
Introduction toIntroduction to

IntroductionIntroduction toto pprogrammingrogramming

Imre Varga
University of Debrecen, Faculty of Informatics

For internal use only!

04 May 2014

General informationsGeneral informations

Teacher:

Dr. Varga, Imre

University of Debrecen

Faculty of Informatics

Depertment of Informatics Systems and NetworksDepertment of Informatics Systems and Networks

email: varga.imre@inf.unideb.hu

www: irh.inf.unideb.hu/user/vargai

room: IF13 (building of Faculty of Informatics)

2

General informationsGeneral informations

Requirements, conditions:

Maximum number of absences is 3.

Maximum late from classes is 20 minutes.

More than 20 minutes late means absent from class.

There will be two tests during the semester.There will be two tests during the semester.

There is only one chance to retake!!!

Activity during class means plus score.

Furter readings:

Adrian Kingsley-Hughes: Beginning Programming, Wiley, 2005.

Metrowerks CodeWarrior: Principles of Programming

3

TopicsTopics

• What are the basics of Informatics?

• How does a computer built up?

• How does a computer work?

• What is software, application, program?• What is software, application, program?

• How to describe problems and its solution?

• What is algorithmic thinking?

• What does ‘program writing’ mean?

• Many more things…

4

Computer Computer systemssystems

Computer SystemComputer System

User
root

programmer

6

SoftwareHardware
display

processor

Windows

Firefox

Computer Computer architecturearchitecture (hardware)(hardware)

CPU

ALU

CU

Registers

AU

MemoryCache Bus system

RAM

ROM

System Unit

I/O interface

Peripherials

HDDMonitorKeyboard Mouse CD/DVD Network …

7

System UnitSystem Unit

Central Processing Unit (CPU):

The brain of computers

Memory:

Contains datas and instructions

Input-Output Interface:

Surface between computer

and outer world

Bus system:

Connects together

8

CentralCentral ProcessingProcessing UnitUnit

Control Unit (CU): Says what to do, controls the parts

of the CPU

Arithmetic Logic Unit (ALU): Performs operations, does

calculations

Registers: Some tinny but very fast memory

Cache: small, but fast memory

Addressing Unit (AU): Deals with memory addresses at

read/write operation

9

MemoryMemory

Random Access Memory (RAM):

Readable-writeable operative memory

Read Only Memory (ROM)

Not rewritable (eg. BIOS-ROM)

Memory hierarchy:

• Register

• Cache

• Memory

• Hard-disk drive (HDD)

10

In
cre

a
sin

g
size

D
e

cre
a

sin
g

sp
e

e
d

BusBus systemsystem

Connects the CPU, the Memory and the I/O interfaces

Data bus:

Transports the datas from/to CPU

Address bus:Address bus:

Contains memory address of reading/writing

Control bus:

Carries control informations

11

InputInput--OutputOutput InterfacesInterfaces

It makes the system accessible to periferials (world)

Connection to

• Input devices

• Output devices

• Storage devices

• Network devices

12

mouse

keyboard

monitor projector

printer network

USB drive

microphone

speaker

PeripherialsPeripherials

Input

• Keyboard

• Mouse

• Scanner

Output

• Monitor

• Printer

• Projektor

13

Storage

• Winchester (HDD)

• CD/DVD/Blu-ray drive

• USB drive

• Memory Card

Network

• Ethernet

• Wi-Fi

Other

SoftwareSoftware

User

Applications, user programs

Office

application

Program

development

Database

management

Web

Browser

14

Hardware

Software

Operating systemUser

interface

File

management
Other…

Memory

management

Device

drivers

Process

scheduler

OperatingOperating systemsystem

Collection of software that manages hardware

resources and provides services for other programs

• User interface:

supports human interaction (shell, GUI)

• Program scheduler:• Program scheduler:

decides which program can run now, for how long

time, which will the next

• File management:

handles the files and directories of volume based on

a file system

15

OperatingOperating systemsystem

• Memory management:

provides ways to dynamically allocate portions of

memory to programs at their request

• Device drivers:

software developed to allow interaction with software developed to allow interaction with

hardware devices

• Security:

protect against illegal operation and access to datas

• Others:

Networking, Interrupt management, Utilities, …

16

UserUser applicationsapplications

• File manager:

Windows Explorer, Midnight commander, …

• Office application:

Microsoft Word/Excel, OpenOffice Write/Calc, …

• Web browser:• Web browser:

Internet Explorer, Firefox, Crome, …

• Database manager:

