line argument anplajis the data
found there. This data comes out as an HTML document withabtags that are
enclosed in angle brackets.

/I Read file from a possibly remote web server

import java.net. *
import java.io. *

public class Webget

{
public static void main(String [] args)
{
URL target;
try
{ target = new URL(args[0]);
}

catch (MalformedURLEXxception e)

{ return; } // Badly formed web-page address

try

{ URLConnection link = target.openConnection();

link.connect(); // connect to remote system

/I Now just for fun | display size and type information
/l about the document that is being fetched. Note that
/[documents might be pictures or binary files as well
/I as just text!

System.out.printin("size = " +
link.getContentLength());

System.out.printin("type = " +
link.getContentType());

/I getlnputStream() gives me a handle on the content, and
/I 1 rather hope it is text. In that case | can get the
/I characters that make it up from the InputStream.
Reader in = new InputStreamReader(
link.getinputStream());
int c;
/[Crude echo of text from the document to the screen.
/I 1t will have lots of HTML encoding in it, | expect.
while ((c = in.read()) '= -1)
System.out.print((char)c);
}
/[A handler is needed in case exceptions arise.
catch (IOException e)

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 155

{ System.out.printin("lO error on link"); }
/['1 am lazy here and do not close anything down.

}
}

/I end of Webget.java

The data stored on the CL teaching support pages in mid Fgb1988 started
off as follows, apart from the fact that | have split some af limes to make the
text fit neatly on the pages of these notes. It has of coursegeusby now! | keep
this old material in the notes out of nostalgia.

<HTML>

<HEAD>

<TITLE>Comp.Sci. Teaching pages</TITLE>
</HEADER>

<BODY>

<H1> Computer Science teaching material on Thor</H1>

<pP>

 Some Information
about Java (on this server)

The main message here is that accessing a remote web-git&t @bjout as
trivial as reading from a local file.

4.8.6 Menus, scroll bars and dialog boxes

Back when Java 1.2 was released Sun finalised a whole set dbwsmman-
agement code that they called Swing. This extended and cepl&placed earlier
windowing capabilities that were known as AWT. | believetttyanow it is proper
to use the Swing versions of things even in those cases whdaeANT versions
remain available. You can tell that you are doing that whem yse a lot of class
names that start with a capital “J"!

The code presented here is calidnuApp and is a pretty minimal demon-
stration of menus! | will use this example to show how sonreglsan be both
an application and an applet. The “application” bit of ceudefined a method
calledmain, and this just sets up a window (frame) that can contain thpdetp
stuff. There is a bit of mumbo jumbo to allow the applicationstop properly

156 CHAPTER 4. BASIC USE OF JAVA

when the window is closed. As usual | will show the inner bitlod code first —
the fragment that actually does the work:

public static void main(String[] args)

{
Menuapp window = new Menuapp();
JFrame f = new JFrame("Menu Demonstration");
f.addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent e)
{ System.exit(0);
}
D
f.getContentPane().add(window, BorderLayout.CENTER);
f.setSize(600, 400);
f.setVisible(true);
}
| should point out the syntax
new WindowAdapter()
{ public void windowClosing(WindowEvent e)
{ System.exit(0);
}
}
}

which extends the clas§indowAdapter

to produce a new (anonymous) class.

In this new class it overrided thelEIprErIrTETn l=l B3
windowClosing ~ method. It then cre- ;';q““;;rems

ates an instance of the new anonymo 5 Egg}f
class. This arrangement is known as Fpad file "Menuapp java" fram "E:\UNINotes|avay
“Inner Class” and can be very handl
when you need a small variant on some
existing class and will use it just once
so that giving it a name would be over;
clumsy.

The constructor foMenuapp will
establish a menu bar at the top of it
self, then makes menus on that bar, and
places menu items on each menu. n i
much the way that mouse events were
dealt with by registering a handler for
them it is necessary to implement an

L

Menuapp running

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 157

interface called\ctionListener and
tell each menu to report via it. The report hands dowrAationEvent from
which it is possible to extract the name of the menu item (dmeéed be which
menu it was on) that was activated. | illustrate this by simgahow to pop up
a dialog box for selecting a file, although once | have the nafitke file | just
display that in the text area rather than actually opening it

| put a scrollable editable window for the text. The versiarsé could in fact
support multi-colour text in mixed fonts and with icons arttiey things inter-
leaved with the words: finding out about that is an exercisehfose of you who
feel keen. You will also find that | have coded this using theifg” facilities
(ie it will not compile on a simple un-extended installatimnIDK 1.1.x), and the
arrangements for selecting a file and for making the text mindcrollable relate
to that. The inclusion ofavax.swing classes gives access to the relevant bits
of the class libraries. Furthermore the code can be run bsrain applet or an
application. So lots of things are being illustrated at ondeu are not expected
to be able to follow all of them at first, but maybe the code Wdla useful model
when sometime later you do need to use some of these fagilitianger. The
complete code follows:

/I Demonstration of Menus and a window created
/[from an application rather than an applet.
/I A C Norman 1998-2000

import java.awt. *

import java.awt.event. *
import javax.swing. *
import javax.swing.text. *

public class Menuapp extends JApplet
implements ActionListener

{

/[This can be run as either an application or an applet!
public static void main(String[] args)
{
Menuapp window = new Menuapp();
JFrame f = new JFrame("Menu Demonstration™);
f.addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent e)
{ System.exit(0);
}
D
f.getContentPane().add(window,
BorderLayout. CENTER);

158 CHAPTER 4. BASIC USE OF JAVA

f.setSize(600, 400);
f.setVisible(true);

}

/I All real work happens because of this
/[constructor. | create a JTextPane to hold
/I input & output and make some menus.

JTextPane text;
Container cc;

public Menuapp()
{
cc = getContentPane();
text = new JTextPane();
text.setEditable(true);
text.setFont(
new Font("MonoSpaced”, Font.BOLD, 24));
JScrollPane scroll = new JScrollPane(text,
JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED,
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
cc.add(scroll);

/I Menus hang off a menu bar and contain menu items
JMenuBar bar;
JMenu mFile, mEdit, mHelp;
JMenultem mNew, mOpen, mSave, mCut,
mPaste, mContents;

/I Create a menu bar first and add it to the Frame

bar = new JMenuBar(); setJMenuBar(bar);
/I Create a menu and add it to the MenuBar

mFile = new JMenu("File"); bar.add(mFile);
/[Create menu items and add to menu

mNew = new JMenultem("New"); mFile.add(mNew);

mOpen = new JMenultem("Open™); mFile.add(mOpen);
mSave = new JMenultem("Save"); mFile.add(mSave);

mEdit = new JMenu("Edit"); bar.add(mEdit);
mCut = new JMenultem("Cut"); mEdit.add(mCut);
mPaste = new JMenultem("Paste");mEdit.add(mPaste);

mHelp = new JMenu("Help Menu");

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES

bar.add(mHelp);
mContents = new JMenultem("Contents");
mHelp.add(mContents);

/[Each menu has to be activated to be useful.
mNew.addActionListener(this);
mOpen.addActionListener(this);
mSave.addActionListener(this);
mCut.addActionListener(this);
mPaste.addActionListener(this);
mContents.addActionListener(this);

}

/I When a menu item is selected this gets called,
/[and getActionCommand() retrieves the text from
/[the menultem. Here | clear the area when New
/I is used, and do something with Open, but otherwise
/I just display a message.
public void actionPerformed(ActionEvent e)
{
String action = e.getActionCommand();
try
{ if (action.equals("New")) text.setText(");
else if (action.equals("Open™)) openFile();
else
{ StyledDocument s =
text.getStyledDocument();
s.insertString(s.getLength(),
"Request was "

}
}
catch (BadLocationException el)
{}
}

void openFile() throws BadLocationException
{ JFileChooser d = new JFileChooser("Open a file");
if (d.showOpenDialog(cc) ==
JFileChooser. APPROVE_OPTION)
{ StyledDocument s = text.getStyledDocument();
s.insertString(s.getLength(),
"Load file \"™" +
d.getSelectedFile().getAbsolutePath() +

+ action + "\n", null);

159

160 CHAPTER 4. BASIC USE OF JAVA

""\n*, null);

/I end of Menuapp.java

You should expect that extending the above example or w@rifour own code
that sets up controllable visual effects will cause you teeh@ do rather a lot
of reading of the class library documentation to plan whildsses you will de-
rive items from. Also when you have mastered the basics of €adstruction by
hand you will very probably want to take advantage of one eflava develop-
ment environments that can set up frameworks for userfades for you in really
convenient ways.

4.8.7 Exercises
Replacement for “Is”

On Unix the commands lists all the files in the current directory. With a
command-line flagR it also lists members of sub-directories. Investigate the
JavaFile class and see how much of the behavioulsofor the DOS/Windows

dir) you can re-create.

RSA

The code fragment above suggests how to create a public kiehan how to use
it to encrypt a message once that message has been reduc®&igtatener
of suitable size. Flesh this out with code that can use thafaikey to decrypt
messages, and with some scheme that can read text from tigastanput (or a
file, maybe), split it up into chunks and represent each clasndBiginteger

You might also want to investigate the Java Cryptographichecture and
find out what is involved in creating cryptographic-gradadam values. You
should be made very aware that the ordinary Java random mgeherator does
not pretend that the values it returns to you are suitablegerin security appli-
cations.

Then do a literature search to discover just what you are iptexahto do with
an implementation of an idea that has been patéhtaad also what the Secu-

5"The main RSA US patent expired on the 20th September 200@hautioes not necessar-
ily mean that all associated techniques and uses are unf@dteAlso note that there are other
public key methods for both digital signatures and for eptinn where the original patents have

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 161

rity Policies of various countries are about the use, impod export of strong
encryption technology.

Note again that Java provides the specification of a sedibyrgry that would
do all this for you if it were not for the USA government’s exprestrictions, and
if these restrictions do not apply to you you could use the Jxong security.
There are international re-implementations of this lijpridwat can be fetched and
used here. See for instaneaw.openjce.org . But also be aware that exporting
code that includes strong encryption may be subject to govent restriction.

Big Decimals

The clas®BigDecimal builds onBiginteger to provide for long precision dec-
imal fractions. When @&igDecimal is created it will behave as if it has some
specified number of digits to the right of its decimal pointt bs arithmetic is
carried out there can be any number of digits generated ééferdecimal point.

For any numbeiz one can define a sequence of valxedy xp = 1 and
Xi+1 = (X +2z/%)/2. This sequence will converge t@gz, and once it gets even
reasonably close it homes in rapidly, roughly doubling theber of correct sig-
nificant values at each step. For finding square roots of ntsrisween &b and
2 (say) the starting value) = 1 will be quite tolerable.

If one wanted the square root of a number larger than 2 or emiddan 05
it would make sense to augment the recurrence formula by ugeadentity
V4z= 2,/zZto pre-normalise.

Implement the method and use it to create a table of squateabthe integers
from 1 to 10 all to 100 decimal places.

If you can perform high-precision arithmetic on floating monumbers you
should try the following calculation. | am going to use infal syntax with
double constants written where you will need to uBigDecimal s, and | will
use the ordinary operators to work on values not calls t@bldtmethods in the
BigDecimal class. | am also not going to tell you here either how manyesycl
of the loop you should expect the code to obey or what the gatyeints out will
look like! But | suggest that you work to (say) 1000 decimaisl gaee what you
get.

a = 1.0;

b = 1/sqrt(2.0);
u = 0.25;

x = 1.0;

pn = 4.0;

do

also expired, and so using these can also be of interestutifaent worries about deployment.
Investigate “El Gamal”.

162 CHAPTER 4. BASIC USE OF JAVA

-
=

a;
(a+b)/2.0;
sqrtly *b);
u-x *(ay) *(ay);
2%*X;
pn = a*alu;
print(pn);
} while (pn < p);

X c o< ©

When you have investigated this for yourself try lookingd&oithmetic-geometric
mean (and the cross-references from there!) in Hakmem.

Mandelbrot set (again)

Adjust the Mandelbrot set program, as considered in anezakercise, so that at
the start (maybe in ainit method?) it allocates a 400 by 400 array of integers
all initially set to 0. Change thpaint method so that it just displays colours as
recorded in this array, and have a separate thread thatr(gutes values to go in
the array and (b) usespaint at the end of each of its resolution cycles to bring
make sure that the screen is brought fully up to date then obfextive here is to
arrange that each pixel is only calculated once and thatttieysint method is

a lot quicker.

Further extension of this code would add mouse support 4qdka start) a
mouse click would cause the display to re-centre at the teelqmint and start
drawing again using half the previous range. Those of you gdtahat far are
liable to be able to design more flexible and convenient dsgen controls than
that, | expect!

Tickable exercise 7

Tick 5 was the largest single exercise. Tick 6 was a fairlyexsmple of getting
an Applet working. This final exercise is intended to be aosrably manageable
one to end off the series of Java practicals.

The illustration of network code that | gave represents ammahway of ac-
cessing a remote file.

1. Extend it so that it can be used as
java Webget URL destination

to fetch the contents of an arbitrary web document and stane the local
disc. If an explicit destination file is not specified your gram should
display the document fetched on the screen;

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 163

2. Investigate document types and encodings and try to gerdnat text doc-
uments are fetched as streams of characters while binagnteds come
across the net verbatim;

3. Optional: Some files on the web are of typeig ”, being compressed.
Java provides a set of library functions for uncompressuadiles. Use
it so that when aipped file is fetched the data that arrives locally is the
decompressed form of it.

4. Very optional: A javax.swing.JEditorPane can be set up so that it
renders (a subset of) HTML for you. Using this perhaps youd¢go a
significant way towards implementing your own light-weigigb browser
and you might only need a fairly modest amount of Java!

(End of tickable exercise)

Yet further network-related code

The parts of the Java libraries that
can fetch material from remote mag™ s
chines understand quite well that yo 5 ‘»n
will only occasionally be fetching =
raw text, and that fairly often the dat:
to be accessed will be a picture d
a sound. Investigate the docume
tation and sort out how to use theg
facilities. An image from a local
student-run web site is shown here
illustrate the usefulness of these fa
cilities. Further parts of the networ
classes allow you to detect (to so
extent) what sort of data is about t
be fetched from a web location s
that different sorts of data can each
be handled in the most appropriat
manner.
If you could write code that lo-
cated words enclosed in angle brack-_.
ets within text, and lay text out in a Figure 4.8:www.arthurnorman.org !
window in such a way that you could
tell which word was the subject of a mouse click you might fiodigself half-way
to writing your very own web browser!

164 CHAPTER 4. BASIC USE OF JAVA

A minimal text editor

The menu example already allows you to re-position the cwasd type in extra
text. |1 have shown how to identify files to be loaded and savédw TextArea
class provides methods that would implement cut and pastallRhese together
to get a notepad-style editor.

More Fonts

The Unicode example showed that it is easy to select which Java uses to

paint characters. The clasntMetrics then provides methods that allow you
to obtain very detailed measurements of both individuatattars and rows of

them. Using all this you can get rather fine control over Visygpearance. Using

however many of few of these facilities you like create a Jgyalet that displays

the wordIATEX in something like the curious layout that the designers af th
text-formatting program like to see.

Two flasks

This was a puzzle that | found in one of the huge anthologiemathematical
oddities:

An apothecary has two spherical flasks, which between thédnexe
actly 9 measures of fluid. He explains this to his friend théh®ia-
gician, and adds that the glass-blower who makes his flasksaée
them perfectly spherical but will only make flasks whose ditenis

an exact rational number. The mathemagician looks unirspoeand
says that the two flasks obviously have diameters 1 and 2,e3p0 th
volume is proportional to 3+ 23 = 9. Hmmm says the apothecary,
thatwouldhave worked, but | already had a pair like that. This pair of
flasks has exactly the same total capacity, still has lineaedsions
that are exact fractions but the neither flask has diameter 1.

Find a size that the smaller of his two flasks might have had.

This is clearly asking for positive solutions 18+ y® = 9 with the solution
being a neat fraction. In an earlier exercise you were iovitewrite a class to
handle fractions. Before continuing with this one you milijke¢ to ensure that
you have a version of it that us@®iginteger just to be certain that overflow
will not scupper you.

Here is an attack you can make on the problem. We are intdregsselutions
to x3+y3 = 9 and know an initial solutior= 1,y = 2. Imagine the cubic equation
drawn as a graph (I know it is an implicit equation, so for nowill be happy if

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 165

you imagine that there is a graph and do not worry about dgtdiiwing it!). The
point (1,2) lies on the curve. Draw the tangent to the cur@ &). This straight
line will have an equation of the forix + my+ n = 0 for somel, mandn which
you can find after you have done a little differentiation. Nawnsider where the
straight line meets the curve. If one eliminatetletween the two equations the
result is a cubic irx, but we know thak = 1 is one solution (because the curve
and line meet there). In fact because the line is a tangefhetaurve that is a
double solution, and thus the cubic we had will necessaaiera factofx — 1)2.
If you divide that out you get Bnear equation that gives you theco-ordinate of
the other place where the tangent crosses the curve. Salvartt substitute into
the line equation to find the corresponding valug.ofhe pairx, y were found by
solving what were in the end only linear equations, and satimebers must be at
worst fractions. This has therefore given another ratipoait on the cubic curve.
What you get there is not a solution to the problem as posade ©ine ofx and
y will end up negative. But maybe if you take a tangent at the peint that will
lead you to a third possibility and perhaps following thisipgou will eventually
manage to find a solution that is both rational and where bothponents are
positive.

Write code to try this out, and produce the tidiest fractlswution to the
original puzzle that you can, ie the one with smallest dematoirs.

166 CHAPTER 4. BASIC USE OF JAVA

A member of the audience checking ¢
detailed point with the lecturer at the
end of a session.

Figure 4.9: Odds and Ends follow: watch what the lecturepleap to cover.

Chapter 5

Designing and testing programs in
Java

At this stage in the “Programming in Java” course | will startoncentrate more
on the “programming” part than the “Java”. This is on the b#isat you have now
seen most of the Java syntax and a representative samplihg bbraries: now
the biggest challenge is how to use the language with cordedend competence.

In parallel with this course you get other onesSwftware Engineeringrhese
present several major issues. One is that errors in softvearbave serious conse-
guences, up to and including loss of life and the collapsasiitesses. Another is
that the construction of large computer-related produdtsrwolve teams of pro-
grammers working to build and support software over manysyead this raises
problems not apparent to an individual programmer workim@@rivate project.
A third is that formal methods can be used when defining amphga project to
build a stable base for it to grow on, and this can be a grept fidle emphasis is
on programming in the large, which is what the term “Softwangineering” is
usually taken to have at its core. Overall the emphasis igcognition of the full
life-time costs associated with software and the managestetegies that might
keep these costs under control.

The remaining section of this Java course complements #appctive and
looks at the job of one person or a rather small group, workimgvhat may well
be a software component or a medium sized program ratheotharmega-scale
product. The intent of this part of the course is to collegetiher and emphasise
some of the issues that lie behind the skill of programmingo@programmers
will probably use many of the techniques mentioned hereawitbeing especially
aware of what they are doing, but for everybody (even the mxqetrienced) it can
be very useful to bring these ideas out into the open. It sed@as to me that all
computer science professionals should gain a solid grognzhrrying out small
projects before they actually embark on larger ones, evaungtin a vision of what

167

168 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

will be needed in big projects help shape attitudes and siabit

It is at least a myth current in the Computer Laboratory thasé who intend
to become (mechanical) engineers have as an early partiotrdiaing an exer-
cise where they fashion a simple cube of solid metal, and @dheyudged on the
accuracy of their work. Such an activity can be part of bmggihem into direct
touch with the materials that they will later be working withmore elaborate
contexts. It gets them to build experience with tools antitegues (including
those of measurement and assessment). Programming inalleeamserve simi-
lar important purposes for those who will go on to develogéssoftware systems:
even when large projects introduce extra levels of comipinand risk the design
issues discussed here remain vital.

