® NetLogo is a programmable modeling environment
for simulating complex systems.

B Modelers can give instructions to hundreds or
thousands of independent "agents" all operating in
parallel.

® This makes it possible to explore the connection
between:

— the micro-level behavior of individuals

— the macro-level patterns that emerge from the
interaction of many individuals.

Computing Group

http://www.ccl.sesp.northwestern.edu/netlogo/

Computing Group

You can use the list below to
help familiarize yourself with
the features NetLogo has to

offer.

H System

B |Language

B Environment

glabale [Elcks)
bueeds [sheep wolves]

tuzeles-oun [eneegy]
sheep-cam [grabbeds) 2: uaEd Lo Prewint tws wolves SEom enting the seae sheep
paTehes-am [counedsim §

o setg
en

et ticks O
ask patches [sec peolor green]
ie grasar
i7 indicatan whather the geass suitch is on
if 4% in cooe, chen qrase qrour and che sheep saz it

33 AF iU false, then the sheep don'T need o ear
sk paneies |
#e1 comtdoun candom grass-delay : initialize grass geew clocks rdsaly
it (cAndom 3) = 0 ;;RALE the pAcchen SCATT ue with grATa
[set peolar beows]
!

ser-defaulc-shape sheep “sheep.shape”
:=au-mm-aw init-sheep ;i cceste whe sheep, then imitialize ehelr vecisbles
et color whice
set label-coloe blue
att enfegy zandia (2 T sheep-metaboliss)
BATLY EARAOE SECAAN-RITe-d CARAON RETASN-giTa-y
ser qrabbeds false
1]

anc-defmulc-shape walues “wnlf-shape”
Creste-custom-wolves init-wolves DI create the wolves, then initialize their varishles

set color black
met enecgy Tandoa (2 0 wold-metsholism]
SECXF Emndon SCOEEn-siDe-) CEndoN SCLEn-SiTesy

System:

B Cross-platform: runs on MacOS, Windows,
Linux, et al

® Web-enabled (run within a web browser or
download and run locally)

B Models can be saved as applets to be
embedded in web pages

Computing Group

Language:
®m Fully programmable

B Simple language structure

B Language is Logo dialect extended to support
agents and parallelism

B Unlimited numbers of agents and variables
B Double precision arithmetic

B Many built-in primitives

Computing Group

Environment:
Interface builder w/

NetLogo: Wolf Sheep Predation

buttons,
sliders,
monitors,
switches,

E

o Plots,

O

o text boxes.

.

a

€

o

QO

Computing Group

Info area for annotating your model

Powerful and flexible plotting system

HubNet: participatory simulations using networked
devices (including handhelds)

B Agent Monitors for inspecting agents

® BehaviorSpace: a tool used to collect data from
multiple runs of a model

®m Export and import functions (export data, save and
restore state of model)

m Converts StarLogoT models into NetLogo models

The following material explains some important features
of programming in NetLogo.

Agents
Procedures
Variables
Colors

Ask

Agentsets
Breeds
Synchronization
Procedures (advanced)
Lists

Strings

Turtle Shapes

Computing Group

Computing Group

The NetLogo world is made up of agents. Agents are
beings that can follow instructions. Each agent can carry
out its own activity, all simultaneously.

In NetLogo, there are three types of agents:

B Turtles are agents that move around in the world. '
The world is two dimensional and is divided up into

a grid of patches.

®m Each patch is a square piece of "ground" over
which turtles can move.

m The observer doesn't have a location -- you can %
Imagine it as looking out over the world of turtles

and patches.

Universita
di Modena
e Reggio
Emilia

Q
=
1))
B o
n J
Q)O
B
Q)
o
= O
o .S
4
S
= O
0 £
S o
<< O

Patches

Patches have coordinates. The patch in the
center of the world has coordinates (0, 0). We
call the patch's coordinates pxcor and pycor :
Integers.

the standard mathematical coordinate plane

The total number of patches is determined by
the settings screen-edge-x and screen-edge-y.

m Turtles have coordinates too: xcor and ycor.
m The each turtle has an identificator who.

m For speed, NetLogo always draws a turtle on-
screen as If it were standing in the center of its
patch, but in fact, the turtle can be positioned at
any point within the patch.

