VOLUME IX, NUMBER 6

A FASTER NEXT

RELOCATABLE F83 FOR THE 68000

EDUCATING FORTH USERS
PR

MARCH/APRIL 1988 $5.00

p e

11;—:-'.. i

e e - ' % %
: ﬁﬁﬁ_ e s 'f F 1 $? ; £ ﬁﬁg
o

........................

'''''''''
..........

e . Tl = . o A R o, =)

...............
e e e N s e A R -

m Five chip Harris Core Set: @
10 MHz Forth RISC Core %
I-cycle 16 X 16 multiplier i
I-cycle 15-channel interrupt £
two 64-word stack controllers #

m Plugs into AT or 386 &

m Forth Software included E

R

A T

e R R N R T R

.................................
llllllllllllllll

. : 7 O e e
e A o8t oot e T R ot A U TSRy .

NC4016 Novix Forth Engine ®
Plugs into PC/XT/AT/386 #
512K bytes main memory ®
PC shared memory space w

b

Multiple PC4000 operation

=SUPERFAST FORTH SYSTEMS
50 FORT

'I"’-.E o e .-_.-:'.:.:.-_.:.:.:.;J_'.:.;.a,;-,.;...,.-,.;.;._-.;f;.;.;

H MIPS

VNE REBER BB EEBGERGREDERBREFGERBRER
e A R e o - o ol i R e R e O e

wwans i

o e el
R,

B e e e o e

O a'
'''''''''''' s I.'f
------------- : w0
e

Cm
|||||||||

e ey

..........
..............
LN R R R T Qe el e

32K bytes main memory

Expandable to 128K bytes
AT shared memory space
2" X 3" prototyping area
All Core signals available

Runs concurrently with AT
2 weeks ARO: $3995

FORTH MIPS

.....
::‘_:*_: . e
[

e
........

.....
.....
..........
e
.....
" iy

.....

£t

......
e

T e e e e e e

i PCA0D0D PLB-004-1
¢ SOFTWARE COMPOSERS

Forth Software included
NC4016 signals available
Runs concurrently with PC

Compact % length format
2 weeks ARO: $1295

e AT Y, L. v s R R, T,

Both 1deal for real-time control, data acquisition and reduction, image or signal processing,
or computationally intensive applications. For additional information, please contact us at:

SILICON COMPOSERS, 210 California Ave., Palo Alto, CA 94306 (415) 322-8763

SILICON COMPOSERS

Forth Dimensions 2

Volume IX, Number 6

"FOR1TH

M E N

|
MULTITASKING MODEM PACKAGE « BY JEFFREY R. TEZA

8
This terminal emulator is designed to be a useful example of Forth multitasking. If you spend much time telecommuni-
cating, especially downloading and uploading files, you will appreciate the local processing provided by this program for
F83 and other multitasking Forths. Add your favorite functions and share them with us!

|

DUMPING WORDSTAR FILES - BY PAUL A. COOPER

13
With or without embedded codes, your files can fly in Forth. Don’tchoose between your favorite word processor and your
Forth environment — get them working together.

|
A FASTER NEXT LOOP - BY CARL A. WENRICH

16
1f you are willing to forgo byte-boundary addressing in your fig- or MVP-FORTH system for the 8086, a little tinkering
can improve the execution speed of all your Forth code.

|

RELOCATABLE F83 FOR THE 68000 « BY ROBERT J. EAGER

20
No more excuses— notonly can you compile F83 torun from any locationin RAM under CP/M-68K, you can keep several
distinct Forth kernels in memory at the same time.

(@umip (@mE= D

|
EDUCATING FORTH USERS « BY BILL KIBLER

27
Would your first encounter with Forth have been different if it came with an on-line tutor to help with system functions,
or to provide customized exercises linked to the chapters in Starting Forth? Here is a way to get users up and running....

C

|
PROFILES IN FORTH: MARTIN TRACY

31
Martin Tracy is a natural leader and expert programmer, until recently a Forth vendor, and is a current member of the Forth
Interest Group’s Board of Directors.

[

CHARLES MOORE’S FIRESIDE CHAT « REVIEWED BY SCOTT SQUIRES

30
A perennially favorite event at the National Forth Convention is the “Fireside Chat” by Mr. Charles Moore, creator of
Forth. Here, Scott Squires shares the notes he took as he listened to the informal session.

EDITORIAL ADVERTISERS INDEX
4 6
LETTERS FIG CHAPTERS
5 38

VOLUME EIGHT INDEX « BY MIKE ELOLA

Volume IX, Number 6 3 Forth Dimensions

I wentto this year’s MacWorld Expo in
San Francisco hoping to save big bucks on
a hard disk, not because I expected to find
much relevant to these pages. And after
elbowing my way through the gridlocked
aisles, comparing prices, and finding my
purchase at a retail booth that resembled a
Wall Street trading pit during last
October’s frenzy, I cared less about scan-
ning exhibits for familiar faces than about
protecting my investment and getting out.

Soit was a pleasant surprise to find Don
Colburn, looking comfortable in the Crea-
tive Solutions booth, talking with pas-
sersby about his company’s NuBus prod-
ucts. It was good to see someone showing
Forth’s strength on the current generation
of machines, where the innovation and
excitement is reminiscent of the elder days
of microcomputing. With few exceptions,
the absence of leadership shown by Forth
companies to crowds like the one that
packed Moscone Center on that particular
day is surprising.

This is the first publication I’ ve worked
on where so few of those who could gain the
most by sharing their ideas and business
activities actually do so. A few even have
the attitude thatif someone doesn’t arrive at
the office, elicit the information, and frame
it in a meaningful context for them, they’ll
just keep it to themselves. Well, FIG does
provide Forth Dimensions to facilitate
communication with, and among, its
members, and FIG’s modest membership
fee allows this to take place regularly and
reliably in these pages, on GEnie, and at
annual meetings. But FIG cannot provide
the content of all this communication, only
the forum; and philosophically, I believe
that’s proper.

The fact is, no business thrives without
communication: paid advertising directed
toward product sales, along with marketing
of product and company image. Communi-
cation to the industry includes factual up-
dates about materials, processes, tech-
niques, market penetration, etc.; and mar-
keting the company’s technical integrity,
often in the form of published papers. This
shouldn’t be puffery — it can be done

EDITORIAL

honestly without compromising the com-
petetiveness.

The thoughtful execution of a compre-
hensive plan of communication is essen-
tial. I’m amazed by the lack of this in Forth
vendors, service providers, and developers
(although some of the latter like to think of
Forth as a kind of trade secret). If they
aren’t talking to their colleagues, to poten-
tial customers/employers/employees, to
their users, and to the experts who read
Forth Dimensions, who are they talking to?
If the answer is, “Just to existing custom-
ers,” I may buy their product, but you can
keep the stock.

Take time to communicate. This is
fundamental. If a company owner or de-
partment manager feels too pressed to do
this well and thoughtfully, it is assured that
the company or department can’t thrive,
only spin like a cat trying to catch its tail.
Stability (i.e., longevity) in the market-
place relies on much more than selling
products, as we all should have learned by
now. I, for one, am tired of secing the
bleached bones of fine products and com-
panies that foundered due to introverted or
half-hearted management. I want the living
specimens to go forth and multiply.

FIG cannot do this for business owners,
nor can the Forth Vendors Group. Youhave
to make it happen. The advantages to asso-
ciation must be shared by all, but a strong
business association relies on strong busi-
ness members,

One final aside: I suggest it is time for

- the comatose Forth Vendors Group to be

taken off its support systems (if any). Have
abrief post-mortem exam, then reorganize.
It’s springtime, in the northern hemisphere
at least, and a good time for new begin-
nings. Give the entity a decent public burial
and see what crops up. Maybe someone
will propose a comfortable way for the
FVG 1o organize under FIG to ensure con-
tinuity, communication, useful agendas,
and to ease the administrative tasks. What-
ever its form, the vendors need it and the
Forth community needs it.
~—Marlin Quverson
Editor

Forth Dimensions
Published by the
Forth Interest Group
Volume IX, Number 6
March/April 1988
Editor
Marlin Ouverson
Advertising Manager
Kent Safford
Design and Production
Berglund Graphics
ISSN#0884-0822

Forth Dimensions welcomes editorial mate-
rial, letters to the editor, and com-ments from its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year (842 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth Inter-
est Group, P.O. Box 8231, San Jose, California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright © 1987 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copy righted by the individ-
ual authors of the articles and by Forth Interest
Group, Inc., respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-commer-
cial purposes, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright
notice, however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group

The Forth Interest Group is the association of
programmers, managers, and engineers who
create practical, Forth-based solutions to real-
world needs. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications, conferences, semi-
nars, telecommunications, and area chapter
meetings are among its activities.

“Forth Dimensions is published bi-monthly
for $30/42 per year by the Forth Interest Group,
1330 S. Bascom Ave., Suite D, San Jose, CA
95128. Second-class postage pending at San
Jose, CA95101. POSTMASTER: Send address
changes to the Forth Interest Group, P.O. Box
8231, San Jose, CA 95155.”

Forth Dimensions

Volume IX, Number 6

Security Breach
Dear Marlin,

1 have no excuses, I don’t know what
happened. Clearly, the code printed with
my letter on “F83 Execution Security” is
wrong, with several errors in it. The en-
closed, new code should work.

Sincerely,

G.R. Jaffray, Jr.

3536 Angelus Avenue
Glendale, California 91208

LETTERS

Worthless Like Pascal
Dear Mr. Ouverson:

I'm a graduate student at the Florida
Institute of Technology, doing extensive
work in natural language processing (in-
terfacing to an expert system and semantic
knowledge base) with Forth under the di-
rection of Dr. T.0O. Hand. We intend to
become one of the most advanced institu-
tions for Al applications using Forth.

I am writing t0 convey my strong pro-
test to the use of assembly code in source

Scr # 6 B:XSECUR.BLK
0 \ XSECUR GRJjr 0
1 HEX ASSEMBLER 1
2 LABEL XSECUl1 0 [BX] JMP (do this if word is good) 2
3 LABEL XSECUR (Warm start if cfa points to invalid location) 3
4 AX LODS 89 C, €3 C, (code fr NEXT } O [BX] AX MOV 4
S AX PUSH AX DEC AX DEC BX AX CMP AX POP XSECUl JE (code word)5
6 ' QUIT @ # AX CMP XSECUl JE (colon definition) 6
7 ' UNNEST @ # AX CMP XSECUl JE (end colon def) 7
8 ! RMARGIN @ # AX CMP XSECUl1l JE (DOCREATE ~ variable) 8
9 ' BL @ # AX CMP XSECUl1l JE (DOCONSTANT - constant) 9
10 ' BASE @ # AX CMP XSECUl JE (user variable) 10
11 ' KEY @ # AX CMP XSECUl JE (deferred word) 11
12 ' EMIT @ # AX CMP XSECUl JE (user deferred word) 12
13 BX PUSH AX BX MOV 0 [BX] AL MOV (DOES> word) 13
14 E8 # AL CMP BX POP XSECUl JE 103 #) JMP (103H = warm start)14
15 15
Scr # 7 B:XSECUR.BLK

0 \ XSECURITY & UNSECURE GRJJr 0
1 1
2 CODE XSECURITY (Establish JMP to XSECUR) 2
3 BX PUSH >NEXT # BX MOV E9 # AL MOV (JMP op code) 3
4 AL O [BX) MOV BX INC XSECUR (overlay code at >NEXT) 4
5 >NEXT 3 + - # AX MOV (get rel displacement to XSECUR) 5
6 AX 0 [BX] MOV BX POP >NEXT #) JMP C; (lay down after E9) 6
7 7
8 CODE UNSECURE >NEXT # BX MOV (Restore original code at >NEXT) 8
9 AD # AL MOV AL 0 [BX] MOV BX INC (It was AD 8B D8)

10 8B # AL MOV AL 0 [BX] MOV BX INC 10
11 D8 # AL MOV AL O [BX] MOV >NEXT #) JMP C; 11
12 DECIMAL FORTH 12
13 13
14 14
15 18

listings (e.g., “Local Variables,” Peter
Ross, FD 1X/4). It doesn’t provide the
slightest bit of portability, and thus makes
the source code absolutely worthless to
those not using the same system as the
author. By the same token, source listings
should not be machine or implementation
dependent (e.g., “Extensions for F83,”
Scarpelli, FD IX/4).

In my four short years of Forth pro-
gramming, I have always found a lack of
useful programming, development, and
debugging tools for this very reason. [have
also come to the conclusion that any at-
tempt to make Forth a structured program-
ming language severely violates all aspects
of Forth. If you want a structured language,
use Pascal; it’s about as worthless as struc-
tured Forth. I am not trying to insult Carl
Wenrich (“Readable Forth,” FD 1X/4), I
am merely saying that the structure he
proposes is more of a hindrance than a
programming aid. If readability is what Mr.
Wenrich is after, I suggest he read, or re-
read, Thinking Forth by Leo Brodie. There
are better ways to make Forth more read-
able. Has anyone thought of making Forth
more object oriented? We at FIT have. It
has potential, and Dr. Hand has already
begun exploration in this area.

This is my opinion as of this point in
time. As my Forth experience increases,
and as Forth continues to evolve, I may
change these views; butnot until the oppos-
ing facts are staring me in the face.

Sincerely,

Joe Sternlicht

3630 Misty Oak Dr., #1607
Melbourne, Florida 32901

Volume IX, Number 6

Forth Dimensions

'BRYTE
'FORTH

. MICRO- |
|CONTROLLER.

BEXL

FEATURES
—FORTH-79 Standard Sub-Set
—Access to 8031 features
—Supports FORTH and machine

code interrupt handlers
—System timekeeping maintains
time and date with leap
year correction
—Supports ROM-based self-
starting applications

= cosT

% 130 page manual —$ 30.00

8K EPROM with manual—$100.00
Pastage paid in North America.

Inquire for license or quantity pricing.

Bryte Computers, Inc.
P.O. Box 46, Augusta, ME 04330 b
(207) 547-3218 o

&
R LR AR R ECRRRE X XX RE DX RN L LR TRTT TN 3

[T certainly agree that authors whose
code’s performance relies on assembly
routines should also provide high-level
Forth definitions for publication. F83-spe-
cific code, as you can see in this issue, will
remain as long as many of our readers find
it useful or educational. We optimistically
believe that even most of the system-spe-
cific code we publish has value in terms of
learning from others’ techniques. And if
you also learn a little about how a different
Forth dialect or implementation works, all
has not been lost. Still, we do give prefer-
ence to work that is generalized for our
readership without losing its pizazz. As for
the debate over structured programming,
I'll let its proponents defend themselves, if
they care to.—Ed.]

Ailing Acronyms
Dear Marlin:

A minor nit-pick: a Forth word may
contain a name field, link field, code field,
and parameter field. Because Forth so often
keeps track of items by putting their ad-
dresses on the stack, we frequently talk
about the addresses of those fields: the
name-field address (NFA), link-field ad-
dress (LFA), code-field address (CFA),
and parameter-field address (PFA).

Many Forth writers and conference

speakers confuse the two concepts, say-
ing, for example, that the value of a con-
stant is stored in its PFA. If we can suc-
cessfully talk to computers (which do
exactly what we tell them to do, whether
we mean it or not), we should be capable
of a bit more precision when communi-
cating with each other. Perhaps the
alphabet-soup addicts among us could be
mollified by the introduction of the ab-
breviations NF, LF, CF, and PF for refer-
ring to the fields themselves.

Sincerely,

Carol Pruitt

University of Rochester
Lab for Laser Energetics
250 East River Road
Rochester, NY 14623

[Grammarians have been warning tech-
nical writers for some time about overus-
ing acronyms, and you aren’t the first
Forth programmer to point out this par-
ticular problem. Is an awthor talking
about the address of the field, or an ad-
dress stored in the field? Your solution
may be the least confusing so far, but
authors should remember that acronyms
don’'t make convoluted or repetitious
writing any better, only shorter. —Ed.]

ADVERTISERS INDEX

Bryte - 6
Dash, Find 12
FORTH, Inc. - 14
Forth Interest Group - 40
Future, Inc.- 35
Harvard Softworks - 7
Institute for Applied Forth Research - 30
Laboratory Microsystems - 33
Miller Microcomputer Services - 18
Mountain View Press - 17
Next Generation Systems - 19
Silicon Composers - 2

Forth Dimensions

Volume IX, Number 6

YES, THERE IS A BETTER WAY
AFORTH THAT ACTUALLY
DELIVERS ON THE PROMISE

HS /FORTH

POWER

HS/FORTH’s compilation and execution speeds are
unsurpassed. Compiling at 20,000 lines per minute, it
compiles faster than many systems link. For real jobs
execution speed is unsurpassed as well. Even non-
optimized programs run as fast as ones produced by
most C compilers. Forth systems designed to fool
benchmarks are slightly faster on nearly empty do
loops, but bog down when the coion nesting level ap-
proaches anything useful, and have much greater
memory overhead for each definition. Our optimizer
gives assembler language performance even for
deeply nested definitions containing complex data and
control structures.

HS/FORTH provides the best architecture, so good that
another major vendor "cloned” (rather poorly) many of
its features. Our Forth uses all available memory for
both programs and data with almost no execution time
penalty, and very little memory overhead. None at all for
programs smaller than 200kB. And you can resize seg-
ments anytime, without a system regen. With the
GigaForth option, your programs transparently enter
native mode and expand into 16 Meg extended memory
or agigabyte of virtual, and run almost as fast as in reat
mode.

Benefits beyond speed and program size include word
redefinition at any time and vocabulary structures that
can be changed at will, for instance from simple to
hashed, or from 79 Standard to Forth 83. You can be-
head word names and reclaim space at any time. This
includes automatic removal of a colon definition’s local
variables.

Colon definitions can execute inside machine code
primitives, great for interrupt & exception handlers.
Multi-cfa words are easily implemented. And code
words become incredibly powerful, with multipie entry
points not requiring jumps over word fragments. One of
many reasons our system is much more compact than
itsimmense dictionary (1600 words) would imply.

INCREDIBLE FLEXIBILITY

The Rosetta Stone Dynamic Linker opens the world of
utility libraries. Link to resident routines or link & remove
routines interactively. HS/FORTH preserves relocata-
bility of loaded libraries. Link to BTRIEVE METAWIN-
DOWS HALO HOOPS ad infinitum. Our call and data
structure words provide easy linkage.

HS/FORTH runs both 79 Standard and Forth 83 pro-
grams, and has extensions covering vocabulary search
order and the complete Forth 83 test suite. Itloads and
runs all FIG Libraries, the main difference being they
load and run faster, and you can develop larger applica-
tions than with any other system. We like source code in
text files, but support both file and sector mapped Forth
block interfaces. Both line and biock file loading can be
nested to any depth and inciudes automatic path
search.

FUNCTIONALITY

More important than how fast a system executes, is
whether it can do the job at all. Can it work with your
computer. Can it work with your other tools. Can ittrans-
form your data into answers. A language should be
complete on the first two, and minimize the unavoidable
effortrequired for the last.

HS/FORTH opens your computer like no other lan-
guage. You can execute function calls, DOS com-
mands, other programs interactively, from definitions,
or even from files being ioaded. DOS and BIOS function
calls are well documented HS/FORTH words, we don't
settle for giving you an INTCALL and saying "have at it”.
We also include both fatal and informative DOS error
handlers, installed by executing FATAL or INFORM.

HS/FORTH supports character or blocked, sequential
or random I/O. The character stream can be received
from/sent to console, file, memory, printer or com port.
We include a communications plus upload and down-
load utility, and foreground/background music. Display
output through BIOS for compatibility or memory
mapped for speed.

Our formatting and parsing words are without equal. In-
teger, double, quad, financial, scaled, time, date, float-
ing or exponential, all our output words have string
formatting counterparts for building records. We also
provide words to parse all data types with your choice of
field definition. HS/FORTH parses files from any lan-
guage. Other words treat files like memory, nn@H and
nn!H read or write from/to a handle (file or device} as
fast as possible. For advanced file support, HS/FORTH
easily links to BTRIEVE, etc.