One of the major views | would like to bring to the art (or crait science, or
engineering discipline, depending on how one likes to ladadk @f programming
is an awareness of the value of an idea described by Georgell@nvhis book
“1984". This isdoublethinkthe ability to believe two contradictory ideas without
becoming confused. Of course one of the original pillarsafldethink was the
useful preceptgnorance is Strengthout collections of views specifically about
the process of constructing programs. These notes will aabout the rest of
the association of computers with surveillance, NewSpea#stioer efficiency-
enhancing ideas. The potentially conflicting views aboogpamming that | want
to push relate to the prospect of a project succeeding. Tkgép in your minds
both the ided@rogramming is incredibly difficult and this program willver work
correctly: 1 am going to have to spend utterly hopeless aggag to coax it
into passing even the most minimal test camas its optimistic other face, which
claims cheerfullyin a couple of days | can crack the core of this problem, and
then it will only take me another few to finish off all the ditaiThese days even
young children can all write program3 he concise way to express this particular
piece of doublethink (and please remember that you realre ba believe both
part, for without the first you will make a total botch of eviring, while without
the second you will be too paralysed ever to start actuahepdis

Writing programs is easy.

A rather closely related bit of doublethink alludes bothhe joy of achieve-
ment when a program appears to partially work and the simedtas bitter way in
which work with computers persistently fail. Computerswhg our imperfec-
tions and frailties, which range through unwillingnessead specifications via
inability to think straight all the way to incompetence inmaenechanical typing
skills. The short-hand for the pleasure that comes fromodigng one of your
own mistakes, and having spent many frustrating hoursitngakown something
that is essentially trivial comes out as

169

Writing programs is fun.

A further thing that will be curious about my presentatiorthat it does not
present universal and provable absolute truths. It is muetenn the style of
collected good advice. Some of this is based on direct expee, other parts has
emerged as an often-unstated collective view of those whé& width computers.
There are rather fewer books covering this subject than htriigve expected.
There is a very long reading list posted regularly ammp.software-eng :
but most of it clearly assumes that by the time things get dimsactually writing
programs the reader will know from experience what to do pdeshe fact that it
is more concerned with team-work rather than individuabgpaonming | want to
direct you towardshe Mythical Man Mont[v], if only for the cover illustration of
the La Brea Tar Pitswith the vision that programmers can become trapped just as

Figure 5.1: The La Brea tar pits.

the Ice Age mammoths and so on were. Brooks worked for IBMiat@that they
were breaking ground with the ambitious nature of their apeg systems. The
analogous Microsoft experience is more up to date and caoulfin\Writing

1You may not be aware that the tar pits are in the middle of acinghly built-up part of
Los Angeles, and when visiting them you can try to imagine esafthe local school-children
venturing too far and getting bogged down, thus luring tFeanilies, out for a week-end picnic,
to a sticky doom.

170 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

Solid Cod¢§18] which gives lots of advice that is clearly good way odésthe
context of porting Excel between Windows and the Macintd$tyou read the
Solid Code book you will observe that it is concerned almastely with C, and
its examples of horrors are often conditioned by that. Yaausththerefore let it
prompt you into thinking hard about where Java has made difershan C and
where it has introduced new and different potential pifall

For looking at programming tasks that are fairly algoritbmni style the book
by Dijkstra[10] is both challenging and a landmark. There glaces where peo-
ple have collected together some of the especially neatlamdrdittle programs
they have come across, and many of these indeed contairodiegsons that may
be re-cyclable. Such examples have come to be referred peeads”[4][5]. Once
one has worked out what program needs to be written ideasfaowuch in the
mainstream that this book is perhaps now out of date) canl&fo one of the
big presentations by some of the early proponents of stredgorogramming[19].
Stepping back and looking at the programming process wiibwa to estimating
programmer productivity and the reliability of the end pwot] Halstead[14] in-
troduced some interesting sorts of software metrics, whiagmty years on are
still not completely free of controversy. All these stilale me feeling that there
is a gap between books that describe the specific detail oftnage one particular
programming language, and those concerned with large softlgare engineer-
ing and project management. To date this gap has generaiyfbled by an ap-
prentice system where trainee programmers are invited t& wo progressively
larger exercises and their output is graded and commentég treir superiors.
Much like it is done here! With this course | can at least pdeveome back-
ground thoughts that might help the apprentices start an pinegression a little
more smoothly.

When | started planning a course covering this material & wat quite ob-
vious how much there was going to be for me to say that avoideiiations of
the blindingly obvious and that was also reasonably gelyeaplplicable. As |
started on the notes it became clear that there are actuédlycd points to be
covered. To keep within the number of lectures that | havetan@strict these
notes to a manageable bulk | am therefore restricting mysatly) to listing
points for consideration and giving as concrete and expkciommendations as |
can: | am not including worked examples or lots of anecddtasitiustrate how
badly things can go wrong when people set about tasks in wntinged ways.
But perhaps | can suggest that as you read this document yaginmit expanded
into a very much longer presentation with all that additiswpoporting material
and with a few exercises at the end of each section. You cartlalsk about all
the points that | raise in the context of the various programgraxercises that you
are set or other practical work that you are involved with.

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 171

5.1 Different sorts of programming tasks

Java experience illustrates very clearly that there areraévery different sorts of
activity all of which are informally refereed to as “prograrmg”. On style of use
of Java — of great commercial importance — involves undaditay all of the
libraries and stringing together uses of them to implemsst interfaces and to
move data around. In such cases the focus is entirely oniérglthe libraries,
on human factors and on ensuring that the code’s behavioaeagvith the man-
ual or on-line documentation that its users will work fromt axother extreme
come tasks that involve the design of many new data-strestaind algorithmic
innovations in their use. Often in this second style of pangithere will also be
significant concern over efficiency.

Given that there are different sorts of software it might éasonable to start
with a classification of possible sorts of program. Theretlree ways in which
this may help with development:

1. Different sorts of computer systems are not all equalbyda build. For
instance industrial experience has shown repeatedlytbatdanstruction of
(eg) an operating system is very much harder than buildirggaig eg) a
compiler even when the initial specifications and the amoficbde to be
written seem very similar. Thinking about the category mtoch your par-
ticular problem falls can help you to plan time-scales aretlfot possible
areas of difficulty;

2. The way you go about a project can depend critically on seeng high
level aspects of the task. A fuller list of possibilities iven below, but
two extreme cases might be (a) a software component forsimiun a
safety-critical part of an aero-space application, wheneetbpment budget
and timescale are subservient to an over-riding requir¢foemeliability,
and (b) a small program being written for fun as a first expentwith a
new programming language, where the program will be rungaste and
nothing of any real important hands on the results. It woedibly to carry
forward either of the above two tasks using a mind-set tunetie¢ other:
knowing where one is on the spectrum between can help malsekbetion
of methodology and tools more rational;

3. I will make a point in these notes that program developmenbt some-
thing to be done in an isolated cell. It involves discussdeps and progress
with others and becoming aware of relevant prior art. Thmgkabout the
broad area in which your work lies can help you focus on theuess
worth investigating. Often some of these will not be at aka@fpc to the

172

CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

immediate description of what you are suppose to achieveniduton-
cerned with very general areas such as rapid prototypingyebvalidation,
real-time responsiveness, user interfaces or whatever.

| will give my list of possible project attributes. These anegeneral not
mutually exclusive, and in all real cases one will find thasth are not yes—no
choices but more like items to be scored from 1 to 10. | woute o think
of them as forming an initial survey that you should condwefobe starting any
detailed work on your program just to set it in context. Whew yind one or
two of these scoring 9 or 10 out of 10 for relevance you know lyaxe identified
something important that ought to influence how you appralelwork. If you
find a project scores highly dots of these items then you might consider trying
to wriggle out of having to take responsibility for it, sintigere is a significant
chance that it will be a disaster! The list here identifieeptal issues, but does
not discuss ways of resolving them: in many cases the prigattres identified
here will just tell you which of the later sections in theseasoare liable to be the
more important ones for your particular piece of work. Theditog in each of
my descriptions will be intended to give some flavour of reeverenstances of
the issue being discussed can cause trouble, so keep dhesrduse usually you
will not be plunging in at the really deep end of the pool.

lll-defined One of the most common and hardest situations to face up tbesw

a computer project is not clearly specified. | am going to thke case to
include ones where there appears to be a detailed and pspeisiication
document but on close inspection the requirements as writtsvn boil

down to “I don’t know much about computer systems but | knowatvh
like, so write me a program that | will like, please.” Cleatie first thing to

do in such a case is to schedule a sub-project that has theftabkaining a
clear and concise description of what is really required, sometimes this
will of itself be a substantial challenge;

Safety-critical Itis presumably obvious that safety-critical applicasareed ex-

ceptional thought and effort put into their validation. Blis need for reli-
ability is far from an all-or-nothing one, in that the repiida of a software
house (or indeed the grades obtained by a student) may depestsuring
that systems run correctly at least most of the time, andttiet failure
modes appear to the user to be reasonable and soft. At theextineme
it is worth noting that in cases where robustness of code almbility of

results are not important at all (as can sometimes be the daspite this
seeming unreasonable) that fact can be exploited to giveltloée project a
much lighter structure and sometimes to make everythingwerch easier
to achieve. A useful question to ask is “Does this programehawvork

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 173

correctly inall circumstances, or does it just need to workiastcommon
cases, or indeed might it be sufficient to make it work in st carefully
chosen case?”

Large Itis well established that as the size of a programming taskeases the
amount of work that goes into it grows much more rapidly tHenrtumber
of lines of code (or whatever other simple measurement &) tioes. At
various levels of task size it becomes necessary to integugject teams,
extra layers of formal management and in general to move &way any
pretence that any single individual will have a full undargting of the
whole effort. If your task and the associated time-scalidmaa team of
40 programmers and you try it on your own maybe you will haveodilty
finishing it off! Estimating the exact size that a programlwitd up or just
how long it will take to write is of course very hard, but idéying whether
it can be done by one smart programmer in a month or if it is atddgn
project for five years is a much less difficult call to make.

Shifting sands If either project requirements or resources can changeegbii-
ware development is under way then this fact needs to beatidar. Proba-
ble only a tiny minority of real projects will be immune fromms sort of dis-
traction, since even for apparently well-specified tasks guite usual that
experience with the working version of the program will leadwouldn’t
it be niceif ...” ideas emerging even in the face of carefdigcussed and
thought out early design decisions that the options nowesiga would not
be supportable. Remember that Shifting Sands easily ttoiar Pits!

ﬁ’f’j /7

wivadlh AAMMM(EA

“'“‘v‘t

Figure 5.2: The museum frieze at La Brea.

Urgent When are you expected to get this piece of work done? How firtinas
deadline? If time constraints (including the way that thigjgct will com-
pete with other things you are supposed to do) representd ehallenge it

174 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

is best to notice that early on. Note that if, while doing fitesting on your
code, you find that it has a bug in it there may be no guarantgg/tiu can

isolate or fix this to any pre-specified time-scale. This isduse (at least
for most people!) there is hardly any limit to the subtletyboigs and the
amount of time and re-work needed to remove them. If the eelidate

for code is going to be rigidly enforced (as is the case witd @Bal year

projects!) this fact may be important: even if there is pjeoitthe project

as a whole a rigid deadline can make it suddenly become uage¢hé last

minute;

Unrealistic Itis quite easy to write a project specification that souramtsig but is
not grounded in the real world. A program that modelled tlelsmarkets
and thereby allowed you to predict how to manage your pootfol one to
predict winning numbers in the national lottery, or one tayplvorld-class
chess...Now of course there are programs that play chetdg wedl, and
lots of people have made money out of the other two projentsrfe case
the statistics that one might applynsucheasier than the other!), but the
desirability of the finished program can astonishingly oiéind one to the
difficulties that would arise in trying to achieve it. In soroa&ses a project
might be achievable in principle but is beyond either todagthnology or
this week’s budget, while in other cases the idea being densd might not
even realistic given unlimited budget and time-scales.r&lage of course
places where near-unreasonable big ideas can have a vegblabpart to
play: in a research laboratory a vision of one of these (atiyeunrealis-
tic goals can provide direction to the various smaller antiebeontained
projects that each take tiny steps towards the ideal. Aeptany favourite
example of something like this is the ideananotechnologwith armies of
molecular-scale robots working together to build their dvars and suc-
cessors. The standard example of a real project that manst?neealistic
observers judged to be utterly infeasible was the “Star Watraitegic De-
fence Initiative, but note that at that sort of level the pcdil impact of
even starting a project may be at least as important as delfe working
product!

Multi-platform Itis a luxury if a program only has to work on a single fixed com-
puter system. Especially as projects become larger thetdbs&antial extra
effort required to keep them able to work smoothly on manfedént sys-
tems. This problem can show up with simple issues such as-leagths,
byte-arrangements in memory and compiler eccentricitiesit gets much
worse as one looks at windowed user interfaces, multi-nfadiztions, net-
work drivers and support for special extra plug-in hardware

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 175

Long life-time The easiest sort of program gets written one afternoon and is
thrown away the next day. It does not carry any serious lengrisupport
concerns with it. However other programs (sometimes sitllally written
in little more than an afternoon) end up becoming part of yJiderand get
themselves worked and re-worked every few years. In my ¢tesprogram
| have that has the longest history was written in around If/ortran,
based on me having seen one of that year’s Diploma dissarsaéind hav-
ing (partly unreasonably) convinced myself | could do beffbe code was
developed on Titan, the then University main machine. | ibtkthe USA
with me when | spent a year there and tried to remove the lasbigys and
make it look nicer. When the University moved up to an IBM nficame |
ran it on that, and at a much later stage | translated it (setonaatically)
into BBC basic and ran it (very slowly) on a BBC micro. By lasiy | had
the code in C with significant parts of the middle of it totaigswritten, but
with still those last few bugs to find ways of working arounfll had been
able to predict when | started how long this would be of irdete me for
maybe | would have tried harder to get it right first time! Ndte radical
changes in available hardware and sensible programmiggé#aye over the
lifetime of this program;

User interface For programs like modern word processors there is a realcehan
that almost all of the effort and a very large proportion & tdode will go
into supporting the fancy user interface, and trying to milkes helpful
and intuitive as possible. Actually storing and editing teet could well
be fairly straight forward. When the smoothness of a usearfate is a
serious priority for a project then the challenge of definexgctly what
must happen is almost certainly severe too, and in signtfisasjects will
involve putting test users in special usability laborasnwvhere their eye-
movement can be tracked by cameras and their key-strokelsecimed.
The fact that an interface provides lots of windows and polivn menus
does not automatically make it easy to use;

Diverse usersMany commercial applications need to satisfy multiple aseith
diverse needs as part of a single coherent system. This ¢andeto new
computer systems that need to interwork seamlessly withipheiexisting
operational procedures, including existing computer pgek. Some users
may be nervous of the new technology, while others may fing&size
explanation an offensive waste of their time. The largertheber of in-
terfaces needed and the wider the range of expectationsttertt will be
to make a complete system deliver total satisfaction;

Speed critical Increasingly these days it makes sense to buy a faster cemiput

176 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

‘{‘, -'
e code clarity |®

ance can leave
you on the hofns of a dilemma.

Figure 5.3: The search for speed can lead to eccentricfigokisults.

some task seems to take a little longer than is comfortabbsveder there
remain some areas where absolute performance is a seisoesasd where
getting the very best out of fixed hardware resources canagoaampetitive
edge. The case most in my mind at present is that of (high kgcencryp-

tion, where the calculations needed are fairly demandirigMnere there
is real interest in keeping some control over the extra hardwosts that
user are expected to incur. If speed requirements lead @ foeesignifi-

cant assembly code programming (or almost equivalentlieéodesign of
task-specific silicon) then the resource requirements abgept can jump

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 177

dramatically. If in the other hand speed is of no importartcaldor some
task it may become possible to use a higher level programsystem,
simpler data structures and algorithms and generally shug@ amount of
aggravation;

Real time Real-time responsiveness is characteristic of many cbapplica-
tions. It demands that certain external events be given@onse within
a pre-specified interval. At first this sounds like a variamtasks that are
just speed-critical, but the fine granularity at which perfance is spec-
ified tends to influence the entire shape of software proj@atsrule out
some otherwise sensible approaches. Some multi-mediaapmhs and
video games will score highly in this category, as will elggmanagement
software for cars and flight control software for airports;

Memory critical A programming task can be made much harder if you are tight
on memory. The very idea of being memory-limited can fed sihen we
all know that it is easy to go out and buy another 64 Mbytesdarrently)
of the order off50°. But the computer in your cell-phone will have an
amount of memory selected on the basis of a painful compbesveen
cost (measured in pennies), the power drain that the aiycpiits on the
battery (and hence the expected battery life) and the setatdifes that can
be supported. And the software developers are probablytgezenemory
budget as a fixed quantity and invited to support as long aflifatures as
is at all possible within it;

Add-on A completely fresh piece of software is entitled to defineats file
formats and conventions and can generally be designed alabviathout
too much hindrance. But next year the extension to that mailgiackage
is needed, or the new program is one that has to work gragefitth data
from other people’s programs. When building an add-on igisfully often
the case that the existing software base is not very wellmected, and that
the attempted new use of it reveals previously unknown bugjsgations
in the core system. Thus the effort that will need to be put the second
package may be much greater than would have been predicted loa
experience from the first;

Embedded If the computer you are going to program is one in an elecgg-e
timer (or maybe a toy racing car, or an X-ray scanner) thetinggsnay
involve be a quite different experience from that you becosed to when

2Last year these notes indicates 16 Mbytesffs®! | may have rounded prices up and down
somewhat but still. ..

178 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

debugging ordinary applications that run on standard vebakions. In par-
ticular it may become necessary to become something of agrteixpthe
hardware and electronics and also in the application are¢heoBystem
within which your code will be placed;

Tool-weak environment This is a follow-on from the “embedded” heading, in
that it is perhaps easiest the envisage an electric popagpetowhere any-
thing that slowed down or enlarged the code being run woulthgesystem
timing enough to burn the toast, and where the target haelisarot auto-
matically equipped with printers and flashing lights that ba used to help
sense what is going on inside its CPU. For some such caseposgble
to buy or build real-time emulators or to wire in extra prob@s a debug-
gable version of the hardware. There are other cases whbex &achnol-
ogy or budget mean that program development has to be doheawgibw
turn-around on testing and with only very limited ability descover what
happened when a bug surfaced. Itis incredibly easy to stmalach a tool-
weak environment for yourself by just avoiding the effors@sated with
becoming familiar with automated testing tools, debuggesthe like;

Novel One of the best and safest ways of knowing that a task is fleaisitio
observe that somebody else did it before, and their versasavleast more
or less satisfactory. The next best way is to observe thahd¢wetask is
really rather similar to one that was carried out succelysifuthe past. This
clearly leads to the obvious observation that if somethsrigeing attempted
and there are no precedents to rely on then it becomes musértiapredict
how well things will work out, and the chances of nasty suegsiincreases
substantially.

There are two sort of program not listed above which desgrgeial mention.
The first is the implementation of a known algorithm. Thislwgually end up as
a package or a subroutine rather than a complete free-stapthgram, and there
are plenty of algorithms that are complicated enough thagq@mming them is
a severe challenge. However the availability of a clearetaagd well specified
direction will often make such programming tasks relagiehctable. It is how-
ever important to distinguish between programming up a dete@nd known
algorithm (easyish) from developing and then implemenéngew one, and un-
comfortably often things that we informally describe asoaidnms are in fact just
strategies, and lots of difficult and inventive fine detas ba be filled into make
them realistic.

The second special sort of programis the little throw-awag, @and the recog-
nition that such programs can be lashed together reallyafaswvithout any fuss

5.2. ANALYSIS AND DESCRIPTION OF THE OBJECTIVE 179

is important, since it can allow one to automate other pdrtseprogram devel-
opment task through strategic use of such bits of jiffy code.