Computing Group

Universita
di Modena
e Reggio
Emilia

Q
=
1))
B o
n J
Q)O
B
Q)
o

= O
o .S
4
S
= O
0 £
S o
<< O

Miscellaneous

The world of patches isn't bounded, but "wraps" so
when a turtle moves past the edge of the world, it
disappears and reappears on the opposite edge.

Every patch has the same number of "neighbor"
patches. If you're a patch on the edge of the world,

some of your "neighbors" are on the opposite edge.

Computing Group

Commands and reporters tell agents what to do:
B Commands are actions for the agents to carry out.

B Reporters carry out some operation and report a
result either to a command or another reporter.

Commands and reporters built into NetLogo are called
Primitives:

Alphabetcal ABCDEFGHIJLMNOPRSTUVWXY
Categories_Turtle Patch Agentset Color Control/Logic Display HubMNet 110 List String Math Plotting

Special Variables Keywords Constants

Computing Group

Commands and reporters you define yourself are
called procedures.

Each procedure has a name, preceded by the
keyword to. The keyword end marks the end of the
commands in the procedure.

B Once you define a procedure, you can use it
elsewhere in your program.

B Many commands and reporters take inputs values
that the command or reporter uses in carrying out its
actions.

Computing Group

to setup

ca :: clear the screen i

crt 10 :: create 10 new turtles

end
to go
ask turtles
[fd 1 ;; all turtles move forward one step _

rt random 10 ;: ...and turn a random amount
It random 10]
end

Computing Group

A variable can be :

m |f a variable is a global variable, there is only one
value for the variable, and every agent can access
it.

B Each turtle has its own value for every turtle
variable, and each patch has its own value for
every patch variable.

B Some variables are built into NetLogo: all turtles
have a color variable, and all patches have a pcolor
variable.(The patch variable begins with "p")

Computing Group

You can make a global variable by adding a switch or a
slider to your model, or by using the globals keyword at
the beginning of your code:

globals [clock]

You can also define new turtle and patch variables using
the turtles-own and patches-own:

turtles-own [energy speed]
patches-own [friction |

m Use the set command to set them (default value is zero).

® Global variables can by read and set at any time by any
agent. As well, a turtle can read and set patch variables
of the patch it is standing on.

Computing Group

Ask specifies commands that are to be run by turtles or
patches.

m All code to be run by turtles must be located in a turtle

"context™":

— In a button, by choosing "Turtles"
from the popup menu.

— In the Command Center, by choosing
"Turtles" from the popup menu.

— By using ask turtles.

® The same goes for patches and the observer, except
that code to be run by the observer must not be inside
any ask.

Computing Group

to setup

ca
crt 100 :: create 100 turtles
ask turtles

[

set color red ;; turn them red
rt random 360 ;; give them random headings
fd 50 ;; spread them around

]

ask patches

[
If (pxcor > 0) ;; patches on the right side

[set pcolor green] ;; of the screen turn green

You can also use ask to make an individual turtle or patch
run commands. The reporters turtle, patch, and patch-at are
useful for this technique:

to setup
ca
crt 3 ;; make 3 turtles
ask turtle 0O ;; tell the first one...
(fd1];; ...to go forward
ask turtle 1 ;; tell the second one...
| set color green] ;; ...to become green
ask patch 2 -2 ;; ask the patch at coords (2,-2)
| set pcolor blue] ;; ...to become blue
ask turtle O ;; ask the first turtle
| ask patch-at 1 0 ;; ...to ask patch to the east
[set pcolorred]] ;; ...to become red

Computing Group

end

Computing Group

m Every turtle created has an ID number. The first turtle
created has ID 0O, the second turtle ID 1, and so forth.

The turtle primitive reporter takes an ID number as an
Input, and reports the turtle with that ID number.

® The patch primitive reporter takes values for pxcor and
pycor and reports the patch with those coordinates.

® The patch-at primitive reporter takes offsets: distances,
In the x and y directions, from the first agent.

Computing Group

An agentset is a set of agents and it can contain
either turtles or patches, but not both at once.

® You can construct agentsets that contain only some
turtles or some patches. For example, all the red
turtles, or the patches with pxcor equal one.

B These agentsets can then be used by ask or by
various reporters that take agentsets as inputs.

