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Natural resource professionals are increasingly required to develop rigorous 

statistical models that relate environmental data to categorical responses data (e.g., 

species presence or absence). Recent advances in the statistical and computing sciences 

have led to the development of sophisticated methods for parametric and nonparametric 

analysis of data with categorical responses. The statistical software package CATDAT 

was designed to make some of these relatively new and powerful techniques available to 

scientists. The CATDAT statistical package includes 4 analytical techniques: generalized 

logit modeling, binary classification tree, extended K-nearest neighbor classification, and 

modular neural network. CATDAT also has 2 methods for examining the classification 

error rates of each technique and a Monte Carlo hypothesis testing procedure for 

examining the statistical significance of predictors. We describe each technique provided 

in CATDAT, present advice on developing analytical strategies, and provide specific 

details on the CATDAT algorithms and discussions of model selection procedures. 
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Introduction

Natural resource professionals are increasingly required to predict the effect of

environmental or anthropogenic impacts (e.g., climate or land-use change) on the distribution or

status (e.g., strong/ depressed/ absent) of animal populations (see Example 1). These predictions

depend, in part, on the development of rigorous statistical models that relate environmental data

to categorical population responses (e.g., species presence or absence). Unfortunately,

categorical responses cannot be modeled using the statistical techniques that are familiar to most

biologists, such as linear regression. In addition, environmental data are often non-normal and/or

consist of mixtures of continuos and discrete-valued variables, which cannot be analyzed using

traditional categorical data analysis techniques (e.g., discriminant analysis). Recent advances in

the statistical and computing sciences, however, have led to the development of sophisticated

methods for parametric and nonparametric analysis of data with categorical responses. The

statistical software package CATDAT, an acronym for CATegorical DATa analysis, was

designed to make some of these relatively new and powerful techniques available to scientists.

CATDAT analyses are not restricted to the development of predictive models.

Categorical data analysis can be used to find the variables (or combination thereof) that best

characterize pre-defined classes (i.e., categories). For example, CATDAT has been used to

determine which physical habitat features best characterize stream habitat types (see Example 2).

Categorical data analysis can also be used to examine the efficacy of new classification systems

or to determine if existing classification systems can be applied under new conditions (see

Examples 1 and 2).

The CATDAT statistical package includes 4 analytical techniques: generalized logit

modeling, binary classification tree, extended K-nearest neighbor classification, and modular

neural network. CATDAT also has 2 methods for examining the classification error rates of each

technique and a Monte Carlo hypothesis testing procedure for examining the statistical

significance of predictors. In the following sections, a brief description of each technique is

provided to introduce the user to CATDAT. For a thorough theoretical treatment of the

CATDAT models and an assessment of the performance of each technique, see Haas et al. (In

prep.). Specific details on the CATDAT algorithms and discussions of model selection

procedures can be found in Details. Additionally, definitions for much of the terminology used

throughout this manual can be found in Table 1.1. We also strongly encourage users to consult
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the references cited throughout this manual for a more thorough understanding of the uses and

limitations of each technique.

Generalized logit model.- Generalized logit models include a suite of statistical models

that are used to relate the probability of an event occurring to a set of predictor variables (Agresti

1990). A well-known form of the generalized logit model, logistic regression, is used when there

are 2 response categories. When the probability of several mutually exclusive responses are

estimated simultaneously based on several predictors, the form of the generalized logit model is

known as the multinomial logit model. It is similar to other traditional linear classification

methods, such as discriminant analysis, where classification rules are based on linear

combinations of predictors. However, generalized logit models have been found to outperform

discriminant analysis when the data are non-normal and when many of the predictors are

qualitative (Press and Wilson 1978). For an excellent introduction to generalized logit models,

see Agresti (1996) and for a more detailed discussion, see Agresti (1990).

Classification tree.- Tree-based classification is one of a larger set of techniques recently

developed for analyzing non-standard data (e.g., mixtures of quantitative and qualitative

predictors; Brieman et al. 1984). Classification trees consist of a collection of decision rules

(e.g., if A then "yes", otherwise "no"), which are created during a procedure known as recursive

partitioning (see Details). Consequently, the structure of tree classification rules differ

significantly from techniques, such as discriminant analysis and generalized logit models, where

classification rules are based on linear combinations of predictors. For illustration, Figure 1.1

depicts a greatly simplified example of recursive partitioning for a data set containing two

response categories, A and B. The tree growing process begins with all of the data contained in

parent node, t1. The initial partition, at X = 30, produced child nodes t2, which contained of an

equal number of members of both categories and t3, a relatively homogeneous node (i.e., 8/9 =

89% B). The second partition of parent node t2, at Y = 20, produced child nodes t4, which

contained a majority of category A and t5, with a majority of B. Assuming that the partitioning

was complete, the predicted response at each terminal node would be the category with the

greatest representation (i.e., the mode of the distribution of the response categories). In this

example, the predicted responses would be B, A, and B for nodes t3, t4, and t5, respectively. The

recursive partitioning technique also makes tree classifiers more flexible than traditional linear

methods. For example, classification tree models can incorporate qualitative predictors with
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more than 2 levels, integrate complex mixtures of data types, and automatically incorporate

complex interactions among predictors. One drawback however, is that the statistical theory for

tree-based models remain in the early stages of development (Clark and Pregibon 1992). For a

though description of tree-based methods, consult Brieman et al. (1984).

Nearest neighbor classification.- K-nearest neighbor classification (KNN), also known

as nearest neighbor discriminant analysis, is used to predict the response of an observation using

a nonparametric estimate of the response distribution of its K nearest (i.e., in predictor space)

neighbors. Consequently, KNN is relatively flexible and unlike traditional classifiers, such as

discriminant analysis and generalized logit models, it does not require an assumption of

multivariate normality or strong assumption implicit in specifying a link function (e.g., the logit

link). KNN classification is based on the assumption that the characteristics of members of the

same class should be similar and thus, observations located close together in covariate

(statistical) space are members of the same class or at least have the same posterior distributions

on their respective classes (Cover and Hart 1967). For example, Figure 1.2 depicts a simplified

example of the classification of unknown observations, U1and U2. Using a 1-nearest neighbor

rule (i.e. K=1) the unknown observations (U1 and U2) are classified into the group associated

with the 1 observation located nearest in predictor space (i.e., groups B and A, respectively). In

addition to its flexibility, KNN classification has been found to be relatively accurate (Haas et al.

In prep.). One drawback however, is that KNN classification rules are difficult to interpret

because they are only based on the identity of the K nearest neighbors. Therefore, information

for the remaining n - K classifications is ignored (Cover and Hart 1967). For an introduction to

KNN and similar classification techniques, consult Hand 1982.

Modular neural network.- Artificial neural networks are relatively new classification

techniques that were originally developed to simulate the function of biological nervous systems

(Hinton 1992). Consequently, much of the artificial neural network terminology parallels that of

biological fields. For example, fitting (i.e., parameterizing) an artificial neural network is often

referred to as "learning". Although they are computationally complex, artificial neural networks

can be thought of as simply a collection of interconnected functions. These functions, however,

do not include explicit error terms or model a response variable's probability distribution, which

is in sharp contrast to traditional parametric methods (Haas et al. In prep.). However, artificial

neural network classifiers are quite often extremely accurate (Anand et al. 1995). Unfortunately,
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they are generally considered black-box classifiers because of difficulties in interpreting the

complex nature of their interconnected functions. An excellent introduction to artificial neural

networks can be found in Hinton (1992). For a more thorough treatment, consult Hertz et al.

(1991).

Manual format. - The Data entry, Terminal dialogue, and Output sections are the heart

of the manual and should be read prior to running CATDAT. The Data entry section describes

the structure of a CATDAT data file and should be thoroughly reviewed prior to creating a data

file. The Terminal dialogue section describes how to specify an analysis and provides specific

information on analytical options, while the Output section explains the CATDAT output.

Thorough examples of analyses are provided in Examples and a description of commonly

encountered error messages, with some potential solutions, are given in Catdat info. The catdat

info section also contains the installation instructions, computer requirements, and

troubleshooting options. Definitions of the much of the terminology used in the manual can be

found in Table 1.1.
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Table 1.1. Definitions of terms used throughout the CATDAT manual and their synonyms.

Term Definition

Activation
function

Maps the neural net output into the bounded range 0, 1

Categorical
response

A response variable for which the measurement scale consists of a set of
categories, e.g., alive, dead, good, bad

Classifier A model created via categorical data analysis

Model training Parameterizing or fitting a model, also referred to as learning for neural
networks

Nonparametric
data analysis

Procedures that do not require an assumption of the population distribution
(e.g., the normal distribution) from which the sample has been selected.

Parametric data
analysis

Procedures that require an assumption of the underlying population
distribution. The appropriateness of these procedures depends, in part, upon
the fulfillment of this assumption.

Predictor An explanatory variable, an independent variable in the generalized logit
model

Response The class or category from which an observation was selected or predicted
to be a member

Test data Data with known responses that were not used to fit the classification model

Training data Data that were used to fit (i.e., parameterize) the classification model

Unknown data Data for which the true responses are unknown
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Figure 1.1. An example of recursive partitioning. The trees (top) correspond to their respective graphs (below). The initial partition
(left) is at X=30 with the corresponding tree decision if X < 30 go left.. The second partition is at Y = 20 with the corresponding tree
decision if Y < 20 go left. Partitions are separated by broken lines and are labeled with their corresponding tree node identifiers (t).
Non-terminal nodes are represented by ovals and terminal nodes by boxes.
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Figure 1.2. A simplified example of the classification of unknown observations, U1 and U2, as members of
one of two groups, A or B. Arrows represent the distance from the unknown observations to their nearest
neighbors. Using a K = 1 nearest neighbor classification rule (solid arrows), unknown observations U1 and U2
would be classified as members of groups A and B, respectively. A K =6 nearest neighbor rule (all arrows),
however, would classify U1 and U2 as members of groups B and A, respectively.
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Data Input

CATDAT data files can easily be created from ASCII files exported from spread sheets

(e.g., Applix, Excel, Lotus 1,2, 3) and other database management software (e.g., Oracle, Dbase,

Paradox). These data files can be used repeatedly, which allows one to perform several analyses

with the same data. For example, a single data set can be used to compare the classification

accuracy of the various techniques or to gain insight into the rule sets generated by the black-box

classifiers.

All CATDAT data files must be single-space delimited and should consist of two

corresponding sections, the heading and body. The data file heading can be created and attached

to the exported ASCII file using a text editor. The heading always contains three lines that are

used to identify the response categories and predictors. The first line is used to declare the

number and names of the response categories, which should not exceed 10 characters in length.

Their order in should correspond with the number used to identify each response category in the

data file body. For example, the first line of the ocean-type chinook salmon data file heading

(Table 2.1) identifies 4 response categories, Strong, Depressed, Migrant, and Absent, which are

represented by the numbers 1, 2, 3, and 4 respectively, in the first column of the data file body.

The second line of the heading is used to declare the number and name of the quantitative (i.e.,

continuous, ratio, interval) predictors. Their order in the heading should correspond with their

order in the data file body. For example, the ocean-type chinook data file (Table 2.1) contains 11

quantitative predictors, Hucorder, Elev, Slope, Drnden, Bank, Baseero, Hk, Ppt, Mntemp, Solar,

and, Rdmean. Consequently, column 2 in the data file body contains the Hucorder data, column

3 contains the Elev data, and so forth. The third line of the heading is used to declare the number

and name of the qualitative (i.e., nominal, class) predictors. Similar to the quantitative predictors,

their order in line 3 should correspond to their column order in the data file body. The third line

of the heading must also be terminated with an asterisk (Table 2.1 and 2.2). If the data contains

no quantitative or qualitative predictors, a zero must begin line 2 or 3, respectively. For example,

the Ozark stream channel-unit data (Table 2.2) has 5 quantitative predictors, but zero qualitative

predictors. Thus, the third line of the heading begins with a zero and ends with an asterisk (*).
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The data file body contains the data to be analyzed with CATDAT. Each line of the data

file body contains a single observation. The first column always contains the response category,

which can only be represented by an integer greater than zero (i.e., zeros cannot be used to

represent response categories). The quantitative and qualitative predictors then follow in the

order listed in lines 2 and 3 of the heading, respectively, with a single space between each.

Quantitative predictors should not exceed single precision limits (i.e., approximately 7 digits)

and qualitative predictor categories can only be represented by an integer greater than zero. In

addition, observations with missing values must be removed from the data file prior to all

analyses.
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Table 2.1. Ocean-type chinook salmon population status data in the correct format for input into
CATDAT. This data file contains 4 response categories, 11 quantitative predictors, and 1
qualitative predictor. See Data Input for a complete description of format.                                   

4 Strong Depressed Migrant Absent

11 Hucorder Elev Slope Drnden Bank Baseero Hk Ppt Mntemp Solar Rdmean

1 Mgntcls *

1 18 2193 9.67 0.6843 73.953 12.2004 0.37 979.612 7.746 273.381 2.0528 1

2 20 2793 19.794 1.3058 58.708 29.9312 0.3697 724.264 6.958 260.583 3.440 3

1 22 2421 23.339 1.231 44.845 36.3927 0.3697 661.677 7.6 254.733 2.364 2

3 23 3833 34.553 1.3661 19.092 52.7353 0.3692 714.559 6 252.889 1.489 1

4 36 1925 23.797 1.0873 28.026 36.3066 0.3695 544.183 8.5 252.857 2.336 2

4 38 1775 13.549 0.7118 67.898 19.0161 0.3699 757.989 8.533 276.156 1.311 3

2 47 1387 17.264 1.582 35.8019 25.6341 0.3696 326.714 9.688 249.938 2.372 2

3 168 732 7.69 1.3472 92.8437 6.6349 0.2477 183.966 11.652 262.913 0.4281 1

1 234 1606 9.209 1.2716 84.167 8.2979 0.3186 346.479 10.478 289.13 0.8019 1

4 247 1750 15.899 2.4221 86.722 21.3021 0.3462 341.379 11 290.875 1.1037 3

.

....remainder of data....

.

4 263 135 22.431 1.06 79.4377 23.1364 0.2601 304.631 10.111 275.037 0.946 1

1 1418 768 5.677 0.3317 99.1893 3.0148 0.2114 210.137 11.21 262.01 0.293 1

2 0 2992 17.831 1.5458 68.8551 26.3373 0.3695 411.158 6.929 258.071 1.866 2

________________________________________________________________________
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Table 2.2. Ozark stream channel unit data in the correct format for input into CATDAT. This
data file contains 5 response categories, 5 quantitative predictors, and no qualitative predictors.
See Data Input for a complete description of format.                                                                       

5 Riffle Glide Edgwatr Sidchanl Pool

5 Depth Current Veget Wood Cobb

0 *

1 1.95 1.004 0 0 4.394

1 2.08 1.075 1.386 0 4.111

1 1.79 1.224 1.792 1.099 4.19

2 1.61 .863 0 0 4.025

2 1.61 1.109 0 0 4.19

4 2.20 1.157 0 1.099 4.19

.