5.2 Analysis and description of the objective

Sometimes a programming task starts with you being predevit a complete,

precise and coherent explanation of exactly what has to hievased. When this
is couched in language so precise that there is not possthibt dbout what is
required you might like to ask why you are being asked to dahang, since

almost all you need to do is to transcribe the specificatitmtime particular syntax
of the (specified) programming language. Several of thelRditkable problems
come fairly close to this pattern, and there the reason yewasked to do them
is exactly so you get practical experience with the syntathefgiven language
and the practical details of presenting programs to the coenpBut that hardly
counts as serious programming!

Assuming that we are not in one of these artificial cases, meisessary to
think about what one should expect to find in a specificatiah\@hat does not
belong there. It is useful to discuss the sorts of languagd us specifications,
and to consider who will end up taking prime responsibildy éverything being
correct.

A place to start is with the observation that a specificatiooutd describe
what is wanted, rather than how the desired effect is to bieaett. This ideal can
be followed up rather rapidly by the observation that it iofamazingly difficult
to know what is really wanted, and usually quite a lot of intpat aspects of
the full list of requirements will be left implicit or as itesrwhere you have to
apply your own judgement. This is where it is useful to thikkto the previous
section and decide what style of project was liable to benohee and where the
main pressure points are liable to be.

5.2.1 Important Questions

| have already given a check-list that should help work ouatngeneral class of
problem you are facing. The next stage is to try to identifg aoncentrate on
areas of uncertainty in your understanding of what has todoe dFurthermore
initial effort ought to go into understanding aspects ofpheblem that are liable
to shape the whole project: there is no point in agonising cesmetic details
until the big picture has become clear. Probably the bestoagrting this out is
to imagine that some magic wand has been waved and it hasrednjp a body
of code and documentation that (if the fairy really was a good!) probably
does everything you need. However as a hard-headed antlystighical person

180 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

you need to check it first. Deciding what you are going to looktb see if the
submitted work actually satisfied the project’s needs cagda make explicit a
lot of the previously slightly woolly expectations you migtave. This viewpoint
moves you from the initial statement “The program must aeh’ a little closer

to “I must end up convinced that the program achieves X and isehe basis for
how that conviction might be carried”. Other things that htigpor indeed might
not) reveal themselves at this stage are:

1. Is user documentation needed, and if so how detailed xp&ated to be?
Is there any guess for how bulky the user manual will be?

2. How formal should documentation of the inner workingshaf tode be?

3. Was the implementation language to be used pre-speafiedf not what
aspects of the problem or environment are relevant to theeho

4. Is the initial specification a water-tight one or does thplementer have to
make detailed design decisions along the way?

With regard to choice of programming language note thatenged from stud-
ies that have watched the behaviour of real programmersestg)that to a good
first approximation it is possible to deliver the same nundfdmes of working
documented code per week almost whatever language it isewi. A very
striking consequence of this is that languages that areaiBtaoncise and which
provide built-in support for more of the high-level thingswwant to do can give
major boosts to productivity.

The object of all this thought is to lead to a proper specificabf the task.
Depending on circumstances this may take one of a numberssfige forms:

5.2.2 Informal specifications

Documents written in English, however pedantically phdaaed however volu-
minous, must be viewed as informal specifications. Thoselvelve a lot of spare
time might try reading the original description of the lange C[16] where Ap-
pendix A is called a reference manual and might be expectedrtoa useful basis
for fresh implementations of the language. Superficiallgaks pretty good, but
it is only when you examine the careful (though still “infaathin the current
context) description in the official ANSI standard[22] thiabecomes clear just
how much is left unsaid in the first document. Note that ANSE@at the same
language as that defined by Kernighan and Ritchie, and savthddcuments just
mentioned can not be compared quite directly, and also beeathat spotting
and making clear places where specifications written in iEhglre not precise

5.2. ANALYSIS AND DESCRIPTION OF THE OBJECTIVE 181

is a great skill, and one that some people enjoy exercising tian others do!
The description in section 5.18 is another rather more meadalg example of an
informal textual specification. When you get to it you migkelto check to see
what it tells you what to do about tabs and back-spaces, vdreklearly charac-
ters that have an effect on horizontal layout. What? It failsnention them? Oh
dear!

5.2.3 Formal descriptions

One response to the fact that almost all informal speciboatiare riddled with
holes (not all of which will be important: for instance it nhigbe taken as under-
stood by all that messages that are printed so that they ibekéntences should
be properly spelt and punctuated) has been to look for waysiafy formal de-
scription languages. The ZED language (developed at Okfamt sometimes
written as just Z) is one such and has at times been taughtfiw&e Engineer-
ing courses here. The group concerned with the developnhém tanguage ML
were keen to use formal mathematically-styled descriptie¢hods to define ex-
actly what ML ought to do in all possible circumstances. Late in the CST
there are whole lecture courses on Specification and Vdidicand so | am not
going to give any examples here, but will content myself byevling that a good
grounding in discrete mathematics is an absolute pre-sgquior anybody think-
ing of working this way.

5.2.4 Executable specifications

One group of formal specification enthusiasts went off anclbped ever more
powerful mathematical notations to help them describestaskother group ob-
served that sometimes a careful description of what mustch&wed looks a
bit like a program in a super-compact super-high-level paogning language.
It may not look like a realistic program, in that it may omitdoof explana-
tion about how objectives should be achieved and espediallythey should be
achieved reasonably efficiently. This leads to the idea ab@tutable specifica-
tion, through building an implementation of the specificatiamgaage. This will
permitted to run amazingly slowly, and its users will be ameged to go all out
for clarity and correctness. To give a small idea of whatthight entail, consider
the job of specifying a procedure to sort some data. Thealriitformal spec-
ification might be that the output should be a re-orderinghef input such that
the values in the output be in non-descending order. An eéabtispecification
might consist of three components. The first would creatst afiall the different

Shttp://www.comlab.ox.ac.uk/oucl/prg.html

182 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

permutations of the input. The second would be a procedurepect a list and
check to see if its elements were in non-descending ordee.fifilal part would
compose these to generate all permutations then scan thtbbeign one at a time
and return the first non-descending one found. This woulde@t good practical
sorting algorithm, but could provide a basis for very traargmt demonstrations
that the process shown did achieve the desired goal! It dimitemembered that
an executable specification needs to be treated as suchotasiamodel for how
the eventual implementation will work. A danger with theheijue is that it is
quite easy for accidental or unimportant consequenceswtihe specification is
written to end up as part of the project requirements.

5.3 Ethical Considerations

Quite early on when considering a programming project yadrte take explicit
stack of any moral or ethical issues that it raises. Earhethe year you have
had more complete coverage of the problems of behaving ssiofeally, so here
| will just give a quick check-list of some of the things thaigit give cause for
concern:

1. Infringement of other people’s intellectual properghts, be they patents,
copyright or trade secrets. Some companies will at leasb foyevent others
from creating new programs that look too much like the oagjinWwhen
licensed software is being used the implications of thenseeagreement
may become relevant;

2. Responsibility to your employer or institution. It may that certain sorts
of work are contrary to local policy. For instance a companghthnot be
willing to permit its staff to politically motivated virtdaeality simulations
using company resources, and this University has viewstahewwcommer-
cial use of academic systems;

3. A computing professional has a responsibility to givedsiradvice to their
“customer” when asked about the reasonableness or fefysddil project,
and to avoid taking on work that they know they are not quaifedo;

4. It can be proper to take a considered stance against tredogevent of
systems that are liable to have a seriously negative impasboiety as a
whole. | have known some people who consider this reasondml any
involvement with military or defence-funded computing,ilglothers will
object to technology that seems especially liable to makeking, surveil-
lance or eavesdropping easier. Those of you with lurid imaigpns can no

5.4. HOW MUCH OF THE WORK HAS BEEN DONE ALREADY? 183

doubt envisage plenty more applications of computers thgitbe seen as
so undesirable that one should if necessary quit a job ratiaerwork on
them.

5.4 How much of the work has been done already?

The points that | have covered so far probably do not feeltheyf really help you

get started when faced with a hard-looking programming, talskough | believe
that working hard to make sure you really understand theifspston you are

faced with is in fact always a very valuable process. From nowards | move

closer to the concrete and visible parts of the programnaisig tThe first question
to ask here is “Do | actually have to do this or has it been daferb?”

There are three notable cases where something has beenefone lut it is
still necessary to do it again. Student exercises are omesét and undue reliance
on the efforts of your predecessors is gently discouragethefimes a problem
has been solved before, but a solution needs to be re-crnedtexiit reference to
the original version because the original is encumbereld amwkward commer-
cial® restrictions or is not locally available. The final causerBsimplementation
is if the previous version of the program concerned was ar@énd so much of a
mess that any attempt to rely on it would start the new pra@#at wrong-minded
directions.

Apart from these cases the best way to write any program & &l adopt,
adapt and improve as much existing technology as you carg damn range from
making the very second program that you ever write a vanatio that initial
“Hello World” example you were given through to exploitingigting large soft-
ware libraries. The material that can be reclaimed may beiagrras a bunch of
initial comments saying who you (the author) are and inclgdipace to describe
what the program does. It might just be some stylised “infstatements needed
at the head of almost any program you write. If you need a treetsire in today’s
program do you have one written last week which gives you #ia type defini-
tion and some of the basic operations on trees? Have you Weei@d with a
collection of nice neat sample programs (or do you have a bo@O ROM with
some) that can help? Many programming languages are patkagea fairly
extensive collection of chunks of sample code.

Most programming languages come with standardised lésdhiat (almost al-
ways) mean there is no need for you to write your own sorting@dure or code to
convert floating point values into or out of textual form. lany important areas

4Remember that if the restriction is in the form of a patenhthe amount of re-implementation
frees you from obligations to the patent-owner, and in othses you may need to be able to give a
very clear demonstration that your new version really hanhlmeeated completely independently.

184 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

there will be separate libraries that contain much much regtensive collections
of facilities. For instance numerical libraries (eg the dreen NAG) are where
you should look for code to solve sets of simultaneous egqoator to maximise
a messy function of several variables. When you need to imgh¢ a windowed
interface with pull-down menus and all that sort of stuff iag@ok to existing
library code to cope with much of the low-level detail for ydsimilarly for data
compression, arbitrary precision integer arithmetic,gmenanipulation. ..

Observing that there is a lot of existing support around dussmake the
problem of program construction go away: knowing what @xgstode is avail-
able is not always easy, and understanding both how to usd ivaat constraints
must be accepted if it is used can be quite a challenge. Famios with the NAG
(numerical) library it may take beginners quite a while vefthey discover that
EO4ACF (say, and not one of the other half-dozen closelyedleoutines) is the
name of the function they need to call and before they unaedsexactly what
arguments to pass to it.

As well as existing pre-written code (either in source ordity form) that
can help along with a new project there are also packageswiitat significant
bodies of code for you, basing what they do one on either a actrgescriptive
input file or interaction with the user through some cleveerface. The well-
established examples of this are the tg@sc andlex that provide a convenient
and reliable way of creating parsers. Current users of Maftts Visual C++
system will be aware of the so-called “Wizards” that it paes that help create
code to implement the user interface you want, and there thex commercial
program generators in this and a variety of business apjglicareas. To use one
of these you first have to know of its availability, and theartehow to drive it:
both of these may involve an investment of time, but with Itiet will be re-paid
with generous interest even on your first real use. In somescid® correct use
of a program generation tool is to accept its output ungiiyc while on other
occasions the proper view is to collect what it creates, ystu@nd eventually
adjust the generated code until you can take direct respibitysfor subsequent
support. Before deciding which to do you need to come to aguodnt about the
stability and reliability of the program generator and hdéeo you will need to
adjust your code by feeding fresh input in to the very start.

Another way in which existing code can be exploited is whew ©ede is
written so that it converts whatever input it accepts inwitiput format for some
existing package, one that solves a sufficiently relatedlpro that this makes
some sense. For instance it is quite common to make an eaplgnnentation
of a new programming language work by translating the neguage into some
existing one and then feeding the translated version intexeting compiler. For
early versions of ML the existing language was Lisp, while Modula 3 some
compilers work by converting the Modula 3 source into C. [@adimis may result

5.5. WHAT SKILLS AND KNOWLEDGE ARE AVAILABLE? 185

in a complete compiler that is slower and bulkier than migheowise be the case,
but it can greatly reduce the effort in building it.

5.5 What skills and knowledge are available?

Figure 5.4: Nancy Silverton’s bakery is in La Brea near thietts, and her book
(Bread from the La Brea Bakerjg unutterably wonderful. | like her chocolate-
cherry loaf. This photo is if the racks in her shop. Not muchwhlava | agree
but baking good bread is at least as important to know aboco@puting.

A balance needs to be drawn between working through a pragnagrproject
using only the techniques and tools that you already knowpaistiing it forward
using valuable but unfamiliar new methods. Doing somethieyy may slow you
down substantially, but an unwillingness to accept thdtrt@y lead to a very
pedestrian style of code development using only a limitedezof idioms. There
is a real possibility that short-term expediency can be mflazi with longer term
productivity. Examples where this may feel a strain include of formal meth-
ods, new programming languages and program generatios tbbé main point
to be got across here is that almost everything to do with etenp changes every
five years or so, and so all in the field need to invest some af dfffert in con-
tinual personal re-education so that their work does ndt too much as if it has
been chipped out using stone axes. The good news is thatightuetailed tech-
nology changes the skills associated with working througiigaificant project
should grow with experience, and the amount of existing dbdéan old hand
will have to pillage may be quite large, and so there is a measie prospect for
a long term future for those with skills in software designl @onstruction. Re-
member that all the books on Software Engineering tell usthieacompetence of

186 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

the people working on a project can make more differencestsutcess than any
other single factor.

It is useful to have a conscious policy of collecting knovgedabout what
can be done and where to find the fine grubby details. For exathplstandard
textbook[9] contains detailed recipes for solving all soot basic tasks. Only
rarely will any one of these be the whole of a program you needite, but quite
often a larger task will be able to exploit one or more of th@imese and many of
the other topics covered in the CST are there because tharkeast a chance that
they may occasionally be useful! It is much more importarkrtow what can be
done than how to do it, because th@wvcan always be looked up when you need
it.

5.6 Design of methods to achieve a goal

Perhaps the biggest single decision to be made when sténengdetailed design
of a program is where to begin. The concrete suggestions$itiidtide here are to
some extent caricatures; in reality few real projects willdw any of them totally
but all should be recognisable as strategies. The crusiadis that it will not be
possible to design or write the whole of a program at once sonecessary to
split the work into phases or chunks.

5.6.1 Top-Down Design

In Top Down Design work on a problem starts by writing a “pramf’ that is just
one line long. Its text is:

{ solveMyProblem(); }

where of course the detailed punctuation may be selectectonthe program-
ming language being used. At this stage it is quite reasertaliye very informal

about syntax. A next step will be to find some way of partitngnthe whole task
into components. Just how these components will be bromgbeixistence is at
present left in the air, however if we split things up in tooessonable a way we
will run into trouble later on. For many simple programs tlee@nd stage could
look rather like:

/+ My name, today’s date, purpose of program */
import Standard-libraries;
{

/ * declare variables here * [

data = readInData();
results = calculate(data);

5.6. DESIGN OF METHODS TO ACHIEVE A GOAL 187

displayResults(results);

}

The ideal is that the whole development of the program shtakd place in
baby-sized steps like this. At almost every stage therebeilh whole collection
of worrying-looking procedures that remain undefined antdysbthought about,
such asCalculate above. It is critical not to worry too much about these,
because each time a refinement is made although the numlessef tinresolved
problems may multiply the expected difficulty of each wildtee. Well it had
better, since all the ones that you introduce should be sacesteps towards
the solution of your whole original task, and it makes sewnsexpect parts to be
simpler than the whole.

After a rather few steps in the top-down development prooassshould ex-
pect to have a fully syntactically correct main program twét not need any
alterations later as the low level details of the procedthasit calls get sorted
out. And each of the components that remain to be implemestiedld have
a clearly understood purpose (for choice that should beesridown) and each
such component should be clearly separated from all thethEhat is not to
say that the component procedures might not call each othretyoon what they
each can do, but the internal details of any one componentigimot matter to
any other. This last point helps focus attention on intex§adn my tiny example
above the serious interfaces are represented by the \@sa#ih andresults
which pass information from one part of the design to the .n@xdrking out ex-
actly what must be captured in these interfaces would bergiyaeed to be done
fairly early on. After enough stages of elaboration the leftisover from top-down
design are liable to end up small enough that you just codua thpwithout need
to worry: anything that is trivial you code up, anything tlséil looks murky you
just apply one more expansion step to. With luck eventullyptrocess ends.

There are two significant worries about top-down design. s€hare “How
do I know how to split the main task up?” and “But | can't test oaee until
everything is finished!”. Both of these are proper concerns.

Splitting a big problem up involves finding a strategy forvaad) it. Even
though this can be quite hard, it is almost always easienvenina high-level idea
for how to solve a problem than it is to work through all theadlst and this is
what top-down programming is all about. In many cases skagobn a piece of
paper what you would do if you had to solve the problem by haathér than
by computer) can help. Quite often the partition of a probjem make may end
up leading your design into some uncomfortable dead endalcase you need
to look back and see which steps in your problem refinememéesepted places
where you had real choice and which ones were pretty mucltaide. It is then
necessary to go back to one of the stages where a choice wablpand to re-
think things in the light of your new understanding. To mdkis process sensible

188 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

you should refuse to give up fleshing out one particular versif a top-down
design until you are in a position to give a really clear erplion of why the
route you have taken represents failure, because with@auttiderstanding you
will not know how far back you need to go in the re-planning. ésexample
of what might go wrong, the code | sketched earlier here weuld up being
wrongly structured if user interaction was needed, andititataction might be
based on evaluation of partial results. To make that somteiface possible it
might be necessary to re-work the design as (say)

/+ My name, today’s date, purpose of program */
import Standard-libraries;
{

[* declare variables here */

/* set empty data and results */

while not finished do

{

extra = readlnMoreData();
if (endOfUserlnput(extra)) finished = true;
else

{

data = combine(data, extra);
results = upDateResults(results, data);
displaySomething(results);

}
}

displayFinalResults(results);

}

which is clearly getting messier! And furthermore my earéiad shorter version
looked generally valid for lots of tasks, while this one wibuleed careful extra
review depending on the exact for of user interaction resgliir

There is a huge amount to be said in favour of being able tatpsbgram as
it is built. Anybody who waits right to the end will have a dd#al mix of errors
at all possible levels of abstraction to try to disentaglefilst sight it seems that
top-down design precludes any early testing. This pessiigsiot well founded.
The main way out is to writstubsof code that fill in for all the parts of your
program that have not yet been written. A stub is a short amglsi piece of
code that takes the place of something that will later on belnmore messy. It
does whatever is necessary to simulate some minimal belatiat will make
it possible to test the code around it. Sometimes a stub wgtl print a warning
message and stop when it gets called! On other occasions ighémmake a stub
print out its parameters and wait for human interventiomhén reads something
back in, packages it up a bit and returns it as a result. Theahwassistant actually

5.6. DESIGN OF METHODS TO ACHIEVE A GOAL 189

did all the clever work.

There are two other attitudes to take to top-down design. @nkese is to
limit it to designrather than implementation. Just use it to define a skeletgles
for your code, and then make the coding and testing a se@iatdy. Obviously
this only makes sense when you have enough confidence thatyde sure that
the chunks left to be coded will in fact work out well. The finaéw is to think
of top-down design as an ideal to be retrofitted to any pra@ace it is complete.
Even if the real work on a project went in fits and starts witts lof false trails
and confusion, there is a very real chance that it can benaltsed afterwards and
explained top-down. If that is done then it is almost certhat a clear framework
has been built for anybody who needs to make future changés fmrogram.

5.6.2 Bottom-Up Implementation

Perhaps you are uncertain about exactly what your progrgaiing to do or how
it will solve its central problems. Perhaps you want to make ghat every line
of code you ever write is documented, tested and validatetk&bh before you
move on from it and certainly before you start relying on itellthese concerns
lead you towards a bottom-up development strategy. Thehdeais to identify
a collection of smallish bits of functionality that will (@lost) certainly be needed
as part of your complete program, and to start by implemgrtiase. This avoids
having to thing about the hard stuff for a while. For instaaceompiler-writer
might start by writing code to read in lines of program anccdis comments,
or to build up a list of all the variable names seen. Somebtatyisg to write a
word processor might begin with pattern-matching codeydaduse in search-
and-replace operations. In almost all large projects thezegoing to be quite a
few fundamental units of code that are obviously going to $eful regardless of
the high level structure you end up with.

