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Foreword 

You are an experienced C programmer who has heard about J, and you think you'd 
like to see what it's all about.  Congratulations!  You have made a decision that will 
change your programming life, if only you see it through.  The purpose of this book is to 
help you do that. 

It won't be easy, and it certainly won't be what you're expecting.  You've learned 
languages before, and you know the drill: find out how variables are declared, learn the 
syntax for conditionals and loops, learn how to call a function, get a couple of examples 
to edit, and you're a coder.  Fuggeddaboutit!  In J, there are no declarations, seldom will 
you see a loop, and conditionals often go incognito.  As for coding from examples, well, 
most of our examples are only a couple of lines of code—you won't get much momentum 
from that!  You're just going to have to grit your teeth and learn a completely new way to 
write programs. 

Why should you bother?  To begin with, for the productivity.  J programs are usually 
a fifth to a tenth as long as corresponding C programs, and along with that economy of 
expression comes coding speed.  Next, for the programming environment: J is an 
interpreted language, so your programs will never crash, you can modify code while it's 
running, you don't have to deal with makefiles and linking, and you can test your code 
simply by entering it at the keyboard and seeing what it does. 

If you stick with it, J won't just help the way you code, it'll help the way you think.  C 
is a computer language; it lets you control the things the computer does.  J is a language 
of computation: it lets you describe what needs to be done without getting bogged down 
in details (but in those details, the efficiency of its algorithms is extraordinary).  Because 
J expressions deal with large blocks of data, you will stop thinking of individual numbers 
and start thinking at a larger scale.  Confronted with a problem, you will immediately 
break it down into pieces of the proper size and express the solution in J—and if you can 
express the problem, you have a J program, and your problem is solved. 

Unfortunately, it seems to be the case that the more experience you have as a C 
programmer, the less likely you are to switch to J.  This may not be because prolonged 
exposure to C code limits your vision and contracts the scope of your thinking to the size 
of a 32-bit word—though studies to check that are still under way and it might be wise 
for you to stop before it's too late—but because the better you are at C, the more you have 
to lose by switching to J.  You have developed a number of coding habits: for example, 
how to manage loops to avoid errors at extreme cases; how to manage pointers 
effectively; how to use type-checking to avoid errors.  None of that will be applicable to 
J.  J will take advantage of your skill in grasping the essence of a problem—indeed, it 
will develop that skill considerably by making it easier for you to express what you 
grasp—but you will go through a period during which it will seem like it takes forever to 
get things done. 

During that period, please remember that to justify your choice of J, you don't have to 
be as expert in J as you were in C; you only have to be more productive in J than you 
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were in C.  That might well happen within a month.  After you have fully learned J, it 
will usually be your first choice for describing a program. 

Becoming a J programmer doesn't mean you'll have to give up C completely; every 
language has its place.  In the cases where you want to write code in C (either to use a 
library you have in C or to write a DLL for a function that is inefficiently computed in J), 
you will find interfacing J to DLLs to be simple and effective. 

This book's goal is to explain rudimentary J using language familiar to a C 
programmer.  After you finish reading it, you should do yourself the honor of carefully 
reading the J Dictionary, in which you can learn the full language, one of the great 
creations in computer science and mathematics. 
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1.  Introduction 

This book will tell you enough about J for you to use it as a language for developing 
serious applications, but it is about more than learning the J language: it is also about 
'thinking big' in programming, and how programming in J is fundamentally different 
from programming in C.  C programs deal intimately with scalars (single numbers and 
characters), and even when they combine those scalars into arrays and structures, the 
operations on the arrays and structures are defined by operations on the scalars.  To 
ensure that each item of an array is operated on, loops are created that visit each element 
of the array and perform a scalar operation on the element. 

Writing code in a scalar language makes you rather like a general who gives orders to 
his troops by visiting each one and whispering in his ear.  That touch-of-Harry kind of 
generalling can achieve victorious results, and it has the advantage that the orders can be 
tailored to the man, but its disadvantages are significant: the general spends much mental 
energy in formulating individual orders and much breath in communicating them 
individually; more significant, his limited attention is drawn toward individuals and away 
from the army as a whole.  Even the great Rommel was overtaxed at times. 

The J programmer is, in contrast, a general who stands before his army and snaps out 
orders to the army as a whole.  Every man receives the same order, but the order itself 
contains enough detail for the individual men to act appropriately.  Such a general can 
command a corps as easily as a platoon, and always has the 'big picture' in mind. 

OK, maybe you're not Rommel, but you are a working programmer, and you suspect 
that very few practical programs can be represented as array operations—matrix 
multiplication maybe, or adding a list of numbers—and that, even if a wide range of 
programs were possible, the set of operations supported must be too vast to be practical: 
wouldn't we need an array operation for every possible program? 

The first half of this book is devoted to showing you that it is indeed possible to write 
meaningful programs with array operations.  We take the approach of looking at the 
different ways loops are used, and seeing what facilities J has for producing the same 
result using array operations.  We will find that J contains a couple of dozen array-
processing primitives and a dozen or so very cleverly chosen pipe-fittings that allow 
those primitives to be connected together to provide the limitless supply of array-
processing functions needed for practical programming. 

Interspersed with the elaboration of more and more intricate array operations are 
treatments of other matters of use in practical programming: structure definition, input 
and output, performance measurement, calling DLLs, modular programming.  Eventually 
we will see how to use if-then-else and do-while in J, though you will have learned more 
elegant ways to get the same results. 

The last portion of the book is devoted to the optional topic of tacit programming, J's 
language for functional programming.  Tacit programming is an extremely terse way of 
expressing algorithms, one that allows programs that have been compressed from a page 
of C into a few lines of J to be compressed still further. 
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2.  Preliminaries 

Notation 
C code is set in Arial font, like this: for(I = 0;I<10;I++)p[I] = q; 
J code is set in Courier New font, like this: p =. 10 $ q 

When J and C use different words for the same idea, the J word is used.  The first few 
times, the C word may be given in parentheses, in Arial font: verb (function).  When a 
word is given a formal definition, it is set in bold italics: verb. 

Terminology 
To describe the elements of programming, J uses a vocabulary that will be familiar, 

though possibly frightening: the vocabulary of English grammar.  We will speak of 
nouns, verbs, and the like.  Don't worry, you're not going to have to write a book report! 

Use of this terminology is not as strange as it may seem.  Take 'verb', for example, an 
idea that corresponds to the C 'function' or 'operator'.  Why not just say 'operator'?  
Well, that word is also used in mathematics and physics, with a meaning quite different 
from C's.  Even a C 'function' is not a true mathematical function—it can return different 
values after invocations with the same arguments. 

J avoids imprecise usage by choosing a familiar set of words and giving them entirely 
new meanings.  Since J is a language, the vocabulary chosen is that of English grammar.  
It is hoped that the familiarity of the words will provide some mnemonic value, but as 
long as you learn the J meanings you are free to forget the grammatical ones.  The 
following table may help: 

J word C word 

verb function or operator 

noun object 
copula assignment 

punctuation separator 
adverb (untranslatable) 

conjunction (untranslatable) 

In keeping with the grammatical flavor of the vocabulary, we say that every word 
(token) in a J program has a part of speech (name type) which is one of the following: 
noun, verb, adverb, adjective, copula, or punctuation. 

The primary parts of speech are noun, verb, adverb, and conjunction.  Every name 
we can create, and every word defined by J except for the copulas (=. and =:) and 
punctuation, will be a definite one of the primary parts of speech.  In this book, the term 
entity is used to mean something that can be any of the primary parts of speech.  An 
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entity can be assigned to a name, but most entities are anonymous, appearing and 
disappearing during the execution of a single sentence (just like intermediate results in 
the evaluation of C expressions). 

A noun holds data; a verb operates on one or two nouns to produce a result which is a 
noun; an adverb operates on one noun or verb to produce a derived entity; a conjunction 
operates on two nouns or verbs to produce a derived entity.  Adverbs and conjunctions 
are called modifiers. 

A word on punctuation under J's definition: it consists of the characters ( ) ' and 
end-of-line (written LF but representing either a single LF character or the CRLF 
combination), along with the comment delimiter NB. and a few other special words like 
if. and case. .  There are a lot of other characters that you think of as punctuation, 
namely [ ] , . " ; { }, that J uses to do work.  You will be especially surprised 
to find that [ ] and { } are independent rather than matched pairs, but you'll get used 
to it. 

Sentences (statements) 
The executable unit in J is called the sentence, corresponding to the C statement.  

The sentence delimiters in J (corresponding to the semicolon in C) are the linefeed LF 
and the control words like if. that we will learn about later.  A sentence comprises all 
the characters between sentence delimiters; since LF is a sentence delimiter, it follows 
that a J sentence must all fit on one line.  There is nothing corresponding to \<CR> in C 
that allows you to split a sentence across lines. 

All comments start with NB. and run to the next LF .  The comment is ignored when 
the sentence is executed. 

Word Formation (tokenizing rules) 
J's names (identifiers) are formed much as in C.  Names must begin with an 

alphabetic, underscore is allowed, and upper- and lowercase letters are distinguished.  
Names that end with an underscore or contain two consecutive underscores are special, 
and you should avoid them until you know what a locale is. 

The ASCII graphic characters ('+', for example) are called primitives (operators) in 
J.  You will learn their meanings as we go on. 

Any name or primitive (identifier or operator) can be made into a new primitive by 
adding '.' or ':' at the end.  Since all primitives are system-defined (i. e. they are 
reserved words), you may not put '.' or ':' in your names.  No space is required after a 
primitive.  The part of speech for each primitive is fixed.  Example primitives are: 

+ +. +: { {: {:: i. i: for. select. case. end. 

The first step in processing a sentence is to split it into words.  The words correspond 
roughly to C tokens, after making allowance for the special status of the '.' and ':' 
characters.  The space and TAB characters are treated as whitespace.  One big surprise 
will be that a sequence of numbers separated by spaces is treated as a single word which 
denotes the entire list of numbers. 



 5 

We will be careful to distinguish periods used for English punctuation from the dot 
that may be at the end of a primitive.  When a J word comes at the end of an English 
sentence, we will be sure to leave a space before the period.  For example, the verb for 
Boolean Or is +., while the verb for addition is + . 

Numbers 
You do not need to trouble yourself with the distinction between integers, floats, and 

complex numbers.  If it's a number, J will handle it properly.  There are a great many 
ways to specify numbers; consult the Dictionary to learn details, including, among other 
things, complex numbers, extended-precision integers, and exponential forms.  Example 
numbers are: 

2 

_2 (underscore, not -, is the negative sign) 

0.5 (since '.' is special, it must not be the first character of a number) 
1e2 

16b1f (equivalent to 0x1f) 
_ (infinity) 

__ (negative infinity, represented by two underscores) 

A noun whose value is one of the numbers 0 and 1 is said to be Boolean.  Many verbs 
in J are designed to use or produce Boolean values, with 0 meaning false and 1 meaning 
true, but there is no Boolean data type: any noun can be used as a Boolean if its values 
are 0 or 1. 

A word is in order in defense of the underscore as the negative sign.  -x means 'take 
the negative of the number x'; likewise -5 means 'take the negative of the number 5'.  In 
J, the number 'negative 5' is no cloistered companion, accessible only by reference to the 
number 5: it is a number in its own right and it deserves its own symbol: _5. 

Characters 
An ASCII string enclosed in single quotes is a constant of character type (examples: 

'a', 'abc').  There is no notation to make the distinction between C's single-quoted 
character constants and double-quoted character strings. 

There are no special escape sequences such as '\n'.  If you need a quote character 
inside a string, double the quote: 'cannot can be shortened to can''t'.  
Character constants do not include a trailing NUL (\0) character, and NUL is a legal 
character within a string. 

Valence of Verbs (Binary and Unary Operators) 
C operators can be unary or binary depending on whether they have one or two 

operands; for example, the unary * operator means pointer dereferencing (*p), while the 
binary * operator means multiplication (x*y). 
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Similarly, when a J verb (function or operator) is executed with only one operand 
(i. e. without a noun or phrase that evaluates to a noun on its left) we say its invocation is 
monadic (unary); if there is a noun or noun-phrase on its left, that noun becomes a 
second operand to the verb and we say that the invocation is dyadic (binary).  In the case 
of programmer-defined verbs (functions), the versions handling the two cases are 
defined independently.  We use the term valence to describe the number of operands 
expected by a verb-definition: a verb-definition has monadic valence if it can be applied 
only monadically, dyadic valence if it can be applied only dyadically, and dual valence if 
it can be applied either way.  Since the definitions of the monadic and dyadic forms of a 
verb can be wildly different, when we name a verb we will be careful to indicate which 
version we are talking about: 'monad $', 'dyad i.'. 

Note that it is impossible to invoke a verb with no operands.  In C we can write 
func(), but in J we always must give an operand. 

Note also that the syntax of J limits verbs (functions) to at most two operands.  
When you need a verb with more than two operands, you will represent it as a monad or 
dyad in which one of the verb's syntactic operands is an aggregate of the actual operands 
the verb will use during its execution.  The first thing the verb will do is to split its 
operand into the individual pieces.  J has primitives to make this process easy. 

The value produced by any entity when it is applied to its operand(s) is called its 
result (returned value). 

How Names (Identifiers) Get Assigned 
Assignment in J is performed by expressions of the form 

name =. entity  NB. private 
and 
name =: entity  NB. public 

Names assigned by public assignment are visible outside the entity in which they are 
defined; names assigned by private assignment usually are not; we will learn the details 
when we discuss modular code.  The difference between the two forms of assignment is 
in the character following the = .  Just as in C, the assignment expression is considered 
to produce as its result the value that was assigned, so expressions like 
a =. 1 + b =. 5 
are legal.  J calls =. and =: copulas.  Just as in C, the entity that is assigned to the name 
can be the result of evaluating an expression. 

There are a number of additional capabilities of J assignment that you can read about 
in the Dictionary.  One that has no counterpart in C is that the name being assigned can 
itself be a variable, i. e. you can calculate the name that you want to assign the value to. 

The value assigned can be a noun (object), verb (function), adverb, or conjunction; 
the name then becomes whatever part of speech was assigned to it (even if it was 
previously defined as a different part of speech!).  For example, 
n =: 5 
creates a noun, and 
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v =: verb define 
x. + y. 
) 
creates a verb (more below). 

 Note: the J Dictionary uses the terms 'local' and 'global' instead of 'private' and 
'public'.  I think 'private' and 'public' are more accurate terms, because there is another 
dimension to name scope in J, using the J notions locale and path, that causes public 
variables to be visible only in certain entities.  It will be a long time before we learn about 
locales; until then, public names will be global. 

Order of Evaluation 
Forget the table of operator precedence!  All J verbs (functions and operators) 

have the same priority and associate right-to-left.  For example, a * b + c is 
equivalent to a * (b + c), not (a * b) + c.  Use care when copying 
mathematical formulas.  Note that the negative sign _ is a part of the number, not a verb.  
_5 + _4 is _9, while -5 + -4 is _1. 

The executable bits of a sentence (statement) are called fragments 
(subexpressions).  A verb with its operand(s) is a fragment, as is a copula with its 
name and value.  We will meet other types of fragment later.  Execution of a sentence 
consists of the right-to-left execution of its fragments, with the result of each fragment's 
execution replacing the fragment and being passed as an operand into the next fragment.  
The result of the last execution becomes the result of the sentence.  This result is usually 
a noun but it can be any of the primary parts of speech.  As an example, execution of the 
sentence 
   a =. 3 + b =. 4 * 5 
consists of execution of the following fragments: 4 * 5 with result 20; b =. 20 with 
result 20; 3 + 20 with result 23; a =. 23 with result 23 .  The names a and b are 
assigned when the assignment fragments are executed. 

What a verb (function) looks like 
As we saw, a J verb (function) is defined by lines that look like: 

name =: verb define 
J sentences here 
) 

The result of the verb define is a verb, and normally you will assign the result to 
a name so you can execute the verb by name when you need it.  Subsequent lines, starting 
with the one after verb define and ending before the next line containing only the 
word ')', are read and saved as the text of the verb (heaven help you if you leave out 
the )!).  The verb is not 'compiled'—only the most rudimentary syntax checking is 
performed; the text is saved and will be interpreted when the verb is executed. 

Each line of the verb is a sentence (statement).  The result of the last sentence 
executed becomes the result of the whole verb (this is not precisely true but it's close 
enough for now—details will be revealed in 'Control Structures'). 
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Since a J verb has only one or two operands, there is no need for you to provide a list 
of parameter names as you do in a function definition in C; instead, J names them for 
you.  At the start of a verb's execution, the private name y. is initialized with the value of 
the right operand of the verb.  If the verb is dyadic, the private name x. is initialized with 
the value of the left operand.  Many programmers like to start their verbs by assigning 
these values to more descriptive names. 

If your verb is going to define only a monadic or dyadic form, you should use 
monad define or dyad define instead of verb define .  If you are going to 
define both valences, the way to do so is: 
name =: verb define 
monadic case here 
: 
dyadic case here 
) 
where a line with the single word : separates the two cases.  If you use verb define 
and don't have the :, the verb will be monadic. 

If your verb is only one line long (not at all unusual in J!) you can define it all in one 
line by using the appropriate one of the forms 
name =: monad : 'text of verb' 
name =: dyad : 'text of verb' 

Running a J program 
No compiling.  No linking.  No makefiles.  No debugger.  You simply type J 

sentences and the interpreter executes them and displays any result.  At the very simplest, 
you can use it as a desk calculator: 
   22 + 55 
77 

J prints 3 spaces as a prompt, so when you scroll through the log of a session, your 
input will be indented 3 spaces while J's typeout will be unindented.  The result of a 
sentence typed on the keyboard is displayed, except that to avoid excessive typeout 
nothing is displayed if the last fragment executed in the sentence is an assignment.  If you 
are at the keyboard while you are reading this book, you can type the examples and see 
the responses, or experiment on your own. 

Here is a simple program to add twice the left argument to three times the right 
argument: 
   add2x3y =: dyad : '(2 * x.) + 3 * y.' 
We can run this program by giving it operands: 
   1 2 3 add2x3y 4 5 6 
14 19 24 
Instead of simply displaying the result, we can assign it to a noun: 
   a =: 1 2 3 add2x3y 4 5 6 
We can inspect the value assigned to the noun by typing the name of the noun: 
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   a 
14 19 24 
We can use the noun in an expression: 
   2 * a 
28 38 48 
We can create a new verb that operates on the noun: 
   twicea =: monad : '2 * a' 
   twicea '' 
28 38 48 
Notice the '' after the invocation of twicea.  Remember, to invoke a verb you must 
give it an operand, even if the verb doesn't use an operand.  '' is just an empty string; 0 
or any other value would work too.  If you leave out the operand, J will show you the 
value of the name; since twicea is a verb, its value is the definition of the verb: 
   twicea 
3 : '2*a' 

Of course, in any practical application you will need to have most of your programs 
in a library so you can quickly make them all available to J.  J calls these libraries scripts 
(filename extension  '.ijs') and runs them with the load verb, for example: 
load 'system\packages\misc\jforc.ijs' 

load reads lines from the script and executes them.  These lines will normally be all 
the verb and noun definitions your application needs, possibly including load 
commands for other scripts.  A script may end with a line executing one of the verbs it 
defined, thereby launching the application; or, it may end after defining names, leaving 
you in control at the keyboard to type sentences for J to execute. 

Note: Names defined by private assignment (using =.) when 
a script is loaded are not available outside the script.  If you 
want to define names for use elsewhere, make sure you use 

=: for your assignments within a script. 

If you are used to debugging with Visual C++™ or the like, you will find the 
environment less glitzy and more friendly.  If you want to change a verb (function), you 
simply edit the script, using the editor of your choice (I use the built-in editor provided 
with J), and rerun it.  The verb will be updated, but all defined nouns (objects) will be 
unchanged.  Even if you are running a large application—yea, even if the application is in 
the middle of reading from an asynchronous socket—you can change the program, 
without recompiling, relinking, or reinitializing.  If you'd like to add some debugging 
code while the system is running, go right ahead.  This easy interaction with an executing 
program is one of the great benefits of programming in J. 

Interrupting Execution 
If a J verb is taking too long to run, press the BREAK key (Ctrl+BREAK, in 

Windows) to return control to the keyboard. 
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Names Defined at Startup 
When J starts, a number of useful names are defined.  Rather than discuss them all, I 

will show you how they come to be defined so you can study them when you need to. 

When J starts, it executes the script 
J-directory\system\extras\config\profile.ijs which then executes 
the script J-directory\system\extras\util\boot.ijs .  boot.ijs in 
turn executes a series of scripts in J-directory\system\main which define the 
starting environment.  Look at these scripts to see what they define. 

If you want to add your own initial definitions, do so either by adding commands at 
the end of profile.ijs or by creating your own startup script in 
J-directory\system\extras\config\startup.ijs . 

Step-By-Step Learning: Labs 
The Labs are interactive demos describing various topics in J.  To run the lab for 

printf, start a J session, on the menu bar select Studio|Labs…, then select the lab you are 
interested in, then press 'Run'.  The lab provides explanatory text interspersed with 
examples executed in your J session which you are free to experiment with as you step 
through the lab. 

I recommend that every now and again you tarry a while among the labs, running 
whichever ones seem interesting.  Much of the description of the J system can be found 
only there. 

J Documentation 
The J documentation is available online.  Pressing F1 brings up the Vocabulary page, 

from which you can quickly go to the Dictionary's description of each J primitive.  At the 
top of each page of documentation are links to the manuals distributed with J: these are: 

The Index to all documentation; 

The User Manual which describes components of J that are not in the language itself, 
including system libraries and external interfaces; 

The J Primer, an introduction to J; 

J Phrases, a collection of useful fragments of J (you will need to finish this book 
before trying to use J Phrases); 

The J Dictionary, the official definition of the language; 

Release Notes for all releases of J; 

A description of foreign conjunctions (!:); 
A description of the operands to the wd verb (Windows interface). 
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Getting Help 
Your first step in learning J should be to sign up for the J Forum at 

www.jsoftware.com.  A great many experienced J users monitor messages sent to the 
Forum and are willing to answer your questions on J, from the trivial to the profound. 
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3.  A First Look At J Programs 

Before we get into learning the details of J, let's look at a couple of realistic, if simple, 
problems, comparing solutions in C to solutions in J.  The J code will be utterly 
incomprehensible to you, but we will nevertheless be able to see some of the differences 
between J programs and C programs.  If you stick with me through this book, you will be 
able to come back at the end and understand the J code presented here. 

Average Daily Balance 
Here is a program a bank might use.  It calculates some information on accounts 

given the transactions that were performed during a month.  We are given two files, each 
one containing numbers in lines ended by (CR,LF) and numeric fields separated by TAB 
characters (they could come from spreadsheets).  Each line in the Accounts file contains 
an account number followed by the balance in the account at the beginning of the month.  
Each line in the Journal file contains an account number, the day of the month for a 
transaction, and the amount of the transaction (positive if money goes into the account, 
negative if money goes out).  The records in the Journal file are in order of date, but not 
in order of account.  We are to match each journal entry with its account, and print a line 
for each account giving the starting balance, ending balance, and average daily balance 
(which is the average of each day's closing balance).  The number of days in the month is 
an input to the program, as are the filenames of the two files. 

I will offer C code and J code to solve this problem.  To keep things simple, I am not 
going to deal with file-I/O errors, or data with invalid format, or account numbers in the 
Journal that don't match anything in the Accounts file. 

C code to perform this function might look like this: 

 
#include <stdio.h> 
#define MAXACCT 500 
// Program to process journal and account files, printing 
// start/end/avg balance.  Parameters are # days in current 
// month, filename of Accounts file, filename of Journal file 
void acctprocess(int daysinmo, char * acctfn, char *jourfn) 
{ 
 FILE fid; 
 int nacct, acctx; 
 float acctno, openbal, xactnday, xactnamt 
 struct { 
  float ano; // account number 
  float openbal; // opening balance 
  float prevday; // day number of last activity 
  float currbal; // balance after last activity 
  float weightbal; // weighted balance: sum of closing balances 
 } acct[MAXACCT]; 
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 // Read initial balances; set day to start-of-month, sum of balances to 0 
 fid = fopen(acctfn); 
 for(nacct = 0;2 == fscanf(fid,"%f%f",acctno,openbal) { 
  acct[nacct].ano = acctno; 
  acct[nacct].openbal = openbal; 
  acct[nacct].prevday = 1; 
  acct[nacct].currbal = openbal; 
  acct[nacct].weightbal = 0; 
  ++nacct; 
 } 
 fclose(acctfn); 
 
 // Process the journal: for each record, look up the account 
 // structure; add closing-balance values for any days that 
 // ended before this journal record; update the balance 
 fid = fopen(jourfn); 
 while(3 == fscanf(fid,"%f%f%f",acctno,xactnday,xactnamt) { 
  for(acctx = 0;acct[acctx].ano != acctno;++acctx); 
  acct[nacct].weightbal += 
   acct[nacct].currbal * (xactnday - acct[nacct].prevday); 
  acct[nacct].currbal += xactnamt; 
  acct[nacct].prevday = xactnday; 
 } 
 
 // Go through the accounts.  Close the month by adding  
 // closing-balance values applicable to the final balance; 
 // produce output record 
 for(acctx = 0;acctx < nacct;++acctx) { 
  acct[nacct].weightbal +=  
   acct[nacct].currbal * (daysinmo - acct[nacct].prevday); 
  printf("Account %d: Opening %d, closing %d, avg %d\n", 
   acct[acctx].ano, acct[acctx].openbal, acct[acctx].currbal, 
    acct[acctx].weightbal/daysinmo); 
 } 
 fclose(fid); 
} 

The corresponding J program would look like this: 
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NB. Verb to convert TAB-delimited file into numeric array 
rdtabfile =: (0&".;.2@:(TAB&,)@:}:);._2) @ ReadFile @< 
 
NB. Verb to process journal and account files 
NB. y. is (# days in current month);(Account filename); 
NB.   (Journal filename) 
acctprocess =: monad define 
'ndays acctfn jourfn' =: y. 
NB. Read files 
'acctano openbal' =. |: rdtabfile acctfn 
'jourano jourday jouramt' =. |: rdtabfile jourfn 
 
NB. Verb: given list of days y., return # days that 
NB. each balance is a day's closing balance 
wt =. monad : '(-~ 1&(|.!.(>:ndays))) 0{"1 y.' 
NB. Verb: given an Account entry followed by the Journal 
NB. entries for the account, produce (closing balance), 
NB.  (average daily balance) 
ab =. monad : '(wt y.)({:@] , (%&ndays)@(+/)@:*)+/\1{"1 y.' 
 
NB. Create (closing balance),(average daily balance) for 
NB. each account.  Assign the start-of-month day (1) to the 
NB. opening balance 
cavg =. (acctano,jourano) ab/.(1,.openbal),jourday,.jouramt 
 
NB. Format and print all results 
s =. 'Account %d: Opening %d, closing %d, avg %d\n' 
s&printf"1 acctano ,. openbal ,. cavg 
'' 
) 

Let's compare the two versions.  The first thing we notice is that the J code is mostly 
commentary (beginning with NB.).  The actual processing is done in 3 lines that read the 
files, 3 lines to perform the computation of closing and average balance, and 2 lines to 
print the results.  J expresses the algorithm much more briefly. 

The next thing we notice is that there seems to be nothing in the J code that is looping 
over the journal records and the accounts.  The commentary says 'create balances for each 
account' and 'produce average daily balance for an account', tasks that clearly require 
loops, and yet there is nothing resembling loop indexes.  This is one of the miracles of J: 
loops are implied; in C terminology, they are expressions rather than statements, 
and so they can be assembled easily into single lines of code that replace many nested 
loops.  We will be spending a lot of time learning how to do this. 

We also note that there is nothing in the J code corresponding to the 
#define MAXACCT 500 in the C.  This is one of the things that makes programming in 
J so pleasant: you don't have to worry about allocating storage, or freeing it, or wondering 
how long is long enough for a character-string variable, or how big to make an array.  
Here, even though we don't know how many accounts there are until we have read the 
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entire Accounts file, we simply read the file, split it into lines and numbers, and let the 
interpreter allocate as much storage as it needs to hold the resulting array. 

The last thing to see, and perhaps the most important, is that the C version is just a toy 
program.  It searches through the Accounts information for every record in the Journal 
file.  We can test it with a small dataset and verify that it works, but if we scale it up to 
10,000 accounts and 1,000,000 journal entries, we are going to be disappointed in the 
performance, because its execution time will be proportional to A*J where A is the 
number of accounts and J the number of journal entries.  It is every programmer's dread: 
a function that will have to be rewritten when the going gets tough. 

The J version, in contrast, will have execution time proportional to (A+J)*log(A+J).  
We did nothing meritorious to achieve this better behavior; we simply expressed our 
desired result and let the interpreter pick an implementation.  Because we 'think big'—we 
treat the entire Journal and Accounts files as units—we give the interpreter great latitude 
in picking a good algorithm.  In many cases the interpreter makes better decisions than 
we could hope to, because it looks at the characteristics of the data before it decides on its 
algorithm.  For example, when we sort an array, the interpreter will use a very fast 
method if the range of numbers to be sorted is fairly small, where 'fairly small' depends 
on the number of items to be sorted.  The interpreter takes great care in its 
implementation of its primitives, greater care than we can normally afford in our own C 
coding.  In our example, it will use a high-speed method for matching journal entries with 
accounts. 

Calculating Chebyshev Coefficients 
This algorithm for calculating coefficients of the Chebyshev approximation of a 

function is taken verbatim from Numerical Recipes in C.  I have translated it into J just so 
you can see how compact the J representation of an algorithm can be.  Again, the J code 
will be gobbledygook for now, but it's concentrated gobbledygook. 
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// Program to calculate Chebyshev coefficients 
// Code taken from Numerical Recipes in C 1/e 
#include <math.h> 
#define PI 3.141592653589793 
void chebft(a,b,c,n,func) 
float a,b,c[ ]; 
float (*func)(); 
int n; 
{ 
 int k,j; 
 float fac,bpa,bma,f[300]; 
 
 bma = 0.5 * (b-a) 
 bpa = 0.5 * (b+a) 
 for(k = 0;k<n;k++) { 
  float y = cos(PI*(k+0.5)/n); 
  f[k] = (*func)(y*bma+bpa); 
 } 
 fac = 2.0/n; 
 for (j = 0;j<n;j++) { 
  double sum = 0.0; 
  for(k = 0;k<n;k++) 
   sum += f[k] * cos(PI*j*(k+0.5)/n); 
  c[j] = fac*sum; 
 } 
} 

J version: 
chebft =: adverb define 
: 
f =. u. 0.5 * (+/y.) - (-/y.) * 2 o. o. (0.5 + i. x.) % x. 
(2 % x.) * +/ f * 2 o. o. (0.5 + i. x.) *"0 1 (i. x.) % x. 
) 
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4.  Declarations 

J has no declarations.  Good riddance!  No more will you have to warn the computer 
of all the names you intend to use, and their types and sizes.  No more will your program 
crash if you step outside an array bound.  You specify the calculations you want to 
perform; if, along the way, you want to assign a result to a name, J will allocate enough 
space for the data.  It will free the space when the name is no longer needed. 

Seasoned C programmers have learned to use declarations to create a web of type-
checking, making sure that objects pointed to are of the expected type.  This is an 
example of making a virtue of necessity.  Since J solves the problem much more 
directly—by not having pointers at all—you will soon lose your uneasiness with weak 
typing. 

Arrays 
But, you ask, without declarations, how does the computer know that a name 

represents an array?  For that matter, how do I know that a name represents an array? 

The answer affords a first glimpse of the power of J.  Every J verb, whether a 
primitive (operator) or a user-written verb (function), accepts arguments that can be 
arrays, even multidimensional arrays.  How is this possible?  Like this: Suppose you 
write a verb that works with 2-dimensional arrays.  Part of your verb definition will 
indicate that fact.  If your verb is executed with an argument that is a 3-dimensional 
array, J will automatically split the 3-dimensional array into a sequence of 2-dimensional 
arrays, call your verb, and put the pieces back together into an array of results. 

We will very soon go into this procedure in great detail.  For now, you should learn 
the vocabulary J uses to deal with arrays. 

What C calls an n-dimensional array of rank i×j×…×k is in J an array of rank n 
with axes of length i,j,…,k. 

Every noun (variable or object) has a shape which is the array (of rank 1) made by 
concatenating the lengths of all its axes.  For example, if q is the array corresponding to 
the C array defined by the declaration 

int q[4][5][6]; 
its shape is the array 4 5 6 .  As you can see, the number of items in the shape is 
exactly the rank. 

Note: a sequence of numbers written with no intervening 
punctuation defines a numeric array of rank 1 (i. e. a list).  

You may have to use parentheses if you have adjacent 
numbers that you don't want to have made into a list. 

Unlike in C, an array in J may have one or more axes of length 0.  Such an array has 
no atoms, but its rank is still the number of its axes. 
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A single number or character is called an atom (object of basic type) which is said 
to have the type numeric or character as appropriate.  (Actually, there are types other than 
number and character, including a type that resembles a structure, but we won't get to 
them for a while).  An atom is also called a scalar.  An atom is defined to have rank 0; 
therefore, its shape is an array with 0 items, i. e. an empty array of rank 1. 

Just as in C, every atom of an array must have the same type.  

Cells 
Because the execution of every J verb involves breaking the argument into pieces, 

presenting the pieces to the verb, and assembling results, J has a vocabulary for 
describing these operations. 

A rank-3 array of shape 4 5, 6 such as the one defined in C by the declaration 
 int q[4][5][6]; 
can be thought of as an array of 4 elements, each with rank 2 and shape 5 6, or as a 4×5 
array of elements, each with rank 1 and shape 6, or as a 4×5×6 array of rank-0 atoms.  
The term cell is used to indicate the rank of the elements that will be operated on.  A 
0-cell is an atom, a 1-cell is an element of rank 1, a 2-cell is an element of rank 2, and so 
on. 

 
Once you have picked a cell size, you can think of your noun as an array of cells; the 

shape of that array is called the frame of the noun relative to the chosen rank of cell.  It 
follows that the frame, concatenated with the shape of the cells, will be equal to the shape 
of the noun.  The frame itself (like all shapes) is an array of rank 1. 

The diagram illustrates cells of different ranks.  Note that the twenty 6-atom 1-cells 
are arranged in a 4×5 array; this is the meaning of the frame of the 1-cells.  The four 5×6 
2-cells are arranged as a vector of 2-cells; this is the meaning of their frame. 

A selected cell is analogous to the subarray selected by indexing in C.  Using q as 
defined above, in C q[3] is a 5×6 array (i. e. a 2-cell); q[1][0] is a 6-element vector (i. e. 
a 1-cell); q[2][0][3] is a scalar (0-cell). 

The noun q we have been using as an example can be thought of in any of the 
following 4 ways: 
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 Frame Cells 

as an array of Length Value Rank Shape 

0-cells 3 4 5 6 0 (empty) 

1-cells 2 4 5 1 6 

2-cells 1 4 2 5 6 

3-cells 0 (empty) 3 4 5 6 

Choosing Axis Order 
Because J verbs operate on cells of nouns, you should choose an order of axes that 

makes the cells meaningful for your application.  Referring to the figure, we can see that 
the groups of items that fall into horizontal strips (1-cells) or horizontal slabs (2-cells) 
will be easy to operate on individually.  Vertical strips or slabs will not correspond to 
cells and so will not be accessible individually; to work on them we may have to reorder 
the axes of the noun to make them correspond to cells.  Such reordering of axes is easy in 
J but it can often be avoided by ordering the axes properly in the first place. 

Negative Cell-Rank; Items 
In some cases, you may know the length of the frame and want to define the cells to 

have whatever rank is left over (for example, you may have a noun with one cell per 
employee, but you may not know the rank of the cells).  We say that you are selecting the 
cells of the noun relative to the given frame.  Negative cell-ranks indicate this.  A _1-cell 
has the shape corresponding to a frame of length 1 (5 6 in our example), a _2-cell has 
the shape corresponding to a frame of length 2 (6 in our example), and so on.  If the 
specified frame is longer than the rank of the noun, the entire shape of the noun is used 
for the frame (and the cells are 0-cells, i. e. atoms).  In our example, a _3-cell, a _4-cell, a 
_5-cell, etc., all refer to atoms.  As an important case of this, the _1-cell of an atom is the 
atom itself. 

_1-cells are so important in J that they are given the name items.  Our example has 4 
items, each of shape 5 6 .  An atom has one item, itself. 

Remember: an atom has one item: itself. 
The index of an item in an array is the sequence number of the item from the 

beginning of the array.  The first item in an array has the index 0, just as in C. 

Lists 
When we choose to view an array as a collection of its items, we say that the array is 

a list of its items.  In our example above, the items of the 4×5×6 array are 5×6 arrays, and 
we say that the whole array is a list of 4 items each with shape 5 6 (equivalently, we say 
that it is a list of four 5×6 arrays).  So many of J's primitives operate on items of their 
operands that we will find ourselves usually thinking of an array as a list of its items. 
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When the word 'list' is used without any indication of what the list contains, the list is 
assumed to contain atoms.  So, 'the list x' refers to an array of rank 1 (one-dimensional 
array).  0 3 5 is a numeric list. 

Note that J's use of the term 'list' has nothing to do with linked lists such as you are 
familiar with, where an element in the list contains a pointer to other elements.  Since J 
has no pointers at all, you will not need that meaning, and you can get used to calling 
rank-1 arrays 'lists'.  A list can also be called a vector. 

Constant Lists 
A character or numeric list can be created simply by including the list in a sentence.  

We have seen that a sequence of numbers separated by spaces is recognized as a single 
word representing the list.  Similarly, a character or a character list can be represented 
directly by a quoted string.  C distinguishes between single-character constants (such as 
'a') and strings (such as "abc"), using single quotes for characters and double quotes for 
strings.  J uses only single quotes for defining character constants (the " character is a 
primitive in its own right).  If exactly one character is between the quotes, the value is an 
atom; if none or more than one, the result is a list. 

Array-creating verbs 
Now that we know how to talk about arrays, we might as well create a few and see 

what they look like.  As mentioned earlier, every J verb can be used to create an array—
there are no special 'declaration' verbs—but we will start with a couple that do little else.  
The J lines are taken from an interpreter session; you can type them into your own 
session and get the same results.  The indented lines were typed into J, and the 
unindented ones are J's responses. 

Dyad $ ($hape) and monad $ ($hape Of) 
The verb dyad $ is invoked as x $ y .  The result of dyad $ has the frame x 

relative to the rank of the items of y, and is made up of the items of y, repeated cyclically 
as needed.  It follows that the shape of this result is x concatenated with the shape of an 
item of y . 

We will have to work together on this.  Confronted with a definition like that, you 
might: (a) decide that J must be a language for tax accountants, and give up; (b) decide 
the definition is Greek and go on, hoping it will make sense later; (c) try a few examples 
to get an idea for what the definition means; (d) read it over and over again until you 
understand it.  I hope you will eschew (a) and (b), and settle for no less than full 
understanding.  For my part, I will offer a few useful examples that you can compare 
against the definition.  Not everything in J will be as abstract as this. 
   5 $ 2 
2 2 2 2 2 
The simplest case, creating (and displaying) a list of 5 items, each of which is 2 .  Let's 
see how this result matches the definition.  y is a scalar, so it has one item, which is also 
a scalar.  Therefore, the result has the shape 5 (x (i. e. 5) concatenated with the shape of 
an item of y; the shape of a scalar item of y is the empty list; 5 concatenated with an 
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empty list is a list with the single element 5).  The scalar is repeated to fill the 5 items of 
the result.  J displays a 1-cell on a single line, as shown. 
   5 $ 'ab' 
ababa 
Now y is a list, but its items are still scalars, with rank 0 and shape empty; so the result 
still has the shape 5 .  The 5 items come from the items of y, cyclically. 
   4 4 $ 'There is a tide in the affairs of men' 
Ther 
e is 
 a t 
ide 
The items of y are still scalars, with rank 0 and shape empty; the result has the shape 
4 4 .  The 16 items come from the items of y, cyclically.  Not all items of y are used.  J 
displays a rank-2 array as a sequence of lines, one for each 1-cell. 
   0 $ 2 
 
(The display is a single blank line)  Just like 5 $ 2, but the resulting list has 0 items, 
i. e. it is an empty list. 
   1 $ 2 
2 
Similarly, a 1-item list. 
   (0 $ 2) $ 2 
2 
Here (0 $ 2) produces an empty list, as we saw above, and that is the x to the second 
$ .  The items of y are still scalars, so the result has shape empty (an empty list 
concatenated with an empty list), i. e. it is a scalar. 

The displays of a scalar and a 1-item list are identical.  Does that mean that a scalar is 
the same thing as a 1-item list?  No.  I mean no.  NO!  They are not (I say this with the 
same resignation as when I tell my kids not to rollerblade too fast down our street, 
knowing that only painful experience will drive the message home).  How can you tell 
them apart?  What we need is a way to see the shape of a noun. 

That way is monad $ .  The result of $ y is the shape of y (always a numeric list).  
For example: 
   $ 1 2 3 4 
4 
A 4-item list has the shape 4 .  Did you forget that 1 2 3 4 is a single list rather than 4 
separate numbers?  You can ask the interpreter how it splits a line into words by using 
monad ;: : 
   ;: '$ 1 2 3 4' 
+-+-------+ 
|$|1 2 3 4| 
+-+-------+ 
The words are shown in boxes.  The list 1 2 3 4 is recognized as a single word. 
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   $ 6 
 
The shape of a scalar is a 0-length list, as we have seen. 
   $ 1 $ 2 
1 
Remember, all verbs execute right-to-left, so this is $ (1 $ 2), which gives the shape 
of the 1-item list.  When a verb can be invoked dyadically, it is, so the last $ is executed 
as a monad, not as a dyad. 
   $ (0 $ 2) $ 2 
 
Here, we get the shape of the scalar—an empty list. 
   $ 'a' 
 
A single character is an atom, whose shape is the empty list. 
   $'abc' 
3 
A 3-item list, one item for each character. 
   $ '' 
0 
'' is the empty character string, which you will see a lot of.  Because it is easy to type, it 
is the value most often used when an empty list of any type will do. 

Executing monad $ twice gives the rank: $ $ y is the rank of y (as a single-item 
list).  I suggest you not read on until you understand why. 

Resuming our inquiries into dyad $, we have 
   2 5 $ 1 10 
 1 10  1 10  1 
10  1 10  1 10 
Again y is a list, so the items of y are scalars.  The shape of the result is 2 5, and the 
items of y are repeated to fill that shape.  Note that the corresponding atoms in each cell 
are aligned in the display. 
   1 5 $ 1 10 
1 10 1 10 1 
Similarly, but now the result has shape 1 5.  This is not the same as a 5-item list, which 
has shape 5 .  Again, monad $ shows the shape: 
   $ 1 5 $ 1 10 
1 5 

When y is not a scalar or a list, its items are not scalars: 
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   3 $ 1 5 $ 1 10 
1 10 1 10 1 
1 10 1 10 1 
1 10 1 10 1 
Remember, this is processed as 3 $ (1 5 $ 1 10).  The parenthesized part 
produces an array of shape 1 5; since this has rank 2, its items are its 1-cells, each with 
shape 5.  The shape of the overall result is x concatenated with the shape of an item of y, 
to wit 3 5.  This is populated with the cells of y, of which there is only 1. 
   3 $ 2 5 $ 'There is a tide in the affairs of men' 
There 
 is a 
There 
You should be able to explain where each line came from. 
   2 2 $ 2 5 $ 1 10 
 1 10  1 10  1 
10  1 10  1 10 
 
 1 10  1 10  1 
10  1 10  1 10 
   $ 2 2 $ 2 5 $ 1 10 
2 2 5 
Now the shape of the result is 2 2 5, a rank-3 array.  J displays the 2-cells with a blank 
line in between.  Similarly, a rank-4 array is displayed as all the 3-cells with 2 blank lines 
in between, and so on for higher ranks. 

We have seen that the display of a zero-length list is a single blank line: proper, as 
there is one list, and it has no items.  The display of a rank-2 array with no items is 
different: here we have zero lists, so we should expect no lines at all.  This is indeed what 
happens: 
   0 0$0 
(there is no blank line).  This is the result you should produce if you want a function to 
display nothing. 

Here are two exercises.  Once you can explain each result, you will be well on your 
way to becoming a J programmer.  What will each of these sentences produce (answer on 
the next page)? 
   3 1 $ 2 5 $ 1 10 
   2 3 $ 2 5 $ 1 10 15 
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Solutions: 
   3 1 $ 2 5 $ 1 10 
 1 10  1 10  1 
 
10  1 10  1 10 
 
 1 10  1 10  1 

   2 3 $ 2 5 $ 1 10 15 
 1 10 15  1 10 
15  1 10 15  1 
 1 10 15  1 10 
 
15  1 10 15  1 
 1 10 15  1 10 
15  1 10 15  1 

Monad # (Tally) 
The result of  # y is a scalar, the number of items in y .  This is the first item in the 

list $y, except that if y is an atom, $y is empty but #y is 1 (because, remember, an atom 
has one item, itself).  If y is a list, #y is the length of the list.  Quiz question: What is the 
difference between the results of $ 1 2 3  and  # 1 2 3? 
   $ 1 2 3 
3 
   # 1 2 3 
3 
Answer: the result of monad $ is always a list, but the result of monad # is a scalar: 
   $ $ 1 2 3 
1 
   $ # 1 2 3 
 

#$y, like $$y, gives the rank of y .  Since monad # produces a scalar rather than a 
list, #$y is usually preferred.  Just remember that the length of the shape is the rank. 

Monad i. (Integers) 
Monad i. has infinite rank and creates an array.  i. y produces the same result as 

y $ ints, where ints is the list of all nonnegative integers in order.  Examples: 
   i. 5 
0 1 2 3 4 
A list of 5 items; the items are ascending integers. 
   i. 2 3 
0 1 2 
3 4 5 
A rank-2 result. 
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   i. 2 3 4 
 0  1  2  3 
 4  5  6  7 
 8  9 10 11 
 
12 13 14 15 
16 17 18 19 
20 21 22 23 
A rank-3 result. 
   i. 0 
 
A list of 0 items. 
   i. _5 
4 3 2 1 0 
If the argument is negative, the absolute value is used for the shape, but the items run in 
reverse order. 
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5.  Loopless Code I—Verbs Have Rank 

Most J programs contain no loops equivalent to while and for in C.  J does contain 
while. and for. constructs, but they carry a performance penalty and are a wise 
choice only when the body of the loop is a time-consuming operation.  You are just going 
to have to learn to learn to code without loops. 

