Introduction to

Introduction to programming

Imre Varga
University of Debrecen, Faculty of Informatics

For internal use only!

04 May 2014

General informations

Teacher:
Dr. Varga, Imre
University of Debrecen
Faculty of Informatics
Depertment of Informatics Systems and Networks

email: varga.imre@inf.unideb.hu
www: irh.inf.unideb.hu/user/vargai
room: IF13 (building of Faculty of Informatics)

General informations

Requirements, conditions:
Maximum number of absences is 3.
Maximum late from classes is 20 minutes.
More than 20 minutes late means absent from class.

There will be two tests during the semester.
There is only one chance to retake!!!
Activity during class means plus score.

Furter readings:
Adrian Kingsley-Hughes: Beginning Programming, Wiley, 2005.

Metrowerks CodeWarrior: Principles of Programming

Topics

What are the basics of Informatics?

How does a computer built up?

How does a computer work?

What is software, application, program?
How to describe problems and its solution?
What is algorithmic thinking?

What does ‘program writing’ mean?

Many more things...

Computer systems

Computer System

User

Computer architecture (hardware)

ALU Registers

RAM

CPU Cache < Bus system > Memory
CuU AU J L ROM

1/0 interface

System Unit ﬁ

N/

Peripherials

Keyboard Monitor HDD Mouse CD/DVD Network

System Unit

Central Processing Unit (CPU):
The brain of computers

Memory:
Contains datas and instructions

Input-Output Interface:
Surface between computer
and outer world

Bus system:
Connects together

Central Processing Unit

Control Unit (CU): Says what to do, controls the parts
of the CPU

Arithmetic Logic Unit (ALU): Performs operations, does
calculations

Registers: Some tinny but very fast memory
Cache: small, but fast memory

Addressing Unit (AU): Deals with memory addresses at
read/write operation

Memory

Random Access Memory (RAM):
Readable-writeable operative memory

Read Only Memory (ROM)
Not rewritable (eg. BIOS-ROM)

Memory hierarchy:

e Register

 Cache

* Memory
 Hard-disk drive (HDD)

paads duisealdaq
9Z15 ulIseaJdu|

10

Bus system

Connects the CPU, the Memory and the I/O interfaces

Data bus:
Transports the datas from/to CPU

Address bus:
Contains memory address of reading/writing

Control bus:
Carries control informations

Input-Output Interfaces

It makes the system accessible to periferials (world)

Connection to

e |nput devices

e Qutput devices

e Storage devices
 Network devices

printer network

motse -- o TS I, I - .'</ microphone
keyboard ——> CHR) szt - [RHEEA W EE iy (il | ©. <— speaker

monitor projector USB drive

12

Peripherials

Input Output

e Keyboard e Monitor
e Mouse * Printer
e Scanner * Projektor
Storage Network
 Winchester (HDD) e Ethernet
e CD/DVD/Blu-ray drive e Wi-Fi

e USB drive

e Memory Card Other

Software

Applications, user programs

Office Program Web Database
application || development Browser management
Software
User Operating system Process
interface scheduler

Fil Memor Devi
© =mory e. “€ Other...
management| | management drivers

Hardware

14

Operating system

Collection of software that manages hardware
resources and provides services for other programs

 User interface:
supports human interaction (shell, GUI)

 Program scheduler:
decides which program can run now, for how long
time, which will the next

* File management:
handles the files and directories of volume based on
a file system

Operating system

Memory management:
provides ways to dynamically allocate portions of
memory to programs at their request

Device drivers:
software developed to allow interaction with
hardware devices

Security:
protect against illegal operation and access to datas

Others:
Networking, Interrupt management, Utilities, ...

User applications

File manager:
Windows Explorer, Midnight commander, ...

Office application:
Microsoft Word/Excel, OpenOffice Write/Calc, ...

Web browser:
Internet Explorer, Firefox, Crome, ...

Database manager:
Microsoft Access, MySQL, DB2, ...

Graphical program:
Microsoft Paint, GIMP, Photoshop, ...

User applications

Media player:

Windows Media Player, Flash Player, QuickTime, ...

Computer game:
Minesweeper, Solitaire, NFS, CoD, FIFA, ...

Anti-virus program:
Virus Buster, NOD32, AVG, ...

Integrated Development Environment (IDE):
BorlandC, Netbeans, CodeBlocks, Dev-C++, ...