The worry with bottom-up construction is that it does notespond to having
any overall vision of the final result. That makes it all toye&s end up with a
collection of ill-co-ordinated components that do not gdit together and that do
not really combine to solve the original problem. At the viegst | would suggest
a serious bout of top-down design effort be done before atpimeup work to
try to put an overall framework into place. There is also acfgospect that some
of the units created during bottom-up work may end up notdgegcessary after
all so the time spend on them was wasted.

An alternative way of thinking about bottom-up programmaag soften the
impact of these worries. It starts by viewing a programmanrgluage not just as a
collection of fragments of syntax, but as a range of waysrotstiring data and of
performing operations upon it. The fact that some of theseaiwns happen to be
hard-wired into the language (as integer arithmetic ugus)iwhile others exist as

190 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

collections of subroutines (floating point arithmetic o®8&ligit numbers would
normally be done that way) is of secondary importance. @eamed this way each
time you define a new data type or write a fresh procedure yoa &gended and
customised your programming language by giving it suppmrsbmething new.
Bottom-up programming can then be seen as gradually bgildiyer upon layer
of extra support into your language until it is rich in the cgg@®ns most important
in your problem area. Eventually one then hopes that the ttestkat first had
seemed daunting becomes just half a dozen lines in the eeddadguage. If
some of the procedures built along the way do not happen teée this time,
they may well come in handy the next time you have to write ay@m in the
same application area, so the work they consumed has nbt besn wasted
after all. The language Lisp is notable for having sustaenedlture based on this
idea of language extension.

5.6.3 Data Centred Programming

Both top-down and bottom-up programming tend to focus ontwhbar program

looks like and the way in which it is structured into proceskirAn alternative is
to concentrate not on the actions performed by the code btiteoway in which

data is represented and the history of transformationsatinabit of data will be

subject to. These days this idea is often considered almasngmous with an
Object Oriented approach where the overall design of tresdaucture for a pro-
gram is the most fundamental feature that it will have. Eaand pre-dating the
widespread use of Object Oriented languages) convincigignaents for design
based on the entities that a program must manipulate or nsoded from Jackson
Structured Programming and Design[8]. More recently SSABIMas probably

become one of the more widespread design and specificatitmodwogies for

commercial projects.

5.6.4 Iterative Refinement

My final strategy for organising the design of a complete paogdoes not even
expect to complete the job in one session. It starts by asiomgthe initial prob-
lem can be restricted or simplified to make it easier to addrédsd perhaps it
will spot how the most globally critical design decisions fbe whole program
could me made in two or three different ways, with it hard tbiteadvance which
would work out best in the end. The idea is then to start witthecfor a scruffy
mock-up of a watered down version of the desired prograngyast one of these
sets of design decisions. The time and effort needed to argeogram grows
much faster then linearly with the size of the program: theire (but less obvi-
ous) consequence of this is that writing a small program eanudch quicker and

5.7. HOW DO WE KNOW IT WILL WORK? 191

easier than completing the full version. It may in some casake sense even to
write several competing first sketches of the code. When theslketch version
is working it is possible to step back and evaluate it, to §&s overall shape is
sound. When it has been adjusted until it is structurallyesdy effort can go into
adding in missing features and generally upgrading it utréilentually gets trans-
formed into the beautiful butterfly that was really wanted alDthe methods that
| have described this is the one that comes closest to altpfein‘experimental”
programming. The discipline to adhere to is that experismnan¢ worthy of that
tag if the results from them can be evaluated and if somettanghus be learned
from them.

5.6.5 Which of the above is best?

The “best” technique for getting a program written will dageon its size as well
as its nature. | think that puritanical adherence to any@éthove would be unrea-
sonable, and | also believe that inspiration and experi¢mce good taste) have
important roles to play. However if pushed into an opinionill wote for present-
ing a design or a program (whether already finished or stilenrconstruction)
as if it were prepared top-down, with an emphasis on the aleyygn of what
information must be represented and where it must pass frenpart of the code
to another.

5.7 How do we know it will work?

Nobody should ever write a program unless they have goodndaselieve that
it ought to work. It is of course proper to recognise that il wot work, because
typographic errors and all sorts of oversights will enshieg.tBut the code should
have been written so that in slightly idealised world whéese accidental imper-
fections do not exist it would work perfectly. Blind and easiastic hope is not
sufficient to make programs behave well, and so any propéyreseds to have
lurking behind it the seeds of a correctness proof. In easgegtimes this can re-
main untended as little comments that can just remind yowof thinking. When
a program starts to get troublesome it can be worth growiageglftomments into
short essays that explain what identities are being predentact across regions
of code, why your loops are guaranteed to terminate and vasahaptions about
data are important, and why. In yet more demanding circumss&it can become
necessary to conduct formal validation procedures for code

The easiest advice to give here is that before you write ewahahdozen
lines of code you should write a short paragraph of commaattekplains what
the code is intended to achieve and why your method will w@rke comment

192 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

should usually not explaihow it works (the code itself is all about “how”), but
why. To try to show that | (at least sometimes!) follow this agviwere is a short
extract from one of my owhprograms. . .

/

Here is a short essay on the interaction between flags

and properties. It is written because the issue appears

to be delicate, especially in the face of a scheme that

| use to speed things up.

(@) If you use FLAG, REMFLAG and FLAGP with some
indicator then that indicator is known as a flag.

(b) If you use PUT, REMPROP and GET with an indicator
then what you have is a property.

(c) Providing the names of flags and properties are
disjoint no difficulty whatever should arise.

(d) If you use PLIST to gain direct access to property
lists then flags are visible as pairs (tag . t) and
properties as (tag . value).

(e) Using RPLACx operations on the result of PLIST may
cause system damage. It is considered illegal.
Also changes made that way may not be matched in
any accelerating caches that | keep.

(H After (FLAG ’(id) 'tag) [when id did not previously
have any flags or properties] a call (GET 'id ’'tag)
will return t.

(g) After (PUT 'id 'tag ’'thing) a call (FLAGP ’id
‘tag) will return t whatever the value of "thing".
A call (GET 'id 'tag) will return the saved value
(which might be nil). Thus FLAGP can be thought of
as a function that tests if a given property is
attached to a symbol.

(h) As a consequence of (g REMPROP and REMFLAG are
really the same operation.

* ok ok k% k% % kK ok Kk ok ok ok k ok * ok F * * *F % * K ok * ok *

~

Lisp_Object get(Lisp_Object a, Lisp_Object b)
{

Lisp_Object pl, prev, w, nil = C nil;

int n;
[*

5This happens to be written in C rather than Java, but since ofidisis comment maybe that
does not matter too much.

5.7. HOW DO WE KNOW IT WILL WORK? 193

* |In CSL mode plists are structured like association
* lists, and NOT as lists with alternate tags and values.
* There is also a bitmap that can provide a fast test for
* the presence of a property...
* [
if (!symbolp(a))
{
#ifdef RECORD_GET
record_get(b, NO);
errexit();
#endif
return onevalue(nil);

}

. etc etc

The exact details of what | am trying to do are not importan¢hleut the evidence
of mind-clearing so that there is a chance to get the codeciirst time is. Note
how little the comment before the procedure has to say abautdvel implemen-
tation details, but how much about specifications, assumgt@nd limitations.

| would note here that typing a program in is generally onenhefleast time-
consuming parts of the whole programming process, and ttegsedisc storage is
pretty cheap, and thus various reasons which in earliermayshave discouraged
layout and explanation in code no longer apply.

Before trying code and as a further check that it ought to vitaz&n be useful
to “walk through” the code. In other words to pretend to be impoter executing
it and see if you follow the paths and achieve the resultsytbatwere supposed
to. While doing this it can be valuable to think about whichhsathrough the
code are common and which are not, since when you get togastimy be that
the uncommon paths do not get exercised very much unlesaiespecial steps
to cause them to be activated.

The “correctness” that you will be looking for can be at sabeifferent lev-
els. Apartially correct program is one that can never give an incorrect answer.
This sounds pretty good until you recognise that there issach that it may just
get stuck in a loop and thereby never give any answer at afi!dinazingly often
much easier to justify that a program is partially correeirtho go the whole hog
and show it is correct, ie that not only is it partially corrbat that it will always
terminate. Beyond even the requirements of correctnesbevpperformance de-
mands: in some cases a program will need not only to delieright answers
but to meet some sort of resource budget. Especially if thiopeance target is
specified as being for performance that is good “on the aeéragan be dread-
fully hard to prove, and usually the only proper way to starby designing and
justifying algorithms way before any mention of actual prergming arises.

194 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

A final thing to check for is the possibility that your code danderailed by
unhelpful erroneous input. For instance significant séguroles in operating
systems have in the past been consequences of trusted moflatede being too
trusting of their input, and them getting caught out by (eguit lines so long that
internal buffers overflowed thereby corrupting adjacenada

The proper mind-set to settle in to while designing and istgutb implement
code is pretty paranoid: you want the code to deliver eitheoraect result or a
comprehensible diagnostic whenever anything imaginabés gvrong in either
the data presented to it or its own internal workings. Thst Eatement leads
to a concrete suggestion: make sure that the code can wétfaissanity and
correctness every so often and insert code that does justTtha assertions that
you insert will form part of your argument for why the prograsnsupposed to
work, and can help you (later on) debug when it does not.

5.8 While you are writing the program

Please remember to get up and walk around, to stretch, diarkypof water,
sit up straight and all the other things mentioned at theiegrDay as relevant
occupational health issues. My experience is that it isequoétrd to do effective
programming in 5 minute snippets, but that after a few hoarstant work pro-
ductivity decreases. A pernicious fact is that you may ndicechis decrease at
the time, in that the main way in which a programmer can beconpeoductive
is by putting more bugs into a program. Itis possible to kdeping out lines of
code all through the night, but there is a real chance thatrieyou will spend
afterwards trying to mend the last few of them will mean thatlbng session did
not really justify itself.

In contrast to programming where long sessions can do reahda (because
of the bugs that can be added by a tired programmer) | havetsnassfound that
long sessions have been the only way | can isolate bugs.d@mvVican discipline
myself not to try to correct anything but the very simplesty lvhile 1 am tired
a long stretch can let me chase bugs in a painstakingly Ibgiag, and this is
sometimes necessary when intuitive bug-spotting fails.

Thus my general advice about the concrete programming taskdwoe to
schedule your time so you can work in bursts of around an heusgssion, and
that you should plan your work so that as much as possible erfytving you
do can be tested fairly enthusiastically while it is frestyour mind. A natural
corollary of this advice is that projects should always lagtet in plenty of time,
and pushed forward consistently so that no last-minutecpzam arise and force
sub-optimal work habits.

5.9. DOCUMENTING A PROGRAM OR PROJECT 195

5.9 Documenting a program or project

Student assessed exercises are expected to be handed ileteowith a brief
report describing what has been done. Larger undergraguggts culminate in
the submission of a dissertation, as do PhD studies. All ceroial programming
activities are liable to need two distinct layers of docutagan: one for the user
and one for the people who will support and modify the prodndhe future.
All these facts serve to remind us that documentation is aimsic part of any
program.

Two overall rules can guide the writing of good documentatidhe first is
to consider the intended audience, and think about whatrieeg to know and
how your document can be structured to help them find it. Therskis to keep a
degree of consistency and order to everything: documenisargoherent overall
structure are both easier to update and to browse than sdtesfncratic jottings.

To help with the first of these, here are some potential stylegrite-up that
might be needed:

1. Comments within the code to remind yourself or somebody istalready
familiar with the program exactly what is going on at eacmpai it;

2. An overview of the internal structure and organisatiothefwhole program
so that somebody who does not already know it can start to fieid way
around,

3. Documentation intended to show how reliable a prograrcascentrating
on discussions of ways in which the code has been built todikergt in the
face of unusual combinations of circumstance;

4. Atechnical presentation of a program in a form suitabtgtdlication in a
journal or at a conference, where the audience will consigeople expert
in the general field but not aware of exactly what your contrdm is;

5. Anintroductory user manual, intended to make the progrsable even by
the very very nervous;

6. A user reference manual, documenting clearly and pigcdieof the op-
tions and facilities that are available;

7. On-line help for browsing by the user while they are tryiogise the pro-
gram;

8. A description of the program suitable for presentatioth®venture capi-
talists who are considering investing in the next stagesadévelopment.

196 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

It seems inevitable that the above list is not exhaustive nbuguess is that
most programs could be presented in any one of the given \@agshe resulting
document would be quite different in each case. It is not ¢im&t or the other of
these styles is inherently better or more important thanhempmore that if you
write the wrong version you will either not serve your reagetl! or you will find
that you have had to put much more effort into the documentdbian was really
justified.

A special problem about documentation is that of when it &hbe written.
For small projects at least it will almost always be produmely after the program
has been (at least nearly) finished. This can be rationdbgethiming “how can
| possibly document it before it exists?”

| will argue here for two ideals. The first is that documematought to fol-
low on from design and specification work, but precede dadgdrogramming.
The second is that the text of the documentation should lagety linked to the
developing source code. The reasoning behind the first gktiwethat writing
the text can really help to ensure that the specification @ttide has been fully
thought through, and once it is done it provides an invakigtdble reference to
keep the detailed programming on track. The second poingreses some sort
of realism, and that all sorts of details of just what a progi@oes will not be
resolved until quite late in the implementation processr iRstance the exact
wording of messages that are printed will often not be detig#il then, and it
will certainly be hard to prepare sample transcripts fromubke of the program
ahead of its completidh Thus when the documentation has been written early it
will need completing when some of these final details getesktind correcting
when the code is corrected or extended. The most plausibjeoivenaking it
feasible to keep code and description in step is to keep tbgethier. The con-
cept of Literate Programming[17] pursues this goal. A paongis represented as
a composite file that can be processed in (at least) two diftevays. One way
“‘compiles” it to create typeset-quality human readableutsioentation, while the
other leaves just statements in some quite ordinary pragiagilanguage ready
to be fed into a compiler. This goes beyond just having capmmments in the
code in two ways. Firstly it expects that the generated dasuation should be
able to exploit the full range of modern typography and thatan include pic-
tures or diagrams where relevant. It is supposed to end ufeaslyg presented
and readable as any fully free-standing document couldme8econdly Literate
Programming recognises that the ordering and layout of tbgram that has to
be compiled may not be the same as that in the ideal manuascatie disentan-
gling tool needs to be able to rearrange bits of text in ayfdleixible way so that
description can simultaneously be thought of as close tadide it relates to and

6Even though these samples can be planned and sketched early.

5.10. HOW DO WE KNOW IT DOES WORK? 197

to the section in the document where it belongs. This ideainvally developed
as part of the project to implement thgXltypesetting program that is being used
to prepare these lecture notes.

5.10 How do we know it does work?

Figure 5.5: Many people think that their work is over well dvef it actually is.

A conceptual difficulty that many people suffer from is a amibn between
whether a program should work and whether it does. A progtzoald work if
it has been designed so that there are clear and easily eeg@laéasons why it
can achieve what it should. Sometimes the term “easily ax@ii may conceal
the mathematical proof of the correctness of an algorithuhableast in theory it

198 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

would be possible to talk anybody through the justificatis.to programs that
actually do work, well the reality seems to be that the onlgsaf these that you
will ever see will be no more than around 100 lines long: eroglly any program

much longer than that will remain flawed even after extenshecking. Proper
Oriental rugs will always have been woven with a deliberatstake in them,

in recognition of the fact that only Allah is perfect. Exparce has shown very
clearly indeed that in the case of writing programs we allehamough failings

that there is no great need to insert extra errors — therebailplenty inserted
however hard we try to avoid them. Thus (at least at the ptesate of the art)

there is no such thing as a (non-trivial) program that works.

If, however, a progranshouldwork (in the above sense) then the residual
errors in it will be ones that can be corrected without disitug the concepts
behind it or its overall structure. | would like to think ofduproblems as “little
bugs”. The fact that they are little does not mean that theghtmot be important,
in that missing commas or references to the wrong variableaase aeroplanes
to crash just as convincingly as can errors at a more conaklatvel. But the
big effort must have been to get to a first testable versioroaf gode with only
little bugs left in it. What is then needed is a testing sggteo help locate as
many of these as possible. Note of course that testing canemelr generate
evidence for the presence of a bug: in general it can not pabgence. But
careful and systematic testing is something we still neeengkier there has been
human involvement in the program construction protess

The following thoughts may help in planning a test regime:

1. Even obvious errors in output can be hard to notice. Perhaman society
has been built up around a culture of interpreting slighthbayuous input
in the “sensible” way, and certainly we are all very used irsg what we
expect to see even when presented with something ratherehtf By the
time you see this document | will have put some effort intookiney its
spelling, punctuation, grammar and general coherencel, laopke that you
will not notice or be upset by the residual mistakes. But aalybwho has
tried serious proof-reading will be aware that blatant akes can emerge
even when a document has been checked carefully severat time

2. If you are checking your own code and especially if you knaw can
stop work once it is finished then you have a clear incentneto notice
mistakes. Even if a mistake you find is not going to cause ychat@ to
spend time fixing it it does represent you having found yetlagrinstance
of your own lack of attention, and so it may not be good for yego;

’Some see this observation as a foundation for hope for thegfut

5.10. HOW DO WE KNOW IT DOES WORK? 199

3.

10.

It is very desirable to make a clear distinction betweenjti of testing a
program to identify the presence of bugs and the separav#yof correct-
ing things. It can be useful to take the time to try to spot asymaistakes
as you can before changing anything at all;

. A program can contain many more bugs and oddities thanwotst night-

mares would lead you to believe!

. Testing strategies worked out as part of the initial desifya program are

liable to be better than ones invented only once code hasdmepleted,;

It can be useful to organise explicit test cases for ex¢reonditions that
your program may face (eg sorting data where all the numlbere sorted
have the same value), and to collect test cases that caus@atcthrough
your code to be exercised. It is easy to have quite a largadgamf test
cases but still have some major body of code unvisited.

Regressions tests are a good thing. These are test casgsotiv up during
project development, and at each stage after any changeles allaof them
are re-run, and the output the produce is checked. When aayisrde-
tected a new item in the regression suite is prepared sde tan remain
a definite verification that the error does not re-appearraedoiture stage.
Automating the application of regression tests is a verydgiing, since
otherwise laziness can too easily cause one to skip runhemg;t

. When you find one bug you may find that its nature gives yoasder other

funny cases to check. You should try to record your thoughtbat you do
not forget this insight;

. Writing extra programs to help you test your main body afeds often a

good investment in time. On especially interesting schesrte igenerate
pseudo-random test cases. | have done that while testintyagooial fac-
torising program and suffered randomly-generated tests ©fcompiler |
was involved with, and in each case the relentless randoerage of cases
turned out to represent quite severe stress;

You do not know how many bugs your code has in it, so do noiviavhen
to stop looking. One theoretical way to attack this worry Woloe to get
some fresh known bugs injected into your code before testing then see
what proportion of the bugs found were the seeded-in onesvaich had
been original. That may allow you to predict the total bugleemaining.

Having detected some bugs there are several possible tbhidgs One is to sit
tight and hope that nobody else notices! Another is to docunie deficiencies

200 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

at the end of your manual. The last is to try to correct somdeft The first
two of these routes are more reasonable than might at finst pegper given that
correcting bugs so very often introduces new ones.

In extreme cases it may be that the level of correctness #rmabe achieved
by bug-hunting will be inadequate. Sometimes it may thendssible to attempt
a formal proof of the correctness of your code. In all remlisircumstances this
will involve using a large and complicated proof assistangpam to help with all
the very laborious details involved. Current belief is thatill be very unusual
for bugs in the implementation of this tool to allow you to enmwith a program
that purports to be proved but which in fact still containstakes!