....remainder of data....

.

4 2.49 0 1.386 2.197 0

5 1.61 .095 0 0 2.398

3 1.95 0 4.111 3.258 0

4 3.14 .166 0 3.258 3.714

4 2.89 .231 0 3.045 3.932

1 1.89 .174 0 0 3.714

4 1.79 .207 3.045 1.386 3.434

5 1.61 .3 1.792 0 4.331

________________________________________________________________________



12

Terminal dialogue

Activation. - CATDAT is designed as an interactive computer program. It asks the user a

series of questions about the specifications of the analysis. The answers to these questions are

written to an "analysis specification file", which is in ACSII (i.e., text) format. Analysis

specification files can also be manually created or modified, which is very useful when

investigating the optimal classification tree size, or the optimal number of K nearest neighbors or

hidden nodes for the modular neural network. After installation, CATDAT is activated by typing

"catdat" at the prompt.

Specifying the type of analysis.- The CATDAT analysis specification subroutines are

case sensitive. Consequently, all questions must be answered with lower-case letters. In addition,

the names of input and output files should consist no more than 12 alphanumeric characters.

After activation, CATDAT begins with the question:

If the answer is no, type "n" and press RETURN or ENTER. The user will then be asked several

questions about the name of the input file and the type of analysis to be performed (see the

following sections). If the answer is yes, type "y" and press RETURN or ENTER. CATDAT will

then ask for the name of the analysis specification file. Type in the name of the file and the

analysis will proceed automatically. Although analysis specification files can be created with

most word processing software, we recommend only editing those created by CATDAT. The

format of the CATDAT analysis specification files is precise (Table 3.1 and 3.2)and analysis

specification file may cause CATDAT to perform the wrong analysis or crash. Consequently,

mistakes in an

If an analysis specification file is not submitted, CATDAT then asks:

This file must be in the correct format and should contain the data for analysis or the training

data when classifying unknown or test data sets. If CATDAT cannot find the data file, it will ask

for the name of the file again. Make sure that the file name is spelled correctly (CATDAT is case

sensitive) and that the path (i.e., the location of the file) is also correct. If CATDAT cannot
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locate the file after several attempts, the program must be terminated manually by holding down

the CONTROL ("Ctrl") button and hitting the "c".

Once the data file has been correctly specified, CATDAT will ask:

After selecting the desired analysis, CATDAT will provide an analysis-specific list of options,

outlined below.

Generalized logit model options. -CATDAT constructs J-1 baseline category logits,

where J is the number of response categories (see Details). The response category coded with the

largest number (i.e., the last category in the data file heading) is always used as the baseline (J)

category during model parameterization. For example, the Absent response category would be

used as the baseline for the ocean-type chinook salmon population status data (Table 2.1). For

the most robust model, the most frequent response (i.e., the category with the greatest number of

observations) should be used as the baseline (Agresti 1990). Consequently, we recommend that

users code their response categories accordingly. In addition, the generalized logit model cannot

directly incorporate qualitative predictors. Thus, qualitative predictors should be recoded into

dummy regression variables (i.e., 0 or 1, see Example 1). We also recommend using only the

qualitative predictors that occur in at least 10% of observations, because rarely occurring

predictor categories may cause unstable maximum likelihood estimates (Agresti 1990).

After choosing the generalized logit model, CATDAT will provide the following list of

options:

The first two choices are mechanized model selection procedures that use hypothesis tests.

Option 1 is used to select statistically significant main effects with the Wald test, whereas option

2 is for forward selection of statistically significant predictor and two-way interactions using the
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Score statistic (see Details). Option 3 is used to estimate the model prediction error rates and

option 4 will provide maximum likelihood ββj estimates, goodness-of-fit statistics, and

studentized Pearson residuals for selected logit models. Option 5 is used to classify unknown or

test data using the generalized logit model parameterized with a training data set, specified

earlier.

If option 2 is selected, the user will be asked to specify the forward selection of predictors

and two-way interactions or two-way interactions only. In addition, CATDAT will prompt the

user to select the critical alpha-level for the hypothesis tests.

(if option = 1)

(or option = 2)

This alpha is used to calculate the critical value for the Wald test or Score statistic. Predictors or

interactions that exceed the critical value for their respective hypothesis test will be output and

written to a file, below. To maintain a relatively consistent experiment-wise error rate, we

suggest users adjust the alpha-level (a) with a Bonferroni correction (i.e., a/k, where k= number

of predictors or interactions to be tested).

CATDAT will then ask for the name of a file to output the significant predictors or

interactions.

This significant predictor file can be then submitted to CATDAT later for error rate estimation or

to estimate the maximum likelihood ββj and output the residuals. If a filename is not entered, the

significant predictors will be written to the default file "output.dat".
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If the error rate option is selected, CATDAT will ask for the type of error rate estimate.

The within-sample error rate, also known as the apparent error rate, is the classification error rate

for the data that was used to fit the logit model. It is usually optimistic (i.e., negatively biased),

whereas the cross-validation error rate should provide a much better estimate of the expected

classification error rate of the logit model. To obtain a V-fold cross-validation rate, a test data set

must be submitted (see Details, expected error rate estimation). CATDAT will then ask for the

name of the file to output the predicted response, response probabilities, and predictor values for

each observation.

Selection of the maximum likelihood ββj estimates option (above) will prompt CATDAT to ask if

the quantitative predictors should be normalized to the interval [0,1]. If the answer is yes, the

maximum likelihood ββj will be estimated using the normalized data. Otherwise, they will be

estimated with the untransformed (i.e., raw) data.

CATDAT will also ask for the structure of the logit model.

If the full main effects model is selected, the analysis will proceed with all of the

predictors in the logit model. Selection of one the remaining three options will cause CATDAT

to ask:

If you have a model specification file from a previous analysis or the significant predictor file

from the hypothesis testing procedure, enter "y" and CATDAT will ask for the file name. Enter
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the file name and the analysis will proceed. If there isn’t a model specification file, answer "n"

and CATDAT will ask:

or for interactions

Enter the name of a predictor, or a pair of predictors (i.e., interactions) separated by a space, and

press ENTER or RETURN. CATDAT will then ask if more predictors or interactions are to be

included in the model. Continue adding predictors or interactions in this manner until the desired

model is achieved. Note that quadratic responses (i.e., x2) can be modeled by entering the

interaction of a quantitative predictor with itself in the logit model.

If the maximum likelihood ββj estimates and residuals option was previously selected,

CATDAT will ask for the name of the residual file. Enter the name of the residual file and the

analysis will proceed.

If classification of an unknown or test data set was selected, CATDAT will ask:

The file should have the identical format (i.e., same number of predictors) as the data set that was

used to fit the logit model (i.e., the training data set, specified earlier) with NO data file heading.

The unknown or test data file should also contain a response category, which in the case of an

unknown observation, must simply be a nonzero integer less than or equal to the number of

response categories in the training data set. CATDAT will also ask for the name of a file to

output the classification predictions. After the fitting the logit model, this file will contain the

original response category codes of the unknown or test data, predicted responses, the estimated

probabilities for each response, and the original predictor values.
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Classification tree, nearest neighbor, and modular neural network options.- When

either of these three techniques are selected, CATDAT will ask for the "best" classification tree

parameter and minimum partition size, the number of K nearest neighbors, or the number of

modular neural network hidden nodes. These parameters are used to limit the number of K

nearest neighbors or size of the classification tree and modular neural network and are necessary

for model selection (see Details). Once the optimum value of these parameters is found, the same

value should be used for the Monte Carlo hypothesis tests, to build the final classification tree,

and for classifying an unknown or test data set.

For the classification tree, CATDAT has the following options:

The options for K-nearest neighbor and the modular neural network include:

The error rate calculation option is used to estimate the expected error rate of the respective

classifier and to select the best sized tree and the optimal number nearest neighbors (K) or

modular neural network hidden nodes. Similar to the logit model, the user has the option of

calculating the within-sample or cross-validation error rate. However, only the cross-validation

error rate should be used for finding the optimum tree size, number of neighbors, or number of

modular neural network hidden nodes (see Details, expected error rate estimation). In addition,

the output files from the error rate estimation of the k-nearest neighbor include the average

distance between each observation and its k neighbors and the modular neural network output

contains the values of Z*.
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If the error rate or grow a tree options are specified, CATDAT will ask for the structure

of the model (i.e., the full effects or selected effects).  If a pre-selected model is desired,

CATDAT will ask:

If you have a model specification file from a previous analysis, enter "y" and CATDAT will ask

for the file name. Enter the file name and the analysis will proceed. If there isn’t a model

specification file, answer "n" and CATDAT will ask for the names of the predictors to be

included in the model. Similar to the generalixed logit model specification, enter the name of a

predictor and press ENTER or RETURN. CATDAT will then ask if more predictors are to be

included in the model. Continue adding predictors or interactions in this manner until the desired

model is achieve.

When using a modular neural network, CATDAT will also ask:

These weights are analogous to the parameters of a generalized linear model, such as the logit

model ββj. During the initial fit of the neural network, the answer to the above question will be "n"

and initial weights will be randomly assigned and iteratively fit to the data (see Details). If the

answer is yes, CATDAT will then ask for the name of the file. In addition, CATDAT will ask for

the name of the file to write the final (i.e., fitted) weights of the neural network during error rate

estimation.

If a Monte Carlo hypothesis test is specified, CATDAT will ask:

The sum of the category-specific cross-validation error rates for the full (i.e. all predictors)

model (EERF) is used to calculate the test statistic, Ts, for the Monte Carlo hypothesis test (see

Details). If error estimates were calculated during a previous analysis (e.g., while determining

the best classification tree size), answer "y" and CATDAT will ask for the value. If not, answer
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"n" and the value will be calculated by CATDAT. The Monte Carlo hypothesis test is time

intensive. Thus, providing the full model error rates prior to the test can significantly shorten this

time.

CATDAT will then ask:

The jackknife sample will be used to calculate the jackknife Ts
* for the hypothesis test (see

Details). Because the Ts
* is potentially sensitive to the jackknife sample size, we recommend

setting the sample size to 20-30% of the size of the entire data set. For example, the jackknife

sample size for a data set with 1000 observations should be between 200 - 300. In addition, the

user will be asked for the number of jackknife samples. These samples will be used to determine

the distribution of the Ts
* statistic and thus, the p-value of the hypothesis test. For example, if the

jackknife Ts
* exceeded the observed Ts in 1 of 100 jackknife samples, the p-value = 1/100 or

0.01. Consequently, hypothesis test requires a minimum of 50 samples for a reliable test statistic

(Shao and Tu 1995). For the most robust test, we recommend using at least 300 samples.

CATDAT will then ask:

This file will contain the full and reduced model cross-validation error rates and the Ts
* statistic

for each jackknife sample.

For the Monte Carlo hypothesis test, CATDAT will also ask for a file with the model

specifications (i.e., predictors to be tested). This file should contain the predictors that are to be

excluded (i.e., tested) from the respective classifier (see Details). If there is no model

specification file, CATDAT will ask:

Enter the name of a predictor and press ENTER or RETURN. CATDAT will then ask if more

predictors are to be excluded. Continue adding predictors in this manner until the desired model

is achieved.
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When growing a classification tree with a selected model, CATDAT will ask:

The file name should end with the extension ".sas". After the tree is fit, this file can be submitted

to SAS (1989) and the classification tree will be automatically drawn and written to gsasfile

‘tree.ps’. Trees can also be drawn manually using the CATDAT general output (see Output,

classification tree blueprints).

CATDAT can also be used to classify an unknown or test data set with these three

techniques. The directions for submitting an unknown or test data set are identical to those for

the generalized logit model, outlined above.

Naming the input-output files and review of the analysis.- After specifying the desired

classification technique and options, CATDAT will ask for the names of the analysis

specification and output files. The output file will contain the all of the program output not

written to pre-specified files, such as the residual file. After naming the files, CATDAT will

review the data file parameters and the options selected for the analysis, e.g.,
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If all of the parameters are correct, answer "y" and the analysis will begin. Otherwise, the user

will be returned to the analysis specification subroutines.
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Table 3.1. An analysis specification file written by CATDAT. The corresponding CATDAT data
file can be found in Table 2.1. Note that field descriptors (in parenthesis) are shown for
illustration. See Appendix A for a list of variable identifiers.

flenme otc.dat (CATDAT data file)
nmquan 11 (the number of quantitative predictors)
esttyp 2 (specifies classification tree)
calc 2 (error rate calculation)
besttre 19 (BEST parameter)
selerr 2 (cross-validation, for within-sample error selerr = 1)
genout otc.out (general output file)
nmcat 4 (the number of response categories)
Strong  (response category names)
Depressed   
Migrant   
Absent   
nmprd 12 (the total number of predictors)
Hucorder  (quantitative predictor names)
Elev   
Slope   
Drnden   
Bank   
Baseero   
Hk   
Ppt   
Mntemp   
Solar   
Rdmean   
Mgnclus  (qualitative predictor name)
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Table 3.2. An analysis specification file written by CATDAT. The corresponding CATDAT data
file can be found in Table 2.2. Note that field descriptors (in parenthesis) are shown for
illustration. See Appendix for a list of variable identifiers.

flenme bccu.dat (CATDAT data file)

nmquan 5 (the number of quantitative predictors)
sigp 0.0100000 (critical alpha-level)
esttyp 1 (specifies generalized logit model)
calc 7 (forward selection of main effects predictors)
fleout bccu.mod (output file with significant predictors)
genout bccu.out (general output file)
nmcat 5 (the number of response categories)
Riffle  (response category names)
Glide   
Edgwatr   
Sidchanl   
Pool   
nmprd 5 (the total number of predictors)
Depth  (quantitative predictor names)
Current   
Veget   
Wood   
Cobb   

______________________________________________________________________________
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Output

General output.- Prior to each analysis, CATDAT outputs a summary of the data that

includes the total number of observations, number of observations for each response category,

and the name and number of predictors (Table 4.1). If the data contains qualitative predictors,

CATDAT outputs the frequency of each category. The summary data is useful for confirming

that the data file heading and body are properly specified. For example, when the general output

reports an incorrect number of observations per response category, it’s usually an indication that

the number of predictors was incorrectly specified in the data file heading. The summary is also

useful for confirming that the last response category has the greatest number of observations for

the generalized logit model. When all analyses are completed, CATDAT reports "Analysis

completed".

