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No-Longer-Foreign: Teaching an ML compiler
to speak C “natively”
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Abstract

We present a new foreign-function interface for SML/NJ. It is based on the idea of
data-level interoperability—the ability of ML programs to inspect as well as manip-
ulate C data structures directly.

The core component of this work is an encoding of the almost 2 complete C
type system in ML types. The encoding makes extensive use of a “folklore” typing
trick, taking advantage of ML’s polymorphism, its type constructors, its abstraction
mechanisms, and even functors. A small low-level component which deals with
C struct and union declarations as well as program linkage is hidden from the
programmer’s eye by a simple program-generator tool that translates C declarations
to corresponding ML glue code.

1 An example

Suppose you are an ML programmer who wants to link a program with some
C routines. The following example (designed to demonstrate data-level inter-
operability rather than motivate the need for FFIs in the first place) there are
two C functions: input reads a list of records from a file and findmin returns
the record with the smallest i in a given list. The C library comes with a
header file ixdb.h that describes this interface:

typedef struct record *list;
struct record { int i; double x; list next; };
extern list input (char *);
extern list findmin (list);

Our ml-nlffigen tool translates ixdb.h into an ML interface that cor-
responds nearly perfectly to the original C interface. Moreover, we hooked
ml-nlffigen into the compilation manager CM [2] of SML/NJ [1] in such a

2 Variable-argument functions are the only feature of the C type system that we do not
handle very well yet.
1 e-mail: blume@research.bell-labs.com
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way that C header files like ixdb.h can be used as conveniently as any other
source code.

We now show some ML code 3 that reads a list of records from some
file and finds the x corresponding to the smallest i. The code produced by
ml-nlffigen has the form of an ML functor (a module parameterized by the
handle to the shared library object) which we must first instantiate:

structure IXDB = IxdbFn (val library = DynLink.openlib "ixdb.so")

Client code interacts with the C library by referring to structure IXDB as
defined above. In addition to that, a client can use the predefined structure C

which provides the basic encoding of C types and many common operations
over them:

fun minx () = let
val l = IXDB.fn_input (C.dupML "ixdb1")
val m = IXDB.fn_findmin l

in C.ml_double (C.get_double (IXDB.S_record.f_x (C.|*| m)))
end

In this code, C.dupML allocates a C character array of sufficient size and copies
the given ML string into it, IXDB.fn input represents function input that was
declared in ixdb.h, IXDB.fn findmin represents findmin, C.|*| dereferences
a pointer, IXDB.S record.f x selects field x from a struct record object,
C.get double fetches the contents of a double object, and a concrete ML
equivalent of type real is obtained from its abstract version by applying
C.ml double.

To add a final twist, suppose we also want to find the record with the
largest x. The C interface does not provide such a function, but we shall not
despair because we can write its equivalent directly in ML:

fun maxx l = let
fun x l =

C.ml_double (C.get_double (IXDB.S_record.f_x (C.|*| l)))
fun loop (m, l) =

if (C.isNull l) then m
else loop (if x l > x m then l else m,

C.get_ptr (IXDB.S_record.f_next (C.|*| l)))
in loop (l, l)

end

2 Introduction

Modern type-safe, higher-order languages such as ML have many advantages,
but their usability often depends on how well existing code can be integrated
into a project. Since existing code is usually not written in ML but rather
in C or perhaps some other low-level language that has a C-like appearance,
any serious implementation of a high-level languages must provide a foreign-
function interface (FFI).

3 To avoid too much detail we show ML code that corresponds to our actual implementation
only in spirit but not in letter.
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An FFI between ML and C must bridge not only the semantic gap between
the languages but also mediate between different data formats and calling
conventions. One fairly popular approach is to use stub functions: For the
ML side to call a C function f of arbitrary type, it really invokes a helper
routine f stub that

• has also been coded in C but whose type is limited to a small set of types
(possible a single type) which the ML compiler or its runtime system has
been taught to handle

• translates ML data to C data to pass arguments from the ML side to f
• invokes f on behalf of its caller
• translates C data to ML data to pass results from f back to the ML side

This takes care of some of the data conversion issues, but the main problem
of calling C from ML still remains to be addressed. Moreover, f stub will not
be able to deal with high-level abstract data, so in all likelihood there will be
more stub code on the ML side to translate between layers of abstraction.