5.11 Is it efficient?

| have made this a separate section from the one on detetingresence of
errors because performance effects are only rarely thé sdgimple oversights.
Let me start by stressing the distinction between a proghamhis expensive to
run (eg the one that computago 20,000,000,000 decimal places) and ones that
are inefficient (eg one that takes over half a second to coenpuaorrect to four
places). The point being made is that unless you have atieadisa of how long a
task ought to take it is hard to know if your program is takimgasonable amount
of time. And similarly for memory requirements, disc I/O amyaother important
resource. Thus as always we are thrown back to design andisakan time
predictions as our only guideline, and sometimes even thildee based on little
more than crude intuition.

If a program runs fast enough for reasonable purposes tleea thay be no
benefitin making it more efficient however much scope for iovpment there is.
In such cases avoid temptation. It is also almost always blydst to concentrate
on getting code correct first and only worry about perfornesaifterwards, taking
the view that a wrong result computed faster is still wromgl eorrect results may
be worth waiting for.

When collecting test cases for performance measurementayitbe useful
to think about whether speed is needed in every single casgestan most cases
when the program is run. It can also be helpful to look at hogtsare expected to
(and do) grow as larger and larger test cases are attemputechdst programming
tasks it will be possible to make a trade between the amoutitnaf a program
takes to run and the amount of memory it uses. Frequentlystiosvs up in a
decision as to whether some value should be stored away éitcas needed
later or whether any later user should re-calculate it. Beising this potential
trade-off is part of performance engineering.

For probably the majority of expensive tasks there will be single part of the

5.12. IDENTIFYING ERRORS 201

entire program that is responsible for by far the largestamhof time spent. One
would have expected that it would always be easy to predeadlof time where
that would be, but it is not! For instance when an early TITADtFan compiler
was measured in an attempt to discover how it could be spaguédvas found
that over half of its entire time was spent in a very short lobmstructions that
were to do with discarding trailing blanks from the end ofubpnes. Once the
programmers knew that it was easy to do something about titpte suspects
they were expecting to find a hot-spot in some more arcaneopdine code. It
is thus useful to see if the languages and system you usedermstrumentation
that makes it easy to collect information to reveal whichtpaf your code are
most critical. If there are no system tools to help you you iipayable to add in
time-recording statements to your code so it can colleabws break-down to
show what is going on. Cunning optimisation of bits of codat tmardly ever get
used is probably a waste of effort.

Usually the best ways to gain speed involve re-thinking dtatactures to pro-
vide cheap and direct support for the most common operatidhs can some-
times mean replacing a very simple structure by one that hgs amounts of al-
gorithmic complexity (there are examples of such casesarPtrt B Complexity
course and the Part Il one on Advanced Algorithms). In almbstircumstances
a structural improvement that gives a better big-O growth far some critical
cost is what you should seek.

In a few cases the remaining constant factor improvememeed may still
be vital. In such cases it may be necessary to re-write fratgrad your code in
less portable ways (including the possibility of use of maetltode) or do other
things that tend to risk the reliability of your package. Thtal effort needed to
complete a program can increase dramatically as the lagbéegent in absolute
performance gets squeezed out.

5.12 Identifying errors

Section 5.7 was concerned with spotting the presence afseti@re | want to talk
about working out which part of your code was responsiblétffem. The sections
are kept separate to help you to recognise this, and hendlewoyau to separate
noticing incorrect behaviour from spotting mistakes in yoade. Of course if,
while browsing code, you find a mistake you can work on fronoisée if it can

ever cause the program to yield wrong results, and this stidgde is one valid
error-hunting activity. But even in quite proper programsipossible to have
errors that never cause the program to misbehave in any \aagdin be noticed.
For instance the mistake might just have a small effect orpréormance of
some not too important subroutine, or it may be an illogtgatat could only

202 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

be triggered into causing real trouble by cases that sontierdare of code had
filtered out.

You should also recognise that some visible bugs are not s e to any
single clear-cut error in a program but to an interactiomieen several parts of
your code each of which is individually reasonable but whicbombination fail.
Most truly serious disasters caused by software failurgeadoecause of compli-
cated interactions between multiple “improbable” circtanses.

The first thing to try to locate the cause of an error is to $tarh the original
test case that revealed it and to try to refine that down tog@ivenimal clear-cut
demonstration of the bad behaviour. If this ends up smallghat may then be
easy to trace through and work out what happened.

Pure thought and contemplation of your source code is thedete Decide
what Sherlock Holmes would have made of it! Run your compilarwhatever
mode causes them to give as many warning messages as thapaldecof, and
see if any of those give valuable clues. Check outateert facility and place
copious assertions in your program that verify that all tlggn tevel expectations
you have are satisfied.

If this fails the next thought is to arrange to get a view on éecution of
your code as it makes its mistake. Even when clever langapgetic debuggers
are available it will often be either necessary or easieslotthis by extra print
statements into your code so it can display a trace of it®@stiThere is a great
delicacy here. The trace needs to be detailed enough to wtiao spot the first
line in it where trouble has arisen, but concise enough to brageable. My
belief is that one should try to judge things so that the tadput from a failing
test run is about two pages long.

There are those who believe that programs will end up witlodss reliability
if they start off written in as fragile way as possible. Cotleldd always make as
precise a test as possible, and should frequently includa esoss checks which,
if failed, cause it to give up. The argument is that this wanr@ér number of
latent faults will emerge in early testing, and the embedagsrtions can point
the programmer directly to the place where an expectatidedféo be satisfied,
which is at least a place to start working backwards from imiat fior the actual
bug.

5.12. IDENTIFYING ERRORS 203

When debugging, When you have eliminated the
impossible, whatever remains, however
improbable, must be the truth.

Figure 5.6: Effective debugging calls for great skill.

204 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

With many sorts of bugs it can be possible to home in on thecditff by some
sort of bisection search. Each test run should be designkdive the range of
code within which the error has been isolated.

Some horrible problems seem to vanish as soon as you enabtkzhngging
features in your code or as soon as you insert extra primrataits into it. These
can be amazingly frustrating! They may represent your usaaeinsafe language
and code that writes beyond the limit of an array, or they@awlolve reliance on
the unpredictable value of an un-initialised variable. $omes such problems
turn out to be bugs in the compiler you are using, not in youn cade. | believe
that | have encountered trouble of some sort (often fairlganibut trouble nev-
ertheless) with every C compiler | have ever used, and | hiaselate confidence
that no other language has attained perfection in this deg sometimes trying
your code on a different computer or with a different companél either give you
a new diagnostic that provides the vital clue, or will behdiféerently thereby
giving scope for debugging-by-comparison.

Getting into a panic and trying random changes to your codenloaproper
part to play either in locating or identifying bugs.

5.13 Corrections and other changes

With a number of bugs spotted and isolated the time comegitpate them. The
ideal should be that when a bug is removed it should be remtmtally and it
should never ever be able to come back. Furthermore itsdsi@md offspring
should be given the same treatment at the same time, and kdecoa new mis-
takes should be allowed to creep in while the changes arg lbeade. This last
is often taken for granted, but when concentrating on onggoderr bug it is all
too easy to lose sight of the overall pattern of code and eveaduce more new
bugs than were being fixed in the first case. Regression gastat least one line
of defence that one should have against this, but just takiagorrection slowly
and thinking through all its consequences what is mostlytecanSmall bugs (in
the sense discussed earlier) that are purely local in scopdaeest problems.
However sometimes testing reveals a chain of difficulties thust eventually be
recognised as a sign that the initial broad design of therprodghad been incor-
rect, and that the proper correction strategy does notveviaking the problems
one at a time but calls for an almost fresh start on the whalgept. | think that
would be the proper policy for the program in section 5.18 @at is part of why
the exercise there asks you to identify bugs but not to cothean.

Upgrading a program to add new features is at least as darsggasaorrecting
bugs, but in general any program that lasts for more than aoreso will end up
with a whole raft of alterations having been made to it. Theme very easily

5.14. PORTABILITY OF SOFTWARE 205

damage its structure and overall integrity, and the effaat lse thought of as a
form of software rotthat causes old code to decay. Of course software rot would
not arise if a program never needed correcting and neveredegggrading, but

in that case the program was almost certainly not being usddvas fossilised
rather than rotting. Note that for elderly programs the pensho makes correc-
tions is never the original program author (even if they hidneesame name and
birthday, the passage of time has rendered them differéhi3.greatly increases
the prospect of a would-be correction causing damage.

All but the most frivolous code should be kept under the aadrtf some source
management tool (perhapss) that can provide an audit trail so that changes can
be tracked. In some cases a discussion of a bug that has nowdraeved might
properly remain as a comment in the main source code, but mmack often a
description of what was found to be wrong and what was chamgedend it
belongs in a separate project log. After all if the bug rebdg been removed who
has any interest in being reminded of the mistake that itesgrted?

Whenever a change is made to a program, be it a bug-fix or amdegthere
is a chance that some re-work will be needed in documentdtadp files, sample
logs and of course the comments. Once again the idea oftétpragramming
comes to the fore in suggestion that all these can be kepttege

5.14 Portability of software

Most high level languages make enthusiastic claims tharpras written in them
will be portable from one brand of computer to another, jestn@st make claims
that their compilers are “highly optimising”. Java makepesally strong claims
on this front, and its owners try rather hard to prevent adybivom diverging
from a rigid standard. However even in this case there aferdifices between
Java 1.0 and 1.1 (and no doubt 1.2) that may cause trouble tonthary.

In reality achieving portability for even medium sized prags is not as easy
as all that. To give a gross example of a problem not addregsdtby program-
ming language or standard library design, a Macintosh camsestandard with
a mouse with a single button, while most Unix X-windows sgsiehave three-
button mice. In one sense the difference is a frivolity, dudraother it invites a
guite substantial re-think of user interface design. Atuker interface level a de-
sign that makes good use of a screen with 640 by 480 pixels@ond256 colours
(as may be the best available on many slightly elderly cosmgiimay look silly
on a system with very much higher resolution and more colours

For most programming languages you will find that implemgaoits provided
by different vendors do not quite match. Even with the moahdardised lan-
guages hardly any compiler supplier will manage to hold backn providing

206 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

some private extra goodies that help distinguish them fiem tompetitors. Such
extras will often be things that it is very tempting to make 0$. Around 1997-8
a good example of such a feature is “Active-X” which Micrassefpromoting. To
use such a feature tends to lock you to one vendor or platfeinibe to ignore it
means that you can not benefit from the advantages that gorBy now you will
know what my suggested response to conflicts like this will\ess, it is to make
your decisions explicitly and consciously rather than biad#, to make them in
view of stated ideas about what the users of your code willipaed to include
all the arguments you use to support your decision in yougdgsortfolio.

There are frequently clever but non-portable tricks thatlead to big perfor-
mance gains in code but at cost in portability. Sometimeptbper response to
these is to have two versions of the program, one slow but pertable and the
other that takes full advantage of every trick available ome platform that is
especially important to you.

5.15 Team-work

Almost all of this course is about programming in the smaithwa concentration
on the challenges facing a lone programmer. It is still usefthink for a while
how to handle the transition from this state into a largevtearporate mentality.
One of the big emotional challenges in joining a team relabethe extent to
which you end up “owning” the code you work on. It is very easyget into a
state where you believe (perhaps realistically) that yeuthe only person who
can properly do anything to the code you write. It is also éadyecome rather
defensive about your own work. A useful bit of jargon thaersfto breaking out
of these thought patternsego-free programmingn this ideal you step back and
consider the whole project as the thing you are contribuingnot just the part
that you are visibly involved in implementing. It may also umeful to recognise
that code will end up with higher quality if understandingtdg shared between
several people, and that bugs can be viewed as things to bd émd overcome
and never as personal flaws in the individual who happenedite that fragment
of code.

When trying to design code or find a difficult bug it can be veajuable to
explain your thoughts to somebody else. It may be that theg met say much
more than er and um, and maybe they hardly need to listen goypgobably need
to believe that they are). By agreeing that you will listertheir problems at a
later stage this may be a habit you can start right now withasreegroup of your
contemporaries.

Reading other people’s code (with their permission, of seupiand letting
them read yours can also help you settle on a style or idiotwtbeks well for

5.16. LESSONS LEARNED 207

you. It can also help get across the merits of code that islaidllout and where
the comments are actually helpful to the reader.

If you get into a real group programming context, it may madese to con-
sider partitioning the work in terms of function, for instansystem architect,
programmer, test case collector, documentation expadther than trying to dis-
tribute the management effort and split the programming lots of little mod-
ules, but before you do anything too rash read some more lwyogsftware engi-
neering so that once again you can make decisions in an iefbamd considered
way.

5.16 Lessons learned

One of the oft-repeated observations about the demons gé-koale software
construction is thathere is no silver bulletin other words we can not expect to
find a single simple method that, as if by magic, washes awauadifficulties.
This situation also applies for tasks that are to be carrigdbg an individual
programmer or a very small team. No single method gives a lkatyrhakes it
possible to sit down and write perfect programs withoutrefféhe closest | can
come to an idea for something that is generally valuablepseg&nce — experience
on a wide range of programming projects in several diffel@mjuages and with
various different styles of project. This can allow you t@sfeatures of a new
task that have some commonalty with one seen before. Timewsgver, obviously
no quick fix. The suggestions | have been putting forward hezeo try to make
your analysis of what you are trying to achieve as explicyidar mind as possible.
The various sections in these notes provide headings thahelp you organise
your thoughts, and in general | have tried to cover topicsnim@er that might
make sense in real applications. Of course all the detailscanclusions will be
specific to your problem, and nothing | can possibly say harestiow you how
to track down your own very particular bug or confusion! | &ae fall back on
generalities. Keep thinking rather than trying random ¢eanto your code. Try
to work one step at a time. Accept that errors are a part of tinealm condition,
and however careful you are your code will end up with them.

But always remember the two main slogans:

Programming is easy
and

Programming is fun.

208 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

5.17 Final Words

Do | follow my own advice? Hmmm | might have known you would dblat!
Well most of what | have written about here is what | try to daf bam not
especially formal about any of it. | only really go overboatoout design and
making documentation precede implementation when stpagome code that |
expect to give me special difficulty. | have never got into sweng of literate
programming, and suspect that | like the idea more than tiéyeAnd | some-
times spend many more hours on a stretch at a keyboard thaybenoaight to. If
this course and these notes help you think about the pro€gsegramming and
allow you to make more conscious decisions about the stylewith adopt then
| guess | should be content. And if there is one very short waypuld like to
encapsulate the entire course, it would be the recommemdidat you make all
the decisions and thoughts you have about programming asageexplicit as
possible.

Good luck!

5.18 Challenging exercises

Some of you may already consider yourselves to be seasongdapimers able
to cope with even quite large and complicated tasks. In wtéde | do not you to
feel this course is irrelevant, and so | provide here at tlosoéthe notes some pro-
gramming problems which | believe are hard enough to reptesal challenges,
even though the code that eventually has to be written wilbecespecially long.
There is absolutely no expectation that anybody will atguedbmplete any of
these tasks, or even find good starting points. However tvem@ples may help
give you concrete cases to try out the analysis and desigs ideave discussed:
identifying the key difficulties and working out how to péidin the problems into
manageable chunks. In some cases the hardest part of a ptapevould be the
design of a good enough testing strategy. The tasks deddnigre are all both
reasonably compact and fairly precisely specified. | havglid most of these
myself and found that producing solutions that were neatcamgincing as well
as correct involved thought as well as more coding skill. r€rere no prizes and
no ticks, marks or other bean-counter’s credit associati¢dal atempting these
tasks, but | would be jolly interested to see what any of yau @ame up with,
provided it can be kept down to no more than around 4 sidespdrpa

5.18. CHALLENGING EXERCISES 209

MULDIV

The requirement here is to produce a piece of code that actmptintegers and
computes(axb-+c)/d and also the remainder from the division. It should be
assumed that the computer on which this code is to be run hb# Begers, and
that integer arithmetic including shift and bitwise maslexgtions are available,
but the difficulty in this exercise arises becawaseb will be up to 64-bits long
and so it can not be computed directly. “Solutions” that wegg (he direct 64-bit
integer capabilities of a DEC Alpha workstation are not ¢érest!

It should be fairly simple to implememhuldiv if efficiency where not an
issue. To be specific this would amount to writing parts of ekpge that did
double-length integer arithmetic. Here the additionaleztation is that speed
does matter, and so the best solution here will be one thaéshle most effec-
tive possible use of the 32-bit arithmetic that is availaiete also that code of
this sort can unpleasantly easily harbour bugs, for ingtahe to some integer
overflow of an intermediate result, that only show up in vamercircumstances,
and that the pressure to achieve the best possible perfoepashes towards code
that comes very close to the limits of the underlying 32-bithanetic. Thought
will be needed when some or all of the input values are negalilie desired be-
haviour is one where the calculated quotient was roundedriswzero, whatever
its sign.

Overlapping Triangles

A point in the X-Y plane can be specified by giving its co-ordinates/). A
triangle can then be defined by giving three points. Giventtiamgles a number
of possibilities arise: they may not overlap at all or theyymaeet in a point or
a line segment, or they may overlap so that the area whereothelap forms a
triangle, a quadrilateral, a pentagon or a hexagon. Wrie tloat discovers which
of these cases arises, returning co-ordinates that degsbitoverlap (if any).

A point to note here is that any naive attempt to calculatepiat where
two lines intersect can lead to attempts to divide by zerbeflines are parallel.
Near-parallel lines can lead to division by very small nunsbeossibly leading
to subsequent numeric overflow. Such arithmetic odditiestmat be allowed to
arise in the calculations performed.

Matrix transposition

One way of representing anby n matrix in a computer is to have a single vector
of lengthmnand place the array elememyj at offsetmi+- j in the vector. Another
would be to store the same element at offseinj. One of these representation

210 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

means that items in the same row of the matrix live close tagethe other that
items in the same column are adjacent.

In some calculations it can make a significant differencepied which of
these layouts is used. This is especially true for computéhsvirtual memory.
Sometimes one part of a calculation would call for one layaatd a later part
would prefer the other.

The task here is therefore to take integerandn and a vector of lengtmn,
and rearrange the values stored in the vector so that if tiaeyaff in one of as
one representation of a matrix they end up as the other. Bed¢ha matrix should
be assumed to be quite large you are not allowed to use anyicigrm amount of
temporary workspace (you can not just allocate a fresh vedtengthmn and
copy the data into it in the new order — you may assume you magxisa space
of aroundm+- nif that helps, but not dramatically more than that).

If the above explanation of the probléreels out of touch with today’s com-
puter uses, note how the task relates to takinghdy n matrix representing a pic-
ture and shuffling the entries to get the effect of rotatireithage by 90 degrees.
Just that in the image processing case you may be workingdaiharranged in
sub-word-sized bite-fields, say at 4 bits per pixel.

Sprouts

The following is a description of a garfi¢o be played by two players using a
piece of paper. The job of the project here is to read in a gegun of a position
in the game and make a list of all the moves available to thé pleyer. This
would clearly be needed as part of any program that playedyémee against
human opposition, but the work needed here does not havensidew any issues
concerning the evaluation of positions or the identificatdgood moves.

The game starts with some number of marks made on a piece ef, Egeh
mark in the form of a capital *Y’. Observe that each juncticaslexactly three
little edges jutting from it. A move is made by a player idéntig two free edges
and drawing a line between them. The line can snake aroungisiihat have been
drawn before as much as the player making the move likest buist not cross
any line that was drawn earlier. The player finishes the mgvdrawing a dot
somewhere along the new line and putting the stub of a newjetigey out from
it in one of the two possible directions. Or put a different bquivalent way, the
player draws a new ‘Y’ and joins two of its legs up to existitgss with lines that
do not cross any existing lines. The players make movesaltelly and the first
player unable to make a further legal move will be the loser.