HS/FORTH supports text/graphic windows for MONO
thru VGA. Graphic drawings (line rectangle ellipse) can
be absolute or scaled to current window size and
clipped, and work with our penpiot routines. While great
for piotting and line drawing, it doesn't approach the ca-
pabilities of Metawindows (tm Metagraphics). We use
our Rosetta Stone Dynamic Linker to interface to Meta-
windows. HS/FORTH with MetaWindows makes an un-
beatable graphics system. Or Rosetta to your own
preferred graphics driver.

HS/FORTH provides hardware/software floating point,
including trig and transcendentals. Hardware fp covers
full range trig, log, exponential functions plus complex
and hyperbolic counterparts, and afl stack and compari-
son ops. HS/FORTH supports all 8087 data types and
works in RADIANS or DEGREES mode. No coproces-
sor? No problem. Operators (mostly fast machine code)
and parse/format words cover numbers through 18 dig-
its. Software fp eliminates conversion round off error
and minimizes conversion time.

Single element through 4D arrays for all data types in-
cluding complex use multiple cfa’s to improve both per-
formance and compactness. Z = {X-Y)/ (X + Y) would
becoded: XY -XY + /1S Z(16 bytes) instead of: X @
Y@-X@Y@ + /Z!(26 bytes) Arrays can ignore 64k
boundaries. Words use SYNONYMs for data type inde-
pendence. HS/FORTH can even prompt the user for
retry on erroneous numeric input.

The HS/FORTH machine coded string library with up to
3D arrays is without equal. Segment spanning dynamic
string support includes insert, delete, add, find, repiace,
exchange, save andrestore string storage.

Our minimai overhead round robin and time slice multi-
taskers require a word that exits cleanly at the end of
subtask execution. The cooperative round robin multi-
tasker provides individual user stack segments as well
as user tables. Control passes 10 the next task/user
whenever desired.

—

APPLICATION CREATION TECHNIQUES

HS/FORTH assembles to any segment to create stand
alone programs of any size. The optimizer can use HS/
FORTH as amacro library, or complex macros can be
built as colon words. Fuli forward and reverse labeled
branches and calls complement structured flow control.
Complete syntax checking protects you. Assembler
programming has never been so easy.

The Metacompiler produces threaded systems from a
few hundred bytes, or Forth kernels from 2k bytes. With
it, you can create any threading scheme or segmenta-
tion architecture to run on disk or ROM.

You can turnkey or seal HS/FORTH for distribution, with
no royalties for turnkeyed systems. Qr convert for ROM
insaved, sealed or turnkeyed form.

HS/FORTH includes three editors, or you can quickly
shell to your favorite program editor. The resident full
window editor lets you reuse former command lines and
save to or restore from a file. It is both an indispensable
development aid and a great user interface. The macro
editor provides reuseable functions, cut, paste, file
merge and extract, session jog, and RECOMPILE. Our
full screen Forth editor edits file or sector mapped
blocks.

Debug tools include memory/stack dump, memory
map, decompile, single step trace, and prompt options.
Trace scope canbe limited by depth or address.

HS/FORTH lacks a “modular” compilation environ-
ment. One motivation toward modular compilation is
that, with conventionat compilers, recompiling an entire
application to change one subroutine is unbearably
siow. HS/FORTH compiles at 20,000 lines per minute,
faster than many languages link — let alone compile!
The second motivation is linking to other languages.
HS/FORTH links to foreign subroutines dynamicalily.
HS/FORTH doesn’t need the extra layer of files, or the
programs needed to manage them. With HS/FORTH
you have source code and the executable file. Period.
“Development environments” are cute, and necessary
for unnecessarily complicated languages. Simplicity is
s0 much better.

HS/FORTH Programming Systems
Lower levels include all functions not named at a higher
level. Some functions available separately.
Documentation & Working Demo
(3 books, 1000 + pages, 6 Ibs) $ 95.

Student $145.

Personal optimizer, scaled & quad integer $245.

Professional 80x87, assembler, turnkey, $395.
dynamic strings, multitasker
RSDL linker,

physical screens
Production ROM, Metacompiler, Metawindows

$495.
Level upgrade, price difference plus $ 25
OBJ modules $495.
Rosetta Stone Dynamic Linker $ 95.
Metawindows by Metagraphics (inciudes RSDL)

$145.
Hardware Floating Point & Complex $ 95.
Quad integer, software floating point $ 45.
Time slice and round robin multitaskers $ 75.

GigaForth (80286/386 Native mode extension) $295.

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066
(513) 748-0390

|

Volume IX, Number 6

Forth Dimensions

A few modem I/O programs have been
published in Forth Dimensions [JAMS83]
[ERI84] [ACKS83]. These have provided
good examples of serial-line interface ba-
sics. Armed with this knowledge, here is a
slightly more advanced terminal emulator,
designed to be a useful terminal package
and to serve as an example of a Forth
multitasking application.

One useful feature of using a computer
to emulate a dumb terminal is the ability to
do local processing. Services such as auto-
matic dialing, phone lists, and file upload/
download at your fingertips can make sit-
ting at a slow modem more tolerable. This
can be a touchy thing to program, however,
since the real-time nature of amodem pack-
age requires that a local process run to
completion within a character time. If this
restriction is violated, the modem may lose
incoming data.

Forth’s asynchronous approach to
multitasking provides a very fast context
switch between tasks. Often, this is just a
few machine instructions, and can be as fast
asa*“busy,” high-level Forth loop. A termi-
nal emulator is usually coded as just an
infinite loop passing characters back and
forth from modem to console. The code in
screen 9 shows two tasks which could be
written as one BEGIN AGAIN loop, but
instead use a Forth multitasker to glue the
two together. By running one in the “back-
ground” and the other in the “foreground,”
this structure has an advantage for a termi-
nal emulator: It allows the KEYBOARD task
to spend some time doing different func-
tions, while the MODEM (background) task

Forth-83

continues to pay attention to any characters
being received at the serial port.

Now, one of the problems with these
two tasks going about their merry way is
what to do with characters coming in from
the modem while the KEYBOARD task is
goofing off. This is where screens 3 and 4
come in. These two screens create a first-in,
first-out buffer, which allows the two tasks
to communicate on a slightly relaxed
schedule. Stubborn characters that refuse to
wait for the KEYBOARD task to complete a
job are stored in this FIFO buffer to be
picked up later by KEYBOARD and dis-
played to the user.

“What shall we do
with all this time?”’

Great. Now we can take a little vacation
in the KEYBOARD routine without feeling
pressured to whip through the loop in time
for another character. What shall we do
with all this time? Many things come to
mind, some of which are shown in the
example. Screen 8 creates a jump table that
detects a control key pressed at the key-
board and sends the KEYBOARD task off on
vacation. I've coded a few interesting tools
for a user sitting at a modem talking to
another computer.

The first is taken from an elegant little
piece published by Leo Brodie [BROS83]. 1t
is a “breakpoint interpreter” which runs a
Forth QUIT loop (shell). This essentially

MULTITASKING
MODEM PACKAGE

JEFFREY R. TEZA - ENCINITAS, CALIFORNIA

allows the user to jump up to a Forth inter-
preter riding on “top” of the modem soft-
ware.

This is shown on screens 5 and 6, and is
entered into the jump table in the ASCII 6
(Ctl-F) key slot. Now you have complete
access to the Forth dictionary — which
should provide an adequate selection of
local-processing tools!

Another tool, shown on screens 7 and
11, provides a telephone list. These num-
bers can be assigned to akey and automati-
cally dialed by the modem with the mere
stroke of a control key; or they can be
stored in a vocabulary (PHONE), to be
executed from the breakpoint interpreter.

I find this to be a clean and useful
application, and have endeavored to pro-
vide good comments. The end-user word is
CONVERSE, which takes a baud rate as a
parameter and launches the two processes
(for example, type 1200 CONVERSE).

A few words about dialect. The code is
written in Laxen and Perry’s F83.1"ve tried
to comment any non-83-Standard code in
the shadow screens, but the multitasking
word BACKGROUND: may have to be
changed according to your multitasking
word set. My apologies to people without a
multitasker. Some of the ideas here can be
implemented in a single-task system. But
considering the simplicity of Forth multi-
tasking, and with Henry Laxen’s excellent
tutorial [LAX84] [LLAX83], serious Forth
vendors should consider providing this
important aspect of a Forth environment.

This code runs fine at 1200 baud on my
8 MHz 80186 system. Lost characters

Forth Dimensions

Volume IX, Number 6

could still be a problem for very slow
PAUSE loops on slower machines. If this is
a problem, all I can suggest is to code the
MODEM incoming-character receiver in
assembler, or 1o make it interrupt driven.
As demonstrated here, the speed of prop-
erly optimized, Forth multitasking loops is
often a desirable alternative to a high-level
Forth loop. Chances are, a slow computer
would require a bit of assembler, even fora
simpler terminal program.

References

[ACK83] Ackerman, R.D. “Apple Forth
A la Modem,” Forth Dimen-
sions, Vol 5 No 4, Nov/Dec
1983.

Brodie, Leo. “Add a Break-
point Tool,” Forth Dimen-
sions, Vol 6 No 2, May/Tune
1983.

Ericson and Feucht. “Simple
Data Transfer Protocol,”
ForthDimensions,Vol6No 2,
July/Aug 1984,

(BRO83]

[ERI84]

{JAM85] James, John S. “Simple Mo-
dem 1/O Words,” Forth Di-
mensions, Vol6No §,Jan/Feb
1985.
Knuth. The Art of Computer
Programming, Fundamental
Algorithms, Vol 1. Addison-
Wesley, 1973.
{LAX83] Laxen, Henry.“Multitasking,”
part one, Forth Dimensions,
Vol 5§ No 4, Nov/Dec 1983.
[LAX84] Laxen,Henry.“Multitasking,”
part two, Forth Dimensions,

[KNU73]

0\

1 HE

2 92 CONSTANT STATUS
3 96 CONSTANT DATA

]
35
&

+ INITIALIZE (S bawd--) 12C (2000 =
! KEWM? (S 1)

! KEYM (8 —c}
10 = EMITH (S ¢—)

STATUS PCe 1 AND OO

=

Dumb terminal Harduware specific words
X

IF 44 STATUS PCY ELSE (1200) &b STATUS PC! THEN 5

2
7

0 .
? 5
PAUSE BEGIN KEYH? UNTIL DATA PCE 11 ¢ BQUELE (S maddr—-c trueifalse)

IF TROP FALSE EXIT THEN \ Zunderfiow

IF CR ." ERROR...Incoming sueue overflow "
ELSE CR ." ERROR...Outseins aueue overflow " THEN DROP 5

P 28 =

12 MP2e-=

]

{

2

3

4

5 ¢ 'QUEUE (S ¢ saddr—-) DUP +QUEUE
4 IF OVERFLOW ELSE @ C!
7

g

9

Vol 5 No 5, Jan/Feb 1984.
i 2
O\ Dumb Terminal load block 26MayB83irt O \ Tmmb Terminal FIFQ aueues 26Maygoirt
1 VOCABULARY TALKING ONLY FORTH ALSO TALKING ALSO 130 24 # 3 + CONGTANT (IDEPTH \ 5 Pase buffer
2 TALKING DEFINITIONS 208 24243
31 & +THRI! \ dumb terminal emulater 3\ Create 2 gueuves with front and back pointers
4 4 CREATE INCOMING ODEPTH 4+ ALLOT
5 FORTH DEFINITIONS 5 CREATE DUTGOING GDEPTH 4+ ALLOT
& 7 +LOAD \ CONVERSE.QUIET b
7 7.t QQUELE (S =addr—-) DUP 4+ DIP ROT 2!
S ONLY FORTH ALSO 8 INCOMING CQUEIE OUTGOING OGUEUE \ initialize the 2 aueues
9 CR .(Dumb terminal emulator 1paded.) 9
10 10 \ Increment a queue eointer
11 11 ¢ HHUEVE (S saddr paddr—paddr) OVER GDEPTH 4+ + OWER @ =
12 12 IF SWAP 4+ QVER ' ELSE NIP ! OVER +' THEN §
13 13
14 14
15 15
4
N \ Dumb Terminal aqueue i/o {7Mar85irt
- 1OMargSipt | ¢ VERFLOW (S c saddr—) INCOMING =

THEN 3

o 3 i
1‘1? PAUSE BEGIN STATUS PC@ 4 AND OC> UNTIL DATA PC! 3 [P 2+ +QUEUE @ C8 TRUE
13 DECIMAL ;3
14 ¢
13
Volume IX, Number 6 9

Forth Dimensions

5
Dumb Terminal breakenint interepreter
See FD vol3/#1 ppi9
ARTABLE CHECK
: BREAK (—-) \ ipvokes WUIT shell
Ck RPE 4 (mve=b) - CHECK ' O BLK !
BEGIN @HJERY INTERPRET ." aok" CR AGAIN 3

<
< o~

FORTH DEFINITIONS
1 RESUME (--) [°1 (?ERROR) IS PERRUR \ resume normal abort
FP@ CHEDK @ =\ aborts tor BUIT shel)

BN (R By S TN RV N

IFORSR: (mve R:) 2DROP (mve DROF) CR
ELSE ." Can’t resume” OUIT THEN 3

PO R SR

TALEING DEFINITIONS

P el ol el e
n £

26Mav83irt

3
0\ Dumb Terminal local escape table 2hMayR5irt
{
3 CREATE FILTERTABLE 1
4 'QUELE 'QUELE 'OUENE 'GUEUE 'GUEUE 'GUEUE BREAK BEEP
5 'GUEUE 'QUELE 'GUEUE 'QUEUE 'GUELE 'QUENE 'OUELE 'QUEUE
4 PRINT 'QUENE 'GUELE 'QUEUE 'GUEUE QUEUE 'GUELUE 'DHJEUE
7 'QUELE 'CUEUE 'GUEUE 'QUEUE 'QUELE ‘QUELE 'QUEVE QUEUE [
3
10 ¢ FILTER (5 ¢ 9addr--) INER 22 <
i IF (WER 2# FILTERTABLE + PERFORM ELSE ‘'OUEVE THEN
12
13
ia
15

9
: 0\ Tumb Terminal kevboard/modem tasks 17Mar83irt
coL . . . 1
\ Tums 7 local process 2tMavESirt
- fF R RSP0 @ cp FRINTING OFF 3 BEGIN OUTGOING @QUEUE IF EMITM THEN
b 1 £ o u? M v 1 r) 1. 17
3R> R> GPACE TYPE SPACE ELSE ZDROP THEN 3 : AGA‘;EY"; IF KEYN INCOMING 'GUELE THEN PAUSE
4 - 1
3 ¢ BREAK 2DROP [] (?BRKERROR) I3 7ERFDR BREAK 3 \ ctri F b .
bt BEEP - 2DROPBEEP ; \etrl © . Kglzgtl‘gﬂnxuconlus ROUEUE TF EMIT THEN
: 2 i iy 1 4 ’
Z PRINT 2DROP PRINTING @ NOT PRINTING \ ctrl P printer 9 KEY? IF KEY OUTGOING FILTER THEN PAUSE
3 1 OTYPE (5 addr len saddr—) ROT ROT o AGAIN 3
{0 BOUNDS D0 I Ce OVER 'QUEUE PAUSE LOOP DROP 7
11 2 OCR (8 aadde-—-) 13 SWAP 'OUELE 3 -
17 13
E 1
18 135
13
10
0 \ Dumb Terminal converse/suiet 2bMavy83irt
. 1 \ Converse invokes the dumb terminal
g) o] 2 ¢ CONVERSE (S baud—-) INITIALIZE INCOMING OQUEUE
0 \ Dumb Terminal futodialing phone numbers 29Mav8Sirt 3 QUTGOING OQUEUE MULTI MODEM WAKE KEYBGARD 3
1 ¢ DIAL (S addr len—-) QUTGOING QTYPE OQUTGOING QCR 3 4
2 5 ¢ QUIET (5 --) MODEM SLEEP [“1 (?ERROR) IS 7ERROR ABORT 3
3 FORTH DEFINITIONS b
4 ¢ BODK WORDS 7
5 VOCABULARY PHONE PHONE DEFINITIONS
b
7 11 LOAD \ Phone numbers 11
8 ¢ CALL" HEADER ASCII " WORD COUNT DIAL ; 0\ Phone Numbers 2eMavBSirt
9 1 ¢+ HEADER ™ ATDT " QUTGOING QTYPE 3
10 TALKING DEFINITIONS 2 ¢ FIG HEADER * 4155323320" DIAL 3
11 3
12 -
13 g
14 b
15 7
Forth Dimensions 10 Volume IX, Number 6

18 22

\ {Mar83irt \ 26Mavasict
This is the load block for the dumb terminal emulator, This breakpoint interpreter was published bv Leo Brodie in

FD vol3 nol, MVP-FORTH chanses are shown as inline comments.
This dumb terminal emulator uses the Laxen & Perry F83 BREAK invokes an outer intererefer or "shell®,

sultitasking carabilities by defining serarate kevboard and

modem tasks, These two tasks communicate via a FIFC aueue,

This structure allows local processing without loesins

characters.

RESIME is used to resume from the BREAY shell. If the return

A convenient technique for invokine local erocessing words is stack is messed up use KEYBOARD to restart.

used via a control character table as in F83. One local

word that can be invoked in this example is a breakroint

interrreter as published by Leo Brodie. This allows vou

to exit to a hisher forth QUIT "shell" siving vou complete 3

access to the forth dictionary while terminal emulatins. \ ZEMavaSirt

(7BRKERROR) 7ERROR is the F22 vectored ABORT error handler.
this word is used ts return to the BREAK shell on errors.

19
\ 1TMareSirt
This screen contains all of the hardware specific code to BREAK calis the breakroint interpreter after cleanina up
talk to the modem port. These words are analosous to the stack and vectoring the new errer handler.
FORTH i/0 words. BEEP rinss the bell after cleaning up the stack.
PRINT tossies the erinter on/off in an FR3 system.
20 QTYPE types 3 strins to a ayeue.
\ 26MavR3irt

QDEPTH is the depth of the FIFO sueues. This depth should R euts a carriase return (ascii 13) 1n @ qveue

be adiusted according to how smooth the multitaskins Yoop
is runnins { total task activity)}, Note that at
1200 baud a character comes in every M5 or so and without
interurt driven modem control the loor must averase shorter
than this to avoid sueue overflow and lost characters,

INCOMING and QUTGOING are both byte aueues of GDEPTH lensth
whose first cell is a pointer to the front of the list and
second cell is a pointer to the back of the list.

OQUEVE initializes a sueue so the two pointers point at the
same sueue entry,

+HHEUE increments a queue pointer circularlv,
{ NIP is SWAP DROP)

24
\ Z3MavEsirt
DIAL tvres a strina to the outsoing Aueue folicwed by a «or.

Put the PHONE vocabulary in the FORTH vocabulary,
Use PHONE BOOK to see the ehone numbers,

Put the phone numbers in the PHONE vocabulary.
Use PHONE {etoned’ e.a, PHONE FIG to dial a number.
Use CALL™ XXXXXXX" to call a number not in the PHONE BOCK,
21
\ {7Mar85irt
OVERFLOW issues an error messadse for an overflowed aueue,

Back to the application vocabulary,

'QUEUE puts a brte at the front of a sueue. It first increments
the front rointer then checks for an overflow. Note that if
an overflow occurs it will continue to place characters in
the queue rausing the queue to be dumped by incrementina
the front pointer past the rear pointer.

@IUEVE removes a byte from the back of the sueue if one is
available and returns either the character and a true or
a false flag if the sueue was emrtr.

Volume IX, Number 6 11 Forth Dimensions

e
n

A {7Mar3Sirt

FILTERTABLE is a table indexed into by a control character,
Note it contains 32 entries which can be anv FORTH word
which will be invoked by a control character pressed at the
kevhoard,

FILTER takes a character and aveue address and looks up
control characters in FILTERTABLE for execution, otherwise
sticks it in the aueue. { PERFORM is @ EXECUTE)

P I T
\ {TRardSet

MODEM is a backaround task which sets outscing characters
and writes them to the modem port and incoming characters
and writes them in the incoming aueue.