I think this is the most intimidating thing about learning J—more intimidating even 
than programs that look like a three-year-old with a particular fondness for periods and 
colons was set before the keyboard.  You have developed a solid understanding of loops, 
and can hardly think of programming without using them.  But J is a revolutionary 
language, and all that is solid melts into air: you will find that most of your loops 
disappear altogether, and the rest are replaced by small gestures to the interpreter 
indicating your intentions. 

Come, let us see how it can be done.  I promise, if you code in J for 6 months, you 
will no longer think in loops, and if you stay with it for 2 years, you will see that looping 
code was an artifact of early programming languages, ready to be displayed in museums 
along with vacuum tubes, delay lines, and punched cards.  Remember, in the 1960s 
programmers laughed at the idea of programming without gotos! 

You are not used to classifying loops according to their function, but I am going to do 
so as a way of introducting J's primitives. We will treat the subject of loopless iteration in 
6 scattered chapters, showing how to replace different variants of loops: 

1. Loops where each iteration of the loop performs the same operation on different 
data; 

2. Loops that apply an operation between all the items of the array, for example 
finding the largest item; 

3. Loops where the operation to be performed on each cell is different; 

4. Loops that are applied to regularly-defined subsets of the data; 

5. Loops that are applied to subsets of the data defined irregularly; 

6. Loops that accumulate information between iterations of the loop. 

The simplest case is the most important, and we start with a few experiments. 

Examples of Implicit Loops 
   2 + 3 4 5 
5 6 7 
The verb dyad + is addition, and we have our first example of an implicit loop: the left 
argument 2 was added to each atom in the right argument. 
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   1 2 3 + 4 5 6 
5 7 9 
And look!  If each operand is a list, the respective items are added.  We wonder if the 
behavior of 2 + 3 4 5 was because items of the shorter operand are repeated 
cyclically: 
   1 2 + 4 5 6 
|length error 
|   1 2    +4 5 6 
Evidently not.  A 'length error' means that the operands to + did not 'agree' (and you get 
an error if you try to add them).  We will shortly understand exactly what this means. 
   i. 2 3 
0 1 2 
3 4 5 
A reminder of what monad i. does. 
   0 100 + i. 2 3 
  0   1   2 
103 104 105 
Whoa!  The atoms of the left operand were applied to rows of the right operand.  
Interesting.  This seems to be some kind of nested implicit loop. 

Let's learn a couple of more verbs, monad #. and monad #: .  Monad #: creates the 
binary representation of an integer (i. e. a list of 0s and 1s), and monad #. is its inverse, 
creating the integer from the binary representation.  For the longest time I couldn't 
remember which was which, but at last I saw the mnemonic: the verb with the single dot 
(#.) creates an atom from a list; the verb with multiple dots (#:) creates a list from an 
atom: 
   #: 5 
1 0 1 
   #. 1 0 1 
5 
Yes, they seem to perform as advertised.  They can be applied to arrays: 
   ]a =. #: 5 9 
0 1 0 1 
1 0 0 1 
Look: the result is not a rank-1 list, but rather a rank-2 array, where each item has the 
binary representation of one operand value (and notice, an extra leading zero was added 
to the representation of 5).  The little trick with ]a =. will be explained later, but for 
now just think of ]a =. as 'assign to a and display the result'.  With a assigned, we 
have: 
   #. a 
5 9 

This seems to be the desired result, but on reflection we are puzzled: how did the 
interpreter know to apply #. to each 1-cell rather than to each 0-cell?  Contrast this result 
with the result of the verb monad +:, which means 'multiply by 2': 
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   +: a 
0 2 0 2 
2 0 0 2 
Evidently the verbs themselves have some attribute that affects the rank of cell they are 
applied to.  It's time for us to stop experimenting and learn what that attribute is. 

The Concept of Verb Rank 
Every verb has a rank—the rank of the cells to which it is applied.  If the rank of the 

verb's operand is smaller than the rank of the verb, the verb is applied to the entire 
operand and it is up to the author of the verb to ensure that it produces a meaningful 
result in that case. 

Dyads have a rank for each operand, not necessarily the same. 

A verb's rank can be infinite (_), in which case the verb is always applied to the 
operand in its entirety.  In other words, if a verb has infinite rank for an operand, that 
operand is always processed as a single cell (having the rank of the operand). 

If you don't know the rank of a verb, you don't know the verb.  Using a verb of 
unknown rank is like wiring in a power-supply of unknown voltage—it will do 
something when you plug it in; it might even work; but if the voltage is wrong it will 
destroy what it's connected to.  Avoid embarrassment!  Know the rank of the verbs you 
use. 

The definition page of each J verb gives the ranks of the verbs defined on the page, 
right at the top of the page after the name of the verb.  Since most pages define both a 
monad and a dyad, you will usually find 3 numbers: the first is the rank of the monad, the 
other two are the left and right rank of the dyad.  For example, click up the page for #: 
and you will see 

#:  _ 1 0 
which means that monad #: has infinite rank, while dyad #: has left rank 1 and right 
rank 0.  For any verb, including user-written verbs, you can ask the interpreter the rank 
by typing verbname b. 0 : 
   #: b. 0 
_ 1 0 

Verb Execution—How Rank Is Used (Monads) 
The implicit looping in J results from the interplay of verb rank and noun rank.  For 

monads, it goes like this: 

1. Figure out the rank r of the cells that will be operated on; this will be the smaller 
of rank of the verb and the rank of the operand.  This rule applies even if the verb 
has infinite rank: r will be the rank of the operand, which is another way of saying 
that the verb applies to the operand in its entirety. 

2. Find the frame f of the operand with respect to cells of rank r. 
3. Think of the operand as an array with shape f whose items are cells of rank r.  

Apply the verb to each r-cell, replacing each cell with the result of the verb.  
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Obviously, this will yield an array of shape f whose items have the shape of the 
result of applying the verb to an r-cell. 

Let's look at some simple examples: 
   i. 2 2 
0 1 
2 3 
This will be the right operand. 
   +: i. 2 2 
0 2 
4 6 
The steps to get this result are: 

Another example: 
   ]a =. 2 2 4 $ 0 0 1 1  0 0 0 1  0 1 0 0  0 0 1 0 
0 0 1 1 
0 0 0 1 
 
0 1 0 0 
0 0 1 0 
This is a rank-3 array. 

The verb rank is 0 and the noun rank is 2, so we will be 
applying the verb to 0-cells.  The frame f is 2 2 

Think of the operand as a 2×2 array of 
0-cells: 

0 1 

2 3  

The verb is applied to each cell: 
0 2 

4 6  

Since each result is an atom, i. e. a 0-cell, the 
result is a 2×2 array of 0-cells, i. e. an array of 

shape 2 2 

0 2 
4 6 

Figure 1.  Execution of +: i. 2 2 
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   #. a 
3 1 
4 2 

Controlling Verb Execution By Specifying a Rank 
The implicit loops we have used so far are interesting, but they are not powerful 

enough for our mission of replacing all explicit loops.  To understand the deficiency and 
its remedy, consider the new verb monad +/, which creates the total of the items of its 
operand (just think of it as 'monad SumItems'): 
   +/ 1 2 3 
6 
The result was 1 + 2 + 3, as expected. 
   i. 2 3 
0 1 2 
3 4 5 
   +/ i. 2 3 
3 5 7 
The result was 0 1 2 + 3 4 5, as expected (remember that the items are added, and 
the items of i. 2 3 are 1-cells).  Adding together a pair of 1-cells adds the respective 
atoms, as we will soon learn. 

This application of monad +/ to a rank-2 array corresponds to the C code fragment: 
 for(j = 0;j<3;++j)sum[j] = 0; 
 for(i = 0;i<2;++i) 
  for(j = 0;j<3;++j)sum[j] += array[i][j]; 

Suppose we wanted to add up the items of each row, as in the C code fragment 

The verb rank is 1 and the noun rank is 3, so we will be applying the 
verb to 1-cells.  The frame f is 2 2 

Think of the operand as a 2×2 array of 
1-cells: 

0 0 1 1 0 0 0 1 

0 1 0 0 0 0 1 0  

The verb is applied to each cell: 
3 1 

4 2  

Since each result is an atom, i. e. a 0-cell, the 
result is a 2×2 array of 0-cells, i. e. an array of 

shape 2 2 

3 1 
4 2 

Figure 2.  Execution of #. 2 2 4 $ 0 0 1 1  0 0 0 1  0 1 0 0  0 0 1 0 
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 for(i = 0;i<2;++i) { 
  sum[i] = 0; 
  for(j = 0;j<3;++j)sum[i] += array[i][j]; 
 } 
to produce the result 3 12?  How can we do it in J?  What we have learned so far is not 
enough, but if we had a way to make monad +/ apply to 1-cells—if we could make 
monad +/ have rank 1—our problem would be solved: the implicit looping would cause 
each row to be summed and the results collected. 

You will not be surprised to learn that J does indeed provide a way to apply monad 
+/ on 1-cells.  That way is the rank conjunction " . 

We will learn all about conjunctions later on—the syntax is a little different than for 
verbs—but for now, we'll try to understand this " .  It's used like this: 
   u"n 
to produce a new verb that is u applied to n-cells individually.  This is a simple idea, 
but its ramifications spread wide.  As a first example: 
   +/"1 i. 2 3 
3 12 
This is what we were looking for.  It happened this way: 

Examples Of Verb Rank 
Here are some more examples using a rank-3 array as data: 

The verb rank is 1 and the noun rank is 2, so we will be applying 
the verb to 1-cells.  The frame f is 2 

Think of the operand as a list of 2  1-cells: 0 1 2 3 4 5  

The verb monad +/ is applied to each cell: 3 12  

Since each result is an atom, i. e. a 0-cell, the 
result is a list of 2  0-cells, i. e. an array of shape 

2 
3 12 

Figure 3.  Execution of +/"1 i. 2 3 



 32

   i. 2 3 4 
 0  1  2  3 
 4  5  6  7 
 8  9 10 11 
 
12 13 14 15 
16 17 18 19 
20 21 22 23 

 
   +/"1 i. 2 3 4 
6 22 38 
54 70 86 

The verb rank is 1 and the noun rank is 3, so we will be applying the 
verb to 1-cells.  The frame f is 2 3 

Think of the operand 
as a 2×3 array of 1-cells: 

0 1 2 3 4 5 6 7 8 9 10 11 

12 13 14 15 16 17 18 19 20 21 22 23  

The verb monad +/ is 
applied to each cell: 

6 22 38

54 70 86 

Since each result is an 
atom, i. e. a 0-cell, the 
result is a 2×3 array of  
0-cells, i. e. an array of 

shape 2 3 

6 22 38 
54 70 86 

Figure 4.  Execution of +/"1 i. 2 3 4 
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   +/"2 i. 2 3 4 
12 15 18 21 
48 51 54 57 

   +/"3 i. 2 3 4 
12 14 16 18 
20 22 24 26 
28 30 32 34 
The verb is applied to the single 3-cell.  Its items, which are 2-cells, are added, leaving a 
single 2-cell as the result. 

How about i."0 (2 2 2)—can you figure out what that will produce?  (Notice I 
put parentheses around the numeric list 2 2 2 so that the rank 0 wouldn't be treated as 
part of the list) 

The verb rank is 2 and the noun rank is 3, so we will be applying the 
verb to 2-cells.  The frame f is 2 

Think of the operand 
as a list of 2  2-cells: 

0 1 2 3 

4 5 6 7 

8 9 10 11

12 13 14 15 

16 17 18 19 

20 21 22 23  

The verb monad +/ is 
applied to each cell.  As 

we have learned, this sums 
the items, making each 

result a rank-1 list  

12 15 18 21 48 51 54 57  

Since each result is a 
rank-1 list, i. e. a 1-cell, 
the result is a list of 2  

1-cells, i. e. an array of 
shape 2 4 

12 15 18 21 
48 51 54 57 

Figure 5.  Execution of +/"2 i. 2 3 4 
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   i."0 (2 2 2) 
0 1 
0 1 
0 1 

If you worked through that, it might have occurred to you that the shape of each result 
cell depended on the value of the operand cell, and that if those cells had not been 
identical, there would be some rough edges showing when it came time at the end to join 
the dissimilar result cells together.  If so, full marks to you!  That can indeed happen.  If it 
does, then just before the cells are joined together to make the final result, the interpreter 
will bulk up the smaller results to bring them up to the shape of the largest.  First, if the 
ranks of the results are not identical, each result will have leading axes of length 1 added 
as needed to bring all the results up to the same rank (e. g. if one result has shape 2 5 
and another has shape 5, the second will be converted to shape 1 5, leaving the data 
unchanged).  Then, if the lengths of the axes are not identical, the interpreter will extend 
each axis to the maximum length found at that axis in any result: this requires adding 
atoms, called fills, which are always 0 for numeric results and ' ' for literal results.  
Example: 
   i."0 (0 1 2 3) 
0 0 0   NB. original result was empty list; 3 fills added 
0 0 0   NB. original result was 0; 2 fills added 
0 1 0   NB. original result was 0 1; 1 fill added 
0 1 2   NB. this was the longest result, no fill added 

fndisplay—A Utility for Understanding Evaluation 
J contains a script that we will use to expose the workings of evaluation.  You define 

verbs which, instead of operating on their operands, accumulate character strings 
indicating what operations were being performed.  This gives you a way of seeing the 
operations at different cells rather than just the results. 

Start by loading the script: 

The verb rank is 0 and the noun rank is 1, so we will be applying 
the verb to 0-cells.  The frame f is 3 

Think of the operand as a list of 3 0-cells 
(i. e. atoms): 2 2 2  

The verb monad i. is applied to each cell: 0 1 0 1 0 1  

Since each result is a list, i. e. a 1-cell, the 
result is a list of 3 1-cells each with shape 2, i. e. 

an array of shape 3 2 

0 1 
0 1 
0 1 

Figure 6.  Execution of i."0 (2 2 2) 
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   load 'system/packages/misc/fndisplay.ijs' 
Then, select the type of display you want.  We will be using 
   setfnform 'J' 
Then, give the names of the verbs you want to use.  If you want to assign a rank, you may 
do so by appending "r to the name: 
   defverbs 'SumItems plus"0' 
Optionally, define any names you want to use as nouns.  The value assigned to the noun 
is the noun's name: 
   defnouns 'x y' 
You are free to use other nouns in expressions, but they will be replaced by their values. 

With these definitions, you can explore J's evaluations: 
   x (plus) y 
+--------+ 
|x plus y| 
+--------+  
The result of the evaluation is a description of the evaluation that was performed.  The 
result is displayed in a box so that a sentence with multiple evaluations shows each in its 
proper place: 
   SumItems"1 i. 2 3 
+--------------+--------------+ 
|SumItems 0 1 2|SumItems 3 4 5| 
+--------------+--------------+ 
Here we see that SumItems was applied twice, once on each 1-cell. 

fndisplay cannot produce a valid result in cases where the rank of a verb is 
smaller than the rank of the result-cells of the preceding verb, because then the operation 
would be performed on part of a result cell, and the result cell is just a descriptive string 
which cannot be meaningfully subdivided. 

In this book, if we give an example that starts with defverbs it is implied that 
load fndisplay and setfnform 'J' have been executed. 

If you prefer to see the order of evaluation expressed in functional form like that used 
in C, you may issue setfnform 'math' before you execute your sentences: 
   setfnform 'math' 
   1 plus 2 plus y 
+-----------------+ 
|plus(1,plus(2,y))| 
+-----------------+ 

Negative Verb Rank 
Recall that we defined the _1-cell of a noun n to be the cells with rank one less than 

the rank of n, and similarly for other negative ranks.  If a verb is defined with negative 
rank r, it means as usual that the verb will apply to r-cells if possible, but with r negative 
the rank of those r-cells will depend on the rank of the operand.  After the first step of 
processing the verb, which decides what rank of cell the verb will be applied to, verbs 
with negative rank are processed just like verbs of positive rank. 
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   +/ "_1 i. 3 
0 1 2 
Here the _1-cells are atoms, so applying monad SumItems on each one has no effect. 
   +/ "_1 i. 2 3 
3 12 
The operand has rank 2, so this expression totals the items in each 1-cell. 
   +/ "_2 i. 2 2 3 
 3 12 
21 30 
The operand has rank 3, so this totals the items in each 1-cell, leaving a 2×2 array of 
totals. 

Verb Execution—How Rank Is Used (Dyads) 
We are at last ready to understand the implicit looping that is performed when J 

processes a dyadic verb.  Because a dyadic verb has two ranks (one for each operand), 
and these two ranks interact with each other as well as the ranks of the operands, you 
should not read further until you thoroughly understand what we have covered already. 

We have learned that the rank conjunction u"n is used to specify the rank of a verb.  
Since each verb has the potential of being invoked monadically or dyadically, the rank 
conjunction must specify the ranks for both valences.  This requires 3 ranks, since the 
monad has a single rank and the dyad a left and a right rank.  The ranks n may comprise 
from 1 to 3 items: if 3 ranks are given they are, in order, the monad's rank, the dyad's left 
rank, and the dyad's right rank.  If two ranks are given, the first is the dyad's left rank and 
the second is used for the dyad's right rank and the rank of the monad.  If there is only 
one item in the list, it is used for all ranks.  So, v"0 1 has monad rank 1, dyad left rank 
0, and dyad right rank 1 .  As usual, J primitives themselves have the ranks shown in the 
Dictionary. 

Processing of a dyad follows the same overall plan as for monads, except that with 
two operands there are two cell-sizes (call them lr and rr) and two frames (call them lf 
and rf).  If the left and right frames are identical, the operation can be simply described: 
the lr-cells of the left operand match one-to-one with the rr-cells of the right operand; the 
dyad is applied to those matched pairs of cells, producing a result for each pair; those 
results are collected as an array with frame lf.  We illustrate this case with an example: 
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   (i. 2 2) + i. 2 2 
0 2 
4 6 

Using fndisplay, we have 
   load'system\packages\misc\fndisplay.ijs' 
   setfnform 'J' 
   defverbs 'plus"0' 
   (i. 2 2) plus i. 2 2 
+--------+--------+ 
|0 plus 0|1 plus 1| 
+--------+--------+ 
|2 plus 2|3 plus 3| 
+--------+--------+ 

As you can see, we were correct when we asserted that the sum of two cells of the 
same shape is taken by adding their respective items. 

For a second example we will introduce a new verb, dyad , (the verb is the comma 
character).  x , y creates an array that contains the items of x followed by the items of 

The verb has left rank 0, and the left operand has rank 2, so the operation will be 
applied to 0-cells of the left operand.  The verb has right rank 0, and the right 

operand has rank 2, so the operation will be applied to 0-cells of the right operand.  
The left frame is 2 2, the right frame is 2 2 . 

Think of the left operand 
as a 2×2 array of 0-cells, 
and the right operand as a 

2×2 array of 0-cells: 

0 1
2 3 

0 1 
2 3  

The corresponding left 
and right operand cells are 

paired: 

0 0 1 1 

2 2 3 3 
 

The operation dyad + is 
performed on each pair of 

cells: 

0 2

4 6
 

Since each result is an 
atom, and the frame is 

2 2, the result is an array 
with shape 2 2 

0 2 
4 6 

Figure 7.  Execution of (i. 2 2) + i. 2 2 
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y; in other words, it concatenates x and y .  Dyad , has infinite rank, which means that 
it applies to its operands in their entirety and so its detailed operation is defined not by 
the implicit looping we have been learning, but instead by the definition of the verb in the 
Dictionary.  You are invited to read the entry for dyad ,  to understand exactly what 
happens when x and y have different rank; we are interested only in the cases where x 
and y are scalars or lists, and a few examples will suffice: 
   1 2 3 , 6 
1 2 3 6 
   1 2 3 , 1 2 3 
1 2 3 1 2 3 
   4 , 6 
4 6 
   1 2 3 , 0$6 
1 2 3 

As long as you have just scalars and lists, the result of dyad , is simply 
concatenation, always resulting in a list.  Now see if you can figure out what 
(i. 3 3) ,"1 0 i. 3 will do before reading the explanation that follows: 

The verb (dyad ,"1 0) has left rank 1, and the left operand has rank 2, so the 
operation will be applied to 1-cells of the left operand.  The verb has right rank 0, 
and the right operand has rank 1, so the operation will be applied to 0-cells of the 

right operand.  The left frame is 3, the right frame is 3 . 

Think of the left operand 
as a list of 3 1-cells, and 
the right operand as a list 

of 3  0-cells: 

0 1 2 3 4 5 6 7 8 0 1 2  

The corresponding left 
and right operand cells are 

paired: 
0 1 2 0 3 4 5 1 6 7 8 2  

 

The operation dyad , is 
performed on each pair of 

cells: 
0 1 2 0 3 4 5 1 6 7 8 2 

 

Since each result is a 
1-cell of shape 4, and the 
frame is 3, the result is an 

array with shape 3 4 

0 1 2 0 
3 4 5 1 
6 7 8 2 

Figure 8.  Execution of (i. 3 3) ,"1 0 i. 3 
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   defverbs 'comma' 
    (i. 3 3) comma"1 0 i. 3 
+-------------+-------------+-------------+ 
|0 1 2 comma 0|3 4 5 comma 1|6 7 8 comma 2| 
+-------------+-------------+-------------+ 

   (i. 3 3) ,"1 0 i. 3 
0 1 2 0 
3 4 5 1 
6 7 8 2 

When Dyad Frames Differ: Operand Agreement 
The processing of dyads has an extra step not present for monads, namely the pairing 

of corresponding cells of the left and right operands.  As long as the frames lf and rf are 
the same, as in the examples so far, this is straightforward.  If the frames are different, J 
may still be able to pair left and right cells, using another level of implicit looping, one 
that provides considerable additional programming power.  The formal description that 
follows is not easy to follow—you might want to skim over it and read it in detail after 
you have studied the examples that follow. 

J requires that one of the frames be a prefix of the other (if the frames are identical, 
each is a prefix of the other and all the following reduces to the simple case we have 
studied).  The common frame cf is the part of the frames that is identical, namely the 
shorter of the two frames; its length is designated rcf.  If we look at the cells of the 
operands relative to this common frame (i. e. the (-rcf)-cells), we see that for the operand 
with the shorter frame, these cells are exactly the rank that will be operated on, while for 
the operand with the longer frame, each (-rcf)-cell contains multiple operand cells. 

First, the (-rcf)-cells of the two operands are paired one-to-one (because they have the 
same frame), leaving each shorter-frame operand cell paired with a longer-frame 
(-rcf)-cell.  Then, the longer-frame (-rcf)-cells are broken up into operand cells, with each 
operand cell being paired with a copy of the shorter-frame operand cell that was paired 
with the (-rcf)-cell (an equivalent statement is that the cells of the shorter-frame operand 
are replicated to match the surplus frame of the longer-frame operand).  This completes 
the pairing of operand cells, and the operation is then performed on the paired operand 
cells, and collected using the longer frame.  Maybe some examples will help. 
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   100 200 + i. 2 3 
100 101 102 
203 204 205 

   defverbs 'plus"0' 
   100 200 plus i. 2 3 
+----------+----------+----------+ 
|100 plus 0|100 plus 1|100 plus 2| 
+----------+----------+----------+ 
|200 plus 3|200 plus 4|200 plus 5| 
+----------+----------+----------+ 

The simplest and most common case of different-length frames is when the shorter 
frame is of zero length; in other words, when one of the operands has only one cell.  In 
that case, the single cell is replicated to match every cell of the longer operand.  An easy 
way to force an operand to be viewed as a single cell is to make the verb have infinite 
rank for that operand.  This is not a special case—the behavior follows from the rules 
already given—but it's worth an example: 

The verb (dyad +) has left rank 0, and the left operand has rank 1, so the operation 
will be applied to 0-cells of the left operand.  The verb has right rank 0, and the 
right operand has rank 2, so the operation will be applied to 0-cells of the right 

operand.  The left frame is 2, the right frame is 2 3 . 

The common frame is 2, with 
length 1, so think of each operand 

as a list of 2  _1-cells 
100 200 0 1 2 3 4 5  

The _1-cells of the operands are 
paired: 100 0 1 2 200 3 4 5  

 

The longer-frame operand (the right 
one) is broken up into operand 

0-cells, each being paired with a 
copy of the shorter-frame operand 

cell.  Each paired _1-cell becomes a 
row of paired operand cells: 

100 0 100 1 100 2  

200 3 200 4 200 5  
 

The operation dyad + is performed 
on each pair of cells: 

100 101 102 

203 204 205 
 

Since each result is an atom, and 
the longer frame is 2 3, the result 

is an array with shape 2 3 

100 101 102 
203 204 205 

Figure 9.  Execution of 100 200 + i. 2 3 
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   'abc' ,"_ 0 'defg' 
abcd 
abce 
abcf 
abcg 

   defverbs 'comma' 
   'abc' comma"_ 0 'defg' 
+-----------+-----------+-----------+-----------+ 
|abc comma d|abc comma e|abc comma f|abc comma g| 
+-----------+-----------+-----------+-----------+ 

You must thoroughly understand this example, where one operand has only one cell, 
because it occurs frequently.  The handling of the general case of dissimilar frames is 
uncommon enough that you do not need to understand it perfectly right now—you'll 

The verb (dyad ,"_ 0) has left rank _, and the left operand has rank 1, so the 
operation will be applied to 1-cells of the left operand.  The verb has right rank 0, 
and the right operand has rank 1, so the operation will be applied to 0-cells of the 

right operand.  The left frame is (empty), the right frame is 4 . 

The common frame is 
(empty), with length 0, so 
take each operand in its 

entirety: 

abc defg  

The cells of the operands 
are paired: abc defg 

 

The longer-frame operand 
(the right one) is broken up 
into operand 0-cells, each 

being paired with a copy of 
the shorter-frame operand 

cell: 

abc d abc e abc f abc g  
 

The operation dyad , is 
performed on each pair of 

cells: 
abcd abce abcf abcg 

 

Since each result is a 1-cell 
with length 4, and the 

longer frame is 4, the result 
is an array with shape 4 4 

abcd 
abce 
abcf 
abcg 

Figure 10.  Execution of 'abc' ,"_ 0 'defg' 
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know when you need it, and you can sweat out the solution the first few times.  Here are 
a few observations that may help when that time comes: 

It is always entire cells of the operand with the shorter frame that are replicated.  
A cell is never tampered with; nothing inside a cell will be replicated.  And, it is not the 
entire shorter-frame operand that is replicated, but cells singly, to match the surplus 
frame of the other operand. 

This fact, that single operand cells are replicated, is implied by the decision that the 
shorter frame must be a prefix of the longer frame: the single cell is the only unit that can 
be replicated, since the surplus frame is at the end of the frame rather than the beginning.  
Take a moment to see that this was a good design decision.  Why should the following 
fail? 
   1 2 3 + i. 2 3 
|length error 
|   1 2 3    +i.2 3 

The 'length error' means that the operands do not agree, because the frame-prefix rule 
is not met.  Your first thought might be that adding a 3-item list to an array of 2 3-item 
lists should be something that a fancy language like J would do without complaining; if 
so, think more deeply.  J does give you a way to add lists together—just tell J to apply the 
verb to lists: 
   1 2 3 +"1 i. 2 3 
1 3 5 
4 6 8 

Operands in which one shape is a suffix of the other, as in this example, are handled 
by making the verb have the rank of the lower-rank operand; that single operand cell will 
then be paired with all the cells of the other operand.  By requiring dissimilar frames to 
match at the beginning, J gives you more control over implicit looping, because each 
different verb-rank causes different operand cells to be paired.  If dissimilar frames 
matched at the end, the pairing of operand cells would be the same regardless of verb-
rank. 

Order of Execution in Implied Loops 
Whenever a verb is applied to an operand whose rank is higher than the verb's rank, 

an implied loop is created, as we have discussed above.  The order in which the verb is 
applied to the cells is undefined.  The order used on one machine may not be that used 
on another one, and the ordering may not be predictable at all.  If your verb has side 
effects, you must insure that they do not depend on the order of execution. 

Current versions of the interpreter apply the verb to cells in order, but that may 
change in future releases. 

A Mistake To Avoid 
Do not fall into the error of thinking that v"r is 'v with the rank changed to r'.  It is 

not.  Nothing can ever change the rank of the verb v—v"r is a new verb which has the 
rank r.  This distinction will become important presently as we discuss nested loops.  
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Consider the verb v"1"2,which is parsed as (v"1)"2 .  If v"r changed the rank of 
v, it would follow that v"1"2 would be 'v with the rank changed to 1 and then to 2', i. e. 
identical to v"2  .  But it is not: actually, v"1"2 applies v"1 on the 2-cells of the 
operand, while v"2 applies v on those same cells—and we have seen that v and v"1 are 
very different verbs: 
   +/"1"2 i. 2 3 4 
 6 22 38 
54 70 86 
   +/"2 i. 2 3 4 
12 15 18 21 
48 51 54 57 
Summing the 2-cells (+/"2) is not the same as summing the 1-cells within each 2-cell 
(+/"1"2).  Make sure you see why. 

Ah, you may say, but +/"1"2 is equivalent to +/"1 .  You are right for the 
monadic case, but not for the dyadic: 
   (i. 3 4) +"1"2 i. 2 3 4 
 0  2  4  6 
 8 10 12 14 
16 18 20 22 
 
12 14 16 18 
20 22 24 26 
28 30 32 34 
   (i. 3 4) +"1 i. 2 3 4 
|length error 
|   (i.3 4)    +"1 i.2 3 4 
Dyad +"1"2 is executed as (+"1)"2, i. e. it has rank 2.  So, there is only one 2-cell of 
the left operand i. 3 4, and that cell is replicated to match the shape of the right 
operand.  The operands then agree, and the 1-cells can be added.  Trying to add the 
1-cells directly with +"1 fails, because the frames of the operands with respect to 1-cells 
do not agree. 

The situation becomes even more complicated if the assigned left and right ranks are 
not the same.  My advice to you is simple: remember that u"r is a new verb that 
executes u on r-cells. 
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6.  Starting To Write In J 

It's time to write some simple J programs.  Writing code without loops will be a shock 
at first.  Many accomplished C programmers give up because they find that writing every 
program is a struggle, and they remember how easy it was in C.  I hope you will have 
more persistence.  If you do, you will soon stop thinking in loops, translating each one 
into J; instead, you will think directly about operand cells, and the code will flow 
effortlessly. 

In C, when you are going to operate on some array, say x[3][4][5], you write the 
code from the outside in.  You know you are going to need 3 nested loops to touch all the 
cells; you write the control structure for each loop (possibly after thinking a bit about the 
order of nesting); finally, you fill in code at whatever nesting level it fits.  Even if all your 
work is in the innermost loop, you have to write all the enclosing layers just to be able to 
index the array.  When I was writing in C, I made sure my output was measured in lines 
of code, so that I could call this 'productivity'. 

In J, you grab the heart of the watermelon rather than munching your way in starting 
at the rind.  You decide what rank of operand cell you are going to work on, and you 
write the verb to operate on a cell.  You give the verb the rank of the cells it operates on, 
and then you don't care about the shape of the operand, because J's implicit looping will 
apply the verb to all the cells, no matter how many there are.  A pleasant side effect of 
this way of coding is that the verbs you write can be applied to operands of any shape: 
write a verb to calculate the current value of a loan, and you can use that very verb to 
calculate the current value of all loans at a branch, or at all branches in the city, or all 
over the state. 

We will write a number of J verbs starting from their C counterparts so you can see 
how you need to change your thinking.  For these examples, we will imagine we are in 
the payroll department of a small consulting business, and we will answer certain 
questions concerning some arrays defined as follows: 

empno[nemp] (in J, just empno) - employee number for each member of the staff.  
The number of employees is nemp. 

payrate[nemp] - number of dollars per hour the employee is paid 

billrate[nemp] - number of dollars per hour the customer is billed for the services of 
this employee 

clientlist[nclients] - every client has a number; this is the list of all of them.  The 
number of clients is nclient. 

emp_client[nemp] - number of the client this employee is billed to 

hoursworked[nemp][31] - for each employee, and for each day of the month, the 
number of hours worked 
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To get you started thinking about cells rather than loops, I am going to suggest that 
you use C-style pseudocode written in a way that is easily translatable into J.  Your 
progress in J will be measured by how little you have to use this crutch. 

Problem 1: How many hours did each employee work?  The C code for this is: 
void emphours(hrs) 
int hrs[ ];  // result: hrs[i] is hours for employee i 
{ 
 int i, j; 
 for(i = 0;i<nemp;++i) 
  for(j = 0,hrs[i] = 0;j<31;++j)hrs[i] += hoursworked[i][j]; 
} 

The first step in translating this into J is to write the loops, but without loop indexes: 
instead, indicate what elements will be operated on: 
for (each employee) 
 for(each day)take the sum of hoursworked 

Now, figure out what ranks the operands have.  The hoursworked items that are 
added are scalars, so we will be looping over a list of them; that means we want the sum 
of items of a rank-1 list.  So the inner loop is going to be +/"1 .  What about the outer 
loop?  The information for each employee has rank 1 (each employee is represented in 
hoursworked by a single row), so a verb applied to each employee should have rank 1.  
Note that we don't worry about the actual shape of hoursworked—once we figure out 
that our verb is going to operate on 1-cells, we let J's implicit looping handle any 
additional axes.  We build up the loops by applying the rank conjunction for each one, so 
we have the inner loop +/"1 and the outer loop of rank 1; combined, they are 
+/"1"1 .  The "1"1 can be changed to a single "1, and we get the final program:  
emphours =: monad : '+/"1 hoursworked' 

Problem 2: How much did each employee earn in wages?  The C code is: 
void empearnings(earns) 
int earns[ ];  // result: earns[i] is wages for employee i 
{ 
 int i, j; 
 for(i = 0;i<nemp;++i) { 
  for(j = 0,earns[i] = 0;j<31;++j)earns[i] += hoursworked[i][j]; 
  earns[i] *= payrate[i]; 
 } 
} 

When we write the pseudocode, we will change the algorithm just a bit: rather than 
multiplying each total by the billing rate just after the total is calculated, we will make 
one loop to calculate the totals, and then a second pass to multiply by the billing rate.  
This is a case where good J practice differs from good C practice.  Because of the implicit 
looping that is performed on all verbs, you get better performance if you let each verb 
operate on as much data as possible.  You may at first worry that you're using too much 
memory, or that you might misuse the processor's caches; get over it.  Apply verbs to 
large operands.  The pseudocode is: 
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for (each employee) 
 for(each day)take the sum of hoursworked 
for(each pair of wage_rate and sum)multiply the pair 

The first two loops are just +/"1 hoursworked as before.  The last loop clearly 
multiplies scalars, so it is *"0 .  We note that dyad * has rank 0, so we don't need to 
specify the rank, and we get the final program: 
empearns =: monad : 'payrate * +/"1 hoursworked' 

Problem 3: How much profit did each employee bring in?  C code: 
void empprofit(profit) 
int profit[ ];  // result: profit[i] is profit from employee i 
{ 
 int i, j, temp; 
 for(i = 0;i<nemp;++i) { 
  for(j = 0, temp = 0;j<31;++j)temp += hoursworked[i][j]; 
  profit[i] = temp * (billrate[i] - payrate[i]); 
 } 
} 
 

Again, we create a new loop to calculate the list of profit for each employee: 
for (each employee) 
 for(each day)take the sum of hoursworked 
for (each employee)take billing_rate - wage_rate; 
for(each pair of profit and sum)multiply the pair 

The profit is clearly a difference of scalars applied to two lists, therefore it will be 
-"0 or equivalently simply - .  The program then is  
empprofit =: monad define 
(billrate - payrate) * +/"1 hoursworked 
) 
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7.  More Verbs 

Before we can write more complex programs, we need to learn some more verbs.  We 
will group them into classes and give a few mnemonic hints. 

Before we start, I should point out a convention of J: if a dyadic verb is asymmetric, 
you should think of x as operating on y, i. e. x is control information and y is data.  We 
will note the exceptions to this rule—%, /:, \:, -, -., and e.—and the reasons for the 
exception. 

Arithmetic Dyads 
All these verbs have rank 0 and produce a scalar result, so if they are applied to two 

operands of equal shape the result will also have that shape; if applied to two operands 
that agree, the result has the shape of the larger operand. 

x + y addition 

x - y subtraction (y operates on x to match the mathematical definition) 

x * y multiplication 

x % y division  Note that the slash has another use, so % is division.  You don't have to 
worry about division by zero: it produces _ (infinity) or __ (negative infinity) except 
for 0%0, which yields 0 . 

x ^ y exponentiation (x to the power y).  0^0 yields 1 . 

x ^. y logarithm (base-x logarithm of y) 

x | y modulus (remainder when y is divided by x .  For the longest time I had trouble 
remembering dyad |; it seemed that the divisor should be y by analogy to dyad % .  
The inconsistency is that J defines x % y as 'x divided by y' to match accepted 
practice in mathematics; that makes dyad % anomalous in J, because we have y 
operating on x). 

 

The comparison verbs have rank 0, and produce Boolean results in which 1 means 
true, 0 means false.  They use tolerant comparison, which means that two values that are 
very close to equal are considered equal.  This saves you the trouble of adding small 
amounts to mask the effects of floating-point rounding: 1 = 3 * 1 % 3 is 1, unlike 
1.0 == 3.0 * 1.0 / 3.0 whose value depends on the compiler.  If you need exact 
comparison, look under 'Comparison Tolerance' to see how to do it. 

x = y  equal 

x ~: y  not equal (if you squint the colon looks like an equal sign) 

x > y  greater-than 



 48

x < y less-than 

x >: y  greater-than or equal (if you squint the colon looks like an equal sign) 

x <: y less-than or equal 

Boolean Dyads 
These verbs have rank 0 and are applied to Boolean arguments to produce Boolean 

results: 

x *. y  Boolean AND 

x +. y  Boolean OR 

x = y  Boolean XNOR (1 if the operands are equal) 

x ~: y  Boolean XOR (1 if operands differ) 

Min and Max Dyads 
These verbs are useful for performing tests, because they perform the operation item-

by-item, replacing a C loop that does a test for each atom.  They have rank 0 and produce 
a scalar in each cell, so the result has the shape of the larger operand. 

x >. y the greater of x and y 

x <. y the lesser of x and y 

Arithmetic Monads 
These verbs have rank 0. 

>: y  increment (y+1) 

<: y  decrement (y-1) 

<. y  the largest integer not greater than y (floor function) 

>. y  the smallest integer not less than y (ceiling function) 

| y  absolute value of y 

* y  signum of y (_1 if y is negative, 0 if y is tolerantly close to 0, 1 if y is positive) 

x o. y  trigonometric function.  Think of dyad o. as a monad, selecting the function 
based on x .  For example, 1 o. y is sin(y), and _3 o. y is arctan(y).  The 
functions are: 0 sqrt(1-sqrt(y)); 1 sin(y); 2 cos(y); 3 tan(y); 4 sqrt((y*y)+1); 
5 sinh(y); 6 cosh(y); 7 tanh(y); 8 sqrt(-(1+y*y)); 9 Re(y); 10 Mag(y); 
11 Im(y); 12 Angle(y).  (-x) o is the inverse of x o, with the exceptions _8 -
sqrt(-(1+y*y)); _9 y; _10 Conj(y); _11 j. y; _12 ^j. y . 

-. y  1-y 
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Boolean Monad 
-. y  (rank 0) Negate y This is simply the boolean interpretation of 1-y . 

Operations on Arrays 
These verbs operate on entire arrays; they have infinite right rank (so they look at the 

entire y), and they have left rank as appropriate for the operation performed.  I am going 
to give a highly simplified definition of the functions of these verbs; consult the 
Dictionary to see all they can do. 

Dyads 
Selection: { # -. 

x { y (From) 

No, nothing was left out!  { is not paired with }; it is a verb and stands by itself. 

The left rank is 0; the result is item number x of y .  One of the great insights of J 
is the realization that selection, which in most other languages requires a special 
syntax like C's y[x], is really just a dyadic verb like any other.  Examples: 
   2 { 3 1 4 1 5 9 
4 
y has rank 1; its items have rank 0; item number 2 is 4 . 
   2 4 { 3 1 4 1 5 9 
4 5 
The left frame is 2; each atom of x selects an item of y (each an atom), and the 
results are made into a 2-item list. 
   1 { i. 3 3 
3 4 5 
y has rank 2; its items have rank 1; item number 1 is 3 4 5 . 
   2 1 { i. 3 3 
6 7 8 
3 4 5 
The left frame is 2; each atom of x selects an item of y (each a list), and the results 
are made into a 2×3-item array. 

There are many variations on the format of x, providing for multidimensional 
indexing where each index can be a list.  You will have to wait a bit to learn them, but 
I will note that a negative index counts back from the end of the array: 
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   _1 { 3 1 4 1 5 9 
9 

 
x # y (Copy) 

Left rank is 1.  If x is a list whose items are all 0 or 1, the result has the same rank 
as y, and contains just the items of y for which the corresponding item of x is 1.  For 
example: 

   1 0 1 0 0 0 # 3 1 4 1 5 9 
3 4 
   0 0 1 # i. 3 4 
8 9 10 11 
 

x -. y (Remove) 

Left rank is infinite.  Any items of x that match items of y are removed: 
   1 2 3 4 5 4 3 -. 2 4 
1 3 5 3 

The verb is defined with y operating on x because of the analogy with - .  If x 
and y are sets, x -. y is the set difference. 

Indexing: i. e. 

x i. y (Index Of) 

The left rank is infinite.  x i. y looks through the items of x to find one that 
matches y; the result is the item number of the first match.  Examples: 
   3 1 4 1 5 9 i. 5 
4 
   (i. 4 3) i. 6 7 8 
2 

It may occur to you that for y to match an item of x, the rank of y must be the 
same as the rank of an item of x (call that rix, which is one less than the rank of x 
(namely #$x) unless x is an atom; formally, rix is (0 >. (#$x) - 1) or, more 
cleverly, #${.x).  If y is of higher rank, each rix-cell of y is matched against items 
of x .  Formally, x i. y is equivalent to x i."(_,rix) y .  Example: 
   3 1 4 1 5 9 i. 1 5 
1 4 
   (i. 3 3) i. (i. 2 3) 
0 1 

If an rix-cell of y matches none of the items of x, the result value for that cell is 
#x, i. e. one more than the largest valid item-number of x : 
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   3 1 4 1 5 9 i. 8 4 _1 
6 2 6 

To be hair-splittingly accurate we must say that x i. y is equivalent to 
x i."(_,rix)"_ y because the rank of dyad i. is infinite.  This distinction will 
matter eventually. 

 
x e. y (Element Of) 

The left rank is infinite.  x e. y is a lightweight version of y i. x; the result 
is 1 if x matches an item of y, 0 if not.  The verb is applied to riy-cells of x (where 
riy is the rank of an item of y).  Formally, x e. y is the same as 
(#y) ~: y i. x .  Dyad e. is an exception to the rule that x is control 
information and y is data.  It was defined to be reminiscent of mathematical epsilon 
meaning 'element of'. 

Take and Drop: {. }. 

x {. y (Take) 
x }. y (Drop) 

The left rank is 1, but the verb handles scalars also; we will consider only the case 
where x is a scalar.  x {. y (take) takes the first x items of y, i. e. it produces a 
result which consists of the first x items of y; x }. y (drop) discards the first x 
items of y .  If x is negative, x {. y takes the last (|x) items of y, and x }. y 
discards the last (|x) items (remember, |x is the absolute value of x).  The rank of 
the result is always the same as the rank of y, and in all cases the order of items is 
unchanged.  Examples: 
   2 {. 3 1 4 1 5 9 
3 1 
   2 }. 3 1 4 1 5 9 
4 1 5 9 
   _2 {. 3 1 4 1 5 9 
5 9 
   _1 }. i. 3 3 
0 1 2 
3 4 5 

x {. y always gives you as many items as you asked for.  If you overtake by 
asking for more than #y items, J will create extra ones, filling them with 0 or ' ' as 
appropriate: 
   5 {. 3 1 4 
3 1 4 0 0 
   _5 {. 'abc' 
  abc  NB. Negative overtake: fills added at front 

We have met fills before; they were added to bring the results from different cells 
of a verb up to a common shape so that they could be made into an array.  The fills 
added by overtake are different: they are part of the execution of the verb itself.  We 
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will distinguish the two types of fill, calling the ones added by the verb itself verb 
fills and the ones added to make cell-results compatible framing fills.  Framing fills 
are always 0 or ' ', but you can specify the value to use for a verb fill, using the fit 
conjunction !. : 
   5 {.!.9 (3 1 4) 
3 1 4 9 9 
   _5 {.!.'x' 'abc' 
xxabc 

The fit conjunction creates a new verb; in this case {.!.f is a verb that looks 
just like {. but uses f for the verb fill.   

The fit conjunction is by no means reserved for specifying verb fills: it is 
available for use on any primitive to make a small change to the operation of the 
primitive.  If !. has a meaning for a primitive, that meaning is given in the 
Dictionary entry for the primitive. 

Joining Arrays: ,. ,: 

x ,. y (Stitch) 

The left rank is infinite.  x ,. y is equivalent to x ,"_1 y .  That means 
that dyad , is applied to the corresponding items of x and y, making each item of 
the overall result the concatenation of the corresponding items.  Example: 
   3 4 5 ,. 7 8 9 
3 7 
4 8 
5 9 
 

x ,: y (Laminate) 

The left rank is infinite.  x ,: y is a list of 2 items: item 0 is x and item 1 is y .  If 
x and y do not have the same shape, they are brought to a common rank and padded with 
fills to a common shape.  Dyad ,: concatenates x and y along an added axis, in contrast 
to dyad , which concatenates them along their leading axis: 
   3 4 5 ,: 7 8 9 
3 4 5 
7 8 9 
Contrast this with dyad ,. above or dyad , which would produce 3 4 5 7 8 9 . 