Other:

User

Human agent, who uses computer

* Root:

Superuser, system addministrator, has high privilege
e ,Simple” user:

computer is just a tool, not the purpose of work

* Programmer:
developes computer applications, writes programs

Problem solving

Polya’s problem solving steps

Understanding the problem

What is the task?
What is the unknown (required result)?

What is the relationship between the given
information and the unknown?

Is the given information enough to solve the
problem?

Creating a plan

General techniques:

Finding known similar problems (if exists)

Reshaping the original problem to a similar known
problem

Devide the problem to shorter solvable problems
Generalizing a restricted problem

Finding existing work that can help in the search for a
solution

Executing the plan

* Follow the steps of the plan

e Each element of the plan should be checked as it is
applied

e If a part of the plan is unsatisfactory, the plan should
be revised

Evaluating

The result should be examined
e |sitcorrect?

e Isitfull?

e Isitvalid?

 Has the problem been solved?

An example

What is the sum of
110010110 and 101110101

in binary notation?

See ‘Number systems’ slides!

26

Software Life Cycle

Software Life Cycle

1: Problem definition

Similar to Polya’s first step
The description of the problem must be precise
User and programmer must work together

It leads to complete specitications of the problem,
the input datas and the desired output

2: Solution design

Definition of the outline of solution

Division of the original problem into a number of
subproblems

Subproblems are smaller and easier to solve
Their solution will be the components of our solution
,Devide and conquer”

Finally the problem will be converted to a plan of
well-known steps

3: Solution refinement

Previous step is in very high-level: no indication given
how subtasks are to be accomplished

Refinement is necessary by adding more details
Avoid any misunderstandings

A precise method consists of a sequence of well
defined steps called an algorithm

Representation: pseudocode, flowchart, etc.

4: Testing strategy development

It is necessary to try the algorithm with several
different combinations of input data to make sure
that it will give correct results in all cases

These different combinations of input data are called
test case

It covers not only normal input values, but also
extreme input values to test the limits

Complete test cases can be used to check the
algorithm

5: Program coding and testing

Description of algorithm in previous level cannot be
executed directly by computer

Translation needed to a programming language

After coding program must be tested using our
testing strategy

If an error has been discovered, appropriate revision
must be made, and than the test rerun until the
program gives correct solution under all
circumstances

Process of coding and testing called implementation

6: Documentation completion

e Documentation begins with the first step of
development and continues throughout the whole
lifetime of the program

* [t contains:
— Explanations of all steps
— Design dicisions that were made
— Occured problems
— Program list
— User instructions
— etc.

/: Program maintenance

The program can’t wear out
Sometimes the program may fail

The reason of a program fail is that it was never
tested for this circumstance

Elimination of newly deteceted error is necessary

Sometimes the users need new features to the
program

Update of documentations is needed

Solution design

by Break-Out Diagrams

Break-Out Diagrams

e Useful way to make the problem solving manageable
e Tree-like (hierarchical) skeleton of problems
e For viewing problems in levels

. []
Styles:
— Vertical
_ Horizontal Subprobleml Subproblem?2 ubproblem3

Subsubproblem2.1 Subsubproblem?2.2
’ Subproblem1

Subproblem?

AN Subproblem3

37

Time BOD

Childhood Adulthood

- / / \ \ \\
- / ~ o

thtle childhood School years Work years Retirement

/
e ’ ~

Elementary school High school

38

Space BOD

City areas

Private areas Public areas
Homes Companies Outdoors Indoors

1
1
1
/ I \
\
\
\

II !
1
! 1

/ 1
/ 1
/ 1

1
1

Parks

Streets

Action BOD

Getting diploma

Visiting courses Learning

40

Data BOD

Street name House number ‘in house’ datas

41

Properties of BODs

Consistent
Each break-out must be the same kind.

Orderly
All blocks at the same level must be separate or
independent.

Refined
Each box of a given level must be break-out of a box
at the previous level.

Cohesive
All of the items within a breakout box must fit
together.

Mistakes and corrections

Incorrect BOD /| Learning verbs
Learning nouns
Learning
Learning) words
English [:
. Learning

grammar

Correct BOD Learning verbs

Learning nouns

b
7

. Learning

Learning other

words

il . Learning

grammar

Mistakes and corrections

Incorrect BOD

4
/
4
4
’
’
’
’
’
-
- -
\
\
\
PM \
\
\\ A\
N
\
\ \
\
\

M Evening

Lunch

Pre-Tea-Time
Tea-Time

Diner time

Snack time

Correct BOD

Soup
Main course

PM Pre-Tea-Time

Tea-Time

l Evening

Diner time
Snack time

44

Mistakes and corrections

Incorrect BOD

Morning Shower
routine N
Eat
W Eat cereal
Go to work
Read news

(1)

Correct BOD

Get out of bed

Morning jum Shower .-
: & Breakfast NS -
routine . "
.~ G k \\ \\\ Eat T
o to wor Lo Eat cereal
B Read news)

45

Exercises and examples

Draw BODs of the following things.
e Computer architecture

e Human body

e Surface of Earth

* Phone number

e Starting a car

e SetupaTVset

 Using computer

* Your plan for tomorrow

Solution refinement

Algorithms

Algorithm

Plan for performing a sequence of well-understood
actions to achieve the result.