KEYBOARD is the terminal tack which sets incoming characters
and prints them. Kevboard entered characters are FILTER'd
which either does somethins or sends them to the sutasins
sygle,

27
\ 26Mav8Sirt

CONVERSE takes a baud rate as a rarameter, initializes the
modem Port, zero's the aueues, fires up the multitasker
and enters the KEYBOARD infinite loop .

GUIET puts the modem task to sleer and aborts the svstem.

22

\ {Mar3dire
Phone numbers can be entered inte the contral character tahle
or defined to be executed while in the break shell,

WE'RE LOOKING
FOR A FEW GOOD

DASH FIND

ASSOCIATES

Forth Recruiters

Under New Management

70 Elmwood Ave./Rochester, NY 14611/(716) 235-0168

Forth Dimensions

12

Volume IX, Number 6

Forth-83

DUMPING WORDSTAR

FILES

PAUL A. COOPER - CHATSWORTH, CALIFORNIA

T:is article deals with the problem of
implementing large data files which are to
be sent to another device (other than a local
printer or video display) while directly in
Forth.

It’s relatively easy to use an editor util-
ity, and many of them are on the market.
Today, one finds a plethora of word proces-
sor utilities available, but a survey I did
recently showed that the preponderance of
those in use has the name — you guessed it
— WordStar.

The ubiquitous WordStar is a difficult
learning experience for most; and one
which, when learned, is almost impossible
to remove from one’s use. That being said,
let’s assume for the purposes of discussion,
that you love the utility and, at the same
time, you use Forth quite a bit, too. Well,
you’ve probably found that, from time to
time, you’d like to access a WordStar file
directly while inside Forth.

That’s exactly the situation I found
myself in, because I wanted to be able to
send data files over serial lines or over the
air via amateur radio bands. And I wanted
to do it while in Forth, because Forth is my
language of choice. But I knew there was a
problem with this because WordStar uses
strange little codes embedded in the text
files to make wonderful little things happen
at the printer and console. I had to devise a
way to read those codes and either use or
discard them. And I realized that this situ-
ation would be magnified if I wished to use
a word-wrapped file.

In the transmission of ASCII data, we
are really only concemed with characters
represented by ASCII 32 - 126 but includ-
ing 13 and 10, which make up the carriage

return. If WordStar included only these
codes, we would just need to getinto DOS,
read a sector of the disk file, output that
sector, and repeat until we exhaust the file.
As stated, the control codes used by Word-
Star cause a big problem. But anything can
be solved in Forth, right?

As a matter of fact, within a word-
wrapped file, WordStar uses a great many
codes from ASCII 160 - 254 and AO - FE,
among others, in addition to the standard
codes mentioned above — the ones we’d

“Anything can be
solved in Forth, right?”

like to use by themselves, but can’t. The

trick, therefore, is to use a lookup table to

determine which character to output.
I'have provided seven screens of code in

LMI’s PC-Forth version 3.1. It will be
necessary for readers using another system
to incorporate their version of the assem-
bler and DOS interface. LMI provides its
customers with a quick disk interface,
which speeds up sector access greatly.

Screen #1 contains an assembly lan-
guage word INDARR that sets up indexed
user arrays. In our case, we use this array to
set up a 254-section lookup table (in screen
#3), appropriately named WRAP. The code
words << and >> mark the stack top for the
array, then mark the end-of-fill process. In
screen #2, the DOS interface is invoked, a
128-byte buffer is established, and our
interrogated file is subnamed; the end-of-
file flag (-1) is made a constant, and several
commands to open, close, and read are
defined.

In screen #4, a case word WRAPCASE
explicitly actions three different hex values
without going into the lookup table: 8D,

Screen # 1
(Array words
ASHBG

AY PUSH NEXT, END-CODE

VARIABLE $DUMMY

-

: INDARR \ n cells --- <{name}...creates indexed array
CREATE 2t HERE OVER ERASE ALLOT ;CODE
AX, 2 {BX] LEA BX POP AX, BX ADD AX, BX ADD

¢ ¢ { mark stack top, to fill indexed array) SP@ $DUMMY ' ;

t 3> \aark end of fill then fill array
SDUMMY @ SPR - & - OVER + DD I ' -2 +LOOP

pac 16:47 09/10/86)

Volume IX, Number 6

Forth Dimensions

ASK FORTH

ENGINEERING

ABOUT
- REAL TIME

THAT'S ON TIME.

Find Out How To Implement
Real-Time Systems In:

» Digital Signai Processing

* Manufacturing Process
Control

* Machine Vision

& Robotics

...on time and under
budget.

For The Answers To Your
Questions, Call Qur
Engineering AnswerlLine
Today:

(2132 372-8493,

FORTH, Inc,, TN N. Sepuiveda
Bivd, Manhattan Beach, CA
90266.

ON TIME.
UNDER BUDGET.

which WordStar uses as a hidden carriage
return; 0D, the standard carriage return;
and 1A, used as a -> to mark leftover,
unused bytes in each line on the monitor.
(One would think these would be spaces or
20 hex, but in the words of Shakespeare,
alas and alack, no. MicroPro entertainers
had their reasons, I'm certain.) These 1A
codes are dropped. The balance of any
codes read are diverted to the lookup table,
which leaves on the stack the proper ASCII
representation; if a code 00 hex is left, it is
dropped as irrelevant to our use.

The word DUMP-FILEBUFFER in
screen #4 is the main action word. It looks
ateachbyte thatisread into FILEBUFFER
and uses WRAPCASE if the code is below
decimal 32 (hex 20) or above decimal 126
(hex 7E); if not, it merely emitsit. Screen #5
contains some keyboard interaction words
that allow immediate escape from a dump
or a hold; if in hold, one may continue the
dump or escape. Screen #6 holds the main

word DUMP-FILE; the operator is
prompted for the path and filename. Let’s
say you want to dump the file named
MYFILE.EXT that is on drive A. Just re-
spond with A:MYFILE.EXT <cr>. Your
file will completely dump in the original
form as shown on the WordStar dump, but
it won’t have any of the special codes (e.g.,
printer codes). An added advantage of this
Forth dump is that you will have a continu-
ous printout that you can stop anywhere,
instead of using ~C to keep going. Just hita
key to stop/continue; if you wish to get out,
press Esc.

In screen #7, 1 show a separate DUMP -
FILEBUFFER word. This can be used in
place of the word of the same name in screen
#4if you want to display all WordStar codes
on your screen, This was written for my own
use in tracking down the various codes
needed to set up the lookup table WRAP and
WRAPCASE. But it might be fun for some to
see just what WordStar does inside a word-

Screen # 2

{ Dump Wordstar word wrap file
DOSINT \ invoke DOS interface
HANDLE FILEOUT \ name the file

VARIABLE FILEBUFFER 128 ALLOT \ establish buffer and length
-1 CONSTANT EOF \ end of file flag
: BET-FILENAME CR CR .° Enter Path and Filename: °
FILEQUT INPUT-FILENAME CR CR ; \ input data

: OPEN-IT FILEOUT OPEN-FILE \ open the file

IF CR .* Can’t open file" CR BUIT THEN ;
: CLOSE-IT FILEQUT CLOSE-FILE DROP ; \ close the file
: READ-IT FILEOUT 128 FILEBUFFER READ ; \ read sector

—-—
/

Screen # 3
{ Dump Wordstar word wrap file

FE INDARR WRAP \ Output code fros Wordwrap hex code
€< 00

pac 16:53 12/26/86)

pac 16:33 12/26/86) HEX

00 00 00 00 00 00 00 00 00 00 00 00 60 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0C 00 00 00 00

00 00 00 00 00 00 0

00 00 00 00 00 00 00 00 00 00

0 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
2021 222324252627 2829 2A 2B 2C 2D 2E 2F 30 31 32 33
3435346373839 3A 3B 3C 3D JE3F A0 41 42 43 A4 45 40 47
A8 49 47 4B 4C 4D 4E 4F S0 51 32 53 54 55 56 97 38 59 3A 3B
SC 5D SE 5F 60 61 62 63 b4 63 b7 6B 69 bA bB 6L 6D bE &F
07172737473 7677 7879 787070 00 WRAP »>
DECINAL -->
FORTH, Inc.
Forth Dimensions 14 Volume IX, Number 6

wrapped file. Should you want to actually
place, say, printer codes in the data you
transmit, you can place the appropriate hex
value within the lookup table.

For example, the value 01 hex is used
forboldface printing. Therefore, by placing
01 in the second value in the lookup table
(the second 00 currently to the right of <<
on line 2 of screen #3), the dump would
emit the symbol for 01 hex. If your data
were going to a remote printer on the other
end of a modem, after going through a

receiving program, that printer would start
printing in boldface (assuming the program
were set up to action WordStar codes).

In order to send this data, byte by byte,
out the serial port, use an output word in
place of the word EMIT. If your system has
the facility to redirect output from the con-
sole to the serial port, en masse, this is also
achoice. I prefer the byte method because I
feel I have more direct control of the ma-
chine.

To use this facility, you must first load

your assembler and DOS interface (if you
don’t use the program as it is). Again, any
other Forth system will require some mas-
saging of the assembler words and implem-
entation of the DOS interface.

Copyright © 1987 by Paul A. Cooper. All
rights reserved. Permission granted for
any individual reader of Forth Dimen-
sions to use for personal use only.

Screen # 4
{ Dump Wordstar word wrap file
HEX

DUP

pac 16:33 12/26/86 }

: WRAPCASE \ use lookup table to action Wordstar codes

Screen # &

(Dusp Wordstar word wrap file

: DUMP-FILE \ get file froa Wordstar and eait
GET-FILENAME \ enter path and filename

pac 16:53 12/26/86)

CASE 8D OF DROP CR ENDOF \ if, do a CR
1A OF DROP NODP ENDODF \ if, drop
0D OF DROP CR ENDOF \ same as 8D
WRAP @ DUP 00 = IF DROP \ if 00, drop
ELSE EMIT THEN ENDCASE ; \ anything else, eait
DECIMAL
: DUMP-FILEBUFFER \ addr n ---
QVER + SWAP DO I 16 + I \ look at each disk byte sector
DO I C@ DUP 32 < OVER 126 > OR IF WRAPCASE \ if, do
ELSE ENMIT \ if not, esit the standard character
THEN LOOP 14 +L0OP ; --> \ go back and do it again

Screen # 5
{ Dump Wordstar word wrap file pac 16293 12/26/86)
: EXITWORD \ advise status of action
CR CR ." You have exited the DUMP-FILE routine® CR CR ;
+ KEYACTION \ query keyboard and take action if necessary,
\ if ESC, quit; if any other key, wait
PTERMINAL IF KEY
DUP 27 = IF DROP EXITWORD CLOSE-IT QUIT
ELSE DROP KEY 27 = IF EXITWORD CLOSE-IT GUIT
THEN THEN THEN ;

OPEN-IT \ open it

BEGIN KEYACTION READ-IT

EOF (> \ end of the file or not?

WHILE DROP \ drop the status flag

FILEBUFFER 128 DUMP-FILEBUFFER \ do read and duep
REPEAT

CLOSE-IT \ close the file

CR

Screen # 7
{ Dump Worderstar word wrap file - eamit all
\ use this in screen 4 to duep all af the
\ Wordstar wordwrap special codes as well as the file.
\ By scrutinizing the code you can decipher which cedes 1t uses
\ say, for print codes etc. Resember that a CR which includes
\ a LF will not visibly show on the screen except for action,
: DUMP-FILEBUFFER \ addr n ---

DVER + SWAP DO I 16 +

D0 I Ce DUP 32 < OVER 126 > OR IF EMIT

ELSE EMIT

THEN LOOP 14 +LOOP ;

16:59 12/26/86 }

Volume IX, Number 6 15

Forth Dimensions

One of the advantages of using Forth

in preference to other high-level languages
is the speed of the compiled code. This
speed is in large part due to the efficiency
of the inner interpreter, known as the NEXT
loop. Allit has to do is fetch the address of
the instruction to be interpreted (IP), save it
in the working register (W), and then incre-
ment IP by two to point to the next instruc-
tion in the list. The processor then falls into
a section of code called NEXT1 that places
the address pointed to by W into the
processor’s PC, and the jump is made. Glen
B. Haydon describes these functions in
high-level Forth terms in his book All
About Forth, as follows:

: NEXT
IP @ @
W ! 2 IP +!
NEXT1 ;

: NEXT1
W@e PC! ;

This article proposes to demonstrate
how two existing 8086 implementations
(fig-FORTH for IBM PC 1.0 and MVP-
FORTH version 1.0305.03) can be made to
run faster by decreasing the NEXT loop
overhead. It involves changing a few other
portions, such as DOCOL, DOCON, DOVAR,
DODOES, DOUSE, and EXEC, but the in-
creased speed of the loop seems well worth
the effort. If you are running Forth on a

fig-FORTH, Forth-79

A FASTER
NEXT LOOP

plementation. The LODSW instruction in
the fig-FORTH version does what the first
three instructions of the MVP-FORTH
version do. The source index register (SI)
on the 8086 is used as the interpreter
pointer. AX and BX are used as general-
purposeregisters, and DX isassigned as the
Forth working register W,

Both versions pick up the address of the
instruction to be interpreted, increment IP,
and then jump to the definition. And both
increment the working register W by one
before making the jump. The other required
increment is deferred to the defining word
interpreters DOCOL, DOCON, DOVAR, DO~
DOES, and DOUSE. This was probably

CARL A. WENRICH - TAMPFA, FLORIDA

done to allow for byte boundary address-
ing upon entry to new defining word
routines. But I have yet to see any need for
this capability. So, not having any par-
ticular use for it, I eliminated it.

Figure Three showsa version thatexe-
cutes about 12% faster than the fig-
FORTH version, and about 25% faster
than the MVP-FORTH version. BX is
now used as the working register, and DX
is completely out of the picture, It also
uses a little less memory, but that is of
little consequence. What is significant is
the time saved, since NEXT is executed so
often,

MVP-FORTH NEXT No. of 8086 Cycles
NEXT: MOV AX, [SI] 13

INC SI 2

INC SI 2

MOV BX,AX 2
NEXT1l: MOV DX,BX 2

INC DX 2

JMP WORD PTR [BX] 15

Total no. of 8086 cycles required: 38

Abbreviated NEXT ~ No.of 8086 Cycles

! NEXT: LODSW 12
different processor, you should be able to MOV BX,AX 2
make similar changes with similar results. JMP WORD PTR [BX] 15
Figures One and Two show assembly
source code for the fig-FORTH and MVP- Total no. of 8086 cycles required: 29
FORTH versions of the NEXT loop im-
Forth Dimensions 16 Volume IX, Number 6

Of course, there is a small price to pay.
The defining word interpreters have to be
modified, and EXEC has to be changed to
eliminate the dependence on NEXT1. But
the changes are easy to implement, and the

difference in memory and cycle-time re-
quirements is minimal. Figures Four
through Ten show how the changes can be
implemented.

NEXT: LODSKW
MOV

NEXT1: MOV
INC
JMF

NEXT: MOV
INC
INC
MOV
MOV
INC
JMF

NEXT1:

BX,AX

DX . BX

DX

WORD FTR L[EX]

Figure One, fig-FORTH NEXT.

AX,LSI]

51

G1

EX , AX

DX , B X

DX

WORD FTR C[EX)

Figure Two. MVP-FORTH NEXT.

NEXT: LODSW
MOV BX, A%
JME WORD FTR LEX]
Figure Three. New NEXT.
DOCOL: ING DX i FIG & MR
DEC FaF
DEC BF
MOV [EF],51
MOV S1,DX%
JMF NEXT
DOCOL.s INC BX 3 NEW
INC BX
DEC BF
DEC BF
MOV CBF1,S1
MOV 81.8BX
JMF NEXT

Figure Four. fig-FORTH and MVP-FORTH DOCOL, and new version.

FORTH SOURCE™

WISC CPU/16

The stack-oriented “Writeable Instruction Set
Computer” (WISC)is a new way of harmonizing the
hardware and the application program with the
opcode’s semantic content. Vastly improved
throughput is the resuit.

Assembled and tested WISC for

IBM PC/AT/XT $1500
Wirewrap Kit WISC for IBM PC/AT/XT $ 900
WISC CPU/16 manual $ 50
MVP-FORTH

Stable - Transportable - Public Domain - Tools
You need two primary features in a software
development package. . . a stable operating system
and the ability to move programs easily and quickly
to a variety of computers. MVP-FORTH gives you
both these features and many extras.

MVP Books - A Series

O3 vol. 1, All about FORTH. Glossary $25
O vol. 2, MVP-FORTH Source Code. $20

3 wol. 3, Floating Point and Math $25
I vol. 4, Expert System $15
O3 vol. 5, File Management System $25
O vol. 6, Expert Tutorial $15
O Vol. 7, FORTH GUIDE $20
CJ Vol. 8, MVP-FORTH PADS $50
0O vol. 9, WorkiKalc Manual $30
MVP-FORTH Software - A trans-
portable FORTH

O MVP-FORTH Programmer's Kit including
disk, documentation. Volumes 1,2 & 7 of MVP
Series, FORTH Applications, and Starting
FORTH, IBM, Apple, Amiga, CP/M, MS-DOS,
PDP-11 and others. Specify. $195

[0 MVP-FORTH Enhancement Package
tor IBM Programmer’s Kit. Includes full screen
editor & MS-DOS file interface. $110

[0 MVP-FORTH Floating Point and Math
0O 1BM, O Apple, or J CP/M, 8*. 875

OO MVP-LIBFORTH for IBM. Four disks of
enhancements. $25

[0 MVP-FORTH Screen editor for (BM. $15

[MVP-FORTH Graphics Extension for
O 18M or O Apple $80

{J MVP-FORTH PADS (Professional
Application Development System)

An integrated system for customizing your
FORTH programs and applications. PADS is a
true professional development system. Specity
Computer: O IBM 1 Apple $500

[MVP-FORTH Floating Point Math $100

[0 MVP-FORTH Graphics Extension $80

0 MVP-FORTH EXPERT-2 System
for learning and developing knowledge based
programs. Specify O Apple, O IBM, or
OCP/M 8. $100

Order Numbers:
800-321-4103

(In California) 415-961-4103

FREE
CATALOG

MOUNTAIN VIEW
PRESS

PO DRAWER X
Mountain View, CA 94040

Volume [X, Number 6

17

Forth Dimensions

NOWFOR IBM PC, XT, AT, PS2
AND TRS-80MODELS 1,3,4,4P

» -
ed DOCON: INC DX 1 FIG & MVF
The G'ﬂ MOV BX,DX
Computer MOV AX, CEX]
1. Buy MMSFORTH before year's end, JMF AFUSH
to let your computer work harder and
faster. - - . .
2. Then MMS will reward it (and you) DOCON: INC BX 3 NEW
with the MMSFQBTH GAMES DISK, INC BX
no adaitional charger o0 " #! MOV AX, LEX]
MMSFORTH is the unusually smooth JMF AFUSH

and complete Forth system with the
great support. Many programmers report
four to ten times greater productivity
with this outstanding system, and MMS
provides advanced applications pro-
grams in Forth for use by beginners and
for custom modifications. Unlike many
Forths on the market, MMSFORTH.gives
you a rich set of the-instructions, editing
and debugging toolsthat professional
programmers want. The licensed user
gets continuing, free phone tips and a
MMSFORTH Newsletter is available.

Figure Five. fig-FORTH and MVP-FORTH DOCON, and new version,

The MMSFORTH GAMES DISK includes DOVAF: INC DX P FIG % MVRE
arcade games (BREAKFORTH, CRASH- " 1 .

FORTH and, for TRS-80, Fneevg\\r), FLUSH DX

board games (OTHELLO and TIC-TAC-) =y T

FORTH), and a top-notch CRYPTO- JHF NEXT

QUOTE HELPER with a data file of

coded messages and the ability.to en- o) - TN - " -
code your own. Allof these come with DOVAR: L N(" EX i NEW
Forth source code, for a valuable and INCG EtX

enjoyable demonstration of Forth pro- R -

gramming techniques. FUSH HX

Hurry, and the GAMES DISK will be our JMF NEXT

free gift to you. Qur brochure is free,
too, and our knowledgeable staff is
ready to answer your guestions. Write.