Generalized logit model-specific output.- The output of the generalized logit model

hypothesis tests includes the critical alpha-level and a summary table with the results of the

backward elimination of main effects or forward selection of main effects and/or interactions.

The summary table contains the statistically significant predictors or interactions, their associated

Wald test or Score statistics, and the p-values (Table 4.2). When no main effects or interactions

exceed the critical value, CATDAT outputs "None found" in the significant predictor table

(Table 4.2).

The individual predictors or pairs of predictors that exceed their respective critical values

are also written to the model specification file, with one predictor or interaction per line. The

predictors are represented by numbers that correspond to their order in the data file heading. For

example, numbers 1 and 2 would represent the first two predictors listed in the ocean-type

chinook salmon status data file heading, Hucorder and Elev (Table 2.1). The main effects are

always listed first followed by each pair of predictors (i.e., interaction), separated by a space. An

asterisk is used to separate the main effects from the interactions.

The names of the generalized logit model predictors (i.e., main effects and/or

interactions) are output prior to estimating the maximum likelihood ββj. CATDAT then outputs

the AICc, QAICc, and -2 log likelihood of the intercept-only and specified models and the log

likelihood test statistic and its p-value. The ββj of the specified model are then output for each

response category j, except the baseline (Table 4.3). Finally, the goodness-of-fit statistics are

output and "studentized" Pearson residuals (Fahrmeir and Tutz 1994) are written to the specified
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file. Residual files are ASCII formatted, space-delimited, and contain the residuals and their

associated chi-squared scores (see Details). Thus, they can be imported into most spreadsheets or

statistical software packages for further analysis.

Classification tree blueprints.- The classification tree blueprints are output only when the

"Grow a tree with selected model" option is selected during analysis specification. CATDAT

outputs the BEST parameter, the number of nodes in the final "pruned" tree, the residual

deviance, and the non-terminal and terminal node characteristics necessary for tree construction

(Table 4.4). The non-terminal node characteristics include the parent node number, sub-tree

deviance, the node numbers of its children, the covariate at the parent node and associated split-

value, and the number of observations (i.e., the size) at the node. The terminal node

characteristics consist of the node number, the residual deviance, the predicted response at the

node, and the terminal node size. The classification tree can be draw manually or automatically

by SAS when the tree SAS file is used. However, the node size and split values need to be added

manually to the SAS graphics output, if desired (Figure 4.1).

An example of the interpretation of tree blueprints is shown for the chinook salmon

population status data (Table 4.4 and Figure 4.1), the first parent node begins with all of the

observations (n=477) and the initial split on the predictor Elev. The split-value of Elev is 2075

and thus, observations with Elev less than or equal to 2075 (n=136) go to the left-child node (i.e.,

down in the SAS graphics output) and observations that exceed 2075 (n=341) go to the right-

child node. The next predictor at parent nodes 2 and 3 is Hucorder and the split-values are 1051

and 1823, respectively. This process continues until the tree is completed (Figure 4.1). For an

explanation of tree terminology, see Details, classification tree.

Classification error rate output.- The format of the expected error rate output is similar

for all classification techniques. CATDAT lists the type of classifier and error estimate (i.e.,

within-sample or cross-validation), and the model specifications (Table 4.5). For example, the

model specifications for the generalized logit model include the main effects and/or interactions,

whereas the BEST parameter and number of hidden nodes are listed for the classification tree

and modular neural networks, respectively. The modular neural network output also includes the

name of the source of the initial network weights (e.g., the file name or random number

generator seed). In addition, the pairwise mean Mahalanobis distances between response groups
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is output prior to error rate estimation of the K-nearest neighbor classifier (see Details, nearest

neighbor).

The remainder of the classification error output includes the overall (i.e., across response

categories) number and proportion of misclassification errors (EER). Category-wise error rates

include the number and proportion (EER) of misclassified observations per response category.

CATDAT also reports the number of times a response category was predicted and the proportion

(Perr) of those that were incorrect. For example, 50 observations were misclassified during

cross-validation of the ocean-type chinook salmon status classification tree (Table 4.5, top). Of

these, 11 observations from the Strong category, 23 from the Depressed category, 10 from the

Absent category, and 6 from the Migrant category were misclassfied. Observations were most

often classified as Absent (359 observations), whereas only 16 observations were classified as

Strong. However, 37.5% of the observations of the Strong predictions were incorrect (Table 4.5).

The cross-validation subroutines used for estimating the expected error rates and the Monte

Carlo hypothesis tests (below) are very computer and time intensive. Consequently, CATDAT

periodically reports the degree of completion for these procedures to allow the user to estimate

the amount of time needed to complete the analysis.

Monte Carlo hypothesis test output.- Similar to the classification error rate, output for

the Monte Carlo hypothesis test is alike for all the classification techniques. CATDAT initially

outputs the type of classifier, the classifier specifications (e.g., the number of K neighbors), and a

list of the excluded predictor(s). The expected error rate for the full model, EERSF, (i.e., all

predictors) and reduced model EERSR (i.e., without the excluded predictors) are then estimated

and reported (Table 4.6). The EERS that is estimated for the Monte Carlo hypothesis test is the

sum of the category-wise EER. Therefore, it will differ from the overall EER estimated during

cross-validation (outlined above). For example, the classification tree in Table 4.5 would have an

EERSF = 0.5238 + 0.4035 + 0.0294 + 0.1017 = 1.0584, which is also the EERSF shown in Table

4.6. This is to ensure that the hypothesis test is not sensitive to sharply unequal sample sizes

among response categories (see Details). CATDAT then reports the jackknife sample size and

number of jackknife samples. Finally, CATDAT outputs a summary of the jackknife Ts
* statistics

and reports the estimated p-value. The p-value is the number of jackknife samples in which the

jackknife Ts
* exceeded observed Ts. The jackknife cross-validation and Ts

* statistics file contains
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the EERSF
*, EERSR

*, and Ts
* for each jackknife sample and can be used to examine the

distribution of the Ts
* statistic and verify the estimated p-value.

Output from the classification of unknown or test data.- When classifying unknown or

test data sets, CATDAT outputs a general summary of the training data set including the names

and number of predictors and response categories and the total number of observations.

CATDAT also reports the type of classifier and relevant specifications (e.g., the number of

hidden nodes). The training data summary ends with an "--END--" statement. The remainder of

the output is a summary of the test or unknown data set including the total number of

observations, the number and percentage (EER) of overall misclassification errors, and the

residual tree deviance for test data, if applicable. The prediction files are ASCII formatted,

single-space delimited and can therefore, be imported into a spread sheet or statistical software

package for additional analyses. These files contain the original response category codes for the

unknown or test data, the predicted responses, and the original raw data (Table 4.7).
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Table 4.1. An example of CATDAT general output for data with (otc.dat, top) and without
(bccu.dat, bottom) qualitative predictors. The corresponding data files are in Tables 2.1 and 2.2,
respectively. The analysis-specific output would immediately follow this general output during
program execution.                                                                                                                            

---- CATDAT analysis of data in otc.dat ----

Qualitative predictor(s):

Mgnclus category Frequency
1 0.3061
2 0.3187
3 0.3690

Quantitative predictors:

Hucorder Elev Slope Drnden Bank Baseero
Hk Ppt Mntemp Solar Rdmean  
Observed frequencies of response variable categories

Response Count
Marginal

frequency
Strong 21 0.0440

Depressed 57 0.1195
Migrant 59 0.1237

Absent 340 0.7128

Number of observations in otc.dat, 477
and number of predictors, 13

-------------------------------------------------------------------------------------

--- CATDAT analysis of data in bccu.dat ----

Quantitative predictors:

Depth Current Veget Wood Cobb

Observed frequencies of response variable categories

Response Count
Marginal

frequency
Riffle 53 0.1661

Glide 65 0.2038
Edgewatr 60 0.1881
Sidchanl 64 0.2006

Pool 77 0.2414

Number of observations in bccu.dat, 319
and number of predictors, 5

______________________________________________________________________________
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Table 4.2. CATDAT backward elimination of generalized logit model main effects (top) and
forward selection of predictors and two-way interactions (bottom) for the Ozark stream channel-
unit data in Table 2.1.                                                                                                                        

Full main effects model initially fit.
Backward elimination of generalized logit model main effects
Predictors accepted at P < 0.010000

Predictor
Wald Chi-

square
p-value

Depth 59.5209 0.000001
Current 30.0978 0.000005

-------------------------------------------------------------------------------

Forward selection of generalized logit model main effects and interactions
Main effects and interactions accepted at P < 0.010000

Predictor
Score Chi-

square
p-value

Depth 260.5298 0.000001
Current 208.5219 0.000001

Predictor
Interaction

Predictor
Score Chi-

square
p-value

None found.

______________________________________________________________________________
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Table 4.3. CATDAT output for maximum likelihood ββj estimates of the full main effects model
of Ozark stream channel-unit physical characteristics in Table 2.1.                                                 

Generalized logit model- Full main effects
Note: maximum likelihood estimation ended at iteration 10 because
log likelihood decreased by less than 0.00001

Model fit and global hypothesis test H0: BETA = 0

Statistic
Intercept

only
Intercept &
predictors

Chi-square DF p-value

AICc 1024.0662 208.2199    
QAICc 1020.8622 208.2199    

-2 LOG L 1022.0662 198.2199 823.8463 16 0.000001

Maximum likelihood Beta estimates

Predictor Parameter estimate Standard error
Riffle   
Intercept 37.5567647 7.2843923
Depth -19.0793739 3.0448025
Current 12.2224038 3.4525225
Veget -0.2762036 1.4883817
Wood -0.1670234 2.1025782
Cobb 0.7878549 0.7707288
Glide   
Intercept 19.6055404 5.5615438
Depth -7.3922776 1.6523091
Current 4.0508781 2.0663587
Veget -0.7411187 0.7782046
Wood -0.0873240 1.4366273
Cobb 0.6955888 0.5004676
Edgwatr   
Intercept 36.8944958 7.1234382
Depth -12.3203028 2.2069905
Current -17.5510358 7.2972258
Veget 0.6827152 0.7303764
Wood 0.0736687 0.9712411
Cobb 1.4765257 0.7298189
Sidchanl   
Intercept 31.7236748 7.0901073
Depth -9.5399044 2.1677537
Current -25.0343513 7.4302069
Veget 0.4216387 0.7205377
Wood 0.3719920 1.4017324
Cobb 1.4786542 0.7233326

______________________________________________________________________________
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Table 4.3. (continued)                                                                                                                       

Goodness-of-Fit tests
Note: 178 estimated probabilities for Riffle were less than 10e-5
Note: 23 estimated probabilities for Glide were less than 10e-5
Note: 139 estimated probabilities for Edgwatr were less than 10e-5
Note: 150 estimated probabilities for Sidchanl were less than 10e-5

Osius and Rojek increasing-cells asymptotics

Pearson chi-
square

Mu Sigma^2 Tau p-value

300.9296 1276.0000 6.292127e+19 -0.000001 1.000000

Andrews omnibus chi-square goodness-of-fit

Chi-square
Number of
clusters

DF p-value

25.4008 2 8 0.004858

Residuals have been saved in Bccu.rsd

______________________________________________________________________________
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Table 4.4. CATDAT classification tree output for the ocean-type chinook salmon population
status data in Table 2.1. The corresponding classification tree can be found in Figure 4.1.           

Classification tree BEST specification = 19
and minimum partition size = 19
Pruned Tree: Number of nodes = 19
Residual deviance = 114.109

Nonterminal Nodes:

Node
Sub-tree
Deviance

Left-
Child

Right-
Child

Size Predictor
Split-

Value
1 425.100 2 3 477 Elev 2075.0000
2 171.078 4 5 136 Hucorder 1051.0000
3 151.181 6 7 341 Hucorder 1823.0000
4 113.775 8 9 90 Hucorder 9.0000
5 4.818 10 11 46 Rdmean 0.2934
8 19.715 14 15 30 Ppt 233.7170
9 71.276 16 17 60 Hucorder 263.0000

16 44.443 22 23 41 Hucorder 228.0000
22 30.575 30 31 32 Ppt 363.3410

Terminal Nodes:

Node Deviance Size
Predicted

response
6 114.109 326 Absent
7 0.000 15 Depressed

10 0.000 1 Strong
11 0.000 45 Migrant
14 0.000 16 Absent
15 0.000 14 Migrant
17 0.000 19 Absent
23 0.000 9 Strong
30 0.000 26 Depressed
31 0.000 7 Strong

______________________________________________________________________________
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Table 4.5. An example of CATDAT output for classification tree cross-validation (top) and
generalized logit model within-sample (bottom) error rate estimation. EER and Perr are the
expected error rate and prediction error rates, respectively.                                                             

Classification Tree with BEST fit specification = 21
and minimum partition size = 19
Cross-validation error rate calculation

Overall number of errors EER
50 0.1048

Category Number of errors EER No. of Predictions Perr
Strong 11 0.5238 16 ---

Depressed 23 0.4035 43 0.3750
Migrant 10 0.0294 359 0.0808

Absent 6 0.1017 59 0.1017

------------------------------------------------

Generalized Logit Model
Within-sample error rate calculation
Full main effects model
After model selection the number of predictors = 5

Overall number of errors EER
33 0.1034

Category Number of errors EER No. of Predictions Perr
Riffle 2 0.0377 55 0.0727

Glide 5 0.0769 63 0.0476
Edgwatr 10 0.1667 66 0.2424

Sidchanl 16 0.2500 57 0.1579
Pool 0 0.0000 78 0.0128

______________________________________________________________________________
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Table 4.6. CATDAT output for the Monte Carlo hypothesis test. The predictor tested is
Hucorder and the type of classifier is the classification tree. The data is the ocean-type chinook
salmon population status data in Table 2.1.                                                                                     

Monte Carlo hypothesis test of classification tree
BEST fit specification = 21
and minimum partition size = 19
Excluded covariate(s): Hucorder

 
***** Full model cross validation results *****

Full sample error rate, EER(f)= 1.058425
***** Reduced model cross-validation results *****

Reduced model error rate, EER(r)= 1.583001
***** Jackknife sample cross-Validation Results *****

Jackknife sample size=250, Number of jackknife samples=100

Monte Carlo Test Results

Jackknife
Ts* minimum

Observed Ts
statistic

Jackknife
Ts* minimum

p-value

-0.7858 0.5245 0.1527 0.0001

______________________________________________________________________________
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Table 4.7. An example of a classification prediction or cross validation file. The first column
contains the original response category (class) and the second is the response category predicted
by the CATDAT classifier. The next 5 columns contain the probabilities for each response and
the remaining columns contain the original raw data. In this example, the original response
category was unknown, so all observations were originally coded as response category one. Note
that k- nearest neighbor output would include the average distance in the third column and
modular neural network output would contain Z scores rather than probabilities.