   1 2 , 3 4 ,: 5 6 
1 2 
3 4 
5 6 

Take a moment to understand why in this example the first verb is dyad , and the second 
is dyad ,: . 
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Rotate Left and Shift Left: |. 

x |. y (Rotate Left) 

The left rank is 1, but we will discuss only the case where x is a scalar.  The result 
has the same shape as y, with the items of y rotated x places to the left (with 
wraparound).  If x is negative, the items are rotated to the right.  Examples: 
   2 |. 3 1 4 1 5 9 
4 1 5 9 3 1 
   _1 |. i. 3 3 
6 7 8 
0 1 2 
3 4 5 
 

x |.!.f y (Shift Left) 

When the fit conjunction is used, any item that is rotated across the beginning of 
y is replaced by the fill f .  This turns the rotate into a shift where f gives the value 
to be shifted in:  
   2 |.!.'x' 'abcde' 
cdexx 
   _2 |.!.'x' 'abcde' 
xxabc 

Sort: /: \: 

x /: y (Sort Up Using) 
x \: y (Sort Down Using) 

The left rank is infinite.  x and y must have the same number of items.  The items 
of x are records and the items of y are keys; x /: y is the records x sorted into 
ascending order of corresponding keys y .  x \: y sorts into descending order.  
Examples: 
   3 1 4 1 5 9 /: 0 1 2 3 4 5 
3 1 4 1 5 9 
y was already in order. 
   3 1 4 1 5 9 /: 5 4 3 2 1 0 
9 5 1 4 1 3 
Sorting into reverse order. 
   3 1 4 1 5 9 /: 0 10 1 20 2 30 
3 4 5 1 1 9 
x in order of ascending y . 
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   (i. 4 3) /: 10 20 1 2 
6  7  8 
9 10 11 
0  1  2 
3  4  5 
Items of x in order of ascending y . 
   1 3 5 /: 7 8 , 1 2 ,: 4 5 
3 5 1 
The keys y do not have to be single numbers; they don't even have to be numeric.  
Here, 1 2 is lowest, then 4 5, then 7 8 .  The Dictionary gives complete rules for 
ordering y . 

Because sorting is not so easy in C, C programmers are not quick to recognize 
applications of /: and \: .  The J implementation of /: and \: runs in linear time 
for most y and should not be avoided. 

According to our general principle, we would expect that in dyad /: x held the 
keys and y the data.  Dyad /: is an exception to the rule. 

y /: y 
y \: y 

When x and y are the same, you have the simple case of sorting y into ascending 
or descending order. 

Match: -: 

x -: y (Match) 

The left rank is infinite.  The result is 1 if x and y are the same, 0 otherwise, 
except: (1) if they are numeric, the comparison is tolerant; (2) for some reason I don't 
understand, if they are empty, they are considered to match even if the types are 
different, which means that getting a result of 1 from x -: y is no guarantee that x 
and y will behave identically: 
   (0$0) -: '' 
1 
   (1 {. 0$0) -: (1 {. '') 
0 

The important difference between dyad -: and dyad = is that dyad -: has infinite 
rank so you get a single result covering the entire array, and it won't fail if the shapes 
of x and y do not agree. 

Monads 
Enfile: , 

, y (Enfile) 

, y consists of all the atoms of y, made into a list.  The order is row-major order 
, i. e. all the atoms of item 0 of the original y come first, followed by atoms of item 1, 
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and so on; within each item the ordering similarly preserves the order of subitems.  
Examples: 
   , i. 2 3 
0 1 2 3 4 5 
The atoms were made into a list. 
   a =. 2 2 3 $ 'abcdefghijkl' 
   a 
abc 
def 
 
ghi 
jkl 
   ,a 
abcdefghijkl 
y of any shape produces a list. 

Recall that a single quoted character is an atom rather than a list: 
   $'x' 
 
To get a 1-character list, use monad , : 
   $,'x' 
1 

The official name for monad , is the quaint but unedifying 'ravel', meaning 
'separate or undo the texture of'.  I prefer the equally quaint but more descriptive 
'enfile', which means 'arrange in a line (as if on a string)'. 

Reverse and Transpose: |. |: 

|. y (Reverse) 

The items of y are put into reverse order: 
   |. i. 5 
4 3 2 1 0 
 

|: y (Transpose) 

The axes of y are reversed.  This is difficult to visualize for high ranks but easy 
for the most common case, rank 2: 
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   |: i. 3 4 
0 4  8 
1 5  9 
2 6 10 
3 7 11 

Take and Drop Single Item: {. {: }. }: 

{. y (Head) 
{: y (Tail) 
}. y (Behead) 
}: y (Curtail) 

The operations performed are simple; the biggest problem is remembering which 
primitive does what.  Remember that { means take and } means drop, and that . 
means beginning and : means end.  So, {.y is the first item of y, {:y is the last 
item of y, }.y is all of y except the first item, }:y is all of y except the last item: 
   {. 3 4 5 
3 
   {: i. 3 4 
8 9 10 11 
   }. 3 4 5 
4 5 

}.y is identical to 1}.y and }:y is identical to _1}.y .  {.y is not identical 
to 1{.y, because 1{.y has the same rank as y while {.y has the rank of an item of 
y . 

Grade (Create Ordering Permutation): /: \: 

/: y (Grade Up) 
\: y (Grade Down) 

/: y creates a numeric list with #y items, such that i{/:y is the index of the 
ith-largest item of y .  (/:y){y gives y sorted into ascending order.  /:y is a 
permutation vector, i. e. it contains each integer in the range 0 to (#y)-1.  \: is 
similar but works in descending order.  Example: 
   /: 3 1 4 1 5 9 
1 3 0 2 4 5 
Read this result as follows: the smallest item of y is item 1 (with value 1), the next-
smallest is item 3 (1), then item 0 (3), then item 2 (4), then item 4 (5), then item 5 (9).  
Monad /: defined this way turns out to be surprisingly useful.  As a limbering-up 
exercise in the use of permutation vectors, and an example of how compactly J can 
express ideas, see if you can describe in words what two applications of monad /: 
will give: 
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   /: /: 3 1 4 1 5 9 
2 0 3 1 4 5 

Add An Axis: ,: (Itemize) 
,: y 

The result of ,: y has rank one higher than the rank of y, with one item, which 
is y .  The shape of ,: y is the shape of y with 1 prepended (in plain J, $,:y is 
1,$y). 

Constant Verb 
m"n 

We have met the rank conjunction " applied to verb left arguments; applied to 
noun left arguments it produces a verb whose result is always the value of the noun.  
The created verb (which can be used as either a monad or a dyad) has ranks, given as 
the right operand of " .  Examples: 
   5"_ i. 4 4 
5 
The simplest and most common case.  Since the verb has infinite rank, it operates on 
the entire operand and produces the scalar value. 
   5"0 i. 3 
5 5 5 
Here the verb is applied to each 0-cell of the list, giving the scalar result for each cell. 
   1 2 3"0 i. 3 
1 2 3 
1 2 3 
1 2 3 
Here the result at each cell is the left argument of " , the list 1 2 3 .  If you were 
expecting the 3 to be repeated, remember that you can look at the words as J sees 
them: 
   ;: '1 2 3"0 i. 3' 
+-----+-+-+--+-+ 
|1 2 3|"|0|i.|3| 
+-----+-+-+--+-+ 
1 2 3 is a single word. 

_9:…_1: 0: 1:…9: _: __: 

For a few special values, namely the integers _9 through 9, infinity _, and 
negative infinity __, you can create an infinite-rank verb to produce the value by 
following the constant value with : .  This is equivalent to value"_ . 
   3: 'abc' 
3 
The operand 'abc' was ignored, and the result was 3 . 
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8.  Loopless Code II—Adverbs / and ~ 

The monad +/, which sums the items of its operand, is a special case of the use of the 
adverb / .  It is time to learn about adverbs, and other uses of this one. 

Modifiers 
An adverb is a modifier.  It appears to the right a noun or verb; the prototype is u a 

where u is the noun or verb and a is the adverb.  The compound u a is a new entity, and 
not necessarily the same part of speech as u .  When the compound u a is executed, it 
performs the function given by the definition of a and has access to u during its 
execution.  If u a is a verb, then it also has access to the operands of the verb during its 
execution; the verb u a will then be invoked as u a y if monadic or x u a y if 
dyadic. 

You will note that I didn't have to write x (u a) y .  While J gives all verbs equal 
precedence and executes them right-to-left, it does give modifiers (adverbs and 
conjunctions) higher precedence than verbs, in the same way that C and standard 
mathematical notation give multiplication precedence over addition.  We will discuss the 
parsing rules in detail later; for now, know that modifiers are bound to their operands 
before verbs are executed, and that if the left operand of a modifier has a conjunction to 
its left (e. g. x c y a), the conjunction is bound to its arguments first, and the result of 
that becomes the left argument to the modifier: x c y a is (x c y) a, not 
x c (y a) .  In other words, modifiers associate left-to-right.  So, +"1/ (in which " 
is a conjunction and / is an adverb) is the same as (+"1)/, not +"(1/) .  The phrase 
| +/"1 (4) + i. 3 3 is executed as | ((+/"1) ((4) + (i. 3 3))), in 
accordance with the rule: right-to-left among verbs, but applying modifiers first.  Note 
that I had to put parentheses around the 4, because "1 4 would have been interpreted as 
rank 1 4 : collecting adjacent numbers into a list is done before anything is executed. 

J includes a rich set of modifiers and even allows you to write your own, though 
many J programmers will never write a modifier.  We will begin our study of modifiers 
with the adverb monad u/ which goes by the mnemonic 'Insert'. 

The Adverb Monad u/ 
Monad u/ (by which we mean / with a verb left operand, used as u/ y rather than 

as x u/ y which is dyad u/ and is completely different; note that m/ y where m is a 
noun is different yet), inserts u between items of y .  Monad u/ has infinite rank.  As a 
simple example, +/ 1 2 3 is equivalent to 1 + 2 + 3 : 
   +/ 1 2 3 
6 
As usual, we can use fndisplay to explain what's happening: 
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   defverbs 'plus"0' 
   plus/ 1 2 3 
+---------------+ 
|1 plus 2 plus 3| 
+---------------+ 

The great power of the adverb concept is that u can be any verb; it's not restricted to 
+, -, or any other subset of verbs (it can even be a user-written verb).  What would 
monad >./ mean?  Well, >./ 1 2 3 would be equivalent to 1 >. 2 >. 3; since 
each >. picks the larger operand, the result is going to be the largest number; so monad 
>./ means 'maximum': 
   >./ 3 1 4 1 5 9 
9 
and of course 'minimum' is similar: 
   <./ 3 1 4 1 5 9 
1 

What about monad ,/?  Convince yourself that it combines the first two axes of its 
operand: 
   ,/ i. 2 3 
0 1 2 3 4 5 
   defverbs 'comma' 
   comma/ i. 2 3 
+-------------------+ 
|(0 1 2) comma 3 4 5| 
+-------------------+ 
   i. 2 3 4 
 0  1  2  3 
 4  5  6  7 
 8  9 10 11 
 
12 13 14 15 
16 17 18 19 
20 21 22 23 
   $ ,/ i. 2 3 4 
6 4 
   ,/ i. 2 3 4 
 0  1  2  3 
 4  5  6  7 
 8  9 10 11 
12 13 14 15 
16 17 18 19 
20 21 22 23 

How many atoms are in y?  Why, */ $ y : 
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   */ $ i. 2 3 4 
24 

We can verify that the rows and columns of the following magic square sum to the 
same value: 
   +/ 3 3 $ 8 1 6  3 5 7  4 9 2 
15 15 15 
   +/"1 (3 3) $ 8 1 6  3 5 7  4 9 2 
15 15 15 

As this last example shows, the items can be of any shape.  Applying +/ to the rank-2 
array added up 1-cells, while applying +/"1 added up the 0-cells within each 1-cell. 

Have you wondered what would happen if there is no cell or only 1?  Good on you if 
you did.  The answer is: if there is only 1 cell, the result is just that cell; if there is no cell, 
the result is a cell of identity elements.  The identity element i for a dyadic verb v is that 
value of i such that i v y is y for any choice of y .  For example, the identity element 
for + is 0, because 0 + y is always y .  The identity element for * is 1, and for <. is 
_ .  If there is no identity element for a verb v (for example, $ has no identity element), 
you will get a domain error if you apply v/ to an empty list.  Examples: 
   +/ 0$0 
0 
   */ 0$0 
1 
Empty list; result is the identity element. 
   +/ 1 3 $ 3 5 7 
3 5 7 
There is 1 1-cell, so the result is that cell.  This result has shape 3, not 1 3 . 
   +/ 0 3 $ 0 
0 0 0 
There are 0 1-cells, so the result is a cell of identity elements.  Note that even though 
there are no cells, the cell still has a shape which is made visible by +/ . 
   $/ 0$0 
|domain error 
|       $/0$0 

If you don't want to figure out what an identity element for a verb v is you can ask the 
interpreter by typing v/ 0$0 . 

Before we move on you should note that since v/ 1 2 3 is equivalent to 
1 v 2 v 3, 2 v 3 is evaluated first: the operation starts at the end of the list and 
moves toward the beginning. 

The adverb ~ 
~ is an adverb.  Like all adverbs, it has a monadic and dyadic form.  The dyadic form 

x u~ y is equivalent to y u x; in other words, the operands of u are reversed.  The 
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ranks of dyad u~ are the same as those of dyad u, but with left and right rank 
interchanged.  For advanced J dyad ~ is indispensable; even in ordinary use it can save 
time and obviate the need for parentheses: 
   (10 + 2) % 3 
4 
   3 %~ 10 + 2 
4 

Using %~ to mean 'y divided by x', we can have right-to-left execution without 
parentheses. 
   -~/ 2 4 
2 
When we know y contains exactly  2 items, -/ y is a convenient shorthand to subtract 
the second from the first without having to write ({.y) - ({:y) .  To subtract the 
first from the second, we simply invert the order of subtraction with -~ . 

The monadic form u~ y has infinite rank and is equivalent to y u y, i. e. it applies 
dyad u with both the left and the right operands equal to the one operand of monad u~ .  
As with dyad u~, most uses of monad u~ are esoteric, but we know one already: we can 
sort y into ascending order with either y /: y or our new equivalent /:~ y : 
   /:~ 3 1 4 1 5 9 
1 1 3 4 5 9 
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9.  Continuing to Write in J 

Now that we have a formidable battery of verbs at our command, let's continue 
writing programs in J.  The data definitions are repeated here for convenience: 

empno[nemp] (in J, just empno) - employee number for each member of the staff.  
The number of employees is nemp. 

payrate[nemp] - number of dollars per hour the employee is paid 

billrate[nemp] - number of dollars per hour the customer is billed for the services of 
this employee 

clientlist[nclients] - every client has a number; this is the list of all of them.  The 
number of clients is nclient. 

emp_client[nemp] - number of the client this employee is billed to 

hoursworked[nemp][31] - for each employee, and for each day of the month, the 
number of hours worked 

Problem 4: Find the amount to bill a given client.  C code: 
int billclient(cno) 
int cno;  // number of client we are looking up 
{ 
 int i, j, temp, total; 
 total = 0; 
 for(i = 0;i<nemp;++i) { 
  if(emp_client[i]==cno) { 
   for(j = 0, temp = 0;j<31;++j)temp += hoursworked[i][j]; 
  total += billrate[i] * temp; 
 } 
return(total); 
} 

The function is implemented in C by looping over the employees and picking the 
ones that are working for the specified client.  In J we deal with entire arrays rather than 
with elements one at a time, and the general plan is: 
get the mask of employees billed to the requested client; 
select the hoursworked records for the applicable employees; 
for(each employee) // 1 
 for(each day) accumulate total hours; // 2 
for(each employee)multiply hours by billing rate; 
for(each employee)get total billing; 

This example is the first one in which an argument is passed into the J verb.  Within 
the verb the right argument is referred to as y. and the left argument (if the verb is a 
dyad) is referred to as x. .  As usual in C we might use fewer big loops, but in J we stick 
to small loops.  The mask of employees billed to the client is given by 
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emp_client = y. which is a mask with 1 for the selected employees, 0 for the 
others (remember that = is a test for equality, not an assignment).  We can select the 
hoursworked items for the specified client by 
(emp_client = y.) # hoursworked; then the sum for each day will be a sum 
within each 1-cell, resulting in a list of hours for each selected employee.  The line 
+/"1 (emp_client = y.) # hoursworked performs the functions of loops 1 
and 2 in the pseudocode: loop 1 within each cell and loop 2 in the implied loop over the 
cells.  Then, it is a simple matter to select the billing rates for the employees, multiply 
each billing rate by the number of hours worked, and take the total over all employees 
billed to the customer.  The solution (using a temporary variable to hold the mask) is 
billclient =: monad define 
mask =. emp_client = y. 
+/ (mask # billrate) * +/"1 mask # hoursworked 
) 

Problem 5: For each day, find the worker who billed the most hours.  C code: 
int dailydrudge(drudges) 
int drudges[31]; // result: empno of worker with most hours each day 
{ 
 int i, j, highhours; 
 for(i = 0;i<31;++i) { 
  highhours = -1; 
  for(j = 0;j<nemp;++j) 
   if(hoursworked[j][i]>highhours) { 
    drudges[i] = empno[j]; 
    highhours = hoursworked[j][i]; 
   } 
  } 
 } 
} 

We note that the inner loop, which records the employee number of any employee 
who worked more than the previous high, does not correspond to any of our J verbs.  So, 
we break this loop into operations that do correspond to J verbs: 
for(each day)find the maximum number of hours worked; // 1 
for(each day)find the index of the employee who worked that much; // 2 
for(each day)translate the index to an employee number; // 3 

Loop 1 is simply >./ hoursworked .  Loop 2 calls for dyad i. to perform the 
search, but there is a little problem: each search must go through a column of 
hoursworked, giving the hours worked by each employee on that day, but the column 
is not an item of hoursworked; each item is a row, giving hours worked on each day 
by one employee.  The solution is to transpose hoursworked (by 
|: hoursworked), making the items correspond to days rather than employees.  Then 
we match up the resulting1-cells with the 0-cells of the maximum found by loop 1 and 
find the index of each maximum, using i."1 0 or the equivalent i."_1 .  Loop 3 is a 
simple application of dyad { .  The final code is 
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dailydrudge =: monad define 
((|: hoursworked) i."_1 >./ hoursworked) { empno 
) 

Problem 6: Order the employees by the amount of profit produced.  This is a bagatelle 
for J and we won't even bother with C code.  We have a verb that returns the profit for 
each employee, so we call it and use the result as the keys for sorting the employee 
numbers into descending order.  Note that a verb must be given an argument when it is 
executed; we use 0 as a convenient value.  The final J code is 
producers=: monad : 'empno \: empprofit 0' 
which makes use of the verb we defined earlier: 
empprofit =: monad define 
(billrate - payrate) * +/"1 hoursworked 
) 

Problem 7 is similar: Order the clients by the amount of profit produced.  It requires 
more ingenuity, and the C code would be more than I want to show, so let's try to write in 
J directly.  We start with the list of clients clientlist, the list that tells which client 
each employee worked for emp_client, and the profit per employee given by 
empprofit 0 .  For each client, we need to find the employees that worked for the 
client and add up the profit they brought in.  For this kind of problem we want an array 
with employees for one axis and clients for the other, with a 1 in the positions where the 
employee is assigned; then we can do array * empprofit 0 and do some suitable 
summing of the result.  Let's work out what array must look like.  Since dyad * has 
rank 0, array * empprofit 0 is going to replicate 0-cells of the shorter-frame 
argument (empprofit 0) which means that a single profit value is going to multiply 
an entire 1-cell of array .  So we see that the leading axis of array must be clients and 
the second axis must be employees; each item will have the client mask for one 
employee.  The way to create that is by clientlist ="1 0 emp_client which 
will compare the entire client list against each 0-cell of emp_client and form the 
results into an array.  Then, (clientlist ="1 0 emp_client) * 
empprofit 0 will have one item per employee, each item having the amount billed to 
each client; we sum these items to produce a list with the profit from each client, and use 
that to order the client numbers.  Solution: 
custbyprofit =: monad define 
clientlist \: +/ (clientlist="1 0 emp_client) * empprofit 0 
) 

For our final problem in the payroll department, consider how to calculate 
withholding tax on each employee's earnings.  The tax rate within tax brackets will be 
assumed to be the same for all employees.  C code for this would look like: 
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int renderuntocaesar(shekels) 
float shekels[ ]; // result: withholding for each employee 
{ 
 // tax-bracket table: start of each bracket, ending with high value 
 float bktmin[4] = {0,10000,20000,1e9}; 
 // tax-bracket table: rate in each bracket 
 float bktrate[3] = {0.05,0.10,0.20}; 
 int earns[nemp]; 
 int i, j; 
 empearnings(earns);  // get earnings for each employee 
 for(i = 0;i<nemp;++i) { 
  shekels[i]= 0.0; 
  for(j = 0;j<sizeof(bktrate)/sizeof(bktrate[0]);++j) { 
   if(earns[i] > bktmin[j]) { 
    float bktval = bktmin[j+1]; 
    if(earns[i] < bktval)bktval = earns[i]; 
    shekels[i] += bktval * bktrate[j]; 
   } 
  } 
 } 
} 

In J, we will sum over the tax brackets and we must create a suitable array for the 
summation.  The items in this array will be the amounts earned in each tax bracket.  
Corresponding to the two if statements we will use conditional operators to discard 
amounts earned outside the tax bracket.  The conditionals will operate on each row, so 
they will have rank 1, and they will look something like 
0 >. (bracket_top <. earned) - bracket_bottom which will give the 
amount earned in the bracket, set to 0 if the earnings are below the bracket and to the size 
of the bracket if above.  We will create bracket_top by shifting the brackets left and 
filling with infinity (this corresponds to the bktmin[j+1] reference in the C code).  We 
could create earned by replicating the earnings for each employee to form a 1-cell for 
each bracket—the code for this would be (#bktmin)$"0 empearnings ''—but 
it's not necessary to create that array explicitly: we just use the implicit looping to cause 
each cell of empearnings '' to be replicated during the comparison with 
bracket_top.  Making all these substitutions, noting that all the operations have rank 
1, and summing at the end over the items within each 1-cell, we get the final code: 
renderuntocaesar =: monad define 
bktmin =. 0 10000 20000 
bktrate =. 0.05 0.10 0.20 
t=. ((1 |.!:_ bktmin) <."1 0 empearnings '') -"1 bktmin 
+/"1 bktrate *"1 (0) >. t 
) 
We used the temporary variable t so our sentences would fit on the page. 

Let's write a program to count the lines and words in a file.  This is a simple task, and 
in C it might look like: 
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int[2] wc(f) 
char *f;  /* pointer to filename */ 
{ 
 FILE fid; 
 int ct[2];  /* # words, # lines */ 
 char c; 
 
 fid = fopen(f); 
 while(EOF != (c = fgetc(fid)) { 
  if(c == ' ')++ct[0]; 
  if(c == LF)++ct[1]; 
 } 
 return (ct); 
} 

Rather than loop for each character, in J we process files by reading the whole file 
into a list of characters and then operating on the list.  The monad ReadFile (defined in 
the script jforc.ijs) has infinite rank; it takes a filename y and yields as result the 
contents of the file, as a list of characters.  Once the file is a list, it is trivial to compare 
each character against space and linefeed, yielding for each a list of 1s at each position 
filled by the character; then summing the list gives the number of each character.  J code 
to do this is: 
NB. y. is string filename, result is (#words),(#lines) 
wc =: monad define 
+/"1 (' ',LF) ="0 1 ReadFile y. 
) 

Suppose our user complains that wc needs improvement: specifically, it should also 
return the number of characters in the file, should not count multiple consecutive 
whitespace characters (including TAB) as separate words, and should treat the trailing LF 
as a word delimiter as well as a line delimiter.  In C, we would respond by adding a few 
more tests and flags, but in J we realize that a major change to the program's function 
calls for a thorough rethinking. 

To ignore multiple whitespace characters we need to define what an ignored 
whitespace is, without using flags and loops.  This part of the problem often calls for 
creative thought; here we realize that a whitespace character is to be ignored if the 
previous character is whitespace.  That's easy, then: we just calculate a Boolean vector, 1 
if the character is whitespace, and then use shift and Boolean AND to ignore multiple 
whitespace.  The code to do this is worth looking at; it is  

sw =. (-. _1 |. w) *. w =. f e. ' ',TAB,LF 
where f is the contents of the file.  Note that we assign a value to w just before we right-
shift w .  This is legal in J: sentences are processed right-to-left, and the interpreter has 
not seen the reference to w at the time w is assigned.  A similar statement in C, for 
example x = w + (w = 4); , would be undefined.  Of course, even though it's legal in J, 
some would cavil—we will eventually learn ways to do this without defining a variable at 



 67 

all—but I leave it to you to decide how far you will detour to avoid jaywalking.  Once sw 
has been calculated, the rest of the program is trivial.  The final result is: 
NB.Version 2.  Discard multiple whitespace, 
NB.and return (#chars),(#words),(#lines) 
wc2 =: monad define 
f =. ReadFile y. 
sw =. (-. _1 |. w) *. w =. f e. ' ',TAB,LF 
(#f),(+/sw),(+/ LF = f) 
) 
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10. Compound Verbs 

On New Year's Day my rich uncle gives me x dollars, which I add to the y dollars I 
already have earning 4% interest.  How much money will I have at the end of the year?  
Simple in J—I just write 1.04 * x + y, and I have the answer, whether x and y are 
scalars or arrays.  That's nice, but here's my problem: I expect his largesse to continue, 
and in my anticipation I have estimated his gifts for the next few years as the list x; I 
want to know what I'll be left with at the end.  I need to pass each year's starting balance 
into the calculation for the next year.  I know what I want the result to look like: it'll be 
v/ (|.x) , y which will be evaluated as xn v …x2 v x1 v x0 v y .  But 
what is v?  The problem with 1.04 * x + y is that it contains 2 verbs and a constant, 
and I need it all lumped into a single verb so that I can have the adverb dyad / modify the 
whole thing.  One solution would be to create the verb 
v =: dyad : '1.04 * x. + y.' 
after which v/ (|.x),y works, but it's a shame to have to interrupt a J sentence just to 
define a verb with such a puny function—I want magic words to let me say 
(1.04 * + abracadabra…combine!)/ (|.x),y .  J has such magic words, 
and we will learn a few now. 

The magic words will join verbs and nouns together, so they must be modifiers: 
adverbs and conjunctions.  Before we start, we need a little notation to help with the 
different cases we will encounter.  Given a conjunction c or adverb a, we call its left 
operand m if it is a noun, or u if it is a verb.  Similarly we call a conjunction's right 
operand n if it is  noun, v if a verb.  There are four possible ways to invoke a conjunction 
(u c v, m c v, u c n, and m c n) and two for an adverb (u a and m a) and they 
are defined independently.  Moreover, the derived verb produced by the invocation (the 
derived entity may be a noun, adverb, or conjunction too but that is unusual) can be used 
as a dyad (e. g. x u c n y) or as a monad (e. g. m a y), and those cases are defined 
independently as well.  You won't get the cases mixed up, because verbs and nouns are so 
different that it will seem natural for u c n to be different from u c v; just be aware 
that the variants are many and that we will be learning a tiny subset of J's toolkit.  The 
adverb / is an example: we have learned about monad u/, but dyad u/ is very different, 
as is m/ . 

Verb Sequences—u@:v and u@v 
u@:v creates a derived verb of infinite rank that applies v to its argument(s) and then 

applies u to the result.  In other words, u@:v y is the same as u v y and x u@:v y 
is the same as u x v y .  Examples: 
   {. @: /: 3 1 4 1 5 9 
1 
Monad /: produced the permutation 1 3 0 2 4 5 of which we took the first item. 
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   1 2 3 +/@:* 1 2 3 
14 
Dyad * produced 1 4 9 whose items we then summed.  fndisplay shows the details: 
   defverbs 'plus"0 times"0' 
   1 2 3 plus/@:times 1 2 3 
+-------------------------------------------+ 
|(1 times 1) plus (2 times 2) plus 3 times 3| 
+-------------------------------------------+ 

u@v is like u@:v except that the rank of the derived verb is the rank of v (also 
expressible as u@:v"v because u"v is defined to have the function of u with the rank of 
v).  My advice is to stick to @: and avoid @ unless you're sure you need it: 
   1 2 3 +/@* 1 2 3 
1 4 9 
What happened?  We thought we were multiplying the vectors and then taking the sum, 
but because we used @ rather than @:, the derived verb had the rank of dyad *, namely 0, 
which means that the derived verb was applied to each cell: at each cell we multiplied 
and then took the sum of the single cell.  In fndisplay form, 
   defverbs 'plus"0 times"0' 
   1 2 3 plus/@times 1 2 3 
+---------+---------+---------+ 
|1 times 1|2 times 2|3 times 3| 
+---------+---------+---------+ 
plus never got executed, because plus/ was applied to 1-element lists, leaving in each 
case the single element. 

Making a Monad Into a Dyad: The Verbs [ and ] 
The characters [ and ] are not paired in J; each is an independent verb.  This is 

jarring at first but you'll get used to it. 

[ and ] are identity verbs: they have infinite rank, and ] y and [ y both result in 
y .  As dyads, they pick one operand: x [ y is x, and x ] y is y .  They can be 
useful when you have a monadic verb that for one reason or another must be used as a 
dyad with an unwanted operand: then x v@:[ y applies v to x, and x v@:] y applies 
v to y .  Example: 
   1 2 3 {.@:[ 4 5 6 
1 

Here are some other uses of [ and ] .  We have already met the first one, which is 
to display the result of an assignment: 
   a =. 1 2 3 
produces no typeout, but 
   ]a =. 1 2 3 
1 2 3 

Second, [ can be used to put multiple assignments on the same line, since each 
application of [ ignores what is to its right: 
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   a =. 5 [ b =. 'abc' [ c =. 0 

Finally, ] can be used instead of parentheses to separate numbers that would 
otherwise be treated as a list: 
   5 ,"0 1 2 
|syntax error 
|   5    ,"0 1 2 
   5 ,"0 (1 2) 
5 1 
5 2 
   5 ,"0 ] 1 2 
5 1 
5 2 

Making a Dyad Into a Monad: u&n and m&v 
A dyadic verb takes two operands, but if you know you are going to hold one fixed, 

you can create a monadic verb out of the combination of the dyad and the fixed operand; 
the monad's operand will be applied to whichever operand of the dyad was not held fixed.  
The conjunction &, when one of its operands is a noun, fixes an operand to a dyad: 
m&v y has infinite rank and is equivalent to m v y; u&n y has infinite rank and is 
equivalent to y u n .  Examples: 
   2&^ 0 1 2 3 
1 2 4 8 
   (-&2) 4 5 6 
2 3 4 

 

Now we can solve our original problem, which was to put 1.04 * x + y into the 
form x v y .  v should be 
1.04&* @: + 
which we can verify using fndisplay as 
   defverbs 'plus"0 times"0' 
   defnouns 'x y' 
   x  1.04&times @: plus  y 
+-------------------+ 
|1.04 times x plus y| 
+-------------------+ 
and to get my total savings after receiving all payments I use monad / to apply that verb 
for each payment, giving the expression: 
1.04&* @: + / (|.x) , y 

Let's take a moment to understand the parsing and execution of 1.04&* @: + / .  
The left operand of a modifier includes all preceding words up to and including the 
nearest noun or verb that is not immediately preceded by a conjunction.  This is a 
precise way of saying that modifiers associate left to right.  In the phrase 
1.04&* @: + /, the 1.04 is not preceded by a conjunction, so it is the beginning of 
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all the conjunctions' left operands, and the verb is parsed as if it were written 
(((1.04&*) @: +) / ) . 

Note that left-to-right association of modifiers corresponds to right-to-left execution.  
When the derived verb monad (((1.04&*) @: +) / ) is executed, it performs 
according to the definition of monad u/, with ((1.04&*) @: +) as the u; execution 
of monad u/ inserts u between items, so ((1.04&*) @: +) is executed between 
items; at each such execution the dyad + is executed first, followed by the monad 
1.04&* .  Fortunately, the result of the parsing rules is that conjunctions and adverbs, 
just like verbs, should be read right-to-left. 

If I wanted to spend half of my uncle's money , the amount I would be left with is 
0.5 * 1.04&* @: + / (|.x) , y 

No parentheses are needed, because 1.04 is still not preceded by a conjunction and 
so 1.04&* @: + / (|.x),y is still evaluated before that value is multiplied by 
0.5 . 

Once you get the hang of it, you will be able to understand and build composite verbs 
of great power.  That will be a useful skill to develop, because you never know when you 
are going to want to make some sequence of functions the operand of a modifier, and 
then you're going to have to be able to express the sequence in a single compound verb.  
It will take a lot of practice, as well as coding techniques to break a gristly mass of 
conjunction-bound words into digestible pieces (we'll learn them later).  For the time 
being, be content if you can understand the simple examples shown above. 
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11. Boxing (structures) 

The nouns we have encountered so far have all had items with identical shapes, and 
with all atoms of the same type, either numeric or character.  You may be afraid that such 
regular arrays are all that J supports and that you will have to forgo C structures; and you 
may wonder how J will fare in the rough-and-tumble of the real world where data is not 
so regular.  This chapter will put those fears to rest. 

I think we should get a formal understanding of boxing in J before we try to relate it 
to structures in C, because the ideas are just different enough to cause confusion.  The 
box is an atomic data type in J, along with number and character.  As with the other 
types, a single box is a scalar, with rank 0 and empty shape.  Just as a numeric or 
character atom has a value, so a boxed atom has a value, called its contents.  The box is 
special in that its contents can be an array while the box itself is an atom.  The boxing 
protects the contents and allows them to be treated as an atom. 

Arrays of boxes are allowed, and as always all the atoms in an array must have the 
same type: if any element is boxed, all must be boxed.   

Various verbs create boxes.  Monad < has infinite rank and exists for the sole 
purpose of boxing its operand: < y creates a box whose contents are y, for example: 
   <1 
+-+ 
|1| 
+-+ 
   <1 2 3 
+-----+ 
|1 2 3| 
+-----+ 
   <'abc' 
+---+ 
|abc| 
+---+ 
When a box is displayed, the contents are surrounded by the boxing characters as seen in 
the examples. 

Only certain primitives can accept boxes as operands; generally, you cannot perform 
arithmetic on boxes but you can do other things like monad and dyad #, monad and 
dyad $, and other primitives that do not perform arithmetic.  The significant exception to 
this rule is that you can use monad and dyad /: and \: to order boxed arrays.  
Comparison for equality between two atoms is not strictly an arithmetic operation—you 
can compare two characters or a character and a number for equality, for example—and it 
is allowed on boxes, both explicitly using dyad = and dyad -:or implicitly using 
dyad i. and dyad e.; but there is an arithmetic flavor to the operation: if the contents of 
corresponding components of the boxes are both numbers, tolerant comparison is used. 
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Most primitives that accept boxes as operands do not examine the contents of the 
boxes, but instead perform their operation on the box atoms themselves.  Any deviation 
from this behavior will be noted in the definition of the verb (we have not encountered 
any yet).  Examples: 
   3 $ <'abc' 
+---+---+---+ 
|abc|abc|abc| 
+---+---+---+ 
The dyad $ was applied to the box, creating a list of identical boxes. 
   (<1 2),(<5),(<'abc') 
+---+-+---+ 
|1 2|5|abc| 
+---+-+---+ 
The boxes were concatenated, resulting in a list of boxes.  Note that the contents of the 
boxes do not have to have the same shape or type. 
   1 0 1 # (<1 2),(<5),(<'abc') 
+---+---+ 
|1 2|abc| 
+---+---+ 
The selection performed by dyad # is performed on the boxes, not on their contents. 

Since applying a verb may result in the addition of verb fills and framing fills, we 
need to meet the fill element used for boxed nouns.  It is the noun a: .  a: is defined to 
be <0$0, i. e. an atom which is a box containing an empty numeric list (note that this is 
not the same thing as a box containing an empty string or an empty boxed list). 
   a: 
++ 
|| 
++ 
   3 {. <5 
+-+++ 
|5||| 
+-+++ 
a: was used for the fills added by overtaking from this boxed noun. 

The contents of a box can be any noun, including a box or array of boxes: 
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   < < 2 3 
+-----+ 
|+---+| 
||2 3|| 
|+---+| 
+-----+ 
   (<'abc'),(<<1 2) 
+---+-----+ 
|abc|+---+| 
|   ||1 2|| 
|   |+---+| 
+---+-----+ 

The contents of a box can be recovered by opening the box with monad > .  Monad > 
has rank 0 (since it operates only on boxes, which are atoms), and its result is the contents 
of the box: 
   > < 'abc' 
abc 
The contents of the box is the character string. 
   a =. (<1 2),(<<5),(<'abc') 
   > 0 { a 
1 2 
   > 1 { a 
+-+ 
|5| 
+-+ 
Here we recover the contents of the selected box (which may be a box). 
   > (<1 2 3),(<4) 
1 2 3 
4 0 0 
Remember that monad > has rank 0, so it is applied to each box and the results are 
collected using the frame.  Here framing fills were added to the shorter result.  0 was 
used as the framing fill because the contents of the boxes were numeric. 
   >a 
|domain error 
|       >a 
Here the results on the different cells were of different types, so it was impossible to 
collect them into an array. 

If y is unboxed, the result of > y is y . 

Terminology 
Before we go further with boxes, let's agree on some terminology.  Because every 

atom in an array must have the same type, it is reasonable to speak of an array as being 
'boxed' if its atoms are boxed, 'unboxed' otherwise (some writers use 'open' as a synonym 
for 'unboxed').  Trouble arises with a phrase like 'boxed list'.  If I box a list (e. g. 
<1 2 3), does that give me a boxed list?  If I have a list whose atoms are boxes, (e. g. 
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(<1),(<2)), is that also a boxed list?  Unfortunately, writers on J have not agreed on 
terminology for these cases. 

In this book, a boxed list will be a list that has been put into a box (it is therefore an 
atom), and a list of boxes is a list each atom of which is a box.  Higher ranks are 
described similarly.  If we say that a noun 'is boxed', that simply means that its atoms are 
boxes. 

Boxing As an Equivalent For Structures In C 
A C struct corresponds to a list of boxes in J, where each box in the list corresponds 

to one structure element.  Referencing a structure element in C corresponds to 
selecting and opening an item in J.  For example, 
struct { 
 int f[ ] = {1,2,3}; 
 char g[ ] = "abc"; 
 float h = 1.0; 
) 
is equivalent to 
(<1 2 3) , (<'abc') , (<1.0) 

A C n-dimensional array of structures is equivalent to a J array of boxes of 
rank n+1.  The last axis of the J array corresponds to the structure, and its length is the 
number of structure elements in the C structure. 

C has no exact equivalent for a single box. 
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12. Empty Operands 

Every programmer knows that errors lurk near boundaries: for example, at the 
beginning and end of arrays, or at the point in execution where an array becomes empty.  
Our discussion of verb rank omitted one important situation: suppose there are no cells?  
An operand with no cells is said to be empty, and it gets special treatment in J. 

The definition of an empty operand is not as obvious as you might think.  An array is 
empty if it has no atoms (i. e. has a 0 in its shape), but whether an operand is empty 
depends on the rank of its cells: it is empty if there is a 0 in the frame with respect to the 
cells operated on by the verb.  Consider an array with shape 3 0 4 .  This is an empty 
array, because it has no atoms.  As an operand of a verb with rank 0, it has frame 3 0 4, 
so there are no cells and the array is an empty operand.  As an operand of a verb with 
rank 1, it has frame 3 0 and again is empty.  As an operand of a verb with rank 2, 
though, it has frame 3 and is not empty: there are 3 cells, each of which has shape 0 4 .  
In this case each cell is an empty array, but the operand is not empty.  As an operand of a 
verb with rank 3 or higher, the frame is empty and each cell has shape 3 0 4, so there is 
one cell and the operand is not empty, though each cell is an empty array.  You can see 
that an operand may have items and yet be an empty operand, if the verb operates on cells 
smaller than items, as is the case in this example for a verb of rank 0 or 1. 

We are left with the question, What is executed when an operand is empty?  For 
something must be executed.  It is fundamental in J that if a verb produces a result with 
shape s when applied to a single cell, executing that verb over an array of that cell—even 
an array of none of them—produces an array of results each with shape s.  The only way 
to find out what shape a verb is going to produce is to execute it and see—and that is 
what J does. 

Execution On a Cell Of Fills 
If an operand is empty, i. e. its frame contains a 0 and it therefore has no cells, the 

verb is executed on a cell c of fills.  The shape of c is the shape of a cell of the 
corresponding operand, and the value of each atom is the appropriate fill for that operand: 
0 for numeric operands, ' ' for characters, a: for boxes.  The shape s and type t of the 
result of executing the verb on c are noted.  Then, the shape of the overall result is the 
frame of the operand (the longer frame, for dyads) concatenated with s, and the result is 
given type t.  The result will necessarily be empty, because it will have a 0 in its shape 
(from the frame, which contained a 0).  Example: 
   $ +/"2 (3 0 3 4 $ 100) 
3 0 4 
Remember that a cell has a shape, even if there are none of them!  Here the verb monad 
+/"2 is applied to 2-cells, each with shape 3 4 .  The frame 3 0 contains a 0, so the 
verb is executed on the fill cell c which is (3 4 $ 0).  Monad +/ adds the items of the 
cell, producing a list with shape 4 .  The frame 3 0 is concatenated with 4 to give the 
shape of the result, 3 0 4 . 
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   3!:0 +/"2 (3 0 3 4 $ 100) 
4 
The verb 3!:0 (one of dozens of special goodies provided by the !: conjunction and 
documented under Foreigns) tells you the type of its operand.  Here, 4 means numeric 
type: the result has shape 3 0 4 and numeric type. 
   $ <"2 (3 0 3 4 $ 100) 
3 0 
   3!:0 <"2 (3 0 3 4 $ 100) 
32 
Here the verb monad < was applied to the same fill-cell c (3 4 $ 0) but it produced a 
boxed scalar result (shape empty), so the shape of the overall result is the frame 3 0 
concatenated with an empty list, i. e. shape 3 0 and type boxed (as indicated by the 32 
returned by 3!:0). 

Note that the contents of each box in an empty array of boxes are all empty.  In the 
example <"2 (3 0 3 4 $ 100), execution on the fill-cell produced (<3 4 $ 0), 
and if the frame weren't empty the box would contain an array; but when the frame is 
empty, the value of the result is discarded; all that remains is its type. 

If executing the verb on a cell of fills results in an error, execution continues as if the 
verb had returned the scalar 0 : 
   5 + ' ' 
|domain error 
|   5    +' ' 
Trying to add 5 to a space is nonsense… 
   5 + '' 
 
   $ 5 + '' 
0 
   (3!:0) 5 + '' 
4 
…but adding 5 to an empty list of characters produces an empty numeric list.  The 
addition is attempted with a cell of fills for the empty operand (the values added are 5 on 
the left, ' ' on the right), the addition fails, and the error-fallback result of scalar 0 is 
used; appending the longer frame (0) gives shape 0, numeric.  Note that y here is an 
empty operand, but it nonetheless has the longer frame (the scalar x has empty shape and 
perforce empty frame). 

Note: there is much special code in the interpreter to handle the cases of empty 
operands.  To improve performance, the interpreter recognizes a great many 
combinations of verb, operand shape, and type, handling each with separate code.  In 
most cases the interpreter produces its result in accordance with the rules given above, 
but in a few exotic cases it deviates.  You are quite unlikely to encounter these cases in 
practice; the most important one is 
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   $ > 0$a: 
0 
where the rules given above would predict a shape of 0 0 .  Enough applications rely on 
shape 0 to keep this deviation in the system, at least as of release 5.01. 

Empty cells 
As we discussed above, a cell, like any array, is called empty if it has a 0 in its shape.  

Whether the cells of an operand are empty is independent of whether the operand itself is 
empty. 

How a verb handles an empty cell is entirely up to the verb; the fill-cell processing we 
discussed above does not apply.  The J primitives generally preserve the type of empty 
lists that are 'data' but ignore the type of empty lists that are 'control information'.  So, 
even though characters are not allowable left operands of dyad |., '' |. i. 5 
produces the same result as (0$0) |. i. 5, because the rotation count is 'control 
information'.  In contrast, 3 {. '' produces a 3-character string, while 3 {. (0$0) 
produces a 3-item numeric list, because the right operand of dyad {. is 'data'.  The 
distinction between 'control information' and 'data' is not clear-cut, but in all cases the 
interpreter does what you'd want it to, and you should experiment if you need 
reassurance. 

If Fill-Cells Are Not Enough 
Sometimes executing a verb on a cell of fills simply won't do: maybe your verb 

produces a side effect, or maybe it will go berserk if its operand is 0 .  In those cases, 
you must take steps to ensure that it is not executed on an empty list.  To help you out 
with the most common case, in which the only way a list can be empty is to have no 
items (that is another way of saying that the first item of the shape is 0), I offer you a set 
of adverbs and conjunctions which you can have by executing 
load 'system\packages\misc\jforc.ijs' 

u Ifany applies the verb u (which may be monadic or dyadic) provided y has 
items; if y has 0 items, the result of u Ifany is y : 
   $ (,/) i. 0 4 
0 
   $ (,/) Ifany i. 0 4 
0 4 
Since i. 0 4 has no items, Ifany caused it to be passed through unchanged. 

x u Ifanyx y produces x u y if x has items, or y if x has no items. 

The conjunction u Butifnull n can be monadic or dyadic; it applies u if y has 
items; if y has no items it produces a result of n . 
   5 + Butifnull 6 (0) 
5 
   5 + Butifnull 6 (0$0) 
6 

x u Butifxnull n y produces x u y if x has items, or n if x has no items. 
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13. Loopless Code III—Adverbs \ and \. 