Much off-the-shelf C code is unaware of the existence of an ML client and,
thus, has no a-priori need to understand or handle ML data structures. In
this situation, the only reason for exposing the state of the ML world to the
“C side” is to be able to perform marshaling. (Marshaling often involves heap
allocation and can lead to invocations of the garbage collector.) Thus, if one
can avoid C-side stubs, one can also avoid this exposure and make it much
easier for an ML compiler’s backend to generate instructions for calling C
functions of any type directly.

2.1 Data-level interoperability

The stub-routine approach (like any marshaling scheme) also suffers from the
problem that translating large data structures can be very expensive and might
dominate the savings from calling a fast C routine. Since marshaling of data
usually involves copying, useful properties such as sharing might also be lost
in the process.

A solution to these problems is to rely on data-level interoperability [5]
which avoids all marshaling operations as well as the need for C-side stubs.
The high-level language is augmented with abstract types to represent low-
level C data. ML code can then call C functions without help from any
intermediary, passing arguments and receiving results directly.

One lesson from our work is that it is possible to encode the entire C type
system using ML types, and that this can be done entirely within ML itself,
requiring (almost) no support from the compiler. Based on this encoding,
ML programs can traverse, inspect, modify, and create any C data structure
without marshaling. Our FFI provides a glue code generator ml-nlffigen that
automatically deals with “new” C types (struct- and union-declarations). It
furthermore enables the ML compiler to generate correct calling sequences for
any fixed-arity C function and puts the mechanisms for dynamic linkage in
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place.

The encoding of the C type system is provided as a CM library, and
ml-nlffigen can be hooked up with CM in such a way that it gets invoked
automatically whenever necessary. The resulting system has the following
characteristics:

• The human programmer sees ML code only. (Some of this ML code will act
much like C code, and it is remarkable that ML can be made to do that.)

• No knowledge of ML’s or C’s low-level representations is required.
• The types in an ML interface faithfully reflect the types in the original C

interface represented by it.
• If the C interface changes, then these changes will be propagated automati-

cally to the ML side. Any resulting inconsistencies show up as ordinary ML
type errors and can be fixed as such.

ML aspires to being a “safe” language where, for example, no integer can
be mistaken for a pointer. C is not a safe language, so using our interface
(which embeds C into ML) makes ML unsafe as well. But since the very
act of linking with C code already compromises ML’s safety guarantees, this
should not be seen as a problem. In practice, we believe that using our system
will be more robust than many of the alternatives because it at least respects
and enforces the types of the original C code within its ML clients.

3 Encoding the C type system

The encoding of C types in the ML type system is mostly based on the fol-
lowing “folklore” trick: Invariants for values of a given type T are enforced by
making this type the representation type of a new abstract n-ary type con-
structor C (where n > 0) and adding cleverly chosen type constraints on its
instantiations. The type arguments of C are called phantom types.

3.1 Array dimensions

As an example, let us consider static array dimensions. This is not a toy
example but part of the larger picture because we will later need precise size
information for all C types to be able to perform pointer arithmetic or array
subscript correctly.

ML’s built-in array type constructor does not express array size. In con-
trast, a C compiler will statically distinguish between types (int[3]) and
(int[4]). Still, it is not impossible to get the same effect in ML. We define a
new type constructor (τ, δ) arr that also includes a dimension component
δ, and arrays of different size must instantiate δ differently.

Of course, δ must be a type, not a number. Thus, we need a new type for
every new dimension value. We should also make sure that no more than one
type is used for any dimension value, so we set up an infinite family of types
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that once and for all time establishes a fixed mapping between its members
and the non-negative integers.

3.1.1 An infinite family of types

Consider the following ML signature:
type dec and α dg0 and . . . and α dg9 and α dim

Its type constructors can be seen as a “little language” for writing numbers
in decimal notation. 4 For example, dec dg1 dg3 dim stands for 1310 and
dec dg1 dg0 dg2 dg4 dim can be read as 102410.