______________________________________________________________________________
orig predict

class class P(1) P(2) P(3) P(4) P(5) Depth Current Veget Cobb

1 1 0.3546 0.0676 0.1461 0.0948 0.3369 1.790 0.718 0.000 0.000 3.045

1 2 0.2513 0.4487 0.2461 0.0230 0.0308 1.790 0.673 0.000 0.000 3.045

1 1 0.2971 0.2544 0.1627 0.2650 0.0209 1.790 1.058 0.000 0.000 3.258

1 3 0.1207 0.1107 0.3966 0.2801 0.0920 1.710 1.012 0.000 0.000 2.398

1 4 0.1704 0.2306 0.1186 0.2841 0.1964 1.610 0.811 0.000 0.000 3.045

1 1 0.2789 0.2095 0.1949 0.1923 0.1244 1.610 1.125 0.000 0.000 0.000

1 1 0.2527 0.1977 0.1375 0.2521 0.1600 1.610 1.092 0.000 0.000 3.045

.

. remainder of output ...

.

1 2 0.0525 0.2947 0.2747 0.0942 0.2839 2.640 0.982 1.386 0.000 4.331

1 4 0.0292 0.0798 0.3011 0.3349 0.2551 2.890 1.289 0.000 0.000 3.932

1 2 0.0965 0.3646 0.2219 0.0683 0.2486 2.890 1.115 0.000 1.792 4.025

1 5 0.0997 0.2871 0.2197 0.0247 0.3689 2.940 1.037 3.045 0.000 4.111

1 2 0.2058 0.3692 0.1353 0.0089 0.2808 3.090 1.241 0.000 0.000 4.025

1 3 0.1871 0.2990 0.3972 0.0433 0.0735 2.890 1.138 0.000 0.000 3.932

1 2 0.1550 0.3544 0.2425 0.0414 0.2067 2.710 1.085 0.000 0.000 4.025

______________________________________________________________________________
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Elev
n=477

Hucorder
n=341

Hucorder
n=136

Hucorder
n=90

Hucorder
n=60 Hucorder

n=41

Pprecip
n=30

Pprecip
n=32

Rdmean
n=46

Migrant
0, 0, 11, 3

Migrant
0, 0, 45, 0

Depressed
0, 15, 0,0

Depressed
2, 21, 1, 2

Absent
6, 21, 1, 298

Absent
0, 0, 0, 19

Strong
1,0,0,0

Strong
7, 0, 0, 2

Absent
0, 0, 0, 16

Strong
5, 0, 1, 0

< 2075

< 1051

< 1823

< 9

< 233

< 0.29

< 263

< 228

< 363

Figure 4.1. Classification tree for ocean-type chinook salmon population status. Non-terminal nodes are labeled with
predictor and number of observations (n) and terminal nodes with predicted status and the distribution of responses in the
order: strong, depressed, migrant, and absent. Split-values are to the right of the predictors with node decision: if yes, then
down.
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Examples

Ocean-type chinook salmon population status

The ocean-type chinook salmon status data were collected by the USDA Forest Service

to (1) investigate the influence of landscape characteristics on the known status of ocean-type

chinook salmon populations and (2) develop models to predict the status of the populations in

unmonitored areas (Lee et al. 1997). These data are contained in the example data file otc.dat.

The file heading and a partial list of the data can also be found in Table 2.1. It contained 4

response categories (i.e., population status): strong, depressed, migrant and absent; 11

quantitative predictors: Hucorder (a surrogate index of stream order), mean elevation (Elev),

slope, drainage density (Drnden), bank (Bank) and base erosion (Baseero) scores, soil texture

(Hk), average annual precipitation (Ppt), temperature (Mntemp), solar radiation (Solar), and

mean road density (Rdmean); and 1 qualitative predictor: land management cluster (Mgntcls)

with 3 levels.

Generalized logit model.- The qualitative covariate Mgntcls was recoded into 2 dummy

predictors prior to fitting the generalized logit model (Table 5.1 and example data set otc2.dat).

Absent was the most frequent response in the data (Table 4.1, top) and was used as the baseline

for the logit model. Backward elimination of the main effects indicated that mean elevation,

slope, and mean annual temperature were statistically significant at the Bonferroni adjusted

alpha-level (P < 0.0038, Table 5.2). Forward selection of two-way interactions for the full main

effects model indicated 1 statistically significant (P < 0.0001) interaction between Hucorder and

mean elevation.

An examination of the within-sample error rates indicated that the full main effects and

Hucorder by mean elevation interaction had the lowest overall within-sample error rate of 13.0%

(Table 5.3 and 5.4). The full, main effects model had the next lowest error rate (14.7%), while

the reduced main effects model was the least accurate with a 20.6% overall within-sample error

rate. Although these error rates seem relatively low, a comparison of the within-sample errors for

the best logit model (i.e., full main effects and interaction) with its cross-validation counterparts

illustrate the optimism of the within-sample estimator. For example, the cross-validation error

rate suggested that the overall within-sample error rate may have underestimated the logit model

EER by 21.8% (Table 5.4). Similarly, the response category cross-validation error rates indicated
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that the best generalized logit model would have been very poor at estimating strong, depressed,

and migrant population status (Table 5.4).

The best logit model for ocean-type chinook salmon population status, full main effects

and Hucorder by mean elevation interaction, was statistically significant (P < 0.0001; Table 5.5).

In addition, the QAICc suggested that the data may be overdispersed (i.e., ĉ  > 1; Details,

generalized logit model) and an examination of the residuals suggested that the logit model was

not appropriate for modeling salmon population status (Figure 5.1). Similarly, the Andrews

omnibus chi-square test detected significant (P < 0.0001) lack-of-fit, whereas the Osius and

Rojeck increasing cell asymptotics failed to reject the null hypothesis that the logit model fit (P =

1.000). The failure of the Osius and Rojeck test was probably due to the large proportion of

extremely small estimated probabilities, 238 of which were less than 10-5(Table 5.5), and their

affect on the estimate of the asymptotic variance, σ2. This large variance, 1013, caused the Osius

and Rojeck test to have almost no power for detecting lack-of-fit (Haas et al. In prep.).

If the generalized logit model had fit the population status data better, the interpretation of

coefficients would have been straightforward. For example, Table 5.5 contains the maximum

likelihood ββj of the full main effects with interaction logit model for each response category

except the baseline, absent. Thus, the equation for the strong response probability, πS, is

log(πS/πA) = -26.2348 + 0.0068Hu - 0.0047El + 0.4395Sl + 2.0798Dr - 0.0901Bk -

                      0.1276Bs+ 27.9306Hk + 0.0030Pp + 0.3595Mt + 0.0728So - 0.6856Rd +

                      1.58351Pf + 1.2088Pa - 0.000004Hu*El

where Hu = Hucorder, El = Elev, Sl = slope, Dr = Drnden, Bk = Bank, Bs = Baseero, Hk= Hk,

Pp = Ppt , Mt = Mntemp, So = Solar, Rd = Rdmean, and Pf= PfTlFm and Pa = Pa (i.e., Mgntcls

dummy variable categories 1 and 2, respectively). The estimated odds that the ocean-type

chinook salmon population is strong rather than absent in a particular watershed is exp(0.0068) =

1.0068 times higher for each unit increase in Hucorder, 1.0047 times lower per 1 foot increase in

average elevation, 1.5519 times higher for each degree increase in average slope, and so forth.

Classification tree.- An examination of the cross-validation error rates for various sized

classification trees suggested that the optimum tree for classifying salmon population status

contained 21 nodes (Figure 5.2). The Monte Carlo hypothesis test of the predictors, individually

and in various combinations, indicated that Hucorder and mean elevation, annual precipitation,
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and road density significantly (P > 0.05) influenced the classification accuracy of salmon

population status (Table 5.6). An examination of the initial plot of the classification tree, with the

4 significant predictors, suggested that population status could be modeled with a 19 node tree

(Figure 4.1). To confirm this, cross-validation error rates were calculated for BEST parameter

values 19 and 21. The error rates were identical with an overall cross-validation rate of 10.1%

(Table 5.7). The final 19 node classification tree was best a predicting absent (EER= 2.9%, Perr

=8.1%) and migrant status (EER= 10.2%, Perr =10.2%) and poorest at predicting depressed

(EER=38.6%) and strong (EER= 47.6%) population status.

Nearest neighbor.- Cross-validation error rates for different numbers of nearest

neighbors, K, indicated that the optimum classifier had 3 nearest neighbors (Figure 5.3). The

Monte Carlo hypothesis test of predictors for the 3-nearest neighbor classifier indicated that

mean slope, drainage density, bank and base erosion scores, soil texture, mean annual

precipitation, temperature, and solar radiation, mean road density, and land management type did

not significantly (P > 0.05) influence classification accuracy (Table 5.8). Cross-validation rates

of the 3-nearest neighbor classifier with 2 statistically significant predictors, Hucorder and mean

elevation, were higher than those for the classification tree with an overall rate of 17.2% (Table

5.9).

Ocean-type chinook salmon generally migrate to the ocean before the end of their first

year of life, whereas the stream-type migrates after their first year (Lee et al. 1997). Fishes

exhibiting these two life histories vary in their migratory patterns and habitat requirements.

Consequently, each may be affected differently by the landscape features that influence critical

requirements, such as instream habitat characteristics or streamflow patterns. To examine

whether selected landscape characteristics influence the status of populations exhibiting the two

life history strategies similarly, a 3-nearest neighbor classifier with Hucorder and mean elevation

was trained using the ocean-type chinook salmon population status data. This model was then

used to predict the status of stream-type populations for which the actual status was known (i.e.,

it was a "test" data set). Overall, the classifier created with the ocean-type data predicted the

status of the stream-type chinook with a 23.3% overall EER (Table 5.10). However, after

importing the prediction file into a spreadsheet, an examination of the category-specific errors

indicated that the ocean-type model was very poor at predicting strong (EER = 100%), depressed
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(EER=98.9%) and migrant status (EER=82.7%), whereas absent was correctly predicted in 99%

of the observations.

The above example illustrates the influence that sharply unequal sample sizes among

response categories can have on the overall EER. Strong and depressed responses comprised

0.3% and 15.5% of the stream-type chinook salmon status data, respectively. Consequently, their

very high category-wise errors represented only 15.6% all observations, which resulted in a

relatively low overall EER of 23.3%.

Modular neural network.- An examination of the cross-validation error rates for

different numbers hidden nodes indicated that the optimum modular network for predicting

ocean-type salmon status had a 10 hidden nodes (Figure 5.4). The MNN had the lowest overall

EER, 2.1%, and the lowest category specific EER of any of the classifiers considered (Table

5.11).

Ozark stream channel-units

To evaluate the utility of a channel-unit classification system for Ozark streams, Peterson

and Rabeni (In review) measured selected physical habitat characteristics of channel-unit types.

The goals of the study were to (1) identify the differences in physical characteristics among

channel units and (2) determine if the channel unit classification system was applicable to

different sized streams. The format of the data for large streams has already been presented in

Table 2.2. It consisted of 5 response categories (i.e., channel unit types): riffle, glide, edgewater

(Edgwatr), side-channel (Sidchanl), and pool; and 5 quantitative predictors: average depth and

current velocity, percent of the channel unit covered with vegetation (Veget) or woody debris

(Wood), and percent of the channel unit bottom composed of cobble substrate (Cobb).

Generalized logit model.- Pool was the most frequent response in the data (Table 4.1,

bottom) and was therefore, used as the baseline for the generalized logit model. Backward

elimination of the logit model main effects indicated that depth and current velocity were

statistically significant (P < 0.0001). Similarly, forward selection of logit model main effects and

two-way interactions indicated that that depth and current velocity were the only statistically

significant (P < 0.0001) predictors.

A comparison of the within-sample error rates indicated that the full, main effects model

had the lowest overall EER of 10.3%, whereas the statistically significant main effects model had
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a much greater EER of 26.6% (Table 5.12). Cross-validation of the best logit model (i.e., full

main effects) however, indicated a very high EER with 56.1% of the observations misclassified

(Table 5.12).

The full main effects logit model was statistically significant (P < 0.0001; Table 4.3). In

contrast to the ocean-type chinook logit model, the QAICc suggested that the channel unit data

were not overdispersed (i.e., ĉ= 1; Details, generalized logit model). Nonetheless, an

examination of the residuals (Figure 5.1) and the Andrews omnibus chi-square test (P = 0.0048)

suggested that the logit model was not appropriate for modeling the physical characteristics of

channel units (Table 4.3). Similar to the ocean-type chinook salmon logit model, the Osius and

Rojek test failed to detect lack-of-fit.

Classification tree.- An examination of the cross-validation error rates for various sized

trees suggested that the optimum tree for classifying channel-units contained 13 nodes (Figure

5.2). The Monte Carlo hypothesis test of the predictors, individually and in various

combinations, indicated that percent vegetation, woody debris, and cobble substrate did not

significantly (P > 0.05) influence the tree classification accuracy for channel-unit types (Table

5.13).

The overall cross-validation EER of the classification tree with 13 nodes and 2 predictors,

depth and current velocity, was much lower than that of the best fitting logit model (Tables 5.12

and 5.14). In general, the classification tree was best a classifying pool (EER= 9.1%, Perr =

6.7%) and riffle channel units (EER= 11.3%, Perr = 7.8%) and poorest at classifying side-

channels (EER = 34.4%) and edgewaters (Perr = 28.6%). The relatively poor classification of the

latter two was probably due to their highly variable physical habitat characteristics (Peterson and

Rabeni In review).

An examination of the final classification tree indicated that pools were the deepest

channel-units with average depths greater than 0.56 m and variable current velocities (Figure

5.5). In contrast, riffles were generally less than 0.20 m deep with current velocities greater than

0.20 m/s. Glides were moderately deep (0.2 - 0.6 m) with current velocities greater than 0.12

m/s. Side-channels had similar depths (0.29- 0.56m), but lower current velocities.