Microsoft Access, MySQL, DB2, …

• Graphical program:

Microsoft Paint, GIMP, Photoshop, …

17

UserUser applicationsapplications

• Media player:

Windows Media Player, Flash Player, QuickTime, …

• Computer game:

Minesweeper, Solitaire, NFS, CoD, FIFA, …

• Anti-virus program:• Anti-virus program:

Virus Buster, NOD32, AVG, …

• Integrated Development Environment (IDE):

BorlandC, Netbeans, CodeBlocks, Dev-C++, …

• Other:

…

18

UserUser

Human agent, who uses computer

• Root:

Superuser, system addministrator, has high privilege

• „Simple” user:

computer is just a tool, not the purpose of workcomputer is just a tool, not the purpose of work

• Programmer:

developes computer applications, writes programs

19

ProblemProblem solvingsolving

Pólya’sPólya’s problemproblem solvingsolving stepssteps

Understanding the problem

Creating a plan

21

Executing the plan

Evaluating

UnderstandingUnderstanding thethe problemproblem

• What is the task?

• What is the unknown (required result)?

• What is the relationship between the given

information and the unknown?information and the unknown?

• Is the given information enough to solve the

problem?

22

Creating a planCreating a plan

General techniques:

• Finding known similar problems (if exists)

• Reshaping the original problem to a similar known
problemproblem

• Devide the problem to shorter solvable problems

• Generalizing a restricted problem

• Finding existing work that can help in the search for a
solution

23

ExecutingExecuting thethe planplan

• Follow the steps of the plan

• Each element of the plan should be checked as it is

applied

• If a part of the plan is unsatisfactory, the plan should• If a part of the plan is unsatisfactory, the plan should

be revised

24

EvaluatingEvaluating

The result should be examined

• Is it correct?

• Is it full?

• Is it valid?

• Has the problem been solved?

25

An An exampleexample

What is the sum of

110010110 and 101110101

in binary notation?in binary notation?

See ‘Number systems’ slides!

26

Software Life Software Life CycleCycle

Software Life CycleSoftware Life Cycle

Problem definition

Solution design

Solution refinement

28

Testing strategy development

Program coding and testing

Documentation completion

Program maintenance

1: 1: ProblemProblem definitiondefinition

• Similar to Pólya’s first step

• The description of the problem must be precise

• User and programmer must work together

• It leads to complete specitications of the problem,• It leads to complete specitications of the problem,

the input datas and the desired output

29

2: 2: SolutionSolution designdesign

• Definition of the outline of solution

• Division of the original problem into a number of

subproblems

• Subproblems are smaller and easier to solve• Subproblems are smaller and easier to solve

• Their solution will be the components of our solution

• „Devide and conquer”

• Finally the problem will be converted to a plan of

well-known steps

30

3: 3: SolutionSolution refinementrefinement

• Previous step is in very high-level: no indication given

how subtasks are to be accomplished

• Refinement is necessary by adding more details

• Avoid any misunderstandings• Avoid any misunderstandings

• A precise method consists of a sequence of well

defined steps called an algorithm

• Representation: pseudocode, flowchart, etc.

31

4: Testing 4: Testing strategystrategy developmentdevelopment

• It is necessary to try the algorithm with several

different combinations of input data to make sure

that it will give correct results in all cases

• These different combinations of input data are called

test casetest case

• It covers not only normal input values, but also

extreme input values to test the limits

• Complete test cases can be used to check the

algorithm

32

5: Program 5: Program codingcoding and testingand testing

• Description of algorithm in previous level cannot be

executed directly by computer

• Translation needed to a programming language

• After coding program must be tested using our

testing strategytesting strategy

• If an error has been discovered, appropriate revision

must be made, and than the test rerun until the

program gives correct solution under all

circumstances

• Process of coding and testing called implementation

33

6: 6: DocumentationDocumentation completioncompletion

• Documentation begins with the first step of

development and continues throughout the whole

lifetime of the program

• It contains:

– Explanations of all steps– Explanations of all steps

– Design dicisions that were made

– Occured problems

– Program list

– User instructions

– etc.