5 This provides more than
enough types to work with. To prevent the formation of values with un-
intended types such as (real * int) dim we restrict value constructors to
these:

val dec: dec dim
val dg0 : α dim -> α dg0 dim
...
val dg9 : α dim -> α dg9 dim

For example, the expression dg0 (dg2 (dg3 dec)) produces the dim-value
corresponding to 320. The value for any non-negative integer n = dkdk−1 . . . d010

is constructed by dgd0 (· · · (dgdk−1 (dgdk dec)) · · ·). Induction on the
number of applications of dgd shows that all dim-values will have types of the
form dec dgd1 dgd2 · · · dgdk dim.

If we can rule out leading zeros, then (by uniqueness of decimal number
representation) the mapping between non-negative integers and types of di-
mension values becomes bijective. Since we are working with strictly positive
dimensions, we could replace the single dec constructor (representing 0) with
nine new constructors representing 1 through 9. Our actual implementation
avoids such extra constructors and makes types “smarter”: an additional type
parameter tracks “zeroness” and dg0 is restricted to non-zero arguments. 6

Let us now show an implementation of the above type family. The only
type that requires non-trivial representation is dim, all other types are phantom
types without meaningful values; we arbitrarily use the unit type for them:

structure Dim :> sig . . . (* as before *) end = struct
type dec = unit
type α dg0 = unit and . . . and α dg9 = unit
type α dim = int
val dec = 0
local fun dg d n = 10 * n + d in

val (dg0, dg1, . . . , dg0) = (dg 0, dg 1, . . . , dg 9)
end
fun toInt n = n

4 Binary notation requires fewer constructors but is less convenient for human program-
mers.
5 Type constructor application is left-associative in SML.
6 The original typing convenience is provided by a type abbreviation. But notice that
dimension types do not have to be spelled out very often because the ML compiler can
usually infer them.
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end

The opaque signature match :> is crucial: it is ML’s way of giving a fresh
identity to each of the type constructors dec, dgd, and dim. Their representa-
tion types (and any type equalities between representation types) do not shine
through. Thanks to polymorphism, we can extract the integer underlying any
given dim-value using function toInt. 7 Because of how we implemented our
value constructors, its numeric value will always be the one that is spelled out
in decimal by the dim-value’s type.

3.1.2 Dimension-carrying array types

To fill the dimension component of our arr type we use the δ component of
the δ dim type that corresponds to the array’s size:

type (τ, δ) arr
val create : δ Dim.dim -> τ -> (τ, δ) arr

Thus, the type of a 512-element integer array is (int, dec dg5 dg1 dg2)

arr; an instance could be created by create (dg2 (dg1 (dg5 dec))) 0.

The expressiveness of these array types goes slightly beyond that of C’s
because one can write functions that are polymorphic in an array’s dimension
and even enforce simple constraints (e.g., “two arrays have the same length”).
But we shall not overstate the usefulness of this because the extra power is
still very limited.

3.2 Pointers, objects, and lvalues

Our implementation represents every C pointer by a simple address (using a
sufficiently wide word type as its concrete representation). 8 Of course, expos-
ing this representation directly would make programming very error-prone.

C’s “*” type constructor tracks two facts about each address: the type of
value pointed to and whether or not this value is to be considered mutable.
We do the same in ML and dress up our low-level pointer representation with
an abstract type:

type ro and rw
type (τ, ξ) ptr

Here, ro and rw are phantom types used to instantiate ξ. They indicate
whether or not the object pointed to has been declared const in C. The
instantiation of τ is more complicated; it describes the C type of the value the
pointer points to.

Assignment to memory-stored objects need to know the address of that
object. In C, however, one does not provide a pointer value on the left-hand
side of the assignment. Instead, the left-hand side is one of a restricted class of
expressions called lvalues and the compiler will implicitly insert the necessary

7 The inverse fromInt cannot be added without breaking our type construction.
8 Code samples where word size matters assume a 32-bit architecture. Different machines
require different representation types, but our technique still works.
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address-of operation for it. In ML, where the compiler will never insert any
implicit operators, we essentially have no choice but to use explicit pointer
values. In our implementation, we create the illusion of a distinction between
objects and pointers by providing a separate type constructor obj, which
(among other things) is used on the left-hand side of assignments. Internally,
ptr and obj are the same and conversions between them are identity functions.

type (τ, ξ) ptr and (τ, ξ) obj
val |*| : (τ, ξ) ptr -> (τ, ξ) obj (* dereference *)
val |&| : (τ, ξ) obj -> (τ, ξ) ptr (* address-of *)

C’s conceptual “subtyping” relation governing constant and mutable objects
is modeled by providing a polymorphic injection function (internally imple-
mented by an identity):

val ro : (τ, ξ) obj -> (τ, ro) obj

3.3 Memory fetches and stores

Fetching from memory does not work the same way for all types because
it depends on the size of the representation. In ML we cannot provide a
polymorphic fetch function that takes objects of type (τ, ξ) obj to values
of type τ because the representations of the values involved are not uniform.