Precise definition of the actions to be performed to
accomplish each task of solution design.

Some properties:

* precise, unambiguous

e specified for all possible cases

* finite sequence of actions

e achieves the result

o efficiency, elegance, easy to use, ...

Representation of algorithms

Algebraic
Data-flow diagram
Flowblocks
Flowchart

Graphs or plots
Hierarchical
Pseudocode
Tabular

Verbal

Example

Function y=sign(x)

What is it?
What does it mean?
What is the result?

How is it work?

How can we determine its value?
If x is -4, what is the value of y?

y=sign(x)

Verbal representation:

1. If x=0, set the result to y=0.
2. Otherwise if x>0, let the value of this function +1.
3. Elseif x<0, give the function -1.

y=sign(x)

Graph representation:

+1¢

-
®

52

v=sign(x)

‘Algebraic-like’ representation:

x L

yL{-1, O, +1}

[Ix, x>0 = y=+1

[1x, x<0 = y=-1
x=0 =vy=0

y=sign(x)

Flowchart representation:

y=sign(x)

Pseudocode representation:

If x=0 then
y=0
else
if y>0 then

Base structures of algorithms

Sequence

Task 1

v

Task 2

v

Task 3

Selection

Ilteration

Modifying algorithms

Algorithms often go through many changes to be better.
 Generalizing:

making them apply to more cases
* Extending:

to include new cases
* Foolproofing:

making an algorithm more reliable, failsafe or robust
* Embedding:

re-using that algorithm within another algorithm

Generalizing algoritms

Original: Generalized:
/ Input: net / / Input: net, VAT /

gross=net™*(100%+25%) gross=net™(100%+VAT)

/ Output: gross / / Output: gross /

Extending algorithms

Original:

/ In: hours, rate /
}

salary=hours*rate

|

I,

Extended:

/ In: profit /
|

salary=profit/2

Y Y

/ In: hours, rate /

|

salary=hours*rate

—7/ Out: salary /47

Foolproofing algorithms

Original: Foolproofed:
Siar>
/ In: age / / In: age /

v
yes @%

/\(L)ut: child /Out: adult/ /OUt: error/
|

|
/ olut: child / / Out: adult /

Embeddig algorithms

Original: Embedded:

y=abs(x) y=sign(x)
truefalse / In: x /

y=-X y=+X true @ false

1€
v

/ Out: x/y /

61

Alternative algorithms

There are often many ways to achieve the same thing.

Algorithms can be different in structure, but they can be
equivalent in behavior.

It means: for identical input data, they will produce
identical results.

Sometimes there is serious reason to prefer one
algorithm over the other, while sometimes there isn’t.

In some cases, one algorithm may be considerably
smaller, faster, simpler, or more reliable than another.

Alternative algorithms

y=sign(x)

[mx [/ / omx /

true false truefalse

Y=0 | true false y="X y=+X
. T

i(—) / Out: x/y /

Properties of algorithms

Complete:
all of actions must be exactly defined

Unambiguous:
there is only one possible way of interpreting actions

Deterministic:

if the instructions are followed, it is certain that the
desired result will always be achieved

Finite:

the instructions must terminate after a limited
number of steps

Wrong algorithms

How to get to the 5th floor from 2nd by elevator?
1. Call the lift.

2. Get In.

3. Push ‘5’ button.

4. Wait.

5. If the door opens, get out.

Problems (not complet):
e If the list goes downward...
e |f the lift stops on 3rd floor for somebodly...

Wrong algorithms

How to make fried chicken?
1. Put the chicken Into the oven.

2. Set the temperature.
3. Wait until it is done.
4. Serve it.

Problems (ambiguity):

e What is the optimal temperature (50°C or 200°C)?
* |sthe chicken frosen or alive?

e When is it done?

Wrong algorithms

How to be a millionaire?