We have learned about ordinary verbs that operate on the cells of an operand, and we 
have learned u/ which operates between all the cells of its operand.  In between those 
extremes are verbs that operate on subsets of the cells of its operand.  In this chapter we 
will learn a couple of adverbs that apply verbs to subsets of cells chosen according to 
simple rules; in later chapters we will learn how to form irregular subsets. 

u\ y has infinite rank and applies u to successive prefixes of y .  It applies u to the 
first item of y (i. e. u 1 {. y) to produce the first item of the result; it then applies u to 
the first 2 items of y (i. e. u 2 {. y) to produce the second item of the result; and so 
on, with the last item of the result being u (#y) {. y .  Example: 
   #\ 9 8 7 6 
1 2 3 4 
This just gives the length of each prefix, not a terribly edifying result.  The details can be 
seen using fndisplay: 
   defverbs 'tally' 
   tally\ 9 8 7 6 
+-------+---------+-----------+-------------+ 
|tally 9|tally 9 8|tally 9 8 7|tally 9 8 7 6| 
+-------+---------+-----------+-------------+ 

Note that u is always applied to lists, because {. always produces a list.  In 
particular, the first item of the result comes from applying u to a 1-item list; conversely, 
even if y is a scalar, (#y) {. y is a 1-item list.  Note also that if the applications of u 
produce results of different shapes, framing fills are added to bring the results to a 
common shape, just as if they were the results from applying a verb to different cells: 
   ]\ i. 3 
0 0 0 
0 1 0 
0 1 2 
The result is the prefixes themselves, assembled as items of a rank-2 array. 

u\ is most often used when u is of the form u/, i. e. as u/\ .  Then the verb u/ is 
applied to the successive prefixes.  Here are some commonly-used forms: 
   +/\ i. 6 
0 1 3 6 10 15 
+/ means 'total the items', so +/\ i. 6 is (0),(0+1),(0+1+2),(0+1+2+3)…, 
i. e. the running total of the items of y . 
   >./\ 9 5 3 10 3 2 20 
9 9 9 10 10 10 20 
For each item of y, the result is the largest item occurring in the list up to that item of y . 
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   </\ 0 0 0 0 1 1 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 
</\ y on a Boolean list (i. e. one containing only 0 or 1) is a tricky way to turn off all 
1s following the first.  See how it works: </ y will produce a result of 1 only in the case 
where the last item of y is 1 and the rest are 0, i. e. 0 < 0…0 < 1, so </\ y produces 
a 1 for that prefix and 0 for all the others. 
   *./\ 1 1 1 1 0 0 1 1 1 
1 1 1 1 0 0 0 0 0 
Keep the leading 1s of y, but set the rest to 0 . 

u\. y is similar to u\ y, except that it applies u to suffixes of y .  It applies u to 
all of y (i. e. u 0 }. y) to produce the first item of the result; it then applies u to all 
but the first item of y (i. e. u 1 }. y) to produce the second item of the result; and so 
on, with the last item of the result being u ((#y)-1) }. y (that is, u applied to the 
last item of y).  Example: 
   +/\. i. 6 
15 15 14 12 9 5 
The running total now starts at the end and runs backward.  fndisplay shows the 
details, and points out a subtlety of u/\ : 
   defverbs 'plus"0' 
   plus/\. <"0 i. 4 
+----------------------+---------------+--------+-+ 
|0 plus 1 plus 2 plus 3|1 plus 2 plus 3|2 plus 3|3| 
+----------------------+---------------+--------+-+ 
Up till now we have applied unboxed inputs to verbs defined by defverbs and gotten 
useful results.  Why then must we box the atoms of i. 4 before giving them to 
plus/\.?  The reason is that the result of a verb defined by defverbs is boxed.  
Normally it is joined in an array with other boxed outputs.  Here, the last result, the one 
containing just the cell 3, is not produced by plus; rather, since plus/ is applied to a 
1-element list, the cell is the unmodified input cell.  If we had not boxed the atoms of 
i. 4 (i. e. if we had executed plus/\. i. 4), the unboxed 3 would be joined to the 
other boxed results, and that would have given us a domain error.  Whenever you use 
u/\ y or u/\. y you must make sure that the result of u has the same type (character, 
numeric, or boxed) as y . 

The dyadic form x u\ y has rank 0 _ and applies u to infixes of y .  An infix is a 
sequence of adjacent items.  x gives the length of the infixes.  The first item of the result 
comes from the infix of length |x (that is, the absolute value of x) starting with the first 
item of y, and subsequent items of the result come from subsequent infixes.  If x is 
positive, successive infixes start at successive items of y (therefore, they overlap), and 
the last infix is the one that ends with the last item of y; if x is negative, infixes do not 
overlap: each one starts with the item following the last item of the previous infix, and 
the last infix may be shorter than |x .  Examples: 
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   _2 ]\ 100 2 110 6 120 8 130 3 
100 2 
110 6 
120 8 
130 3 
This is a convenient way to reshape a list to have 2 items per row when you don't know 
how many rows there will be. 
   2 -/\ 10 8 6 4 2 
2 2 2 2 
   2 -~/\ 10 8 6 4 2 
_2 _2 _2 _2 
Applying -/ between each pair of items (with adjacent pairs overlapping) takes the 
backward difference of each pair.  To take the forward difference, subtract the first from 
the second using -~/ . 
   3 >./\ 1 2 3 8 2 3 1 5 4 3 12 3 2 
3 8 8 8 3 5 5 5 12 12 12 
This takes the maximum over a rolling window 3 items wide. 

x u\. y is similar to x u\ y , but it operates on outfixes which contain all of y 
except the corresponding infix.  Its uses are few. 

The interpreter treats empty operands with care, so that you don't have to worry about 
them as special cases.  If you simply must know the details, here they are:  If u\ or u\. 
is applied where there are no applicable subsets of y (either because y is empty or 
because it is too short to muster even a single infix), u is applied to a list of fills f and the 
result has 0 items, each with the shape and type of the result of u f .  The items of f 
have the shape of items of y, and the length of f is 0 for monad u\ or u\., or the length 
of an infix or outfix for dyad u\ or u\. .  For example: 
   $ 2 ]\ i. 1 3 
0 2 3 
We were looking for infixes of length 2; each one would have had shape 2 3, but with 
only one item in y we have insufficient data for an infix.  So, we create a 2×3 array of 
fills and apply the verb ] to it; the verb returns shape 2 3 and the overall result is a list 
of 0 items with that shape. 
   $ ]\ i. 0 2 3 
0 0 2 3 
The cells of y have shape 2 3 so we apply the verb ] to a list of 0 of them (i. e. with 
shape 0 2 3).  The result of ] has the same shape as the input, and the final result is a 
list of 0 items each with shape 0 2 3, i. e. with overall shape 0 0 2 3 . 



 82

14. Verbs for Arithmetic 

It's time to build your J vocabulary with a few more verbs. 

Dyads 
x ! y  (rank 0 0) number of ways to choose x things from a population of y things.  

More generally, (!y) % (!x) * (!y-x) 

x %: y  (rank 0 0) The xth root of y 

x #. y  (rank 1 1) y evaluated in base x, i. e. the atoms of y are digits in the base-x 
representation.  x and y must have the same length, unless x is a scalar in which case 
it is replicated to the length of y .  A place-value list p is calculated, in which each 
item is the product of all the subsequent corresponding items of x; formally, this is 
p=.*/\.}.x,1 (the last item of p is always 1 and the first item of x is immaterial).  
Then each item in y is multiplied by its place value and the results are summed to 
give the result (formally this is +/ y * p).  In the simplest case x is a scalar: 
   10 #. 2 3 4 
234 
The digits 2 3 4 interpreted as base-ten digits. 
   16 #. 2 3 4 
564 
The same interpreted as base-sixteen digits. 
   16b234 
564 
as expected (16b234 is 234 in base 16, equivalent to 0x234). 

Here is an example where x is a list, converting time in hours/minutes/seconds to 
seconds since midnight: 
   24 60 60 #. 12 30 0 
45000 
The list p was 3600 60 1 .  The first item in x has no effect on the result. 

x #: y  (rank 1 0)  This is the inverse of x #. y except that if the first digit of the 
result is not between 0 and {.x, it is changed (modulo x) to lie within that range.  
For example, 
   24 60 60 #: 45000 
12 30 0 
The normal case, converting the number of seconds since midnight back to 
hours/minutes/seconds. 
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   24 60 60 #. 36 30 0 
131400 
   24 60 60 #: 131400 
12 30 0 
Here the result would have been 36 30 0, but 36 is outside the range 0 to 24, so it 
is replaced by 24|36, which is 12 .  If you want the first item of the result to be 
unconstrained, make the first item of x either 0 or _ : 
   0 60 60 #: 131400 
36 30 0 

Note that monad #: and monad #. are similar to the dyadic forms with x set to 2 .  
To keep #: and #. straight in your mind, remember that the one with a single dot (#.) 
produces a single scalar result, while the one with multiple dots (#:) produces a list 
result. 

Monads (all rank 0) 
! y  factorial of y (more generally, the gamma function Γ(1+y)) 

^ y  same as (the base of natural logarithms e) ^ y 

^. y  same as (the base of natural logarithms e) ^. y 

+: y  same as y * 2 

-: y  same as y % 2 

*: y  same as y ^ 2 

%: y  same as 2 %: y 

You can see the common feature in the arithmetic primitives ending in : . 
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15. Loopless Code IV 

In our quest to write loopless code, we first learned about J's implicit looping, which 
we can use to replace loops in which the same function is performed on each cell; then 
we learned monad / which lets us accumulate an operation across all the items of a noun, 
and \ and \. which apply verbs to certain regular subsets of a noun.  We now examine 
cases in which the operations on the cells are different, but where there is no sharing of 
information between cells. 

In such cases, the J solution is to create an array that contains control information 
describing the difference between the cells, and then create a dyadic operation that 
produces the desired result when given a cell of control information and a cell of data.  
Writing code this way can seem ingeniously clever or awkwardly roundabout, depending 
on your point of view; we will simply accept it as a necessary part of coding in J, and we 
will learn to be effective with it.  What follows is a hodgepodge of tricks to treat cells 
individually.  If we were writing in C, we would use if statements, but since if by 
necessity involves a scalar comparison we will avoid it in J. 

To add one to the elements of y whose values are even: 
y + 0 = 2 | y 

To double all the elements of y whose values are even: 
y * 1 + 0 = 2 | y 

To create an array whose even-numbered elements come from y and whose odd-
numbered elements come from x : 
(x * -.sv) + y * sv =. (#y) $ 1 0 
which, homely as it is, is a standard idiom in J.  This expression works only for numeric 
operands; for general operands we can select using a selection vector sv with 
sv {"_1 x ,. y 

To replace lowercase 'a' through 'f' with uppercase 'A' through 'F' in a string that 
contains only 'a' through 'f': 
('abcdef' i. y) { 'ABCDEF' 

Extending the previous example: to replace lowercase 'a' through 'f' with uppercase 
'A' through 'F' leaving other characters unchanged: 
(('abcdef' , a.) i. y) { 'ABCDEF' , a. 
To understand this you need to know the special noun a. which is the character string 
containing all the ASCII characters in order.  Work through a simple example until you 
understand how this works—it's a good example of how J thinking differs from C 
thinking. 

A similar problem: given a list of keys y and a list of data z, with each item of y 
corresponding to an item of z; and another list of search keys x; and a default element 
d : return the item in z corresponding to the item of y that matches the item of x, or d 
if the item of x didn't match anything in y : 
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(y i. x) { z , d 

To evaluate the polynomial defined by x, so that if for example x is 2 1 5 the result 
is 5y2+y+1: 
+/ x * y ^ i. # x 
(and now you can see why 0^0 is 1). 

To evaluate the polynomial defined by x going the other direction, so that if for 
example x is 2 1 5 the result is 2y2+y+5: 
y #. x 

The last example, due to Roger Hui, has a power and economy that amount to 
sorcery.  Suppose you had a list, and you wanted to know, for each item in the list, how 
many identical items appeared earlier in the list.  You could find out this way: 
   y =. 2 2 2 1 2 1 4 6 4 2 
   t - (i.~ y) { t =. /: /: y 
0 1 2 0 3 1 0 0 1 4 
Take a little time—maybe a long time—to see how this works.  The /: /: y is an 
idiom we discussed earlier—did you figure it out?  It gives the ordinal of each item of y, 
in other words the rank of the item among the items of y .  If there are equal items, they 
will occupy a block of successive ordinals.  In this example you can see that t does 
indeed hold the ordinals: 
   t 
2 3 4 0 5 1 7 9 8 6 
(i.~ y) takes the index of each item of y within y itself, in other words, for each item, 
the index of the first item with the same value: 
   (i.~ y) 
0 0 0 3 0 3 6 7 6 0 
Since the identical items of y are a block of successive ordinals, and (i.~ y) 
comprises indexes of first items in blocks, we can find relative positions in blocks by 
subtracting the ordinal of the first item with a value from the ordinals of all the other 
items with the same value.  That is what this expression does.  Lovely! 

In addition to the foregoing ad hoc means of varying the operation cell-by-cell J has 
some language features expressly designed for that purpose: 

Power/If/DoWhile Conjunction u^:n and u^:v 
u^:n y has infinite rank.  It applies the verb u to y, then applies u to that result, and 

so on, for a total of n applications of u, ; in other words u u u…(n times) y, as we 
see when it is used with the >: (increment) primitive: 
   >: 5 
6 
   >:^:2 (5) 
7 
   >:^:3 (5) 
8 
fndisplay gives a picture of what is happening: 
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   defverbs 'incr"0' 
   incr^:3 (5) 
+----------------+ 
|incr incr incr 5| 
+----------------+ 

x u^:n y also has infinite rank.  It evaluates x u x u…(n times) y .  A 
simpler way to say this is to say that it is equivalent to x&u^:n y, since x&u y is 
equivalent to x u y . 
   2 * 2 * 2 * 2 * 5 
80 
   2 *^:4 (5) 
80 

u^:v y and x u^:v y are defined similarly: first v is evaluated (monadically or 
dyadically as appropriate), and then result is used as n .  Formally, u^:v y is 
u^:(v y) y and x u^:v y is x u^:(x v y) y .  With dyad u^:v, it will be 
rare that x and y both make sense as an operand into both u and v, and you will usually 
use @:[ and @:] to cause u or v to operate on only one operand.  For example, to 
coalesce the x+1 leading axes of y into one axis, you could use x ,/@:]^:[ y : 
   1 ,/@:]^:[ i. 2 2 3 
0  1  2 
3  4  5 
6  7  8 
9 10 11 
   2 ,/@:]^:[ i. 2 2 3 
0 1 2 3 4 5 6 7 8 9 10 11 

This is hardly a commonplace usage, but let's analyze it, since conjunctions are still 
new to us.  The verb is parenthesized ((,/)@:])^:[, so the first thing executed is 
u^:v where v is [ .  x [ y is just x, so x is going to tell us how many times to apply 
x&((,/)@:]) .  Now, x&((,/)@:]) y is just the same as ,/ y, because the 
purpose of the @:] is to ignore the left argument that was put on by x& .  We remember 
monad ,/ from our discussion of monad u/ : it combines the 2 leading axes of y .  So, 
x ,/@:]^:[ y will combine the 2 leading axes of y, x times; in other words, combine 
the x+1 leading axes of y . 

Our interest in u^:n is not in applying a verb several times—usually we could just 
write the instances out if we needed to—but rather in 4 special values of n : _1, 0, 1, 
and _ (infinity).  u^:0, meaning apply u 0 times, is simple: it does nothing, with the 
result y in both dyadic and monadic forms.  u^:1 means apply u once.  Thinking about 
that, we see that if n is restricted to the values 0 or 1, ^:n means 'If n' : u^:n y is 
y, but modified by application of u if n is 1.  If we want to apply the verb u only on the 
items of y for which x is 1, we can write x u@:]^:["_1 y : 
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   1 0 0 1 0 >:@]^:["_1 (1 2 3 4 5) 
2 2 3 5 5 

When n is _, u^:_ means 'keep applying u until the result doesn't change'.  This is 
obviously a splendid way to perform a numerical calculation that converges on a result; 
for example if you take …cos(cos(cos(cos(y)))) until the result stops changing, you get 
the solution of the equation y=cos(y): 
   2 o.^:_ (0) 
0.739085 
but that's not why we love ^:_ .  Consider the verb u^:v^:_ (either monad or dyad), 
with the understanding that v always produces a Boolean result of 0 or 1 .  It is 
parenthesized (u^:v)^:_, i. e. u^:v repeated until the result stops changing.  Now, if 
v evaluates to 0, the result of u^:v will certainly be the same as its input because u will 
not be executed; if v is 1, u^:v causes u to be executed once.  So this construct is like 
C's while(v(y))y = u(y); (except that the J version also stops if the result of u y is the 
same as y).  The great thing about having a verb to do this loop rather than a statement is 
that we can give the verb a rank and apply it to cells, with independent loop control on 
each cell: 
   2 *^:(100&>@:])^:_"0 (1 3 5 7 9 11) 
128 192 160 112 144 176 
Read this as 'for each atom of y, double it as long as the value is less than 100'. 

u^:_1 is also of great interest but we will discuss it later. 

One last point: 
   >:^:1 2 4 (5) 
6 7 9 

As you can see, n may be an array, in which case u^:n1 y is repeatedly evaluated, 
with n1 assuming the value of each atom of n, and the results are assembled using the 
shape of n as the frame with framing fills added as needed.  Pop quiz: express the 
preceding English sentence in J. 

Solution: u^:n y is equivalent to n u@:]^:["0 _ y, and x u^:n y is 
equivalent to n x&u@:]^:["0 _ y .  If you can make sense of the answer, you 
should be content with your progress.  If you came up with either half on your own, you 
are entitled to claim Apprentice Guru status. 

Tie and Agenda (switch) 
The Tie Conjunction u`v u`n m`v m`n 

The backquote character ` is the conjunction named Tie.  ` is one of the few 
conjunctions that produce a noun, so it is neither monadic or dyadic.  If an operand of ` 
is a verb, it is converted to its atomic representation which is a noun form from which 
the verb can be recovered; then the two operands m and n (both nouns now since any verb 
was converted to a noun) are joined by executing m,n .  So, the result of ` applied 
between the members of a sequence of verbs is a list of special nouns, each of which is 
the atomic representation of a verb.  We are not concerned with the format of the atomic 
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representation, nor will we create or modify an atomic representation (that's Advanced-
Guru work); we will be content to use the values produced by ` .  An example is: 
   +`-`*`%`(+/) 
+-+-+-+-+-------+ 
|+|-|*|%|+-+---+| 
| | | | ||/|+-+|| 
| | | | || ||+||| 
| | | | || |+-+|| 
| | | | |+-+---+| 
+-+-+-+-+-------+ 

What makes the result of ` special is not the boxing, but the fact that what's in the 
boxes is not just any old data, but data in the format that can be used to recover the 
original verbs.  Once created, the result of ` can be operated on like any other noun: 
   a =. +:`-`*`%`(+/) 
   3 { a 
+-+ 
|%| 
+-+ 
   0 0 1 0 1 # a 
+-+-------+ 
|*|+-+---+| 
| ||/|+-+|| 
| || ||+||| 
| || |+-+|| 
| |+-+---+| 
+-+-------+ 

In English grammar, a gerund is a form of a verb that is used as a noun, for example 
the word cooking in Cooking is fun.  The result of ` in J is also called a gerund, and we 
can see that the name is apt: a gerund in J is a set of J verbs put into a form that can be 
used as a J noun.  It has the latent power of the verbs put into a portable form, like 
nitroglycerine that has been stabilized by kieselguhr to become dynamite.  The blasting 
cap that sets it off is 

The Agenda (switch) conjunction m@.v 
m@.v (either monad or dyad) uses the result of v to select a verb from the list of 

verbs m, and then executes that verb. 

m@.v requires that m be a valid gerund.  It produces a verb which can be used 
monadically or dyadically and whose ranks are the ranks of v .  The operation of this 
verb is as follows: v y (if monadic) or x v y (if dyadic) is evaluated; it must produce 
a scalar result r that is a valid index into m; i. e. (-#m) <: r and r < #m .  Then, 
item r{m is selected—it is the atomic representation of one of the verbs that went into 
m—and that atomic representation is converted to a verb u .  Finally, u y (if monadic) 
or x u y (if dyadic) is executed, and its result is the result of the execution of m@.v . 
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So, verb0`verb1`verb2 @. v y evaluates v y, resulting in r, and then 
executes verbr y .  The dyadic case x verb0`verb1`verb2 @. v y evaluates 
x v y, resulting in r, and then executes x verbr y .  The verbs may be any valid 
verb: a primitive, a compound verb, or a named verb. 

Examples: 
   (1&+)`(-&2)@.(2&|) "0 i. 6 
1 _1 3 1 5 3 
This added 1 to each even number and subtracted 2 from each odd number.  Note that we 
had to assign rank 0 to the overall combined verb, because otherwise the rank of 
(1&+)`(-&2)@.(2&|) would have been the rank of 2&| which is infinite because 
m&v has infinite rank. 
   _5 _3 _1 1 3 5 +`-@.(0&>@:["0) 2 
_7 _5 _3 3 5 7 
Subtract 2 from elements of x that are negative, add 2 to elements that are nonnegative.  
Here we assigned the rank to the selector verb in m@.v; that rank was then inherited by 
m@.v . 
   5 uname`+`] @. (*@:]"0) _5 0 5 
(Remember that monad * is the signum function returning _1 for negative, 0 for zero, 
and 1 for positive operands)  For each atom of y, execute 5 uname y if y is zero, 
5 + y if y is positive, and pass y through unchanged (5 ] y) if y is negative.  uname 
must be defined elsewhere.  This expression makes use of negative indexing: if * y is 
negative, verb number _1 (the last item) is taken from the gerund. 

m@.v obviously can be used with a small rank to afford great control over what 
operation is performed cell-by-cell, but if you do that it will have to apply J verbs on 
small operands, which is inefficient.  After all we've been through, I feel confident that I 
can trust you not to use m@.v with small rank unless it's absolutely necessary.   
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16. More Verbs For Boxes 

Dyad ; (Link) And Monad ; (Raze) 
Dyad ; has infinite rank.  It boxes its operands and concatenates the boxes: 

   'abc' ; 1 2 3 
+---+-----+ 
|abc|1 2 3| 
+---+-----+ 
Dyad ; is the easiest way to create a list of boxes: 
   'abc' ; 1 2 3 ; (i. 2 2) 
+---+-----+---+ 
|abc|1 2 3|0 1| 
|   |     |2 3| 
+---+-----+---+ 

Did you notice that I gave you an inaccurate definition?  If dyad ; just boxed the 
operands and concatenated, its result would be like 
   dyadsemicolon =: dyad : '(<x.) , (<y.)' 
   'abc' dyadsemicolon 1 2 3 dyadsemicolon (i. 2 2) 
+---+-----------+ 
|abc|+-----+---+| 
|   ||1 2 3|0 1|| 
|   ||     |2 3|| 
|   |+-----+---+| 
+---+-----------+ 

That's not the list of boxes we wanted!  Actually dyad ; is more subtle: x ; y 
always boxes x, but it boxes y only if y is unboxed.  That produces the behavior we want 
most of the time; the exception is when the last item in the list is boxed already: 
   (<'abc');(<'def');(<'ghi') 
+-----+-----+---+ 
|+---+|+---+|ghi| 
||abc|||def||   | 
|+---+|+---+|   | 
+-----+-----+---+ 
If we expected all the items to be boxed the same, we are disappointed.  We must develop 
the habit that when we use a sequence of dyad  ;s we box the last operand (unless we are 
sure it is unboxed, and even then we might do it to reinforce our habit): 
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   (<'abc');(<'def');<(<'ghi') 
+-----+-----+-----+ 
|+---+|+---+|+---+| 
||abc|||def|||ghi|| 
|+---+|+---+|+---+| 
+-----+-----+-----+ 

Monad ; (infinite rank) removes one level of boxing from an array of boxes, 
concatenating the contents of all the boxes into one long list.  The shape of the operand of 
; is immaterial.  If the items do not have a common shape—the items of the contents of 
the operand boxes, mind you, not the contents themselves—they are brought up to a 
common shape as described below.  Examples: 
   'abc';'d';'ef' 
+---+-+--+ 
|abc|d|ef| 
+---+-+--+ 
A list of boxes. 
   ; 'abc';'d';'ef' 
abcdef 
The items, which are scalars, are joined into one long list. 
   ; 1 ; 2 3 4 
1 2 3 4 
It works for numbers too. 
   ; (i. 2 3) ; (i. 2 3)  
0 1 2 
3 4 5 
0 1 2 
3 4 5 
The items are lists, so the lists are concatenated into a rank-2 array. 
   ; 1 2 ; i. 2 3 
1 2 0 
0 1 2 
3 4 5 
Here the second box contains a rank-2 array, while the first box contains a rank-1 array.  
The items of highest rank have rank 1, which means that rank-1 items are going to be 
lined up as the items of a rank-2 result.  Any contents of lower rank are brought up to the 
rank of the highest-rank contents, by adding single-length leading axes; that will mean of 
course that the items of all the modified contents have the same rank (but not necessarily 
the same shape).  If the shapes of any of those items differ, verb fills are added to bring 
each axis up to the length of the longest axis; then the items are assembled into a list 
whose rank is 1 higher than the rank of an item.  In this example the concatenated items 
have rank 1, and verb fill was added to bring the single item of the first box up to a length 
of 3. 
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   ; 1 ; ,: 2 3 4 
1 1 1 
2 3 4 
There is one amendment to the processing as described above: if any of the contents is an 
atom, it is replicated to bring it up to the shape of an item of the result before items are 
concatenated.  Here the atom 1 was replicated to become 1 1 1 . 
   ; (,1) ; ,: 2 3 4 
1 0 0 
2 3 4 
Here the first box was a 1-item list rather than an atom, so it was padded with fills rather 
than replicated. 

When we discussed dyad , we glossed over the treatment of operands with different 
shapes.  Now we can reveal that the padding and replication for dyad , is just like what 
monad ; does on the contents of boxes.  In fact, x , y is equivalent to 
; (<x),(<y) . 

When you have an array of boxes, the difference between opening it with monad > 
and with monad ; is that monad > keeps the frame of the array of boxes, and brings 
every opened box up to the same shape, while monad ; just runs the items of the contents 
together into one long list with no regard for the shape of the array of boxes. 

Verbs With More Than 2 Operands—Multiple Assignment 
Dyad ; is part of the standard J method of passing many operands to a verb.  The 

invocation of the verb normally looks like this: 
   verbname op1 ; op2 … ;< opn 
(the < is needed only if opn is boxed), and the verb that is so invoked looks like: 
verbname =: monad define 
'op1 op2 … opn' =. y. 
remainder of verb 
) 

The line 'op1 op2 … opn' =. y. is J's handy multiple assignment.  When the 
target of the assignment is a string, the string is broken into words and the words are 
matched with items of the value being assigned (they must match one-for-one or a length 
error results).  Then, each word from the string is used as a name which is assigned the 
corresponding item of the value.  If the value being assigned is boxed, each item is 
unboxed before it is assigned. 

When defined and invoked as shown above, the variables op1, op2, etc. during 
execution of the called verb will hold the values of op1, op2, etc. in the calling verb. 

Multiple assignment is not restricted to parameter-passing; you may use it as you see 
fit, if only to save typing.  I have found it very useful in loading configuration parameters 
from a file: the file contains both noun-names and the values, with the values being 
assigned to the names by multiple assignment.  Such a design is easily portable from 
release to release of a product, since the file has no 'format'—it simply defines all the 
names it understands. 
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A multiple assignment can produce verbs and modifiers as well as nouns.  You put a 
'`' character before your list of names: 
   '`name1 name2…' =. list of atomic representations 
and each name is assigned the entity described by the atomic representation.  
Each atomic representation is a noun, but it may descibe any kind of entity.  Usually your 
entities will be verbs, and then they can be converted to atomic representations by `, as in 
   '`add subtract mult div' =. +`-`*`% 

Dyad { Revisited 
Now that we know about boxes, we can understand the full description of the 

selection verb dyad { .  In the general form, the left argument of x { y is a box whose 
contents is a list of boxes.  Pictorially, it is 

+---------------------------------------+ 

|+-----------------+-----------------+-+| 

||axis-0 selections|axis-1 selections|…|| 

|+-----------------+-----------------+-+| 

+---------------------------------------+ 

We will call the inner boxes (i. e. the items of the contents of the box x) the selectors.  
The first selector gives the indexes to be selected along the first axis (i. e. axis 0); the 
second selector gives the selections for axis 1; and so on. 
   i. 2 2 3 
0  1  2 
3  4  5 
 
6  7  8 
9 10 11 
   <0;1;1 
+-------+ 
|+-+-+-+| 
||0|1|1|| 
|+-+-+-+| 
+-------+ 
   (<0;1;1) { i. 2 2 3 
4 

If not all axes are specified, the selectors are applied starting with the leading axis and 
any axes left over at the end are taken in full: 
   (<0;1) { i. 2 2 3 
3 4 5 

Each of the selectors may contain either a scalar or a list.  If a selector contains a 
scalar, the corresponding axis will disappear from the shape of the result, as in the 
examples above.  If a selector contains a list, even a list with only one item, the 
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corresponding axis will remain in the shape of the result (its length will be the length of 
the selection list): 
   (<0;1 0) { i. 2 2 3 
3 4 5 
0 1 2 
We select two rows of item number 0.  The rows stay in the order we requested them, and 
the result has rank 2. 
   (<0 1;1 0;2) { i. 2 2 3 
 5 2 
11 8 
Understand where each number came from.  We are taking a 2×2 array of 1-cells, but 
only item 2 from each 1-cell.  That leaves a 2×2 result. 
   (<0;,1) { i. 2 2 3 
3 4 5 
   $ (<0;1) { i. 2 2 3 
3 
   $ (<0;,1) { i. 2 2 3 
1 3 
In the last example we are requesting a list of 1-cells; even though the list has only one 
item, its axis remains in the result. 

If a selector contains a box (rather than the usual numeric), it calls for complementary 
selection along that axis: the contents of that box (i. e. the contents of the contents of the 
selector) indicate the indexes to exclude from the selection, and all other indexes are 
selected.  Such a selector is considered to be specifying the list of non-excluded indexes, 
so the corresponding axis remains in the result.  Example: 
   (<0;1;<<1) 
+---------+ 
|+-+-+---+| 
||0|1|+-+|| 
|| | ||1||| 
|| | |+-+|| 
|+-+-+---+| 
+---------+ 
   (<0;1;<<1) { i. 2 2 3 
3 5 
We select a single 2-cell, and from that a single 1-cell, and within that we select all 
except item 1.  The result is a 2-item list.  Note that we had to put an extra < after the last 
; to ensure that the contents of the last selector was boxed. 
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   (<0;(<0$0);2) 
+--------+ 
|+-+--+-+| 
||0|++|2|| 
|| |||| || 
|| |++| || 
|+-+--+-+| 
+--------+ 
   (<0;(<0$0);2) { i. 2 2 3 
2 5 
Complementary indexing can be used to select all of an axis, as in this example.  We 
request all of axis 1 except the named items, and then we name an empty list: we get all 
the items.  This trick is called for when we need to specify a selector for some axis after 
the axis we want to take completely (trailing axes can be taken in full simply by omitting 
their selectors). 

If our use of x { y does not require any selector to specify a list (i. e. each selector 
is a scalar), we are allowed to omit the boxing of the selectors.  This leaves x as a boxed 
numeric list (or scalar) in which the successive items indicate the single index to be 
selected from each axis.  This form, in which x is <i,j,k…, corresponds to C's 
array[i][j][k]… . 
   <0 1 
+---+ 
|0 1| 
+---+ 
   <0;1 
+-----+ 
|+-+-+| 
||0|1|| 
|+-+-+| 
+-----+ 
   (<0 1) { i. 2 2 3 
3 4 5 
   (<0;1) { i. 2 2 3 
3 4 5 
The results are identical. 

As a final simplification, if the selection is just a single item from axis 0, the left 
operand of dyad { may be left unboxed.  This is the form in which we first met dyad { .  
Now that you have learned dyad { completely, take this quiz: what is the difference 
between 0 1 { y and (<<0 1) { y? 
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   0 1 { i. 6 
0 1 
   (<<0 1) { i. 6 
0 1 
Answer: the results are identical, but because the left rank of dyad { is 0, 0 1 { y 
applies dyad { twice, once for each atom of 0 1, and collects the results into an array, 
while (<<0 1) { y applies dyad { just once. 

Split String Into J Words: Monad ;: 
Monad ;: splits a string of characters into J words, putting each word into a box of 

its own.  Each word is a list of characters, so the result of monad ;: is a list of boxed 
lists: 
   ;: 'Words, words; and more words.' 
+-----+-+-----+-+---+----+------+ 
|Words|,|words|;|and|more|words.| 
+-----+-+-----+-+---+----+------+ 

Monad ;: is a handy way to get boxed character strings, or to break an input stream 
into words if your language has word-formation rules similar to J's.  Be aware that if the 
operand has an unmatched quote, monad ;: will fail. 

Fetch From Structure: Dyad {:: 
Dyad {:: (this is a single primitive) has left rank 1, right rank infinite.  It selects an 

atom from an array of boxes and opens it; it is therefore analogous to the . (class 
member) operator in C: 
   1 {:: 'abc';1 2 3; i. 2 2 
1 2 3 
Item 1 was selected and opened. 

x {:: y can go through multiple levels of structure referencing at once.  If x is a 
list of boxes, the first box must be a valid left argument to dyad {; it is used to select an 
item of y, which is then opened; the next box of x selects an item from that opened box 
of y, which item is then opened; and so on till x is exhausted: 
   struct1 =: 'abc' ; 1 2 3 
   ]struct2 =: 'def';struct1;4 5 6 
+---+-----------+-----+ 
|def|+---+-----+|4 5 6| 
|   ||abc|1 2 3||     | 
|   |+---+-----+|     | 
+---+-----------+-----+ 
Here we have a structure in which item 1 is another structure. 
   1 {:: struct2 
+---+-----+ 
|abc|1 2 3| 
+---+-----+ 
We select and open item 1, resulting in the enclosed structure. 
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   (1;1) {:: struct2 
1 2 3 
We select and open item 1 of struct2, and then open item 1 of the enclosed structure. 
   (1;<<1 0) {:: struct2 
+-----+---+ 
|1 2 3|abc| 
+-----+---+ 
If the last selection specifies a list of items, as in this example, the selected boxes are not 
opened.  Note that the Dictionary's description of dyad {:: incorrectly indicates that the 
boxes are opened. 
   (1;<<,1) {:: struct2 
+-----+ 
|1 2 3| 
+-----+ 
Even if the list contains only one item, it is not opened. 

Only the last box of x may specify selection of a list of boxes: 
   ]a =. <"0 i. 3 3 
+-+-+-+ 
|0|1|2| 
+-+-+-+ 
|3|4|5| 
+-+-+-+ 
|6|7|8| 
+-+-+-+ 
a is a 3×3 array of boxes. 
   (1;1) {:: a 
|rank error 
|   (1;1)    {::a 
The first selection took item 1 of a .  This was a 3-item list of boxes, and it is 
inadmissible to open the list and perform further selections. 

Note that if x is unboxed, dyad {:: first boxes it and then uses it for selection.  The 
Dictionary's description does not mention the boxing step. 

Report Boxing Level: Monad L. 
Monad L. has infinite rank and tells you the boxing level of its operand.  Boxing 

level is defined recursively: if y is unboxed or empty, its boxing level is 0; otherwise its 
boxing level is one greater than the maximum of the boxing levels of its opened items: 
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   1 ;< 2 ;< 3 ;< 4 
+-+---------+ 
|1|+-+-----+| 
| ||2|+-+-+|| 
| || ||3|4||| 
| || |+-+-+|| 
| |+-+-----+| 
+-+---------+ 
   L. 1 ;< 2 ;< 3 ;< 4 
3 
   L. {. 1 ;< 2 ;< 3 ;< 4 
1 

You can use monad L. to decide how many levels of boxing to remove: 
   >^:L. <<<6 
6 

Note that an empty boxed list shows boxing level of 0, but the type revealed by 3!:0 
is 'boxed'.  Also, fill elements for an empty boxed list are the boxed fill element a: : 
   L. 0$a: 
0 
   3!:0 (0$a:) 
32 
   3 {. 0$a: 
++++ 
|||| 
++++ 
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17. Verb-Definition Revisited 

Before we discuss verbs in more detail, let me point out that the colon character (:), 
which you have seen used mostly as a suffix to create new primitives, has its own 
meaning when it is used alone or as the first character of a primitive: : is a conjunction, 
and so are :. and :: .  The dot (.) also has a meaning but we won't be discussing it for 
a while.  If you want . or : not to be treated as a suffix, make sure you precede it by a 
space: 3 : 'y.' defines a verb, while 3: 'y.' applies the verb 3: to the noun 
'y.' producing the result 3 . 

What really happens during m :n and verb define 
Now that you're getting older it's time we had a little talk.  About verbs.  Up till now 

the verb-definition sequence has been exotic and peculiar, with a unique form; a 
possessor of great power but shrouded in mystery.  We know only that it somehow 
breathes life into lines of text: 
name =: verb define 
verb definition 
) 
or 
name =: verb : 'verb definition' 
leaving name a verb. 

With a layer of cosmetics scrubbed off it is more approachable.  In both cases the 
conjunction m :n is at work.  m must be a number, and n may be either a character string 
or the special number 0 (a boxed list is also possible but we consider it a curiosity).  
m :n executes the conjunction : with the arguments m and n; the result of this execution 
is an entity which can be any of the primary parts of speech (noun, adverb, conjunction, 
verb), and m indicates which one: m=0 means noun, 1 means adverb, 2 means 
conjunction, 3 means verb, 4 means dyadic verb; 10-13 have meanings we will learn 
later.  You can remember the numbers 0-2 because nouns take no operands, adverbs 1, 
and conjunctions 2; verbs are last in the precedence order so they get number 3, and 
dyadic verbs with their extra operand get number 4.  If n is a character string, it supplies 
the text of the entity (which, again, is given the part of speech indicated by m); if n is 0, 
the interpreter interrupts what it's doing at the moment it executes the : conjunction, and 
reads lines from its input source until it finds one that contains only the word ')'; 
execution of the interrupted sentence then continues, with the text of those lines 
becoming the right argument to : and thence the text of the defined 
noun/adverb/conjunction/verb.  If the verb is defined in a script file, the input source (for 
lines to satisfy m :0) is the script file; otherwise the input source is the keyboard.  If you 
forget the ) in a definition at the end of a script file, the interpreter will switch over to 
keyboard input and you will find the system unresponsive until you satisfy it by typing 
) . 
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So what's with this 'verb define' lingo?  Simple: when you start J, you get a few 
names defined automatically, and verb and define are two of them—as you can see 
by asking the interpreter what their values are: 
   verb 
3 
   define 
:0 
—so when you use verb define you are really executing 3 :0 to produce a verb; 
similarly dyad : 'one-line definition' is the same as 
4 : 'one-line definition' which executes the : conjunction to produce a 
dyadic-verb result. 

The point is that a verb-definition sequence is just an instance of a compound verb 
produced by a conjunction, and the resulting verb can appear anywhere a verb is allowed.  
You may assign the verb to a name but that's not required.  Here are some examples 
showing how a definition is just an ordinary part of a sentence: 
   addrow =: monad : '+/y.' "1 
We define the verb, using the : conjunction, and then we give the resulting verb a rank 
using the " conjunction.  This is a principle to live by: Always make sure any verb you 
define has the proper rank.  Following this rule will save you untold trouble by 
guaranteeing that the verb is applied to the rank of cell that you intended.  The verb 
produced by the : conjunction has infinite rank; here, we expect to apply our verb on 
lists, so we assign a rank of 1 before we assign the verb to the name addrow . 
   (3 : '+/y.') i. 6 
15 
See?  we define a verb, then we execute it.  It doesn't have to be assigned to a name.  The 
distinction between code and data is not sharp as it is in C. 
   a =. '+/';'*/' 
   b =. (0{::a),'y.' 
   (3 : b) 1 2 3 4 5 6 
21 
b is '+/y.' so we can use it as the text of a verb which we then execute. 
   b =. (1{::a),'y.' 
   (3 : b) 1 2 3 4 5 6 
720 
Here b is '*/y.' .  In a later chapter we will explore the delights that result from being 
able to change the text of a program while you are executing it. 

Remember: make sure the verbs you define have the proper 
rank. 

Compound Verbs Can Be Assigned 
Since we now understand that verb define is just a conjunction producing a verb 

result, and we know that we can assign its result to a name, we wonder whether we are 
allowed to assign any compound verb to a name.  Yes indeed, we can, as we saw in the 
assignment to addrow in the previous section.  Any verb can be assigned to a name: 
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   dotprod =: +/@:*"1 
Dot-product of two lists is the sum of the products of respective pairs of elements in the 
lists. 
   1 2 3 dotprod 1 2 3 
14 
dotprod takes the dot-product. 
   veclength =: %:@:(dotprod~)"1 
The length of a vector is the square root of its dot-product with itself. 
   veclength 1 2 3 
3.74166 

Dual-Valence verbs: u :v 
u :v also defines a verb of infinite rank but it is completely different from m :n .  

The defined verb is u if it is used monadically, but v if used dyadically: 
   bv =. (monad : '+/y.') : (dyad : 'y. - x.') 
   bv i. 7 
21 
   2 bv i. 7 
_2 _1 0 1 2 3 4 
You can see that the appropriate valence was chosen based on whether the verb was 
executed as a dyad or as a monad. 

u :v is often used to assign a default left operand to a dyadic verb: 
   pwr =: 2&pwr : (dyad : 'x.^y.') 
If you execute pwr as a dyad you get x^y .  If you execute it as a monad you get 
2 pwr y which is then executed (using the dyadic valence of pwr) to become 
2 ^ y : 
   3 pwr 4 
81 
   pwr 4 
16 

The Suicide Verb [: 
The verb [: fails if it is executed.  Use it as one side of u :v to produce a verb that 

fails if it is used with the wrong valence.  Example: 
   i. 100 110 120 130 
|out of memory 
|       i.100 110 120 130 
Oops, we thought we were looking those values up in a list.  We're lucky that we just ran 
out of memory—sometimes using the wrong valence of a verb can have catastrophic 
consequences.  To prevent it, use 
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   dyadi =: [: : i. 
   dyadi 100 110 120 130 
|valence error: dyadi 
|       dyadi 100 110 120 130 
   100 130 150 dyadi 100 110 120 130 
0 3 3 1 

[: also has a special meaning when it appears in a fork, which we will encounter 
later. 

Multi-Line Comments Using 0 :0 
We know that all comments in J start with NB. and go only to the end of the line.  

There is no way to extend a comment to more than one line, but there is a way to put a 
series of non-executing lines into a script without having to have NB. in each of them.  
You simply define a noun using 0 :0 and put your comment inside the noun: 
   0 :0 
This is the first line of a comment. 
The lines of the comment will become a noun; but, 
since the noun is not assigned to anything, it simply 
disappears. 
) 

Final Reminder 
Remember: make sure the verbs you define have the proper 

rank. 
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18. u^:_1, u&.v, and u :.v 

The Obverse u^:_1 
What would it mean to apply a verb a negative number of times?  Applying a verb _1 

times should undo the effect of applying the verb once.  In J, u^:n applies the verb u n 
times, and u^:_1 is defined as the verb that undoes the effect of applying u once.  
u^:_1 is called the obverse in J, and where possible it is the same as the mathematical 
inverse of u (or x&u in the dyadic case).  Examples: 
   >: 4 
5 
   >:^:_1 (5) 
4 
Monad >: adds 1; its obverse subtracts 1. 
   *&2^:_1 (10) 
5 
Monad *&2 multiplies by 2; its obverse divides by 2. 
   2 *^:_1 (10) 
5 
In the dyadic case, the obverse of x&u is applied.  The obverse of 2&* is %&2 . 

Not all verbs have obverses; you can see the obverse of a verb v, if there is one, by 
typing v b. _1 : 
   +&2 b. _1 
-&2 
   (%&5)@:(+&1) b. _1 
-&1@:(5&*) 
   $ b. _1 
|domain error 
There is no obverse for monad $ . 

Some of J's obverses are very ingenious, and you can have a pleasant afternoon 
experimenting to find them.  Most of them are listed in the Dictionary under the ^: 
conjunction. 

Apply Under Transformation: u&.v and u&.:v 
Using its ability to apply the obverse of a verb, J provides a feature of great elegance 

and power with the conjunction u&.v (monadic or dyadic).  u&.v (all of whose ranks 
are the ranks of monad v) executes u after a temporary change in representation given by 
monad v .  Formally, u&.v y is v^:_1@u@v y; informally, x u&.v y is 
v^:_1 (v x) u (v y) applied to each cell of x and y, with the results collected as 
usual (we will learn a formal notation for this later).  The idea is that you change the 
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operands using the transformation given by v; then do your work with u; then invert the 
transformation with v^:_1 .  Examples: 
   (<1) +&.> 4;5;6 
+-+-+-+ 
|5|6|7| 
+-+-+-+ 
We add x to y; the transformation is that we remove the boxing before we add, and put it 
back after we finish.  The verb +&.> has rank 0 (since monad > has rank 0), so here the 
scalar x is replicated to the shape of y before the unboxing occurs.  fndisplay shows 
the details, where open` means the inverse of open : 
   defverbs 'plus"0 open"0' 
   (<1) plus&.open 4;5 
+--------------------------+--------------------------+ 
|open` (open 1) plus open 4|open` (open 1) plus open 5| 
+--------------------------+--------------------------+ 
 
   <.&.(10&*) 4 4.43 4.89 
4 4.4 4.8 
<. y finds the largest integer not greater than y; by temporarily multiplying by 10 we 
truncate y to the next-lower tenth. 

We can easily define a verb to take the arithmetic mean (i. e. the average) of a list: 
   mean =: monad : '(+/ y.) % #y.' 
   mean 1 2 4 
2.33333 
If we want to take the geometric mean, we could define a new verb to multiply and take 
the root, or we could just take the arithmetic mean of the logarithms and then undo the 
logarithm: 
   mean&.(^."_) 1 2 4 
2 
Note that we had to use a verb of infinite rank as v so that u would be applied to the 
entire list.  This is a common enough pattern that the conjunction &.: is provided which 
is just like &. but with infinite rank.  We could have used mean&.:^. here. 

To add 10 minutes to a time represented as hours,minutes,seconds, we can transform 
to seconds after midnight, do the addition, and transform back: 
   0 10 0 +&.(24 60 60&#.) 13 55 0 
14 5 0 

Suppose we had a list of boxed scalar numbers, and we wanted to add them and leave 
the result boxed.  How can we do it? 
   ]a =. <"0 i. 6 
+-+-+-+-+-+-+ 
|0|1|2|3|4|5| 
+-+-+-+-+-+-+ 
The easy way is 
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   < +/ > a 
+--+ 
|15| 
+--+ 
but after you get used to &., you will find that 
   +/&.:> a 
+--+ 
|15| 
+--+ 
seems clearer, because it expresses the temporary nature of the unboxing/reboxing.  As 
an exercise, take the time to see why 
   +&.>/ a 
gives the same answer but 
   +/&.> a 
does not. 