Better yet, call 617/653-6136. Figure Six. fig-FORTH and MVP-FORTH DOVAR, and new version,

and a free gift! i
GREAT FORTH: 9 ; DOUSE: INC DX i FLG & MVP
MMSFORTHV2.4. ... $179.95* MOV 1% X
The one you've read about in FORTH: A A
TEXT & REFERENCE. Available for I1BM MOV Bl.,URX1
PC/XT/AT/PS2 etc., and TRS-80M.1, 3 GUR BH, BH
and 4 T ’ .
GREAT MMSFORTH OPTIONS: v MOV DI U
FORTHWRITEocooiil .95* -y Y BE S
FORTHCOM0 ... 49.95 LH* H}(s LEX+D1]
DATAHANDLER 5985 JHMF AFLISH
DATAHANDLER-PLUS* 99.95
EXPERT-2....................... ... 69.95
UTILITIES .o 48.95 LOUSE : INC BX 3 MEW
*Single-computer, single-user prices; cor- - - . ’
porate sité licenses from $1,000 adoditional. NG EX
35" tormat, add $5/disk; Tandy 1000, add all - " K
$20. Add S/H, plus 5% tax on Mass. orders. MU vj %{L“ ! L BXJ
DH+ not avail. for TRS-80s. S5UR EH , EBH
GREAT FORTH SUPPORT: 1 . o
Free user tips, MMSFORTH Newsletter, M?\']Z)I * Uf e
consulting on hardware setection, staff LEA AXLLEBX+DIY
training, and programming assignments o cdo L.
targe or smali. JHIE A WEA S
GREAT FORTH BOOKS:
FORTH: ATEXT & REF............. $21.95* . .
THINKING FORTH 16.95 Figure Seven. fig-FORTH and MVP-FORTH DOUSE, and new version,

Many others in stock.

MILLER MICROCOMPUTER SERVICES
61 Lake Shore Road, Natick, MA 01760

(817/653-6136, 9 am - 9 pm)

Forth Dimensions 18 Volume IX, Number 6

DOLOE. s XKCHG
FLISH
XCHG
InNG
MOV
MOV
TNC
InC
FUSH
JHF

DODOE: XCHG
FUISH
XKCHG
INC
ING
MOV
INC
INC
FLUSH
JME

DODOES: INC
DEC
DEC
Mav
FOF
FUSH
JMF

DODOES: INC
INC
DEC
DEC
MOV
FOF
FPUSH
JMF

EXEC DW
FOF
JMF

EXEC DW
FOF
IMP

BF, GF s FIG
&1

B, 5k

DX

BX,DX

51.0HEX)

DX

X

NEXT

BFL,SF 5 MEW
61

BE, BF

BX

BX

81, LEX]

EX

X

BX

MNEXT

Figure Eight. fig-FORTH DODOE, and new version.

DX ;. MUF
BE

EF

[BF1,SI

S1

DX

NEXT

BX 3 NEW
BX

BF

B

[BF1,81

81

BX

NEXT

Figure Nine. MVP-FORTH DODOES, and new version.

$4+2 : FIG & MVE
EX

NEXT1

F472 i NEW

BX

WORD PTR [BXI]

Figure Ten. fig-FORTH and MVP-FORTH EXEC, and new version.

(G

NGS FORTH

A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

S8TANDARD FEATURES
INCLUDE:

79 STANDARD
®DIRECT I/O ACCESS

oFULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

SENVIRONMENT SAVE
& 1LOAD

SoMULTI-SEGMENTED FOR
LARGE APPLICATIONS

OEXTENDED ADDRESSING

eMEMORY ALIOCATION
CONFIGURABLE ON-LINE

@AUTO LOAD SCREEN BOOT
OLINE & SCREEN EDITORS

eDECOMPILER AND
DEBUGGING AIDS

8088 ASSEMBLER
OGRAPHICS & SOUND
eNGS ENHANCEMENTS
eDETAILED MANUAL
®INEXPENSIVE UPGRADES
ONGS USER NEWSLETTER

A COMPLETE FORTH
DEVELOPMENT SYSTEM.

PRICES START AT $70

NEWe-HP-150 & HP-110
VERSIONS AVAILABLE

N
2

NEXT GENERATION SYSTEMS
P.0.BOX 2987

BANTA CLARA, CA. 95055
(408) 241-5909

Volume IX, Number 6

19

Forth Dimensions

Are you an avid user of Laxen and
Perry’s F83? Do you own or use a 68000-
based machine under CP/M-68K? And do
you find that F83 for the 68000 does not run
on your system? If you answered yes to
these questions, you will find the following
article of interest. This paper describes the
modification to F83 that enables the user to
compile and execute F83 anywhere within
the 68000’s address space. The techniques
discussed also provide the basis for creat-
ing a multiple-image Forth system.

The creation of F83 was a major mile-
stone for the Forth community. Here was a
public-domain Forth system with all the
essence of a professional package. And
with the release of the 68000-based ver-
sion, F83 became a truly powerful implem-
entation.

One of the many design decisions
Laxen and Perry had to make was how to
handle F83’s I/O. The result was a tradeoff
between minor performance degradation
for computer transportability. By con-
structing F83 to utilize basic DOS and I/O
routines defined by the two most common
operating systems (CP/M and MS-DOS),
Laxen and Perry effectively reduced im-
plementation dependency down to the CPU
level. As a result, F83 for the 808x was
written to run on either CP/M- or MS-DOS-
based computers (i.e., Kaypro, IBM PC,
etc.); and F83 for the 68000 was written to
execute on CP/M-68K-based computers
(i.e., Sage IV, MASCOMP, HP9920, etc.).

When Laxen and Perry implemented
their 68K version, however, they diverged
from their original goal of portability by
imposing an addressing restriction on their

code. ‘I'his restriction torced their implems-
entation to work only in the lowest 64K of
the 68000’s address space. As aresult, only
systems with RAM memory at this location
could run it. Many machines, however,
have their ROM memory located in this
region and their RAM memory elsewhere
in the 16Mb address space. Figure One
displays the memory map of such a com-
puter (the Hewlett-Packard 9000 Family
200 Series Technical Workstation).

“L&P implemented
part of this construct.”

Fortunately, a study of F83’s source
code revealed a means to extend the
system’s addressing with minor impact on
code size and efficiency. This ‘extended’
addressing would enable the programmer
to target the compiled code to any 64K
bounded area, henceforth described as a
page of memory. For the 68000, each page
of memory has a unique highest-address-
byte value. The hex address representation
is $XX YYYY, where XX represents the
unique page addressand YYY'Y represents
the local address within that particular
page. For example, the first addressable
page starts at $00 0000, the second at $01
0000, and the last at $FF 0000.

By constraining the Forth system to
exist between these pages of memory, the
original F83’s addressing can be used with
minimal address-conversion overhead.
The conversion involves the use of a CPU
register to address-extend Forth’s local

= 68000

RELOCATABLE F83
FOR TH

ROBERT J. EAGER - CORVALLIS, OREGON

addresses into their absolute address
equivalent. On boot-up, a designated reg-
ister has its upper 16 bits initialized with
the memory page address in which the exe-
cuting Forth system resides. Subsequent
memory accesses are done by taking the
Forth’s 16-bit local address and copying it
into the lower 16 bits of this register, and
then using the whole register (all 32 bits) to
address memory. (See Figure Two.)

Laxen and Perry, interestingly enough,
have already implemented part of this
conversion construct in order to correct for
an addressing anomaly unique to the
68000. Whenever a short address (16 bits)
is loaded into an address register, the
68000 extends its sign bit to form a 32-bit
address. This results in a 64K region of
addressable memory that starts in the
lowest 32K ($00 0000 through $00 7FFF)
and skips to the highest 32K ($FF 8000
through $FF FFFF). (See Figure Three.)

To compensate for this unorthodox
addressing behavior, F83 loads the short
address into a data register (D7), then cop-
ies it into an address register (AQ) as a 32-
bit value. It is this address that the original
Forth system uses to access memory. By
placing the desired page address (0000
through 0OFF) into the upper 16 bits of D7
on boot-up, we can use the original code to
automatically expand Forth’s local ad-
dresses into their 32-bit, absolute equiva-
lents. This modification and other recod-
ing resulted in the new Forth system that
can execute at any page of memory the
system was compiled for.

As a result of these code changes, all
high-level Forth words are unaffected,

Forth Dimensions

20

Volume IX, Number 6

both in function and code size. Assembly
code words which do not contain short
absolute addresses are also unaffected. For
those that do, their code has been modified
to use long absolute addressing. For the
programmer who is coding in assembly,
only two adjustments in coding technique
must be made. Follow each short absolute
address with the system’s base-page ad-
dress (BPAGE) and use the long absolute
assembly mnemonic [i.e., L#) vs. #)]
whenever addressing memory directly.

For example, to copy the 16-bit value
from the variable SPAN to D1, instead of
using:

SPAN
#) D1 MOVE

write:
SPAN BPAGE
L#) D1 MOVE

16 Mb - { $FF FFFF)
!Vhere _o| Transient Program Area
83 needs to be <—Top of my system RAM
{ RAM AREA)
Memory grows
downwards
8 Mb ($80 0000)
(VO AREA)
4 Mb ($40 0000)
(ROM AREA) } User Program ROMs
Where
F83 wantstobe — | System Boot ROMs
Figure One. Memory map of the HP9920.
Page of Memory
Address Register
31 15 0
Page addr Forth addr
Relative ? T
Memory —
Location System Memory
——<] 64Kb page Address of Memory Page

Figure Two. Representation of page and local addresses in memory.

where BPAGE is a 16-bit constant which
returns the 64K page address to which the
system was compiled. A second constant
BOFFSET specifies the starting address of
the kernel within this page. These two
words are defined twice in the kernel
source: Screen #1 contains the definitions
used by the metacompiler to target the ker-
nel, and screen #84 contains the definitions
for use by the Forth programmer.

To compile the kernel at a new target
address, simply edit the definitions BPAGE
and BOFFSET in screen #1 of the kemel,
and compile the system as described by
Laxen and Perry. (See Listing One, screen
#1.) Note: each listing contains the original
source screens in the left column, and its
corresponding ‘extended’ source screens
intherightcolumn. Screenlines (in the ‘ex-
tended’ source) that actually contain modi-
fied code are marked with a vertical bar at
the beginning of the line.

Extending F83 resulted in 10 words and
five source screens requiring modifica-
tions in the KERNELGS file (see Listing
One), and 10 words and one source screen
in the EXTENDG68 and CPU68000 files
(see Listing Two). No modifications were
required in either the METACOMPILER
or UTILITY files.

The effect on code size and execution
speed was as follows: a 640 byte growth in
size and a 3% increase in execution time
(based on the benchmark published in
Forth Dimensions VIII/4 — see Listing
Three).

To run this modified F83 (F83X), your
system must meet only three requirements.
First, the computer must be 680X0 based.
Second, the computer must use CP/M-68K
as its operating system. Third, the Tran-
sient Program Area (TPA) of the CP/M-
68K system must define a region of mem-
ory that contains at least one 64K bounded
page of RAM (i.e., $F2 0000 through $F2
FFFF). (See Figure Four.)

For those of you interested in loading
F83X onto your system, [have written a
CP/M-68K relocatable program called
GENFS83X.REL that enables the user to
bootstrap a relocatable version of F83X,
called F83XREL.HEX, onto their system,
To install F83X, the users copies
GENF83X REL and F83XREL.HEX onto
an empty, formatted diskette and places it
into the default drive. The user then exe-

Volume IX, Number 6

21

Forth Dimensions

cutes GENF83X.REL. After loading, the
program will display the system’savailable
TPA and prompt the user for the 64K page
they wish to target the code for. Pressing
<cr> without entering a number will result
in the F83X code being targeted for the first
available 64K page of memory. The result-
ing code will be written to the default drive,
with the filename F83X.68K.

With these enhancements to F83, any-
one who runs a 68000-based computer
under CP/M-68K, with at least 64K of
programming space, can run F83X. For
those wishing to take advantage of their
extra memory pages, one could load sev-
eral versions of F83X into memory, each
tailored for a specific task (i.e., word proc-
essing, spreadsheet, terminal emulation,
etc.). By adding code to allow the user to
jump between these self-contained sys-
tems, it is relatively simple to create a
multiple-Forth environment that enables
the user to access several applications at the
stroke of a word.

The source code for F83X,, and the relo-
cation program and its source, are available
for downloading from the Forth
RoundTable on GEnie, or by mail on 8”
SSSD CP/M, 5 1/4” DSDD MS-DOS, or 3
1/2” SS HP CP/M-68K format. To get a
copy, send a sufficient number of disks (8”
and 3 1/2” require four diskettes; 5 1/4”
requires three) and a stamped, self-ad-
dressed envelope with $10 for handling to:
Robert J. Eager, 3500 NW Glenridge P1.,
Corvallis, Oregon 97330.

Recommended References

Laxen and Perry’s implementation of the
Forth-83 Standard for the MC68000.
Original code and source, version 2.0.1.
Inside F83 by Dr. C.H. Ting. A must!
Motorola MC68000 32-bit Microproces-
sor User Manual, 2nd ed.

The author currently works as a soft-

ware engineer at Wright Patterson Air
Force base.

($ FFFFFF)
Upper 32Kb Memory
($ FF 8000)
A
{ Absolute Address) Non-Addressable Memory
\J
{$ 00 7FFF)
Lower 32Kb Memory
($ 000000)

($ FFFF)

($ 8000)

{ Relative Address)

($ 7FFF)

($ 0000)

Figure Three. 32-bit-absolute vs. 16-bit-absolute addressing.

Highest RAM

Usable TPA space —»

CP/M-68K
CCP/BDOSBIOS

TPA End

Stack

System g

(64Kb boundary markers)
o

Second availabie 64Kb page.
(ex: $ F3 000 - FFFF)

First available 64Kb

ge.
(ex: $ F2 000 - FFF

TPA Begin

System Parameters

Lowest RAM

Figure Four. CP/M-68K’s TPA location relative to the CCP/BDOS/BIOS.

Forth Dimensions

22

Volume IX, Number 6

0
)) 14
[+] T"e Rest is Silence 03Apr8amap 0 \ Execution Control 28Apr84map
1 seetececisaiinnsrtanaenns P P S L nSSEMELER SHEXT META CONSTANT 3REXT
Z ME A amsAsEsNRR O NS RANS I e RN R AR RS AR AR AR R S A reuTE (s ofe o)
3 tee) b 3 SP)+ D7 MOVE D7 W LMOVE
q bes Please direct all questions, comments, and e 4 W)+ D7 MOVE D7 A0 LMOVE A0) JMP END-CODE
5 w4 miscellaneocus personal abuse to: L S CODE PERFORM (s addr-of-cfa --)
6 *x*) e 6 SP)+ D7 MOVE D7 W LMOVE W)+ D7 MOVE D7 W LMOVE
7 e Henry Laxen or Michael Perry e 7 W)+ D7 MOVE D7 A0 LMOVE A0) JMP END-CODE
8 vt 1259 Cornell Avenue 1125 Bancroft Way ko 8 LABEL DODEFER (s ——)
9 wwd Berkeley, California Berkeley, California e 9 + PERFORM @-T 4 + #) JMP
10 == 94706 94702 s 10 LABEL DOUSER-DEFER
11 ==e o 11 W) D7 MOVE UP #) D7 ADD ’ PERFORM @-T 2+ #) JMP
12 A4tenesataae NN rre Rttt e AR A R AR AR A A A A AR Ak b AR 12 cove co is adde -0)" Rrs EMD-coDE
13 Sasasssassoaeeaussasas st ot emnREAR IR Lo NRANL IR AR S S 13 CODE B00P NexT END-CODE
14 14 CODE PAUSE NEXT END-CODE
15 1s
1 38
0 \ Target System Setup 19Apr8imap 0 \ Task Dependant USER Variables 24Mar84map
1 ONLY FORTH META ALSO PORTH L USER DEFINITIONS
2 HEX A800 * TARGET-ORIGIN >BODY 1 IN-META DECIMAL 2 VARIABLE TOS (TOP OF STACK)
32 92 THRU (System Source Screens) HEX 3 VARIABLE ENTRY { ENTRY POINT, CONTAINS MACHINE CODE)
4 CR .(Unresolved refereaces:) CR .UNRESOLVED 4 VARIABLE LINK (LINK TO NEXT TASK)
$ CR . { Statistics:) CR .(Last Host Address:) 5 VARIABLE S$PO (INITIAL PARAMETER STACK |
6 (FORTH] HERE U. CR .{ First Target Code Address:) 6 VARIABLE RPO { INITIAL RETURN STACK)
7 META 500 THERE U. CR .(Last Target Code Address:) 7 VARIABLE DP (DICTIONARY POINTER)
8 META HERE-T THERE U. CR CR 8 VARIABLE #0OUT { BUMBER OF CHARACTERS EMITTED }
9 DOS HERE-T 4E§ !-T 9 VARIABLE W#LINE { THE NUMBER OF LINES SENT SO FAR)
10 META 500 1C - THERE HERE-T 100 + 10 VARIABLE OFFSET { RELATIVE TO ABSOLUTE DISK BLOCK 0)
11 ONLY FORTH ALSO DOS SAVE A:KERNEL.68K PORTH 11 VARIABLE BASE (FOR NUMERIC INPUT AND OUTPUT)
12 CR .{ Now return to CP/M and type:) 12 VARIABLE HLD (POINTS TO LAST CHARACTER HELD IN PAD }
13 CR .{ KERNEL EXTEND68.BLK <CR> } CR .(OK <CR>) DECIMAL 13 VARIABLE FILE { POINTS TO FCB OF CURRENTLY OPEN FILE)
14 14 VARIABLE IN-FILE (POINTS TO FCB OF CURRENTLY OPEN FILE |
15 15 VARIABLE PRINTING
) 41
0 \ Declars the Forward Referances and Version # 290ctB83map 0 \ Devices strings 07MarBamap
L0) 1 LABEL >UPPER (D6 --> D6) BYTE ASCII a D6 CMPI
2 (1 [COMPILE) | : FORTH IMMEDIATE META 2 >= IF ASCII z D6 CMPI <= IF BL D6 SUBI THEN THEN RTS
3 3 CODE CAPS-COMP (5 addr) addr2 len -- -1 | 0 | 1)
4 FORWARD: DEFINITIONS 1 SP)+ DO MOVE 1 DO ADDQ
5 FORWARD: [5 SP)+ D7 MOVE D7 A0 LMOVE SP)+ D7 MOVE D7 Al LMOVE
¢ 6 BEGIN 1 DO SUBQ 0<> WHILE BYTE
7 7 Al)+ D6 MOVE »>UPPER #) JSR D6 Dl MOVE
8 LABEL FILE-HEADER HEX] AQ }+ D6 MOVE >UPPER #) JSR D1 D6 CMP WORD
9 500 1c - DP-T ! 9 0¢> 1f O0C IF 1 § SP -) MOVE ELSE -1 # SP —-) MOVE THEN
10 601A ,-+ 0 ,-T O ,-T O ,-T & ,-T 0 ,-T 0 ,-T 10 NEXT THEW
10,0 ,-r 0,T0,-T O0,-T50,-T -1,-T 11 REPEAT SP -) CLR NEXT END-CODE
12 DECIMAL 12
i3 13 : COMPARE (S addrl addr2 len -- ~1 | 0 | 1)
14 14 CAPS @ IF CAPS-COMP ELSE COMP THEN
15 15
) 5
0 \ Boot up Vectors and NEXT Interpreter 10Apr8dmap 4 X . .
1 ASSEMBLER LABEL ORIGIN 0 \ Devices Terminal IO via CP/M BIOS 13apr84map
2 -1 &) JIMP (Low Level COLD Entry point } 1 CREATE REG-BUF 64 ALLOT (Save registers |
3 -1 %) JMp (Low Level WARM Entry point) 2 CODE BDOS (S n fun -—- m |
4 LABEL >NEXT 3 SP }+ DO MOVE SP)+ D7 MOVE D7 DL LMOVE 2 TRAP
5 IP)+ D) MOVE D7 W LMOVE 4 DO SP ~) MOVE NEXT END-CODE
6 W)+ D7 MOVE D7 AO0 LMOVE AQ) JIMP 5 CODE BIOS (S parm func$ -- ret } HEX
7 ASSEMBLER >NEXT META CONSTANT >NEXT 6 SP)+ DO MOVE SP)+ D1 MOVE
8 ASSEMBLER DEFINITIONS META 7 LORG = 7F00 REG-BUF §) MOVEM) ~WORD 3 WRAP NEXT END-CODE
9 H: NEXT META ASSEMBLER »>NEXT #) JMP [DO SP -) MOVE LONG 7F00 REG-BUF #) MOVEMC EX -
10 IN-META 9 DECIMAL
11 HERE-T DUP 100 + CURRENT-T ! (harmless) 10 : (KEY?) (S -- £) 0 2 BIOS 00
12 VOCABULARY FORTH FORTH DEFINITIONS 11 : (XEY) (s —— char }
13 0 OVER 2+ !-T (link) 12 BEGIN PAUSE (KEY?) UNTIL 0 3 BIOS
14 DUP 2+ SWAP 16 + (-T (thread) IN-META 13 : (CONWSOLE) (s char --)
15 14 PAUSE 4 BIOS DROP 1 #OUT +!
15
5
0 \ Run Time Code for Defining Words 07Mar84map 77
1 VARIABLE UP 0 \ Extensible Lavyer Defining Words 21DecB3map
2 LABEL DOCONSTANT 12 e o is lMOT reese
3 W) SP ~) MOVE NEXT 2 - PooE R .
4 LABEL DOUSER_VARIABLE g H;s): (s p”)’)spp CSP @ <> ABORT" Stack Changed ;
5 W) DO MOVE UP 4) DO ADD DO SP —} MOVE NEXT
T bu ! H
6 CODE (LIT) (S —~ n) IP)+ SP —) MOVE NEXT END-CODE S om0 P_MILINK & SWAR CURRENT € HASH !
;’ 6 LAST @ DUP N>LINK SWAP CURRENT @ HASH !
o 7 : (;USES) (5 ——) R> @ LAST @ NAME> !
8 VOCABULARY ASSEMBLER
; 9 : ;USES (S ——)} ?CSP COMPILE (;USES)
0 \ Identify numbers and forward References 08Jan84map ig . (.ésg:TIL“ {s ‘RE‘;B“’R> ASSE::";E: NM:H::HH.':D“'\TE
1 HEX ; - P
ey 12 : ;CODE (§ -——)} 2CSP COMPILE (;CODE}
:;?'“;3:5”; “'C?:Bl:) 13 [COMPILE] (REVEAL ASSEMBLER IMMEDIATE HEX
: 14 : DOES> (S --) COMPILE (;CODE) 4EBS , { JSR) [DECIMAL |
4 [FORWARD] <{;CODE)> HERE-T 5.
M 4EBS .-T {{ ASSEMBLER DODOES |] LITERAL ,—T T; 15 [[ASSEMBLER) DODOES META | LITERAL , ; IMMEDIATE
6 : NUMERIC (S5 ——) o4
: (FORTH] HERE [META] WUMBER DPL € 1+ 1P O \ Initialization High Level 19Apr84map
[TRANSITION]} DLITERAL [META] 1 1 CONSTANT INTTIAL
9 ELSE DROP [{ TRANSITION)] LITERAL [META] THEN ; 2:oon ls e M NITIAL LoAD
10 : UNDEFINED (S --) 3 i start (s , ;
11 HERE-T o ,-T : o A
12 IN-FORWARD (FORTH| CREATE [META) TRANSITION ; B::’";“"f“ DEFAULT
13 [FPORTH] , FALSE , [META] o= .
14 DOES> FORWARD-CODE : : gno B!;glsls 0 256 UM/MOD NIP 1+ DECIMAL U. ." Pages"
15 DECIMAL . ;
L]
10
Volume IX, Number 6 23 Forth Dimensions