Computing Group

Using turtles-here or turtles-at to make an agentset
containing only the turtles on my patch, or only the turtles on
some other particular patch.

m turtles

turtles with [color = red] ;; all red turtles

turtles-here with [color = red] ;; all red turtles on my patch
turtles in-radius 3 ;; all turtles less than 3 patches away

m patches

patches with [pxcor > 0] ;; patches on right side of screen
;; the four patches to the east, north, west, and south
patches at-points [[1 0] [0 1] [-1 O] [O -1]]

Neighbors ;; shorthand for those eight patches

Universita
di Modena
e Reggio
Emilia

Q
=
1))
B o
n J
Q)O
B
Q)
o

= O
o .S
4
S
= O
0 £
S o
<< O

Agentsets

Here are some simple things you can do:

Use ask to make the agents in the agentset do something
Use any to see if the agentset is empty
Use count to find out how many agents are in the set

Here are some more complex things you can do:

random-one-of, sprout, max-one-of or min-one-of
histogram, values-from

Computing Group

You can define different "breeds" of turtles. The different
breeds can behave differently.

® You define breeds using the breeds keyword, at the top of your
model, before any procedures: breeds [wolves sheep]

When you define a breed such as sheep, an agentset for that
breed is automatically created, so that all of the agentset
capabilities described above are immediately available with the
sheep agentset.

m The following new primitives are also automatically available
once you define a breed:

create-sheep, create-custom-sheep, sheep-here, and sheep-at.

m Also, you can use sheep-own to define new turtle variables that
only turtles of the given breed have.

m A turtle's breed agentset is stored in the breed turtle variable.
So you can test a turtle's breed, like this:

If breed = wolves [...]

Note also that turtles can change breeds. A wolf doesn't have
to remain a wolf its whole life.

ask random-one-of wolves [set breed sheep |

breeds [sheep wolves]

sheep-own [grass]

to setup
ca
create-custom-sheep 50
[set color white]
create-custom-wolves 50
[set color black]

end

Computing Group

Computing Group

Turtle commands are executed asynchronously; each
turtle does its list of commands as fast as it can.

One could make the turtles "line up" by waiting the end of an ask
block. At that point, the turtles would wait until all were finished
before any went on.

® the two steps are not synced:
ask turtles
[fd random 10
do-calculation]

® the two steps are synced :
ask turtles [fd random 10]
ask turtles [do-calculation]

Your own procedures can take inputs, just like primitives do.

To create a procedure that accepts inputs, include a list of
Input names in square brackets after the procedure name:

to draw-polygon [num-sides size]

pd
Q. .
3 repeat num-sides
N [fd size
= rt (360 / num-sides) |
Q.
£ end
S

You can define your own reporters. You must do two special
things:

m First, use to-report instead of to to begin your procedure.

s Second, in the body of the procedure, use report to
report the value you want to report.

to-report absolute-value [number]
Ifelse number >=0
[report number |
[report O - number]

end

Computing Group

B A local variables is defined and used only in the context
of a particular procedure.

® To add a local variable to your procedure, use the locals
keyword. It must come at the beginning of your procedure:

to swap-colors [turtlel turtle2]
locals [temp]
set temp color-of turtlel
set (color-of turtlel) (color-of turtle2)
set (color-of turtle2) temp
end

Computing Group

Computing Group

In the simplest models, each variable holds only one piece
of information, usually a number or a string.

The list feature lets you store multiple pieces of

Information in a single variable by collecting those pieces
of information in a list.

Each value in the list can be any type of value: a number,
or a string, an agent or agentset, or even another list.

Lists allow for the convenient packaging of information in
NetLogo. If your agents carry out a repetitive calculation
on multiple variables, it might be easier to have a list
variable, instead of multiple number variables.

= You can make a list by simply putting the values you
want in the list between brackets, like this:

set mylist [2 4 6 8]
Note that the individual values are separated by spaces.

= You can make lists that contains numbers and strings
this way, as well as lists within lists:

set mylist [[2 4] [3 5]]

s The empty list is written by putting nothing between the
brackets, like this: [].

Computing Group

The list reporter accepts two other reporters, runs them,
and reports the results as a list.

= If you wanted a list to contain two random values, you
might use the following code:

set randome-list list (random 10) (random 20)

This will set random-list to a new list of two random
numbers each time it runs.

s To make longer lists, use the list reporter with the
sentence reporter, which concatenates two lists
(combines their contents into a single, larger list).