On the other hand, C itself cannot fetch from arbitrary objects (arrays
are the primary example), essentially distinguishing between first-class values
which can be fetched and stored and other, second-class values. In ML, we
can cover the whole range of C’s first-class types with a relatively small, finite
set of individual fetch- and store-operations: we only need to cover base types
such as int or double as well as pointers. 9

Fetch operations are polymorphic in the object’s const-ness, store oper-
ations require rw. Fetching and storing of pointers is polymorphic in the
pointer’s target type because the underlying operations on address values are
uniform.

type sint and . . . and double (* base types t *)

val get_t: (t, ξ) obj -> t (* for base types t *)
val get_ptr: ((τ, κ) ptr, ξ) obj -> (τ, κ) ptr

val set_t: (t, rw) obj * t -> unit (* for base types t *)
val set_ptr: ((τ, κ) ptr, rw) obj * (τ, κ) ptr -> unit

We can now state more precisely what the τ type parameter means: For types
of first-class C values the parameter τ is instantiated to the (ML-side) abstract
type of that value. For second-class values, however, there are no values of
type τ , so τ is a true phantom type in this case.

9 If ML had programmer-defined overloading, then these operations could be presented
using a single, uniform-looking interface.
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3.4 Arrays

As we have explained, there are no array values, only array objects. The
phantom type constructor (τ, δ) arr works exactly as shown earlier: we use
the types and values from the Dim module to statically specify the number of
elements in each array.

In C, one can explain most operations over arrays using operations over
pointers because in almost all contexts an array will decay into a pointer to
its first element. In ML, we make this explicit by providing a function decay

(which internally is yet another identity):
val decay: ((τ, δ) arr, ξ) obj -> (τ, ξ) ptr

Array subscript could be explained in terms of pointer arithmetic (see be-
low), but our implementation provides a separate function that—unlike C—
performs a bounds check at runtime:

val sub: ((τ, δ) arr, ξ) obj * int -> (τ, ξ) obj

3.5 Pointers, pointer arithmetic, and runtime type information

We would like to define an operation with the following signature for adding
pointers and integers:

val ptr_add: (τ, ξ) ptr * int -> (τ, ξ) ptr

Suppose we internally let some word type represent (τ,ξ) ptr. Increment-
ing such a pointer means adding the size of the target type to the address
value. How can we communicate size information (which depends on how τ
is instantiated) to the ptr add operation?

3.5.1 Explicit type parameters

One approach to modeling “functions over types” such as C’s sizeof operator
is to use explicit passing of runtime type information (RTTI). In the simplest
case we just need a single integer that specifies the number of bytes occupied
by an object of the given type.

But using a single static type t for all RTTI is dangerous because pointer
arithmetic would then have to be typed as:

val ptr_add : t -> (τ, ξ) ptr * int -> (τ, ξ) ptr

The problem with this is that nothing would stop us from passing the size of
one object and use it in an operation on another, differently-sized one. To
prevent such misuse we give static types to dynamic type values! RTTI for
type τ will have type τ typ. Individual operators such as ptr add can then
enforce a correct match-up:

val ptr_add: τ typ -> (τ, ξ) ptr * int -> (τ, ξ) ptr

Our implementation provides RTTI values for all of C’s base types and value
constructors for all of C’s type constructors:

type τ typ
val sint_typ : sint typ . . .
val ptr_typ : τ typ -> (τ, rw) ptr typ
val arr_typ : τ typ * (δ, ζ) Dim.dim -> (τ, δ) arr typ
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Internally, τ typ is just a synonym for int:
type τ typ = int
val sint_typ = 4 . . .
fun ptr_typ _ = 4
fun arr_typ (s, d) = s * Dim.toInt d

Since types (in C-like code) are statically known, so can be their correspond-
ing RTTI values. A modicum of cross-module inlining [3] will transport size
constants from their definitions to wherever they are being used. This enables
the ML compiler to generate code for pointer arithmetic that is just as efficient
as its C counterpart.