34

7: Program 7: Program maintenancemaintenance

• The program can’t wear out

• Sometimes the program may fail

• The reason of a program fail is that it was never

tested for this circumstancetested for this circumstance

• Elimination of newly deteceted error is necessary

• Sometimes the users need new features to the

program

• Update of documentations is needed

35

SolutionSolution designdesign

by Break-Out Diagrams

BreakBreak--OutOut DiagramsDiagrams

• Useful way to make the problem solving manageable

• Tree-like (hierarchical) skeleton of problems

• For viewing problems in levels

• Styles:
Problem

– Vertical

– Horizontal

37

Problem

Subproblem1 Subproblem3Subproblem2

Subsubproblem2.1 Subsubproblem2.2

Problem Subproblem2

Subproblem1

Subproblem3
Subsubproblem2.1

Subsubproblem2.1

Time BODTime BOD

Human life

Childhood Adulthood

38

Work years RetirementSchool yearsLittle childhood

High schoolElementary school

SpaceSpace BODBOD

City areas

Private areas Public areas

39

Outdoors IndoorsCompaniesHomes

ParksStreetsHousesFlats

Action BODAction BOD

Getting diploma

Application Doing studies Finishing

40

Taking exams Final examGetting information Wirting thesis

LearningVisiting courses

Data BODData BOD

Postal address

Country City ‘in city’ datas

41

Street name House numberCity namePostal code

DoorFloor

‘in house’ datas

PropertiesProperties of of BODsBODs

• Consistent

Each break-out must be the same kind.

• Orderly

All blocks at the same level must be separate or

independent.independent.

• Refined

Each box of a given level must be break-out of a box

at the previous level.

• Cohesive

All of the items within a breakout box must fit

together.
42

MistakesMistakes and and correctionscorrections

Incorrect BOD

Learning

English
Learning

grammar (!)

Learning

words (!)

Learning verbs

Learning nouns

43

Correct BOD

Learning

English
Learning

grammar

Learning

words
Learning other

words

Learning verbs

Learning nouns

…

…

…

…
…

…

…
…

MistakesMistakes and and correctionscorrections

AM

Pre-coffee

Coffee break

Post-coffee

Incorrect BOD Correct BOD

AM

Pre-coffee

Coffee break

Post-coffee

44

Evening

Workday PM

Pre-Tea-Time

Tea-Time

Lunch (!)

Diner time

Snack time

Evening

Workday

PM
Pre-Tea-Time

Tea-Time

Lunch

Diner time

Snack time

Soup

Main course

MistakesMistakes and and correctionscorrections

Incorrect BOD

Go to work

Morning

routine

Get out of bed

Eat
Eat cereal

Wake up (!)

Shower

Read news (!)

Drink coffee

45

Correct BOD

Read news (!)

Go to work

Morning

routine

Wake up

Breakfast

Eat

Get out of bed

Shower

Read news
Eat cereal

Drink coffee

ExercisesExercises and and examplesexamples

Draw BODs of the following things.

• Computer architecture

• Human body

• Surface of Earth

• Phone number

• Starting a car

• Set up a TV set

• Using computer

• Your plan for tomorrow

• …
46

SolutionSolution refinementrefinement

Algorithms

AlgorithmAlgorithm

Plan for performing a sequence of well-understood

actions to achieve the result.

Precise definition of the actions to be performed to

accomplish each task of solution design.

Some properties:Some properties:

• precise, unambiguous

• specified for all possible cases

• finite sequence of actions

• achieves the result

• efficiency, elegance, easy to use, …

48

RepresentationRepresentation of of algorithmsalgorithms

• Algebraic

• Data-flow diagram

• Flowblocks

• Flowchart

• Graphs or plots

• Hierarchical

• Pseudocode

• Tabular

• Verbal

49

ExampleExample

Function y=sign(x)

• What is it?

• What does it mean?

• What is the result?

• How is it work?

• How can we determine its value?

• If x is -4, what is the value of y?

• …

50

y=y=signsign(x)(x)

Verbal representation:

1. If x=0, set the result to y=0.

2. Otherwise if x>0, let the value of this function +1.

3. Else if x<0, give the function -1.3. Else if x<0, give the function -1.

51

+1

y=y=signsign(x)(x)

Graph representation:

y

52

x

-1

0

y=y=signsign(x)(x)

‘Algebraic-like’ representation:

x∈ℜ
y∈{-1, 0, +1}

∀x, x>0 ⇒ y=+1∀x, x>0 ⇒ y=+1

∀x, x<0 ⇒ y=-1

x=0 ⇒y=0

53

y=y=signsign(x)(x)

Flowchart representation:

x=0
true false

Start

54

y=0

y=+1 y=-1

x>0
true false

End

y=y=signsign(x)(x)

Pseudocode representation:

if x=0 then
y=0

else
if y>0 thenif y>0 then

y=+1
else

y=-1
endif

endif

55

BaseBase structuresstructures of of algorithmsalgorithms

Sequence Selection Iteration

Start

Task 1

Start

condition
true false

Start

false

56

Task 1

Task 2

Task 3

Stop

condition

Task A Task B

Stop

condition

true

false

Task Stop

ModifyingModifying algorithmsalgorithms

Algorithms often go through many changes to be better.