85 96
0 \ Initjalization Low 07Mar84map \ Boot up Vectors and NEXT Interpreter 19DEC86r e
1 [ASSEMBLER] ASSEMBLER HEX
2 HERE ORIGIN € + !-T (WARM ENTRY) LABEL ORIGIN FFFF FFFF L#) JMP (Low Level COLD Entry point |
3’ WARM 0 L¥) W LEA FFFF FFFF L#) JMP (Low Level WARM Entry point |
4 W)+ D7 HOVE D7 A0 LMOVE A0) JMP LABEL >NEXT IP }+ D7 MOVE D7 W LMOVE
5 W)+ D7 MOVE D7 A0 LMOVE A0) JMP
6 HERE ORIGIN 2 + !-T (COLD ENTRY POINT)
7 INIT-RO 0 L#) RP LEA INIT-RO 256 - O L¥) SP LEA ASSEMBLER >NEXT META CONSTANT >NEXT
8 LONG D7 CLR WORD ASSEMBLER DEFINITIONS META
8 ' COLD 0 L¥) W LEA H: NEXT META ASSEMBLER >NEXT BPAGE L#) JMP
10 W)+ D7 MOVE D7 A0 LMOVE A0) JMP DECIMAL IN-META
11 HERE-T DUP 100 + CURRENT-T ! { harmlaess)
VOCABULARY FORTH FORTH DEFINITIONS
86 0 OVER 2+ !-T (link)
0 \ Initialize User Variables 13Apr84map DUP 2+ SWAP 16 + !-T (thread) IN-META
1 HERE UP !-T { SET UP USER AREA)
2 0, (TOS) 0 , { ENTRY) 0 , (LINK)
3 INIT-RO 256 - , { SPO) INIT-RO , (RPO) 98
4 0, (DP) (Must be patched later) \ Run Time Code for Defining Words 19DEC8Srje
5 0, (#OUT) 0 , (#LINE)
6 0, (OFFSET) VARIABLE UP
7 10 , { BASE) 0 , {(HLD)
8 0, { FILE) LABEL DOCONSTANT W) SP -) MOVE NEXT
9 0 , { IN-FPILE)
10 PALSE , (PRINTING) LABEL DOUSER-VARIABLE W) DO MOVE UP BPAGE L#) DO ADD
11 ¢ (EMIT) , (EMIT) DO SP ~) MOVE NEXT
12
ii CODE (LIT)} (5 -— n) IP)+ SP -) MOVE NEXT END-CODE
15
° 100
0 The Rest is Silence 03Aprédmap .
R T T e R R Y P \ Identify numbers and forward References 20DEC85rje
2 R B R AR AR AN R AR N R IR AR RN AR AR SRR A RN B R AR A AR AR RN R R AR N AR AR HEX
3 wes P FORWARD: <{;CODE)>
q e Please direct all questions, comments, and re T: DOES> (s ==)
5 aew miscellaneous personal abuse to: awe {FORWARD] <({;CODE)> HERE-T 4EBY ,-T (JSR.L OP-CODE }
6 wes hw [{ FORTH BPAGE]] LITERAL ,-T { BW of address)
7 s Henry Laxen or Michael Perry PR . mm“;é(AT:EP_(EL?R DODOES]} LITERAL ,-T T: (LW of address)
g e 1259 Cornell Avenus 1125 Bancroft Way LA N
9 es Berkeley, California Berkeley, California *en [FORTH] HERE [META] NUMBER DPL @ 1+ IF
10 s 94706 94702 e [{ TRANSITION)] DLITERAL [META]
11 *s+ P ELSE DROP [[TRANSITION)] LITERAL {META] THEN :
12 S Ea A A R A AR R AR AR AR A LRI AR R R RS R A N R LR AR AR A AR R R, : UNDEFINED (S --) HERE-T o ,-T
13 AN R RN AR N R R R AR KRR AN R AR AN RN R R AN AP R AR A N AR AR IN-FORWARD (FORTH] CREATE [META| TRANSITION
14 [FORTH]) , FALSE , (META] DOES> FORWARD-CODE ;
15 DECIMAL
93
The Rest is Silence 10FEB86rje 107
P N I I I I I . \ Execution Control 19DEC85r e
b L ASSEMBLER >NEXT META CONSTANT >NEXT
e Please direct all guestions, comments, and LER CODE EXECUTE {S cfa ~—) SP)+ D7 MOVE D7 W LMOVE
et miscellaneous personal abuse to: ' x W)+ D7 MOVE D7 A0 LMOVE
b Henry Laxen or Michael Perry o A0) JMP END-CODE
b 1259 Cornell Avenue 1125 Bancroft Way L CODE PERFORM (§ cfa-addr -- } SP)+ D7 MOVE D7 W LMOVE
b Berkeley, CA 24706 Berkeley, CA 94702 ol W)+ D7 MOVE D7 W LMOVE
tx ae W)+ D7 MOVE D7 A0 LMOVE
LA Please direct all questions, concerning the e AC) JMP END-CODE
s address extensions made to F83 for the 68000 to: e LABEL DODEFER {S =—) ' PERFORM @-T 4 + BPAGE L#) JIMP
e Robert Eager e LABEL DCUSER-DEFER (5§ --) W) D7 MOVE up BPAGE L#) D7 ADD
LA 3500 Glenridge Place *ar * PERFORM @~T 2+ BPAGE L#%) JMP
L Corvallis, OR 97330 b CODE GO (5 daddr --) RTS END-CODE
L E) L CODE NOOP NEXT END-CODE
R T N I T T T T CODE PAUSE NEXT END-CODE
94
\ Target System Setup 30JANB6Cje 131
ONLY FORTH META ALSO FORTH HEX A800 ' TARGET-ORIGIN >BODY ! \ Task Dependant USER Variables 08FEB86rje
00F2 CONSTANT BPAGE { Base Page compilation addr) USER DEFINITIONS
0500 CONSTANT BOFFSET IN-META { Base Page Offset.) VARIABLE TOS { TOP OF STACK)
DECIMAL 2 92 TRRU HEX (System Source Screens } VARIABLE ENTRY {(ENTRY POINT, CONTAINS MACHINE CODE)
CR .{ Unresolved references: } CR -UNRESOLVED VARIABLE MPAGE { HIGHWORD MEMORY PAGE ADDR FOR OPCODE)
CR .{ Statistics: } VARIABLE LINK { LINK TO NEXT TASK)
CR .(Last Host Address:) [FORTH] HERE U. VARIABLE SPO { INITIAL PARAMETER STACK)
CR .(First Target Code Address:) META BOFFSET THERE U. VARIABLE RPO { INITIAL RETURN STACK)
CR .(Last Target Code Address:) META HERE-T THERE U. CR CR VARIABLE DP { DICTIONARY POINTER)
ale 1) HERE-T BOFFSET 18 - '-T VARIABLE #0UT { NUMBER OF CHARACTERS EMITTED)
META BOFFSET 1C - THERE HERE-T 100 + { kerntop \ kernbot -—) VARIABLE #LINE { THE NUMBER OF LINES SENT SO FAR)
ONLY FORTH ALSO DOsS SAVE KERNELX.68K FORTH VARIABLE OFFSET (RELATIVE TO ABSOLUTE DISK BLOCK 0)
CR .(Now return to CP/M and type:) VARIABLE BASE { FOR NUMERIC INPUT AND OUTPUT)
CR .(KERNELX EXT68KX.BLK <CR>) CR .{ OK <CR>) DECIMAL VARIABLE HLD (POINTS TO LAST CHARACTER HELD IN PAD }
VARIABLE FILE (POINTS TO FCB OF CURRENTLY OPEN FILE)
VARIABLE IN-FILE { POINTS TO FCB OF CURRENTLY OPEN FILE)
95
\ Declare the Forward References and Version # 19DEC85r)e 137
11 } H \ Devices Strings 19DEC85rje
if (COMPILE] [; FORTH IMMEDIATE META LABEL >UPPER { D6 ——> D6) BYTE ASCII a D6 CMPI
>= IF ASCII z D€ CMPI <= IF BL Dé SUBI THEN THEN RTS
FORWARD: DEFINITIONS CODE CAPS—-COMP (S addrl addr2 len -~ -1 | 0 | 1)
FOAWARD: [SP)+ DO MOVE 1 DO ADDQ
(Create the kernel’'s CP/M-68k Absoclute File Header) SP }+ D7 MOVE D7 A0 LMOVE SP)+ D7 MOVE D7 Al LMOVE
LABEL FILE-HEADER BEGIN 1 DO SUBQ 0<¢<> WHILE BYTE
HEX Al }+ D6 MOVE >UPPER BPAGE L#) JSR D6 D1 MOVE
BOFFSET iC - DP-T ! { Load Target dictionary ptr with tstart)} A0)+ D6 MOVE >UPPER BPAGE L#) JSR D1 D6 CMFP WORD
0<¢> IF 0c¢ 1P 1 # SP -) MOVE ELSE -1 # SP —) MOVE THEN
601A ,-T 0000 ,-T GOOO ,-T 0000 ,-T 0000 ,-T 0000 ,-T G000 ,-T NEXT THEN
0000 ,-T 0000 ,-T 0000 ,-T 0000 ,-T BPAGE ,-T BOFFSET ,-T REPEAT SP -) CLR NEXT END-CODE
FFFF ,-T
DECIMAL : COMPARC (5 addrl addr2 len -- -1 | O [1)
CAPS @ IF CAPS-COMP ELSE COMP THEN ;

Forth Dimensions 24 Volume IX, Number 6

138
\ Devices
CREATE REG-BUP

Terminal I0 via CP/M BIOS

19DEC8Srje
64 ALLOT { Save registers)}

CODE BDOS (5 n fun —- m)
SP)+ DO MOVE SP)+ D7 MOVE D7 D1 LMOVE 2 TRAP
DO SP -) MOVE NEXT END-CODE
CODE BIOS (S parm func# -- ret) HEX
SP)+ DO MOVE SP }+ D1 MOVE
LONG 7F00 REG-BUF BPAGE L#} MOVEM)> WORD 3 TRAP
DG SP -} MOVE LONG 7r00 REG-BUF BPAGE L#) MOVEM«
NEXT END-CODE DECIMAL
: (KEY?) {$§ -~ £) 0 2 BIOS 0<> ;
: (KEY) (8 -- char) BEGIN PAUSE (KEY?) UNTIL 0 3 BIOS
: (CONSOLE) (S char -~ } PAUSE 4 BIOS DROP 1 s0UT +! H
170
\ Extensible Layer Defining Words 20DEC85rje
: 1CSP (S -—) sSp@ Csp ! H
2CSP (s) SP@ CSP @ <> ABORT" Stack Changed" H
: HIDE (s) LAST @ DUP NO>LINK @ SWAP CURRENT @ HASH !
: REVEAL (s) LAST @ DUP N>LINK SWAP CURRENT @ HASH ! ;
: (;USES} (S --) R> @ LAST @ NAME> i H
VOCABULARY ASSEMBLER
: ;USES {8 -=) 2Csp COMPILE {;USES) [COMPILE]) |
REVEAL ASSEMBLER H IMMEDIATE
: (;CODE) (5 —--) R> LAST @ NAME)> H b
: ;CODE (s ==) 2CsP COMPILE (;CODE) {[COMPILE} |
REVEAL ASSEMBLER H IMMEDIATE HEX
DOES)> (8 ——) COMPILE (;CODE) 4EB9 , { JSR)
[DECIMAL } [[FORTH] BPAGE META | LITERAL , { HW)
[[ASSEMBLER] DODOES META | LITERAL , (LW)

; IMMEDIATE

177

\ Initialiszation High Level 30JANBG6r je
1 CONSTANT
BPAGE CONSTANT

BOFFSET CONSTANT

INITIAL
BPAGE

BOFFSET
: ok

{$ ——) INITIAL LOAD H

START (S --)} EMPTY-BUFFERS DEFAULT :

i BYE { ==)} CR HERE BOFFSET - 1+ 0 128 UM/MOD

SWAP 0> IF 1+ THEN DECIMAL U. ." Records” CR

0 0 BDOS ;
178
\ Initialization Low Level 26JAN8B6rje

[ASSEMBLER])
C emii i, WARM BOOT............... }
BPAGE ORIGIN 8 + !-T (HIGH WORD OF WARM ENTRY POINT ADDRESS)
HERE ORIGIN 10 + !-T {(LOW WORD OF WARM ENTRY POINT ADDRESS)
i

LONG 0 BPAGE # D7 MOVE WORD
' WARM BPAGE L¥#) W LEA
W }+ D7 MOVE D7 A0 LMOVE A0)
(et COLD BOOT. }
BPAGE ORIGIN 2+ {-T (HIGH WORD OF COLD ENTRY POINT ADDRESS
HERE ORIGIN 4 + !-T (LOW WORD OF COLD ENTRY POINT ADDRESS
INIT-RO BPAGE L#) RP LEA
INIT-RO 256 ~ BPAGE L#¥) SP LEA
LONG 0 BPAGE % D7 MOVE WORD {
’ COLD BPAGE L#) W LEA

{ LOAD D7 W/ BASE PAGE ADDRESS

LOAD D7 W/ BASE PAGE

ADDRESS

W)+ D7 MOVE D7 A0 LMOVE A0) JMP
179
\ Initialize User Variables O8FEB86rje
HERE UP !-T 0, (TOS) { Set up User Area)
0 , {(ENTRY)
BPAGE , (MPAGE
0 , { LINK)
INIT-RO 256 - , { SPO) { Place the Param Stack }
INIT-RO , (RPO) { 256b above Return Stack. }
0, (DP) { Must be patched later.)
0, (#0UT)
0 , (#LINE)}
0 , (OPFSET)
10 , (BASE) { Come up in Decimal. }
0 , (HLD)
0, (FILE)
0, (IN-FILE)
FALSE , (PRINTING) ¢ {EMIT) , (EMIT)
0
\ The Rest is Silence 03Apr84map

hee

LR R R R R R R R R

R R R S Y L R L L L RN R R R R R

sen wae
LA Please direct all guestions, comments, and LA
bl miscellaneous personal abuse to: LR
e “nn
b Henry Laxen or Michael Perry e
rhe 1259 Cornell Avenue 1125 Bancroft Way e
ara Berkeley, Califormia Berkeley, California LA
b 94706 94702 anw
san e

R I R R T T A

A KRR RN N R AP AR AR A AR AN RN R IR A A R R R R AN R Al A bk A A e kAN R AR

L N

CeuauUvaAwNRrDO

e e e
vwoewn o

CBLOANAWN RO

VLAV AWNFO

10
11
12
13
14

I RN ST S VNN Y

-
3

11
12
13
14
15

Q
The Rest is Silence 03Apréamap
T T T R T T R O R AP

aen R R R L R R R R N T T R R NP P Py

ALt AN RAR AN AT IR R RN KRN

“ see

re Please direct all guestions, coaments, and LA

miscellaneous personal abuse to: e

rae
“aw aaa

rae Henry Laxen or wae
1259 Cornell Avenue
Berkeley, Califormnia

94706

Michael Perry

1125 Bancroft Way
Berkeley, California
94702

L ae

TR L)

wee

Aws

ras
R D e N Y L L]

.
R R R T N N O R O Y Y LR A

9
\ Save a Core Image as a File on Disk 30Mar84map
DEFER HEADER HEX
: 68K-HEADER { ADR LEN -- ADR-28 LEN+28)
1C + SWAP 1C — SWAP OVER DUP 1C ERASE
601A OVER ! 4 + HERE OVER ! 14 + 500 OVER ! 2+ ON ; DECIMAL
* 68K-HEADER IS HEADER
SAVE (S Addr len ———)
FCB2 DUP !FCB DUP DELETE DROP DUP MAKE-FILE -ROT HEADER
BOUNDS ?DO I SET-DMA DUP WRITE 128 +LOOP CLOSE H
FORTH DEFINITIONS
MORE {$ n —) (pos)
1 ?ENOUGH CAPACITY SWAP DUP 8* FILE @ MAXRECH +! BOUNDS
?Dbo I BUFFER B/BUF BLANK UPDATE LOOP
SAVE-BUFFERS FILE @ CLOSE M
CREATE-FILE (S $blocks --)
[pos | FCB2 DUP !FILES DUP !FCB MAKE-FILE MORE H
0
The Rest is Silence 03Apr8imap