Defined obverses: u :.v 
u :.v has the same ranks as u, and it produces the same result as u, except that the 

obverse of u :. v is v .  By defining verbs with appropriate obverses, you make it 
possible to use &. and ^:_1 with them.  For example, in a finance application it is 
necessary to deal with dates in both (year,month,day) form and 'market day' form (for 
example, if Friday is market day number 1200, the following Monday will be market day 
number 1201).  If you have written routines to convert between them: 
ymdtomd =: dyad : 'definition' 
mdtoymd =: dyad : 'definition' 
you would be well advised to make them obverses of each other: 
ymdtomd =: dyad : 'definition' :. mdtoymd 
mdtoymd =: dyad : 'definition' :. ymdtomd 
so that if you want to find the (y,m,d) date of the next market day after the date ymd, you 
simply code 
1&+&.ymdtomd ymd 
and J will convert ymd to a market day, add one, and convert back to (y,m,d) form. 

u&:v and u&v 
x u&:v y has infinite rank and is the same as (v x) u (v y) .  It resembles 

u&.y but without the application of the obverse.  It is just a way of saving a few 
keystrokes.  x u&v y is like x u&:v y except that its ranks are both the same as the 
rank of monad v .  As with @: and @, you are advised to stick to u&:v unless you are 
sure you need u&v . 

The monadic forms u&v y and u&:v y are equivalent to u@v y and u@:v y 
respectively.  Avoid them. 
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An observation about dyadic verbs 
We noted earlier that usually if a dyad x v y is not symmetric (i. e. if x and y are 

treated differently), the x operand is the one which is more like control information and 
the y operand is the one more like data.  We can see now that this is a consequence of the 
definition of x u^:v y : the verb that is applied repeatedly, or the verb whose obverse 
is taken, is x&u; only the value of y changes between executions of u .  When you 
define dyadic verbs, you should take care to follow the same rule in assigning the left and 
right operands. 
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19. Performance: Measurement & Tips 

J lets you express your ideas tersely, but it is up to you to make sure they are good 
ideas.  Since each keystroke in a J sentence can summon up billions of machine cycles, 
you must make sure that you don't force the interpreter into a bad choice of algorithm.  
This will be hard at first, when you are struggling to figure out what the interpreter is 
doing, never mind how it is doing it; fortunately the interpreter gives you tools to 
measure the performance of your code. 

If you run the JforC script with 
load 'system\packages\misc\jforc.ijs' 
it will define the verb Ts.  Ts stands for 'time and space' and it tells you how long it 
takes to run a given J sentence, and how much space the interpreter used during the 
execution.  For example: 
   a3 =. i. 1000 
   Ts '+/\ a3' 
4.3581e_5 5248 
We define a noun a3, and we calculate the running total of its items.  It took 0.00004 
seconds to create the 1000-item running total, and used 5248 bytes.  We could have done 
the whole operation in one line with Ts '+/\ i. 1000', but the monad i. uses time 
and space too, so if we want to find out only what is used by +/\, we make sure that's all 
we measure. 

We can use Ts to start to understand what can make J programs slow.  Let's define a 
verb to do the addition operation: 
   sum =: dyad : 'x. + y.'"0 
sum is an exact replacement for dyad +, having the same rank and function.  Replacing + 
with sum does not change the result of a sentence: 
   +/\ i. 7 
0 1 3 6 10 15 21 
   sum/\ i. 7 
0 1 3 6 10 15 21 

But the performance is quite different, as we can measure: 
   a10 =. i. 10 
   1000 Ts '+/\ a10' 
2.68191e_5 1280 
Because +/\ is so fast, we give Ts a left argument to report the average time over 1000 
runs.  If we just ran the sentence once, the result would be corrupted by small timing 
variations introduced by the operating system.  sum/\ is not so fast so we run it only 
once: 
   Ts 'sum/\ a10' 
0.00181867 3648 
Quite a difference: in this running total sum seems to be about 50 times slower than + .  
Let's just try adding a list to itself (remember that u~ y is equivalent to y u y): 
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   1000 Ts '+~ a10' 
2.68191e_5 896 
   100 Ts 'sum~ a10' 
0.00033021 2560 
Yes, sum is definitely slower than +, though only by a factor of 10 or so this time.  Why 
should it be slower?  The answer is, Because it deals with atoms.  Since J verb-definitions 
are not compiled, but interpreted line-by-line on each execution, every single time we add 
two numbers with sum, the interpreter has to parse 'x. + y.' and perform the 
addition.  Why, it's a miracle that it only slows down by a factor of 10!  The lesson is that 
if you define verbs with small rank, the interpretive overhead will be significant. 

Still, that doesn't fully explain why sum/\ is so much slower than +/\ .  Let's 
investigate further by increasing the size of the operand: 
   a20 =. i. 20 
   1000 Ts '+/\ a20' 
2.68191e_5 1280 
   Ts 'sum/\ a20' 
0.00728641 3648 
+/\ is unchanged when we move to a list of 20 items—the operation is so fast that time 
is being spent starting the verb rather than running it—but sum/\ slows down 
noticeably.  Interesting; let's try bigger and bigger operands: 
   a40 =. i. 40 
   1000 Ts '+/\ a40' 
2.76572e_5 1408 
   Ts 'sum/\ a40' 
0.0299561 4160 
 
   a100 =. i. 100 
   1000 Ts '+/\ a100' 
2.76572e_5 1664 
   Ts 'sum/\ a100' 
0.185741 5184 
 
   a400 =. i. 400 
   1000 Ts '+/\ a400' 
3.77143e_5 3200 
   Ts 'sum/\ a400' 
3.00367 11328 
Holy cow!  On a 400-item list, sum/\ is 80000 times slower than +/\!  What 
happened? 

Recall what monad sum/\ is really doing.  It applies monad sum/ to the first item of 
the list; then to the list made of the first 2 items; then the list made of the first 3 items; 
and so on.  At each evaluation of monad sum/, the dyad sum verb is interleaved between 
the items and the result is evaluated right-to-left.  The problem is, the interpreter doesn't 
analyze sum to know that it is associative—that x sum (y sum z) is the same as 
(x sum y) sum z—so it doesn't know that it can use the result from one subset as an 
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input to the operation for the next subset, and it winds up performing every single 
addition: for the 400th item it adds all 400 numbers together.  That's why its time 
increases as the square of the length of the list. 

Monad +/\ is fast because the interpreter knows that dyad + is associative, and 
therefore it reuses the result from one subset as input to the next, producing each item of 
the result with a single addition. 

Well then, can we give a hint to the interpreter that sum is associative?  Alas, no, but 
we have another trick up our sleeve.  Consider monad sum/\., which applies 
monad sum/ to successive suffixes.  If the interpreter is clever, it will notice that if it 
starts with the smallest suffix—the one made up of just the last item—and processes the 
suffixes in order of increasing size, it will always be evaluating 
x sum (previous suffix result), and right-to-left evaluation implies that the 
result of the previous suffix can always be used as the right operand to each application 
of monad sum, without needing any knowledge of associativity.  Let me tell you, this 
interpreter is nothing if not clever, and that's just what it does.  All we have to do is to 
convert our sum/\ into a variant of sum/\. .  The way to do that is simple: we reverse 
the order of the items, apply sum/\., and reverse the order again: 
   sum/\.&.|. i. 7 
0 1 3 6 10 15 21 

This arises enough to be a standard J idiom: use it whenever you need to apply an 
associative verb on prefixes.  It's much faster: 
   Ts 'sum/\.&.|. a400' 
0.014805 59264 
Still not as fast as +/\, but the suffix version uses time proportional to the number of 
items rather than the square of the number of items. 

Compounds Recognized by the Interpreter 
The interpreter recognizes a great many compounds and has special code to perform 

the compound functions.  For example, we have learned that u@:v y gives the same 
result as u v y, but it does not follow that the two forms are identical: +/@:, y is 
faster than +/ , y .  How do know what forms are handled with special code? 

An appendix to the Dictionary gives a list of special code in the interpreter (press F1 
to bring up help; then click on 'Dic' at the top of the page to bring up the Contents page; 
the appendices are listed at the end of the contents).  There we see that there is special 
code for f/@:, so we know to use that form.  Similarly, farther along we see that 
x i.&1@:< y has special coding, so we know to prefer that form over 
(x < y) i. 1 .  This list changes from release to release, so you should review it 
occasionally. 

J's performance is very good even if you pay no attention whatsoever to which 
compounds have special coding, but if you're going to code a lot of J you might as well 
learn the interpreter's preferred idioms. 



 110

Use Large Verb-Ranks! and Integrated Rank Support 
'Think big' is a watchword not just for program design, but for coding as well.  

Starting a primitive has a small cost, but if you start a primitive for each atom of a large 
array, the cost will add up.  To reduce the time spent starting primitives, apply them to 
the biggest operands possible.  This means, Use as large a verb-rank as you can.  See 
what a difference a tiny change can make: 
   a =. i. 100000 10 
   Ts 'a -@+ a' 
3.96384 4.19552e6 
   Ts 'a -@:+ a' 
0.12801 8.3895e6 
These two verbs produce identical results, but -@+ is 30-fold slower than -@:+ on this 
large operand.  The reason is that -@+ has rank 0 (taken from the rank of +), while -@:+ 
has infinite rank.  Rank 0 means that each pair of atoms is fed individually through the 
verb. So, when -@+ is executed, two primitives are started for each pair of atoms, one to 
add and the other to change the sign. Execution of -@:+ requires only two primitive-
starts for the entire array. 

You do not need to worry much about the ranks at which individual primitives are 
applied, because of an important feature of J called integrated rank support.  When a 
verb with integrated rank support is used as the u in u"n, the resulting verb runs with a 
single primitive-start and the application of the verb on the proper cells is handled within 
the primitive.  So, 
   100 Ts 'a + a' 
0.0623949 4.19501e6 
   100 Ts 'a +"0 a' 
0.248846 4.19526e6 
   100 Ts 'a +"1 a' 
0.0681035 4.19526e6 
   100 Ts 'a +"2 a' 
0.0626361 4.1952e6 
All these forms produce identical results.  The weak dependence of the speed on the rank 
is typical of a verb with integrated rank support.  Fastest execution is achieved when the 
verb is used alone, but the form u"n still runs fast, and the higher the rank, the less the 
loop-control overhead.  The Special Code page referred to in the previous section 
includes the long list of the primitives with integrated rank support. 

The practical effect of integrated rank support is that you don't need to worry much 
about using the largest possible rank for primitives.  In compounds and verbs that you 
write, you do need to keep the rank high: 
   Ts '(<a:;1) { a' 
0.00939758 525568 
   Ts '1 {"1 a' 
0.00952329 525184 
Integrated rank support in dyad { gives the two forms equal performance.  Look what 
happens when we replace the { by a user-defined verb with the same function: 
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   from =. { 
   Ts '(<a:;1) from a' 
0.00953335 525760 
   Ts '1 from"1 a' 
0.365966 525696 
from lacks integrated rank support, even though it is defined to have the same function 
as {, and it suffers when it is applied to each 1-cell.  This is a good reason for you to 
learn the J primitives and not replace them with mnemonic equivalents. 
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20. Input And Output 

Foreigns 
In J, all file operations are handled by foreigns which are created by the foreign 

conjunction !: .  The foreigns are a grab-bag of functions and you would do well to 
spend some time glancing over their descriptions in the Dictionary so you'll have an idea 
what is available.  All the foreigns defined to date in J are of the form m!:n with 
numeric m and n, and they are organized with m identifying the class of the foreign.  For 
example, the foreigns for operations on files have m=1. 

File Operations 1!:n; Error Handling 
The foreigns 1!:n perform file operations.  For ease of use I have given several of 

them names in jforc.ijs .  To see the details of what they do, read the Dictionary. 

Monad 1!:1 (ReadFile) has rank 0 .  1!:1 y takes a filename as y and produces a 
result that is a list of characters containing the text of the file.  In our examples, the 
filename is a boxed character string; y can be a file number but we won't get into that. 
   s =. 1!:1 <'system\packages\misc\jforc.ijs' 
   s 
NB. File definitions for'J For C Programmers' 
NB. Copyright (c) 2002 Henry H. Rich 
… 

Dyad 1!:2 (WriteFile) has rank _ 0 .  1!:2 y writes to the file y, using the 
character string x to provide the contents.  Any existing file y is overwritten.  y is a 
boxed character string or a file number. 
   ('Test Data',CR,LF) 1!:2 <'c:\Temp\temp.dat' 

Dyad 1!:3 (AppendFile) has rank _ 0 .  x 1!:3 y appends the character string x 
to the of file y (creating the file if it does not exist): 
   ('Line 2',CR,LF) 1!:3 <'c:\Temp\temp.dat' 

Monad 1!:55 (EraseFile) has rank 0 .  1!:55 y erases the file y with no 
prompting.  Be careful: the power of J makes it possible for you to delete every file 
on your system with one sentence. 

The special file number 2 sends output to the screen.  The verb monad Display in 
jforc.ijs uses file number 2 to display its operand (which must be a character string) 
on the screen; you can put Display sentences in a long verb to see intermediate results.  
In most cases you will prefer to use printf, described below. 

There are many other 1!:n foreigns to manage file locks, query directories, handle 
index read/write, and do other useful things.  The Dictionary describes them, and I will 
add only that the description of 1!:12 is misleading: the length to be written is implied 
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by the string argument x and must not be included in y; therefore item 1 of y is a boxed 
scalar, rather than a boxed list of 2 integers as for 1!:11 . 

Error Handling: u ::v, 13!:11, and 9!:8 
When you deal with files you have to expect errors, which will look something like 

   s =. 1!:1 <'c:\xxx\yyy.dat' 
|file name error 
|   s=.    1!:1<'c:\xxx\yyy.dat' 
indicating that the file was not found. 

You can set up your verbs to catch errors instead of interrupting with a message at the 
console.  We will learn one way here and another later when we study control structures 
for J verbs.  The compound u ::v has infinite rank, and can be applied either 
monadically or dyadically.  u ::v executes the verb u first (monad or dyad, as 
appropriate); if u completes without error, its result becomes the result of u ::v; but if 
u encounters an error, v is then executed, and its result becomes the result of u ::v : 
   rerr =: 1!:1 :: (13!:11) 
rerr y will execute 1!:1 to read y; if that fails it will execute the foreign 13!:11 .  
13!:11 y ignores y and produces as result the error number of the last error 
encountered.  This means that if 1!:1 succeeds, the result of rerr will be a string, 
while if 1!:1 fails, the result will be a number: 
   rerr <'system\packages\misc\jforc.ijs' 
NB. File definitions for'J For C Programmers' 
NB. Copyright (c) 2002 Henry H. Rich 
… 
 
   rerr <'c:\xxx\yyy.dat' 
25 

You could use 3!:0 to see whether the result of rerr is a string or a number (2 
means string, 1, 4, 8, or 16 means number).  If you want to see the error message 
associated with an error number, there's a foreign 9!:8 to give you the list of errors (it 
ignores its y too): 
   25 { 9!:8 '' 
+-----------------+ 
|file number error| 
+-----------------+ 

Treating a File as a Noun: Mapped Files 
Rather than reading a file and assigning the data to a noun, you can leave the data in a 

file and create a noun that points to the data.  The data will be read only when the noun is 
referred to.  This is called mapping the file to a noun. 

J's facilities for mapping files are described in the Lab 'Mapped Files'.  A quick 
example of a mapped file is 
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   require 'jmf' 
   JCHAR map_jmf_ 'text'; 'system\packages\misc\jforc.ijs' 
after which the noun text contains the data in the file: 
   45 {. text 
NB. File definitions for'J For C Programmers' 
Moreover, if you assign a new value to text, the file will be modified. 

If you are dealing with large files, especially read-only files or files that don't change 
much, mapping the files can give a huge performance improvement because you don't 
have to read the whole file.  You must be very careful, though, if you map files to nouns, 
because there are unexpected side effects.  If we executed 
   temp =: text 
   temp =: 'abcdefgh' 
we would find that the value of text had changed too!  (If you try this, use a file you 
don't mind losing).  The assignment of text to temp did not create a copy of data of 
text, and when temp was modified, the change was applied to the shared data.  If a file 
is mapped to a noun, you have to make sure that the noun, or any copy made of the noun 
in any verb you pass the noun to, is not changed unless you are prepared to have some or 
all of the other copies changed.  This topic is examined in greater depth under 'Aliasing 
of Variables' in the chapter on DLLs. 

If the faster execution is enticement enough for you to take that trouble, you can 
consult the Lab to get all the details. 

Format Data For Printing: Monad And Dyad ": 
Since J reads and writes all files as character strings, you will need to be able to 

convert numbers to their character representation.  Dyad ": has rank 1 _ .  y may be 
numeric or boxed, of any rank (we will not consider boxed y here).  If x is a scalar it is 
replicated to the length of a 1-cell of y .  If y is numeric, each 1-cell of y produces a 
character-list result, with each atom in the 1-cell of y being converted to a character 
string as described by the corresponding atom of x and with the results of adjacent 0-cells 
being run together; the results from all 1-cells are collected into an array using the frame 
with respect to 1-cells.  That sounds like the description of a verb with rank 1; almost so 
but not quite, because ": looks at the entire y and adds extra spaces as necessary to make 
all the columns line up neatly. 

A field descriptor in x needs two numbers, w and d .  These are represented as the 
real and imaginary parts of a complex number, so that only a single scalar is needed to 
hold the field descriptor.  The real part of the field descriptor is w, and it gives the width 
of the field in characters.  If the result will not fit into the field, the entire field is filled 
with asterisks; to prevent this you may use a w of 0 which will cause the interpreter to 
make the field as wide as necessary.  The imaginary part of the field descriptor is d, 
giving the number of digits following the decimal point.  If either w or d is less than zero, 
the result is in exponential form (and the absolute value of w or d gives the corresponding 
width), otherwise the result is in standard form.  Examples: 
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   0 ": i. 4 4 
 0  1  2  3 
 4  5  6  7 
 8  9 10 11 
12 13 14 15 
Note that extra spaces were added to the one-digit values to make them line up.  Note 
also that 'enough space' includes a leading space to keep adjacent results from running 
together. 
   1 ": i. 4 4 
0123 
4567 
89** 
**** 
When you specify a width, you are expected to mean it, and no extra space is added.  
Here two-digit results would not fit and were replaced with '*'. 
   0 0j3 0j_3 ": 100 %~ i. 3 3 
0 0.010  2.000e_2 
0 0.040  5.000e_2 
0 0.070  8.000e_2 
A complex number has its parts separated by 'j' .  Here the first field is an integer, the 
second has 3 decimal places, and the third is in exponential form. 

When dyad ": is applied to an array, the result has the same rank as y .  If you need 
to write that result to a file, you will need to use monad , to convert it to a list, possibly 
after adding CR or LF characters at the ends of lines. 

Monad ": 
Monad ": resembles dyad ": with a default x, except that x depends on the value of 

the corresponding atom of y .  The simple description of monad ": is that it formats 
numbers the way you'd like to see them formatted.  The full description is as follows: The 
precision d is given by a system variable that can be set by the foreign 9!:11 y (and 
queried by 9!:10 y; initially it is 6) ; as a quick override you may use the fit 
conjunction ":!.d to specify the value of d for a single use of ": .  If an atom of y is 
an integer, a field descriptor of 0 is applied; if the atom has significance in the first 4 
decimal places, a field descriptor of 0jd is applied; otherwise a field descriptor of 0j_3 
is applied.  Trailing zeros below the decimal point are omitted. 
   9!:10 '' 
6 
   ": 0 0.01 0.001 0.000015 0.12345678 2 
0 0.01 0.001 1.5e_5 0.123457 2 
In spite of all the detail I gave about the default formatting, in practice you just apply 
monad ": to any numeric operand and you get a good result.  Monad ": accepts 
character arguments as well and leaves them unchanged: 
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   ; ":&.> 'Today ';'is ';2002 1 24 
Today is 2002 1 24 
We went inside the boxes with &.> and formatted each box's contents with monad ":; 
this made all the contents strings and we could run them together using monad ; .   

Monad ": also converts boxed operands to the character arrays, including boxing 
characters, that we have seen in the display of boxed nouns. 

Format binary data: 3!:n 
If you need to write numbers to files in binary format, you need something that will 

coerce your numbers into character strings without changing the binary representation.  J 
provides the foreigns 3!:4 and 3!:5 for this purpose.  Each is a family of conversions, 
invoked as a dyad where the left operand selects the conversion to be performed. 

2 (3!:4) y converts the numeric list y to a character string, representing each 
item of y by 4 characters whose values come from the binary values of the low-order 32 
bits of y : 
   16b31424334 
826426164 
This is an integer whose value is 0x31424344.  We can convert it to a character string: 
   2 (3!:4) 826426164 
4CB1 
The 4 characters (with values 0x34, 0x43, 0x42, 0x31) correspond to the bits of the 
number 826426164 in little-endian order. 
 We can use a. i. to look at the codes for each character in case they are not 
printable: 
   a. i. 2 (3!:4) 1000 100000 
232 3 0 0 160 134 1 0 
232 3 0 0 corresponds to 1000 and 160 134 1 0 to 100000 . 

_2 (3!:4) y is the inverse of 2 (3!:4) y, converting a character string to 
integers: 
   _2 (3!:4) '4CB15CB1' 
826426164 826426165 

The other integer conversions are similar.  1 (3!:4) y converts the low-order 16 
bits of each item of y to 2 characters, and _1 (3!:4) y converts back to integers, 2 
characters per integer.  0 (3!:4) y is like _1 (3!:4) y but the integers are 
unsigned (i. e. in the range 0-65535). 

The floating-point conversions are analogous.  2 (3!:5) y converts each item of 
y to 8 characters representing long floating-point form, and _2 (3!:5) y converts 
back; 1 (3!:5) y and _1 (3!:5) y use 4-character short floating-point form. 
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printf, sprintf, and qprintf 
When you need formatted lines for printing you may feel at home using printf and 

sprintf, which work like their C counterparts.  printf displays a line, while 
sprintf produces a string result: 
   'The population of %s is %d\n' printf 'Raleigh';240000 
The population of Raleigh is 240000 
 
   s =. 'The total of %j is %d.\n' sprintf 1 2 3;+/1 2 3 
   s 
The total of 1 2 3 is 6. 

You need to execute 
load 'printf' 
to get the printf verbs defined.  J's printf contains a few features beyond C's such 
as the %j field type seen above.  You should run the Lab 'Formatting with printf' for 
details. 

One feature with no analogue in C is qprintf, which produces handy typeout for 
debugging: 
   a =. 3 4 5 [ b =. 'abc';'def';5 [ c =: i. 3 3 
   qprintf 'a b c ' 
a=3 4 5 b= 
+---+---+-+ 
|abc|def|5| 
+---+---+-+ 
 c= 
0 1 2 
3 4 5 
6 7 8 
qprintf is described in the 'Formatting with printf' lab. 

Convert Character To Numeric: Dyad ". 
Dyad ". has infinite rank.  x ". y looks for numbers in the words of y, which 

must be a character array.  Words representing valid numbers are converted to numbers; 
words not representing valid numbers are replaced by x .  If 1-cells of y have differing 
numbers of numbers, x is used to pad short rows.  'Valid numbers' to dyad ". are 
anything you could type into J as a number, and more: the negative sign may be '-' 
rather than '_'; numbers may contain commas, which are ignored; and a number may 
start with a decimal point rather than requiring a digit before the decimal point.  With the 
relaxed rules you can import numbers from a spreadsheet into J, using x&". to convert 
them to numbers: 
   999 ". '12 .5 3.6 -4 1,000 x25' 
12 0.5 3.6 _4 1000 999 
All legal numbers except for 'x25' . 
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21. Calling a DLL Under Windows 

Interfacing to a DLL is one thing you can do the old-fashioned way: by getting a copy 
of a working program and editing it.  You can find starter programs in the J distribution. 
A good one to start with is \system\packages\winapi\registry.ijs.  You 
can glance through this program to see what it does.  It starts with 
require 'dll' 
which defines the verb cd .  Calls to the DLL appear in lines like 
rc =. 'Advapi32 RegCreateKeyExA i   i *c i *c i i i *i *i' 
      cd   root;key;0;'';0;sam;0;(,_1);(,_1) 
(this is a single line in the program; I have shown it here as 2 lines because it won't fit on 
the page as a single line) 

This example exhibits the elements of a call to a DLL.  The left operand of cd is a 
character list describing the function to be called and what arguments it is expecting.  
Here we are calling the entry point RegCreateKeyExA in the library Advapi32.  The 
sequence of is and *cs describes the interface to the function.  The first item in that 
sequence describes the type of value returned by the function; the other items are the 
arguments to the function and are a one-for-one rendering of the argument list that would 
be passed in C.  So, the line above is appropriate for calling a function defined with the 
prototype 
int RegCreateKeyExA(int, char *, int , char *, int, int, int, int *, int *); 

The descriptors can be c (char), s (short) , i (int), f (float), d (double), j 
(complex), or n (placeholder—a value of 0 is used and the result is ignored); all but n 
can be preceded by * to indicate an array of that type.  * by itself indicates an array of 
unspecified type. 

The right operand of cd is the actual arguments to be passed to the called function.  It 
must be a list of boxes in which the contents of each box holds one argument to the called 
function (there is no box to correspond to the returned value).  An argument whose 
description does not include * must correspond to a boxed scalar of the appropriate type.  
An argument described with * must correspond to a box whose contents are either an 
array or a boxed memory address (see below).  The address of the array or memory area 
is passed to the DLL and the DLL may modify the array or memory area; this is how you 
return an array from the function. 

s and f are not native J types.  A scalar argument described by s or f is converted by 
the interpreter to the correct form, while an argument described by *s or *f is assumed 
to point to a memory area with the correct format. 

Note that if you get things wrong and the function scribbles outside the bounds of an 
array, J may crash.  Note also that a vector of 0s and 1s is held inside J as a vector of 
Booleans, which are chars.  When the function calls for a vector of ints, J will convert 
any Boolean to int.  In the example above, (,_1) reserved space for an int; (,0) 
would have worked too but would require a conversion. 
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When the function returns, its returned value will be boxed and appended to the front 
of the boxed list that was the right operand of cd to produce the result of the execution of 
cd .  You may use this returned value as you see fit.  Any box that contained an array 
may have had its contents modified by the function; you may open the box to get the 
changed value. 

If J was unable to call the DLL, the cd verb fails with a domain error.  You can then 
execute the sentence cder '' which will return a 2-element list indicating what went 
wrong.  The User Guide gives a complete list of errors; the most likely ones are 4 0 (the 
number of arguments did not match the number of declarations), 5 x (declaration 
number x was invalid—the count starts with the declaration of the returned value which 
is number 0), and 6 x (argument number x did not match its declaration—the count 
starts with the first argument which is number 0 and must match the second declaration). 

Memory Management 
Passing arrays into the called function is adequate only for simple functions.  If the 

function expects an argument to be a structure, possibly containing pointers to other 
structures, you will have to allocate memory for the structures, fill the structures 
appropriately, and free the memory when it is no longer needed.  J provides a set of verbs 
to support such memory management. 

Allocate memory: mema 

mema length allocates a memory area of length bytes.  The result is the 
address of the memory area, as an integer.  It is 0 if the allocation failed.  mema has 
infinite rank. 

You must box the memory address before using it as an operand to cd .  Do not box 
the address for use as an operand to memf, memw, or memr . 

Free memory: memf 

memf address frees the memory area pointed to by address .  address must 
be a value that was returned by mema .  Result of 0 means success, 1 means failure.  
memf has infinite rank. 

Write Into a Memory Area: memw 
data memw address,byteoffset,count,type 

causes data to be written, starting at an offset of byteoffset from the area pointed to 
by address, for a length of count items whose type is given by type .  type is 2 
for characters, 4 for integers, 8 for floating-point numbers, 16 for complex numbers; if 
omitted, the default is 2 .  If type is 2, count may be one more than the length of 
data to cause a string-terminating NUL (\0) to be written after the data . 

Read From a Memory Area: memr 
memr address,byteoffset,count,type 

produces as its result the information starting at an offset of byteoffset from the area 
pointed to by address, for a length of count items whose type is given by type .  
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type is 2 for characters, 4 for integers, 8 for floating-point numbers, 16 for complex 
numbers; if omitted, the default is 2 .  The result is a list with count items of the type 
given by type .If type is 2, count may be _1 which causes the read to be terminated 
before the first NUL (\0) character encountered. 

Aliasing of Variables 
When a noun is assigned the value of another noun, as in 

   a =. b =. 5 
a single memory area is used to hold the value common to both nouns, and the two nouns 
are said to be aliases of each other.  Aliasing obviously reduces the time and space used 
by a computation.  The interpreter takes care to ensure that aliasing is invisible to the 
programmer; if after the statement above we execute 
   b =. 6 
the interpreter will assign the new value to b only, leaving a unchanged.  What actually 
happens is that the new value is created in a data block of its own and the descriptor for 
the noun b is changed to point to the new block.  (Almost all verbs create their outputs in 
newly-allocated data blocks.  As of release 5.01 the exceptions are ], [, and u} when it 
is used in one of the forms that produces in-place modification.  Increasing the number of 
cases recognized for in-place execution is a continuing activity of the J developers). 

If there were nothing more to say about aliasing, I would not single it out for mention 
from among the dozens of performance-improving tricks used by the interpreter.  What 
makes it worth considering is the effect aliasing has when elements outside the J 
language touch J's nouns.  This can occur in two ways: when a noun is mapped to a file 
and when a noun is modified by a DLL. 

Aliasing of Mapped Nouns 
When a noun is mapped to a file, the descriptor for the noun points to the file's data 

and that pointer is never changed even if a value is assigned to the variable: the whole 
point of mapping the noun to the file is to cause changes in the noun to be reflected in the 
file, so any assignment to the noun causes the data to be copied into the area that is 
mapped to the file. 

In addition, when b is a noun mapped to a file and is assigned to another noun as with 
   a =. b 
the noun a, which is aliased to b, also inherits the 'mapped-to-file' attribute.  This 
behavior is necessary to make mapped files useful, because assignments to x. and y. are 
implicit whenever a verb is invoked and it would defeat the whole purpose of mapping if 
the data of the file had to be copied every time the mapped noun was passed to a verb.  
The combination of aliasing and mapping means that any assignment to a mapped noun 
also changes the values of all other nouns which share the same mapping: for example, if 
you pass a mapped noun a as the right operand of a verb that modifies its y., y., a, and 
the data in the file will all be modified. 

Keeping track of the aliasing is the price you pay for using mapped files.  If you need 
to copy a noun making sure you get a fresh, unmapped data block, you must not assign 
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the mapped noun directly, but instead assign the result of some verb that creates its output 
in a new data block.  For example, as of release 5.01 the assignment 
   a =. 1&# b 
will create a new data block containing the data of b, and a will point to that new block. 

Aliasing of DLL Operands 
The J interpreter uses aliasing for boxed cells of an array, so that if you execute 

   b =. i. 10000 10000 
   a =. b;5 
item 0 of a simply contains a pointer to the data block of b rather than a fresh copy of the 
400MB array.  In addition, when a list of boxes is used as the right operand of cd, as in 
   'dll-spec' cd   root;key;0;'';0;sam;0;(,_1);(,_1) 
any array operands to the DLL function are passed via a pointer to the data in the boxed 
list, with no separate copy of the data being made.  This means that if the DLL modifies 
one of its arguments, any nouns aliased to that argument will also be modified: if the 
DLL function called above modifies its argument 1, the noun key and any noun aliased 
to key (possibly including private nouns in suspended verbs) will be changed.  To 
protect yourself from such side-effects, you can use (1#key) in place of key in the 
invocation of cd . 
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22. Socket Programming 

J provides the standard set of socket functions.  This chapter assumes you already 
understand socket programming and provides a description of J's facilities. 

First, you must load the script that defines the socket interface: 
   require 'socket' 
(require is like load but if the file has already been loaded it does nothing).  You 
are then ready to create a socket: 
   sdsocket AF_INET_jsocket_,SOCK_STREAM_jsocket_,0 
+-+--+ 
|0|96| 
+-+--+ 

sdsocket returns return_code;socket_number .  Nonzero return codes 
indicate errors; look in J_directory/system/main/socket.ijs for definitions.  
The valid address families and socket types are defined in the same place. 

sdselect 
You check the status of sockets with 

   sdselect read_list;write_list;error_list;maxtime 
The three lists are lists of sockets and maxtime is a time in milliseconds.  sdselect 
will delay for a maximum of maxtime milliseconds until it sees a socket in 
read_list that is ready for reading, or one in write_list that is ready for writing, 
or one in error_list that has an error.  When it finds a qualifying socket, or when the 
time limit is reached, it returns 
result_code;read_ready_list;write_ready_list;error_list 
which lists all the qualifying sockets.  A maxtime of 0 always returns immediately, 
giving the current status of the specified sockets. 

If sdselect is invoked with an empty operand (sdselect ''), it checks all 
sockets with a maxtime of 0. 

Asynchronous Sockets and socket_handler 
By default, sockets created by sdsocket are blocking sockets; an operation on such 

a socket waits until data is available.  This can tie up your J session while the remote 
computer is responding, so if you are serious about your socket programming you will 
want to make your sockets nonblocking.  You do so with 
   sdasync socket_number 
which marks that socket as nonblocking and requests notification of changes in its status.  
All operations to a nonblocking socket return immediately (with the error code 
EWOULDBLOCK_jsocket_ if the operation cannot be immediately completed).  When 
there is a change in the status of a nonblocking socket, the interpreter executes 



 123 

   socket_handler '' 
and it is up to you to have a socket_handler defined that will use sdselect to see 
what sockets are ready for transfers and then execute those transfers. 

Names and IP Addresses 
Sockets are addressed by IP address and port number.  To translate a domain name to 

an IP address, use 
   sdgethostbyname domain_name 
for example, 
   sdgethostbyname 'www.jsoftware.com' 
+-+-+---------------+ 
|0|2|216.122.139.159| 
+-+-+---------------+ 
where the result is return_code;address_family;address .  If the domain is 
unknown an address of '255.255.255.255' is returned. 
   sdgethostbyaddr address_family;address 
will translate an IP address back to a domain name. 

The name of your machine is given by 
   sdgethostname '' 
+-+-----+ 
|0|1qfe3| 
+-+-----+ 
(result is return_code;name) so you can get your own IP address by 
   sdgethostbyname 1 {:: sdgethostname '' 
+-+-+-----------+ 
|0|2|65.80.203.8| 
+-+-+-----------+ 

If you have a socket with an active connection you can get some information about 
the machine on the other end with 
   sdgetpeername socket_number 
+-+-+------------+--+ 
|0|2|64.58.76.229|80| 
+-+-+------------+--+ 
where the result is 
return_code;address_family;remote_IP_addr;remote_port . 

You can get information about your own end of a connected socket with 
   sdgetsockname socket_number 
+-+-+-----------+----+ 
|0|2|65.80.203.8|2982| 
+-+-+-----------+----+ 
where the result is 
return_code;address_family;local_IP_addr;local_port . 
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Connecting 
Reading from a Web site, you use the sequence 

sdsocket/sdconnect/sdsend/sdrecv/sdclose . 
   sdconnect socket;address_family;IP_addr;port 
will connect your socket to the remote machine addressed by 
address_family;IP_addr;port .  If the socket is blocking, sdconnect 
completes when the connection has been made.  If the socket is nonblocking, 
sdconnect will return immediately with the error code EWOULDBLOCK_jsocket_ 
and socket_handler will be called when the connection has been made.  An 
example is 
   sdconnect 184;2;'64.58.76.229';80 

With the connection established, you can send data with 
   data sdsend socket;flags 
where the flags are any of the MSG_ values from socket.ijs, usually 0.  The 
result is return_code;number_of_bytes_sent .  Fewer bytes may be sent than 
were in your data; you will have to resend the excess. 

You receive data with 
   sdrecv socket,count,flags 
where count is the maximum number of bytes you will accept and flags are any of 
the MSG_ values from socket.ijs, usually 0.  The result is 
return_code;data .  If the socket is blocking, sdrecv will wait until it is ready 
for reading; if the socket is nonblocking, sdrecv will immediately return (presumably 
you issued the sdrecv only after using sdselect to verify that the socket was ready 
for reading).  In either case, sdrecv will return with data if it has any; if the length of 
data is 0, that means that the connection was closed by the peer and all data sent by the 
peer has been received. 

When you have finished all you data transfers for a socket, ,you must close it with 
   sdclose socket 
which has as result an unboxed return_code . 

Listening 
If you want to wait for a remote machine to get in touch with you, use the 

sdbind/sdlisten/sdaccept sequence instead of sdconnect .  The sequence is: 
   sdbind socket;address_family;IP_addr;port 
to establish a connection between the socket and the address given by 
address_family;IP_addr;port .  If IP_addr is '', the socket can be used to 
listen for a connection to any address on the machine.  If port is 0, the system will 
assign a port number.  The result of sdbind is an unboxed return_code . 
   sdlisten socket;connection_limit 
causes the operating system to start listening for connections to the address bound to 
socket .  The result is an unboxed return_code .A maximum of 
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connection_limit connections can be queued awaiting sdaccept .  When a 
connection is made to a listening socket's address, the socket is shown in sdselect as 
ready to read, and you should issue 
   sdaccept socket 
which will return return_code;clone_socket where clone_socket is a new 
socket, with all the attributes of socket but additionally with a connection to the remote 
host.  You should direct all your sdsend, sdrecv, and sdclose operations to the 
clone_socket . 

Other Socket Verbs 
Datagrams 

The sequences given above apply to sockets of type SOCK_STREAM_jsocket_, 
e. g. TCP sockets.  Connectionless sockets with type SOCK_DGRAM_jsocket_ are 
also supported, and could be used for UDP transfers.  The verbs to use to transfer 
datagrams are 
   sdrecvfrom socket;count;flags 
where count is the maximum number of bytes you will accept and flags are any of 
the MSG_ values from socket.ijs, usually 0.  The result is 
return_code;data;sending_address .  If the socket is blocking, 
sdrecvfrom will wait until it is ready for reading; if the socket is nonblocking, 
sdrecvfrom will immediately return (presumably you issued the sdrecvfrom only 
after using sdselect to verify that the socket was ready for reading).  The returned 
data is the datagram, which may have a length of 0. 
   data sdsendto socket;flags;address_family;IP_addr;port 
where the flags are any of the MSG_ values from socket.ijs, usually 0.  The 
datagram is sent to the remote address given by address_family;IP_addr;port, 
and the result is return_code;number_of_bytes_sent . 

Socket Options 
Verbs to query and set socket options are 

   sdgetsockopt socket;option_level;option_name 
with result return_code;option_value .  Examples: 
   sdgetsockopt sk;SOL_SOCKET_jsocket_;SO_DEBUG_jsocket_ 
   sdgetsockopt sk;SOL_SOCKET_jsocket_;SO_LINGER_jsocket_ 

   sdsetsockopt socket,option_level,option_name,value_list 
(note that the operand is an unboxed list)  The option is set, and the result is 
return_code;option_value .  Examples: 
sdsetsockopt sk,SOL_SOCKET_jsocket_,SO_DEBUG_jsocket_,1 
sdsetsockopt sk,SOL_SOCKET_jsocket_,SO_LINGER_jsocket_,1 66 

   sdioctl socket,option,value 
reads or sets control information (result is return_code;value).  Examples: 
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   sdioctl sk,FIONBIO_jsocket_,0  NB. set blocking 
   sdioctl sk,FIONBIO_jsocket_,1  NB. set non-blocking 
   sdioctl sk,FIONREAD_jsocket_,0  NB. count ready data 

Housekeeping 
   sdgetsockets  '' 
The result is return_code;list_of_all_active_socket_numbers . 
   sdcleanup '' 
All sockets are closed and the socket system is reinitialized.  The result is 0 . 
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23. Loopless Code V—Partitions 

The adverb \ operated on subsets of the operand y that were taken in a regular way.  
Now we will take the next step, and operate on irregular subsets of y .  This will finally 
give us the chance to do interesting work with character strings. 

Find Unique Items: Monad ~. and Monad ~: 
Monad ~. has infinite rank.  ~. y is y with duplicate items removed and is called 

the nub of y.  The items of ~. y are in the order of their first appearance in y : 
   ~. 'Green grow the lilacs' 
Gren gowthliacs 
   ]a =. _2 ]\ 0 1 1 2 0 1 2 3 1 3 1 2 
0 1 
1 2 
0 1 
2 3 
1 3 
1 2 
   ~.a 
0 1 
1 2 
2 3 
1 3 
y can have any rank, and ~. y gives the unique items. 

Monad ~: has infinite rank and tells you which items monad ~. would pick.  ~: y 
is a Boolean list where each element is 1 if the corresponding item of y would have been 
selected for the nub of y : 
   ~: 'Green grow the lilacs' 
1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 
   ~: a 
1 1 0 1 1 0 
   (~: a) # a 
0 1 
1 2 
2 3 
1 3 

~. y is equivalent to (~: y) # y . 

Apply On Subsets: Dyad u/. 
Dyad u/. has infinite rank.  x u/. y applies u to subsets of y for which the 

corresponding items of x (called the keys) are identical.  I will skip the formal description 
in favor of a verbal one: First find the nub of x, call it nx .  Then, for each item of nx, 
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find all matching items of x; make an array of the corresponding items of y (this array 
will always have rank one more than the rank of an item of y), and apply u to that array; 
the result becomes one item of the result of x u/. y .  The items of x u/. y thus 
correspond to items of the nub of x .  Note that the subsets of y may have different 
shapes (they will all have the same rank, being made of items of y, but each subset may 
have a different number of items).  For this reason, we usually have u produce a boxed 
result to avoid framing fills. 
   ]a =. 2 0 1 0 2 </. 'Hello' 
+--+--+-+ 
|Ho|el|l| 
+--+--+-+ 
The subsets were created, and each one was boxed.  Note that each subset is a list, even 
the one with only one element: 
   $&.> a 
+-+-+-+ 
|2|2|1| 
+-+-+-+ 

   3 0 3 0 3 +//. 100 1 200 2 300 
600 3 
The summing was performed for each subset.  Note that the result is sorted not on the 
value of the keys, but rather on the smallest index of each key in x . 
   ]a =. _2 ]\ 'Fred';100;'Joe';200;'Fred';50;'Sam';30 
+----+---+ 
|Fred|100| 
+----+---+ 
|Joe |200| 
+----+---+ 
|Fred|50 | 
+----+---+ 
|Sam |30 | 
+----+---+ 
A small database of amounts we owe.  We can quickly get a total for each creditor: 
   ]b =. ({."1 a) +/@:>/. ({:"1 a) 
150 200 30 
({."1 a) gives the list of names, which we use as keys for the data given by 
({:"1 a) .  For each subset, we open the boxes and add up the results.  Note that 
+/@>/. would not do in place of +/@:>/., and understand why. 

It would be nice to have names associated with the totals: 
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   (~. {."1 a) ,. <"0 b 
+----+---+ 
|Fred|150| 
+----+---+ 
|Joe |200| 
+----+---+ 
|Sam |30 | 
+----+---+ 
We box the totals using <"0 before we join items of the totals to the items of the nub.  
Recall that x ,. y concatenates each item of x with the corresponding item of y .We 
take advantage of the fact that the results of u/. have the same order as the nub. 

Apply On Partitions: Monad u;.1 and u;.2 
Unlike dyad u/. which applies u to scattered subsets of y, u;.n applies u to 

sequential subsets of y .  In monad u;.n, the subsets are computed from information in 
y itself; in dyad u;.n, x specifies the subsets.  u;.n is really 4 different cases 
distinguished by the number n; we will start with the case where n is 1, 2, _1, or _2 . 

Avoid the error of thinking that an operation on a subset of y somehow modifies y .  
Never happens.  In J, the result of a verb is always a new noun.  You may assign that 
noun to the same name as one of the operands, but until you do, the old operand is 
unchanged, and both it and the result of the verb are available for further use. 

u;.1 y partitions y by finding the items of y that match the first item of y (i. e. 
0{y); each such item, called a fret, is the start of an interval of y which runs from the 
fret to the last item before the next fret (the last interval runs to the end of y).  Monad u is 
applied to each interval (which is always a list of items of y), and the results of u become 
the items of the overall result of u;.1 y . 
   <;.1 ' a list of words ' 
+--+-----+---+------+-+ 
| a| list| of| words| | 
+--+-----+---+------+-+ 
Each ' ' character, even the one at the end, started a new interval.  We are not restricted 
to boxing the intervals: 
   #;.1 ' a list of words ' 
2 5 3 6 1 
Here we report the length of each word. 

u;._1 y is like u;.1 y except that the fret itself is omitted from the interval.  The 
interval could be empty in that case: 
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   <;._1 ' a list of words ' 
+-+----+--+-----++ 
|a|list|of|words|| 
+-+----+--+-----++ 
   #;._1 ' a list of words ' 
1 4 2 5 0 

u;.2 y and u;._2 y are like u;.1 y and u;._1 y except that the frets are 
those items of y that match its last item, and each marks the end of an interval: 
   <;.2 'Mississippi' 
+--+---+---+---+ 
|Mi|ssi|ssi|ppi| 
+--+---+---+---+ 

Use u;.2 y to split a list when you know the ending marker for the intervals: 
   ;: ;._2 (0 : 0) 
Fred 500 
Joe 200 
Fred 50 
Sam 30 
) 
+----+---+ 
|Fred|500| 
+----+---+ 
|Joe |200| 
+----+---+ 
|Fred|50 | 
+----+---+ 
|Sam |30 | 
+----+---+ 
Here (0 : 0) creates a noun from the lines that follow.  Each line ends with an unseen 
LF character which provides a convenient fret for splitting the lines.  We use ;._2 to 
apply monad ;: to the text of each line (not including the fret, which is dropped by 
;._2).  Monad ;: splits each string into words and boxes the words.  The result is not 
the same as the array we created earlier, because the second column is character rather 
than numeric.  We could have written noun define instead of (0 : 0) . 

Monad u;.n has rank 1 _ when n is 1, 2, _1, or _2 . 

Apply On Specified Partitions: Dyad u;.1 and u;.2 
When n is 1, 2, _1, or _2, x u;.n y has infinite rank and, in the one-dimensional 

case where x is a Boolean list of 0s and 1s, resembles u;.n y .  The difference is that 
the frets are given by the positions of 1s in x rather than by values of the items of y .  
We can define u;.1 y as (({.y)="_ _1 y) u;.1 y, and u;.n for the other 
values of n similarly. 
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   0 1 0 1 0 +/;.1 (20 30 40 50 60) 
70 110 
As in this example, some leading items of y may not be in any interval. 