Computing Group

s The values-from primitive lets you construct a list from
an agentset.

m It reports a list containing the each agent's value for the
given reporter.

m The reporter could be a simple variable name, or a more
complex expression -- even a call to a procedure defined
using to-report.

. A common idiom is

max values-from turtles [...]

Computing Group

sum values-from turtles [...]

Computing Group

®m The replace-item replace index element in the list with new
value. (0 means the first item, 1 means the second item,
and so forth)

replace-item index list value
set mylist[2 7 5B [30-2]] ; mylistisnow [27 5B [30 -2]]

set mylist replace-item 2 mylist 10
; mylistis now [2 7 10 B [3 0 -2]]

® To add an item, say 42, to the end of a list, use the lput

reporter. (fput adds an item to the beginning of a list.)

set mylist [put 42 mylist ; mylistis now [2 7 10 B [3 0 -2] 42]

Computing Group

s The but-last reporter reports all the list items but the
last.

set mylist but-last mylist
, mylistis now [2 7 10 B [3 0 -2]]

= Suppose you want to get rid of item 0, the 2 at the
beginning of the list (but-first).

set mylist but-first mylist
, mylistis now [7 10 B [3 0 -2]]

= To input a constant string, surround it with double
guotes(The empty string is written like this: "").

s Most of the list primitives work on strings as well:

butfirst "string" => "tring"
butlast "string" => "strin"
empty? "' => true
empty? "string" => false
first "string" =>"s"

item 2 "string" =>"r"

last "string" => "g"
length "string" => 6

Computing Group

Computing Group

member? "s" "string" => true
member? "rin" "string" => true
member? "ron" "string" => false
position "s" "string" => 0
position "rin" "string" => 2
position "ron" "string" => false
remove "r" "string" => "sting"
remove "s" "strings" => "tring"
replace-item 3 "string" "o" => "strong"
reverse "string" => "gnirts"

Computing Group

Strings can be compared using the =, I=, <, >, <=, and >=
operators.

To concatenate strings, that is, combine them into a
single string, you may also use the + (plus) operator:

= tur' + "tle" => "turtle”

® If you need to embed a special character in a string, use
the following escape sequences:

\n = newline (carriage return)
\t = tab

\" = double quote

\\ = backslash

Computing Group

Turtle shapes are vector shapes. They are built up from
basic geometric shapes; squares, circles, and lines,
rather than a grid of pixels.

Vector shapes are fully scalable and rotatable.

A turtle's shape is stored in its shape variable and can
be set using the set command.

The set-default-shape primitive is useful for changing
the default turtle shape to a different shape, or having a
different default turtle shape for each breed of turtle.

Use the Shapes Editor to create your own turtle shapes.

Shapes Editor

Universita
di Modena
e Reggio
Emilia

Use the Shapes Editor to create your own turtle shapes

Editing "default" x|
BN (S EEEEE | oo]
A default AE| O]~ ¥ Fil ¥ erid Remave all| Remove last
ant
arraw
Q =
= 1| € bee
v
S a it 1
£ 3 n
P 5 birdf2
_8 g] boatl
RS ‘
wn] hoat?
=3 -
T a L
& g Mew| Editl Copyl | Impor| Done| Shape name [deiault v Rotatable
< O Cancel| Done

In the Netlogo site you can find:
— the last version of Netlogo
— the Netlogo User Manual
— the new Netlogo model
— and a group-discussion about Netlogo

Computing Group

http://www.ccl.sesp.northwestern.edu/netlogo/

	Netlogo!
	Features
	Features (System)
	Features(Language)
	Features (Environment)
	What is Netlogo?
	Programming Guide
	Agents
	Patches
	Turtles
	Miscellaneous
	Primitives
	Procedures
	Examples: procedures
	Variables
	Variables
	Ask
	Examples: ask
	Ask
	Ask
	Agentsets
	Agentsets
	Agentsets
	Breeds
	Breeds
	Synchronization
	Procedures with inputs
	Reporter procedures
	Procedures with local variables
	Lists
	Constant Lists
	Building Lists on the Fly
	Building Lists on the Fly
	Changing List Items
	Changing List Items
	Strings
	Strings
	Strings
	Scripting
	Shapes Editor
	References