R AR RN RS RN RN ARSI IR R RN RN R AR R A AR

SerRs AR LA NN T AR TN R RN

AR AN A AR AR AR R AR AR A N R A R R A AR A AT A AP RN SRR R AR AR R R

res e

L Please direct all questions, comments, and LA

ee miscellaneous personal abuse to: are

ae aen

e ana

Michael Perry

1125 Bancroft Way
Berkeley, California
94702

Henry Laxen or
1259 Cornell Avenus
Berkeley, California
94706

wes e

tee aee
e e

ans xS

D R R I R T T
I TI IR

L R R T PR

[}
The Rest is Silence C4Apr84map

I I NI
I rmmmIIInInnmnmnmnn o,
aee ens
and

saa ree

Please direct all questions, coaments,

v miscellaneous personal abuse to:

sas

aan

aee ase

Henry Laxen or
1259 Cornell Avenus
Berkeley, California
94706

Michael Perry

1125 Bancroft Way
Berkeley, California
94702

“he ane

ere aae
" hw Y
e —rn

AA RN R E N E NI R AR AN N AR RS

L R N A T

L R R RN T T T S R R W R R R R NP

3
\ 68000 Assembler Load Screen 13Apr8dmap
ONLY FORTH ALSO DEFINITIONS
1 14 +THRU
: NEXT >NEXT #) JMP ;
: INIT { ASSEMBLER] WORD ;
ONLY FORTH ALSO DEFINITIONS
HEX 4EBS CONSTART DOES-OP DECIMAL
4 CONSTANT DOES-SIZE
DOES? (S IP -- IP" F)
DUP DOES-SI2E + SWAP @ DOES-OP = H
LABEL CREATE ASSEMBLER [ASSEMBLER] INIT H
CODE CODE [ASSEMBLER | INIT H
19
\ Vocabulary, Range test 02Apr84map
VOCABULARY BUG BUG ALSO DEFINITIONS
VARIABLE <IP VARIABLE IP>
VARIABLE CNT VARIABLE ‘'DEBUG
LABEL FNEXT
IP }+ D7 MOVE D7 W LMOVE
HERE
W }+ D7 MOVE D7 AQ LMOVE AD) JMP C;
CONSTANT FNEXT1
FORTH DEFINITIONS
CODE UNBUG (s --
BUG FNEXT ASSEMBLER 0 L#) >NEXT §) LONG MOVE WORD NEXT C:

BUG DEFINITIONS

Volume IX, Number 6

25

Forth Dimensions

47

\ Debug version of Next O6FEB86rije
LABEL DEBNEXT HEX
IP DO MOVE <IP BPAGE L&) DO CMP 6500 { U>=)
r IP> BPAGE L#) DO CMP 6200 (Ue=)
ir CNT BPAGE L#) D2 MOVE 1 D2 ADDQ
D2 CNT BPAGE L#) MOVE 2 4 D2 CMP O=
1r CNT BPAGE L§) CLR LONG
FNEXT BPAGE L¥)} >NEXT BPAGE L#) MOVE
WORD FNEXT 4 + BPAGE L#) >NEXT 4 + BPAGE L#§) MOVE
IP SP -) MOVE 'DEBUG BPAGE L#) D7 MOVE
D7 W LMOVE PNEXT1 BPAGE L#) JIMP THEN THEN THEN

FNEXT BPAGE L#) JMP C;
LABEL JBUG
CODE PNEXT

JBUG BPAGE L#)

JBUG 4 + BPAGE L#)

DECIMAL
DEBNEXT BPAGE L#) JMP C;

>NEXT BPAGE L#) LONG MOVE WORD
>REXT 4 + BPAGE L#) MOVE NEXT C;

49
\ Multitasking low level 10FEB86rje
CODE (PAUSE) (s -—-)

IP SP -) MOVE |(
UP BPAGE L#)
SP AO

IP to stack)
D7 MOVE
)+ MOVE {

RP SP -) MOVE
D7 A0 LMOVE
SP to USER area)

{ RP to stack)

4 A0 LONG ADDQ WORD

A0 } D7 MOVE D7 ACG LMOVE A0) JMP (to naext task) C;
LABEL RESTART {8 ~=)

SP)+ D7 MOVE (drop SR) SP)+ AD LMOVE (return address)

4 AD SUBQ A0 UP BPAGE L#) MOVE { Set UP to new user)

A0) D? MOVE D7 SP LMOVE (Restore stack)

SP)+ D7 MOVE D7 RP LMOVE |
SP)+ D7 MOVE D7 IP LMOVE |
HEX
4E47 CONSTANT TRAP?
0027 CONSTANT TRAPTVECTOR#

Return stack)

Restore IP) NEXT c:

4EF9 CONSTANT JMPL$

TRAP7 ENTRY ! ENTRY LINK ! DECIMAL
50

\ Manipulats Tasks O8FEBB6C)e
HEX
CODE INSTALL_VECTOR (S new dadr vector$ -- old_dadr)

16 Do MOVEQ (func#)

SP)+ D1 MOVE SP)+ D2 LMOVE

3 TRAP [+24] SP -) LMOVE NEXT C;

: LOCAL {S base addr -- addr’) upr @ - + H
: OLINK (S -- addr) LINK @ ;
: ILINK (S addr -~) LINK ! H
: SLEEP (S addr —-) JIMPL4 SWAP ENTRY LOCAL !
T WAKE {$ addr --) TRAP] SWAP ENTRY LOCAL : ;
: STOP (8 -~) UP @ SLEEP PAUSE
: SINGLE (S ——) [’} PAUSE >BODY [’'] PAUSE !
: MULTI {s ——) RESTART BPAGE TRAPIVECTORE INSTALL VECTOR

2DROP [’) (PAUSE) @ [') PAUSE ! ;
DECIMAL

15
The Rest is Silence 10FEBB6Er)e

Y R R R R R R I I Iy

e e

LA Please direct all questions, comwents, and e
LA miscellanecus personal abuse to: LA
i Henry Laxen or Michael Perry e
A 1253 Cornell Avenus 1125 Bancroft Way e
waw Berkeley, CA 94706 Berkeley, CA 94702 e
an e
are Please direct all guestions, concerning the L
L address extensions made to F83 for the 68000 to: e
e Robecrt Eager LR
LA 3500 Glenridges Place e
e Corvallis, OR 97330 aew

aee A

R R R N R RN

24
\ Save a Core Image as a File on Disk
DEFER HEADER HEX
68K-HEADER { ADR LEN -~ ADR-28 LEN+28)
1C + SWAP 1C - SWAP OVER DUP 1C ERASE
601A OVER ! 4 + HERE OVER ! 12 + BPAGE OVER !
1 2+ BOFFSET OVER ! 2+ ON DECIMAL * 68K~HEADER IS5 HEADER

29JANS6r)e

SAVE (S Addr len ---)
FCB2 DUP (FCB DUP DELETE DROP DUP MAKE-FILE -ROT HEADER
BOUNDS ?D0C I SET-DMA DUP WRITE 128 +LOOP CLOSE H

FORTH DEFINITIONS

MORE (s n--) [DOS)
1 ?ENOUGH CAPACITY SWAP DUP 8* FILE € MAXRECY +! BOUNDS
?D0 I BUFFER B/BUF BLANK UPDATE LOOP
SAVE-BUFFERS FILE @ CLOSE H

CREATE-FILE (S #blocks =--)
{ DOS] FCB2 DUP !FILES DUP !FCB MAKE-FILE MORE H
[

The Rest is Silence 0lApr8dmap

R R R O O N I R T N R PR RNy
R I N I I I O I Y R R e

s s

rhw Please direct all guestions, comments, and LA
A miscellaneous personal abuse to: e
Y san
e Henry Laxen or Michael Perry LA
e 1259 Cornell Avenus 1125 Bancroft Way e
war Berkeley, Califacrnia Berkeley, California e
e 94706 94702
e aae

rexnane

daswaner

Mabaq ARt R R A C R IRtk

P R R R N R TR

27
The Rest is Silence 10FEB86rje

AR AN R RN P AR AR R F R AR AR AR AN AR C AN R AR T AR AR C AP RN R AR R R R RN R RO

1ee . e
b Please direct all guestions, comments, and b
b miscellanecus personal abuse to: L
b Henry Laxen or Michael Perry e
rew 1259 Cornell Avenue 1125 Bancroft Way LA
LA Berkeley, CA 94706 Berkeley, CA 94702 L
e o
wae Please direct all gquestions, concerning the LA
b address extensions made to F83 for the 68000 to: e
b Robert Eager L
L 3500 Glenridge Place aw
aee Corvallis, OR 97330 e
e s

AR AN AN DA AN N R R A PR R A R RN PR N AR AN RN AR KA RN RN S E SR PR R NN T RN T

30
\ 68000 Assembler Load Screen 29JAN86r e
ONLY FORTH ALSO DEFINITIONS
1 14 +THRY -
: NEXT SNEXT BPAGE L#) JMP
: INIT (ASSEMBLER | WORD :

ORLY FORTH ALSO DEFINITIONS
HEX 4EB9 CONSTANT DOES-OP
6 CONSTANT DOES-SIZE

DECIMAL

DOES? ($ IP -~ IP' F) DUP DOES-SIZE + SWAP @ DOES-OP = ;
: LABEL CREATE ASSEMBLER [ASSEMBLER | INIT
: CODE CODE { ASSEMBLER] INIT ;

46

\ Vocabulary,
VOCABULARY BUG

Range test
BUG ALSO DEFINITIONS

O4FEBB61r)e

VARIABLE <IP
VARIABLE CNT
LABEL FNEXT

VARIABLE IP>
VARIABLE ’'DEBUG

IP)+ D7 MOVE
HERE
W)+ D7 MOVE
CONSTANT FNEXT1
FORTH DEFINITIONS
CODE URBUG (s -~)
PNEXT BPAGE ASSEMBLER L#)
FNEXT 4 + BPAGE L#)

D7 W LMOVE
D7 A0 LMOVE A0) JMP C;

>NEXT BPAGE L#) LONG MOVE WORD
>NEXT 4 + BPAGE L#) MOVE NEXT C;

BUG DEFINITIONS

20
0 \ Debugq version of Next 10Jan84map
1 LABEL DEBNEXT HEX
2 IP DO MOVE <IP #) DO CHMP 6500 (Ur=)
3 r IP> #) DO CNP 6200 (U=)
4 1ir CNT O L#) D2 MOVE 1 D2 ADDQ D2 CHT O L#) MOVE
H 2 # D2 CcMP 0=
6 1r CNT 0 L#) CLR LONG FNEXT 0 L#) >NEXT $) MOVE
7 WORD IP SP ~) MOVE *DEBUG 0 L#) D7 MOVE D? W LMOVE
L] FNEXT1 O L#) JINP
9 THEN THEN THEN
10 PNEXT 0 L$) JMP C; DECIMAL
11 LABEL JBUG
12 DEBNEXT #) JMP C;
13 CODE PNEXT
14 JBUG 0 L#) >NEXT §#) LONG MOVE WORD NEXT C;
15
22
0 \ Multitasking low level 10Jand4map
1 CODE (PAUSE) (s ——)
2 IP SP -) MOVE (IP to stack) RP SP —) MOVE (RP to stack)
3 UP O L#) D7 MOVE D7 A0 LMOVE
4 SP A0)+ MOVE { SP to USER area) 2 A0 LONG ADDQ WORD
5 A0) D7 MOVE D7 AO LMOVE A0) JMP (to next task) C;
6 LABEL RESTART (s —-)
7 SP)+ D7 MOVE (drop SR } SP)+ A0 LMOVE (return address)
L] 4 A0 SUBQ A0 UP O L#) MOVE (Set UP to new user)
9 A0) D? MOVE D7 SP LMOVE (Restore stack)
10 SP)+ D7 MOVE D7 RP LMOVE (Return stack)
11 SP)+ D7 MOVE D7 IP LMOVE (Restore IP) NEXT Cc;
12
13 HEX 4E47 ENTRY ! (TRAP 7) DECIMAL
14 ENTRY LINK ! (only task points to itself)
15
23
0 \ Manipulate Tasks 08JANSAMAP
1
2 LocaL (S base addr -- addr’) Up @ - + H
3 eLINK (S -- addr) LINK &
4 LLINK (S addr --) LINK ¢ H
5 SLEEP (s addr --) 4EF8 SWAP ENTRY LOCAL ! H
6 WAKE (S addr --) 4E47 SWAP ENTRY LOCAL | H
7 STOP (8 --) UP @ SLEEP PAUSE H
] SINGLE (8 --) () PAUSE >BODY ([’] PAUSE ! H
9 : MULTI (s ——)
10 9 9C | RESTART 9E !¢
11 [’) (PAUSE) @ (‘] PAUSE ! H
12 DECIMAL
13

(Continued on page 37.)

Forth Dimensions 26

Volume IX, Number 6

EDUCATING

FORTH USERS

BILL KIBLER - SACRAMENTO, CALIFORNIA

Over the past few years I have been
studying and trying to use Forth. I still
remember my first experiences with the
language, and the frustration. Although I
had read all the material with the program,
and had picked up a book, I was amazed
with how easily I got lost. I had learned
enough to consider Forth a language for
me, but was finding it a bit too cryptic to
start using.

Time has passed, and I have learned
more about using Forth. I have most of the
books published on the subject, yet some-
thing still seems to be missing. While
earning a masters degree on Computers and
Education, I have been able to understand
some of Forth’s problems. It is not the lack
of a good language or means of expressing
Forth’s operations, but a matter of provid-
ing educational support for users, espe-
cially new users.

Most of us have used Turbo Pascal and
have seen the reason for its success: speed
of compilation. Turbo’s editing and com-
piling can be considered a little like Forth’s
screen compilation. Looking at that, I
wonder why Forth hasn’tachieved some of
Turbo’s success. The answer was not inter-
nal speed, but educational support through
afree spreadsheet and an inexpensive tutor
program. The free program gave the user a
program to run immediately, as well as the
source code from which to steal and gleam
ideas and techniques.

What I propose, then, is more fuel for

standardization of Forth. This standardiza-
tion is not of words but of packaging. No
version of Forth should be considered
complete without a free, bundled program
and enough tutorial information to get a
new user on line the same day. To that end,
Ibelieve I have written just such a program:
TUTOR.BLK.

TUTOR.BLK came about as my mas-
ters project, and was a two-sided program:
it was a more detailed look at Forth (by
explaining the language to non-users), and
I was creating tutorial information about a
programming language that I felt was not
getting the exposure it needed. The pro-
gram screens contain enough information

“It is a matter of
providing educational
support.”

about Forth for a new user to start using the

program the same day. The new words
defined also show the ease with which new
words are created and old words modified
to suit special needs.

The program screens included here
cover introductions and new words to
manipulate the tutorial program. The entire
program is over 100 screens, but only the
first ten are program screens. There are 90
screens of text, including some blank

screens, as well as a glossary at the begin-
ning of each section or chapter. I would add
the first ten screens into my version of
Forth; the user would then see a list of help
words and program information at boot-up
time. This provides adirected entry into the
program, and guarantees the first-time user
a positive experience.

This program was written for F83, the
public-domain, Forth-83 program. Al-
though Laxen and Perry have done a fine
job, their support for first-time users is
rather minimal. This program, along with
Starting Forth by Leo Brodie, which the
tutorial material supports (via its chapter
references), should help F83 users get
started. The TUTOR.BLK program is
public domain, and can be included with
commercial packages (as long as I get
credit). Commercial users will want to
customize their own program to highlight
particular features.

This program is by no means complete.
I had intended to make a glossary section,
too; the glossary would give the user either
a short or long definition of most words.
For beginners and novice users, the ability
to have on-line explanations has proven to
be many a program’s successful sales strat-
egy. Forth developers can use that same
strategy, and with less overhead.

Volume IX, Number 6

Forth Dimensions

SCR #0 TUTOR.BLK (PRINT THEN CR WITHOUT LF)

(INTRO TEXT FOR SCREEN ZERO BEGIN KEY ESCCHK 32 = UNTIL ;
BDK112186) { LOOP TIL SPACE KEY)

%k J % K K kK Kk Kk gk ok K Fk ok g deode dode de de ke ke ke ok de e de e ek de e e

Kkokk ok : GOTUTOR

>k Kk F83 TUTOR AND HELP PROGRAM (DISPLAYS SCREEN ON STACK THEN WAITS)

lalelebald CR DUP SCR ! 15 SPACES .SCR CR

jolalalele BEGIN DISPLAY WAIT NTUTOR @ 1 +

*ok ok ok k Written by Bill Kibler DUP

Akkkk PO BOX 487 Cedarville, CA 96104 DUP NTUTOR ! 1 ETUTOR @ = UNTIL CR
Akkkk CR 3 SPACES

*kkkk Donated into PUBLIC DOMAIN, with .” REPT = REPEAT LAST LESSON ...GET = NEXT
*kkkk ALL Commercial rights reserved LESSON “

*k Kk k k ”

. MENU = MENU “ CR CR CR ;
Fhhkhkkhkkhkhhhhhkkhk Ak kkhhkhhkkhkkhhhkkhkhkhk

: TUTOR
SCR #1 TUTOR.BLK (STORE SCREEN POINTERS THEN GOTUTOR)
(LOAD BLOCK AND START OF TUROR PROGRAM) 0 ETUTOR 1
DUP DUP STUTOR ! NTUTOR ! GOTUTOR ;
53 load 23 tree 15 spaces —_
.{ PLEASE WAIT WHILE LOADING TUTOR
SCREENS. . TUTOR.BLK) SCR # 3 TUTOR.BLK
CR CR CR CR CR (INITIALIZE AND START THE LOOPS..GET..REPT..)
(variables and display routines) : GET (GO GET NEXT GROUP OF SCREENS)
VARIABLE ETUTOR NTUTOR @ TUTOR :
(END DISPLAYING TUTOR SCREENS)
VARIABLE STUTOR : REPT
(BEGINING SCREEN OF CURRENT GROUP)} (GO BACK AND REPEAT SET OF SCREENS)
VARIABLE NTUTOR STUTOR @ TUTOR ;

(NEXT TUTOR SCREEN O GROUP)
: START-TUTOR

: L$SK DUP 36 = IF 1 ETUTOR ! THEN ; (START WITH FIRST SCREEN OF TUTOR)
{ CHECK FOR 8) 10 TUTOR ;
DISPLAY (DISPLAY SCREEN OF TEXT) : HELP (GIVE INTRO MESSAGE)
1 ?ENOUGH DUP SCR ! L/SCR 1 6 TUTOR ;
DO 5 SPACES ->

DUP BLOCK I C/L * + C/L

TUCK PAD SWAP CMOVE PAD SWAP

(>TYPE WITHOUT THE TYPE) SCR #4

0 ?DO DUP CQR L$SK EMIT 1+ LOOP DROP
(TYPE WITH L$$K)

TUTOR.BLK
(DEFINING MODULES OF INFORMATION...)

CR KEY? <?LEAVE LOOP DROP ; . INTRO 10 TUTOR
-> : CHP1 12 TUTOR ;
: CHP2 18 TUTOR ;
(go get screens of information - gotutor . CHP4 34 TUTOR ;
tutor) : CHPS 40 TUTOR ;
: CHP6 48 TUTOR ;
: WIPRT .” CURRENT SCREEN IS “ SCR ? 2 SPACES . CHP7 55 TUTOR ;
.” ESC = EXIT” 2 SPACES . CHPS 66 TUTOR
.” USE SPACE BAR FOR NEXT SCREEN “ . CHP9 73 TUTOR ;
; : CHP10 84 TUTOR ;
: CHP11 92 TUTOR ;

: ESCCHK DUP 27 = IF 1 ETUTOR ! 32 THEN ; -

(SET ESC FLAG)

: WAIT WTPRT 13 EMIT

Forth Dimensions 28 Volume IX, Number 6

SCR #5 TUTOR.BLK
{ MORE ROOM FOR LESSON WORDS....)
MENU 9 DISPLAY ;

(will display infor screen)

: PRTSCR CR
NTUTOR @ .
CR .” REPT SCREEN OF INFORMATION IS “
STUTOR @ . CR ;

.” CURRENT GET SCREEN IS ™

HELP

SCR # 6 TUTOR.BLK
(PRINT SCREENS FOR TUTOR INFORMATION...)