8This is an almost standard classical problem and if you digf@ugh back in the literature
you will find explanations of a solution. If you thought to dat for yourself, well done!
9Due to John Conway

5.18. CHALLENGING EXERCISES 211

A variation on the game has the initial state of the game jos ¢hot ‘Y’
shapes) and has each player draw a new dot on each edge they, tnat still
demands that no more that three edges radiate from each dtat.difference
is that in one case a player can decide which side of a new hpdwdure line
must emerge from. | would be equally happy whichever versibthe game
was addressed by a program, provided the accompanying éotation makes it
clear which has been implemented!

The challenge here clearly largely revolves around findimgag to describe
the figures that get drawn. If you want to try sprouts out asaajaetween people
before automating it, | suggest you start with five or sixtgtgrpoints.

ML development environment

The task here is not to write a program, but just to sketch loaitspecification
of one. Note clearly that an implementation of the task asieulit here would
be quite a lot of work and | do not want to provide any encoumag& to you to
attempt all that!

In the Michaelmas Term you were introduced to the languageavd invited
to prepare and test various pieces of test code using a mangnming under Mi-
crosoft Windows. You probably used the regular Windows épaid” as a little
editor so you could change your code and then paste backctedreersions of
it into the ML window. Recall that once you have defined a fiorcor value in
ML that definition remains fixed for ever, and so if it is incect you probably
need to re-type not only it but everything you entered atteAll in all the ML
environment you used was pretty crude (although | am proubeogreek letters
in the output it generates), and it would become intoler&tn@ise in medium or
large-scale projects. Design a better environment, andrapfo your descrip-
tion of it a commentary about which aspects of it represesitgugenerically nice
programmer’s work-bench and which are motivated by theiappcoperties of
ML.

An example from the literature

The following specification is given as a paragraph of reabbyreadable English
text, and there is then an associated program written in. Jahgs quite small
chunk of code can give you experience of bug-hunting: pldaseot look up the
original article in CACM? until you have spent some while working through the
code checking how it works and finding some of the mistakegrémious years
when | have presented this material to our students theylolidst as well as the
professional programmers used in the original IBM studyttbey still found only

19Communications of the ACM, vol 21, no 9, 1978.

212 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

a pathetically small proportion of the total number of kndwags! | am aware that
the Java transcription of this program has changed its lietafrom the original
PL/I version and the intermediate C one. | do not believe tthatchanges are a
case of bugs evaporating in the face of Java, but some magtiption errors
| have made. But since the object of this exercise is thatgoate bugs, whatever
their source, this does not worry me much, and | present thmple as it now
stands, oddities and all.

You need beady
eyes to spot
the bugs!

Figure 5.7: Picture courtesy Shamila Corless.

5.18. CHALLENGING EXERCISES 213

Formatting program for text input. Converted from
the original PL/l version which is in a paper by Glen
Myers, CACM vol 21 no 9, 1978

(@) This program compiles correctly: it is believed
not to contain either syntax errors or abuses of
the Java library.

(b) A specification is given below. You are to imagine
that the code appended was produced by somebody who
had been provided with the specification and asked
to produce an implementation of the utility as
described. But they are not a very good programmer!

(c) Your task is one of quality control - it is to
check that the code as given is in agreement with
the specification.

If any bugs or mis-features are discovered they
should be documented but it will be up to the

original programmer to correct them. If there are
bugs it is desirable that they all be found.

(d) For the purposes of this study, a bug or a
mis-feature is some bad aspect of the code that
could be visible to users of the binary version of
the code. Ugly or inefficient code is deemed not
to matter, but even small deviations from the
letter of the specification and the things sensibly
implicit in it do need detecting.

(e) Let me repeat point (a) again just to stress it -
the code here has had its syntax carefully checked
and uses the Java language and library in a legal
straightforward way, so searching for bugs by
checking fine details of the Java language
specification is not expected to be productive.
| have put in comments to gloss use of library
functions to help those who do not have them all
at their finger-tips. The code may be clumsy in
places but | do not mind that!
| have tried to keep layout of the code neat and
consistent. There are few comments "because the
original programmer who wrote the code delivered
it in that state".

214 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

/ *kkkkkkkkkkkkkkkhkkkhkkkhkkkhkkhkkkhkkkhkhkkkhkkkhkkkkhkkkhkkkkx *kkkkk
* Specification *
* *
* *
* Given an input text consisting of words separated by *
* blanks or new-line characters, the program formats it *
* into a line-by-line form such that (1) each output *
* line has a maximum of 30 characters, (2) a word in *
* the input text is placed on a single output line, and *
* (3) each output line is filled with as many words as *
* possible. *
* *
* The input text is a stream of characters, where the *
* characters are categorised as break or nonbreak *
x characters. A break character is a blank, a new-line *
* character (&), or an end of text character (/). *
* New-line characters have no special significance; *
* they are treated as blanks by the program. & and / *
* should not appear in the output. *
* *
* A word is defined as a nonempty sequence of non-break *
* characters. A break is a sequence of one or more *
* break characters. A break in the input is reduced to *
* a single blank or start of new line in the output. *
* *
* The input text is a single line entered from a *
* simple terminal with an fixed 80 character screen *
* width. When the program is invoked it waits for the *
* user to provide input. The user types the input line, *
* followed by a / (end of text) and a carriage return. *
* The program then formats the text and displays it on *
* the terminal. *
* *
* |f the input text contains a word that is too long to *
* fit on a single output line, an error message is *
* typed and the program terminates. If the end-of-text *
* character is missing, an error message is issued and *
* the user is given a chance to type in a corrected *
* version of the input line. *
* *
* (end of specification) *

kkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkhkkkkkkkkkkkx *kkkk /

5.18. CHALLENGING EXERCISES

import java.io. *

public class Buggy
{

final static int LINESIZE = 31;

public static void main(String [] args)
{
int k,
bufpos,
fill,
maxpos = LINESIZE;
char cw,
blank = ' 7,
linefeed = '$’,
eotext = '/’;
boolean moreinput = true;

char [] buffer = new char [LINESIZE];

bufpos = 0;

fil = O;

while (moreinput)
{ cw = gchar();

if (cw == blank || cw == linefeed || cw

{

if (cw == eotext) moreinput = false;
if ((fill + 1 + bufpos) <= maxpos)

{ pchar(blank);
fill = fill + 1;

}

else

{ pchar(linefeed);
fill = O;

}

for (k = 0; k < bufpos; k++) pchar(buffer[k]);

fill = fill + bufpos;
bufpos = 0;
}
else if (bufpos == maxpos)
{ moreinput = false;
System.out.printin("Word
}

to long";

215

216 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

else
{ bufpos = bufpos + 1;
buffer[bufpos-1] = cw;
}
}

pchar(linefeed);
return;

}

/I 1 use B as a shorthand for the character ' .
final static char B = ' ’;

final static int ILENGTH = 80;

/I Make suitable array with initial contents Z

/I then a load of blanks.

static char [] buffer = {

'Z',B,B,B,B,B,B,B,B,B,

B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B};

/I bcount is defined here so that it keeps its values
/I across several calls to gchar().
static int bcount = 1;

static char gchar()
{
char [] inbuf = new char [ILENGTH];
char eotext = '/’
char c;
if (buffer[0] == 'Z)
{ getrecord(inbuf);

5.18. CHALLENGING EXERCISES 217

/I indexOf returns the index of a position where the given
/I character is present in a string, or -1 if it is not

/[found.

if (new String(inbuf).indexOf((int) eotext) == -1)

{ System.out.printin("No end of text mark");
buffer[l] = eotext;

}

else for (int j=0; J<ILENGTH; j++)
buffer[j] = inbuffj];

}

¢ = buffer[bcount-1];
bcount = bcount + 1;
return c;

}

/[a static ouput buffer, again blank-filled.

static char [] outline =

{ B,
B,B,B,B,B,B,B,B,B,B,B

¢

/I i indicates which place in outline pchar should
/I put the next character at.
static int i = 1;

static void pchar(char c)
{
int linefeed = '$’;
if (¢ == linefeed)
{ System.out.printin(outline);
for (int j=0; j<LINESIZE; j++)

outline[j] = B;
i = 1;
}
else
{ outline[i-1] = c;
i =i+ 1;
}

218 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

/I Get access to keyboard input. No tricks here!
static BufferedReader in =
new BufferedReader(
new InputStreamReader(System.in),

1);
static void getrecord(char [] b)
{
String s;
try
{ s = in.readLine();
}
catch (IOException e)
{ s="1
}
for (int i = 0; i < ILENGTH; i++)
{ if (i < s.length()) b[i] = s.charAt(i);
else b[i] = 7
}
}
}

/* End of file * [

Chapter 6

A representative application

The purpose of this chapter is not to form part of the officiadmainable course,
but to provide you with some extended samples of Java so thatgn see the
various facilities working together and so you can conslu®r the code ought
to have been written to make it as clear and robust as posdiie that | do

not guarantee that my code is a paragon of clarity, and alttnabe example
here is much larger than the ones that have gone before itihdeen trimmed

fairly close to the bone to make it as small and perhaps camepseble as | could
manage.

6.1 A Lisp interpreter

This final example for these notes is as large and complicgeahy of the others
here — but most of the Java features it uses are ones that bawesben before.
Itis an implementation of a very much cut-down version ofgih@gramming lan-
guage Lisp. In this language, which is one of the oldest @wgning languages
that is still in use today, and a version of which is used tda@usse theemacs ed-
itor, all syntax is indicated with explicit parenthesesefinograms that one writes
are very much like ML ones, except that Lisp does not haveettie syntax and
operators of ML nor the type-checking. While | do not want teedt this Java
course into one on Lisp | will give a brief example of the sdrprgram that can
be used to test my Minilisp. It defines a function to reversesland demonstrates
its use.

(defun reverse (x)
(revl x nil))

(defun revl (a b)
(cond

219

220 CHAPTER 6. A REPRESENTATIVE APPLICATION

((eg a nil) b)
(t (revl (cdr a) (cons (car a) b))

(reverse '(a b c d))

To find out about Lisp in its modern and very large form you docheck
outCommon Lisp — the Langud@a] however the Minilisp here perhaps makes
better sense with reference to thisp 1.5 manudlL3], which is amazingly ancient
now but which has the huge advantage of brevity. Of course&tiramon Lisp
manual was written by Guy Steele who participated in writimg Java language
reference — so as well as Lisp being a very direct ancestorloftian also be
seen as having had noticable input into JavAnother reason for including an
implementation of it here.

| have in fact extended the tiny Lisp shown here into a fudlsmne that is
capable of running programs that are many tens of thousdndees long. The
write-up of that work is in “Further evaluation of Java forr8iyolic Calculation”,
Proc. ISSAC 00, St Andrews, Scotland, August 2000.

1The “Flavours” package developed for Lisp at MIT was one eféhrlier programming sys-
tems that encouraged object oriented design, supportediahce and worked to make large-scale
programming practical. CLOS (Common Lisp Object Systenthésmajor internationally stan-
dardised model for dynamic object-oriented programming.

6.1. ALISPINTERPRETER 221

Now for the implementation. Making sense of it is liable tosbgubstantial strug-
gle for most of you, but | hope that the fact that | can fit an iempéntation of a
programming language into these notes is at least integgsti

/I Minilisp

1

/l Basic and utterly tiny Lisp system coded
/I in Java by Arthur Norman, 1998.

1

/I In spirit much like an older BCPL then C
/I version of the same thing!

1

/" Supports

/! guote, cond, defun

Il atom, eq, car, cdr, cons

/I has fragments of code waiting to be extended
/[to do rather more.

import java.io. *

/I Lisp has a single inclusive data-type, which | call

/I LispObject here. It has sub-types that are symbols,

/I numbers, strings and lists. Here | give just two

/[methods (print and eval) that may be used on anything.

abstract class LispObject

{
public abstract void print();

public abstract LispObject eval(Environment env);

}

/I A "cons" is an ordered pair. In ML terms it would be
/I a bit like (a * ')

class Cons extends LispObject

{
/[The left and right parts of a pair are called
1 CAR and CDR

public LispObject car, cdr;
Cons(LispObject car, LispObject cdr)
{ this.car = car; this.cdr = cdr; }

222 CHAPTER 6. A REPRESENTATIVE APPLICATION

/I Function calls are written as lists (fn al a2 ..)
public LispObject eval(Environment env)
{ int n = 0;
for (LispObject a=cdr;
a instanceof Cons;
a = ((Cons)a).cdr) n++;
LispObject [] args = new LispObject [n];
n = 0;
for (LispObject a=cdr;
a instanceof Cons;
a = ((Cons)a).cdr) args[n++] = ((Cons)a).car;
/I Now | have unpicked the actual arguments into a vector
if (car instanceof Symbol)
{ Symbol f = (Symbol)car;
/I "special" functions are for QUOTE, CONS and DEFUN. They
/[do not evaluate their arguments
if (f.special '= null)
return f.special.op(args, env);
/I All other functions have their arguments evaluated.
for (int i=0; i<n; i++)
args[i] = args]i].eval(env);
/[Call the function!
return f.fn.op(args);
}
/I return NIL if 1 do not otherwise know what to do
else return Minilisp.nil;
}
/[Lists print as (a b ¢ ...)
/[and if a list ends in NIL then it is displayed with
/l just a M)" at the end, otherwise the final atom is
/[shown after a "."
public void print()
{ LispObject x = this;
String delim = "(";
while (x instanceof Cons)
{ System.out.print(delim);
delm =" ";
((Cons)x).car.print();
X = ((Cons)x).cdr;

6.1. ALISPINTERPRETER 223

if (x !'= Minilisp.nil)

{ System.out.print(" . ");
x.print();

}

System.out.print(")");

}

/['1 do not do a lot with strings here.
class LispString extends LispObject

{
public String string;
LispString(String s)
{ this.string = s; }
public LispObject eval(Environment env)
{ return this; }
public void print()
{ System.out.print("\"" + string + "\"");
}
}
class Symbol extends LispObject
{
public String pname; /[print name
public LispObject plist; // property list (unused)
Symbol obListNext; /I chaining of symbols

public LispFunction fn; // function (if any)
public SpecialFunction special; // special fn (if any)
/I intern() looks up a Java String and find the Lisp
/I symbol with that name. It creates it if needbe.
public static Symbol intern(String name,
LispFunction fn, SpecialFunction special)
{ Symbol p;
for (p=Minilisp.obList; p!=null; p=p.obListNext)
{ if (p.pname.equals(name)) return p;

}

224 CHAPTER 6. A REPRESENTATIVE APPLICATION

/Il not found on "object-list" (oblist), so create it
p = new Symbol();
p.pname = name;
p.plist = Minilisp.nil;
p.obListNext = Minilisp.obList;
Minilisp.obList = p;
p.fn = fn != null ? fn : new Undefined(hame);
p.special = special;
return p;
}
/I The symbols NIL and T are special - they evaluate
/I to themselves. All others get looked up in an
/I environment that stores current values of local vars.
public LispObject eval(Environment env)
{ if (this == Minilisp.nil ||
this == Minilisp.lispTrue) return this;
return env.eval(this);
}
public void print()
{ System.out.print(pname);
}
}

/I An environment is a chain of Bindings terminated with
/[a NullEnvironment. Each binding holds information of
/I the form

1 variable = value

abstract class Environment

{
}

public abstract LispObject eval(Symbol name);

class NullEnvironment extends Environment
{
public LispObject eval(Symbol name)
{ System.out.printin("Undefined variable: " +
name.pname);
System.exit(1);
return null;

6.1. ALISPINTERPRETER 225

class Binding extends Environment
{
public Symbol name;
public LispObject value;
public Environment next;
Binding(Symbol name, LispObject val, Environment next)
{ this.name = name;
this.value = val;
this.next = next;
}
public LispObject eval(Symbol x)
{ if (x == name) return value;
else return next.eval(x);
}
}

/['1 do not do a lot with numbers here!
class LispNumber extends LispObject
{
public int value;
LispNumber(int value)
{ this.value = value; }
public LispObject eval(Environment env)
{ return this; }
public void print()
{ System.out.print(value);
}
}

/[Each built-in function is created wrapped in a class
/I that is derived from LispFunction.

abstract class LispFunction

{
}

public abstract LispObject op(LispObject [] args);

226 CHAPTER 6. A REPRESENTATIVE APPLICATION

class Undefined extends LispFunction
{
String name;
Undefined(String name)
{ this.name = name; }
public LispObject op(LispObject [] args)
{ System.out.printin("Undefined function " + name);
System.exit(1); // throw?
return null;

}

/I If a symbol has an interpreted definition its
/I associated function is this job, which knows how to
/I extract the saved definition and activate it.

class Interpreted extends LispFunction
{
LispObject a, b;
Environment env;
Interpreted(LispObject a, /I formal args
LispObject b, /I body
Environment env) // environment

{ this.a = a;
this.b = b;
this.env = env;

}

public LispObject op(LispObject [] args)
{ LispObject al = a;
int i = 0;
Environment e = env;
while (al instanceof Cons)
{ e = new Binding(
(Symbol)((Cons)al).car, args[i++], e);
al = ((Cons)al).cdr;
}

return b.eval(e);

6.1. ALISPINTERPRETER 227

/[l Similar stuff, but for "special functions"
abstract class SpecialFunction
{

public abstract LispObject op(LispObject [] args,
Environment env);

/I (quote xx) evaluates to just xx

class QuoteSpecial extends SpecialFunction

{
public LispObject op(LispObject [] args,
Environment env)
{ return args[O];
}
}
/[(cond (pl el) if pl then el
/ (p2 €e2) else if p2 then e2
1 (p3 €3)) else if p3 then e3
1/ else nil

class CondSpecial extends SpecialFunction
{
public LispObject op(LispObject [] args,
Environment env)
{ for (int i=0; i<args.length; i++)
{ Cons x = (Cons)args]i];
LispObject predicate = x.car;
LispObject consequent = ((Cons)x.cdr).car;
if (predicate.eval(env) != Minilisp.nil)
return consequent.eval(env);

}

return Minilisp.nil;

228 CHAPTER 6. A REPRESENTATIVE APPLICATION

/I (defun name (al a2 a3) body-of-function)

class DefunSpecial extends SpecialFunction

{
public LispObject op(LispObject [] args,
Environment env)
{ Symbol name = (Symbol)args[0];
LispObject vars = args[1];
LispObject body = args[2];
name.fn = new Interpreted(vars, body, env);
return name;
}
}

/I like ML "fun car (a :: b) = a;"

class CarFn extends LispFunction

{
public LispObject op(LispObject [] args)
{ return ((Cons)(args[0])).car;
}

}

/I like ML "fun cdr (a :: b) = b}"

class CdrFn extends LispFunction

{
public LispObject op(LispObject [] args)
{ return ((Cons)(args[0])).cdr;
}

}

/I like ML "fun atom (a :: b) = false | atom x = true;"

class AtomFn extends LispFunction
{
public LispObject op(LispObject [] args)
{ return args[0] instanceof Cons ? Minilisp.nil :
Minilisp.lispTrue;;
}

6.1. ALISPINTERPRETER 229

/I (eq a b) is true if a and b are the same thing

class EgFn extends LispFunction

{
public LispObject op(LispObject [] args)
{ return args[O]==args[1l] ? Minilisp.lispTrue :
Minilisp.nil;
}
}

/I like ML “fun cons a b = a :: b"

class ConsFn extends LispFunction

{
public LispObject op(LispObject [] args)
{ return new Cons(args[0], args[1]);
}

}

/I (stop) exist from this Lisp.

class StopFn extends LispFunction

{
public LispObject op(LispObject [] args)
{ System.exit(0);
return null;
}
}

/I The top-level class has a bunch of input
/[and management code.

public class Minilisp

{

public static Symbol nil, lispTrue,
obList, lambda, cond, quote, defun;

static StreamTokenizer input;
static int inputType;
static boolean inputValid;

230 CHAPTER 6. A REPRESENTATIVE APPLICATION

static void initinput()
{ input = // Get stream & establish syntax
new StreamTokenizer(
new BufferedReader(
new InputStreamReader(System.in),
1)
input.eollsSignificant(false);
input.ordinaryChar(’/’);
input.commentChar(’;’);
input.ordinaryChar(\”);
input.quoteChar(\");
input.ordinaryChar(’.’); // disable floating point
input.lowerCaseMode(true);
inputValid = false;

}

/l read a single parenthesised expression.
/I Supports 'xx as a short-hand for (quote xx)
/I which is what most Lisps do.