In the general case x is a list of boxed Boolean lists, with j{::x supplying the frets 
for axis j .  The partition is then multidimensional: 
   (0 1 1;1 0 0 1) <;.1 i. 3 4 
+------+--+ 
|4 5 6 |7 | 
+------+--+ 
|8 9 10|11| 
+------+--+ 

In both the monadic and dyadic cases of u;.1, u;._1, u;.2, and u;._2, the 
partitions to which u is applied have the same rank as y (but the shapes along the leading 
axes are reduced by the partitioning). 

Find Sequence Of Items: Dyad E. 
Dyad E. has infinite rank and is used to slide a pattern across an array and look for 

positions at which the pattern matches the items of the array.  x and y should have the 
same rank, and the sliding occurs along all axes of y, giving a Boolean result with the 
same shape as y .  We will consider only the cases where y is a list. 
   'is' E. 'Mississippi' 
0 1 0 0 1 0 0 0 0 0 0 
The 1s in the result tell where the pattern starts.  The result of E. is often used as input to 
u;.1 : 
   ('is' E. 'Mississippi') <;.1 'Mississippi' 
+---+-------+ 
|iss|issippi| 
+---+-------+ 

A more ambitious example: 
   html =. 0 : 0 
<th><a href='page1.html'>Press here to go back</a></th> 
<th><a href='page2.html'>Press here to go home</a></th> 
<th><a href='page3.html'>Press here to go away</a></th> 
</table> 
</center> 
) 
   ('<a' E. html) {.@:(<@:(8&}.);._1)@:('>'&,);.1 html 
+------------+------------+------------+ 
|'page1.html'|'page2.html'|'page3.html'| 
+------------+------------+------------+ 
That looks like a useful result, but what a mess to produce it!  If you want, you may try to 
understand that, but a better approach is to break it up: 
   extracthref =: <@:(8&}.) ;._1 @:('>'&,) 
This seems understandable, with effort: the execution order is 
((<@:(8&}.)) ;._1) @:('>'&,); we prepend '>' to y, then we use ;._1 on 
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the string.  That will make the prepended '>' the fret, and so we will break the string 
into parts that start with '>', throw away the first 8 characters of each part, and box each 
trimmed-down part.  We can even try it on a test bit: 
   extracthref 'abcdefghijkl>xxx' 
+----++ 
|ijkl|| 
+----++ 
Now we can look again at our original line, rewritten: 
   ('<a' E. html) {.@:extracthref ;.1 html 
+------------+------------+------------+ 
|'page1.html'|'page2.html'|'page3.html'| 
+------------+------------+------------+ 
This makes some sense now.  The execution order is 
('<a' E. html) ({.@:extracthref ;.1) html . We use E. to find all the 
starting positions of '<a' tags; then, for each one, we split what follows the '<a' into 
blocks terminated by '>', and then we take the first one, which will have the data before 
the '>' that matched the '<a' . 

Apply On Subarray: Dyad u;.0 
Dyad u;.0 has rank 2 _ .  x u;.0 y uses x to specify a subarray of y; the 

subarray is extracted, and u is applied to it to produce the final result.  We will discuss 
the simple case where x is a rank-2 array. 

The first item of x (call that s) gives the starting corner of the subarray.  The second 
item of x gives the length of each axis of the subarray.  If x is shorter than the rank of y, 
unspecified axes are taken in full.  For example: 
   ]a =. a. {~ (a. i. 'a') + i. 4 4 
abcd 
efgh 
ijkl 
mnop 
A cute little expression in its own right.  See why this produces the 4×4 array of 
characters shown.  Remember that a. is the alphabet of all ASCII characters in order.  
An even more elegant way to produce the same result would be 
(i. 4 4)&+&.(a.&i.) 'a' . 
   (0 0 ,: 2 2) ];.0 a 
ab 
ef 
Starting corner 0 0; lengths 2 2; result is a 2×2 subarray, left unchanged by monad ] . 
   (1 2 ,: 3 2) ];.0 a 
gh 
kl 
op 
Starting corner 1 2; lengths 3 2; result is a 3×2 subarray, left unchanged by monad ] .  
You get the idea. 
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If an item of s is negative, the corresponding axis of the subarray extends backward 
from the starting point (and its absolute value is used as the starting position): 
   (2 _2 ,: 2 2) ];.0 a 
jk 
no 
Starting corner 2 2 (the character 'k'); lengths 2 2, but running backward in axis 1; 
result is a 2×2 subarray, left unchanged by monad ] .  Note that the axis extends 
backward, but the items retain their normal order—you have merely specified the interval 
by its endpoint rather than its beginning point.  If you want to reverse the order of the 
axis, you can do that too, by making the corresponding length negative: 
   (2 _2 ,: 2 _2) ];.0 a 
kj 
on 
Starting corner 2 2 (the character 'k'); lengths 2 2, but running backward in axis 1; 
result is a 2×2 subarray with axis 1 reversed, left unchanged by monad ] . 

The subarray must end at the limits of the array.  If the length requests more than that, 
the subarray will be shorter than was requested.  A length of _ or __ will always fetch 
from the starting point to the limit of the array. 

Dyad u;.0 is a great way to pick out a subarray to work on.  Always consider using 
it whenever you find yourself using more than one application of {.and }. to select a 
portion of an array.  Even if you are working with a list, using dyad u;.0 is a good way 
to work on a portion of the list without copying any part you aren't working on. 

Apply On All Subarrays: Dyad u;.3 and u;._3 
x u;._3 y applies u to subarrays of y as specified by x .  The operation is similar 

to dyad u/ (infix), but dyad u/ slides a one-dimensional window across y to select 
sequences of items of y, while dyad u;._3 moves a multidimensional window 
throughout y to select multidimensional regions.  When the window has only one 
dimension, the operation is like dyad u/ but with a little extra control over the positions 
of the window. 

The second item of x (actually, | 1{x) gives the size of the window (if an item is 
negative the corresponding axis is reversed before u is applied to the window; an infinite 
value means 'take all the way to the end of the array').  The first item of x (0{x) is the 
movement vector: the window is positioned at every point at which each item of the 
window position is an integral multiple of the corresponding item of the movement 
vector, as long as the window fits inside y .  If an item of the movement vector is 
smaller than the corresponding item of the size, the windows will overlap along that axis. 

Dyad u;._3 is useful in imaging applications.  The following example averages 
2×2-pixel regions in an image using a simple box filter: 



 134

   ]image =. ? 8 8 $ 100 
31 88 65 15 68 38 38 49 
14 58 84 59 95 55 14 98 
40 14 56 25 48 46 96 12 
19 31 62 12 65 62 80 24 
47 38 20  2 90 42 14 94 
41 13 88  9 16  7 36 25 
13 78 45 34 45 80 93 65 
21 67 90 25 86 47 50 60 
   (2 2,:2 2) (*&0.25)@:(+/)@:, ;._3 image 
47.75 55.75    64 49.75 
   26 38.75 55.25    53 
34.75 29.75 38.75 42.25 
44.75  48.5  64.5    67 

The rank of each operand presented to u is the same as the rank of y .  The shape of 
each operand presented to u is the shape of y with the leading items replaced by |1{x 
(formally, this is (|1{x),(#x)}.$y). 

If x has rank less than 2, it is processed as if it were 1,:x which will try the window 
at all possible locations. 

x u;.3 y is similar to x u;._3 y, but the window is positioned at every starting 
point that is within y, even if the entire window will not fit within y .  For those 
positions at which the window will not fit, the operand to u is truncated. 
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24. When Programs Are Data 

One characteristic of maturity in programming is readiness to pass a program as an 
argument.  A well-designed program does not exhibit a megalomanic urge to do 
everything the user may desire; it is content to perform a limited function well, and to 
leave other functions to other programs.  A suite of such programs can be variously 
connected to perform a great variety of functions, with each program doing its bit and 
passing control to the next one. 

In C a program is passed to another program by pointer reference, and invoked by 
(*pfi)(arguments).  J has no pointers, but it has a great many ways to pass executable 
nuggets around the system.  We will learn them now. 

Calling a Published Name 
The simplest way to get a verb f to pass control to another program g is to define f 

to call a verb with a public name, say f_subfn, and then to define f_subfn to be g .  
In C, this would be ridiculous, because it would imply that f_subfn is permanently 
bound to a single value of g, with the result that all calls to f from anywhere in your 
program would be stuck with the same value of g . 

J overcomes this objection by allowing redefinition of f_subfn .  Each invocation 
of f looks like 
   f_subfn =: g 
   f arguments 
When f is invoked elsewhere, the correct value of f_subfn will be assigned similarly, 
so each invocation of f can pass control properly. 

I find this technique hideous, but I have to admit it is effective.  J uses it to get 
callbacks from DLLs.  It must not be used if f_subfn is going to be called in response 
to an event, since its value may have been redefined by the time the event occurs. 

Using the Argument To a Modifier 
If the verb isn't going to call a name of its own choosing, you have to tell it what to 

call.  The simplest way to do this is to change the verb into a modifier; then when it 
executes it has access to its operands, which can be verbs.  So, instead of 
f =: verb : 'definition' 
you write 
f =: adverb define 
monadic definition 
: 
dyadic definition 
) 
and within the definition of f you can refer to the left operand of the adverb, which goes 
by the name u. .  If you decide to write a conjunction instead, its right operand is v. .  
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The noun operands of the derived verb (u f or u f v) are x. and y., as usual.  We 
will discuss user-defined modifiers in a later chapter. 

In Chapter 3 this technique was used to calculate the Chebyshev coefficients of a 
function.  The function to be approximated is one of the inputs to this calculation, so we 
write an adverb and let its left operand be the function.  With chebft defined as in the 
example, an example of its use is: 
   10 (2&o.) chebft 0 1 
1.64717 _0.232299 _0.0537151 0.00245824 0.000282119… 
Here the function to be approximated is the cosine function 2&o., evaluated for 10 
Chebyshev coefficients over the interval 0 1 . 

When you define a modifier, you have no way to specify that you are defining only 
the dyadic case as you can for a verb with dyad define .  Instead, you use the form 
given above, in which the monadic definition (if any) is separated from the dyadic by a 
line containing a single ':' character.  chebft did this, since its derived verb is always 
dyadic. 

Invoking a Gerund: m`:6 
Sometimes you want to use a noun rather than a verb to designate a verb to be called.  

An asynchronous socket handler is an example: the socket handler will have many 
transfers going on at once, each one with a callback to be executed when the transfer is 
complete.  The callbacks must be put into a table along with other information about the 
transfer; in other words, the callbacks must be nouns. 

We have already met nouns that carried verbs; we called them gerunds.  We found 
that gerunds were created by the conjunction ` and executed by m@.v .  While these 
tools are adequate to allow verbs to be passed as arguments, some simplifications are 
available that we will discuss now. 

A gerund created by u`v is always a list (each element of which, as we learned, is an 
atomic representation of a verb which we will treat as untouchable).  Even if there is only 
one verb, the result of ` is a list: 
   +`'' 
+-+ 
|+| 
+-+ 
   $ +`'' 
1 

It makes sense for the gerund created by ` to be a list, since it contains a list of verb-
representations one of which is selected for execution by m@.v .  But when we are 
passing a single verb-as-noun as an argument, it is OK for it to be a scalar box.  And, it 
can be invoked using the `: conjunction: m`:6 converts the gerund m into a verb.  So, in 
our example, we pass the callback as one box in a parameter list, and then we select it, 
turn it into a verb with m`:6, and execute it, as we can see in a stripped-down example.  
The gerund operations are not difficult so I am going to keep your interest with a couple 
of new tricks: 
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   callback =: dyad : '(x.) =: y.' 
Howzat?  (x.) =:?  Yeah, this means that the value of x. tells what variable will be 
assigned.  x. can be any valid assignment target: a name, a multiple assignment, or other 
exotic forms given in the Dictionary. 
   calledfn =: monad : '(0 { y.)`:6 (1 {:: y.)' 
So calledfn is expecting an argument of (at least) 2 boxes.  The first one will be the 
gerund to execute, and the second one will be the argument to pass to that verb.  We open 
the second box (with {::) but we leave the first as a box so that `:6 can turn it into a 
verb. 
   calledfn 'vbl'&callback ` (<25) 
The first challenge is figuring out what the argument to calledfn is.  ` sees a verb on 
its left; it converts that to a gerund.  It sees a noun to its right, so it appends it unchanged 
to the gerund from the left.  This produces 
   'vbl'&callback ` (<25) 
+----------------------+--+ 
|+-+------------------+|25| 
||&|+-------+--------+||  | 
|| ||+-+---+|callback|||  | 
|| |||0|vbl||        |||  | 
|| ||+-+---+|        |||  | 
|| |+-------+--------+||  | 
|+-+------------------+|  | 
+----------------------+--+ 
The first box is the atomic representation of the verb, just as mysterious as it was billed to 
be, and the second box has the 25.  Now what do we get when we pass that in as the 
argument to calledfn (try to work it out before you peek at the answer)? 
   calledfn 'vbl'&callback ` (<25) 
25 
Did you get it?  We executed 'vbl'&callback 25 which then executed 
vbl =: 25 which has the result 25, which comes back as the result of calledfn .  
The assignment was public: 
   vbl 
25 

Passing the Definition Of a Verb: 128!:2 (Apply) 
As an alternative to passing a gerund and invoking it with m`:6, you could pass the 

string representation of a verb and make a verb out of it with 3 :n or 4 :n .  Better 
yet, if you can make do with a monadic verb, you can use the foreign dyad 128!:2 
which has rank 1 _ and goes by the name Apply.  x 128!:2 y takes the string x 
which must describe a verb, and applies the verb so described to y (as a monad).  It is 
therefore similar to (3 : 'x') y with the restriction that x must describe a one-line 
verb without assignments.  The advantage of using 128!:2 rather than the method in the 
next section is that y does not have to be converted to its string representation. 
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Passing an Executable Sentence: Monad ". and 5!:5 
As the ultimate in flexibility, you can pass an entire J sentence as a character string 

and then execute it with monad ". .  It is executed exactly as if it had been a line of the 
executing verb (or from the keyboard if that's where ". was entered).  For example: 
   ". 'a =. i. 4' 
0 1 2 3 
The sentence was executed. 
   a 
0 1 2 3 
The assignment was performed. 
   ". '+/' , ": a 
6 
The operand of monad ". must be a string, so before we can take its total we must 
convert a to a sequence of characters that will have the value of a when executed.  For a 
large operand, converting to string form adds overhead that might steer you towards 
using a gerund or 128!:2 instead. 

I think C programmers are likely to overlook opportunities to use monad ". because 
it is so foreign to their experience.  It is equivalent to compiling and executing a code 
segment as part of the running program—it's just unthinkable.  But in J, it's 
commonplace. 

If you are going to use monad ". you will face the problem of converting your nouns 
to string form.  Here's the display of a noun: what character string would you execute to 
produce a noun with that value? 
   a 
+------------+----------------------------------+ 
|+---+--+---+|0 2.25 4.5 6.75 9 11.25 13.5 15.75| 
||abc|de|fgh||                                  | 
|+---+--+---+|                                  | 
+------------+----------------------------------+ 
Fortunately, you don't have to worry about it.  The foreign monad 5!:5 takes as y a 
boxed name (not a value) and produces a string which when executed has the same value 
as the variable named by y .  So: 
   5!:5 <'a' 
(<<;._1 ' abc de fgh'),<2.25*i.8 
…and if you tell me you came up with the same string, I'm not going to believe you. 
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25. Loopless Code VI 

The algorithms that are hardest to put into loopless form are the ones that chug 
through the items of an array, modifying a set of temporary variables that control the 
operation at each step.  I am going to show you how to put one example of such an 
algorithm into loopless form.  The resulting structure can be used for many such 
problems. 

The example problem is a simulation.  In a certain church most of the worshippers are 
devout, but the front pew is always packed with knaves.  Collection is taken every 
Sunday.  Each knave brings two coins to throw in, but, being a knave, he first removes 
the two most-valuable coins from the plate before adding his own.  Given p, the contents 
of the plate when it reaches the front row (a list of coin-values) and k, the coins brought 
by the knaves (an n×2 array), what is the final contents of the plate, and what does each 
knave make off with?  For test data, we will use 
   p =. 100 25 100 50 5 10 
giving the contents of the plate as it enter the knaves' row, ,and 
   ]k =. _2 ]\ 50 50 100 25 5 10 25 50 25 10 
 50 50 
100 25 
  5 10 
 25 50 
 25 10 
as the coins to be thrown in by the greedy knaves. 

After trying for a clever solution for a little while we give up and decide we are going 
to have to simulate the action of each knave.  We start by writing a verb knave to 
perform a knave's action.  The design of this verb requires a little careful joinery to make 
it useful later: we will invoke it as x knave y where x is an item of k, i. e. the input 
for one knave, and y is the result from applying knave for the previous knave; the result 
of knave must have the same format as the y operand of knave; finally, the result of 
knave must include whatever we want as the final solution of the problem. 

The trick is that the result of knave, which will be the input to the next invocation of 
knave, must carry all the information needed by the next invocation of knave; this is 
the way information is passed from knave to knave.  The main design decision is to 
figure out what the format of the y operand of knave will be. 

Obviously we need to know the contents of the plate as it is given to each knave.  
Also, the purpose of knave is to calculate what coins are removed, so those coins should 
be part of the result.  We decide that the y operand of knave will consist of those two 
things, in the order (coins removed),(plate contents), and we already 
know that the x operand will have the format of an item of k, i. e. the knave's two coins.  
Now we are ready to code knave . 
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It should look at the plate-contents portion of its right argument, sort it into order of 
size, take the two biggest values as the result of interest, and use the rest (with the knave's 
own coins added) as the plate contents to be passed to the next knave.  The coins that 
were removed are put into their place at the beginning of the result vector.  In J this will 
be: 
   knave =: dyad define 
xlen =. #x.  NB. number of coins added/removed 
splate =. \:~ xlen }. y.  NB. extract plate contents, sort 
(xlen {. splate) , (xlen }. splate) , x.  NB. build result 
) 

Let's test it.  The y operand to the first invocation of knave will have a couple of 
placeholders in the place where the coins removed by the previous knave would be, 
followed by the initial contents of the plate.  In other words, 
   ]inity =. ({:k),p 
25 10 100 25 100 50 5 10 
Here we used the last item of k as a placeholder.  The values don't matter but we want the 
right shape so the program will still work if we change the number of coins in k .  
Applying this value to the first knave we get 
   50 50 knave inity 
100 100 50 25 10 5 50 50 
Yes, that's right: the first two items of the result are the two dollar coins the knave took, 
and he threw his coins in at the end. 

Before we go on we can't help noticing that taking the first two items of splate and 
then dropping those same items—that's needless work.  We can simplify knave to 
   knave =: dyad : '(\:~ (#x.) }. y.) , x.' 

Now we need to apply knave sequentially on all items of k .  We have learned 
enough J to write a sentence to do that, but because this is a recurring problem I have 
written a conjunction LoopWithInitial to hide the complexity (we'll look at its 
details in a moment).  This conjunction takes the verb knave, the initial value inity, 
and the array k and applies knave repeatedly, with each item of k taking a turn as x 
with the y set to the result from the previous invocation of knave : 
   ]res =. knave LoopWithInitial inity   k 
100 100 50 25 10 5  50 50 
 50  50 50 25 10 5 100 25 
100  50 25 25 10 5   5 10 
 25  25 10 10  5 5  25 50 
 50  25 10 10  5 5  25 10 
We see the result after each application of knave (if you want to see the input alongside 
the result, type k ,&<"_1 res).  The contents of the plate are included in res as well; 
we can extract the desired result simply as 
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   2 {."1 res 
100 100 
 50  50 
100  50 
 25  25 
 50  25 

Once you have defined the verb and the initial value, you can use 
LoopWithInitial to solve problems of this kind. 

You may skip the rest of this chapter if you are not curious about how 
LoopWithInitial works.  It performs the following steps: 
   LoopWithInitial =: conjunction define 
by =. <"_1 y.     NB. 1 box items of y 
ry =. |. by       NB. 2 reverse order for \. 
ey =. ry , <n.    NB. 3 append initial value 
r  =. u.&.>/\. ey NB. 4 apply u. in boxes 
er =. }: r        NB. 5 remove initial value 
rr =. |. er       NB. 6 put in original order 
>rr               NB. 7 remove boxing 
) 

Since the initial value is going to be appended to the y operand, and they have 
dissimilar shapes, it is necessary to box each item of y as well as the initial value.  Once 
the items of y are boxed, they are put into reverse order, because as we have seen u/\. 
is much faster than u/\ .  Then the initial value is appended to the reversed boxed y .  
With that preparation complete, the operation can be performed: u.&.>/\. applies 
u.&.> (in words: unbox each operand, apply u., and rebox) starting at the end of the 
reversed y .  The first application of u.&.> will be between the original first element of 
y and the initial value; the next application will be between the original second element 
of y and the result of the first application; and so on.  The results from the applications of 
u.&.> are collected in an array.  Finally, the preparation steps are undone, discarding 
the initial value, reversing the array into original order, and unboxing the result. 

The actual implementation of LoopWithInitial is a bit more elegant than that 
schematic representation.  Observe that step 7 is the inverse of step 1, step 6 of 2, and 
step 5 of 3; each pair is an opportunity to use u&.v, and the actual verb produced by 
LoopWithInitial is: 
   knave LoopWithInitial inity 
knave&.>/\.&.(,&(<25 10 100 25 100 50 5 10))&.|.&.(<"_1) 
which performs all the steps of the longer form.  We will examine this conjunction in a 
later chapter. 

You may object that since the left operand of LoopWithInitial is applied to 
each item, it still has to be interpreted for each item, so nothing is gained by avoiding the 
loop.  An astute observation, but in the second part of this book we will learn how to 
write verbs that are not reinterpreted for each item. 
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Finally, you may observe that the temporary vector, which only needs to be a list, 
turns into a rank-2 array by the time we have passed it through each item.  Doesn't that 
waste a lot of space?  Yes, it does, and if your problem is big enough that the space 
matters, you may have a valid application for a loop.  An alternative would be to make 
the temporary vector a public variable accessed by knave in the same way that 
temporary variables would be used in C. 
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26. Modifying an array: m} 

Modification of a portion of an array, performed in C by the simple expression 
x[m] = y, fits uneasily into J.  To begin with, 3 pieces of information are needed: the 
array x, the index m, and the replacement data y .  Since J verbs take only 2 operands, 
that means the primitive to modify the array will be an adverb so that its left operand can 
hold one of the 3; the verb derived from the adverb and its operand will perform the 
modification. 

Moreover, the adverb cannot be a modifier of the array's name as [m] is a modifier of 
x in x[m] = y.  In J, the array x may not have a name.  While in C every array is declared 
and named, in J we summon up anonymous arrays in the blink of an i., use them, and let 
them disappear.  We expect modification of a subarray to be like other primitives in this 
regard, which means that it must not be a form of assignment to a name using a copula 
(=. or =:), but instead a (derived) verb operating on an array to produce a result. 

What will the result of the assignment be?  This is not much of an issue in C.  There 
the result of the assignment is y, but it is seldom used: in C, after we have employed 
x[m] = expression; we are usually content to put down the pencil, satisfied that we 
have described a statement's worth of computation.  In J we routinely use weapons of 
larger bore: after we have modified the array we expect to be able to sort it, or add it to 
another array, or the like.  It is clear that the result of the modification of the array must 
be the entire modified array. 

This reasoning justifies J's design.  } is an adverb.  Modification of an array is 
performed by dyad m} which produces a derived verb of infinite rank.  x m} y creates a 
copy of y and installs the atoms of x into the positions selected by m .  m specifies 
portions of y in the same way as the left operand of m{y .  Even though dyad { has left 
rank 0, m may have any shape: the atoms of m are processed to accumulate a list of 
selected portions of y .  x must either have the same shape as the selected portion(s) 
m{y or have the same shape as some cell of m{y in which case x is replicated to come up 
to the shape of m{y .  Examples are a recap of the forms of the left operand of dyad {, 
with a couple of twists: 
   0 (<1 1)} 4 4 $ 5 
5 5 5 5 
5 0 5 5 
5 5 5 5 
5 5 5 5 
The simplest example.  We select an atom and modify it. 
   0 1 2 3 (0)} 4 4 $ 5 
0 1 2 3 
5 5 5 5 
5 5 5 5 
5 5 5 5 
Here we are modifying a selected row. 
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   0 (0)} 4 4 $ 5 
0 0 0 0 
5 5 5 5 
5 5 5 5 
5 5 5 5 
x is shorter than m{y but x can be replicated to match the shape of m{y . 
   0 1 (0)} 4 4 $ 5 
|length error 
|   0 1    (0)}4 4$5 
Here the shape of x is 2 while the shape of m{y is 4, so the operands do not agree. 
   1 2 (1 1;2 2)} 4 4 $ 5 
5 5 5 5 
5 1 5 5 
5 5 2 5 
5 5 5 5 
Here m has 2 atoms, each selecting a single atom of y .  x has two atoms and they are 
stored into the selected positions. 
   1 2 (1 1;1 1)} 4 4 $ 5 
5 5 5 5 
5 2 5 5 
5 5 5 5 
5 5 5 5 
The same element is modified twice.  As it happens, the modifications are performed in 
order, and the last one survives in the result.  Do not rely on this behavior!  As a general 
rule in J, the order in which a parallel operation is performed is undefined and may 
change from release to release or from machine to machine. 

The interpreter may incorrectly modify the first atom in the array if the atoms of m 
select portions of y that do not have the same shape.  You should avoid such m : 
   0 1 2 3 (2;1 1)} 4 4 $ 5 
3 5 5 5 
5 0 5 5 
0 1 2 3 
5 5 5 5 
Don't even try to figure out what happened; avoid mixed m . 

Modification In Place 
It is fundamental to the design of J that, in general, verbs produce output in a separate 

memory block from the inputs.  Thus, if I execute >: y, the result will be in a different 
memory area from y .  This takes more space than incrementing y in place, but not 
much additional computation, since every atom of y must be visited and incremented 
either way.  Usually the extra memory usage is immaterial to overall performance.  
Sometimes we regret having to make a new copy for the output, for example when we 
just remove the end of a long list with }: y or add a single character to the end of a long 
string with x , ' ' . 
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Dyad m}'s profligacy with memory bandwidth reaches an extreme: even if y is huge 
and only one atom is modified, the whole y must be copied to produce the result.  
Sometimes this can be a noticeable drag on performance.  To help out in those cases, the 
interpreter recognizes the specific forms 
name =. x m} name 
name =: x m} name 
and executes the modification in place, i. e. without creating a new copy of name .  For 
the modification to be in-place, there must be nothing else in the sentence either before or 
after the form shown above, and the two appearances of name must be identical.  x and 
m may be any expressions that evaluate to nouns. 
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27. Control Structures 

Your reward for persevering through two dozen chapters on J is to be shown the 
direct equivalent of if/then/else, for, and while.  I have waited until I am sure you 
realize that you don't need them, and will choose them not because you see no other way 
to solve a problem, but because you think they are the best way. 

if., while., and the rest are classified as control words in J.  Their part of speech 
is 'punctuation', like a parenthesis or LF character.  They are allowed only inside 
definitions, that is to say inside right operands of the : conjunction.  If you want to use 
them from the keyboard or in a script, you must define a verb/adverb/conjunction and 
then execute it.  A control word ends any sentence to its left, as if the control word started 
with an end-of-line character.  We will cover only a few important control sequences 
here; to find the rest, bring up the J Vocabulary by pressing F1 and click on Controls 
which is hidden in plain view next to the heading "Vocabulary". 

for./do./end. and for_x./do./end. 
The allowed forms are: 

for. T-block do. block end. 
for_x. T-block do. block end. 
The T-block is evaluated and its result A (that is, the result of the last sentence in the 
T-block) is saved.  block is executed once for each item (item, not atom) of A .  If 
you use the handy for_x. form (where x represents any valid name of your choice), the 
private variables x and x_index are created, and every time block is executed, 
x_index is assigned the index of an item of A and x is assigned x_index { A . 

The break. and continue. control words do what you would expect. 

while./do./end. and whilst./do./end. 
The allowed forms are: 

while. T-block do. block end. 
whilst. T-block do. block end. 
while. corresponds to while and whilst. corresponds to do while.  The 'st' in 
whilst. stands for 'skip test' (the first time through), so you get one free pass through 
the loop, just as with do while. 

The break. and continue. control words do what you would expect. 

if./do./else./end., if./do./elseif./do./end. 
The allowed forms (with optional components underlined) are: 
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if. T-block do. block else. block end. 
if. T-block do. block elseif. T-block do. block… end. 

The flow of control is as you would expect.  T-blocks and blocks are both 
sequences of zero or more J sentences.  The result of the last sentence in a T-block 
provides the result of the T-block .  The result of a T-block tests true if its first atom 
is nonzero, or if it is empty, or if the T-block was empty.  The flow of control is as you 
would expect based on the tests.  The sequence elseif. T-block do. block 
may be repeated as often as desired, but you will be surprised to learn that once you code 
an elseif. you are not allowed to use else. in the same control structure: use 
elseif. 1 instead. 

My antipathy for for. and while. has scarcely been concealed, but I harbor no ill 
will toward if. .  As long as you don't apply it in a loop, if. makes the structure of 
code obvious and you may use it without remorse.  Examples are legion; the form 
if. # name =. sentence to create an array 
  code to process name, which is now known to have items 
end. 
is the most common in my code, used to guarantee that a block of code is executed only 
when a certain noun has a nonzero number of items. 

When we first learned about verb definitions we said that the result of a verb was the 
result of the last sentence executed.  Now we must emend that statement: sentences in 
T-blocks do not affect the result of the verb. 

try./catch./end. and catcht./throw. 
The simplest form (see the Dictionary for others) is: 

try. block1 catch. block2 end. 

try./catch./end. is the control-structure equivalent of u ::v .  block2 is 
executed only if there was an error during the execution of block1 . 

If you want to signal an error, execute the foreign 13!:8 y where y is the error 
number you want to signal.  You can use this in a try. block to transfer execution to the 
corresponding catch. block. 

throw., when executed in a try. block (or in a function executed by that try. 
block), returns control to the catcht. block of the try. .  Just as an error in 
execution causes the catch. block to be executed, a throw. causes the catcht. to 
be executed. 

select./case./fcase./end. 
The form is: 

select. T-block0 case. T-block1 do. block1… end. 

T-block0 is evaluated; then the T-blocks of the case. control words are 
evaluated sequentially until one is found that matches the result of T-block0; the 



 148

following block is then executed, after which control passes to the sentence following 
the end. . 

fcase. is like case. except that after the block of an fcase. is executed, 
control passes to the next block rather than to the sentence following the end. . 

A T-blockn matches the result of T-block0 if the result of T-block0 is an 
element of the result of the T-blockn.  So, a T-blockn could be 2;3;5 and any of 
those three values would match it.  Before this check is made, each side of the 
comparison is boxed if it is not boxed already.  An empty T-blockn matches anything. 

return. 
return. ends execution of the definition that is running.  The result of the last 

sentence not in a T-block is the result.  Example: 
if. T-block do. return-value return. end. 

assert. 
assert. sentence 

assert. fails with an assertion failure error if the result of executing the 
sentence contains any atoms that are not equal to 1.  Note that there is no end. 
corresponding to the assert., so there may be only a single sentence rather than a 
T-block. 
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28. Modular Code 

Separating your code into independent modules boils down to segmenting the space 
of variable names into subspaces that overlap to the extent you want.  We will discuss 
how J handles namespaces, and then see how this corresponds to the classes and 
objects provided by C++. 

Locales And Locatives 
Every public named entity in J is a member of a single locale.  Each locale has a 

name which is a list of characters.  A locative is a name containing a simple name (the 
only kind of name we have encountered so far) and an explicit locale, in one of the two 
forms simplename_localename_ and simplename__var .  In the form 
simplename_localename_, localename is the name of the explicit locale; in the 
form simplename__var, the variable var must be a scalar boxed string whose 
opened contents provide the name of the explicit locale.  Examples: 

abc_z_  is simple name abc and locale z 
vv =. <'lname' 
def__vv   is simple name def and locale lname 

Note that a simple name may contain an underscore; it may not end with an underscore or 
contain two underscores in a row. 

(Note: J makes a distinction between named locales whose names are valid J variable 
names not including an underscore, and numbered locales whose names are strings 
representing nonnegative decimal integers with no leading zeroes.  The difference 
between the two is small and we will ignore it). 

The current locale is a value kept by J and used to influence the processing of names.  
We will learn what causes it to change.  The current locale is the name of a locale.  When 
J starts, the current locale is set to 'base' . 

Assignment 
An assignment is private if it is of the form simplename=.value and is executed 

while an explicit definition is running (an explicit definition is the result of the : 
conjunction, for example a verb defined by 3 : 'text' or a modifier defined by 
adverb define).  An entity assigned by private assignment is not part of any locale 
and is accessible only by sentences executed by the explicit definition that was running 
when the entity was assigned.  The idea is this: there is a pushdown stack of namespaces 
in which private entities are assigned.  When an explicit definition E is executed, it starts 
with a new empty namespace that will be destroyed when E finishes.  Any private 
assignments made while E is running are made in this private namespace.  Any private 
variables referred to by E or by tacitly-defined entities invoked by E are taken from this 
private namespace.  If E invokes another explicit definition F, F starts off with its own 
private namespace and has no access to elements of E's private namespace.  When F 
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finishes, returning control to E, F's private namespace is destroyed.  E is said to be 
suspended while F is running. 

Assignments that are not private (because they assign to a locative, use =:, or are 
executed when no explicit definition is running) are public.  Assignment to a locative 
creates an entity having the simple name in the locative, residing in the explicit locale 
given by the locative.  A public assignment to a simple name creates the named entity in 
the current locale.  Entities in a locale are not affected by completion of an explicit 
definition; they have a life of their own and can be referred to by any verb that knows 
how to reach the locale they are in.  The following examples illustrate assignments; the 
interpretation given is correct if the lines are entered from the keyboard: 
   simp1 =. 5  NB. public (outside of explicit definition) 
   vb1 =: verb define  NB. public 
isimp =. simp1  NB. private, referring to public simp1 
simp1 =. 8      NB. private (=. inside definition) 
loc1_z_ =. 10   NB. public (locative) 
simp2 =: 12     NB. public (=:) 
isimp,simp1     NB. result 
) 
   vb1 ''       NB. execute vb1, see result 
5 8 
Note that simp1 was set to 8 by the explicit definition.  Because this was a private 
assignment, the public value was not changed: 
   simp1 
5 
The public value is still 5, as it was before the explicit definition was executed. 
   loc1_z_ 
10 
   simp2 
12 
The other public assignments leave their results in the locale they were assigned to. 
   isimp 
|value error: isimp 
The entities assigned by private assignment were destroyed when vb1 finished. 

Note that the load verb (which runs scripts) is an explicit definition.  Any 
assignment using =. executed during load will be lost.  Use =: to define names in 
scripts. 

Name Lookup 
Names and locatives used to refer to entities look just like names appearing as targets 

of assignments, but there is an additional level of complexity for references.  Each locale 
has a search path (usually called simply the path) which is a list of boxed locale names.  
The path is set and queried by the foreign 18!:2 which goes by the alias copath .  
Examples: 
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   ('loc1';'loc2';'z') 18!:2 <'loc3' 
Sets the path for locale 'loc3' to 'loc1' followed by 'loc2' (and the obligatory 
'z'). 
   copath <'loc3' 
+----+----+-+ 
|loc1|loc2|z| 
+----+----+-+ 
Queries the path for 'loc3' . 

Every reference to a name implicitly uses a path.  A reference to a locative looks for 
the simple name in the explicit locale; if the name is not found there, the locales in the 
path of the explicit locale are examined one by one until the simple name is found (if the 
name is not found in any locale in the path, it is an undefined name).  A reference to a 
simple name is similar, but first the private namespace of the executing explicit definition 
(if any) is searched, and only if that search fails are locales searched, starting in the 
current locale and continuing if necessary in the locales in the current locale's path. 

Note that only the path of the starting locale (either the current locale or the explicit 
locale) specifies the search order.  No other paths are used. 

Examples of references: 
   ('loc1';'loc2';'z') 18!:2 <'loc3' 
   a_loc1_ =: 'a' 
   a_loc2_ =: 'b' 
   c_loc3_ =: 'c' 
   c_loc2_ =: 'd' 
   a_loc3_ 
a 
The name was not defined in 'loc3' so the path was used, and the name was found in 
'loc1' . 
   a_loc2_ 
b 
The value in 'loc2' can be retrieved if we start the search there. 
   c_loc3_ 
c 
If the value is found in the starting locale, no search is performed. 
   c_loc1_ 
|value error: c_loc1_ 
   We have not defined a path for 'loc1', so 'loc2' is not searched. 

Changing The Current Locale 
The current locale can be changed in two ways: explicitly by executing the 

cocurrent verb whose purpose is to change the current locale, and implicitly by 
executing a verb named by a locative. 

cocurrent y sets the current locale to y .  Simple as that.  cocurrent uses the 
foreign 18!:4 .  Do not use 18!:4 directly!  It is intended to be used under an alias, 
and it has side effects. 
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Executing an entity named by a locative (almost always a verb, but it could be a 
modifier as well) saves the current locale, changes the current locale to the explicit locale 
of the locative before starting the entity, and resets the current locale to the saved value 
when the entity finishes.  Note that the entity always runs in the explicit locale of the 
locative, even if the search for the name found the entity in some other locale in the 
search path. 

Whenever a named entity finishes execution, the locale is restored to its original 
value, even if the entity changed the current locale. 

Here are examples of actions affecting the current locale: 
   load 'printf' 
   18!:5 '' 
+----+ 
|base| 
+----+ 
This is how you query the name of the current locale.  Next we define two verbs. 
   v1_z_ =: verb define 
'Locale at start of v1 is %j' printf 18!:5 '' 
qprintf 'n1 ' 
v2_result =. v2_loc1_ n1 
'Value returned by v2 is %s' printf <v2_result 
'Locale in v1 after calling v2 is %j' printf 18!:5 '' 
qprintf 'n1 ' 
) 
   cocurrent <'loc2' 
   v2 =: verb define 
'Locale at start of v2 is %j' printf 18!:5 '' 
qprintf 'n1 y. ' 
cocurrent <'loc2' 
qprintf 'n1 ' 
'Locale at end of v2 is %j' printf 18!:5 '' 
n1 
) 
The verb v1 was defined in locale 'z' because it was an assignment to a locative; the 
verb v2 was defined in locale 'loc2' because it was an assignment to a simple name 
and the current locale at the time of its assignment was 'loc2' . 
   cocurrent <'loc3' 
   v2 =: [: 
Now the verb v2 is defined in both locale 'loc2' and 'loc3' .  Next we define the 
noun n1 in each of our locales, so we can see which locale a name was found in: 
   n1_loc1_ =: 'n1 in loc1' 
   n1_loc2_ =: 'n1 in loc2' 
   n1_loc3_ =: 'n1 in loc3' 
Now run the verbs.  I will insert interpretation of the execution. 
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   v1 '' 
J searches for the simple name v1 in the current locale 'loc3'; not finding it there it 
looks in 'loc1', 'loc2', and 'z', finally finding it in 'z' .  J executes the 
definition of the verb found in 'z', but without changing the current locale. 
Locale at start of v1 is loc3 
Yes, the current locale is still 'loc3' … 
n1=n1 in loc3 
…and a name lookup uses the current locale as the starting point. 
Locale at start of v2 is loc1 
v1 has executed v2_loc1_ .  J starts searching for the name v2 in locale 'loc1' and 
its path, eventually finding it in 'z' .  v2 is executed, using the definition found in 
'z', but with the current locale set to the explicit locale of the locative, namely 
'loc1' .  Note that v2 was also defined in 'loc3' (as [: which would give an 
error), but 'loc3' was never searched.  The operand of v2 was n1; note that the lookup 
for n1 is completely independent of the lookup for v2; n1 is sought and found in 
'loc3' and it is that value that becomes y. at the start of execution of v2 . 
n1=n1 in loc1 y.=n1 in loc3 
Simple name lookups start in the current locale 'loc1' .  The private name y. has the 
value it was given on entry. 
n1=n1 in loc2 
Here we have switched the current locale to 'loc2' using cocurrent, and the name 
is found in the new current locale. 
Locale at end of v2 is loc2 
Value returned by v2 is n1 in loc2 
Here v2 has finished and control has returned to v1 .  Note that the value returned by 
v2 is simply the result of the last sentence executed; it is a noun.  Here it is the value of 
n1 at the end of v2, at which time the current locale was 'loc2' . 
Locale in v1 after calling v2 is loc3 
Note that when v2 finished the current locale was restored to its value before execution 
of v2 .  The cocurrent in v2 has no effect once v2 finishes. 
n1=n1 in loc3 
Execution of the verb v1 is complete.  We should be back in locale 'loc3' from which 
we executed v1 : 
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   18!:5 '' 
+----+ 
|loc3| 
+----+ 

The Shared Locale 'z' 
It is a J convention, universally adhered to, that every locale's search path must end 

with the locale 'z' .  Any name in the 'z' locale can then be referred to by a simple 
name from any locale, making names in the 'z' locale truly global names. 

Using Locales 
You have my sympathy for having to read through that detailed description of name 

processing; I refuse to apologize, though, because you really can't write programs if you 
don't know what names mean.  But, you wonder, How do I use locales? 

You won't go far wrong to think of a locale as akin to a class in C++.  When you 
have a set of functions that go together as a module, define all their verbs and nouns in a 
single locale.  The easiest way to do this is to put a line 
coclass <'localename' 
at the beginning of each source file for the module (coclass is like cocurrent but it 
supports inheritance).  Then, every public assignment in the file will automatically be 
made in the locale localename . 

The names defined in the locale are the equivalent of the private portion of class.  To 
provide the public interface to the class, you need to put those names in a place where 
they can be found by other modules.  The traditional way to do this is to define them in 
the locale 'z' by ending each file with lines like 
epname_z_ =: epname_localename_ 
Here epname is the name of a verb, and localename is the name of the module's 
locale.  Take a minute to see what happens when some other locale invokes epname .  
The name search for epname will end in the locale 'z' where this definition is found.  
Execution of this definition immediately results in execution of 
epname_localename_ which switches the current locale to localename and runs 
the definition of epname found there.  The benefit is that the calling module doesn't need 
to know the locale that epname is going to be executed in. 

If you tire of writing out the public definitions one by one, I have included in 
jforc.ijs a verb to do it for a list of entry points using a sentence like 
PublishEntryPoints 'public1 public2 public3' 

If you want to create multiple copies of objects derived from a class, you should 
consult the Lab on Object Oriented Programming.  There you will learn about numbered 
locales and how to create and destroy objects.  We will not discuss these topics here. 

By following the guidelines given above you will be able to emulate the class 
facilities of C++.  Because J is interpreted, you can do much more if you want: you can 
change search paths dynamically; you can use locales and paths to create a high-
performance network database; you can pass locales as data and use them to direct 
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processing; you can peek at a module's private data.  You can even modify a module's 
private data from outside the module, but if you are struck by lightning after doing so the 
coroner will find it was suicide. 

Using locale-names as data allows for dynamic separation of namespaces.  For 
example, the processing of forms in J requires definition of verbs for a great many events.  
You may let these verbs all share the same locale; but if you want to segregate them, the 
Window Driver will remember what locale was running when each form was displayed, 
and direct events for a form to the locale handling the form. 
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29. Writing Your Own Modifiers 

If you find that you are coding recurring patterns of operations, you can write a 
modifier that represents the pattern.  You will find that reading your code is easier when 
the patterns are exhibited with names of your choosing. 

You write a modifier like you write a verb, using conjunction define or 
adverb define, or 2 :n or 1 :n for one-liners.  When you assign the modifier to a 
name, that name becomes a conjunction or adverb, and it will be invoked as 
u name v y (monad) or x u name v y (dyad) if it is a conjunction, or u name y 
(monad)or x u name y (dyad) if it is an adverb. 

When a modifier is invoked, the lines of the modifier are executed one by one, just as 
when a verb is invoked, and the result of the last sentence executed becomes the result of 
the modifier.  The u (and v, for conjunctions) operand(s) of the modifier are assigned to 
the local names u. (and v.) when the modifier starts execution (in addition, if u is a 
noun, it is assigned to the local name m. and if v is a noun it is assigned to n.) 

User-written modifiers are of two types: those that refer to the variables x. and y., 
and those that do not. 

Modifiers That Do Not Refer To x. Or y. 
If the modifier does not refer to x. or y., its text is interpreted when its operands (u 

and, for conjunctions, v) are supplied, and its result is an entity which may be any of the 
four principal parts of speech.  The result replaces the modifier and its operands in the 
sentence, and execution of the sentence continues. 

Usually you will want to create a verb, but nothing keeps you from writing a 
conjunction whose result is another conjunction.  Here we will confine ourselves to verb 
results. 

If a modifier does not refer to x. or y., it can be invoked without any x. or y.; only 
the u. (and v., for conjunctions) are used.  The text of the modifier is executed and the 
resulting verb replaces the modifier and its operands in the execution of the sentence. 

Let's write some of the utility modifiers referred to in earlier chapters.  Ifany was an 
adverb that executed u if y had a nonzero number of items: 
   9!:3 (5)  NB. Do this once to select simplified display 
   Ifany =: 1 : 'u. ^: (*@#@])' 
   < Ifany 
<^:(*@#@]) 
Ifany does not need to look at y.; it creates a verb that executes u only if y has items.  
Here we have executed the adverb Ifany with the left operand <, and the result is a 
verb—the compound verb <^:(*@#@]) .  We can execute that verb on a noun 
operand: 
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   < Ifany 1 2 3 
+-----+ 
|1 2 3| 
+-----+ 
Remember that Ifany is an adverb, so it has precedence and the line is executed as if 
(< Ifany) 1 2 3 .  The verb (< Ifany), which has the value <^:(*@#@]), is 
applied to 1 2 3 and produces the boxed result. 
   < Ifany '' 
 
An empty y is left unboxed. 

u Butifnull n was a conjunction that applied u if y had items, otherwise it 
produced a result of n .  It could be written: 
   Butifnull =: 2 : 'n."_ ` u. @. (*@:#@:])' 
Again (*@:#@:]) will check whether y has items, and this time the result will be used 
to select the appropriate verb to execute. 
   < Butifnull 5 
5"_`<@.(*@:#@:]) 
When Butifnull is executed with operands, it produces a verb. 
   < Butifnull 5  'abc' 
+---+ 
|abc| 
+---+ 
   < Butifnull 5  '' 
5 
The verb it produces can be applied to its own noun operands. 