FORTH-83 TUTOR PROGRAM AND HELP SCREENS
WRITTEN BY BILL KIBLER
(c) 1987
DONATED into PUBLIC DOMAIN, with
ALL COMMERCIAL RIGHTS RESERVED

This program will help beginners and past
FORTH users alike. The screens contain informa-
tion on Forth-83 and are related to the book
“STARTING FORTH” by Leo Brodie, which should be
used as a textbook with this program. Each
chapter or series of screens is organized to
present the words used in the chapter in a glos-
sary form. Forth users will find this glossary
important to see the differences between F83 and
other versions. Typing HELP will repeat these
screens, then type

SCR #7 TUTOR.BLK

(second intro screen with list of words..)
the chapter number for the area of help needed.
Typing ESC key will exit the screens and return
to the system prompt. GET will display next
chapter of information, while REPT will start
with the first screen of the chapter again.
START-TUTOR will start with the introduction
chapter.

NEW F83 WORDS

The following words are important utilities
in F83 and may be different from previous ver-
sions. WORDS will display a list of F83 words
used. OPEN allows use of an existing file, 10
MORE is used to add 10 screens, and 30 CREATE-
FILE NAME.BLK (opens 30 screens). INDEX displays
a list of line 0, 1 20 INDEX will list screens 1
to 20. 1 30 SHOW will print 6 screens to a page
on your printer in condensed mode (use:
EPSON IS INIT-PR for epson printers). 1 30 TRIAD
prints three to a page if condensed print is not
available. 1 30 SHADOW SHOW will print both the

SCR # 8 TUTOR.BLK

{ THIRD PRINT SCREEN OF TUTOR INFORMA-

) regular screens and the information
screens on a page (not used in TUTOR but in
UTILITY.BLK). SEE xxxx disassembles the word
xxxx, while VIEW will open the source file (on
A: drive) and list the screen it is in. VOCS
will list the vocabularies in the dictionary,
while ORDER displays the path of the directory
search. Use DOS WORDS to see a list of the DOS
dictionary words. CAPACITY will print the number
of screens in a open file. A L will toggle
between the shadow and the source screens.
will display the next screen, L will list cur-
rent screen, B L will list previous screen. 1
EDIT will invoke the line editor with screen 1
ready to edit. 0 NEW will start editing at line
0 and allow the text to be entered one line
after the other. BEX 100 80 DUMP will do a hex
dump of memory location 100h to 180h. DEBUG LIST
will allow stepping through list when used next
as in 1 LIST. Use BYE to exit to DOS.

N L

scr # 9 TUTOR.BLK
{ last intro screen with list of words...)

TUTOR WORDS
INTRO = introduction

CHP1 = fundamentals

CHPZ2 = RPN and STACK

CHP3 = editor commands
CHP4 = conditionals,nests
CHP5 = fixed point operations
CHP6 = loops (& nested)
CHP7 = number types

CHP8 = var. const. arrays
CHPY9 = F83 structure
CHP10= Input/Output
CHPll= extensions

GET = next chapter

REPT = begin chapter again

HELP = repeat these screens
START-TUTOR = start at INTRO
SPACE BAR = next screen

ESC = stops display

BYE = EXITS to DOS

MENU = displays this screen
PRTSCR = GET and REPT pointers $$

Volume IX, Number 6 29

Forth Dimensions

1988 Rochester Forth
Conference On Programming
Environments

June 14 - 18, 1988
University of Rochester

CALL FOR PAPERS

The Eighth Rochester Forth Conference will be held at the University of Rochester and is
sponsored by the Institute for Applied Forth Research, Inc.

The focus will be on Programming Environments. The invited speakers include Cliff Click
and Paul Snow on their Postscript implementation in Fifth and William Wickes, software project
leader for the HP28 calculator discussing Reverse Polish Lisp. Other speakers will discuss
environments for scientific calculation, simulation and programming workbenches.

There is a call for papers on topics in the following areas:

Environments Technology
Object—oriented Forth Forth processors
Forth as an Al platform Peripheral controllers
Postscript State machines
Reverse Polish Lisp Metacompilers
Workstations Forth in VL.SI
Simulation systems

Business and Scientific languages
Threaded compilers for Basic and C

Applications Dialects
Laboratory, space-based, medical, Al, ACTOR, ASYST, Fifth, MAGIC/L, NEON,
real-time, business, database, financial Saavy, PLOG, RPL, SPHERE, STOIC

Papers may be presented in either platform or poster sessions. Please submit a 200 word
abstract by May 15th. Papers should be received by June 1st, and are limited to a maximum of
four single spaced, camera-ready pages.

Longer papers may be presented at the Conference but should be submitted to the refereed
Journal of Forth Application and Research. Abstracts and papers should be sent to the
Conference Chairman: Lawrence P. Forsley, Institute for Applied Forth Research, Inc. 70
Elmwood Avenue, Rochester, New York 14611. For more information please write the
Conference Chairman or call (716) 328-6426.

Forth Dimensions 30 Volume IX, Number 6

Martin Tracy has been intimately involved
in the Forth community for years, bringing
many contributions in his roles as Forth
vendor, leader, expert programmer, and
current member of the Forth Interest
Group’s Board of Directors. Mike Ham
interviewed Martin for Forth Dimensions
and got frank talk about Forth and FIG,
and some quick glimpses into Martin’s
eclectic life.

MH: Are you still working for Forth, Inc.?

MT: That’s right: I'ma senior programmer
at Forth, Inc. For the past year, I imple-
mented the digital-signal-processing Forth
for the Texas Instruments TMS 320-22.
We're selling that, and I'm working on
other projects as they come up.

MH: What machines?

MT: Quite a few people want us to write
software for them on the IBM, usually the
AT computer. But it varies. We do quite a
bit of work on the 68000. Process control
people are turning to ruggedized IBM PCs;
I wouldn’t say it’s quite a machine of
choice yet, but it’s getting close to it.

MH: How did you get into Forth?

MT: I first encountered Forth working on
programming a myoelectric artificial arm
for a below-the-elbow amputee, which
means there’s enough of a stump that you
can fit the arm over the stump and still make
contact with the remnants of the muscles.
You teach the machine every morning

Martin Tracy

when you put it on, by concentrating on an
action — that activates the remnants of the
muscle. The computer watches and learns
what your intention is, and then moves the
artificial arm the same way. It gives some
crude control over the arm but, of course,
there is no feeling.

The processor in the arm was an RCA
1802. It was programmed on a Decus Forth
development system, so I started reading
the Decus Forth manual. It was incompre-
hensible to me, and I gave up on Forth at
that point. I stayed away from it for perhaps

“Forth needs to be
managed differently than
other languages.”

a year or two. Instead, I wrote a tiny Pascal
compiler, which was sold through Pro-
gramma International for several years.

I started looking for the ideal program-
ming language, which to me meant porta-
bility. That is, I would be able to move my
tools to the different laboratory computers
I'was working with. Our laboratory desktop
computer spoke only BASIC, our labora-
tory minicomputer spoke only Fortran, the
statistical packages I worked with spoke
only APL, and I was somewhat miffed by
having to translate the tools around.

MH: What was your job when you were
working on the arm?

MT: I was a full-time lecturer in the dance
department at UCLA, teaching anatomy

PROFILES IN FORTH:

for dancers while completing a Ph.D. in
bioengineering.

MH: And the arm was part of the bioengi-
neering?

MT: Yes, in the UCLA Bioengineering
Laboratories.

MH: So you stayed away {rom Forth and
developed your design for the ideal lan-
guage.

MT: It was basically a macro-assembler.
Phil Wasson pointed out that I was devel-
oping a language very much like fig-
FORTH. I looked at fig-FORTH and
thought I could implement that model on an
Apple computer. It was already on an
Apple, but it wasn’t in the form I needed. I
thought it would take me a month. Phil was
a programmer with Programma Interna-
tional at that time, working with their ver-
sion of Forth. And in fact I was able 10
convert the Forth in a short time, so we
decided to form a company, MicroMotion,
and sell Forth for the Apple computer.
That’s how I first got into Forth.

At this time I was reaching my seven-
year limit as a lecturer at UCLA. UCLA
does not encourage lecturers to remain after
seven years. They were interested mostly in
tenure track positions. So I left the UCLA
dance department and started MicroMo-
tion with the hope that the company be able
to run itself when I periodically left to
dance, which is what I did for the next
several years.

Volume IX, Number 6

Forth Dimensions

MH: What kind of dance do you do?

MT: Classical ballet and character; I've
retired.

MH: What’s “character”?

MT: Character is what ugly ballet dancers
used to do. It’s where Drosslemeyer comes
in, or Rothbart, the evil magician, Puss in
Boots, the Bluebird, the Spanish dancer.

MH: So you set up the company to cover
while you were not there...

MT: Yes, I wanted very much to get into
computers with the Forth language, but I
could only dance while I was young. So 1
chose to give dance priority. Of course, in a
fast-moving technical field that wasn’t a
very good choice if your goal is to make a
lot of money, but it was the right choice in
that I did get to dance. Linda Kahn ran the
company when I was away, and that’s how
MicroMotion got its start.

MH: Whence the MicroMotion logo of the
little dance figure...

MT: That’s right.

MH: Did you dance mostly on the West
Coast?

MT:1danced mostly in the Orient, in Japan
and Taiwan. I did dance a bit in Texas and
New York City. I danced with the Ameri-
can Festival Ballet, Radio City Music Hall,
West Side Story tours...

MH: Did you ever have any direct overlap
of your Forth experience and dance? I'm
thinking of Labanotation, for instance.
[Labanotation, or the Laban system, is a
somewhat recondite system for writing
down the movements of a dance. —ed.)

MT: Yes; in fact I'm a Labanotation in-
structor. I taught that for several years. My
master’s thesis was a computer-assisted,
movement-notation system.

MH: Based on Labanotation?

MT: I did bring Labanotation into it, but it

turns out that the muscles and bones can be
modeled fairly accurately mathematically,
and even Labanotation has at its heart a
model of the body easily transposed into
computer terms. In fact, I held a panel on
computer dance, around 1975 in Philadel-
phia, part of the conference for the Commit-
tee on Research in Dance. But that was
peripheral to my interest; it turned out that
I really wasn’t interested in combining
computers and dance.

MH: When you set up MicroMotion, you
quickly released other versions of your
Forth.

MT: MicroMotion still exists as a com-
pany, it’s just that I am no longer associated
with it. After the Apple, we went to the Z-
80, then the Commodore 64, then the IBM
PC, then Ray Talbot produced a Macintosh
MasterForth for us.

MH: During that time, you wrote the intro-
ductory Forth text Mastering Forth.

MT: That’s right. The very first version
was a yellow book, when MicroMotion was
still Forth-79. We produced what I believe
is the first tutorial in Forth. Brodie’s Start-
ing Forth came out a year and a half after
that little yellow book came out. The ver-
sion known as Mastering Forth came out
two years after Starting Forth. 1 am cur-
rently doing a second edition of Mastering
Forth for Brady Books (Prentice-Hall).

MH: Is it still tuned to MasterForth?

MT: It’sexpanded. It has the same material
— though revised — as Mastering Forth,
but with chapters on topics that I fecl have
not been covered in Forth books, such as
target compilation, graphics, and floating
point.

MH: Will it be published in 1988?

MT: I'm committed to producing the book
by the end of the March.

MH: How did you decide to leave Micro-
Motion?

MT: My fortieth birthday was approach-

ing. T had decided to retire from dance, and
also to purchase a home. To do that in
southern California takes a lot of money, so
I'sold MicroMotion and started to work for
Forth, Inc.

MH: When you worked in bioengineering,
you already had programming knowledge.
How did you get started in programming
itself?

MT: The thing that has interested me for a
long time is human beings in motion,
people when they move. Part of this is my
background in dance; part of it Labanota-
tion and Effort-Shape, and other forms of
movement notation.

MH: What is “Effort-Shape?”

MT: The quality of movement, as opposed
to where the limbs go. For example, are you
“bursting” — that is, are you letting one
muscle carry the action without inhibiting
it with the antagonistic muscle?

I’ve taught several forms of movement
notation, and I’ve also taught some aspects
of nonverbal communication and anatomy
for dancers.

MH: What was anatomy for dancers?

MT: It’s the owners manual and operating
guide for the body: what you’re designed to
do, what is a violation of that, how things
work, how you keep them working. To-
wards the end, I tailored it specifically for
dancers and martial artists. Dancing is pri-
marily a world of women, and martial arts
primarily a world of men, butthe bodies are
very much alike, so with the combination I
could attract a fairly large number of stu-
dents interested in either of those two.

MH: And they both have to know how to
move.

MT: Yes, and the contrast is just as inter-
esting as the similarity,

MH: Do you have a background in martial
arts?

MT: I have had seventeen years of various
Chinese styles.

Forth Dimensions

32

Volume IX, Number 6

MH: How did dance enter your life? We
don’t have a culture that directs people
toward dance, by and large.

MT: When I was around 185, a girl friend
asked me to come and help her out in her
dance recital. I knew nothing about it, but I
went and helped her by dancing a bit and
moving with her, and the director of the
American Festival Ballet saw me there and
indicated that I had some promise. So I
started taking classes and within a year was
doing my first professional work —- not
unusual for a male dancer. It’s unusual for
a woman, but not for a man.

MH: Where were you then?

MT: I was in Providence, Rhode Island,
did most of my dancing in New York City.
From then onI’ve always been adancerand
something else — the “something else”
changes from time to time,

So at UCLA, after I developed my
course and started taking classes in kinesi-
ology, the study of motion in the body.
Eventually, as a teaching assistant, I taught
lectures and classes in electromyography
and biomechanics for the kinesiology de-
partment. To work with the body at that
level, you do need to leam something about
computers and mathematics. For instance,
suppose I need to know what’s going on
inside the hip. Let’s say I'm interested in
why dancers who dance beyond the age of
30 often develop hip arthritis and may even
need hip replacement. Well, I can’t put a
transducer in the hip of a dancer. The only
thing I can do is take a high-speed film of
the outside, model the forces, and deduce
what is going on in the hip to make that
happen. SoIneed rather sophisticated tools
immediately: high-speed photography,
mechanics and mathematical modeling of
moving objects, anatomy — all tools
needed to solve that problem. When I had
learned what I could from the kinesiology
department, I moved on to the bioengineer-
ing department to learn more, and the more
Ifocused on that, the closer I got to comput-
ers and had to learn more about that. And
that’s how I got into programming.

MH: Do you see any body-movement
projects at Forth, Inc.?

L

TOTALCONTROL
with LMI FORTH™

For Programming Professionals:

an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:

Interactive Forth-83 Interpreter/Compilers

* 16-bit and 32-bit implementations

¢ Full screen editor and assembler

¢ Uses standard operating system files

* 400 page manual written in plain English

¢ Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler

¢ Unique table-driven multi-pass Forth compiler

¢ Compiles compact ROMable or disk-based applications

e Excellent error handling

* Produces headerless code, compiles from intermediate
states, and performs conditional compilation

e Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303

¢ No license fee or royaity for compiled applications

For Speed: CForth Application Compiler

¢ Translates “high-level” Forth into in-line, optimized
machine code

e Can generate ROMable code

Support Services for registered users:
¢ Technical Assistance Hotline

* Periodic newsletters and low-cost updates

* Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

- .
Laboratory Microsystems Incorporated
IPost Office Box 10430, Marina del Rey, CA 90295
Phone credit card orders to: (213) 306-7412

Overseas Distributors.

Germany: Forth-Systeme Angelika Flesch, Titisee-Neustadt, 7651-1665
UK: System Science Ltd., London, 01-248 0962

France: Micro-Sigma S.A.R.L., Paris, (1) 42.65.95.16

Japan: Southern Pacific Ltd., Yokohama, 045-314-9514

Australia: Wave-onic Associates, Wilson, W.A_, (09) 451-2946

Volume IX, Number 6

33 Forth Dimensions

MT: I don’t sce anything like that coming
through the door. The closest we get is
robotics, but they lack the human nature:
robots are too predictable for my taste.

MH: Do you mean too few degrees of
freedom in the movement, or the lack of
will?

MT: The lack of will. For instance, when
you're embarrassed you move very differ-
ently. But I don’tknow how to embarrass a
robot or a neural net.

MH: I would like to get your thoughts on
FIG: where it’s come from and where it’s
going.

MT: I think it has come from a hobbyist
orientation. I would like to see it move to
more of a professional-support organiza-
tion. I don’t know whether it can or not, I
think we’re trying it on right now to see.

MH: Whatkinds of activities do you see for
a professional support organization? Is
there a model for it, or is it something we
have to create as we go?

MT: The model I have in mind is some-
where between a professional society and a
public relations firm. Certainly one of the
things FIG can do for Forth is to promote
name recognition of the Forth language. To
me, it seems strange that there is an organi-
zation for Forth. To me, a language is
always the thing that gets in the way be-
tween you and the problem; some get in the
way less than others. What I like about
Forth is that it doesn’t get very much in the
way of solving the problem. But it does get
in the way. I mean, if I want to measure the
temperature of a lamp and you tell me I
have to learn to type, that’s a skill that I
don’t need.

To me the language is interesting in its
ability to let me solve my problem and
leave me in peace as I do so. One of the
things that attracts me to Forth is that it lets
me do so. ButI think if I were amanager and
you said, “Come join the Forth Interest
Group,” or “Come see Forth at the Forth
convention,” I would ask, “Why?”

But if you said, “Come and see a good
solution to solving real-world, real-time
programs on existing hardware at the Forth

convention,” or “Join the Forth Interest
Group to learn more about solving such
problems,” that would be appealing.

MH: So, in a sense, we're handicapping
ourselves by having a convention at which
the theme seems to be Forth rather than
solutions to particular problems.

MT: Yes, I think we should concentrate on
what we’re good at. I really believe Forth is
the best language for certain classes of
problems. Unlike some of my peers,Idonot
believe it is good for everything.

MH: The Rochester group has been very
successful by making their conference
theme a particular problem — Al, robotics,
and the like — and then getting people to
attend who are interested in that problem.
They inevitably get a lot of exposure to
Forth, but they are drawn by the problem
and its solutions. Do you see something like
that as a possibility for future FIG conven-
tions? A targeted problem area, perhaps?

MT: Yes.I have volunteered to run the next
FIG convention, which will be in Anaheim.
I would like to use exactly this line of
argument to bring people in from the aero-
space corridor. I want to reach people who
don’t already use Forth. I will do more than
that: I want to reach people for whom, if I
said, “Come learn Forth,” it would be a
strange request. I'm going toreach them by
saying, “Come see working neural nets at
the Forth convention,” or “Come see RISC
or WISC language oriented processors at
the Forth convention.” I want to give them
a reason, with the Forth in small letters
rather than capitals. I want something vis-
ible, audible — real-world, real-time prob-
lems. And that’s great, because those are
fun to watch. But if Forth is that kind of
language, why wave abook at me, ora piece
of paper or a theory?

MH: Or a case statement?

MT: Right. Don Colburn had a wonderful
idea, and I’m going to try to make it happen:
aprogramming contest withatleasta$1000
cash prize. I will arrange gizmos or widgets
for each contestant, the same for each con-
testant. We will provide a room and tables
and power. The contestants will bring any-

thing to it: any computer, any software.
They can bring a team if they want, what-
ever it takes to do the problem. And when
the gun is fired, they solve the problem.

It will be a fun problem to watch. You
get to see this happening, and once it’s
solved, we will leave it running, so people
can come by and watch it. I'm going to
challenge Microsoft Quick BASIC, Turbo
C, and others. I’'m going to challenge them
all to come.

MH: You have a pattern in which you do
things on your own. Forth has grown up in
an environment in which many program-
mers work on their own, but at Forth, Inc.
you have a cluster of Forth programmers
and they do team projects. Do youhave any
thoughts about Forth in a team atmos-
phere?

MT: One is that I think it needs to be
managed differently than other languages.
You break up large tasks differently. I
don’t believe a simple Forth (without local
variables or other tools), is very good at
large projects, despite the fact that there
have been many large projects done with
Forth. I think the first thing that happens is
that the Forth is extended in some way so
that you can manage the large project, and
then you work with that extension. But
whether you are in Forth itself...