1. Buy a lottery.

2. Choose numbers.

3. Wait for prize or be sad.

Problems (stochastic, not deterministic):
* |n most of the cases we won’t be a millionaire.
 Not allways works.

Wrong algorithms

How to use a bus?
1. Wait for the bus.

2. Get on the bus.
3. Buy aticket.

4. Sit down.

5. Get out of the bus.

Problems (infinite):
* |f we are not in a bus stop, bus won’t stop.
e If we are in a building, bus will never arrive.

Using public coin phone

pick up receiver

|

put in coins

|

dial the number

|

talk

|

put down receiver

Problems:
* Not complete
e Ambiguous

Modification:
 Generalizing

e Extending

* Foolproofing

e Completing

e Avoiding misunderstans

Using public coin phone

Gtard

wait

pick up receiver

Y

- - true < line? false
putin coins ISline:

tru alse

dial area code

v

dial local number

coins

true engaged? false —
false true
put down 2
¢ put down

get coins back

true/K[alse

\agay

CEnd

Exercises and examples

Buying shoes

Watching TV

Using microwave oven

Paying at cash-desk

Making a call with mobile phone
Going trough a road on foot
Driving through a crossroads
Leap year

Exercises and examples

How do the values of x, y and s change

during the process, if x=5 and y=47?

// in: X,y //

What is the output in this case?

v

How many times will the condition

S=X

evaluated?
. : false true
What does this algorithm do? @

How can you modify it [/ outs /

to calculate the product of

x and y?

s=s+1

v

y=y-1

Exercises and examples

How do the values of x and y change
during the process, if the input is 107

What is the output, if the input is 607? / inix /
What does this algorithm do? y>12

Is it work, if x=17

If the input is 24, how
many iterations will
be executed?

How can it faster?

Exercises and examples

Day of year

Searching in ordered binary tree

Raising to power

Conversion of decimal number to binary
Addition of binary numbers

Solving second degree equation
Calculating factorial

Exercises and examples

This flowchart describes the algorithm of
calculation of the remain of a divisi

Complete it. / /
e Start false v -
e a<=b ;‘>é>—
e a<0 >()
e b<=0-— -)false true
* a=a-b-_ v
. in:a b S~ false tru /
* out: error — /
e outta——1——J

e End

75

Pseudocode

Sequence:

statementl
statement?2
statement3

Selection:

if condrtion then
statementl
else

statement?2
endif

Iteration:

while conditiondo
statementl
enddo

76

Exercises and examples

input a e What is the output if a=107
If a<0 then What is the output if a=-4?
b=-1*a » What does the algorithm do?
else
b=a What does this algorithm do?
endif _
output b fnput a
If a<0 then
a=-1*a
endif

output a

Exercises and examples

Input a Do the pseudocode and the flowchart
Input b describe the same algorithm?
C=a
If b>0 then
b=b-1
_ / in:a, b /
c=c-1 T
else c=a
output ¢ v
endif false true
/ out: c / b=b-1

Exercises and examples

Input a

Input b

c=a

while b>0 do
b=b-1
c=c-1

enddo

output c

How do the values of a, b and ¢
change during the process,
if a=7 and b=37?

What is the output in this case?

How many times will the
condition evaluated?

What does this algorithm do?

Exercises and examples

e Describe this flowchart by pseudocode.

y=0

Exercises and examples

e Describe this flowchart by

pseudocode.

Exercises and examples

e Describe this flowchart by pseudocode!

Exercises and examples

Verbal represented algorithm:

Give a number.

Check that it is larger then one or not.

If it is larger, substract two and continue with Step 2.
Otherwise check it zero or not.

If it is zero, write ‘even’.

o Uk wh e

Else write ‘odd’.

Write this algorithm in pseudocode.

Exercises and examples

Absolute value

Raising to power

Calculating factorial

Prime or not

Prime factorization

Solution of first degree equation
Sum of numbers from 10 to 20

Exercises and examples

Average of an array
Minimum/maximum search
Finding a value in (ordered) list
Replacement of two values
Selection sort

Insertion sort

Bubble sort

Testing strategy development

Example of testing strategy

* Solving second degree equation

 General form:ax?+bx+c=0 / — /
in:a, b, c
* |Input parameters: a, b, c T
—b + Vb? — 4ac d = b2-4ac

® SOlUtiOn: xl’z -

2a l

X, = (-b+d/?)/2a

Does it work for all input? !
X, = (-b-d2)/2a
e What is the output 1
if a=1, b=2 and c=17 / out: x,, X, /

e What is the output
if a=1, b=2 and c=27 @

Example of testing strategy

Does it work for all input?