Thus, we have the somewhat paradoxical situation that the ML compiler
is unable to infer size information and, thus, forces the programmer to help
out, but it does have enough information to stop the programmer from making
mistakes in the process. In languages with programmable access to intensional
type information, for example Haskell’s type classes [8], it might be possible
to hide explicit RTTI arguments, creating more of an illusion of automatic
“size inference.”

3.5.2 Keeping RTTI “behind the scenes”

If we are willing to sacrifice some of the low-level efficiency, then we can
eliminate explicit type arguments even in the ML case. We change our concrete
representation of objects and pointers so that addresses are paired up with
their RTTI. But we must also change the representation of that RTTI itself
since it is no longer sufficient to pass simple size constants. Instead, RTTI
will have to be structured.

To see this, consider fetching from a pointer object. The object is rep-
resented as a pair consisting of the object’s address and the stored value’s
RTTI, i.e., the RTTI of a pointer. Once we fetch from the object we get the
address that is the pointer, and we must pair it up with RTTI for the object
the pointer points to. Our only hope to recover the latter is to have it be part
of the pointer’s RTTI. This leads to the following implementation:

datatype tinfo = BASE of int | PTR of tinfo | ARR of tinfo * int
type τ typ = tinfo
val sint_typ = BASE 4 ... (* base types *)
fun ptr_typ t = PTR t
fun arr_typ (t, d) = ARR (t, Dim.toInt d)
fun sizeof (BASE s) = s
| sizeof (PTR _) = 4
| sizeof (ARR (t, d)) = d * sizeof t

Here is the corresponding implementation for type constructors (τ, ξ) obj

and (τ, ξ) ptr:
type (τ, ξ) obj = addr * τ typ
type (τ, ξ) ptr = addr * τ typ
fun fetch_ptr (a, PTR t) = (load_addr a, t)
| fetch_ptr _ = raise Impossible

By reasoning about types, a compiler could prove that the Impossible case
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is truly impossible or that sizeof(t) can be reduced to a constant for any t

of ground type. However, such reasoning is complex and unlikely to benefit
“ordinary” ML code. Thus, there is no realistic hope for these optimizations to
be implemented in real ML compilers. Aside from the obvious representational
overhead, this is the reason why keeping type information behind the scenes is
less efficient than explicit RTTI passing. Our implementation provides both
the explicit and the implicit version of RTTI and lets the programmer decide
which trade-off between performance and ease-of-use is best in each situation.

3.6 void *

We model void* as a separate ML type called voidptr. Since voidptr acts
as a supertype of all ptr types, we provide the corresponding polymorphic
injection function. A pointer “cast” takes us in the opposite direction—just
as unsafely as in C, of course. 10 RTTI is passed to the cast function as a way
of specifying the desired target type.

val ptr_inject : (τ, ξ) ptr -> voidptr
val ptr_cast : (τ, ξ) ptr typ -> voidptr -> (τ, ξ) ptr

3.7 Function pointers

Function pointers are first-class C values whose abstract ML-side type is
φ fptr where φ will be instantiated to some A->B. Their low-level repre-
sentation is a machine address. A polymorphic call instruction dispatches C
function calls:

val call: (α -> β) fptr * α -> β

The exact sequence of machine instructions necessary to invoke a C function
depends on how α and β are instantiated. We encapsulate this aspect into
the corresponding RTTI. Here is how we would like to revise the definition of
type typ:

datatype φ tinfo = (* . . . as before *) | FPTR of addr -> φ
type τ typ = φ tinfo

Unfortunately, this code will not compile. The type abbreviation τ typ cannot
silently drop the type parameter φ for φ tinfo. To make the design work,
we either must add φ as another type parameter to typ and therefore also to
ptr and obj (which would “infect” almost all types with seemingly gratuitous
φs), or we must “cheat.” Our implementation avoids the type argument φ and
defines FPTR as:

. . . | FPTR of Unsafe.Object.object

Internally, the library then uses ML “casts” wherever necessary to make the
types work out. Fortunately, thanks to the the public interface, this is in fact
still safe: no “unsafe object” will ever be forced into a type other than its
original type. 11

10 Notice that some uses of void* can be expressed safely using polymorphism in ML.
11 A rigorous proof for this can be derived from the fact that a typing for the same imple-
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3.8 Function arguments and results

The type of a function pointer is (α -> β) fptr where α will be instantiated
to some tuple type whose elements correspond to the arguments of the C
function and where β will be instantiated to the type of the function’s result
(which is always a first-class value). 12

Arguments that are first-class C values use the by now familiar ML encod-
ing. Since we model structs and unions as second-class values, we represent
them using obj types when they appear as function arguments. Function re-
sults of struct- or union-type are handled by taking an additional mutable
object argument that the result is written into.