Nearest neighbor.- Cross-validation of various numbers of K nearest neighbors

suggested that the most parsimonious classifier had 2 neighbors (Figure 5.3). Similar to the

classification tree, the Monte Carlo hypothesis test of predictors for the 2-nearest neighbor
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classifier indicated that percent vegetation, woody debris, and cobble substrate did not

significantly (P > 0.05) influence classification accuracy (Table 5.15). In addition, the cross-

validation rates of the 2-nearest neighbor classifier with statistically significant predictors, depth

and current velocity, were slightly lower than the classification tree with an overall rate of 11.9%

(Table 5.16). In addition, the mean Mahalanobis distance between channel-unit types indicated

that riffles and glides were physically similar, as were edgewaters and side-channels (Table

5.16). The physical characteristics of pools however, differed substantially from all other channel

unit types.

Modular neural network.- An examination of the cross-validation error rates for

different numbers hidden nodes indicated that the optimum modular neural network for

classifying channel units had a 7 hidden nodes (Figure 5.4). Similar to the ocean-type chinook

salmon status, the channel-unit modular neural network had the lowest overall EER, 3.1%, and

the lowest category specific EER of any of the classifiers considered (Table 5.17).

Stream habitat characteristics are largely controlled by the local and watershed-level

features that control sediment supply, erosion, and deposition (e.g., valley physiography, land-

use). Thus, the physical characteristics of channel units may vary from reach to reach. To assess

the relative accuracy of the channel-unit habitat classification system for different sized stream

reaches, measurements from channel units in a small (i.e. 3rd order) Ozark stream were classified

with the 7 node modular neural network trained with the data from the larger (6th order) Ozark

stream. The influence of possible site-specific differences were minimized by standardizing the

site-specific data, across CUs, into z-scores (i.e., mean=0, SD=1). In general, the modular neural

network trained with large stream data was surprisingly good at classifying the channel units in

the small stream with an overall misclassification rate of 4.4% (Table 5.18).
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Table 5.1. Ocean-type chinook salmon population status data with 2 dummy coded predictors
PfTlFm and Pa representing 3 levels of the qualitative covariate Mgntcls in Table 2.1. Note that
the third Mgntcls level receives a zero coding for dummy predictors PfTlFm and Pa.                    

4 Strong Depressed Migrant Absent

13 Hucorder Elev Slope Drnden Bank Baseero Hk Ppt Mntemp Solar Rdmean PfTlFm
Pa

0 *

1 18 2193 9.67 0.6843 73.953 12.2004 0.37 979.612 7.746 273.381 2.0528 1 0

2 20 2793 19.794 1.3058 58.708 29.9312 0.3697 724.264 6.958 260.583 3.440 0 0

1 22 2421 23.339 1.231 44.845 36.3927 0.3697 661.677 7.6 254.733 2.364 0 1

3 23 3833 34.553 1.3661 19.092 52.7353 0.3692 714.559 6 252.889 1.489 1 0

4 36 1925 23.797 1.0873 28.026 36.3066 0.3695 544.183 8.5 252.857 2.336 0 1

4 38 1775 13.549 0.7118 67.898 19.0161 0.3699 757.989 8.533 276.156 1.311 0 0

2 47 1387 17.264 1.582 35.8019 25.6341 0.3696 326.714 9.688 249.938 2.372 0 1

3 168 732 7.69 1.3472 92.8437 6.6349 0.2477 183.966 11.652 262.913 0.4281 1 0

.

...remainder of data...

.

4 263 135 22.431 1.06 79.4377 23.1364 0.2601 304.631 10.111 275.037 0.946 1 0

1 1418 768 5.677 0.3317 99.1893 3.0148 0.2114 210.137 11.21 262.01 0.293 1 0

2 0 2992 17.831 1.5458 68.8551 26.3373 0.3695 411.158 6.929 258.071 1.866 0 1

______________________________________________________________________________
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Table 5.2. CATDAT output of backward elimination of generalized logit model main effects
(top) and forward selection of two-way interactions (bottom) for ocean-type chinook salmon
population status. Two-way interactions were tested for the full main effects model.                     

Full main effects model initially fit.
Backward elimination of generalized logit model main effects
Predictors accepted at P < 0.003846

Predicto
r

Wald Chi-
square

p-value

Hucorder 28.1736 0.000003
Elev 26.8128 0.000006

Ppt 19.8359 0.000184

-------------------------------------------------------

Full main effects generalized logit model
with forward selection of interactions
Interactions accepted at P < 0.000320

Predicto
r

Interaction
predictor

Score Chi-
square

p-value

Hucorder Elev 20.4180 0.000139

______________________________________________________________________________
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Table 5.3. CATDAT output of within-sample classification error rates for chinook salmon
population status generalized logit models. The model predictors include full main effects (top)
and statistically significant main effects (bottom).                                                                           

Generalized Logit Model
Within-sample error rate calculation
Full main effects model
After model selection the number of predictors = 13

Overall number of errors EER
70 0.1468

Category Number of errors EER No. of Predictions Perr
Strong 15 0.7143 9 0.3333

Depressed 30 0.5263 47 0.4255
Migrant 8 0.1356 58 0.1207

Absent 17 0.0500 363 0.1102

--------------------------------------------------------------------------------------

Generalized Logit Model
Within-sample error rate calculation
Reduced model with 3 main effects:
Elev Slope Mntemp
After model selection the number of predictors = 3

Overall number of errors EER
98 0.2055

Category Number of errors EER No. of Predictions Perr
Strong 21 1.0000 0 ---

Depressed 38 0.6667 38 0.4412
Migrant 18 0.3051 67 0.3881

Absent 21 0.0618 376 0.1516

______________________________________________________________________________
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Table 5.4. CATDAT output of within-sample (top) and cross-validation (bottom) classification
error rates for the best generalized logit model, full main effects and significant interaction, of
ocean-type chinook salmon population status.                                                                                

Generalized Logit Model
Within-sample error rate calculation
Full main effects model
and the following 1 interaction(s):

Hucorder & Elev
After model selection the number of predictors = 14

Overall number of errors EER
60 0.1300

Category Number of errors EER No. of Predictions Perr
Strong 9 0.4286 20 0.4000

Depressed 28 0.4912 42 0.3095
Migrant 8 0.1356 57 0.1053

Absent 17 0.0500 358 0.0978

--------------------------------------------------------------------------------------

Generalized Logit Model
Cross-validation error rate calculation
Full main effects model
and the following 1 interaction(s):

Hucorder & Elev
After model selection the number of predictors = 14

Overall number of errors EER
166 0.3480

Category Number of errors EER No. of Predictions Perr
Strong 21 1.0000 36 1.0000

Depressed 51 0.8947 25 0.7600
Migrant 59 1.0000 6 1.0000

Absent 35 0.1029 410 0.2561

______________________________________________________________________________
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Table 5.5. CATDAT output of maximum likelihood beta estimates for the best, generalized logit
model of ocean-type chinook salmon population status. Model predictors include all main effects
and a Hucorder by mean elevation interaction.                                                                               

Generalized logit model- Full main effects
and the following 1 interaction(s):

Horder & Elev
Note: maximum likelihood estimation ended at iteration 9 because
log likelihood decreased by less than 0.00001

Model fit and global hypothesis test H0: BETA = 0

Statistic
Intercept

only
Intercept &

predictors
Chi-square DF p-value

AICc 852.2005 354.5266    
QAICc 850.4181 346.8581    

-2 LOG L 850.2005 323.5266 526.6739 42 0.000001

Maximum likelihood Beta estimates

Predictor Parameter estimate Standard error
Strong   

Intercept -26.2347681 11.0243112
Hucorder 0.0067506 0.0026071

Elev -0.0046858 0.0014341
Slope 0.4394876 0.2110173

Drnden 2.0797678 1.0274691
Bank -0.0901087 0.0363842

Baseero -0.1276053 0.1284560
Hk 27.9306370 14.0247187

Ppt 0.0029755 0.0012508
Mntemp 0.3595229 0.6826518

Solar 0.0727642 0.0276365
Rdmean -0.6855937 0.6197469
PfTlFm 1.5835155 0.9379961

Pa 1.2088449 1.0003054
Horder*Elev -0.0000039 0.0000015

Depressed   
Intercept -6.1864855 6.9518825

Hucorder -0.0036728 0.0012492

 (remainder of ML betas)  

______________________________________________________________________________
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Table 5.5 (continued)                                                                                                                       
Goodness-of-Fit tests

Note: 54 estimated probabilities for Strong were less than 10e-5
Note: 36 estimated probabilities for Depressed were less than 10e-5
Note: 148 estimated probabilities for Migrant were less than 10e-5

Osius and Rojek increasing-cells asymptotics

Pearson chi-
square

Mu Sigma^2 Tau p-value

1419.6494 1431.0000 1.106656e+13 -0.000003 0.999997

Andrews omnibus chi-square goodness-of-fit

Chi-square Number of clusters DF p-value
70.7831 8 24 0.000002

Residuals have been saved in otc.rsd

______________________________________________________________________________
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Table 5.6. CATDAT output of the classification tree Monte Carlo hypothesis test for chinook
salmon population status. The 8 predictors tested, mean slope, drainage density, bank and base
erosion scores, soil texture, mean annual temperature and solar radiation, and land management
type, were not statistically significant at the α = 0.05 level. The remaining variables, Hucorder,
mean elevation, mean annual precipitation, and mean road density, were statistically significant
at α = 0.05.                                                                                                                                       

Monte Carlo hypothesis test of classification tree
BEST fit specification = 21
Excluded covariate(s):
Slope Drnden Bank Baseero Hk Mntemp Solar Mgnclus

 
***** Full model cross validation results *****

Full sample error rate, EER(f)= 1.058425
***** Reduced model cross-validation results *****

Reduced model error rate, EER(r)= 0.993262
***** Jackknife sample cross-Validation Results *****

Jackknife sample size=350, Number of jackknife samples=100

Monte Carlo Test Results

Jackknife Ts*
minimum

Observed Ts
statistic

Jackknife Ts*
maximum

p-value

-0.3628 -0.0651 0.5869 0.8200

______________________________________________________________________________
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Table 5.7. CATDAT output of cross-validation error rates for 19 (top) and 21 (bottom) node
classification trees with 4 statistically significant (P<0.05) predictors Hucorder, mean elevation,
mean annual precipitation, and mean road density.                                                                         

Classification Tree with BEST fit specification = 19

Cross-validation error rate calculation

Overall number of errors EER
48 0.1006

Category Number of errors EER No. of Predictions Perr
Strong 10 0.4762 18 0.3889

Depressed 22 0.3860 41 0.1463
Absent 10 0.0294 359 0.0808

Migrant 6 0.1017 59 0.1017

--------------------------------------------------------------
Classification Tree with BEST fit specification = 21

Cross-validation error rate calculation

Overall number of errors EER
50 0.1048

Category Number of errors EER No. of Predictions Perr
Strong 11 0.5238 16 0.3750

Depressed 23 0.4035 43 0.2093
Absent 10 0.0294 359 0.0808

Migrant 6 0.1017 59 0.1017

______________________________________________________________________________
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Table 5.8. CATDAT output of the Monte Carlo hypothesis test for the 3-nearest neighbor
classifier of chinook salmon status. The 8 predictors tested, mean slope, drainage density, bank
and base erosion scores, soil texture, mean annual precipitation, temperature, and solar radiation,
mean road density, and land management type, were not statistically significant at the α = 0.05
level.                                                                                                                                                 

Monte Carlo hypothesis test of nearest neighbor classification
Excluded covariate(s):
Slope Drnden Bank Baseero Hk Ppt Mntemp Solar Rdmean Mgnclus

 
***** Full model cross-validation results *****

Full sample error rate, EER(f)= 1.420199
***** Reduced model cross-validation results *****

Reduced model error rate, EER(r)= 1.474307
***** Jackknife sample cross-Validation Results *****

Jackknife sample size=350, Number of jackknife samples=100

Monte Carlo Test Results

Jackknife
Ts* minimum

Observed Ts
statistic

Jackknife
Ts* maximum

p-value

-0.5585 0.0541 0.7015 0.5100

______________________________________________________________________________
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Table 5.9. CATDAT output of cross-validation error rates for the 3-nearest neighbor classifier
with 2 statistically significant (P<0.05) predictors Hucorder and mean elevation.                        

Nearest neighbor classification with 3 neighbor(s)

Cross-validation error rate calculation

Pairwise mean distances, d(xi,xj), between responses

              Distance to response group

From response
group

Strong Depressed Absent Migrant

Strong 0.0000 0.8343 1.0826 2.6317
Depressed 0.8343 0.0000 0.9723 2.1561

Absent 1.0826 0.9723 0.0000 3.1112
Migrant 2.6317 2.1561 3.1112 0.0000

Overall number of errors EER
81 0.1698

Category Number of errors EER No. of Predictions Perr
Strong 13 0.6190 19 0.5789

Depressed 28 0.4912 53 0.4528
Absent 25 0.0735 352 0.1051

Migrant 15 0.2542 53 0.1698

______________________________________________________________________________
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Table 5.10. CATDAT output of the classification of stream-type chinook population status using
the 2-predictor, 3-nearest neighbor classifier trained with the ocean-type chinook population
status data.                                                                                                                                        

----Training data in otc5.dat ----

Quantitative predictors:

Hucorder Elev

Observed frequencies of response variable categories
Response Count Marginal frequency

Strong 21 0.0440
Depressed 57 0.1195

Absent 340 0.7128
Migrant 59 0.1237

Number of observations = 477
Number of predictors = 2
Computing covariate space distance with training data
for nearest neighbor classification with 3 neighbor(s)

----------------END---------------

Number of observations in stctst.dat = 3025
Classification error summary for data in stctst.dat

Overall number of errors Err
705 0.2331

Predictions written to stctst.out

______________________________________________________________________________

Table 5.11. CATDAT output of cross-validation error rates of 10-node modular neural network
fit to the ocean-type chinook salmon status data..                                                                           
Modular Neural Network classification with 10 hidden nodes
Cross-validation error rate calculation
384 records read from otcwts9.sed

 
Network weights written to otcwts10.out

Overall number of errors EER
10 0.0210

Category Number of errors EER No. of Predictions Perr
Strong 0 0.0000 24 0.1250

Depressed 1 0.0175 61 0.0820
Migrant 0 0.0000 60 0.0167

Absent 9 0.0265 332 0.0030

______________________________________________________________________________
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 Table 5.12. CATDAT output of within-sample classification error rates for the full main effects
(top) and statistically significant main effects (middle) generalized logit model of channel-unit
physical characteristics. Cross-validation error rates for the full main effects model shown at the
bottom.                                                                                                                                             

Generalized Logit Model
Within-sample error rate calculation
Full main effects model
After model selection the number of predictors = 5