/I Formal syntax:
1 read => SYMBOL | NUMBER | STRING

I => ' read

1 => (tall

1 tail =>)

/ => . read)

I => read readtalil

static LispObject read() throws IOException
{
LispObject r;
if (linputValid)
{ inputType = input.nextToken();
inputValid = true;
}
switch (inputType)
{
case StreamTokenizer. TT_EOF:
throw new IOException("End of file");
case StreamTokenizer. TT_WORD:
r = Symbol.intern(input.sval, null, null);
inputValid = false;
return r;

6.1. ALISPINTERPRETER 231

case StreamTokenizer. TT_NUMBER:
r = new LispNumber((int)input.nval);
inputValid = false;
return r;

case \": /[String
r = new LispString(input.sval);
inputValid = false;

return r;
case '\":
inputValid = false;
r = read();
return new Cons(quote, new Cons(r, nil));
case ("
inputValid = false;
return readTail();
case).
case .
inputValid = false;
return nil;
default:
r = Symbol.intern(
String.valueOf((char)inputType), null, null);
inputValid = false;
return r;
}
}
static LispObject readTail() throws IOException
{
LispObject r;
if (linputValid)
{ inputType = input.nextToken();
inputValid = true;
}
switch (inputType)
{
case .
inputValid = false;
r = read();
if (linputValid)
{ inputType = input.nextToken();
inputValid = true;

}

232 CHAPTER 6. A REPRESENTATIVE APPLICATION

if (inputType == ’)) inputValid = false;
return r;
case StreamTokenizer. TT_EOF:
throw new IOException("End of file");
case).
inputValid = false;
return nil;
default:r = read();
return new Cons(r, readTail());

}
}

/I set up fixed definitions

static void initSymbols()

{
obList = null;
nil = Symbol.intern("nil", null, null);
nil.plist = nil;

Symbol.intern("car", new CarFn(), null);
Symbol.intern("cdr”, new CdrFn(), null);
Symbol.intern("cons”, new ConsFn(), null);
Symbol.intern("atom”, new AtomFn(), null);
Symbol.intern("eq”, new EqgFn(), null);
Symbol.intern("stop”, new StopFn(), null);
lispTrue = Symbol.intern("t", null, null);
/Il lambda is ready for extension of this code
lambda = Symbol.intern("lambda”, null, null);
cond = Symbol.intern("cond"”, null,
new CondSpecial());

quote = Symbol.intern("quote”, null,
new QuoteSpecial());

defun = Symbol.intern("defun”, null,
new DefunSpecial());

}
public static void main(String [] args)
{

initinput();

initSymbols();

System.out.printin("Arthur's Minilisp...");

6.1. ALISPINTERPRETER 233

try
{
/I this is s READ-EVAL-PRINT loop

for (int i=1;;i++)
{ System.out.print(i + " ");
/[Ensure that the prompt gets displayed.

System.out.flush();
LispObject r = read();
LispObject v = r.eval(new NullEnvironment());
System.out.print("Value: ");
v.print();

}

}
catch (IOException e)

{ System.out.printin("lIO exception”);

}

System.out.printin("End of Lisp run. Thank you");

}

/[End of Minilisp.java

6.1.1 Exercises
ML to Lisp

Find a Lisp 1.5 manual and/or study the Minilisp code, ancdhtbee how many
ML list-processing functions you can convert into Lisp and on the Java imple-
mentation. You have already seenerse , so the next thing to try isppend . It
would probably be possible to coax the ML exercise on trarestiosures through
Minilisp!

Add a few more functions

Show that you have understood what is going on in the Mindsge by adding in
support for arithmetic, specifically functions to add, sabt, multiply and divide
numbers, and to compare them for inequality and “less-than”

234 CHAPTER 6. A REPRESENTATIVE APPLICATION

Emacs Lisp

Now you have at least minimal exposure to Lisp, investigheeway it is used
in theemacs editor to allow users to create new language-specific gditindes,
indentation and colour conventions.

WeirdX

Visit the web-sitehttp://www.jcraft.com/weirdx/ and fetch yourself a
copy of the source of the WeirdX X-windows server. It is ard@b000 lines
of Java! Do not fetch or examine in any way the related but censral product
called WiredX. Inspect the associated GNU public licensefcdly: it gives you
permission to work on the source but imposes an obligatiand&e the source
version of any adjustments available to the world at no dégbu are happy with
the GNU rule$ investigate the behaviour of WeirdX and look for ways to

. ldentify and remove bugs;

. Make it implement the latest X-windows specification mionéy;

1

2

3. Enhance its performance;

4. Put a proper and copious number of comments into the ciide (!
5

. Ensure that it implements all possible facilities to reglthe security vul-
nerabilities that X-windows often opens up;

6. Make a careful comparison between the behaviour and daiestof the
improved WeirdX and other commercial and free X serversatra nicely
structured wish-list for future enhancements.

As you make and test changes arrange to make your improveaeilable to
the the world: seattp://sourceforge.net/projects/weirdx/ . In case
you had not spotted, this is not a small exercise for an idd& to attack lightly:
it is a substantial challenge that calls for a lot of study Wwayond core Java and
if you decide to try it | suggest you form a small group to wank Please let me
know of any progress.

2For an extended discussion of the GNU public license ande™feftware in general, see
“The Cathedral and the Bazaar” by Eric Raymond[20]. Somé&efixplanation there makes very
good sense, some seems to me to be silly!

Chapter 7
What you do NOT know yet

These days anybody arranging a lecture course is expectdihtoin terms of
aims, objectives and learning outcomes. In particular ddemed important to
consider carefully what will be known by students who hawetathe course. |
want to take a contrary view: that what is most important tdarstand is what
you will not know just because you have attended this course and donrgeall t
exercises. | view a recognition of ones limitations as \btath for any individual’s
personal integrity and as something that is essential yf éine to be productive in
any work environment. So let me start with:

After one course you are not a Java expert. ..

To a large extent you only become an expert in any sort of jaragring after
you have built up a substantial body of experience workingath individual and
group projects. Most people can only gain the paranoia dingyg and documen-
tation that is really needed via personal involvement irguts that fail horribly!
Most people only gain a proper paranoid attitude to oveyallesn design via per-
sonal involvement in projects that collapse through benaglequately specified,
ill-planned or where project managementis not strong ehotige Computer Sci-
ence Tripos provides courses on Software Engineering tr@atrdent examples of
software disasters and explain the state of the art in awpilouble. Despite this
most people view the horror stories as things that happeaottef people” until
it is too late.

Java is an object oriented language. Proper use of it ingai¢aining full
leverage from the package, class and inheritance featysesides. This course
has taken the attitude that Object Oriented Design is sangethat can not be
fully appreciated until you are able to write a range of srpatigrams comfort-
ably. So once you have mastered this material it will be propee-start Java
from the beginning concentrating on starting the designlagmpng a class hier-
archy. This has to include careful thought abptitate , protected etc class

235

236 CHAPTER 7. WHAT YOU DO NOT KNOW YET

members, and it can involve formal schemes to documenttates

| have explained what packages are, but not discussed tlotcatdies of
using lots of different packages for your own code. For smpedigrams this is
OK, but larger scale work will put more pressure on this sitihimgs.

The Java libraries that support windows have been intratlince very sketchy
way here. That is because there is a huge amount to underatashd would not
even start to fit in the time available within the Paat dourse. All the issues
of getting pages laid out, controlling multiple windowsganising cut-and-paste
operations and so on take a lot of learning. The most that edioped is that this
course has given you a starting point to work from.

When a Java applet is run using a web browser it is subject tariaty of
security limitations. This is so that when some remote usads a web page
that runs your Java code you can not then steal or destroymiafton on their
computer. There is an elaborate scheme involving signaamé permissions that
makes it possible for applets to be granted additional lege, without giving
them total access. Such issues will be important for laogdeslava projects.

Network access and concurrency are both areas where a pnograneeds
to absorb quite a lot of additional understanding beforg ttaan use Java (or any
other language) in a fully satisfactory manner. It is easgrid up with systems
that can either gum up in deadlock or have different threaeate inconsistent
results, and proper recovery after one thread fails or oh&ark link times out
is not at all easy to arrange. The operating systems thrageisih the CST have
much to say about the issues and pitfalls involved. The wayhith Java can
interface to databases may appear straightforward, bupetant design of the
database itself needs specialist understanding.

While Java is a pretty respectable general purpose landbarggeare plenty of
areas where simple use of pure Java will prove inadequat@meBoes however
it will still make sense to implement either the bulk of a pram or perhaps just
the user-interface in Java, with some other componentsathanlanguage. This
raises issues of inter-language working, and serious desigllenges in the area
of the inter-language interface.

During this course you have been encouraged tgavee as your Java com-
piler. For real projects it is almost certain that much mdaberate tools would
be used. These would include ones to manage a chain of veidiande, tools to
generate stylised code for some bits of a user interfaceq aadety of debugging
and performance analysis packages.

Actually hardly any programmer, however experienced, bala full expert
on all of the above matters. ..

... but at least you have taken the first step!

Chapter 8

Model Examination Questions

Some of these are ones | have invented, some have been fthyjtmembers
of the class, while yet more are adjustments of previous éation questions
modified to fit into a Java context. They may not all be nornealifr precision
of wording or difficulty, but should give you something to tygur skills on. |
neither confirm nor deny the possibility that variants on safthese may appear
in this or a future year’s real examination paper. ..

Note also that for the Computer Science Parpapers there can be full-sized
(ie around 30 mins) questions, half size (around 15 mins}iagdabout 1 minute)
guestions, and some of these fit or could readily be modifiéitiseveral of these
categories.

8.1 Javavs ML
Compare and contrast Java with ML under the following hegslin
1. Primitive data types;
2. Support for arrays;
3. Support for lists and trees;
4. Functions applicable to several different data-types;
5. Complexity of syntax.

[4 marks per section]

237

238 CHAPTER 8. MODEL EXAMINATION QUESTIONS

8.2 Matrix Class

Design aMatrix class for doing operations anx n matrices.

The class should include functions for performing matrixtplication, ad-
dition, and multiplication by scalars (and all matrices ni@ysupposed to have
elements that are tym®uble).

To what extent should other classes have rights to modifivithgal matrix
elements? Justify your answer.

8.3 Hash Tables

Java allows you to declare arrays with any sort of content +fstanceint |,
double , String or Object , but the value used to index the array is restricted
to being annt . In some applications programmers want structures thaJgeh
like arrays whose subscripts are of typging . One way of doing this is to
use a structure known ashash table Given an index value of typstring an
integer is computed usinglash function The Java methobdashCode in class
String computes a suitable value. Time value computed depends only on the
contents of thesString , but different strings can be expected to lead to integers
that are uniformly distributed across the whole range thtgers cover. This
hash value is reduced modulo the size of a fixed ordinary attnesy(almost) lets
the originalString act as an index. The problem that arises is that it could be
that two differentString values hash onto the same location in the array.

This concern can be overcome by making the entries in thg &nteed lists
of (key, valug pairs, so that the original inde®tring will match one of the
keystrings and then the associatealueis what is stored with it. The method
equals(String s) in classString returns @oolean telling if one string is
equal to another. Storing into a hash table will involve addh new key, valug
pair to one of the lists.

Design appropriate data structures and classes for suchlaitathe case
where the values to be stored are themselves of sy . Use the following
method signatures in a class calléashTable :

void put(String key, String value) throws Duplicate;
String get(String key) throws Missing;

where you may assume that the exceptions have already biseadielsewhere.

Note: The Java class-libraries provide a class callashMap that does all this
for you! The exercise here in coding it for yourself not sonmeg the ordinary
Java programmer ever needs to do!

8.4. COMPASS ROSE 239

8.4 Compass Rose

A Java program to draw compass
roses is needed. In the examplezn - -
shown the line pointing North is 6 EE'ﬁAppIEt Viewer: Com... =1 E3
units long, that pointing South is 5, “#Pet

East and West 4, NE, SE, SW and
NW 3 and NNE, ENE and so on 2
and the rest 1 unit. In general if the
line pointing North isn units long
there will be 21 radial lines in all in
the complete rose. You may assume
that in your Java applet the method
paint will be called when an image
is to be displayed, and it gets passed
an argument of typ&raphics . The
classGraphics has a method called
drawLine that draws a line from
one point to another given four inte-
ger argumentgs, yi, X2 andys.

Write two versions of the com-
pass rose applet. The first should use
recursion on the length of a line,
while the second should be iterative/rPlet started.
In the second case it may be useful
to write an auxiliary method that calculates the highestgroof two that divides
exactly into a given number.

The length of the North line should be specified asal variable in the
class.

8.5 Language Words

In the context of Java, and given that this whole questiompgpesed to last 30
minutes, explain the following:

e package
e class
e import

e public

240 CHAPTER 8. MODEL EXAMINATION QUESTIONS

e protected
e interface

e static

8.6 Exception abuse

Show how Java exceptions can be used in conjunction with doop
1. to simulate the effect of lareak; statement;

2. to simulate the effect of eontinue; statement.

8.7 Queues

A priority queue maintains a list of pairs, each consistihg priority (an integer)
and a name (8tring), sorted into increasing order of priority. Three openasio
are required — one that just creates an empty queue, and tiescadiednsert
that takes an integer and a string as its arguments and plea@sin the correct
position in the list. Finally a methodext takes no arguments. It removes the
first pair from the list and returns its text string. It shotidow an exception if
the queue is empty when it is called.

Give the definition of a Java class that implements the qubjexb

8.8 Loops

Describe the features of Java for controlling the repeatedwion of a block of
code.

Show how general uses @r , while anddo could all be emulated using
only loops that start ofvhile (true)

8.9 Snap

Two identical packs of ordinary playing cards (52 differeatds per pack) are
shuffled and places face downwards on a table. Two playersflay a game
of Snap Each is allocated one pack, and in each turn in the game odeixa
turned up. The two upturned cards (one in front of each p)ager compared.
If the cards match anap-turnis declared. A game ends when all 52 cards have
been compared. Being computer scientists rather than fareolds these players

8.10. PARTITIONS

just record snap-turns and do not pick up or otherwise digtug cards when one

occurs!

Write a Java program which will simulate the game for the psgs of deter-
mining the probability of there being at least one snap-tnra game. You may
assume the existence of a random number generator but ratestist properties

of it that you rely on.

8.10 Partitions

Write a program in Java which, given two integer inpuandk will output the
combinations ok things partitions intk groups. For instance if=5 andk = 3

the output would be

5, 0, 0
4, 1, 0)
3, 2, 0
3, 1, 1)
2, 2, 1)

8.11 Laziness

A Java class as follows has been defined

abstract class NextFunction

{
public int next(int n);
}
class Lazy
{

int head;
Lazy tailOrNull;
NextFunction next;
public Lazy(int head, NextFunction next)
{ this.head = head;
this.tailOrNull = null;
this.next = next;
}
public int first() { return head; }
public Lazy tail()
{ if (tailOrNull = null) return tailOrNull;
tailOrNull = new Lazy(next(head), next);

242 CHAPTER 8. MODEL EXAMINATION QUESTIONS

return tailOrNull;

The idea is to use this to represent lazy lists. In fact thellsimek in the
tail function that checks if the successor to a node has alreagly tmmputed
makes this a good representation. Derive a sub-class f@afrunction that
overrides thenext method with one that allows you to create a lazy list of inte-
gers(1,2,3,...) . Write code that, when given a lazy list, will print the first
integersin it.

Adapt the code so as to create a function that can accept bdbagd generate
a new lazy list from it that holds values which are the squafethe ones in
the original list. Thus if passed my first lazy list as an argabthis one would
generatg1,4,9,...)

8.12 Cryptarithmetic

Write a Java program which can solve cryptarithmetic puiriehe format of the
sum of two words. For example given the input

SEND
+MORE

the program would output

9567
+1085

NB Each letter has to represent a different digit.

8.13 Bandits

In Snoresville in small-town America, there are N banditsg @nly one sher-
iff, Sheriff Dozy, who likes to do the minimum amount of worlogsible. He
knows quite a lot about each of them, to the extent that he Enprecisely which
bandits each bandit knows. Soon, $200,000 worth of gold bvélldeposited in
Snoresville’s main bank; a very tempting target for the ldogves. Dozy knows
that the defences and procedures are more than good enouggidbattack by

8.13. BANDITS 243

one bandit, and that they can even resist attack by N/3 mntie wonders if
some sub-set of the collection of local bandits will managygdng together to
grab the gold.
The friendship data for the bandits can be repre-
sented in the following way: A ‘1’ indicates a friend-
ship with another bandit. If one bandit is knowh
then he also knows of the bandit who knows him, i8¢t N =5
friendship is mutual. Each line ends witha ‘1’ becauséd!
each bandit knows himself, obviously. Explain wh
the triangular table given is all that's needed to det 9011
all the friendships, and show how it can be expanded
into a square to give the friendship data with a row for
each bandit. [2 marks]
Given a global data structure defined ag\ahy N matrix (int [J[Jgang),
filled initially with zeros, and wher#l is the largest number of bandits to consider,
give two Java procedures:

1. generate() : This should input from the keyboard an integerand a
floating-pointp. Check thanis in the range & n <N, and thatpis a valid
probability between 0 and 1. The procedure should then rahdgenerate
a triangular table as above, such that the probability of anthe points

being ‘1’ is p, except for each bandit with himself which should always be

1.

2. square() : This should take the triangular table nowgang from the
generate function and transform it into a square table asisked earlier. It
should then display the block in a tabular form. [6 marks]

3. A group of bandits is only possible when each bandit knovesyeother
bandit in the group. In the example given above, what is tloeigmvith
largest cardinality? [1 mark]

4. Examine the following pieces of code; the procecimapare and a frag-
ment of code to show how it is called.

Calling Fragment:

for (i=0;i<n;i++)

{ compare(i,gang[i]);
for(j=0;j<m;j++)
{ gang[i][i]=0;
\ gang[j][i]=0;

244

CHAPTER 8. MODEL EXAMINATION QUESTIONS

}
Main example

int maxgroup[N];
int max=0;
[*
* NOTE: current[N] is one array of the array of
* arrays gang[N][N]
* [
void compare(int i, int current[N])
{ for (int j=0; j<n; j++) current]j] &= gang][i][j];
for (int k=i+1; k<n; k++)
{ if (currentk]==1)
{ compare(k,current);
current[K]=0;

}
}
if (count(current)>max)
{ max=0;
for (int k=0; k<n; k++)
{ if (currentk]==1) maxgroup[max++]=k;
}
}

}

. Explain in detail what the functiatompare does, and how it works, paying

special attention to the recursive nature of the proceduodelze actions of
the calling fragment, and giving a functioount which returns the number
of ‘1'sin the array current. [8 marks]

. Outline a functiomain to bring all this together and for eathin the range

2 to 20 calculate an average, over 10 tries, of the cardyngiitenp = 0.5,
and display the smallest for which the cardinality is less thaw/3. This
is the critical number of bandits for the gold safety, andsteeriff Dozy not
to lose his job. [3 marks]

8.14 Exception

Describe some circumstances where it is useful for funstiorreturn errors as
exception, and some where it is not. Give an example of arrihigo which is
simplified by the use of exceptions.

8.15. FEATURES 245

8.15 Features

Write brief notes oriour of the following aspects of Java. In some cases it may be
appropriate to compare what Java does in the situation witdrgrogramming
languages such as ML.

1. Using the same name for several different functions;
2. Data types where a single type has several variants;
3. Programs that live in several source files;

4. Inheritance and abstract classes;

5. The degree to which code will behave the same when run Gereiit com-
puters.

8.16 More features

Forfiveof the following Java features write a very short code fragh(gdoes not

have to be complete, and perhaps 2 or 3 lines will suffice intwidke cases) that
illustrates the syntax involved. In each case explain lyriethat your example
achieves.