• Generalizing:

making them apply to more cases

• Extending:

to include new casesto include new cases

• Foolproofing:

making an algorithm more reliable, failsafe or robust

• Embedding:

re-using that algorithm within another algorithm

57

GeneralizingGeneralizing algoritmsalgoritms

Original: Generalized:

Start

Input: net

Start

Input: net, VAT

58

gross=net*(100%+25%)

End

Output: gross

gross=net*(100%+VAT)

End

Output: gross

ExtendingExtending algorithmsalgorithms

Original: Extended:

Start

In: hours, rate
Boss?

yes no

Start

59

salary=hours*rate

End

Out: salary salary=hours*ratesalary=profit/2

End

Out: salary

In: profit In: hours, rate

FoolproofingFoolproofing algorithmsalgorithms

Original: Foolproofed:

yes no

Start

In: age

yes no

Start

In: age

60

age<18
yes no

End

Out: child Out: adult

age<18
yes no

age<0
yes no

End

Out: adultOut: child

Out: error

EmbeddigEmbeddig algorithmsalgorithms

Original:

y=abs(x)

Embedded:

y=sign(x)

x<0

y=-x

true false

y=+x

Start

true false

Start

In: x

61

y=-x y=+x

End

x<0

y=-x

true false

y=+x

End

Out: x/y

AlternativeAlternative algorithmsalgorithms

There are often many ways to achieve the same thing.

Algorithms can be different in structure, but they can be

equivalent in behavior.

It means: for identical input data, they will produce

identical results.identical results.

Sometimes there is serious reason to prefer one

algorithm over the other, while sometimes there isn’t.

In some cases, one algorithm may be considerably

smaller, faster, simpler, or more reliable than another.

62

AlternativeAlternative algorithmsalgorithms
y=sign(x)

x<0
true false

Start

In: x

x=0
true false

Start

In: x

63

x<0

y=-x y=+x

End

Out: x/y

x=0

y=0

y=+1 y=-1

x>0
true false

End

Out: y

PropertiesProperties of of algorithmsalgorithms

• Complete:

all of actions must be exactly defined

• Unambiguous:

there is only one possible way of interpreting actions

• Deterministic:• Deterministic:

if the instructions are followed, it is certain that the

desired result will always be achieved

• Finite:

the instructions must terminate after a limited

number of steps

64

WrongWrong algorithmsalgorithms

How to get to the 5th floor from 2nd by elevator?

1. Call the lift.

2. Get in.

3. Push ‘5’ button.

4. Wait.

5. If the door opens, get out.

Problems (not complet):

• If the list goes downward…

• If the lift stops on 3rd floor for somebody…

65

WrongWrong algorithmsalgorithms

How to make fried chicken?

1. Put the chicken into the oven.

2. Set the temperature.

3. Wait until it is done.

4. Serve it.

Problems (ambiguity):

• What is the optimal temperature (50°C or 200°C)?

• Is the chicken frosen or alive?

• When is it done?

66

Wrong algorithmsWrong algorithms

How to be a millionaire?

1. Buy a lottery.

2. Choose numbers.

3. Wait for prize or be sad.

Problems (stochastic, not deterministic):

• In most of the cases we won’t be a millionaire.

• Not allways works.

67

WrongWrong algorithmsalgorithms

How to use a bus?

1. Wait for the bus.

2. Get on the bus.

3. Buy a ticket.

4. Sit down.

5. Get out of the bus.

Problems (infinite):

• If we are not in a bus stop, bus won’t stop.

• If we are in a building, bus will never arrive.

68

UsingUsing publicpublic coincoin phonephone

pick up receiver

put in coins

Start Problems:

• Not complete

• Ambiguous

Modification:

69

dial the number

End

talk

put down receiver

Modification:

• Generalizing

• Extending

• Foolproofing

• Completing

• Avoiding misunderstans

UsingUsing publicpublic coincoin phonephone

is line?

pick up receiver

true false

Start

put in coins

dial area code

wait

talk

continue?
true

false

local call?
true false

70

End

engaged?
true false

wait

answer?
truefalse

put down

put down

again?
true false

continue?
true

enough

money?

truefalse

is more

coin?

truefalse

put in coins

dial local number

get coins back

ExercisesExercises and and examplesexamples

• Buying shoes

• Watching TV

• Using microwave oven

• Paying at cash-desk

• Making a call with mobile phone

• Going trough a road on foot

• Driving through a crossroads

• Leap year

• …

71

ExercisesExercises and and examplesexamples

• How do the values of x, y and s change

during the process, if x=5 and y=4?