Overall number of errors EER
33 0.1034

Category Number of errors EER No. of Predictions Perr
Riffle 2 0.0377 55 0.0727

Glide 5 0.0769 63 0.0476
Edgwatr 10 0.1667 66 0.2424

Sidchanl 16 0.2500 57 0.1579
Pool 0 0.0000 78 0.0128

----------------------------------------------------------------------------

Generalized Logit Model
Within-sample error rate calculation
Reduced model with 2 main effects:

Depth Current
After model selection the number of predictors = 2

Overall number of errors EER
85 0.2665

Category Number of errors EER No. of Predictions Perr
Riffle 12 0.2264 65 0.3692

Glide 13 0.2000 70 0.2571
Edgwatr 27 0.4500 50 0.3400

Sidchanl 30 0.4688 56 0.3929
Pool 3 0.0390 78 0.0513

----------------------------------------------------------------------------
Generalized Logit Model
Cross-validation error rate calculation
Full main effects model
After model selection the number of predictors = 5

Overall number of errors EER
179 0.5611

Category Number of errors EER No. of Predictions Perr
Riffle 22 0.4151 99 0.7634

Glide 65 1.0000 38 1.0000
Edgwatr 58 0.9667 28 0.5000

Sidchanl 57 0.8906 38 0.3636
Pool 35 0.4545 116 0.7308

______________________________________________________________________________
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Table 5.13. CATDAT output of the classification tree Monte Carlo hypothesis test for channel-
unit physical habitat characteristics. The predictors tested, percent vegetation, woody debris, and
cobble substrate, were not statistically significant at the α = 0.05 level.                                        

Monte Carlo hypothesis test of classification tree with
BEST fit specification = 13
Excluded covariate(s):
Veget Wood Cobb

 
***** Full model cross-validation results *****

Full sample error rate, EER(f)= 0.725238
***** Reduced model cross-validation results *****

Reduced model error rate, EER(r)= 0.723524
***** Jackknife sample cross-Validation Results *****

Jackknife sample size=225, Number of jackknife samples=100

Monte Carlo Test Results

Jackknife
Ts* minimum

Observed Ts
statistic

Jackknife
Ts* maximum

p-value

-0.0616 0.0017 0.1505 0.1900

______________________________________________________________________________
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Table 5.14. CATDAT output of cross-validation error rates for a classification tree with a BEST
fit specification of 13 and statistically significant (P<0.05) predictors, depth and current velocity.

Classification Tree with BEST fit specification = 13
Cross-validation error rate calculation

Overall number of errors EER
46 0.1442

Category Number of errors EER No. of Predictions Perr
Riffle 6 0.1132 51 0.0784

Glide 6 0.0923 68 0.1324
Edgwatr 5 0.0833 77 0.2857

Sidchanl 22 0.3438 48 0.1250
Pool 7 0.0909 75 0.0667

______________________________________________________________________________

 

Table 5.15. CATDAT output of the Monte Carlo hypothesis test for the 2-nearest neighbor
classification of stream channel-units. The predictors tested, percent vegetation, woody debris,
and cobble substrate, were not statistically significant at the α = 0.05 level.                                   

Monte Carlo hypothesis test of nearest neighbor classification
Excluded covariate(s):
Veget Wood Cobb

 
***** Full model cross-validation results *****

Full sample error rate, EER(f)= 0.430172
***** Reduced model cross-validation results *****

Reduced model error rate, EER(r)= 0.614473
***** Jackknife sample cross-Validation Results *****

Jackknife sample size=225, Number of jackknife samples=100

Monte Carlo Test Results

Jackknife
Ts* minimum

Observed Ts
statistic

Jackknife
Ts* maximum

p-value

-0.2641 0.1843 0.2467 0.0900

______________________________________________________________________________
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Table 5.16. CATDAT output of cross-validation error rates for nearest neighbor classification of
channel units with statistically significant (P<0.05) predictors, depth and current velocity.            

Nearest neighbor classification with 2 neighbor(s)

Cross-validation error rate calculation

Pairwise mean distances, d(xi,xj), between responses

Distance to response group

From response
group

Riffle Glide Edgwatr Sidchanl Pool

Riffle 0.0000 1.2216 3.7593 3.9925 5.3719
Glide 1.2216 0.0000 3.3025 3.4757 4.1549

Edgwatr 3.7593 3.0325 0.0000 0.6030 4.8538
Sidchanl 3.9925 3.4757 0.6030 0.0000 4.3323

Pool 5.3719 4.1549 4.8538 4.3323 0.0000
Overall number of errors EER

38 0.1191

Category Number of errors EER No. of Predictions Perr
Riffle 5 0.0943 52 0.1346

Glide 7 0.1077 68 0.1618
Edgwatr 11 0.1833 62 0.2258

Sidchanl 13 0.2031 62 0.2097
Pool 2 0.0260 75 0.0133

______________________________________________________________________________

Table 5.17. CATDAT output of cross-validation error rates of the 7-node modular neural
network fit to the stream channel-unit physical habitat data.                                                          

Modular Neural Network classification with 7 hidden nodes
Cross-validation error rate calculation
180 records read from bcwts6.sed

 
Network weights written to bcwts7.out

Overall number of errors EER
10 0.0313

Category Number of errors EER No. of Predictions Perr
Riffle 3 0.0566 50 0.0000

Glide 0 0.0000 68 0.0441
Edgwatr 4 0.0667 59 0.0508

Sidchanl 3 0.0469 65 0.0615
Pool 0 0.0000 77 0.0000
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Table 5.18. CATDAT output of the classification of small-stream channel-unit physical habitat
characteristics the 7-node modular neural network trained with large-stream channel-unit data .

----Training data in bccu.dat ----

Quantitative predictors:

Depth Current Veget Wood Cobb

Observed frequencies of response variable categories

Response Count
Marginal

frequency
Riffle 53 0.1661

Glide 65 0.2038
Edgewatr 60 0.1881
Sidchanl 64 0.2006

Pool 77 0.2414

Number of observations in training data set, 319
and number of predictors, 5
Constructing modular neural network with training data
and 7 hidden nodes

----------------END--------------

Number of observations in smlcu.dat = 319

Classification error summary for data in smlcu.dat

Overall number of errors Err
14 0.0439

Predictions written to cupred.out

______________________________________________________________________________
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Figure 5.1 A Q-Q plot of the studentized Pearson residuals for the best salmon status (open) and channel unit
(filled) generalized logit models.  Note :the residuals were log transformed and thus, if the relationships were
linear the residual plots should be logarithmically shaped.
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Figure 5.2. Overall cross-validation error rate of various sized classification trees for ocean-type chinook salmon
population status (solid line and boxes) and Ozark stream channel-unit physical habitat characteristics (broken line
and stars).  The most parsimonious tree for the chinook salmon and channel-unit models (indicated by the arrow)
 contained 13 and 21 nodes, respectively.
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Figure 5.3.  Overall cross-validation error rate of various numbers of nearest neighbors, K, for ocean-type
chinook salmon population status (broken line and open symbols) and physical characteristics of stream
channel units (solid lines and symbols).  Arrows indicate the optimal K values.  A complete description of
the data can be found in Examples 1 and 2.
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Figure 5.4.  Overall cross-validation error rate of various numbers of hidden nodes for ocean-type chinook
salmon population status (broken line and open symbols) and physical characteristics of stream channel units
(solid lines and symbols).  Arrows indicate the optimal number of hidden nodes.  A complete description of
the data can be found in Examples 1 and 2.



67

Current (m/s)
n=319

Depth (m)
n=179

Depth (m)
n=140

Depth (m)
n=118

Depth (m)
n=121

Pool
n=22

Pool
n=58

Edgwatr
n=89

Sidchanl
n=29

Edgwatr
n=7

Glide
n=65

Riffle
n=49

Current
n=56

< 0.119

< 0.560

< 0.610

< 0.280

< 0.200

< 0.204

Figure 5.5.  Classification tree with significant (P<0.05) predictors, depth and current velocity, for channel units in  large
Ozark streams.
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DETAILS

Generalized logit models.- The CATDAT logit model classifier is based on the

generalized logit model:

1.6,log jix
iJ

ij β
π

π
=













where πij  is the probability of response j at the ith setting of the k predictor values,  xi = (1, xi1,

xi2,….xik), ββj is a separate parameter vector for j= 1, 2, … J-1 nonredundant baseline category

logits, and J is the number of response categories (Agresti 1990).  The Jth response category, also

known as the baseline category, forms the basis of the J-1 logit pairs.

The j th response category probability for predictor variables xi is estimated as a nonlinear

function of the parameter vector, ββj:
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CATDAT iteratively estimates the maximum likelihood ββj parameters using the Fisher scoring

method until the proportional decrease in the log likelihood between successive iterations (i.e.,

the convergence) is less than 5.0e-5.  If this criterion is not reached after 20 iterations, CATDAT

assumes convergence, outputs a warning message, and reports the decrease in the log likelihood

during final the iteration.
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To obtain category-specific probability estimates for unknown or test data or during

expected error rate estimation, the maximum likelihood ββj estimates from a logit model fit to

training data and the predictor values, xi, for the unknown or test data are substituted into

equation 6.2.  For illustration, assume that a logit model, fit to training data with hypothetical

responses A, B, and C, have the maximum likelihood ββj shown in Table 6.1.  An unknown

observation with predictor values xunk= (1, 10, 100) would have the following response, ββj xi.

ββA xunk   = 0.565 + (-0.0004 * 1) + (-0.0018 * 10) + (0.0027 * 100) = 0.8166

ββB xunk   = 0.037 + (0.0009 * 1) + (-0.0008 * 10) + (-0.0007 * 100) = -0.0401

ββC xunk   = 0 + (0 * 1) + (0 * 10) + (0 * 100) = 0

Note that for probability estimation category C, the baseline (Jth) category, has a ββ vector

containing all zeros.  Therefore, the denominator of the generalized logit model formula (6.2)

would be exp(0.8166) + exp(-0.0401) + exp(0) = 4.2235 and the probability that the unknown

observation belonged to each response category would be

p(A) = exp(0.8166) / 4.2235 = 0.536

p(B) = exp(-0.0401) / 4.2235 = 0.227

p(C) = exp(0) / 4.2235 = 0.237.

Based on these estimated probabilities, CATDAT would have classified the unknown response

as A.  In the unlikely event that two categories had exactly the same probability, CATDAT

would assign the observation to the first response category listed in the data file heading (i.e., the

category with the smallest identification number, see Data Input).

Two mechanistic model selection procedures, forward selection and backward

elimination, are available on CATDAT.  Forward selection begins by computing the Score

statistic (Fahrmeier and Tutz 1994) for each predictor or two-way interaction not already in the

model.  The predictor (or interaction) with the largest Score statistic that is also greater than the

user-specified critical alpha-level is retained in the model.  The process is then repeated until

every covariate or interaction has been examined.  Note that interactions are only examined for

pairs of predictors already in the model.

In contrast to forward selection, the backward elimination procedure first fits the full

model (i.e., all predictors).  A Wald statistic (Fahrmeier and Tutz 1994) is then computed for

each predictor and those predictors with Wald statistics exceeding the user-specified critical

alpha-level are retained.  This model selection procedure can only be used to examine main
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effects because fitting a full model with all predictors and two-way interactions would likely fail

due to a very large number of parameters (Haas et al. In prep.).

CATDAT outputs 3 criteria for assessing model fit.  The -2 log likelihood, also known as

the Deviance, is estimated as
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y ≡  (Fahrmeir and Tutz 1994).  The log likelihood test statistic output by

CATDAT is the difference between the log likelihood of intercept-only logit model and the

model specified.  It's asymptotically distributed as a chi-square under the null hypothesis that

there is no effect of the predictors.  CATDAT outputs this statistic and its p-value during the

estimation of the maximum likelihood ββj.

The other two criteria are versions of Akaike’s information criteria (AIC, Akaike 1973).

The first is the AIC with the small-sample bias adjustment (AICc; Hurvich and Tsai 1989) which

is calculated as
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where M is the number of parameters. The second is the quasi-likelihood AIC with small-sample

adjustment (QAICc, Burnham  and Anderson 1998),
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where dfc /2ˆ χ=  is the variance inflation factor estimated using the goodness-of-fit chi-square

statistic (χ2) and its degrees of freedom (Cox and Snell 1989).  Both the AIC and QAIC are used

to compare candidate models for the same data.  In general, the model with the lowest AICc or

QAICc is considered the most parsimonious.  For a through discussion of the use of AIC, model

selection, and statistical inference, see Burnham and Anderson (1998).

Following estimation of the maximum likelihood ββj, CATDAT writes studentized

Pearson residuals to a file and outputs two goodness-of-fit statistics, the Osius and Rojek

increasing cell asymptotics and Andrews omnibus chi-square test.  The studentized Pearson

residuals should be distributed as a chi-square if the generalized logit model were appropriate for

modeling the given data (Fahrmeir and Tutz 1994).  Consequently, a plot of the studentized
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Pearson residuals by their corresponding chi-square scores, which are also written to the residual

file, should resemble a logarithmic shape.

The CATDAT implementation of the Osius and Rojek increasing cell asymptotics test is

based on the relationship (χ2 - µ1)/σ1, where µ1 and σ1
2 the asymptotic mean and variance,

respectively.  Under certain conditions (Osius and Rojek 1992), this relationship is

approximately normally distributed under the null hypothesis that the generalized logit model is

appropriate.  It is important to note that the power of this test can be significantly lowered by

small cell counts.  Consequently, CATDAT reports the number of extreme predicted

probabilities (i.e., > 10e-5) for each response category.

The Andrews omnibus chi-square test is a generalization of the more familiar Hosmer-

Lemeshow test that can be used when a generalized logit model contains any number of response

categories (Andrews 1988).  This test is also more robust test than the Osius and Rojek

increasing-cell-count asymptotics, above.  The test begins by partitioning the data with a K-

means clustering algorithm (Johnson and Winchern 1992) into K groups.  These groups form the

basis for a comparison of the distribution of observed and predicted responses, which is

distributed as a chi-square under the null hypothesis that the generalized logit model is

appropriate for modeling the responses.