Example: Creating an Operating-System-Dependent Verb 
The great thing about modifiers that do not refer to x. or y. is that they are fully 

interpreted before the x and y operands are supplied, so there is no interpretive overhead 
during the processing of the data.  Here is a more complex example taken from the J 
system.  The goal is to define a verb playsound that can be used to play a .wav file 
under Windows: 
NB. y. is the file data to be played 
playsound =: '' adverb define 
select. 9!:12 NIL 
case. 2 do. 
  'winmm.dll sndplaysound i *c i' & (15!:0) @ (;&1) 
case. 6 do. 
NB. 2=nodefault + 4=memory  +  16b20000 = file 
  'winmm.dll PlaySound i *c i i' & (15!:0) @ (;&(0;4)) 
end. 
) 
To begin with, let's make sense of this odd sequence '' adverb define .  The 
adverb define defines an adverb, but what's the ''?  Simple—it's the left argument 
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to the adverb that was defined: the adverb is executed with u. set to '' .  The result of 
that execution of the adverb is what gets assigned to playsound . 
 So, what happens when the adverb is executed?  The adverb calls the foreign 9!:12 
to see what operating system is running, and executes a selected line that contains the 
definition of a compound verb.  Since that line is the last one executed, it becomes the 
result of the adverb; so the result of the adverb is the selected verb, and that is what is 
assigned to playsound .  On my system, this leaves playsound defined as a single 
compound verb: 
   playsound 
'winmm.dll PlaySound i *c i i'&(15!:0)@(;&(0;4)) 
Lovely!  No check for operating system needs to be made when I invoke playsound; 
the check was made when playsound was defined. 

Example: The LoopWithInitial Conjunction 
The conjunction LoopWithInitial that we learned about earlier can be written as 

   LoopWithInitial =: 2 : 'u.&.>/\.&.(,&(<v.))&.|.&.(<"_1)' 
It's just one application of &. after another.  We can use it to illustrate a subtlety about 
modifiers that you should be aware of.  Consider an invocation of 
LoopWithInitial : 
   vb =. + 
   init =. 4 5 
   vb LoopWithInitial init 
vb&.>/\.&.(,&(<4 5))&.|.&.(<"_1) 
The verb that is produced seems in order, but notice one point: the verb contains the 
value of init, but the name of vb .  This is a rule: the name of a verb argument is 
passed into a modifier, but the value of a noun argument is passed.  Note that if these 
lines appear inside a verb, the verb vb, which is assigned by private assignment, is not 
defined inside LoopWithInitial, because LoopWithInitial is running in a 
different explicit definition from the one in which vb was assigned.  As we see above, 
LoopWithInitial can pass vb into other modifiers, but if LoopWithInitial 
tried to execute vb it would fail.  

Before we move on I want to point out one tiny example of the beauty of J.  For 
&.(,&(<4 5)) to work, there must be some obverse of ,&(<4 5) that undoes its 
effect.  What would that be?  We can see what the interpreter uses: 
   ,&(<4 5) b. _1 
}: :.(,&(<4 5)) 
It undoes the addition of a trailing item with }: which discards the last item.  Yes, that 
makes sense (the obverse has its own obverse which is the original verb). 

Example: A Conjunction that Analyzes u and v 
The conjunction u&.v expresses with great clarity the sequence of applying a 

transformation v, then applying the operation u, then inverting the transformation v .  
The dyad x u&.v y applies the same transformation to both x and y, but in many cases 
the transformation is meaningful only on one operand, and what we would like is a 
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conjunction Undery such that x u Undery v y produces v^:_1 x u v y .  For 
example, to encipher the characters of y by replacing each one by the letter x positions 
earlier, we would use 
   5 1 3 2 -~ Undery ('abcdefghijkl'&i."0) 'hijk' 
to perform the function 
   t =. 'abcdefghijkl'&i."0 'hijk' 
   t =. 5 1 3 2 -~ t 
   t { 'abcdefghijkl' 
chgi 

With that x stuck in the middle of the desired result v^:_1 x u v y  it appears 
that we will have to refer to x. in our conjunction, but actually we can use an advanced 
feature of J to make the x. disappear.  The sequence (u v) produces a verb that, when 
executed as the dyad x (u v) y, gives the result of x u v y (you will learn about 
this and more if you persevere with the part of the book devoted to tacit programming).  
So, the verb we are looking for is v^:_1 @: (u v) and we can write 
   Undery =: 2 : 'v.^:_1 @: (u. v.)' 
   5 1 3 2 -~ Undery ('abcdefghijkl'&i."0) 'hijk' 
chgi 

Before we pat ourselves on the back for this achievement, we should consider 
whether the verb produced by Undery has the proper rank.  We see that it does not: 
Undery applies v to the entire y, and u to the entire x and the result of u y, when 
really we should be performing the operation on cells of x and y, where the cell-size of x 
is given by the left rank of u and the cell-size of y is given by the right rank of v .  For 
example, if we wanted to take the -x least-significant bits of y, we could use 
   _3 {."0 1 Undery #: 30  
12 
(remember that monad #: converts an integer y to its binary representation, producing a 
Boolean list–we are taking x bits of that and then converting back to integer)  The binary 
code for 30 is 11110, the 3 low-order bits are 110, and the result is 6.  But when we 
have list arguments, we get an incorrect result: 
   _3 _4 _3 {."0 1 Undery #: 32 31 30  
0 15 12 
The result for 30 is wrong: because #: was applied to the entire y, 110 was extended 
with framing fills to become 1100, and the result is 12 instead of the expected 6.  To get 
the right result we need to apply the verb to cells of the correct size: 
   _3 _4 _3 ({. Undery #:"0) 32 31 30  
0 15 6 
and naturally we would like to make Undery automatically produce a verb with the 
correct rank. 

The way to find the rank of the verb u is to execute u b. 0 .  In our conjunction 
u. and v. are verbs, and we can use their ranks to produce an Undery that gives the 
correct rank: 
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   Undery =: 2 :'(v.^:_1)@:(u. v.)"((1{u.b.0),2{v.b.0)' 
We have selected the left rank of u and the right rank of v, and put them as the ranks of 
the verb produced by Undery .  This produces the desired result: 
   _3 _4 _3 {."0 1 Undery #: 32 31 30  
0 15 6 
and we can see the verb produced by Undery, with its ranks: 
   {."0 1 Undery #: 
#:^:_1@:({."0 1 #:)"0 0 

This version of Undery produces correct results, but we should add one small 
improvement: the inverse of monad #: should be monad #. rather than monad #:^:_1, 
because the two forms are different.  One difference is obvious: the rank of #:^:_1 is 
infinite, while the rank of #. is 1; but that is immaterial in Undery .  The other 
difference is subtle but it could be significant: the two forms may have different 
performance in compounds.  The interpreter recognizes certain compounds for special 
handling; the list grows from release to release, but it's a pretty safe bet that #. will be 
selected for special treatment before #:^:_1 (and < before >^:_1, and so on).  So, we 
would like to replace the v.^:_1 with the actual inverse of v .  We can get the inverse 
of v by looking at v b. _1 which produces a character-string representation of the 
inverse of v .  We can then convert this string to a verb by making it the result of an 
adverb (we can't make it the result of a verb, because the result of a verb must be a noun).  
So, we are led to 
  Undery=:2 :'(a: 1 :(v.b._1))@:(u.v.)"((1{u.b.0),2{v.b.0)' 
where we defined the adverb 1 :(v.b._1) and then immediately executed it with an 
ignored left operand a: to create the desired verb form.  Now we have 
   {."0 1 Undery #: 
#.@:({."0 1 #:)"0 0 
which we can be content with. 

An Exception: Modifiers that Do Not Refer to u. or v. 
In very early versions of J, modifiers could not refer to their x. and y. operands.  In 

those days, a modifier used the names x. and y. to mean what we now mean by u. and 
v. .  Modern versions of J continue to execute the old-fashioned modifiers correctly by 
applying the following rule: if a modifier does not contain any reference to u., v., m., 
or n., it is assumed to be an old-style modifier, and references to x. and y. are treated 
as if they were u. and v. .  You may encounter old code that relies on this rule, but you 
should not add any new examples of your own. 

Modifiers That Refer To x. Or y. 
Most of the modifiers you write will be refer to x. and y. .  The names x. and y. 

refer to the noun operands that are supplied when the modifier is invoked as 
[x] u adverb y or [x] u conjunction v y . 
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Here is an example, which is invoked as [x] u InLocales n y, where u is a 
verb and n is a list of locale names; it executes u y (or x u y if the invocation is 
dyadic) in each locale of n : 
InLocales =: 2 : 0 
for_l. n. do. 
  cocurrent l 
  u. y. 
end. 
'' 
: 
for_l. n. do. 
  cocurrent l 
  x. u. y. 
end. 
'' 
) 
This illustrates the important points.  The text of the definition is not interpreted until the 
x. and y. are available, in other words until the verb defined by u InLocales n is 
invoked.  Since that invocation may be either monadic or dyadic, two versions of the 
conjunction are given, one for each valence.  The result of the execution must be a noun, 
because the definition defines a verb and the result of a verb is always a noun. 

That last point is important and I want to emphasize it.  It is true that InLocales is 
a conjunction, and yet its text defines a verb.  How is this possible?  Because 
InLocales is executed as a conjunction at the time it gets its u and n operands, 
but its text is not interpreted until the derived verb (which consists of u, n, and the 
text of InLocales) gets its x and y operands.  When InLocales is supplied with u 
and n, it is executed to produce a verb which consists of the text of InLocales along 
with u and the value of n .  This derived verb is hidden inside the interpreter where it 
waits to be applied to a y (and possibly x).  When the derived verb is given its operands, 
it starts interpreting the text of InLocales (which was unusable until the time that y. 
and x. could be given values) and initializes u. and n. from the values that were saved 
when u InLocales n was executed.  Thus the text of InLocales describes a verb 
operating on y. and x. . 

Your modifiers should refer to x. and y. only if necessary.  Ifany from the 
previous section could have been written 
   Ifany =: 1 : 'u.^:(*#y.) y.' 
which would produce exactly the same result as the other definition, but it would usually 
be slower, because the text could not be interpreted until x. and y. could be defined.  If 
the conjunction happens to be used in a verb of low rank, the result could be soporific. 

Here's a puzzle that may be of interest to those readers whose eventual goal is Full 
Guru certification.  Why did InLocales save and restore the current locale?  Didn't we 
say that completion of any named entity restores the original locale? 

Let's see what happens when we don't restore, using a simple testcase: 
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   t =: 1 : 0 
cocurrent u. 
y. 
) 
   (<'abc') t 0 
0 
   18!:5 '' 
+---+ 
|abc| 
+---+ 
Sure enough, the current locale was changed!  But see what happens when we give a 
name to the verb created by the execution of t : 
   cocurrent <'base' 
   tt =: (<'abc') t 
   tt 0 
0 
   18!:5 '' 
+----+ 
|base| 
+----+ 

The current locale was restored.  What causes the difference? 

The answer is that in the sentence (<'abc') t 0, the named adverb t is executed 
when it is given its operand <'abc' .  The result of that execution is the derived verb 
(<'abc') t which has no name.  When the derived verb is executed with the operand 
0, the text is interpreted, causing a change to the current locale, and when the derived 
verb finishes, the current locale is not restored because the derived verb is anonymous.  If 
we give that derived verb a name (tt here), it restores the current locale on completion. 

The observed behavior reinforces the point that the text of a modifier that refers to x. 
or y. is not interpreted when the modifier is executed; it is interpreted only when the 
derived verb is executed. 
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30. Applied Mathematics in J 

Complex Numbers 
All the mathematical functions can be applied to complex numbers.  A complex 

constant is written with the letter j separating the real and imaginary parts, e. g. 0j1 is 
the square-root of _1 .  Alternatively, a constant can be written in polar form in which 
the letters ar (or ad) separate the magnitude of the number from the angle in radians (or 
degrees) between the real axis and a line in the complex plane from the origin to the point 
representing the number: 
   1ar1 
0.540302j0.841471 
   1ad90 
0j1 

A number of verbs are available for operations on components of complex numbers.  
All have rank 0. 

+ y    conjugate of y 

+. y    creates a 2-atom list of the real and imaginary components of y 

*. y    creates a 2-atom list of the length and angle in radians of the polar form of y 

| y    magnitude of y 
j. y    0j1 * y   
r. y    ^ 0j1 * y   

x j. y    x + j. y (i. e. x is the real part, y is the imaginary part) 

x r. y    x * r. y (i. e. polar form, where x is the magnitude and y the angle 
in radians) 

! y    factorial of y (more generally, the gamma function Γ(1+y)) 

Matrix Operations 
J has primitive verbs for operations on matrices, some using the conjunction . .  

-/ .* y gives the determinant of y; x +/ .* y is the matrix product of x and y; 
%. y is the matrix inverse of y (provided y is nonsingular); x %. y is the projection of 
x onto y . 

In x +/ .* y, a rank-1 x is treated as a matrix with one row, and a rank-1 y is 
treated as a matrix with one column; but the result rank, which is 2 when rank-2 matrices 
are multiplied, is 1 when one operand has rank 1 and 0 when both do. 

x %. y is a rough-and-ready way to get a least-squares approximation of x as a 
linear combination of the columns of y .  If your y is singular or close to it, avoid %. 
and use methods based on singular value decomposition. 
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Polynomials: p. 
J supports 3 different ways of specifying a polynomial: 

1. as a list of coefficients of increasing powers, starting with power 0 (i. e. a constant 
term), where each coefficient multiplied by the corresponding power of the 
variable produces a term; the polynomial is the sum of the terms.  This form is an 
unboxed numeric list. 

2. as a multiplier m and a list of roots r, representing the polynomial 
m(x-r0)(x-r1)…(x-rn).  This form is a 2-item list of boxes m;r (if m is 1 it may be 
omitted, leaving just <r). 

3. (for multinomials) a multinomial of n variables is represented as a list of terms, 
each term consisting of a coefficient and a list of n exponents (one exponent per 
variable).  The multinomial is the sum of the terms.  The form is a boxed rank-2 
array in which each item is a coefficient followed by the list of n exponents.  This 
form is distinguished from the multiplier-root form by the rank of the boxed array.  
(It is possible to have multiple multinomials that share a common exponent array, 
by having more than one coefficient preceding each list of exponents, but we will 
not pursue that here) 

For example, three ways of expressing the polynomial 3x3-12x (which can be written 
3x(x+2)(x-2))are 0 _12 0 3, 3;_2 0 2, and <2 2$_12 1 3 3 . 

p. y has rank 1 and converts between coefficient and multiplier-root form of the 
polynomial y .  Note that converting from coefficient form to multiplier-root form solves 
for the roots of the polynomial. 
   p. 0 _12 0 3 
+-+------+ 
|3|2 _2 0| 
+-+------+ 
   p. 3;2 0 _2 
0 _12 0 3 
If the multinomial form has only one variable (i. e. each item has length 2), monad p. 
will convert it to coefficient form: 
   p. <2 2$_12 1 3 3 
0 _12 0 3 

Dyad p. has rank 1 0 and is used to evaluate a polynomial in any of these forms.  If 
x is a polynomial in coefficient or multiplier-root form, x p. y evaluates it with y 
giving the value of the variable: 
   0 _12 0 3 p. 1 
_9 
   (3;_2 0 2) p. _2 _1 0 1 2 
0 9 0 _9 0 
(the second evaluation applied the polynomial to 5 different values of the variable). 

If x is a multinomial, x p. <y evaluates it with the list y giving the values of the 
variables (y must be boxed because the right rank of dyad p. is 0 and in this case there is 
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more than one variable).  So to evaluate the binomial x3+3x2y+3xy2+y3 with x=2 and y=3 
we have 
   (<4 3$1 3 0  3 2 1  3 1 2  1 0 3) p. <2 3 
125 
as expected. 

Calculus: d., D., D:, and p.. 
J provides support for differential and integral calculus.  u d. n produces the verb 

that gives the nth derivative of u : 
   *: d. 1 
+: 
*: y is y squared; the derivative is +: y which is y doubled. 
   ^&3 d. 1 
3&*@(^&2) 
^&3 y is y cubed; the derivative is 3 * y ^ 2 . 
   ^&3 d. 2 
3"0 * +: 
Second derivative is 3 * 2 * y . 
   *: d. _1 
0 0 0 0.33333&p. 
The _1st derivative is the indefinite integral, which is (y ^ 3) % 3 .  The form the 
interpreter uses is the polynomial form. 
   f =. *: 
   f d. _1 (6) 
72 
   g =. *:@+: 
   g d. _1 (6) 
288 

u d. n produces ordinary derivatives, and evaluates its u with rank 0.  For partial 
derivatives, use u D. n where u has rank greater than 0.  Each cell of y produces an 
array of results, one result for each atom of the cell, giving the partial derivative with 
respect to that atom.  For example, the length of a vector is given by 
   veclength =: +/&.:*:"1 
which squares the atoms, adds them, and takes the square root: 
   veclength 3 4 5 
7.07107 
The derivative of the vector length with respect to the individual components is given by: 
   veclength D. 1 (3 4 5) 
0.424264 0.565685 0.707107 

The result of u need not be a scalar.  Here we define the cross product: 
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   xp =: dyad : '((1|.x.)*(_1|.y.)) - ((_1|.x.)*(1|.y.))'"1 
   0 0 2&xp D. 1 (4 2 0) 
 0 2 0 
_2 0 0 
 0 0 0 
Each row is the vector-valued partial derivative of the cross product 
(0 0 2 xp 4 2 0) with respect to one component of y . 

The interpreter will bend every effort to find a derivative for your function, but it may 
fail, or you may not like the derivative it chooses.  m D. n, when m is a gerund u`v, 
produces a new verb which executes like u but whose nth derivative is v : 
   a =. *:`] D. 1 
Here a is defined to be *: except that its derivative is ] . 
   a 
*:`]D.1 
   a D. 1 (5) 
5 
Sure enough, the derivative is ] . 

If you don't want to express the derivative, you can have the interpreter approximate 
it for you.  x u D: n y approximates the derivative at y by evaluating u at y and 
y+x .  Both the left and right ranks of u D: n are the monadic rank of u, so you can 
specify different step-sizes for different atoms of y (if x is a scalar, it is used for the step-
size at all atoms of y). 

You can do calculus on polynomials by manipulating the polynomial forms without 
having to create the verbs that operate on those forms.  p.. y (rank 1) takes polynomial 
y in either coefficient or multiplier-root form and produces the coefficient form of the 
derivative of y .  x p.. y (rank 0 1) produces the coefficient form of the integral of 
y with constant term x . 

Taylor Series: t., t:, and T. 
With derivatives available, Taylor series are a natural next step.  u t. y is the yth 

Taylor coefficient of u expanded about 0, and x u t. y evaluates that term at the point 
x, in other words x u t. y is x^y * u t. y .  All ranks of u t. are 0. 

u T. n is a verb which is the n-term Taylor approximation to u (expanded about 0). 

u t: y is (!y) * u t. y .   

Hypergeometric Function with H. 
The generalized hypergeometric function is specified by two lists of numbers, a 

numerator list and a denominator list.  The generalized hypergeometric function is the 
sum over all k of the (infinite) generalized hypergeometric series, which is a power series 
in which the coefficient of the yk term is the product of the rising factorials of length k of 
the numerator items divided by a similar product for the denominator items, and then 
divided by !k . 
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The conjunction H. is used in the form m H. n where m is the numerator list and n 
is the denominator list.  The resulting verb m H. n has rank 0.  The monad m H. n y 
takes the limit of the sum of the generalized hypergeometric series; the dyad 
x m H. n y takes the sum of the first x terms.  Formally, the generalized 
hypergeometric function is 
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If m contains 2 items and n contains 1 item, m H. n defines a hypergeometric 
function. 

Generalized hypergeometric functions can be used to calculate a great many functions 
of interest: Legendre polynomials, Laguerre polynomials, Chebyshev polynomials, and 
Bessel functions of the first kind are all special cases of hypergeometric functions.  Ewart 
Shaw, in http://www.ewartshaw.co.uk/data/jhyper.doc, gives a number of examples of 
uses of H. .  For example, the error function and the cumulative distribution function are 
given by 
   erf =: 3 : '(((2p_0.5)*y.) % (^*:y.)) * 1 H. 1.5 *: y.' 
   n01cdf =: 3 : '-: >: erf y. % %:2'   NB. CDF of N(0,1) 
where I have rewritten Shaw's formulas to use elementary J.  2p_0.5 is 2/sqrt(π). 

Sparse Arrays: Monad and Dyad $. 
$. y converts the array y into a sparse-matrix representation which can save a lot of 

space and time if most of the atoms of y have the same value.  $.^:_1 y converts 
sparse y back to normal (dense) form.  A large but incomplete subset of operations is 
supported on sparse arrays; look at the description of $. if you think you'd like to use 
them. 

Random Numbers: ? 
Monad ? has rank 0.  ? y is a random element of i. y .  An example use is 

   ? 3 3 $ 1000 
755 458 532 
218  47 678 
679 934 383 

Dyad ? has rank 0.  x ? y is a list of x items selected without repetition from 
i. y, as if the list i. y were shuffled and the first x elements were taken: 
   5 ? 52 
24 8 48 46 22 

The ? verbs use a multiplicative-congruential random-number generator. 

Plot 
J includes a great package for making 2-D and 3-D plots.  Check out the Lab named 

Plot Package to see how to use it.  For a quick preview, enter 
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load 'plot numeric trig' 
'surface' plot sin */~ steps 0 3 30 
to see how easy it is to get a plot of sin(x*y). 

Computational Addons 
The web site at www.jsoftware.com has several addons that you can download.  

These are executable libraries, along with J scripts to call functions in them, that offer 
efficient implementations of often-used functions.  Two of interest in applied 
mathematics are the LAPACK addon and the FFT addon.  If you want a fast 
implementation of the singular value decomposition referred to earlier, install the 
LAPACK addon; then you can use 
   require 'addons\lapack\lapack' 
   require 'addons\lapack\dgesvd' 
   dgesvd_jlapack_ yourmatrix 
which will quickly return the desired singular values and singular vectors. 

Useful Scripts Supplied With J 
The directory yourJdirectory/system/packages contains a number of 

subdirectories full of useful scripts.  The /math and /stats subdirectories have scripts 
for mathematics and statistics; other subdirectories cover topics such as finance, printing, 
graphics, and interfacing to Windows. 
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31. Elementary Mathematics in J 

Verbs for Mathematics 
All the verbs have rank 0 0 . 

x *. y   Lowest common multiple of x and y 

x +. y   Greatest common divisor of x and y 

x ! y    number of ways to choose x things from a population of y things.  More 
generally, (!y) % (!x) * (!y-x) 

The verbs dyad e. (Member of) and dyad -. (set difference) are useful in working 
with sets. 

Extended Integers, Rational Numbers, and x: 
In J, numbers are not limited to 32-bit integers or 64-bit floating point.  Extended 

integer and rational are atomic data types (like numeric, literal, and boxed) that allow 
representation of numbers with arbitrary accuracy.  An extended integer constant is 
defined by a sequence of digits with the letter x appended; a rational constant is two 
strings of digits (numerator and denominator) separated by the letter r; examples are 
123x and 4r5 . 

The various representations of numbers in J can be given a priority order: 

boolean (low) - integer - extended integer - rational - floating point - complex (high) 

When a dyadic arithmetic operation is performed on operands of different priorities, 
the lower-priority operand is converted to the higher-priority representation.  The 
simplest example arises in a list constant: 
   12345678901234567890 4r5 
12345678901234567890 4r5 
The integer was made into a rational number so it keeps its precision. 
   3.0 4r5 
3 0.8 
The floating-point constant forces the rational number to floating point. 
   2 * 3r4 
3r2 
The operation was performed on rational operands with a rational result. 

Results of verbs are given a higher-priority representation if necessary: 
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   %: 4r9 
2r3 
   %: 5r9 
0.745356 

Explicit conversions between extended/rational and floating-point can be performed 
by the infinite-rank verb x: .  x: y converts floating-point y to rational or integer y to 
extended integer.  The inverse, x:^:_1 y, converts in the other direction. 

A rational number can be split into numerator and denominator by 2 x: y (rank 0): 
   2 x: 1r3 5 
1 3 
5 1 

Factors and Primes: Monad p:, Monad and Dyad q: 
p: y (rank 0) gives the yth prime (prime number 0 is 2). 

q: y (rank 0) gives the prime factors of y 

x q: y (rank 0) with positive x is the first x items (or all items, if x is _) in the list 
of exponents in the prime factorization of y : 
   _ q: 700 
2 0 2 1 
   */ (p: 0 1 2 3) ^ 2 0 2 1 
700 

x q: y with negative x returns a 2-row table.  The second row is the nonzero items 
of (|x) q: y (i. e. the nonzero exponents in the prime factorization); the first row is 
the corresponding prime numbers: 
   __ q: 700 
2 5 7 
2 2 1 

Permutations: A. and C. 
In the direct representation of a permutation p each item i{p of the permutation 

vector indicates the item number that moves to position i when the permutation is 
applied.  Applying the permutation in the direct form is as simple as writing p{y . 

The standard cycle representation of a permutation gives the permutation as a list of 
cycles (sets of elements that are replaced by other elements of the set).  The standard 
cycle form is a list of boxes, one for each cycle, with each cycle starting with the largest 
element and the cycles in ascending order of largest element. 

Monad C. y (rank 1) converts between direct and standard-cycle representations of 
the permutation y : 
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   /: 3 1 4 1 5 9 
1 3 0 2 4 5 
   C. /: 3 1 4 1 5 9 
+-------+-+-+ 
|3 2 0 1|4|5| 
+-------+-+-+ 
   C. C. /: 3 1 4 1 5 9 
1 3 0 2 4 5 

x C. y (rank 1 _) permutes the items of y according to the permutation x which 
may be in either standard-cycle or direct form; other nonstandard forms are also 
supported as described in the Dictionary. 

There are !n possible permutations on n items, so it is possible to give each one a 
number between 0 and <:!n .  Imagine the table of all possible permutations in 
lexicographic order; the anagram index of a permutation is its index in that table.  A. y 
(rank 0) gives the anagram index for the permutation y, which may be in either direct or 
standard-cycle form.  x A. y (rank 0 _) permutes the items of y according to the 
permutation whose anagram index is x : 
   a =. /: 3 1 4 1 5 9 
   A. a 
168 
   a C. 1 2 3 4 5 6 
2 4 1 3 5 6 
   168 A. 1 2 3 4 5 6 
2 4 1 3 5 6 

The monad C.!.2 y gives the parity of y : 1 if an even number of pairwise 
exchanges are needed to convert y to the identity permutation i.#y, _1 if an odd 
number are needed, 0 if y is not a permutation. 
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32. Odds And Ends 

To keep my discussion from wandering too far afield I left out a number of useful 
features of J.  I will discuss some of them briefly here. 

Dyad # Revisited 
x # y does not require that x be a Boolean list.  The items of x actually tell how 

many copies of the corresponding item of y to include in the result: 
   1 2 0 2 # 5 6 7 8 
5 6 6 8 8 
Boolean x, used for simple selection, is a special case.  If an item of x is complex, the 
imaginary part tells how many cells of fill to insert after making the copies of the item of 
y .  The fill atom is the usual 0, ' ', or a: depending on the type of y, but the fit 
conjunction !.f may be used to specify f as the fill: 
   1j2 1 0j1 2 # 5 6 7 8 
5 0 0 6 0 8 8 
   1j2 1 0j1 2 (#!.99) 5 6 7 8 
5 99 99 6 99 8 8 

Finally, a scalar x is replicated to the length of y .  This is a good way to take all 
items of y if x is 1, or no items if x is 0 . 

Boxed words to string: Monad ;:^:_1 
;:^:_1 y converts y from a list of boxed strings to a single character string with 

spaces between the boxed strings. 
   ;:^:_1 ('a';'list';'of';'words') 
a list of words 

Spread: #^:_1 
x #^:_1 y creates an array with the items of y in the positions corresponding to 

nonzero items of the Boolean vector x, and fills in the other items.  +/x must equal #y . 
   1 1 0 0 1 #^:_1 'abc' 
ab  c 

You can specify a fill atom, but if you do you must bond x to # rather than giving it 
as a left operand: 
   1 1 0 0 1&#^:_1!.'x' 'abc' 
abxxc 

Choose From Lists Item-By-Item: monad m} 
Suppose you have two arrays a and b and a Boolean list m, and you want to create a 

composite list from a and b using each item of m to select the corresponding item of 
either a (if the item of m is 0) or b (if 1).  You could simply write 
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   m {"_1 a ,. b 
and have the answer.  There's nothing wrong with that, but J has a little doodad that is 
faster and uses less space, as long as you want to assign the result to a name.  You write 
   name =. m} a ,: b 
(assignment with =: works too).  This form does not create the intermediate result from 
dyad ,: .  If name is the same as a or b, the whole operation is done in-place. 

More than two arrays may be merged this way, using the form 
name =. m} a , b , … ,: c 
in which each item of m selects from one of a, b, …, c .  The operation is not done in-
place but it avoids forming the intermediate result. 

Recursion: $: 
In tacit verbs, recursion can be performed elegantly using the verb $:, which stands 

for the longest verb-phrase it appears in (that is, the anonymous verb, created by parsing 
the sentence containing the $:, whose execution resulted in executing the $:).  
Recursion is customarily demonstrated with the factorial function, which we can write as: 
   factorial =: (* factorial@<:) ^: (1&<) 
   factorial 4 
24 
factorial(n) is defined as n*factorial(n-1), except that factorial(1) is 1.  Here we just 
wrote out the recursion by referring to factorial by name.  Using $:, we can recur 
without a name: 
   (* $:@<:) ^: (1&<) 4 
24 
$: stands for the whole verb containing the $:, namely (* $:@<:) ^: (1&<) . 

Make a Table: Adverb dyad u/ 
x u/ y is x u"(lu,_) y where lu is the left rank of u .  Thus, each cell of x is 

applied to the entire y . 

The definition is simplicity itself, and yet many J programmers stumble learning it.  I 
think the problem comes from learning dyad u/ by the example of a multiplication table. 

The key is to note that each cell of x is applied to the entire y : cell, not item or 
atom.  The rank of a cell depends on the left rank of u .  The multiplication table comes 
from a verb with rank 0: 
   1 2 3 */ 1 2 3 
1 2 3 
2 4 6 
3 6 9 

You can control the result by specifying the rank of u : 
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   (i. 2 2) ,"1/ 8 9 
0 1 8 9 
2 3 8 9 
   (i. 2 2) ,"0 _/ 8 9 
0 8 9 
1 8 9 
 
2 8 9 
3 8 9 

These results follow directly from the definition of dyad u/ .  fndisplay shows 
the details: 
   defverbs 'comma' 
   (i. 2 2) comma"1/ 8 9 
+---------------+---------------+ 
|(0 1) comma 8 9|(2 3) comma 8 9| 
+---------------+---------------+ 
   (i. 2 2) comma"0 _/ 8 9 
+-----------+-----------+ 
|0 comma 8 9|1 comma 8 9| 
+-----------+-----------+ 
|2 comma 8 9|3 comma 8 9| 
+-----------+-----------+ 

Boolean Functions: Dyad m b. 
Functions on Boolean operands 

I will just illustrate Boolean dyad m b. by example.  m b. is a verb with rank 0.  m, 
when in the range 0-15, selects the Boolean function: 
   9 b./~ 0 1 
1 0 
0 1 
u/~ 0 1 is the function table with x values running down the left and y values running 
along the top.  9 is 1001 binary (in J, 2b1001), and the function table of 9 b. is 
1 0 0 1 if you enfile it into a vector.  Similarly: 
   , 14 b./~ 0 1 
1 1 1 0 

You can use m b. in place of combinations of Boolean verbs.  Unfortunately, 
comparison verbs like > and <: have better performance than m b., so you may have to 
pay a performance penalty if you write, for example, 2 b. instead of >, even though 
they give the same results on Booleans: 
   >/~ 0 1 
0 0 
1 0 

J verb-equivalents for the cases of m b. are: 0 0"0; 1 *.; 2 >; 3 ["0; 4 <; 5 ]"0; 
6 ~:; 7 +.; 8 +:; 9 =; 10 -.@]"0; 11 >:; 12 -.@["0; 13 <:; 14 *:; 15 1"0 . 
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Bitwise Boolean Operations on Integers 
When m is in the range 16-31, dyad m b. specifies a bitwise Boolean operation in 

which the operation (m-16) b. is applied to corresponding bits of x and y .  Since 
6 b. is exclusive OR, 22 b. is bitwise exclusive OR: 
   5 (22 b.) 7 
2 
The XOR operation is performed bit-by-bit. 

Dyad 32 b. is bitwise left rotate: bits shifted off the end of the word are shifted into 
vacated positions at the other end. 

Dyad 33 b. is bitwise unsigned left shift.  x is the number of bits to shift y 
(positive x shifts left; negative x shifts right; in both cases zeros are shifted into vacated 
bit positions): 
   2 (33 b.) 5 
20 

Dyad 34 b. is bitwise signed left shift: it differs from the unsigned shift only when 
x and y are both negative (i. e. right shift of a negative number), in which case the 
vacated bit positions are filled with 1). 

If you use shift and rotate, you may need to know the word-size of your machine.  
One way to do that is  
   >: 2 ^. | _1 (32 b.) 1 
32 

Operations Inside Boxes: u L: n, u S: n 
u&.> is the recommended way to perform an operation on the contents of a box, 

leaving the result boxed.  It is the idiom used most often by J coders and the first one to 
be supported by special code when performance improvements are made in the 
interpreter. 

Sometimes your operations inside boxes require greater control than u&.> can 
provide.  For example, you may need to operate on the innermost boxes where the boxing 
level varies from box to box.  In these cases consider using u L: n which has infinite 
rank.  It goes inside the operands and applies u to contents at boxing level n . 

The monadic case u L: n y is the simpler one.  It is defined recursively.  If the 
boxing level of y is no more than n, the result is u y  .  Otherwise, u L: n is applied 
to each opened atom of y, and the result of that is boxed.  The effect is that u is applied 
on each level-n subbox and the result replaces that subbox, with outer levels of boxing 
intact.  For example, 
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   ]a =. 0;(1 2;3 4 5);<<6;7 8;9 
+-+-----------+-----------+ 
|0|+---+-----+|+---------+| 
| ||1 2|3 4 5|||+-+---+-+|| 
| |+---+-----+|||6|7 8|9||| 
| |           ||+-+---+-+|| 
| |           |+---------+| 
+-+-----------+-----------+ 
A boxed noun. 
   L. a 
3 
Its boxing level is 3. 
   # L:0 a 
+-+-----+---------+ 
|1|+-+-+|+-------+| 
| ||2|3|||+-+-+-+|| 
| |+-+-+|||1|2|1||| 
| |     ||+-+-+-+|| 
| |     |+-------+| 
+-+-----+---------+ 
The contents of each innermost box (where boxing level is 0) is replaced by the number 
of items there. 
   # L:1 a 
+-+-+---+ 
|1|2|+-+| 
| | ||3|| 
| | |+-+| 
+-+-+---+ 
Each level-1 boxed entity is replaced by the number of items. 
   # L:2 a 
+-+-+-+ 
|1|2|1| 
+-+-+-+ 
Similarly for level-2 entities. 
   # L:_2 a 
+-+-+---+ 
|1|2|+-+| 
| | ||3|| 
| | |+-+| 
+-+-+---+ 
Negative level -n means ((level of y) minus n).  Note that this does not mean 'n levels 
down into y'.  That would result in u's being applied at different levels in the different 
items of y; instead, the level at which u is to be applied is calculated using the level of 
the entire y . 

The dyadic case x u L: n y is similar, but you need to know how the items of x 
and y correspond.  During the recursion, as long as both x and y have a higher boxing 
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level than the one specified in n, the atoms of x and y are matched as they would be 
matched in processing a verb with rank 0 0 (with replication of cells if necessary).  If 
either operand is at the specified level, it is not changed as the items of the other operand 
only are opened.  When both operands are at or below the specified boxing level, u is 
applied between them.  The results of each recursion are boxed; this will give each the 
deeper boxing level of the two operands at each application of u .An example: 
   (0 1;<2;3) +L:0 (10 20) 
+-----+-------------+ 
|10 21|+-----+-----+| 
|     ||12 22|13 23|| 
|     |+-----+-----+| 
+-----+-------------+ 
y was passed through and applied to each level-0 entity. 
   (0 1;<2;3) +L:0 (<<10 20) 
+-------+-------------+ 
|+-----+|+-----+-----+| 
||10 21|||12 22|13 23|| 
|+-----+|+-----+-----+| 
+-------+-------------+ 
Once again y was applied to each entity, but because it has boxing level 2, all the results 
have boxing level 2. 

The conjunction S: is like L:, but instead of preserving the boxing of the operands it 
accumulates all results into a list: 
   (0 1;<2;3) +S:0 (<<10 20) 
10 21 
12 22 
13 23 

Comparison Tolerance !.f 
Like a diamond earring that adds a sparkle to any outfit, the fit conjunction !. is a 

general-purpose modifier whose interpretation is up to the verb it modifies.  We have 
seen !.f used to specify the fill atom for a verb, and to alter the formatting of 
monad ": .  Its other important use is in specifying the comparison tolerance for 
comparisons.  A comparison like x = y calls two operands equal if they are close, 
where close is defined as differing by no more than the comparison tolerance times the 
magnitude of the larger number.  If you want exact comparison, you can set the 
comparison tolerance to 0 using !.0 : 
   1 (=!.0) 1.000000000000001 
0 
   1 = 1.000000000000001 
1 

Tolerant comparison is used in the obvious places—verbs like dyad =, dyad >, and 
dyad -:—and also in some unobvious ones, like the verbs monad ~., monad ~:, and 
dyad i., and the adverb /. .  For all of these you can specify comparison tolerance with 
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!.f .  You may wonder whether an exact comparison using !.0 is faster than a tolerant 
comparison.  The answer is, Usually not, but there is one important exception: if the 
comparison is used for finding equal items whose rank is greater than 0 (or are complex 
numbers), exact comparison can be much faster.  So, if x has rank 2 or higher, it's worth 
the trouble to write x u/.!.0 y or x i.!.0 y; similarly use ~.!.0 y, ~:!.0 y, 
and x e.!.0 y if y has rank greater than 0. 

The f in !.f can be no larger than about 2^_34 .  The reason for this is that there 
is much special code in J for handling integer operands, and for speed it assumes that 
comparison tolerance cannot affect integer comparisons. 

The foreign 9!:19 y can be used to change the default comparison tolerance, and 
9!:18 '' will return the current setting. 

Right Shift: Monad |.!.f 
One of my personal favorites is the infinite-rank verb monad |.!.f , defined as 

_1&(|.!.f); in other words it shifts y right one place, discarding the last item and 
shifting an item of fs into the first position. 

Generalized Transpose: Dyad |: 
Dyad |: has rank 1 _ .  x |: y rearranges y so that the axes given in x become 

the last axes of the result.  So, if y has rank 3, 0 |: y puts the axes of y into the order 
1 2 3 0 and 0 2 |: y puts them into the order 1 3 0 2 .  For example: 
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   i. 2 3 4 
 0  1  2  3 
 4  5  6  7 
 8  9 10 11 
 
12 13 14 15 
16 17 18 19 
20 21 22 23 
   0 |: i. 2 3 4 
 0 12 
 1 13 
 2 14 
 3 15 
 
 4 16 
 5 17 
 6 18 
 7 19 
 
 8 20 
 9 21 
10 22 
11 23 

Formally, putting the axes into an order p means that (<p{x) { p |: y is the 
same as (<x) { y .  I wish I could give you an intuitive definition but I can't. 

An item of x can be negative to count axes from the end.  The Dictionary shows how 
you can use boxed x to take elements along diagonals of y . 

Monad i: and Dyad i: 
Monad i: is like monad i., but its interval is centered on 0 rather than starting at 0: 

   i: 5 
_5 _4 _3 _2 _1 0 1 2 3 4 5 
   i: _5 
5 4 3 2 1 0 _1 _2 _3 _4 _5 
Monad i: can also take a complex operand to specify a different spacing between items 
of the result. 

Dyad i: is like dyad i., but it gives the index of the last occurrence (or #x if there 
is none). 

Fast String Searching: s: (Symbols) 
If you find your program taking a lot of time matching strings, you can create 

symbols representing the strings and then match the symbols rather than the strings 
themselves.  The interpreter uses special code to make symbol-matching very fast. 
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Symbol is an atomic data type (like numeric, literal, and box).  In a noun of the 
symbol type, each atom represents a boxed character string.  You create a symbol with 
monad s: which has infinite rank.  s: y takes an array of boxed strings y and creates 
an array of symbols of the same shape as y : 
   ]sym =. s: 2 2$'abc';'def';'ghi';'jk' 
`abc `def 
`ghi `jk  
   $sym 
2 2 
The '`' characters are a clue that sym is an array of symbols.  The value of the top-left 
atom of sym is not '`abc' or 'abc'; it is a value understood only by the interpreter.  
The interpreter chooses to display the text associated with the symbol, but that text is 
actually stored in the interpreter's private memory. 

y in s: y can be a character string which is chopped into pieces using the leading 
character as a separator; each piece is then converted to a symbol.  This is a handy way of 
creating a short list of symbols: 
   s: '`abc`ghi' 
`abc `ghi 

Symbols can be operands of any verb that does not perform arithmetic; in addition, 
comparison between symbols is allowed with 'less than' defined to mean 'earlier in 
alphabetical order'. 
   a =. s: '`abc`def`ghi`jk' 
defines a list of 4 symbols. 
   a i. s:<'ghi' 
2 
We create a symbol to represent 'ghi' and find that in the list. 
   a i. <'ghi' 
4 
Note: the boxed string <'ghi' is not a symbol, so it is not found in the list. 

Dyad s: has a number of forms for operating on symbols.  The only one of interest to 
us here is 5 s: y which converts each symbol in y to its corresponding boxed string: 
   5 s: 3 1 { a 
+--+---+ 
|jk|def| 
+--+---+ 

When a string is converted to a symbol, the interpreter allocates internal resources to 
hold the string's value and other information.  There is no way to tell the interpreter to 
free the resources for a single string; this can be a problem if your symbol table is large 
and changes dynamically.  It is possible to clear the entire symbol table (using 
y=.0 s: 10 and 10 s: y), but doing so invalidates any symbols previously created 
by s: y . 

If you would like to do high-speed matching but what you want to match is not a 
string, consider converting to strings using 5!:5 <'y' which converts the variable 
named y to string form. 
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Unicode Characters: u: 
2-byte unicode characters can be represented by variables that have the unicode 

atomic data type.  Such variables are created by the verb u: .  Its use is described in the 
Dictionary. 

Window Driver And Form Editor 
Designing user interfaces is quick and painless with J's Form Editor.  The Lab named 

Form Editor will show you how. 
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Tacit Programming 
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33. Tacit Programs 

There is another language within J, a microcode for J as it were.  Like Molière's M. 
Jourdain, who was astonished to find he had been speaking prose for forty years without 
knowing it, you have been using a small subset of this language unwittingly throughout 
our investigations.  The hidden language describes a way of coding called tacit 
programming, and it is time for you to learn it in full.  J's tacit language is the irreducible 
essence of a programming language.  It describes your algorithm using only the ordering 
of the J primitives you have already learned.  It has a grammar without words, which you 
use to write programs without visible operands; yet its renouncing these seemingly 
essential components is self-denial rather than self-mutilation, for it retains the vigor to 
express any algorithm.  It is as evanescent as the breeze and as powerful as the hurricane.  
It is a sublime creation. 

We begin our exploration with this simple program: 
   - 
The first step toward enlightenment is to realize that something so simple is a program.  
You may object: But it can't be a program.  It has no parameters.  It has no name.  How 
would I invoke it?  It's a primitive, maybe.  Or a verb.  Or a typographical error.  But not 
a program. 

Let me make the case that it is indeed a program.  I say that a bit of text deserves the 
title of 'program' if it produces a systematic result when executed with suitable 
arguments.  And I say that the program '-' satisfies this definition.  Certainly I can 
supply it with arguments 
   5 7 - 2 
3 5 
and get the expected result.  The program does not refer to its operands explicitly, but as 
long as we make the agreement that the arguments to a program appear as nouns to its 
left and right, the program has no doubt about how to find its arguments.  Of course, we 
have been using this convention for verbs all along. 

I can give this program a name: 
   minus =: - 
   5 7 minus 2 
3 5 
minus can be used in place of - anywhere.  When we look at the value of minus, we 
see what it contains: 
   9!:3 (5)  NB. Do this once to select simplified display 
 
   minus 
- 

minus is equivalent to - .  In J we call it a verb, but it has all the essential features 
of a program.  In fact, minus is two programs, because it can be executed monadically 
as well: 
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   minus 6 8 
_6 _8 

The point is that every J verb, even the primitives and the compound verbs, is a 
program in the usual sense.  Verbs like minus, that do not mention their operands by 
name but instead apply them according to J's parsing rules, are called tacit verbs.  Verbs 
created by m :n, like dyad : '+/ y.', that mention their operands by name are 
called explicit verbs.  The compound verbs we have learned already are examples of tacit 
verbs.  Some of the verbs that we have had occasion to define so far can be written in 
tacit form: 
addrow =: monad : '+/ y.'"1 
could be rewritten as 
addrow =: +/"1 
and 
v =: dyad : '1.04 * x. + y.' 
is equivalent to 
v =: 1.04&*@:+ 
as we have seen.  We have already encountered tacit definitions without noticing: 
   dotprod =: +/@:*"1 
   1 2 3 dotprod 1 2 3 
14 
and we can certainly define more. 
   sortup =: /:~ 
defines a verb that sorts its operand into ascending order: 
   sortup 31 41 59 26 53 
26 31 41 53 59 

Some of the verbs we have encountered seem too complex for a compound verb.  For 
example, in 
   mean =: monad : '(+/ y.) % #y.' 
we need to perform two operations on y. and combine their results, something that is 
beyond the capabilities of the compound verbs we have encountered so far.  We will next 
learn how to produce a tacit equivalent for mean and a great many other verbs. 
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34. First Look At Forks 

Before we learn the rules for making tacit forms, you should understand why you are 
going to the trouble of learning how to write programs that hide their operands.  First, 
they are extraordinarily compact.  The explicit definitions we have written so far are 
laconically terse by the standards of most computer languages, but they will seem 
positively windy compared to the tacit forms.  Second, the shorter definitions are easier to 
combine with other verbs, and with the modifiers that add so much power to J 
expressions.  Third, the tacit definitions are parsed when they are defined, in contrast to 
explicit definitions, in which each line is parsed as it is executed; we reduce interpretive 
overhead by using tacit forms.  Fourth, in learning to write tacit verbs you are also 
learning to write tacit adverbs and conjunctions, with which you will be able to craft your 
own private toolkit of modifiers that you can use to combine verbs in ways that are useful 
to your application. 