4 Handling struct and union

C programs usually declare their own “new” types using struct and union.
Let us focus on struct types (union is handled in a very similar way) and
discuss how ML can model them.

4.1 Fully defined structs

It is tempting to view the mention of a C struct as a generative type declara-
tion like ML’s datatype. However, this is not quite correct. An ML compiler
that encounters two syntactically identical instances of a generative declara-
tion will construct two distinct types that are not considered equal by the
type checker. This runs counter to how C’s struct declarations work.

One way of modeling C in ML is to use a predefined infinite family of
struct tags where each individual program selects some of the members of
this family and chooses an abstract interface for the corresponding types. A
struct declaration does not create a new type, it takes an existing type and
defines an interface for it. The responsibility for setting up the ML code for
this lies with ml-nlffigen. 13

Let s node be the tag type for some struct node. The phantom type
describing (second-class) values is then s node su, and objects holding such
values can be accessed using the interface implemented by a structure S node.
Most of this interface consists of field access operators that correspond to
C’s “.”-notation and map a struct object to the object that represents the
selected field. Example:

struct node { const int i; struct node *next; };

becomes
type s_node = . . . (* select tag from tag type family *)

mentation (but without casts) using the aforementioned cumbersome φ parameters exists.
12 C functions “returning” void become ML functions returning unit.
13 The infinite family of tag types is similar to the dim-type family. Both families are
provided by our support library.
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val typ : s_node su typ
val f_i : (s_node su, ξ) obj -> (sint, ro) obj
val f_next : (s_node su, ξ) obj ->

((s_node su, rw) ptr, ξ) obj

Notice how const qualifiers are properly taken into account by the types of
field accessors.

4.2 Incomplete structs

In C, a pointer type can act as a form of “abstract type” if its target is a
so-called incomplete type, i.e., a struct that is only known by its tag but
whose fields have not been declared. Unfortunately, there is no sufficiently
close correspondence with ML’s abstract types for the latter to model C’s
incomplete pointers. The problem is that the same C type can be abstract in
one part of the program and concrete in another, but abstract and concrete
version of the type must be considered equivalent where they meet.

A proper ML solution to this puzzle is based on parameterized modules
(“functors”) and handles everything from simple incomplete types, incomplete
types that get “completed,” and even mutual recursion among incomplete
types (and their respective completions). Since we wanted to support as much
of C as possible, ml-nlffigen actually implements all that. But the solution is
rather complicated and handles just a small corner of the language, so we will
not discuss its details here but ask the interested reader to consult the docu-
mentation of our implementation at http://cm.bell-labs.com/cm/cs/what/smlnj/.

5 Low-level implementation

5.1 Two-stage encoding of C types

The code that actually implements the encoding of C types defines a structure
C Int. A second structure called C is obtained from C Int by applying a
more restrictive signature match. We use the library mechanism of CM to
hide C Int from the ordinary programmer. The extensions to C contained in
C Int would invalidate many of the invariants that structure C was designed
to guarantee. But some low-level code generated by ml-nlffigen must be
able to access C Int directly. The implementation is done entirely within ML,
the ML compiler has no a-priori understanding of the C type system.

5.2 Raw memory access

We modified the SML/NJ compiler to provide primitive operations (primops)
for fetching from and storing into raw memory. Our representation of memory
addresses is simply a sufficiently wide word type. Memory access primops are
provided for char-, short-, int-, and long-sized integral types, for pointers
(addresses), and for single- as well as double-precision floating point numbers.
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5.3 Representing first-class values

SML/NJ currently does not have the full variety of precisions for integral and
floating-point types that a typical C compiler would provide. Therefore, the
same ML type must often represent several different C types. For example,
fetching a C float value (i.e., a 32-bit floating point number) from memory
yields an ML Real64.real. Implicit promotions and truncations are built
into the respective memory access operations.