Classification trees.- CATDAT classification trees are more precisely called binary tree

classifiers because they are created by repeatedly splitting the data set into 2 smaller subsets

using binary rule-sets.  The tree growing process begins with the all the data at a single location

known as a node (e.g.,  t1 in Figure 1.1).  This parent node is split into two child nodes (e.g., t2

and t3 in Figure 1.1) using a rule generated during a recursive partitioning.  Note that this rule is

always presented in tree form as: if yes then left, else right (Figure 1.1).  During recursive

partitioning, CATDAT searches for a predictor and its cutoff value that results in the greatest

within-partition homogeneity for the response categories' distribution.  In other words, the data is

split into two subsets, each containing greater proportions of one response category.  CATDAT
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uses deviance as a measure of within-partition homogeneity with the reduction in deviance for a

particular split-value at parent node t estimated as
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where n is the number of observations assigned to the left, l, or right-child, r, for each response

category, k (Haas et al. In prep.). Note that deviance is zero when a node contains observations

from only one category. This process is continued recursively down each branch of the

classification tree until the size of a partition at any node is smaller than n, where n is the number

of observations (i.e., the minimum partition size). After the partitioning is complete, the nodes

at the end of the classification tree branches, defined as terminal nodes, are where responses are

predicted (e.g., t3, t4, and t5 in Figure 1.1).

The classification trees resulting from recursive partitioning are generally too large and

tend to overfit the data (i.e., the model becomes data set-specific; Figure 6.1). To reduce tree

size, CATDAT recursively evaluates the effect of removing different terminal nodes (i.e.,

pruning the tree) on tree deviance, which is the sum of the deviance at each terminal node. The

routine stops pruning when the tree reaches the size (i.e., maximum number of nodes) specified

by the user with the best variable option. This tree will have the lowest deviance of any tree of its

size (Chou et al. 1989). To improve the predictive ability of tree models (i.e., reduce overfitting),

the expected error rate is evaluated for various sized trees using split-sample or leave-one-out

cross-validation (see Expected error rate estimation, below). Optimum tree sizes are usually

determined by examining plots of the cross-validation error rate by tree size (Brieman et al.

1984). These plots generally show an initially rapid decrease in error rate with increasing tree

size, followed by relatively stable error rates, and then gradual increases in error as the larger

trees begin overfitting the data (Figure 6.1). The most parsimonious tree model is generally

considered the one in which size and expected error are minimized (e.g., the 21 node tree in

Figure 6.1).

To obtain predicted responses for unknown or test data or during expected error rate

estimation, an observation is dropped-down a classification tree that was fit with training data

and the terminal node where it falls to is the predicted response. This technique can also be used

to estimate the probability distribution of responses at each terminal node using a test data set

and a classification tree fit with (other) training data. The response category probability
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distribution at a node is then estimated as the empirical distribution of the responses of the test

data observations ending up at that node (Brieman et al. 1984).

Nearest neighbor classification.- The CATDAT implementation of nearest neighbor

classification uses an extension of a nonparametric categorical regression smoother (Tutz 1990),

referred to here as the extended K-nearest neighbor classifier (Haas et al. In prep.), to estimate

the distance between observations. For instance, xi is defined as an observation with predictor

vector xi = (z1, z2,..zq, w1, w2,..wr), which consists of  q quantitative and r qualitative predictors.

The vector of generalized differences between x0 and xi is ( )ixxDs −≡ −
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The distance between qualitative predictors, which are assumed to be uncorrelated among

themselves and with the quantitative predictors, is defined following Tutz (1990) as
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Let V be the correlation matrix of the covariates:
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where Cpp is the within-category pooled variance-covariance matrix of the quantative covariates.

Then sVsxxd i
1

0 ),( −′= is the generalized Mahalanobis distance between x0 and x1 (Johnson

and Wichern 1992). Note that the Mahalanobis distance may not accurately represent the true

distance when the assumption of the independence of the qualitative predictors is not met.

The classification of an observation, x0, depends upon the response distribution of its K

nearest neighbors (i.e., those with the K smallest Mahalanobis distances), which is estimated as

fj(x0) = kj / K, where kj is the number of K nearest neighbors belonging to category j.  The
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observation is then predicted using the mode (i.e., greatest frequency) of this distribution.  For

example in Figure 1.2, the response distribution of the 6 nearest neighbors of observation U1 is

group B, 4/6 = 0.67 and group A, 2/6 = 0.33. Conversely, the response distribution of the 6

nearest neighbors of observation U1 is group B, 2/6 = 0.33 and group A, 4/6 = 0.67. Based on

these estimates, CATDAT would have classified observation U1 and U2 as belonging to groups

B and A, respectively (Figure 1.2). Observations with 2 or more modal categories are classified

as belonging to the first response category listed in the data file heading (i.e., the category with

the smallest identification number, see Data Input).

Similar to the classification tree, the optimal number of neighbors (K) is determined by

examining a plot of the cross-validation error rate by K, with the best K considered to be the one

in which K and error are minimized (e.g., K= 2 and 3 in Figure 6.2).  Although K can vary from 1

to n−1, we have found that the optimal values for K tend to be small in most practical

applications (i.e., < 10, Haas et al. In prep.).

Modular neural networks.- Artificial neural networks generally consist of four linked

components: the input, hidden, and output layers, and the target (Figure 6.3).  The input layer is

made up of predictor variable nodes (a.k.a. neurons) and a bias node used during neural network

training.  The hidden layer is the location where the neural network is trained (i.e.,

parameterized).  It's composed of hidden nodes, each containing a set of weights (one for each

predictor and the bias term), that are analogous to parameter estimates in a generalized linear

model.  During neural network construction (described below), these hidden nodes are added in a

stepwise manner to increase the accuracy and complexity of the neural network.  The output

layer is comprised of output nodes, each containing a set of link weights from the hidden layer,

which are used to calculate the activation function and output the model prediction to the target

(described below).  One additional feature of CATDAT neural networks that differs from

classical designs is their modularity.  Modular neural networks differ from classical neural

networks in that there is a hidden layer module for each response category (Figure 6.3).  Thus,

each module becomes specialized at predicting its category, resulting in more accurate classifiers

(Anand et al. 1995).

Although some components of neural network models have analogs in traditional

parametric models (e.g., weights ∼ parameters), both differ substantially in their algorithms.

CATDAT uses quasi-Newton minimization (Press et al. 1986) with the Broyden-Fletcher-
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Goldfarb-Shanno (BFGS) update to train the modular neural network.  Training begins with 2

hidden nodes per module.  Node weights are randomly assigned and the quasi-Newton routine

searches for a minimum.  Although this routine is relatively fast and efficient, it can converge to

a local minimum where classification accuracy is very low (Setiono and Hui 1995).  To break

free of potential local minima, CATDAT artificially sets one observation in the data set to

'missing' (only) during the initial modular neural network training. After the neural net is trained,

the fitted weights for the two hidden nodes are written to a file.

Modular neural network construction is a process by which additional hidden nodes are

added to the model to increase its predictive ability.  Construction begins by assigning random

initial weights for the new hidden nodes.  Initial weights for the other (L-1) hidden nodes are

read from a file (above), and the modular neural network is retrained.  By adding hidden nodes in

this stepwise manner, a modular neural network can approximate almost any function.  This

attractive feature also makes MNN prone to overfitting (i.e., the model becomes data set-

specific).  Thus, constructing an optimal modular neural network in similar to the selection of the

best sized classification tree, with the optimal modular neural network considered the one in

which size (i.e., number of hidden nodes) and cross-validation error are minimized (e.g., the 6

and 10 hidden node modular neural network in Figure 6.4).

MNN predictions of unknown or test data responses are estimated using activation

functions in both the hidden and output layers.  CATDAT uses a sigmoidal mashing function

(i.e., logistic function bounded by 0-1) to compute the hidden layer output vector yl as
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where x is the vector of predictor variables and ωl is the vector of weights for hidden node, l=

1,..., L+1.  Note that the ωL+1 is the hidden layer bias and xp+1 and yp+1 are set to 1 prior to

computing the function.  The output vectors, yl, are then passed to the output layer and used to

compute the output layer node values as
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where vj is the vector of link weights and z*
j is the output value for module j = 1,.., J.  The values

of z* are used to predict an observation's response, which is identified as the response with the
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largest z*.  Similar to other CATDAT techniques, observations with identical z* for 2 or more

responses are classified as belonging to the first response category listed in the data file heading

(i.e., the category with the smallest identification number, see Data Input).

Expected error rate estimation.- The most relevant measure of a classifier is its expected

error rate (EER), which is defined as the error rate averaged over all possible combinations of

predictors, including those not observed in the training data (Lachenbruch 1975).  CATDAT

automatically computes two EER estimators, within-sample and leave-one-out cross-validation.

The within-sample EER estimator is calculated by applying a classification model to the

observations in its training data set and summing the number of misclassified observations. This

type of EER estimate tends to be negatively biased (Johnson and Wichern 1992) and should

never be used during model selection (e.g., determining the optimal tree size; Brieman et al.

1984).  However, the time required to compute a within-sample EER is generally much shorter

than required for the cross-validation procedure.  Thus, the within-sample EER can provide a

quick, rough estimate of model performance when examining several complex models with large

data sets.

CATDAT also automatically computes a leave-one-out cross-validation EER estimate.

During this procedure, one observation is left out of the data, a model is fit with the remaining n-

1 observations, and the left out observation is classified using the fitted model.  This procedure is

repeated for all observations and the proportion of misclassifications is used as an estimate of the

EER.  The leave-one-out cross-validation was found to be a nearly unbiased EER estimator for

nonparametric classifiers (Funkunaga and Kessel 1971).  Consequently, we recommend its use

when evaluating model performance.

A third type of EER estimate can also be obtained with CATDAT using a V-fold cross-

validation (Brieman et al 1984). During this procedure, observations are randomly placed into V

groups, one group's observations are excluded and a model is fit with the data in the remaining

V-1 groups (i.e., the training data).  The excluded group's observations (i.e., the test data) are

then classified using the model.  This procedure is repeated for each group, and the proportion of

misclassifications, across groups, is used to estimate the EER.

Although EER estimates are generally used to evaluate a classifier's performance or to

compare different classifiers, it is important to note that EER is also influenced the magnitude of

the difference between response categories. For example, a classifier created to distinguish
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between 2 groups that don't differ or that differ very little based on the predictors used in the

model, will likely have high EER.  Consequently, consistently high EER, across classification

techniques, may be an indication that there are few differences among groups or that the

predictors used are poor at characterizing the groups.

Monte Carlo Hypothesis tests.- The Monte Carlo hypothesis test in CATDAT can be

used, in part, to find the best performing nonparametric model and to examine the importance of

one or more predictors on model performance (Haas et al. In prep.).  The test is based on

resampling statistics (Hall and Titterington 1989) and uses the index of most practical relevance,

the cross-validation EER, as the basis for the test.  One drawback to the use of an overall

(average) EER is that sharply unequal response category sample sizes could significantly affect

the results of the Mote Carlo test (Haas et al In prep.).  To eliminate this potential source of bias,

CATDAT uses the sum of the category-wise cross-validation errors, EERS, to give equal weight

to each category.

The null hypotheses of the Monte Carlo test, H0, is that there is no difference in EERS

between the full model with all predictors and the reduced model with the predictor or set of

predictors excluded (i.e., the predictor(s) being tested).  Thus, the test statistic, Ts, is calculated

using δs = EERSR − EERSF, where F and R are the true error rates for the full and reduced

models, respectively.  The test statistic Ts is then defined as Ts = δδ −
s

ˆ , with Ts = s
δ̂  under the

null hypothesis.

The Monte Carlo hypothesis test procedure is as follows, following Haas et al. (In prep).

Step 1: Compute the full and reduced error rates EERSF and EERSR, respectively, from the

actual data set. Compute Ts = δs, the observed value of the test statistic assuming H0 is

true.

Step 2: Sample without replacement r (< n) observations from the full sample.

Step 3: Compute the full and reduced error rates, EERS*F and EERS*R, respectively, using this

m jackknife sample. Compute and store Ts* = δδ −
s

ˆ , the jackknife sample's test statistic

value. Note that the true (but unknown) error rates have been replaced with those

estimated from the full sample, which gives the Monte Carlo test good statistical power

(Hall and Titterington 1989).
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Step 4: Repeat steps 2 and 3 m times always with a new randomly selected jackknife sample.

Step 5: Compute the p-value of the test to be the fraction of Ts* values greater than Ts.

Note that when r < n-1, the histogram of the m Ts* values is a deleted-d jackknife statistic

(Shao and Tu 1995) where d = n - r. Therefore, both d and m need to be large for a conststant

hypothesis test (Shao and Tu 1995).
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Table 6.1. Hypothetical maximum likelihood estimates for generalized logit model with 3
response categories and 3 predictors.                                                                                     

-------------------Maximum likelihood betas------------------

Response intercept predictor-1 predictor-2 predictor-3
A 0.5650 -0.0004 -0.0018 0.0027
B 0.0370 0.0009 -0.0008 -0.0007
C --------------- --(baseline)- --------------- ---------------

                                                                                                                                                



80

Total number of nodes

0.05

0.10

0.15

0.20

0.25

0.30

10 20 30 40

E
xp

ec
te

d
 e

rr
or

 r
a

te

Figure 6.1. Overall cross-validation (solid line) and within-sample (broken line) error rate of various sized
classification trees for ocean-type chinook salmon population status (Example 1). The most parsimonious tree
model, shown by the arrow, consisted of 21 nodes. The continued decrease in the within-sample error with
increasing tree size, in contrast to the gradual increase in the cross-validation error after 21 nodes, is due to model
overfitting. Consequently, within-sample error should never be used to determine optimal tree size.
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Figure 6.2. Overall cross-validation error rate for various numbers of nearest neighbors, K, for
ocean-type chinook salmon population status (broken line and open symbols) and physical habitat
characteristics of stream channel-units (solid lines and symbols). Arrows indicate the optimal K
values. A complete description of the data can be found in Examples 1 and 2.
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Figure 6.3. The schematics for a modular neural network with 2 predictor variables, 2 responses, and 2
hidden nodes per module labeled as Njk with j = module and k = hidden node number, respectively.
Nodes with B subscripts represent the bias term for the output layer, which is analogous to an intercept
in generalized linear models.
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Figure 6.4. Cross-validation classification error rate of various sized modular neural network for chinook salmon
population status (broken line and open symbols) and physical habitat characteristics of stream channel-units (solid line
and symbols). Arrows indicate optimal number of hidden nodes. A complete description of the data can be found in
Examples 1 and 2.
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Installation

CATDAT consists of a set of C programs for analyzing parametric and nonparametric

categorical data. To use CATDAT, the entire set of programs must be installed and compiled in a

single location. Knowledge of the C programming language is not necessary to install or run

CATDAT.

Requirements.- CATDAT will run under most variants of Unix and has been tested under

AIX 4.2 and DEC Alpha. It also has an option for running under Borland C++ (Table 7.1), but

has yet to be tested under this environment. The program requires an ANSI-compliant C

compiler with standard C libraries and approximately 1 MB of free disk-space.