In what follows, Nx will represent a noun, Vx a verb, Cx a conjunction, and Ax an 
adverb, where x is any suffix. 

We begin by observing that the rules we have learned so far give no meaning to some 
combinations of words.  Consider three verbs in a row, with no noun to operate on, as in 
the sequence 
   (V0 V1 V2) 
where each Vn represents a verb—an example would be ((+/) % #) .  Without some 
special rules, we have no way to interpret this sequence.  Such sequences of words that 
cannot immediately be executed to produce a result are called trains.  Examples are 
C0 C1 A2, V0 V1, and the V0 V1 V2 we are considering now. 

Understanding tacit programming will largely be a matter of understanding how 
trains are parsed and executed.  You will learn that (V0 V1 V2) is a new verb that can 
be applied to noun operands, and you will learn how it applies to nouns.  To begin with, 
observe that there is no reason that (V0 V1 V2) N should be the same as 
V0 V1 V2 N which as we know is (V0 (V1 (V2 N))) . 

The meaning J assigns to (V0 V1 V2) Ny is: 
   (V0 V1 V2) Ny  is  (V0 Ny) V1 (V2 Ny) 
This substitution goes by the name monadic fork.  I think finding this definition was a 
stroke of brilliance in the design of J.  An example of the use of the fork is: 
   (+/ % #) 4 6 8 
6 
which calculates the mean of the operand.  It is processed using the substitution rule 
above as 
   (+/ 4 6 8) % (# 4 6 8) 
6 
which divides the sum of the items in the list by the number of items in the list.  You can 
use fndisplay to help yourself see how the substitutions are made: 
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   defverbs 'plus"0 div"0 tally' 
   (plus/ div tally) 4 6 8 
+---------------------------------+ 
|(4 plus 6 plus 8) div tally 4 6 8| 
+---------------------------------+ 

The sequence (+/ % #) is a verb.  It can therefore be assigned to a name: 
   mean =: (+/ % #) 
or 
   mean =: +/ % # 
and then used by that name: 
   mean 12 18 24 
18 
Neat, eh?  With just 4 symbols we described a program to take the mean of a list of 
numbers (or a list of lists…).  The beauty and the power are in the way the operands and 
verbs are connected; that's what we'll be learning in the next few chapters. 

At this point you may be impressed with the economy of the monadic fork but a bit 
confused about the details.  For example, we said that (V0 V1 V2) Ny is not the 
same as V0 V1 V2 Ny and yet we said that mean =: (+/ % #) is the same as 
mean =: +/ % # .  How can that be?  If we use the version without parentheses, why 
doesn't mean 12 18 24 get evaluated like 
   +/ % # 12 18 24 
0.333333 
? 

I could give you a simple rule of thumb, namely that you can always imagine an extra 
set of parentheses around any value assigned to a name.  That would be true but 
misleading, because it would encourage you to think that the values of defined names are 
substituted into a sentence before the sentence is executed.  That gets it backwards: in 
reality the operands are supplied to the stored definitions.  In fact, the execution of a J 
sentence is a subtle alternation between creating definitions and executing them.  We will 
take the next couple of chapters to give you a thorough understanding of execution, after 
which we will return to see what magic we can work with forks and their brethren. 
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35. Parsing and Execution I 

I hope your hunger for understanding will be enough to motivate you to read a couple 
of difficult chapters.  If you do, you will learn something few J programmers know—
what really happens when J executes a sentence.  In this chapter we will analyze 
sentences from the top down, to get an idea for the order of execution.  In the next 
chapter we will follow the interpreter as it alternately parses and executes sentences from 
the bottom up. 

Since the understanding of parsing and execution that you have developed during 
your work so far is probably a bit inaccurate, we will work through examples of 
increasing complexity. 
   9!:3 (5)  NB. Do this once to select simplified display 
 
   &. 
&. 
With only one word, there are no operands and nothing to execute, so the result of the 
sentence is the word itself: the conjunction &. . 
   -:&.^. 
-:&.^. 
The result of executing -:&.^., i. e. executing &. with -: and ^. as operands, is an 
anonymous verb.  This anonymous verb will execute according to the definition of &., 
given its operands -: and ^. (i. e. -:&.^. y will be ^ -: ^. y ). 
 Note that the conjunction &. is executed without reference to the operand of the 
anonymous verb (indeed, in this case there is no such operand and the anonymous verb is 
the result of the sentence).  We could assign the anonymous verb to a name, in which 
case it would no longer be anonymous (e. g. sqrt =: -:&.^.); without such an 
assignment we will refer to it here by the nickname av .  The value of av is the verb 
described by -:&.^. . 
   -:&.^. 16 
4 
We know that this is executed as ^ -: ^. 16; let's see how that happens.  
Conjunctions are executed before verbs, so first -:&.^. will be executed to produce the 
anonymous verb we called av .  Then av is executed with the operand 16 .  av 
operates according to the definition of &. : it produces the same result as 
^ -: ^. 16 (but it may use a different algorithm than executing ^ -: ^. 16 
directly). 
 It appears that &. was executed twice: once to create av and then again during the 
execution of av .  No, it was executed only once, to create av .  av operates according 
to the definition of &., but it is av that is executing, not &. .  The confusion arises 
because of the way the interpreter displays av .  There is no better way to show a verb 
that performs the function -:&.^. than to show the way the verb was created, i. e. with 
the characters '-:&.^.', but you should think of this as an exhibition of the pedigree of 
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av, and an assurance of its good behavior, rather than a list of functions to be executed.  
In fact, part of the reason for J's good performance comes from its recognizing functions 
that can be combined efficiently and providing customized routines to handle anonymous 
verbs that call for those combinations. 

Confusion between a conjunction and the anonymous verb it produces is most likely 
when the conjunction is one you wrote using conjunction define or 2 :n .  In 
most cases the text of the conjunction actually describes a derived verb, and it is natural 
for you to say 'the conjunction C is executed with operands u., v., and y.' rather than 
the more accurate 'the anonymous verb created by the application of C to u and v is 
executed, with u. and v. available during the interpretation of the text of C and with y. 
as the operand'.  Such confusion is almost always harmless, but let's go through a few 
examples so you can see the layers of execution: 
   2 : 'u.' 
2 : 'u.' 
We execute 2 : 'u.' and the result is an anonymous conjunction that we'll call ac1 .  
The display of ac1 shows where it came from.  When ac1 is executed, its result will be 
its left operand. 
   +: (2 : 'u.') -: 
+: 
Here 2 : 'u.' is executed first to produce ac1; then ac1 is executed with left 
operand of +: and right operand of -: .  The result is an anonymous verb that we'll call 
av1; its value is the verb +: which was the left operand to ac1 . 
   +: (2 : 'u.') -:  5 
10 
Remember, (2 : 'u.') is a conjunction (the conjunction we have called ac1), and 
conjunctions are executed before verbs, so this is executed as 
(+: (2 : 'u.') -:) 5, which becomes av1 5 .  We execute av1 with the 
operand 5 .  Monad +: doubles its operand, and the result is 10 . 

We know that a conjunction can produce a conjunction result.  That's how explicit 
conjunctions are formed: executing the conjunction : with left operand 2, as in 2 :n, 
produces a conjunction.  There is nothing special about 2 :n : any conjunction is 
allowed to produce a conjunction result: 
   2 : '&' 
2 : (,'&') 
We execute 2 : '&' and the result is an anonymous conjunction that we'll call ac2 .  
The display of ac2 shows where it came from. (the , in the display of ac2 is harmless, a 
reminder that internally the anonymous entity resulting from m :n stores n as a list of 
characters.) 
   +: (2 : '&') -: 
& 
We execute ac2 with left operand of +: and right operand of -: .  The result is an 
anonymous conjunction that we'll call ac3 .  ac3 is a conjunction because its value & 
(the last sentence executed by ac2) is a conjunction.  Yes, & by itself can be a result: 
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modifiers can return any primary part of speech (but try to return a conjunction from a 
verb and you will get an error). 
 Note that this is not the same as u.&v. : that would also be a valid return value 
from a conjunction, but u. and v. would be substituted and & would be executed to 
make the returned value an anonymous verb with the description u&v . 
 Make sure you see why the +: and -: disappeared.  First, the conjunction : was 
executed with operands 2 and '&'; that produced a conjunction ac2 which was then 
executed with operands +: and -:; but the defining text of ac2 does not look at its 
operands; it simply produces the value & .  So, the operands to ac2 disappear without a 
trace, and the result of the whole phrase is a conjunction with the value & . 
   2 (+: (2 : '&') -:) * 
2&* 
Continuing the example, we execute ac3  (which was just the conjunction &) with left 
operand 2 and right operand * .  The result is the anonymous verb av2 which will 
execute as 2&* . 
   2 (+: (2 : '&') -:) *   5 
10 
Finally, we execute av2 with the operand 5, and get the result 10 . 

Explicit modifiers that refer to the operands of their derived verb (as x. or y.) come 
in for special treatment.  A simple example is the conjunction defined by 
   2 : 'u. v. y.' 
2 : 'u. v. y.' 
We execute 2 : 'u. v. y.' and the result is an anonymous conjunction that we'll 
call ac4 .  You can't tell it from the display, but ac4 is a special kind of conjunction.  
Because it refers to y., the text of ac4 can be executed only as a verb (only then are x. 
and y. meaningful).  The stored ac4 makes note of this fact. 
   +: (2 : 'u. v. y.') -   5 
_10 
When ac4 itself is executed (as +: (2 : 'u. v. y.') - here—since ac4 is a 
conjunction it is executed before its result is applied to the noun operand 5), the text of 
ac4 is not interpreted (as it was in our other examples).  Instead, the new anonymous 
verb av3 is created.  av3 contains the defining text of ac4, along with the operands that 
were given to ac4 (+: and - here).  When the verb av3 is executed as in the line above, 
the text of ac4 is finally interpreted, with the operands of ac4 (+: and - here) available 
as u. and v., and the noun operands of av3 (5 here) available as y. (and x. if the 
invocation is dyadic); the result is the result of +: - 5 . 
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36. Parsing and Execution II 

Now that you understand what an anonymous verb/adverb/conjunction is, you are 
ready to follow parsing and execution word by word.  We will finally abandon all 
shortcuts and process sentences exactly as the interpreter does. 

In any compiled language, a program is broken into words (tokens) and then parsed, 
and code is generated from the parsed result.  Not so in J: a sentence is broken into 
words, but the sentence is not fully parsed; rather, parsing and execution proceed 
simultaneously, scanning the text from right to left.  Parsing finds patterns in the 
sentence that are then executed.  Execution includes the usual supplying of noun 
operands to verbs to obtain a result from the verb, but also other actions: supplying verb 
and noun operands to conjunctions and adverbs to produce derived entities, and 
recognition of other sequences that we will learn soon.  Execution of a bit of a sentence, 
which we will call a fragment, consists of replacing the fragment with an appropriate 
single word, namely the result of executing the fragment.  In the simple case, where the 
fragment is the invocation of a verb (i. e. the fragment looks like verb noun or 
noun verb noun), the word that replaces it is the noun that is the result of the verb.  
If the fragment is the invocation of a modifier, the result of executing it will be a noun or 
a derived verb/adverb/conjunction.  A noun is nothing but its value, but the derived 
verb/adverb/conjunction will itself eventually be executed: it is called an anonymous 
verb/adverb/conjunction and is saved by the interpreter in a private form, and the single 
word used to replace the fragment is a reference to this anonymous 
verb/adverb/conjunction (for the case of an anonymous verb, you may think of the single 
word as a pointer to a function that performs according to the definition of the 
anonymous verb).  In all cases the word replacing the fragment has a definite part of 
speech, and if it is a verb, a definite rank. 

The Parsing Table 
Execution of a sentence begins by breaking the sentence into words.  The words (with 

a beginning-of-line marker, shown here as §, prepended) become the initial contents of 
the unprocessed word list.  A push-down stack will also be used during execution; it is 
initially empty.  Execution of the sentence is performed by repetition of the parsing step 
which comprises: (1) examining the top 4 elements of the stack to see if they match one 
of the 10 executable patterns; (2) if a match was found, executing the executable portion 
of the stack (what we called the executable fragment in the last chapter), resulting in a 
single word which replaces the fragment on the stack; (3) if no match was found, moving 
the rightmost word of the unprocessed word list into the leftmost position of the stack, 
pushing the rest of the stack to the right.  Execution finishes when there are no 
unprocessed words and the stack does not contain an executable pattern.  Note that 
execution of a fragment may leave the stack matching one of the executable patterns, so 
several sequential parsing steps may perform an execution without moving anything onto 
the stack.  After all words have been processed, the stack should contain a beginning-of-
line marker followed by a single word which becomes the result of the sentence. 
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To follow the parsing we need to know what patterns at the top of the stack contain 
an executable fragment.  The parsing table below gives the complete list.  More than one 
symbol in a box means that any one of them matches the box.  name means any valid 
variable name, and C, A, V, and N stand for conjunction, adverb, verb, and noun 
respectively. 

The lines in the parsing table are processed in order.  If the leftmost 4 words on the 
stack match a line in the table, the fragment (those words on the stack which are in 
boldface in the parsing table) is executed and replaced on the stack by the single word 
returned.  Because the fragment is always either two or three words long, it is officially 
known as a bident or trident.  The last column of the parsing table gives a description of 
what execution of the fragment entails. 

You will have an easier time following the parsing if you note that the leftmost word 
in the executable pattern is usually one of § =. =: ( A V N .  This means that you 
can scan from the right until you hit a word that matches one of those before you even 
start checking for an executable pattern.  If you find one of § =. =: ( A V N and it 
doesn't match an executable pattern, keep looking for the next occurrence. 

Note that the leftmost stack word in the parsing table is never a conjunction.  This is 
the ultimate source of our long-noted rule that conjunctions associate left-to-right: a 
conjunction can be executed when it appears in the third stack position, but if another 
conjunction is in the leftmost position then, the stack will always be pushed down to 
examine that conjunction's left argument. 

Examples Of Parsing And Execution 
We will now follow a few sentences through parsing.  We will represent anonymous 

entities by names in italics, with an indication of how the anonymous entity was created.  
Up till now in this book we have scarcely noticed that the term 'verb' was used both for 
an entity that can be applied to a noun to produce a noun result, and also for the name of 
that entity.  This ambiguity will continue—being precise would be too cumbersome—but 
you should be aware of it.  When we say 'the result is av, defined as +/', that means that 
an anonymous verb was created whose function is described as +/, and the nickname we 
are giving it—the word, that is, that goes on the execution stack to betoken this verb—is 
av. 

leftmost stack word other stack words action 
§ =. =: ( V N anything 0 Monad 
§ =. =: ( A V N V V N 1 Monad 
§ =. =: ( A V N N V N 2 Dyad 
§ =. =: ( A V N V N A anything 3 Adverb 
§ =. =: ( A V N V N C V N 4 Conj 
§ =. =: ( A V N V V V 5 Fork 
§ =. =: ( C A V N C A V N anything 6 Hook/Adverb 
name N =. =: C A V N anything 7 Is 
( C A V N ) anything 8 Paren 
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Sentence: +/2*a where a is 1 2 3 

The column labeled 'line' indicates which line of the parsing table was matched by the 
stack.  The fragment is marked in boldface and underlined.  Note that when the noun a 
moved onto the stack, its value was moved; when a named verb, adverb, or conjunction is 
moved onto the stack, only the name is moved.  Note also that the noun's value (1 2 3 
here) is a single word. 

From now on we will omit the lines that do not contain an executable fragment. 

Sentence: mean =: +/ % # 

I want to emphasize that what is assigned to mean is the result of parsing +/ % # .  It 
is not the sequence +/ % #, but rather a single verb which performs the function 
described by the fork.  Now you see why putting parentheses around the definition 
doesn't matter: av2 would be parsed the same either way. 

Sentence: mean 4 5 6 

Since mean is the result from parsing +/ % #, it is executed without further ado.  As 
you can see, a single 'execution' step can trigger a cascade of processing as each verb 

unprocessed word list stack line 

§ + / 2 * a   

§ + / 2 * 1 2 3   (not executable)  

§ + / 2 * 1 2 3   (not executable)  

§ + / 2 * 1 2 3   (not executable)  

§ + / 2 * 1 2 3   (result 2 4 6) 2 

 § + / 2 4 6   (result av, defined as +/) 3 

 § av 2 4 6   (result 12) 0 

 § 12  

unprocessed word list stack line 

§ mean =: + / % #   

§ mean =: + / % #   (result av1, defined as +/) 3 

§ mean =. av1 % #   (result av2, defined as av1 % #) 5 

 § mean =: av2   (result av2; mean is assigned av2) 7 

 § av2  

unprocessed word list stack line 

§ mean 4 5 6   

 § mean 4 5 6   (result 5) 0 

 § 5  
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referred to by an executing verb is executed in turn.  Here, execution of mean does the 
entire processing of the fork, returning the result 5 .  The verb to be executed can be 
quite complex, and can have a mixture of named and anonymous components, as in the 
next example. 

Sentence: (mean - (+/ % #)&.(^."1)) 4 5 6   (find the difference 
between arithmetic and geometric mean) 

Again, there was only one execution of a verb.  It happened at the very end: after av5 was 
created, it was executed, and its execution included the execution of everything else. 

Sentence: inc =: ({.a)&+ where a is 4 5 6 

unprocessed word list stack line 

§ ( mean - ( + / % # ) &. ( ^. " 1 ) 
) 4 5 6

  

§ ( mean - ( + / % # ) &. ( ^. " 1 ) ) 4 5 6   (result av1, defined as 
^. " 1) 

4 

§ ( mean - ( + / % # ) &. ( av1 ) ) 4 5 6   (result av1) 8 

§ ( mean - ( + / % # ) &. av1 ) 4 5 6   (result av2, 
defined as +/ 

3 

§ ( mean - ( av2 % # ) &. av1 ) 4 5 6   (result av3, 
defined as av2 % #) 

5 

§ ( mean - ( av3 ) &. av1 ) 4 5 6   (result av3) 8 

§ ( mean - av3 &. av1 ) 4 5 6   (result av4, 
defined as av3 &. av1) 

4 

§ ( mean - av4 ) 4 5 6   (result av5, 
defined as mean - av4) 

5 

§ ( av5 ) 4 5 6   (result av5) 8 

§ av5 4 5 6   (result 0.0675759) 0 

§ 0.0675759  

unprocessed word list stack line 

§ inc =: ( {. a ) & +   

§ inc =: ( {. 4 5 6 ) & +   (result 4) 0 

§ inc =: ( 4 ) & +   (result 4) 8 

§ inc =: 4 & +   (result av, defined as 4&+) 4 

§ inc =: av   (result av; inc is assigned av) 7 

 § av  
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This illustrates an important point.  Even in the middle of a complex definition, verbs are 
applied to nouns wherever possible.  And, the value of a noun in a definition is the value 
at the time the definition was parsed.  If a parsed definition refers to a verb, it does so by 
name, so the value of a verb is its value when it is executed. 

The remaining examples are curiosities to show you that it's worth your trouble to 
learn the intricacies of parsing. 

Sentence: a + a =. 5 

a is assigned a value just before that value is pushed onto the stack. 

Sentence: 2 +: (2 : '&') -: *   5 

Look at what happens when we omit the parentheses: 

Sentence: 2 +: 2 : '&' -: *   5 

unprocessed word list stack line 

§ a + a =. 5   

§ a + a =. 5   (result is 5; a is assigned 5) 0 

 § 5 + 5   (result is 10) 2 

 § 10  

unprocessed word list stack line 

§ 2 +: ( 2 : '&' ) -: * 5   

§ 2 +: ( 2 : '&' ) -: * 5   (result is ac1, defined as 2 : '&') 4 

§ 2 +: ( ac1 ) -: * 5   (result is ac1) 8 

§ 2 +: ac1 -: * 5   (result is ac2, defined as &) 4 

 § 2 ac2 * 5   (result is av, defined as 2&*) 4 

 § av 5   (result is 10) 0 

 § 10  

unprocessed word list stack line 

§ 2 +: 2 : '&' -: * 5   

§ 2 +: 2 : '&' -: * 5   (result is 1) 1 

§ 2 +: 2 : '&' -: 1   (result is ac1, defined as 2 : '&') 4 

§ 2 +: ac1 -: 1   (result is ac2, defined as &) 4 

 § 2 ac2 1   (domain error: 2&1 is illegal) 4 
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The omission produces a subtle but fatal change in the parsing order.  As the Dictionary 
says, "it may be necessary to parenthesize an adverbial or conjunctival phrase that 
produces anything other than a noun or verb".  Now you see why. 

Undefined Words 
If you try to execute a nonexistent verb, you get an error: 

   z 5 
|value error: z 
|       z 5 
However, that error occurs during execution of the name, not during its parsing.  During 
parsing, an undefined name is assumed to be a verb of infinite rank.  This allows you to 
write verbs that refer to each other, and relieves you from having to be scrupulous about 
the order in which you define verbs.  For example: 
   a =: z 
This produces a verb a which, when executed, will execute z. 
   z =: + 
   a 5 
5 
With z defined, a executes correctly.  Of course, it's OK to assign z to another verb too: 
   b =: z 
   b 5 
5 

Now, can you tell me what +/@b 1 2 3 will do?  Take a minute to figure it out 
(Hint: note that I used @ rather than @:). 
   +/@b 1 2 3 
1 2 3 
Because b has rank 0, +/@b also has rank zero, so the summing is applied to atoms 
individually and we get a list result.  Do you think +/@a 1 2 3 will have the same 
result? 
   +/@a 1 2 3 
6 
Even though a has the same value as b, its rank is different.  a's rank was assigned when 
it was parsed, and at that time z was assumed to have infinite rank.  b's rank was 
assigned when it was parsed too, but by that time z had been defined with rank 0.  You 
can win a lot of bar bets with this one if you hang out with the right crowd. 
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37. Forks, Hooks, and Compound Adverbs 

Now that you understand execution, and in particular how anonymous entities are 
created and then executed, you are ready to see forks used in some practical applications.  
This will be a relief after the last two chapters of theory. 

You have learned the rule for the trident called the monadic fork: 
   (V0 V1 V2) Ny  is  (V0 Ny) V1 (V2 Ny) 

Now learn the other 3 bidents/tridents involving only verbs.   The dyadic fork: 
   Nx (V0 V1 V2) Ny  is  (Nx V0 Ny) V1 (Nx V2 Ny) 
The monadic hook: 
   (V0 V1) Ny  is  Ny V0 (V1 Ny) 
The dyadic hook: 
   Nx (V0 V1) Ny  is  Nx V0 (V1 Ny) 

The purpose of taking you through the 2 preceding chapters was for you to 
understand that 'is' in these definitions is shorthand for 'replaces the parenthesized part 
with an anonymous entity that when executed on an x and y produces the same result as' 
(you don't have to be a politician to hesitate over the meaning of 'is'). 

It may be helpful to think of these bidents and tridents as ghostly conjunctions, with 
no actual symbol, that create an entity (the bident/trident) out of the sequence of verbs.  
The entity so created is quite real: it is executed just like any anonymous verb created by 
a modifier. 

You can see that for both the hooks and the forks, the monadic case is derived from 
the dyadic: for forks by omitting Nx, and for hooks by replacing Nx with Ny .  The verbs 
produced by hooks and forks have infinite rank. 

Using hooks and forks, assisted by all the modifiers we have learned, we can produce 
any function of 2 operands.  If we have more than 2 operands, we can link them together 
into a boxed list using dyad ; and then extract the pieces as needed using dyad {:: .  
For the rest of this chapter we will show examples of functions turned into tacit verbs 
using hooks and forks.  If I don't show the expansion using the bident/trident rules, you 
should produce it yourself. 

To find how much x has changed from y, as a percentage of y : 
   pctchg =: 100&*@:(- % ]) 
   12 pctchg 10 
20 
This becomes 100 * (x - y) % y .  Note the use of ] to select the original y 
operand.  Similarly, [ can be used to select the original x operand.  Tacit verbs make 
heavy use of [ and ] . 
 Another way to code pctchg is 
   pctchg =: 100"_ * (- % ]) 
where we used the constant verb 100"_ which produces 100 no matter what its 
operands are.  Which of these forms you prefer is a matter of taste. 
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fndisplay is very helpful in understanding tacit verbs.  The two versions of 
pctchg are displayed as 
   defverbs 'times"0 minus"0 div"0' 
   defnouns 'x y' 
   x 100&times@:(minus div ]) y 
+---------------------------+ 
|100 times (x minus y) div y| 
+---------------------------+ 
   x (100"_ times (minus div ])) y 
+---------------------------+ 
|100 times (x minus y) div y| 
+---------------------------+ 
I encourage you to use fndisplay to expand any tacit definitions that are troublesome. 

To find the elements common to x and y, keeping the same order as in x : 
   setintersect =: e. # [ 
   3 1 4 1 5 9 setintersect 4 6 9 
4 9 
This becomes (x e. y) # x .  You can see that the identity verbs [ and ] are useful 
for steering operands through hooks and forks.  As an exercise, see how the alternative 
version ([ -. -.) produces the same result. 

To list all the indexes of the 1s in a Boolean list: 
   booltondx =: (# i.@:#)"1 
   booltondx 0 1 0 1 0 0 1 
1 3 6 
Note that we are careful to give our verb a rank of 1, since it works only with lists. 

To find the difference between the largest and smallest items in a list: 
   range =: (>./ - <./)"1 
   range 3 1 4 1 5 9 
8 

To find the index of the largest item in a list: 
   indexmax =: (i. >./)"1 
   indexmax 3 1 4 1 5 9 2 6 5 3 5 
5 

To create a Boolean list with a 1 at each position that is different from the previous 
position: 
   changeflag =: 1: , 2: ~:/\ ] 
   changeflag 1 1 2 2 7 7 7 3 3 4 5 8 8 
1 0 1 0 1 0 0 1 0 1 1 1 0 
We could have done this without using forks, with (1&,)@:(2&(~:/\) .  Which 
version you use is a matter of taste.  The number verbs _9: through 9: are very useful if 
you like forks rather than long conjunction chains.  Note that changeflag is executed 
as if parenthesized (1: , (2: (~:/\) ])) .  If you work with long trains of verbs 
like this you will soon notice that if you count the verbs from the right (starting at 0, of 
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course), the even-numbered verbs have the original x and y applied, and the odd-
numbered ones combine the results from the even-numbered. 

To replace multiple spaces by a single space: 
   delmb   =: ((#~ -.)  '  '&E.)"1 
   delmb 'abc   nb' 
abc nb 

To create an array in which each item is a list of (value, number of times that value 
appeared): 
histogram =: ~. ,. #/.~ 
   histogram 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 
3 2 
1 2 
4 1 
5 3 
9 3 
2 1 
6 1 
8 1 
7 1 

To append the contents of the first item of x in front of y and the contents of the last 
item of x behind y : 
    enclose =: >@:{.@:[ , ] , >@:{:@[ 
   '*' enclose 'xyz' 
*xyz* 
   '()' enclose 'abc' 
(abc) 

To produce 1 if all the items of y are equal, 0 if not 
   allitemsequal =: -: 1&|. 
   allitemsequal 1 1 1 1 1 
1 
   allitemsequal 1 1 1 2 1 
0 

To extend x to the length of y, where the items of y supply default values for the 
corresponding omitted items of x : 
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   default =: [ , (}.~ #)~ 
   ('abc';2) default 'Defname';0;'Deftype';100 
+---+-+-------+---+ 
|abc|2|Deftype|100| 
+---+-+-------+---+ 
   ('abc';2;'xyz';30) default 'Defname';0;'Deftype';100 
+---+-+---+--+ 
|abc|2|xyz|30| 
+---+-+---+--+ 

The verb [:, which we met as a way to cause an error, has a special meaning in a 
fork.  As the leftmost verb of the fork, [: means 'ignore the left branch'.  So, 
Nx ([: V1 V2) Ny is V1 Nx V2 Ny and ([: V1 V2) Ny is V1 V2 Ny .  In 
both cases, ([: V1 V2) is equivalent to V1@:V2 .  Almost always, the choice 
between one form or the other is a matter of taste.  Do not fear that the extra word in the 
fork leads to slower execution; the [: is not executed—it is recognized by the parser 
when it creates the anonymous verb for the fork. 

As a final example, here is a definition of the word-counting example we wrote 
earlier.  See if you can convince yourself that it is equivalent to wc2 : 
WS =: ' ',TAB,LF 
wc3 =: (# , (*. -.@(|.!:0))@(e.&WS) , +/@(LF&=))@ReadFile 

I could go on with pages more of hooks and forks for you to study, but what you 
really need is to write some yourself.  It will be a frustrating experience for the first few 
weeks as you struggle to jigsaw your verbs into pieces that have one or two operands and 
yet fit together to perform a complex function.  It's not a necessary skill—you can get 
along acceptably in J writing mostly explicit definitions, with an occasional fork thrown 
in where obvious—but it is a useful, honorable, and satisfying one.  Learning to write 
tacit verbs is like learning to walk with a book balanced on your head: it will slow you 
down at first, but in the end you'll stand taller for it. 

The book J Phrases, which is part of the J release, has dozens of interesting examples 
of tacit programs which you can use as exercises. 

Tacit and Compound Adverbs 
Adverbs as well as verbs can be defined tacitly.  Any sequence of adverbs is also an 

adverb, and applies the component adverbs one by one to its left operand.  For example, 
   onprefixes =: /\ 
defines an adverb that applies / followed by \, as can be seen by 
   + onprefixes 1 2 3 4 
1 3 6 10 

A conjunction with one operand also defines an adverb.  A conjunction needs two 
operands, but if you supply one, the combination is treated as an adverb that attaches its 
operand to the empty side of the conjunction.  For example, (2&) is an adverb, and 
+ (2&) is equivalent to 2&+ .  For another example, the J startup scripts define 
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   each =: &.> 
so that 
   >: each 1 2 3 
is equivalent to 
   >:&.> 1 2 3 
2 3 4 

Referring To a Noun In a Tacit Verb 
Suppose you want a verb v that returns the current value of the noun n (maybe it's a 

button handler).  Suppose you want v to be tacitly defined.  How would you do it?  You 
can't use 
   v =: n 
because that would use the value of n at the time v is defined (in fact, v would be a 
noun), and you want the value of n when v is executed.  Use this trick: 
   v =: ".@:('n'"_) 
When this is executed, the operand is ignored and replaced by the string 'n', which is 
then executed by ". to produce the value of the noun n . 
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38. Readable Tacit Definitions 

Heron's formula for the area of a triangle, given the lengths of the sides a, b, and c, is 
sqrt(s*(s-a)*(s-b)*s-c)) where s is (a+b+c)%2 .  This can be written 
   triarea =: [: %: [: */ -:@:(+/) - 0: , ] 
   triarea 3 4 5 
6 
Regardless of your diligence in commenting your code and the level of J expertise in you 
and the sorry wretches who will have to read it, long tacit definitions like this can become 
trackless wastelands, Saharas of verb following verb unendingly with nothing to suggest 
an interpretation of the intermediate results.  I know of two ways to mark a trail through 
such a definition.  The first is to develop a regimen for using spaces and parentheses to 
help the reader group the parts.  I would write 
   triarea =: [: %: [: */  (-:@:(+/))   -   0:,] 

The second way is to split the line into multiple lines, where each line can have a 
comment or a verb-name indicating what it produces.  This approach, carried almost to an 
extreme, would yield 
   semiperimeter =: -:@:(+/) 
   factors =: semiperimeter - 0:,] 
   product =: [: */ factors 
   triarea =: [: %: product 
Combining the two approaches, you can find a comfortable level of complexity. 

Flatten a Verb: Adverb f. 
Splitting the definition into many lines has the unfortunate side-effect that all the 

names referred to by triarea must be defined when triarea is executed: 
   triarea 
[: %: product 
triarea refers to product which refers to factors which refers to 
semiperimeter .  If you define many tacit verbs this way, the result is pollution of 
the namespace.  To leave a smaller footprint, use private assignment for all the names 
except the name that will be public, and use the adverb f. which replaces names in its 
operand with their definitions: 
   semiperimeter =. -:@:(+/) 
   factors =. semiperimeter - 0:,] 
   product =. [: */ factors 
   triarea =: ([: %: product) f. 
   triarea 
 [: %: [: */ -:@:(+/) - 0: , ] 
If these verbs are run from a script, the temporary verbs will disappear (since they were 
assigned by private assignment), leaving only the main verb triarea . 

f. is also used in initialization of objects, as you can learn in the Lab for Object-
Oriented Programming. 
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Note that f. has no effect on explicit definitions. 

Using f. to improve performance 
Flattening a verb has two beneficial effects on performance.  The first is easy to see 

by comparing the difference between the two sequences: 
   a =. i. 100000 
   abs0 =: 3 : '| y.' "0 
   6!:2 'abs0 a' 
3.17136 
   abs1 =: 3 : '| y.' 
   6!:2 'abs1"0 a' 
3.54908 
To be sure, in each case we have committed the crime of applying an explicitly-defined 
verb at a low rank (|"0 a executes in time 0.006), but that is not the point.  Why is 
abs1"0 slower than abs0?  Each one reinterprets its verb for each atom of a . 

The answer is that when abs1"0 is executed, the definition of abs1 must be looked 
up for every atom of a (for all the interpreter knows, abs1 might be redefined during its 
execution).  The time spent doing this lookup accounts for the difference in time between 
abs0 and abs1"0 .  If we eliminate the lookup of the name abs1, that time is saved: 
   6!:2 'abs1 f."0 a' 
3.00941 

The important lesson to learn from this is that you should define your verbs with the 
proper rank.  That will eliminate superfluous name lookups.  In exceptional cases you 
may use f. to avoid name lookups during execution of a complex verb. 

The second case where f. can improve performance is useful only for those users 
who feel compelled to redefine the J primitives with mnemonic names.  This is a practice 
that I strongly deprecate, and if you don't heed my advice, the interpreter stands ready to 
punish you.  See the disaster that can result when the primitives are replaced by 
mnemonic names: 
   tally =: # 
   a =. 100000 $ i. 6 
   b =. i. 100000 10 
   6!:2 'a #/. b' 
0.0157688 
   6!:2 'a tally/. b' 
0.154675 
What happened is that #/. is handled by special code in the interpreter, but tally/. is 
not.  The fact that tally is defined to be # is immaterial: the interpreter doesn't know 
that at the time it creates the anonymous verb for tally/. .  The penalty is an almost-
tenfold increase in execution time. 
   6!:2 'a tally f./. b' 
0.0167351 
By flattening tally, we cause it to be replaced by its definition #, and then the special 
case #/. is recognized. 
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   b =. 0 = i. 100000 
   6!:2 '(# i.@#) b' 
0.0011616 
   6!:2 '(tally index@tally) b' 
0.00385943 
Another example: (# i.@#) is handled by special code, but the names prevent the 
interpreter from recognizing the situation. 
   6!:2 '(tally f. index f. @(tally f.)) b' 
0.0018061 
If we flatten every name, we get good performance, but what an effort!  It's much better 
to use the J primitives directly, so the interpreter can do its job effectively. 
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39. Explicit-To-Tacit Converter 

Q: What's the most common cause of blindness among J programmers? 

A: Conjunctivitis. 

 

In the early weeks, complex tacit definitions are torturous to write and next-to-
impossible to read; blurred vision and sleepless nights are the occupational hazard of the 
programmer who dives into tacit J.  If a co-worker is banging into doors as he stumbles to 
refill his tankard of coffee, here's how to check him out: hold up three fingers and ask 
him how many he sees.  If he says "three", he's merely fallen in love or is working to a 
deadline, and he will recover.  But if he replies "I see a list of 3 items each of which is a 
finger", you can expect to start receiving emails that look like they've been encrypted. 

You can offer as a temporary palliative J's mechanism for converting an explicit 
definition to a tacit one.  You request the conversion by using a left operand to : in the 
range 11 to 13  instead of 1 to 4 . 
   9!:3 (5)  NB. Do this once to select simplified display 
 
   3 : 'x. - y.' 
3 : 'x.-y.' 
We defined a verb, and since we didn't assign it to anything, we see its value, which is 
just what we defined it to be. 
   13 : 'x. - y.' 
- 
by using 13 instead of 3, we ask the interpreter to try to find a tacit equivalent,  which it 
did. 

Here is another way to define the verb enclose from the previous chapter: 
   13 : '(>{.x.) , y. , (>{:x.)' 
([: > [: {. [) , ] , [: > [: {: [ 
The interpreter likes to use [: in its tacit definitions.  Note that you use 13 : to get an 
equivalent for both monadic and dyadic verbs; there is no 14 : . 

I recommend that you use 13 : as your first choice for defining tacit verbs.  It will 
find all tacit equivalents that can be generated systematically, and the explicit definition 
is much easier to read than a tacit definition.  You will still have to use your tacit-
definition skills for irregular cases, such as 
   13 : '+:^:x. y.' 
4 : '+:^:x. y.' 
If x. or y. is used as an operand to a conjunction, as in this example, the tacit converter 
is not going to be able to make a tacit equivalent.  The result of 13 : is still a verb 
performing the requested function, but it is an explicit definition rather than a tacit one.  
Note that the interpreter saw that the definition contained a reference to x., so it made 
the verb a dyad. 
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   2 (13 : '+:^:x. y.') 3  
12 
This verb applies monad +: to y., x. times.  Knowing about u^:v, you might find the 
tacit equivalent +:@]^:[ : 
   2 (+:@]^:[) 3 
12 

Special Verb-Forms Used in Tacit Definitions 
It is impossible for a tacitly-defined verb to route one of its operands to an operand of 

a modifier inside the verb.  For example, if we want a verb to set element x of y to 0, we 
can try 
   13 : '0 x.} y.' 
4 : '0 x.}y.' 
but we see that the converter was unable to find a tacit form. 

Some modifiers have exotic forms that circumvent this problem.  One such is the 
adverb } which supports the form x value`selector`operand} y .  This 
produces the same result as (x value y) (x selector y)} (x operand y) 
so we could write 
   a =. 13 : 'x. 0:`[`]} y.' 
   a 
0:`[`]} 
   3 a 9 7 5 3 1 
9 7 5 0 1 

Other such forms are x m&v y and x u&n y which are equivalent to m&v^:x y 
and u&n^:x y respectively. 
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40. Valedictory 

You have learned enough J to understand J programs and to put your own ideas into 
J.  I hope you will now do two things: practice using J so that J becomes the language of 
your mind's ear, the way you naturally express algorithms; and read the Dictionary with 
care, so you can learn J fully.  It'll be like weight training: in a few months you'll look in 
the mirror and be amazed at the programmer you've turned into. 

Good luck, and I hope to see you on the J Forum! 
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41. Glossary 

Adverb  One of the primary parts of speech.  An adverb modifies the word or phrase to 
its left to produce a derived entity that can be any of the four primary parts of speech. 

Anonymous  Having no name.  Said of the result of an execution. 

Atom  Any single number, single character, or single box.  Also called a scalar.  An atom 
is a noun with rank 0 . 

Array  A noun comprising atoms arranged along one or more axes.  Each atom is 
identified by its index list.  J arrays are rectangular, meaning that all 1-cells contain 
an identical number of 0-cells, and all 2-cells contain an identical number of 1-cells, 
and so on. 

Axis  One of the dimensions along which the atoms of an array are arranged.  The atoms 
of every noun are arranged along zero or more axes where each axis has a 
corresponding length and each unique list of nonnegative integers in which each 
integer is less than the length of the corresponding axis designates a unique atom of 
the noun. 

Boolean  Having a numeric value restricted to the values 0 and 1 . 

Cell  A subarray of a noun consisting of all the atoms of the noun whose index lists have 
a given prefix.  For positive k, each k-cell of a noun whose shape is s has the shape 
((- k <. #s) {. s) and together they can be assembled to reconstruct the 
noun.  For negative k, the k-cells are defined to be the (0 >. k + #s)-cells. 

Conjunction  One of the primary parts of speech.  A conjunction modifies the words or 
phrases to its left and right to produce a derived entity that can be any of the four 
primary parts of speech. 

Copula  One of the parts of speech, signifying an assignment of a value to a name.  The 
copulas are =. and =: . 

Derived Entity  The result of executing an adverb or conjunction.  If the part of speech 
of a derived entity is known, it may be called, for example, a derived verb. 

Dyad (dyadic)  A verb with left and right operands (which must be nouns).  Any verb 
may be used as a monad or dyad, depending on whether it has a left noun operand 
when it is executed. 

Entity  A noun, verb, conjunction, or adverb 

Execution  The process of replacing a verb and its operands on the execution stack with 
the result from applying the verb to those operands; or of converting a fragment into a 
derived entity in accordance with the definition of the fragment, and replacing the 
fragment on the execution stack by a single word referring to the derived entity. 
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Execution Stack  The set of words of a sentence that have been examined by parsing in 
its search for an executable fragment, as modified by the replacement performed by 
execution. 

Fill  An atom appended to a noun to extend the length of the noun to a required length, 
especially when the noun must be extended because it is being made a cell in an array 
whose cells are longer than the noun. 

Fragment  2 or 3 words on the execution stack in a context that makes them executable. 

Frame  The frame of a noun with respect to k-cells is the shape of the noun with the last 
r items removed, where r is the rank of a k-cell of the noun.  When a noun is viewed 
as an array of k-cells, the frame with respect to k-cells is the shape of the array of 
k-cells. 

Framing Fill  A fill added when the results from applying a verb on its operand cells are 
being joined into an array.  Framing fills are always 0, ' ', or a: depending on the 
type of the result. 

Fret  A marker indicating the start or end of an interval. 

Functional Programming  A method of writing programs that describes only the 
operations to be performed on the inputs to the programs, without the use of 
temporary variables to store intermediate results.  J's tacit programs are an example of 
functional programming.  Aficionados of functional programming consider it to be a 
purer statement of an algorithm than the usual statement in a procedural language; as 
the expert J programmer Randy MacDonald has said, "If you're not programming 
functionally, you're programming dysfunctionally". 

Global  Of a name, accessible as a simple name by any verb.  In the J Dictionary the 
word 'global' has the meaning we have assigned to the word 'public'. 

Index  In an array, an integer indicating position along an axis.  The index of the first 
atom along an axis is 0 . 

Index List  A list of integers with the same length as the shape of a noun, designating an 
atom of the noun by giving its position along each axis. 

Interval  A sequence of consecutive indexes or cells. 

Item  A _1-cell of a noun.  An array is a vector of its items.  An atom has one item, itself. 

List  An array of rank 1 . 

List of  An array whose items are; as in 'list of 3-item lists'. 

Local  See private. 

Locale  A namespace in J.  The locale in which a public name is defined is an attribute of 
the name.  A locale is identified by a locale name which is a character string not 
containing an underscore. 

Locative  A name including both a simple name and an explicit locale. 

Modifier  An adverb or conjunction, which modifies its operand(s) to produce a derived 
entity. 
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Monad (monadic)  A verb with no left operand.  Any verb may be used as a monad or 
dyad, depending on whether it has a left noun operand when it is executed. 

Name  Either a simple name or a locative, to which an entity can be assigned. 

Noun  One of the primary parts of speech.  An atom or array of atoms.  Nouns hold the 
data that verbs operate on. 

Parsing  The right-to-left search for suitable patterns in a sentence.  When a suitable 
pattern is found, that subset of it that constitutes an executable fragment is executed. 

Part of Speech  One of the six categories into which words are classified; or, the word or 
entity so classified.  Every word has a part of speech: for primitives, the part of 
speech is defined by the language; for names, the part of speech is that of the entity 
assigned to the name.  The parts of speech are: noun, verb, conjunction, adverb, 
punctuation, and copula.  The primary parts of speech are noun, verb, conjunction, 
and adverb. 

Partition  A selection of (possibly noncontiguous) items of an array, brought together as 
the items of a new array to be operated on by a verb. 

Path  See search path. 

Primitive  A word whose meaning is assigned by the J language. 

Private  Of a name, assigned in the namespace of an explicit definition and accessible 
only within the explicit definition in which it was assigned. 

Public  Of a name, assigned in a locale and accessible from any locale via a locative. 

Punctuation  A part of speech.  Punctuation is not executed but it affects the execution 
of other words.  Punctuation in J comprises (, ), NB., and control words. 

Rank  Of a noun, the number of axes along which the atoms of the noun are arranged; 
the number of items in the shape.  Of a verb, the highest rank of the noun operands 
that the verb can operate on. 

Scalar  See atom. 

Script  A file containing J sentences. 

Search Path  Of a locale l, the list of the names of locales that will be searched to find 
the definition of a name originally sought but not found in l. 

Sentence  An entire executable line. 

Shape  The list of the lengths of the axes of a noun. 

Simple Name  A list of letters, numbers, and underscores beginning with a letter, used to 
refer to an entity. 

Train  A sequence of words that cannot immediately be executed to produce a noun 
result. 

Type  An attribute of a noun: numeric, literal (also called string), or boxed. 

Valence  Of a verb definition, an indication of the number of noun operands that the 
definition can accept: monadic if 1, dyadic if 2, dual-valence if either 1 or 2. 
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Vector  A sequence of cells arranged with a leading axis.  An array can be construed as a 
vector of its items. 

Verb  One of the primary parts of speech.  A verb operates on the noun to its right (and 
its left, if a noun is to its left) to produce a noun result. 

Verb Fill  Fill added during processing of a verb.  The fit conjunction !.f can often be 
used to specify the fill atom to be used for verb fill. 

Word  A sequence of characters in a sentence, recognized as a lexical unit.  A word is 
either a name, a primitive, a constant (which may be a number or a character or a list of 
either), or a synthetic word used to refer to the result of an execution. 
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