The high-level interface makes types such as float and double distinct
even though their representations are the same. Otherwise incompatible types
like (float, ξ) ptr and (double, ξ) ptr would be considered equal and,
e.g., size information for the two could be confused. Client programs must use
a set of separately provided conversion functions to translate from abstract C
types to concrete ML types and vice versa. These conversion functions exist
only for typing reasons. On the implementation side they are identities.

5.4 Field access

Access to a struct field translates the struct address to the field address
by adding the field’s offset. Offsets are machine- and compiler-specific. The
ml-nlffigen tool mainly consists of a C compiler’s front end (implemented
by SML/NJ’s CKIT library), so it can easily calculate offset values which are
then used to specialize a generic field-access function provided by structure
C Int.

5.5 Function calls

Implementing direct calls to C functions from ML code required somewhat
more extensive changes to the ML compiler. To avoid the need for outright
syntax changes, C calls were added as yet another new primop. However,
some considerable “magic” was needed in its implementation.

5.5.1 C function prototypes and calling protocol

The code generator must know the prototype of any C function to be called.
This prototype happens to be encoded in the corresponding φ fptr type but
the compiler has no knowledge of this encoding. The trick is to code the
prototype into the type of an otherwise unused argument of the rawccall

primop. This primop is pro-forma polymorphic but any actual use must be
monomorphically constrained. One of its arguments is the address of the
function to be called, another one is a tuple of ML values representing the
actual parameters of the C function. The C function’s return value is then
similarly represented by the return value of rawccall.

The value of the third (extra) argument to rawccall will be ignored at
runtime, what’s important is its type. We defined a “little language” expressed
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in ML types 14 that describes certain ML values which are used internally
(at compile-time) by MLRISC [7] for describing C function prototypes. 15 In
the process of translating instances of rawccall, the type gets decoded and a
corresponding MLRISC value is formed. This enables the backend to generate
correct code for the C call.

5.5.2 Efficient signal handling

When a SML/NJ program is interrupted by an asynchronous signal, then ex-
ecution must first advance to the next safe point before an ML signal handler
can be invoked. Low-level signal handlers (which are part of the C runtime
system) record the arrival of a signal and code generated by the ML com-
piler checks for this condition at regular intervals. A popular technique that
eliminates extra runtime overhead for signal polling is to make the heap-limit
check do double duty: The C handler records the arrival of a signal by set-
ting the current heap-limit to zero. This causes the next heap-limit check to
fail, and subsequent tests (which are no longer on the critical path) can then
distinguish between genuine heap overflows and signals.

But the heap-limit is often implemented as a register. Blindly setting
this register to zero while anything but ML code is executing is dangerous.
Therefore, setting up a C call from ML involves temporarily turning off this
form of signal handling. In SML/NJ, this is done by setting the inML-flag to
0 before the call and back to 1 after its return. The old FFI avoids losing
signals by branching into a special runtime routine after returning from the
C call. The routine checks for interrupts that may have arrived while signal
handling was suspended. This technique is safe but expensive.

Our new implementation avoids much of the runtime penalty because it
does not need to check for pending signals explicitly and can fully rely on the
next heap-limit check: Before performing a C call, a few instructions of in-line
code first set the (new) limitPtrMask to the all-ones bit pattern and inML

to 0. After the call returns, inML is restored to 1. A final instruction then
atomically performs:

limitPtr <- bitwise-and (limitPtr, limitPtrMask)

The low-level signal handler stores 0 into limitPtr (as before) if inML is
set but also stores 0 into limitPtrMask regardless of the state of inML. This
arrangement guarantees that any signal eventually causes limitPtr to be 0 no
matter when it arrives. The atomicity of the bit operation is key to avoiding
races.

14 and spoken exclusively between ml-nlffigen and the SML/NJ compiler
15 The type encoding was chosen in such a way that we were able to avoid any runtime
penalty for passing the extra parameter.
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5.6 Dynamic linking

Dynamic linking is currently done using an interface to dlopen. Thus, one
can painlessly link with existing shared libraries and no longer needs to alter
the runtime system in the process.