1. Declaration of constants;

2. Casts between class types;

3. The two styles of comment;

4. Catching an exception;

5. Theswitch statement, including default label;

6. Summing all theiginteger values that are in an array;

7. The clas®bject .

246 CHAPTER 8. MODEL EXAMINATION QUESTIONS

8.17 Debate

A grand debate is being planned by a society that has amongeitsbers a large
number of computer professionals and working programmarthur will pro-
pose a motion “That this house considers ML to be a much bettgramming
language than Java”, while Larry will lead the oppositiomlenthe banner “Java
is the language for any programmer who seeks employment @amcehvho can
truly be referred to asvorking’. Organise the points in support of the two lan-
guages that each proponent will use to justify their posjt@nd identify areas
where they are liable to find common ground.

You are not expected to reach a definite conclusion abouthwhigy the vote
will go at the end of the debate: your job is just to collect anglanise the argu-
ments so that comparing and contrasting the merits of thdamguage becomes
easy.

8.18 Design

You have been invited to start a project to build a prograrmliacheck ML pro-
grams to see if they have missing punctuation marks or otretakes, so that this
check can be performed before the ML code is forwarded forefkdcution. So
far all you know about what is wanted is the above. Withoutceoning yourself
with fine detail of how the checking will be implemented, iti§nand discuss:

1. guestions you might want to ask the client organisatiaruailts needs be-
fore deciding on any more details of your design;

2. choices or options available to you when making a detaitegect plan;

3. ways of partitioning the whole job into a handful of sepanaodules that
could be implemented more or less independently;

4. plans for testing the code you write and determining wéeththen notion-
ally finished, it has met its objectives.

8.19 Filter (Coffee?)

The structure of a binary tree containing integers at justesof its leaves could
have been given by the ML typedefined as follows

datatype T = X | N of int | D of T *T;

8.20. PARSE TREES 247

Define a Java class or set of classes that can be used to ragress in the
same general form. Then add a metHitdr which uses an integdrand a
tree. Its job is to simplify trees by using the rule that and-sode (typeNin the
ML declaration) where the integer storedigets turned into a leaf. Then any
node(X,t) , or(t,X) [ie nodes of the ML type® where one of the sub-trees is
anX] get turned into just .

Thus for instance ik = 0 the initial tree((0,0),((2,0),3)) would sim-
plify to just (2,3)

8.20 Parse trees

What does it mean for a Java class tcebstract ?
A Java program includes the following class declarations:

abstract Class Node

{
public int eval();
}
Class Num extends Node
{
int value;
public Num(int value) { this.value = value; }
}
Class Op extends Node
{
String sym;
Node left;
Node right;
public Op(String sym, Node left, Node right)
{ this.sym=sym; this.left=left; this.right=right; }
}

The objective of the programmer who wrote this was to be ablertte assign-
ments such as

test = new Op(" =*", new Num(4),
new Op("-", new Num(7), new Num(2)));

The variablaest is of typeNode which can cover either of the two concrete
cases 0Dp (representing a dyadic operator together with its two apésaorNum

248 CHAPTER 8. MODEL EXAMINATION QUESTIONS

(a number). Thus the above assignment sets up a represartdhathe expression
4% (7-2).

The abstract classode declares a methoéval() . Fill in the dots in the
other two classes with code that overrides this so thaingaiheeval method on
aNode returns the value of the arithmetic expression is represenpposing that
the only operators that will be used are plus, minus and times

8.21 Big Addition

Java comes with a clagdginteger that represents potentially huge numbers.
Suppose it did not, or for some reason you were prohibiteah fusing it but still
needed to work with large positive integers. To fit your negais will define a
new class calle8ig that stores integers as arraygfe values, where each byte
holds a single decimal digit from the number being used, thighleast significant
digit held at position O in the array.

Write a definition of such a class including in it methods teate a big integer
from anint (provided thaint is positive), to add tw®ig values together and
to convert from aig to aString ready for printing. You need not implement
any other methods unless they are needed by the ones mehtieres

8.22 Lists in Java

A list in Java can be represented as a sequence of links. Edclslan object
containing one value in the list and a reference to the retteolist following the
link. A null reference indicates the end of the list.

Write a Java class that can represent such lists, whereeting gtored in lists
are of typeObject . Provide your implementation with two static public metkod
that append lists. The first of these should be callggend and should take two
arguments, its result should be the concatenation of théistgocand neither input
should be disturbed. The second should be caibed and should have the same
interface, but it should work by altering the final referencéhe first list to point
it towards the second, and it should thus not need tmeseat all.

8.23 Pound, Shillings and Ounces

The Imperial system for Sterling currency was based ompthend shilling and
penny(plural pencg. There were 12 pence in a shilling and 20 shillings in a
pound. A Java class that could store amounts in this formglie

8.24. DETAILS 249

class LSD
{

boolean negative;

int pounds;

int shillings;

int pence;

LSD(boolean m, int |, int s, int d)

{ ..}

Adjust or finish off the constructor so that it raises an exicepof class
Badinput (which may be supposed to have been defined already) if the imp
invalid, ie unless the number of pence is from 0 to 11 and timelar of shillings
from O to 19, and the specified number of pounds is positive.

Now you need to provide ®@String method in the class that converts cur-
rency into textual form. The following table shows the dedieffect when a
number of pence is first convertedit8D and then to a string:

0 = zero
1 = 1penny
10 = 10 pence
60 = 5shillings
80 = 6 shillings and 8 pence
252 = 1 pound and 1 shilling
479 = 1 pound, 19 shillings and 11 pence
1201 = 5 pounds and 1 penny
2400 = 10 pounds
-252 =- minus 1 pounds and 1 shilling

Credit will be given for a clearly explained, concise andlyigresented solution.
Minor syntax or punctuation errors in the Java code will mairdt heavily against
you.

8.24 Detalls

Give a brief explanation of each of the following aspectsavial

1. The difference betweerr and>>>;

2. The possibility that in some program the tést== a) might return the
valuefalse for some variable,;

3. The keywordginal andfinally ;

250 CHAPTER 8. MODEL EXAMINATION QUESTIONS

4. The expressiotthree” + 3 and other expressions of a generally similar
nature;

5. The meaning of or errors in (whichever case is relevant!)

|nt [10] a;
for (int i=1; i<=10; ++i)
ali] = 1-afi];

8.25 Name visibility

A complete Java program may use the same name for sevemkdifinethods or
variables. Java has a number of features that allow the apeevent such re-use
of names from causing chaos. Describe there under the lgsadin

1. Scope rules within individual functions; [6]
2. Visibility of method names within classes, and the eSedtinheritance; [8]

3. Avoiding ambiguity when referring to the names of clas$éps

8.26 Several Small Tasks

Write fragments of Java definitions, declarations or codactweve each of the
following effects. You are not expected to show the whol¢ tésa complete
program — just the parts directly important for the task diégal, and you may
describe in words rather than Java syntax any supportingitiefis or context that
you will want to rely on. Clarity of explanation will viewedat least as important
as syntactic accuracy in the marking scheme. It is also shuolst that names of
methods from the standard Java class libraries are thiagptbgrammers check
in on-line documentation while writing code, so if you needuse any of these
you do not need to get their names or exact argument-formmagatoprovided
that you (a) describe clearly what you are doing and (b) yseris correct at an
overview level:

1. Take along argument calleck and compute théong value obtained by
writing the 64 bits ok in the opposite order; [6]

8.27. SOME TINY QUESTIONS 251

2. Define a class that would be capable of representing sitimiled lists,
where each list-node contains a string. You should show lotkaverse
such lists, build them and how to reverse a list. In the casleedlist revers-
ing code please provide two versions, one of which createsstversed list
by changing pointers in the input list, and another whickdsahe original
list undamaged and allocates fresh space for the reverssidwg]8]

3. Cause aline to appear in a the window of an applet runnorg the bottom
left of the window towards the top right. Your line should r@mvisible if
the user obscures and then re-displays the window, but yoagsume that
the size of the windows concerned will be fixed at 100 by 10@suf6]

8.27 Some Tiny Questions

1. List the eight Java primitive data types.

2. What result will be printed if the following fragment of\@acode is exe-
cuted? Why?

double d = 6.6;

try

{ d = 1.0 / 0.0;

}

finally

{ System.out.printin("d = " + d);

}

252 CHAPTER 8. MODEL EXAMINATION QUESTIONS

Figure 8.1: Remember: programming is fun!

Chapter 9

Java 1.5 or 5.0 versus previous
versions

The Java course from 2005 onwards uses a version of Javat¢ditmaries) that

support a range of things that earlier release did not. Thenzentary about these
features here is not part of the examinable content of theseplout may help

those who want their code to be backwards compatible, andhelaysupervisors
understand how features new in 1.5 are relevant in an inttody Java course.

9.1 Anenhanced or loop

New Java allows direct iteration over either arrays or @bida types using syntax
along the lines of

for (Type s : arrayOrCollection) use(s)
With previous versions you would need
for (int i=0; i<array.length; i++) use(array]i])
for arrays, or the yet more clumsy
for (lterator i=collection.iterator(); i.hasNext();)

{ Type s = (Type)i.next();
use(s);
}

There are special delicacies to watch with the use of negteations if you
use the old versions, and a strong interaction with the geérature described
next.

253

254 CHAPTER 9. JAVA 1.5 OR 5.0 VERSUS PREVIOUS VERSIONS

9.2 Generics

Most of the examples that use collections in these notesrdecthe type dec-
larations of the collections to show what they contain. Fstance there could
be use ofHashMap<String,String> for a HashMap that will only be used
with strings as both they keys and values it stores. Withettesorations code
is naturally type-safe. Older Java does not support thig. ré€bult is that instead
all generic structures use the fall-badkject type. When data is retrieved from
then the Java type-checker does not know what sabbgect is being used, and
SO casts, involving run-time checks, have to be used.

9.3 assert

Theassert keyword came in with Java 1.4. For use with any earlier versio
Java you must remove them all. Please ensure that your cddkyislebugged
first!

9.4 Static imports

If your new code includes a line such iagport java.Math.PI and you then
use the constarl in your code you will need to remove the import statement
and use the longer nanvath.Pl everywhere that you reference it.

9.5 Auto-boxing

With both collections and thprintf facility listed later, you can use the built
in types (eg integers and reals, characters and booleati®)uthaving to worry
too much about special consequences of them being prinbitivein types rather
than part of the Java class system. In older versions of dévastnot the case,
and you need to make much more explicit use of the wrappesesageger |,
Double and so on. The effect is much messier code in places! The taeuto-
boxing” refers to the fact that these wrapper classes dtaiséid, and use of a
constructonew Integer(1) is referred to as “boxing” the integer up.

9.6 Enumerations

In Java 1.5 you may have usedum to introduce a collection of distinct names,
and you may then have used these enumeration values in statigments. Be-

9.7. PRI NTF 255

fore Java 1.5 you could either use an explicit encoding agers (which does
not protect you from type errors) or some more elaboratersehhat uses the
class system to protect details of the implementation. lhaase the effect is
significantly more clumsy than the new scheme.

9.7 printf

When you look at many existing Java books and sample codewlaee print-
ing done using the idiom

System.out.printin("The result is" + i);
where these notes have written something more like

System.out.printf(
"The result is %d (or %<x in hex)%n", i);

These notes have preferred the second if only because thatfetring item
%dmakes explicit what type of item is being displayed, and swehs an extra
check on internal consistency in your code. Format convessprovide amazing
(and sometimes complicated) levels of refinement in colimigpjust how simple
information such as numbers are to be laid out. Replicatwag ¢ontrol using
the facilities from previous Java releases is tedious aadsl@o fairly bulky and
unreadable mess.

9.8 Scanner

If you needed to split an input file into words or wanted to rigeal simple column
of numbers you may have us&tanner . Beware because it is new and you
would need to do things by hand to if backwards compatibvias essential. In
big programscanner may not matter but I find it jolly handy in all sorts of small
examples.

9.9 \Variable numbers of arguments for methods

The smalVarargs facility is something you should probably not often use di-
rectly in your own code, but it is exploited lpyintf and friends. The old way
of achieving a similar effect is to make your function accaptirray of items, and
construct a new array to pass arguments in each call you roake t

256 CHAPTER 9. JAVA 1.5 OR 5.0 VERSUS PREVIOUS VERSIONS

9.10 Annotations

Java 1.5 provides a general framework for adding annottioryour code in a
way that is expected to make it easy for program managemel# to extract
them. This is a relative of the notatidr+ that inserts “document comments”
thatjavadoc can extract. The scheme is not mentioned in this course lbeyon
the fact that the new-style annotations are introduced byraenpreceded by
an at-sign @, and new styles of annotation can be declared using the dwelyw
@interface . Any code that has this syntax will need it removed for uséwit
earlier versions of Java. This will not change the behavafuthe code itself
in any way, but would have an effect on how it could interadhvannotation-
processing tools (see the Java documentation for the coohapar). For those
who want to investigate further it might be useful to note tine Java reflection
mechanisms can detect when a method defined in a class haarfrsstated. A
lot of the time you will not use annotations, but when you deytinay be a huge
help and you would hate to go back to a system without them.

9.11 Enhanced concurrency control

For exampleConcurrentHashMap , EnumSet.

Many of the above features interact together so that thagawf using them
combined are even greater than using them one at a time. Aegoesce of
that is that giving them up would be even more painful than goght at first
expect. | fully expect to see many of them becoming the stahiddom for Java
programmers in the very near-term future.

Bibliography

[1] Abramowitz and StegunHandbook of Mathematical Functions (with for-
mulas, graphs and mathematical tableBpver, 1965.

[2] David Barnes and Michael Kolling.Objects First with Java: a Practical
Introduction using BlueJPrentice Hall/Pearson, 2 edition, 2005.

[3] Colin Bentley. Introducing SSADM 4+NCC Blackwell, and also see
http://www.blackwellpublishers.co.uk/ssadmfil.htm , 1996.

[4] Jon Bentley.Programming PearlsAddison-Wesley, 1986.

[5] Jon Bentley.MoreProgramming PearlsAddison-Wesley, 1988.

[6] Judy Bishop.Java Gently Addison Wesley, 3 edition, 2001.

[7] Fred BrookesThe Mythical Man MonthAddison Wesley, 2 edition, 1996.

[8] J. CameronJSP and JSD: The Jackson Approach to Software Development
IEEE Computer Society Press, 1989.

[9] Leiserson Cormen and RivestAn Introduction to Algorithms MIT and
McGraw-Hill, 1990.

[10] E. W. Dijkstra.A Discipline of ProgrammingPrentice-Hall, 1976.
[11] Bruce Eckel.Thinking in Java Prentice Hall, 1998.

[12] Christopher Essex, Matt Davison, and Christian Sdtyuldlumerical mon-
sters.SIGSAM Journal34(4):16—-32, December 2000.

[13] John McCarthy et alThe Lisp 1.5 Programmer’s manuaMIT Press, 1965.

[14] M. H. Halstead. Elements of Software Sciencé&lsevier North Holland,
1977.

[15] Henry S Warren JIThe Hacker’s DelightAddison Wesley, 2003.

257

258 BIBLIOGRAPHY

[16] Brian W. Kernighan and Dennis M. Richi@he C programming language
Prentice-Hall, 1978.

[17] Donald E. Knuth. Literate Programming CSLI Lecture Notes and CUP,
1992.

[18] Steve MaguireWriting Solid Code Microsoft Press, 1993.

[19] C.A.R. Hoare O.-J. Dahl, E.W. DijkstraStructured Programming Aca-
demic Press, 1972.

[20] Eric S RaymondThe Cathedral and the Bazaa®’ Reilly, 1999.
[21] Guy SteeleCommon Lisp the LanguagPBigital Press, 1990.

[22] X3J11. ANSI X3.159, ISO/IEC 9899:199(American National Standards
Institute, International Standards Organisation, 1990.

Index

3n+1, 90
T, 47
++and --, 71

abstract, 123
Annotations, 256
Applet, 37
Applet + application, 157
appletviewer, 42
array.length, 62
Arrays, 61
Assert, 254
assert, 88
Auto-boxing, 254
AWT, 155

Biginteger, 98, 147

Binary files, 145

Binary trees, 115

Book-list, 18

Bottom-up implementation, 189
Bufferedimage, 57
BufferedReader, 118

Buggy sample code, 211

byte, short, int and long, 52

Capital letters, 65
catch, 87

char, 56

Character escapes, 56
Checking assertions, 88
close afile, 142

Code layout, 33
Collection classes, 150

Colouring by syntax, 38

Colours for drawing, 45
Command-line arguments, 61
Compiling a Java program, 34
Complex numbers, 108
Constructors, 107

Continued fractions, 139

cos, 47

crypto jurisdiction policy files, 148

Default visibility, 122
Designing and testing, 167
Dip. Comp. Sci., 16
Documentation comments, 33
Documenting, 195

Doubles as bit-patterns, 138
Dutch national flag, 67

Eight queens, 81

Emacs, 29, 34

encryption and checksums, 147
Enhancedor loop, 253
Enumerations, 254

Exam questions, 237

Extended Euclinean algorithm, 84

File access, 140
File object, 144
FileReader, 141
FileWriter, 143
final, 89, 122
finally, 87

float and double, 54
Forests of trees, 79

259

260

Game of Life, 80
Generics, 254
getClipBounds, 112
Global Font Lock, 38
goto, 51

Hacker's Delight, 76
Hakmem, 76

Hello World, 28, 31
Hexadecimal, 54
Hilbert matrix, 68
HTML, 42

|IEEE floating point standard, 54

import, 102

import static, 47
Infinities, 54

Inheritance, 115
Initialised arrays, 62
inner class, 156
InputStreamReader, 118
Integer overflow, 52
interface, 124

JApplet, 37
Java 1.5, 253
Java Bean, 106
JLex, 118

Legendre polynomials, 95
line numbers, 147

Lisp in Java, 219

Long integer constants, 53

Mandelbrot set, 110
Menus etc, 155

Mouse co-ordinates, 39
Mouse events, 39
MULDIV, 209

Mystery big decimal, 161

Nancy Silverton, 185
native, 124

Nested scopes, 100
Network programming, 153
new, 63

Newline character, 56

Not a Number, 54

Object, 130

Object as a class, 130
Object oriented, 125
Obtaining Java, 24
Octal, 54

Oz the Werewolf, 12

package, 101

Packages and jar files, 110
paint, 46

parseint, 118
Pentominoes, 134

Pollard rho, 96

Polynomial manipulation, 93

Portability, 205
printf, 255

INDEX

Printing floating point values, 56

PrintWriter, 143

private, 122

protected, 122

public, 122

public and private, 101
Puzzle with two flasks, 164

Quicksort, 91

Random numbers, 148
RC4 encryption, 69
read characters, 141
Reflection, 130
Reserved words, 49
Rounding errors, 67
RSA encryption, 160
RSI, 194

Running a simple program, 34

Scanner, 255

INDEX

Send more money, 242
set and get methods, 105
Shift operators, 72
Sieve for primes, 77

sin, 47

Sorting, 92

Sprouts, 210

static, 122

static import, 254
StreamTokenizer, 118
String concatenation, 61
Supervisor’s guide, 16
Swing, 155

switch statements, 85
synchronized, 124

tan): series, 113

Tar Pits, 169

Ten recommendations, 13
Text editing, 164

this, 108

Threads, 150

throw, 88

Tickable exercise 1, 24
Tickable exercise 2, 43
Tickable exercise 3, 65
Tickable exercise 4, 90
Tickable exercise 5, 93
Tickable exercise 6, 110
Tickable exercise 7, 162
Top-down design, 186
Transpose a matrix, 209
try, 87

Turtle graphics, 46
Two’s complement, 53

Unicode, 57

Varargs, 255
Visibility qualifiers, 120

Walk-through, 193

Webget, 162

Weirdx, 234

Wolves and caribou, 109
Writing programs is easy, 168
Writing programs is fun, 168

Y co-ordinate, 47

zip and unzip files, 147

261