• What is the output in this case?

• How many times will the condition

evaluated?

Start

in: x, y

true

s=x

72

evaluated?

• What does this algorithm do?

• How can you modify it

to calculate the product of

x and y?
End

out: s

y>0false true

s=s+1

y=y-1

ExercisesExercises and and examplesexamples

• How do the values of x and y change

during the process, if the input is 10?

• What is the output, if the input is 60?

• What does this algorithm do?

• Is it work, if x=1?

Start

in: x

y=2

true false
• Is it work, if x=1?

• If the input is 24, how

many iterations will

be executed?

• How can it faster?

73

End

y<=x
true false

x%y=0
true false

out: y

x=x/y

y=y+1

ExercisesExercises and and examplesexamples

• Day of year

• Searching in ordered binary tree

• Raising to power

• Conversion of decimal number to binary

• Addition of binary numbers

• Solving second degree equation

• Calculating factorial

• …

74

ExercisesExercises and and examplesexamples

This flowchart describes the algorithm of
calculation of the remain of a division.
Complete it.

• Start

• a<=b

• a<0

false

true

75

• a<0

• b<=0

• a=a-b

• in: a, b

• out: error

• out: a

• End

false true

false true

PseudocodePseudocode

Sequence:

statement1

statement2

statement3

Selection:

if condition then

statement1

else

Iteration:

while condition do

statement1

enddostatement3

…

76

else

statement2

endif

…

enddo

…

Exercises and examplesExercises and examples

• What is the output if a=10?

• What is the output if a=-4?

• What does the algorithm do?

input a

if a<0 then

b=-1*a

else

b=a • What does this algorithm do?

77

b=a

endif

output b
input a

if a<0 then

a=-1*a

endif

output a

Exercises and examplesExercises and examples

• Do the pseudocode and the flowchart

describe the same algorithm?

input a
input b
c=a
if b>0 then

b=b- 1

Start

in: a, b

78

b=b- 1
c=c-1

else
output c

endif

End

in: a, b

out: c

b>0false true

b=b-1

c=c-1

c=a

Exercises and examplesExercises and examples

• How do the values of a, b and c

change during the process,

if a=7 and b=3?

• What is the output in this case?

• How many times will the

input a
input b
c=a
while b>0 do

b=b- 1 • How many times will the

condition evaluated?

• What does this algorithm do?

79

b=b- 1
c=c-1

enddo
output c

ExercisesExercises and and examplesexamples

• Describe this flowchart by pseudocode.

x=0
true false

Start

in: x

80

x=0

y=0

y=+1 y=-1

x>0

true

true

false

false

End

out: y

ExercisesExercises and and examplesexamples

• Describe this flowchart by

pseudocode. Start

in: x

s=0

81

End

out: s

x>0false true

s=s+x

x=x-1

s=0

ExercisesExercises and and examplesexamples

• Describe this flowchart by pseudocode!

Start

in: x

82

x=0

x=x-1 x=x+1

x>0

true

true

false

false

End

out: x

ExercisesExercises and and examplesexamples

Verbal represented algorithm:

1. Give a number.

2. Check that it is larger then one or not.

3. If it is larger, substract two and continue with Step 2.

4. Otherwise check it zero or not.

5. If it is zero, write ‘even’.

6. Else write ‘odd’.

Write this algorithm in pseudocode.

83

Exercises and examplesExercises and examples

• Absolute value

• Raising to power

• Calculating factorial

• Prime or not

• Prime factorization

• Solution of first degree equation

• Sum of numbers from 10 to 20

84

Exercises and examplesExercises and examples

• Average of an array

• Minimum/maximum search

• Finding a value in (ordered) list

• Replacement of two values

• Selection sort

• Insertion sort

• Bubble sort

85

Testing Testing strategystrategy developmentdevelopment

ExampleExample of testing of testing strategystrategy

• Solving second degree equation

• General form: ax2 + bx + c = 0

• Input parameters: a, b, c

• Solution:
d = b2-4ac

Start

in: a, b, c

• Solution:

Does it work for all input?