Installation.- For convenience, all of the CATDAT program and two data files, otc.dat and

otc2.data, from Example 1 are compressed in a single file, catprgm.zip, and require pkunzip to

unzip them. To install CATDAT, complete the following steps.

1. Download catprgm.zip and copy to the desired directory. We recommend setting-up a

separate directory for CATDAT.

2. Unzip the program files within the CATDAT directory,

3. Configure the make file, "catdat.mk", for the current operating system by adding or

removing the pound signs (#) at the beginning of the respective statements with a text

editor (Table 7.1). Note that the default is AIX. Also, make sure that the two

statements below catdat.time or catdat.tme begin with a single tab. If these two

statements are not led by tabs, the following (or similar) error message will be

displayed during compiling.

"catdat.mk" line [line number] Dependency needs colon or double colon operator

4. To compile the program, enter the following at the prompt:

make -f catdat.mk

The program will then be complied and written to the current directory. CATDAT is now ready

to run.
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Error messages.- CATDAT has several error-catching routines within the program, most

of which output relatively self-explanatory messages. Listed below are all of error messages that

are likely to be encountered during program execution with a brief description of each.

General error messages.- The following error messages are the most common and are

usually displayed immediately following input of the data file.

Number of predictors exceeds maximum

Number of obs. exceeds maximum

Design matrix exceeds maximum

No. of qualitative predictor categories exceeds max

The most obvious source of these errors is that the variables have exceeded the program limits

defined in the catdat header file, "catdat.h". These limits are displayed just below the heading at

start-up, e.g.,

and can be changed by redefining the appropriate symbolic constant in the header file (Table

7.2). Note that the CATDAT object files (i.e., those ending with the extension ".o" or ".obj")

should be deleted and catdat recompiled following changes to the header file.

Another likely source for these error messages is an incorrect match between the data file

heading and body. For example, if the specified number of predictors (p) is less than the actual

number in the data file body, CATDAT will treat the p+1 predictor for the first observation as

the response category for the second observation. The actual response variable for the second

observation will then be treated as the value of its first predictor variable and so forth.
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The following message is displayed when CATDAT cannot locate the specified file.

File open failure for [filename] status = [r = read, a = append]

The following error message is generally due to an incorrectly formatted analysis specification

file and/or the name of a file, predictor, or response category that exceeds 10 characters in the

analysis specification file.

Fatal error encountered while reading analysis specification file

Generalized logit model.- The most common error encountered while fitting the

generalized logit model is the use of qualitative predictors, which will result in the following

message.

Warning [file name] contains qualitative predictors. Recode using

dummy variables (i.e., 0 or 1) before constructing logit model.

The following error message is displayed when a logit model specification file contains

too many predictors or when the logit model is incorrectly specified (e.g., the predictor

identification numbers are incorrect).

Number of predictors = [value], p= [value], Max p = [value]

exceeded maximum during logit model parameterization

The following messages are displayed when the data cannot be fit with the generalized

logit model (e.g., when predictors are perfectly linearly correlated, resulting in a singular matrix).

F matrix ill-conditioned, giving up

Matrix ill-conditioned

Cholesky decomposition failed

Singular matrix detected

Error detected while calculating Sigma^2, exiting

Rarely occurring predictors (i.e., dummy coded) can also prevent the logit model-fitting

algorithm from converging resulting in the errors listed above. Possible remedies include

combining rarely occurring dummy predictors, data transformation, eliminating highly correlated

predictors, and combining related response categories (e.g., ocean-type chinook salmon strong +

depressed population status = ocean-type chinook salmon present).
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The following errors are encountered during hypothesis testing and computing goodness

of fit tests for logit model main effects and interactions.

Fatal error, critical score statistic < 0

Bad values for estimating incomplete gamma function

Failure during estimation of incomplete gamma function

Unable to partition data with k-means clustering

Too many response categories for goodness of fit test

Maximum number of iterations exceeded during k-means clustering

Number of clusters exceeds maximum during k-means clustering

In many instances, these error messages may result from incorrectly specifying the critical alpha-

level (e.g., a negative number or alpha > 1). Other potential sources include poor model fit,

which may be remedied by one or more the above suggestions.

Classification tree.- The most common error message for the classification tree is given

when the BEST parameter exceeds the maximum number of nodes.

Maximum number of nodes possible = [value] < best = [value],

BEST specification too large

The following errors are rare, but may be encountered when none of the predictors are useful for

classifying responses with the classification tree. For example, these errors might occur during a

Monte Carlo hypothesis test in which the all of the significant predictors were excluded (i.e.,

tested).

Maximum number of classification tree nodes exceeded

Terminal node reached while searching for delta_min

Singleton tree obtained while pruning tree

Number of classification tree partitions exceeds maximum

Fatal error detected during tree growing

Nearest neighbor.- The following message is usually output when one or more of the

response categories has too few observations to calculate the kernel distance (see Details).

Insufficient no. of obs. in [response category name] for kernel smoothing

When this error occurs, the response category should be dropped from the analysis or its

observations combined with a similar category. For example, if there were an insufficient

number of observations for the "strong" ocean-type chinook salmon status (Example 1), they
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could have been combined with observations from the "depressed" category and redefined as

ocean-type chinook salmon "present".

Similar to the logit model, the following messages are displayed when the kernel distance

cannot be computed with the data (e.g., when qualitative predictors are perfectly linearly

dependent).

Warning covariance matrix has zero variances-

variances

[list of variances]

Generalized correlation matrix ill conditioned

Modular neural network.- The following error message is the most common for the

modular neural network.

Number of hidden nodes exceeds maximum

This limit is displayed along with others (above) just below the heading at start-up and can be

changed by redefining the appropriate symbolic constant in the header file (Table 7.2).

The following error message would be output in the extremely rare occasion when more than

500 iterations were needed to locate minima while fitting the neural network.

Maximum number of iterations exceeded

Although the maximum number of iterations (ITMAX) can be re-specified in dfpmin.c,

exceeding ITMAX suggests that the predictors may not be useful for constructing a neural

network.

Another problem that is may be encountered when fitting a modular neural network is an

insufficient amount of stack memory. CATDAT uses a quasi-Newton method to locate minima

while fitting the neural network (see Details). Consequently, the stack memory requirements are

fairly large when compared to neural networks that employ conjugate gradient methods. The

greatest local memory requirement for the neural network is the pseudo Hessian matrix

(hessin[][]) whose requirements are roughly the product of MAXP, MAXHID, and MAXK

located in the catdat header file (Table 7.2).
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Before fitting a neural network, CATDAT automatically checks for the amount of memory

available and, if insufficient, the program is immediately stopped. If this happens, there are two

possible solutions.

1. Find out the maximum stack size and reduce the size of MAXP, MAXHID, and/or

MAXK in the CATDAT header file as necessary.

2. For many systems, the stack size can be changed to "unlimited" (i.e., up to the virtual

space limit, which is typically 100's of megabytes). This can usually be changed by the

system administrator where the user limits are stored (e.g., /etc/security/limits).

Monte Carlo hypothesis test.- The following error message is displayed when the model

specification file contains too many predictors or when the predictors are incorrectly specified

(i.e., the predictor identification numbers are incorrect).

Number of predictors in mod. specific. file exceeds number in data file

The following message is displayed when the specified jackknife sample size exceeds the

number of samples in the data file.

Jackknife sample size greater than maximum allowed

The following message is displayed when the number of jackknife sample size exceeds

the maximum, which can be changed by redefining the appropriate symbolic constant in the

header file (Table 7.2).

Number of jackknife samples [value] > maximum allowed [value]

Additional error messages.- The most frequently encountered non-CATDAT error

messages are the following.

NaN (not-a-number)

NaNQ

INF

These messages are usually output when: (1) the exponent of a value is too large to be

represented, (2) a nonzero value is so small that it cannot be represented as anything other than

zero, (3) a nonzero value is divided by zero, (4) operations are performed on values for which the

results are not defined, such as infinity-infinity, 0.0/0.0, or the square root of a negative number

or (5) a computed value cannot be represented exactly, so a rounding error is introduced.
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Troubleshooting.- Although most errors should be detected and reported by CATDAT,

there may be some situations where the program will crash without identifying and reporting the

problem. In these situations, CATDAT should be run under a debugger to determine the source

of the problem. Below is an outline for debugging CATDAT with AIX 4.2. Consult the user's

manual for specific information on debugging options for other systems.

To run a C debugger with AIX 4.2, the optimization flag "-O2" should be replaced with

"-g " in the catdat make file "catdat.mk". For example, the declarations in the original CATDAT

make file should read:

# For the SUN or AIX
CFLAGS = -O2  -I/usr/openwin/share/include
PFLAGS = -lm -lc -L/usr/openwin/lib -lX11
.c.o: ; cc -c $(CFLAGS) $*.c

After replacing the optimization flag, the declarations should read:

# For the SUN or AIX
CFLAGS = -g  -I/usr/openwin/share/include
PFLAGS = -lm -lc -L/usr/openwin/lib -lX11
.c.o: ; cc -c $(CFLAGS) $*.c

After recompiling CATDAT, enter " dbx -r catdat " at the AIX prompt and run the same analysis

that caused the problem. The debugger will run the program and output the problem statement

and its location (i.e., the CATDAT program file). Note that the optimization flag should be

changed back and CATDAT recompiled after debugging.
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Table 7.1. The CATDAT make file "catdat.mk". This make file is set-up to compile
CATDAT on an AIX or SUN operating system. To configure the file for DEC Alpha or
Borland 4.5 C++, remove the pound signs (#) in front of the respective compiler statements
and place them in front of the SUN/AIX statements. Note that the two statements below the
catdat.time or catdat.tme begin with a single tab.                                                                     
# For the ALPHA
#CFLAGS = -O2 -ieee_with_no_inexact -Olimit 1000
#PFLAGS = -lm -lc -lX11
#.c.o: ; cc -c $(CFLAGS) $*.c
# For the SUN or AIX
CFLAGS = -O2 -I/usr/openwin/share/include
PFLAGS = -lm -lc -L/usr/openwin/lib -lX11
.c.o: ; cc -c $(CFLAGS) $*.c
# For Borland 4.5 C++
#.AUTODEPEND
#CC = -c -p- -vi -W -X- -P -O2
#CD = -D_OWLPCH;
#INC = -Ic:\bc4\include
#LIB = -Lc:\bc4\lib
#.c.obj:
# bcc32 $(CC) $(CD) $(INC) $*.c
OBJ = catdat.o \
bslct.o \
.
(remainder of object files)
.
zscores.o
#Unix
catdat.time: $(OBJ)
cc $(OBJ) -o catdat ${PFLAGS} (this line begins with a tab)
touch catdat.time (this line begins with a tab)
#
#For Borland 4.5 C++
# Note that tlink32 will fail if array dimensions in catdat.h are too
big.
# Also, shut down Windows to run Borland make and create a swapfile
first
# with makeswap 20000. tlink32 and rlink32 take
# alot of time. Finally, runtime linking only shaves 3 megabytes off of
# the 25 megabyte Borland executable file -- it's not worth doing.
#
#catdat.tme: $(OBJ:.o=.obj) catdat.exe
# tlink32 -aa -c -Tpe $(LIB) @catdat.lnk (when used, this line begins
with a tab)
# touch catdat.tme (when used, this line begins with a tab) 
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Table 7.2. The variables used to define CATDAT memory limits in header file catdat.h.

Symbolic constant name Description

MAXQ Maximum number of response variable categories

MAXP Maximum number of predictors

MAXLVLS Maximum number of qualitative predictor levels

MAXN Maximum number of observations

MAXNIN Maximum size of the design (i.e., model) matrix

MAXNDES Maximum number of classification tree nodes

MAXSIM Maximum number of jackknife samples

MAXNMR Maximum number of partitions in classification trees

MAXHID Maximum number of hidden nodes
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Appendix A. The name and description of the variables used to identify the desired criteria in
CATDAT analysis specification files. Asterisk identifies the variables that must be in all analysis
specification files. See Tables 3.1 and 3.2 for examples of the structure of analysis specification
files.

Variable
name

Type Description

flenme* string The name of the CATDAT data file.

genout* string The name of the general output file.

flein string

The name of an input files that depends on the type of analysis. For the logit
model error and maximum likelihood (ML) beta estimation and the Monte
Carlo hypothesis test, it is the name of the model specification file. It is also
the name of the file containing unknown or test data.

fleout string

The name of an output file that depends on the type of analysis. For the logit
model hypothesis tests, it is the name of the file for recording the significant
predictors or interactions. Fleout is also the name of the logit model residual
file, the classification tree SAS file, Monte Carlo hypothesis test Ts

* statistics
file, and the file containing the predictions for the unknown or test data.

omegfil string The name of the file containing previously estimated neural network weights.

omegfil2 string The name of the file to output fitted neural network weights.

nmcat* integer
The number of response variables which must be followed by the response
variable names (1 per line).

nmprd* integer The total number of predictors.

nmquan* integer
The number of quantitative predictors which must be followed by the
quantitative predictor names and the qualitative predictor names (1 per line).

esttyp* integer
Identifier used to declare the type of classifier with values of: 1 = generalized
logit model, 2 = classification tree, 3 = nearest neighbor, and 4 = MNN.
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Appendix A. (continued).                                                                                                                         

Variable
name

Type Description

calc* integer

Identifier used to declare the type of analysis with values of:
1 = forward selection of generalized logit model interactions,
2 = error rate calculation with the full esttyp model,
3 = Monte Carlo hypothesis test,
4 = estimation of ML betas and residua analysis of full main effects logit
model,
6 = fit the esttyp model to the full dataset,
7 = Wald test of each predictor in generalized logit model,
8 = error rate calculation or ML beta estimation with selected main effects
logit model,
9 = error rate calculation or ML beta estimation with full main effects and
selected interactions logit model,
10 = error rate calculation or ML beta estimation with selected main effects
and interactions logit model, and
11= classification of unknown or test data.

selerr integer
The type of classification error rate calculation with values of: 1 = within-
sample and 2 = cross-validation.

xtrparm integer

The value of this parameter depends on the type of analysis. It takes a value
of "1" when estimating the ML betas of selected main effects or interactions
logit models with untransformed data and 2 when the data are normalized,
whereas it is the number of jackknife samples for Monte Carlo hypothesis
tests.

sigp real The critical alpha-level for logit model hypothesis tests.

besttre integer The classification tree BEST parameter.

nmhid integer The number of MNN hidden nodes or the number of nearest neighbors (K).

omegseed integer
Identifier used to declare that MNN weights are to be read from a file (i.e.,
omegseed = 1).

jackno integer The jackknife sample size.

cverfull real
The full model cross-validation error rate used during the Monte Carlo
hypothesis tests.