Unfortunately, libraries loaded using dlopen do not stay alive across heap
exports. Therefore, our ML-side dynamic linkage module represents dynam-
ically loaded libraries and addresses obtained from them as abstract handles
and automatically re-validates them whenever necessary. The C encoding
represents all global variables as ML “thunks” (functions taking unit as an
argument and returning the actual value). Exported functions are represented
by similarly “thunkified” function pointers, but the generated interface also
contains wrapper functions to invoke them more conveniently.

6 Related work

Virtually all implementations of high-level languages provide some form of
FFI, and it would be difficult to list even just a small fraction of them here.
There are many IDL-based approaches where the programmer writes a speci-
fication of the interface and uses a special compiler to generate glue code on
both the C- and the high-level language side. Examples include H/Direct [4]
and Camlidl [10]. (Our approach also falls in here: the IDL is C, and C-side
stub generation is trivial.)

Much closer in spirit as well as implementation is the work on data-level
interoperability for Moby [5], although Moby takes a less ambitious approach
to modeling the full C type system. On the implementation side, Moby’s FFI
takes advantage of the fact that the compiler’s intermediate representation
BOL has been specifically designed with data-level interoperability in mind.
In contrast, we showed here that C types can also be modeled with only
very limited compiler support, using the abstraction facilities of the high-level
language.

The phantom type trick that we used so extensively has come up many
times in the past, even in other FFI designs such as H/Direct [4] where it is
used to model a subtyping relationship between COM interfaces. New, per-
haps, is the extreme to which we have taken an old trick: modeling everything
from size information and pointer arithmetic over run-time types and function
prototypes to array dimensions and incomplete types.

7 Preliminary results and conclusions

The current implementation is fully operational on x86/Linux and on Sparc/Solaris.
Work is under way to fill in the missing pieces for all other backends supported
by SML/NJ. Benchmarking results are still very preliminary.

C function calls perform well as the following numbers will show. We
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looked at four different versions of the Math structure. These versions differ in
how square root, sine, cosine, and arctangent are being implemented: 1.using
the corresponding Pentium machine instructions (our baseline for compari-
son), 2. using the C library via the old FFI, 3. using the C library via the
new FFI, and 4. using portable ML code. We compiled the relatively short
but floating-point intensive nucleic benchmark using these Math implemen-
tations and ran the resulting code 100 times in succession on a lightly loaded
800 MHz Pentium III system running the Linux 2.2.14 kernel. These are the
cumulative timing results (elapsed time in seconds):

machine: 2.64 old FFI: 3.75 new FFI: 2.95 ML: 5.50

Calling C- or assembly-code using either of the two mechanisms wins over
the native ML solution, but call overhead eats up nearly half of the advantage
in the case of the old FFI. The new FFI incurs less than one third of that
penalty and could be even better had SML/NJ’s cross-module inliner [11] been
working. Most concrete operations over abstract C types are very simple, and
inlining those is essential to performance. This becomes even more apparent
when we look at data-level interoperability: We found that traversing a 16-
level deep complete binary tree generated by a C program is almost 3 times
slower in ML than in C while hand-inlining all operations brings the overhead
to within 30%. These are the numbers that we shall expect once the cross-
module inliner has been debugged. 16

We conclude that we have already succeeded in provided an FFI that is
faster and much easier to use than its predecessors. It is unique in the way it
fully encodes C’s type system within ML. Nearly everything a C programmer
can do has a direct (although perhaps sometimes clumsy-looking) equivalent
on the ML side.

Missing from our type encoding is a way of fully handling variable-argument
functions such as C’s printf, a shortcoming that we intend to address soon.
We also chose not to encode enum types and simply use int in their place. Our
implementation currently does not support callbacks—calls of ML functions
from C. Callbacks require that the state of the ML world is accessible from the
C side, so at some point we will probably add a second version of rawccall
which would then save the ML state in a well-defined way, probably at the
expense of being somewhat slower. 17

16 The remaining 30% are probably due to unrelated effects such as SML/NJ’s habit of
allocating stack frames on the heap. In a recent test, the Moby compiler (which also uses
an MLRISC backend) achieved better performance than C on this simple benchmark [6].
17 It is relatively easy to use ML functions as C callbacks if those callbacks receive some
kind of “context information” that can be used for passing closures. Otherwise, however,
involved techniques such as runtime code generation [9] are required.
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