• What is the output

if a=1, b=2 and c=1?

• What is the output

if a=1, b=2 and c=2?
87

x1 = (-b+d1/2)/2a

End

x2 = (-b-d1/2)/2a

out: x1, x2

ExampleExample of testing of testing strategystrategy

d = b2-4ac

Start

in: a, b, c

d>0true false

Does it work for all input?

• What is the output

if a=0, b=2 and c=6?

88

x1 = (-b+d1/2)/2a

End

x1 = (-b-d1/2)/2a

out: x1, x2

d>0true false

d=0true false

x = -b/2a

out: x out: no solution

ExampleExample of testing of testing strategystrategy

d = b2-4ac

Start

in: a, b, c

a=0false true

Does it work for all input?

• What is the output

if a=0, b=0 and c=1?

89

x1 = (-b+d1/2)/2a

End

x1 = (-b-d1/2)/2a

out: x1, x2

d>0true false

d=0true false

x = -b/2a

out: x out: no solution

x = -c/b

out: x

ExampleExample of testing of testing strategystrategy

d = b2-4ac

Start

in: a, b, c

a=0false true

It works for all input.

b=0true false

90

x1 = (-b+d1/2)/2a

End

x1 = (-b-d1/2)/2a

out: x1, x2

d>0true false

d=0true false

x = -b/2a

out: x out: no solution

x = -c/b

out: x

b=0

ExampleExample of testing of testing strategystrategy
input a, b, c
if a=0 then

if b=0 then
output error

else
x=-c/b
output x

endif
else

d=b*b - 4*a*c

Good solution in pseudocode:

It works for all input.

To reach this state we have
if d>0 then

x1=(-b+sqrt(d))/(2*a)
x2=(-b-sqrt(d))/(2*a)
output x1, x2

else
if d=0 then

x=-b/(2*a)
output x

else
output error

endif
endif

endif

91

To reach this state we have
had to test the algorithm
with more different input
combination and then we
have had to modify the
algorithm.

We have used testing strategy.

The The usedused testing testing strategystrategy

a b c reason OK

3 7 2 general case (not zero, d>0) �

0 2 3 a is zero (first degree) �

2 0 5 b is zero (x2=-c/a) �

1 2 0 c is zero (x[ax+b]=0) �

92

1 2 0 c is zero (x[ax+b]=0) �

0 0 1 more zeros (not equation) �

3 1 9 d<0 (no solution) �

2 4 2 d=0 (only one solution) �

-2 -3 -9 negative inputs �

2.3 4.2 0.83 not integer values �

0.00001 1000000 1 extreme small/large values �

Program Program codingcoding

Creating source code

in real programming language

SyntaxSyntax and and semanticssemantics

Syntax: Formal rules of the program text.

Semantics: Does it describe the desired algorithm?

Example (absolute value):Example (absolute value):

input a

if a>0 then

a=-1*a

enidf

output a

94

Syntax error

Semantic error

SyntaxSyntax of programing of programing languageslanguages

REAL FUNCTION FAKT(I)
FAKT=1
IF (I .EQ. 0 .OR. I .EQ. 1) RETURN
DO 20 K=2,I

20 FAKT=FAKT*K
RETURN
END

Fortran:

Pascal:END

95

FUNCTION FAKT(I:INTEGER):REAL;
BEGIN

IF I=0 THEN FAKT:=1
ELSE FAKT:=FAKT(I-1)*I;

END;

long fakt(long n){
if (n<=1) return 1;
else return n*fakt(n-1);
}

Pascal:

C:

UnitsUnits and and elementselements of of thethe codecode

• Character set

• Lexical units

• Syntactic units

• Instructions

C
o

m
p

le
xity

We use different

characters, symbols,

special keywords,
• Instructions

• Program units

• Compiling units

• Program

96

C
o

m
p

le
xity

in
cre

a
se

special keywords,

expressions, and rules

in each language.

C C programmingprogramming languagelanguage

97

DocumentationDocumentation & & MaintenanceMaintenance

DocumentationDocumentation

Complete the documentation:

• Always document everything during the program

development.

• What is the solution method?

• What are the solved subproblems?• What are the solved subproblems?

• What are the necessary inputs and the output?

• How does the implemented algorithm work?

• What are the meaning of the variables? (comments)

• How to use the program? (user manual)

• What are the discovered errors and their solutions.
99

MaintenanceMaintenance

Maintenance the program:

• If the users need, correct, extend and update you

application.

• Make documentation about all changes.

This is the END!

100