* What is the output

in:a bc / if a=0, b=2 and c=67?

false

X, = (-b-d1/2)/2a

truefalse

v

x, = (-b+d¥/2)/2a

Xx=-b/2a

v v v
/ out: x4, X, / / out: x / / out: no solution /

Example of testing strategy

true

Does it work for all input?

/ inta,b,c / ¢ Whatis the output

if a=0, b=0 and c=17?

d = b2-4ac

false

X, = (-b-d/2)/2a

v

true

x, = (-b+d/?)/2a

x=-b/2a

x=-c/b

v v v
/ out: X;, X, / / out: x / / out: no solution // out: x /
<

Example of testing strategy

/in:) b c It works for all input.

true
d = b2-4ac true
false

false

X, = (-b- d1/2)/2a true ®

X, = (-b+d1/2)/2a x=-b/2a

x=-c/b

v v v v
/ out: X;, X, / / out: x / / out: no solution // out: x /
<

Example of testing strategy

Good solution in pseudocode:

It works for all input.

To reach this state we have
had to test the algorithm
with more different input
combination and then we
have had to modify the
algorithm.

We have used testing strategy.

input a, b, c
if a=0 then
if b=0 then
output error
else
x=-c/b
output X
endif
else
d=b*b - 4*a*c
if d>0 then
x1=(-b+sqrt(d))/(2*a)
x2=(-b-sqrt(d))/(2*a)
output x1, x2
else
if d=0 then
x=-b/(2*a)
output X
else
output error
endif
endif
endif

The used testing strategy

a b C reason OK
3 7 2 | general case (not zero, d>0) | v

0 2 3| aiszero (first degree) v

2 0 5| biszero(x%=-c/a) v

1 2 0| ciszero (x[ax+b]=0) v

0 0 1| more zeros (not equation) v

3 1 9| d<0 (no solution) v

2 4 2 | d=0 (only one solution) v

-2 -3 -9 | negative inputs v
2.3 4.2 0.83| not integer values v
0.00001 | 1000000 1| extreme small/large values | v

Yo}
N

Program coding

Creating source code
in real programming language

Syntax and semantics

Syntax: Formal rules of the program text.

Semantics: Does it describe the desired algorithm?

Example (absolute value):

iInput a Semantic error
If a>0 then
a=-1*a
enidf
output a Syntax error

Syntax of programing languages

Fortran:
REAL FUNCTION FAKT(])
FAKT=1
IF (1 .EQ. 0 .OR. | .EQ. 1) RETURN
DO 20 K=2,|
20 FAKT=FAKT*K
RETURN
ENC Pascal:
FUNCTION FAKT(:INTEGER):REAL;
BEGIN
IF 1=0 THEN FAKT:=1
ELSE FAKT:=FAKT(I-1)*I;
C: END:

long fakt(long n){
if (n<=1) return 1,
else return n*fakt(n-1);

}

Units and elements of the code

Character set

Lexical units .
§ We use different
Syntactic units =2 characters, symbols,
m .
. = special keywords,
Instructions < :
5 expressions, and rules
n .
Program units ® in each language.
. . %
Compiling units
\/

Program

C programming language

/*** Solving second degree equation ***/
#include<stdio.h>
#include<math.h>
int main() {
float a,b,c,d,xl1,x2;
printf("Give the coefficients!\n");
scanf ("sf =L %f",&a,&b,&C);

if (a==) //first degree
if (b==)
printf ("Error!in");
else{
xl=-c/b;

printf ("=z=%t\n",x1) ;}
else{ //second degree
d=b*h-_i%*z%C;
if (d> Y{ //two solution
x1l=-b+sqgrt(d) / (2*a);
®x1=-b+sqrt(d) / (2*a) ;
printf ("xl=%f\nx2=%5f\n" ,x1,x2) ;}
else
if (d== Y{ // one solution
x1=-b/(2*a);
printf("==%f\n",x1) ;}
else // no solution
printf("Error!\n");}
return 0;}

97

Documentation & Maintenance

Documentation

Complete the documentation:

Always document everything during the program
development.

What is the solution method?
What are the solved subproblems?

What are the necessary inputs and the output?
How does the implemented algorithm work?

What are the meaning of the variables? (comments)
How to use the program? (user manual)

What are the discovered errors and their solutions.

Maintenance

Maintenance the program:

e |f the users need, correct, extend and update you
application.

 Make documentation about all changes.

This is the END!