Here’s an example 1 often give: you
write a C in Forth and now you write a
program — are you writing a program in C
or in Forth? As far as I am concerned, you
are programming in C. It looks like C, acts
like C. So the fact that Forth can do any-
thing is a kind of cop-out; the real interest-
ing question to me is what does it do natu-
rally, as Forth, and not what you can bend
it to be.

MH: So, asa natural thing, you see Forth as
aone-person language, and for a large team
you build a language suited to the task-and-
team approach, with local variables and the
like. Then it’s not Forth anymore.

MT: Right, but Forth, Inc. would not agree
with me. One approach we take there is to
break the problem into tasks that can be
done at the same time, run at the same time.
Programmers work on different tasks, then
they are put together and run at the same

Forth Dimensions

34

Volume IX, Number 6

time to make the system,

MH: With lots of use of vocabularies to
avoid collisions...

MT: No, actually we use vocabularies very
little. We run tools at integration to detect
name conflicts and change them.

MH: You’ve done a lot of Forth program-
ming. Do you have any particular favorite,
anything you’ve done in Forth that you like
the best?

MT: Well, the LISP extensions I did for the
Forth Model Library were quite interest-
ing; the ones on Volume I of the library.

MH: You have a good ability to lay out an
interesting and reasonably sized problem,
and then do it completely.

MT: I have adefinite sequence I go through
when I solve a problem. The first thing I do
is immersion. I get together everything I
possibly can gather in a short amount of
time. For example, searches of the Byte
network BIX, trips to the library if I can get
books — mostly books, in fact: my pre-
ferred source is books.

I collect as much information on the
topic as I can, and read quite a bit of it
without understanding very much of it. I'm
just bringing the material in. Then I will let
alittle time go by, half a day or aday, when
Iam notconcentrating on the problem. And
then I'll start to work on the problem at that

point.

FUTURE

announces
Eight new products based on the NC4016

Future Series products:

CPU board (available 2nd quarter 1988)
* NC4016 (5 MHz standard)
* Stack and data RAM

* Full 128Kbytes of paged main memory

* Power fail detect

+ Automatic switching to on board battery backup at power fail

* Psuedo-serial port - full compatibility with CM-FORTH and SC-FORTH
* 16Kbytes of EPROM (SC-FORTH, SC-C and CM-FORTH available)

Display/Debugger board (available 2nd quarter 1988)
useful for testing and debugging custom hardware
* Provides hexadecimal display of the data, address, and B-port
« Indicates status of reset, interupt, WEB, WED, and X-port
* Provides for free running and single step clocking
* Provides the ability to independently drive (write to) the data, address, and
B-port directly with user data
1/O board (available 2nd quarter 1988)
for serial communication, interupt handling, event timing, time and date
logging and saving system state parameters
* Two RS$232 serial ports
* Eight level prioritized interupt controller. Each interupt line is individually
maskable and resetable. Current pending interupt status is readable.
* Real time clock with 2K of non-volatile RAM
* Three 16-bit timer/counters
Extended Memory board (available 3rd quarter 1988)
* Paged memory — 64 Kbytes segments, up to eight segments

Card Cage & Power Supply (available 3rd quarter 1988)
* Rack mountable card cage with face plates for each slot
* 15 volts and £12 volts supplied
* 72 Pin backplane

Disk Drive Controller board (available 3rd quarter 1988)
* 3-1/2 inch floppy and SCSI controllers (for hard disks)

Video board (available 4th quarter 1988)

* Wiil drive Apple Macintosh II high resolution (640 x 480) monochrome
monitor and PC compatible monochrome monitors

A/D & D/A board (available 4th quarter 1988)
* 12 bit, 1 MHz A/D & D/A converters

Future, Inc. P.O.Box 10386 Blacksburg, VA 24062-0386
(703) 552 - 1347
Apple is & registered trademark of Apple Computer, Inc. Macintosh is a trademark of Apple Computer, Inc.

SC-FORTH and SC-C are products of Silicon C

P

—

Volume IX, Number 6

35 Forth Dimensions

At last November’s National Forth Con-
vention in San Jose, California, the Forth
Interest Group celebrated its tenth anni-
versary. Mr. Charles Moore, the creator of
Forth, contributed to the event in many
ways, among them his annual “Fireside
Chat” with attendees. Here, Scott Squires
shares the notes he took as he listened to the
informal session.

As usual, Chuck was full of unusual
ideas, mixed with tongue-in-cheek, during
his annual “fireside chat™ at the 1987 Forth
National Convention. I have tried to record
these as accurately as possible, and hope
that at least the concepts are correct.

There are two attitudes about Forth in
the Forth community:

1. It’s about to die.
2.1t’s all set to take off,

Chuck didn’t know which is true, but
didn’t actually think it matters. He uses
Forth; maybe it would be more useful if
other people didn’t. (Chuck smiles.)

He can’t concieve of a sucessful SDI
(‘Star Wars”), given the complexities.It’s
impossible to check out, and a problem
could kill everyone. Ben Bova has written
a book, Millenium, that covers a lot of this.

He hasn’t seen any new, compelling
reasons that persuade people to use Forth,
He and the Forth community have been
providing reasons for a long time.

He’s not sure any longer about what
Forth is. Originally, he created it as an
interface to the computer, so he could solve
problems. Now he wantsitasaninterface to
the problem, with the computer just being
an incidental. He could make a new com-
puter fairly easily now, so that’s almost as
flexible as the software. This alters the

tradeoffs profoundly.

With his new, three-key keyboard,
Chuck has come up with some new ideas,
some of them in the last few days. Forth
doesn’t need an interpreter or compiler —
it’s possible to use just a decompiler. To
him, a disk is just a non-volatile backup of
the object code. There would be no blocks
or buffers; these are things he had always
thought were a part of Forth. Now he’sbusy
removing more and more of Forth, and isn’t
sure of what will be left. Somebody sug-
gested it might be like the smile of the
Chesire cat from Alice in Wonderland.
Chuck thinks it might be the illusion of
Forth. He’s not worried about conflicts, as
long as it’s fun.

“The difficulty with

neural nets is training
them.”

We should figure out how programmers
will be doing it in 1000 years and start doing
that now. Most people think there won’t be
any programmers in 1000 years. He doesn’t
think that’s true, especially since he’s heard
the same thing for the past 20 years. A
programmer is the one who understands the
problem, not necessarily the one who does
the coding.

Some people think the computers of the
future will be neural nets. The most difficult
thing about neural nets is training them, not
programming them. You need to spend
time coaxing these machines, when you
really want to just tell them what to do.
People are going to want loyal and faithful

A FIRESIDE CHAT
WITH CHARLES MOORE

REVIEWED BY SCOTT SQUIRES

machines — slaves, if you will, that do
exactly what they are told. Youneverreally
know what a machine has leamed. You
can’t trust a machine like that. It’s thought
that programming tools will be so powerful
that programmers won’t be needed. That
isn’t true.

It’s easier to write in Forth than in other
languages, but not a magnitude easier. In-
stead of being difficult, as with other lan-
guages, it makes it possible. Computers
will be put to more complex tasks in the
future.

What will a programmer be doing 1000
years from now? What kind of interface?
Probably brain waves. How many parallel
channels? Well, it would be controlling a
very high-resolution display with full 3D
color and sound. Several channels would
be modulating, but there would probably
be three main channels. This makesitclose
to the three-key keyboard on his latest
system. (Everyone laughs.) The program-
mer would be laying down—no, make that
floating. Yeah, that’s it. (Chuck smiles to
himself at the thought.) Now, will this pro-
grammer be dealing with files or screens?
(Audience laughs.)

You won’t need to deal with source
code — this notion just came to him in the
last few days. You’ll just do a memory
dump or decompile to see the code. Source
codeisbulky. In the past, he resisted saving
the object code because he couldn’t see
maintaining both object and source code.
That would have been redundant. Instead,
the source code was recompiled very
quickly each time it was needed. He had
completely overlooked the opposite idea of
saving just the object code.

Forth Dimensions

36

Volume IX, Number 6

Chuck has never found a pretty printer
he liked. They always seem to format the
code differently than he would. His source-
code format is inconsistent. Sometimes he
wants an IF at the start of aline, sometimes
at the end; or he wants something spaced
differently. “Of course I'm always right,”
he laughs. It will never decompile and
indent as he’d like, but now that most of his
definitions are only one line long, indenting
doesn’t matter,

One feature of blocks is that it allows a
specific grouping of words. Decompiling
can’t do that. Typically, though, you’ll
probably only need to decompile one word
atatime.

Comments and stack effects won’tbe in
the object code, but they are necessary.
He’ll probably put these in shadow blocks
on the disk. Every word could have a
pointer to related comments on the disk.

You would be able to walk up to any
computer and see what program is running
and how it works.

1. It doesn’t matter what computer it is; the
process is the same, if there is a smart
decompiler.

2. It doesn’t matter how it got there. If it
were done in C, it would still decompile to
Forth.

3. Forth could unify the representation of
the computer.

4. You can look at a program even if the
supplier hasn’t given you access. The con-
cept of “proprietary” would have a new
meaning. The Forth community is a bit like
a terrorist group. Maybe each person could
decompile a program. (More laughs.)

5. You could change a program while it’s
running. His new machine writes directly
to the CRT. It has a variable for the number
of pixels per line and a variable for the
number of lines. If he changes these while
the program is running, he now has to go
back to the source code and change it there.
If there were no source code, decompiling
would always show the latest version with
the correct information.

Changes to a program would probably
make itlarger. To make changes, youmight
have to relocate words or remove words in
the middle, thereby leaving holes. But most
debugging is done at the end of the diction-
ary, so this may not bea problem.

The Novix was the first CPU for which
Chuck seriously tried to write a full com-

piler. Forth and the Novix chip are not as
ideal together as he’d like. To truly opti-
mize, you need to look back three or four
words. DUP is a prefix in Forth, but on the
Novix it’s a suffix. All these problems go
away with the compiler. Because you’re
writing true, in-line Forth, all changes
could be optimized; and that leads to more
compact code.

To go from one machine to another, you
would decompile the object code to pro-
duce the source code. The target machine
would compile this source code in it’s own
format. This is similar to the idea of meta-
compiling, but implies that compiling is
only needed when moving between ma-
chines.

Someone from the audience mentions
that RTL (a Forth-variant language) has
flags in the object code to tell what type of
data structure it is (i.e. IF, WHILE,
BEGIN, etc.) Chuck thought that Wil
Baden’s diagramming system, presented at
last year’s FORML, might be used as part
of the decompiling. This is a “pleasant
flowchart,” where it doesn’t matter exactly
what word is used to generate the structure,
as long as result of the structure is clear.

Other languages could be decompiled
to Forth, and perhaps it could optimize the

|

decompilation to produce good Forth code,
not just a step-by-step decompilation of
programs written without Forth in mind.

He would be willing to change his pro-
gramming style to conform to the tools. At
one time he pushed for the ['] word. Since
the Novix, he hasn’t used it at all, and says
that he’s changed mind.

His objection to the mouse is the coor-
dination required.

About Chuck’s three-key keypad:
1. Color-coded keys (red, green, blue).
Selects the word or item with that color.
2. Itprovides a limit or bound, so thereisn’t
any need to check for limits.
3. Seven choices are possible. Seven items
is the limit the brain can store and refer to
at one time.
4. A key always points to a Forth word.

Chuck has started using menus in his
system. The menus started out as a tree
structure, but that was restrictive. Now he
uses cross-referencing and a web structure.
Any menu can point to any other menu.
You can go back all the way, anytime,
because this uses the Novix chip (which
has a circular return stack).

Continued from page 26.
Scr # 2 C:BENCHMRK.BLK

0O \ Noyes’ Sieve Prime Number Benchmark 01AUGBTrje

1 DECIMAL

2 8192 CONSTANT SIZE VARIABLE FLAGS SIZE ALLOT

3

4 : PRIMES (S -- primes) FLAGS SIZE 01 FILL 0

S SIZE Q

6 DO FLAGS I + C@

7 IF 31+ 1 +DUP I + SIZE <

8 IF SIZE FLAGS + OVER FLAGS + I +

9 DO 01 C! pup +L00P

10 THEN

11 DROP 1+

12 THEN

13 LOOP ;

14

15
Scr # 3 C:BENCHMRK.BLK

0 \ Noyes’ Sieve Prime Number Benchmark 01AUGB7rje

1

2 : SIEVE (S --) DARK .” BEGIN TIMING ON THE BEEP: " CR .”" T- "

3 0 10 bO I . 2 SPACES 12000 0 DO LOOP -1 +LOOP

4 BEEP

5 10 0 DO PRIMES LOOP

6 BEEP

7 CR . ." PRIMES"”

8 9 0 DO DROP LOOP ;

9

10

Volume IX, Number 6

37

Forth Dimensions

US.A.

« ALABAMA
Huntsville FIG Chapter
Tom Konantz (205) 881-6483

« ALASKA
Kodiak Area Chapter
Horace Simmons (907) 486-5049

* ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.

F1G
CHAPTERS

« COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King
(303) 693-3413

+« CONNECTICUT
Central Connecticut
Chapter

Charles Krajewski (203) 344-9996

« FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.

Central Iowa FIG Chapter

1st Tues., 7:30 p.m.

Iowa State Univ., 214 Comp. Sci.
Rodrick Eldridge (515) 294-5659
Fairfield FIG Chapter

4th day, 8:15 p.m.

Gurdy Leete (515) 472-7077

+ KANSAS

Wichita Chapter (FIGPAC)
3rd Wed., 7 pm.

Wilbur E. Walker Co.,

532 Market

« NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

« NEW YORK
FIG, New York
2nd Wed., 7:45 p.m.
Manhattan
Ron Martinez (212) 866-1157
Rochester Chapter

Dennis L. Wilson (602) 956-7578 Herman B. Gibson (305) 855-4790 Ame Flones (316) 267-8852 4th Sat, 1 pm.
Tucson Chapter Southeast Florida Chapter Monroe Comm. College
2nd & 4th Sun., 2 p.m. Coconut Grove area « MASSACHUSETTS Bldg. 7, Rm. 102
Flexible Hybrid Systems John Forsberg (305) 252-0108 Boston Chapter Frank Lanzafame (716) 235-0168
2030 E. Broadway #206 Tampa Bay Chapter 3rd Wed., 7 pm. Syracuse Chapter
John C. Mead (602) 323-9763 1st Wed., 7:30 p.m. Honeywell 3rd Wed., 7 p.m.
Terry McNay (813) 725-1245 300 Concord, Billerica Henry J. Fay (315) 446-4600
« ARKANSAS Gary Chanson (617) 527-7206

Central Arkansas Chapter * GEORGIA » NORTH CAROLINA
Liule Rock Atlanta Chapter « MICHIGAN Raleigh Chapter
2nd Sat,, 2pm. & 3rd Tues.,6:30 p.m Detroit/Ann Arbor area Frank Bridges (919) 552-1357
4th Wed., 7 p.m. Western Sizzlen, Doraville 4th Thars.
Jungkind Photo, 12th & Main Nick Hennenfent (404) 393-3010 Tom Chrapkiewicz (313) 322- « OHIO
Gary Smith (501) 227-7817 7862 Akron Chapter

« ILLINOIS 3rd Mon., 7 p.m.

» CALIFORNIA Cache Forth Chapter « MINNESOTA McDowell Library
Los Angeles Chapter Osk Park MNFIG Chapter Thomas Franks (216) 336-3167
4th Sat.,, 10 a.m. Clyde W. Phillips, Jr. Minneapolis Athens Chapter
Hawthome Public Library (312) 386-3147 Even Month, 1st Mon., 7:30 p.m. Isreal Urieli (614) 594-3731
12700 S. Grevillea Ave. Central Iilinois Chapter Odd Month, 1st Sat,, 9:30 a.m. Cleveland Chlp‘ﬁ"
Phﬂ]ip Wasson (213) 649-1428 Urbana Vincent Hlll, Univ. of MN 4th Tues., 7 p-m.
Monterey/Salinas Chapter Sidney Bowhill (217) 3334150 Fred Olson (612) 588-9532 Chagrin Falls Library
Bud Devins (408) 633-3253 Rockwell Chicago Chapter Gary Bergstrom (216) 247-2492
Orange County Chapter Gerard Kusiolek (312) 885-8092 Dayton Chapter
4th Wed., 7 pm. + MISSOURI 2nd Tues. & 4th Wed., 6:30 p.m.
Fullerton Savings « INDIANA Kansas City Chapter CFC. 11 W. Monument Ave.,
Huntington Beach Central Indiana Chapter 4th Tues., 7 p.m. #612
Noshir Jesung (714) 842-3032 3rd Sat,, 10 a.m. Midwest Research Institute Gary Ganger (513) 849-1483
San Diego Chapter John Oglesby (317) 353-3929 MAG Conference Center
Thursdays, 12 noon Fort Wayne Chapter Linus Orth (913) 236-9189 « OKLAHOMA
Guy Kelly (619) 450-0553 2nd Tues., 7 p.m. St. Louis Chapter Central Oklahoma Chapter
Sacramento Chapter I/P Univ. Campus, B71 Neff Hall 1st Tues., 7 pm. 3rd Wed., 7:30 p.m.
4th Wed., 7 p.m. Blair MacDermid (219) 749-2042 Thomhill Branch Library Health Tech. Bldg., OSU Tech.
1798-5%th St., Room A Contact Robert Washam Contact Larry Somers
Tom Ghormley (916) 444-7775 - IOWA 91 Weis Dr. 2410 N.W. 49th
Silicon Valley Chapter Iowa City Chapter Ellisville, MO 63011 Oklahoma City, OK 73112
4th Sat., 10 a.m. 4th Tues.
H-P, Cupcnino Engineering Bldg., Rm. 2128 « NEW JERSEY
George Shaw (415) 276-5953 University of lowa New Jersey Chapter « OREGON
Stockton Chapter Robert Benedict (319) 337-7853 Rutgers Univ., Piscataway Greater Oregon Chapter
2nd Sat., 1 p.m.
Forth Dimensions 38 Volume IX, Number 6

Tektronix Industrial Park,
Bldg. 50

Tom Almy (503) 692-2811
Willamette Valley Chapter
4th Tues., 7 p.m.

Linn-Benton Comm. College
Pann McCuaig (503) 752-5113

+ PENNSYLVANIA

Philadelphia Chapter

4th Sat., 10 a.m.

Drexel University, Stratton Hall
Melanie Hoag (215) 895-2628

» TENNESSEE

East Tennessee Chapter

Oak Ridge

2nd Tues., 7:30 p.m.

Sd. Appl. Int'l. Corp., 8th Fl.
800 Oak Ridge Tumpike,
Richard Secrist (615) 483-7242

+ TEXAS

Austin Chapter

Contact Matt Lawrence

P.O. Box 180409

Austin, TX 78718

Dallas/Ft. Worth

Metroplex Chapter

4th Thurs., 7 p.m.

Chuck Durrent (214) 245-1064
Houston Chapter

1st Mon., 7 p.m.

Univ. of St. Thomas

Russel Harris (713) 461-1618
Periman Basin Chapter
Odessa

Carl Bryson (915) 337-8994

» WISCONSIN
Lake Superior FIG Chapter
2nd Fr., 7:30 p.m.
Main 195, UW-Superior
Allen Anway (715) 394-8360
MAD Apple Chapter
Contact Bill Horton
502 Adas Ave.
Madison, WI 53714
Milwaukee Area Chapter
Donald Kimes (414) 377-0708

INTERNATIONAL

« AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Contact Lance Collins
65 Martin Road
Glen Inis, Victoria 3146
03/29-2600
Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., Rm. LG19
Univ. of New South Wales
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay 2228
02/524-7490

« BELGIUM
Belgium Chapter
4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20
2120 Schoten
03/658-6343
Southern Belgium Chapter
Contact Jean-Marc Bertinchamps
Rue N. Monnom, 2

* DENMARK
Forth Interesse Gruupe
Denmark
Copenhagen
Erik Oestergaard, 1-520494

* ENGLAND
Forth Interest Group- U.K.
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
Rm. 408
Borough Rd.
Contact DJ. Neale
58 Woodland Way
Morden, Surry SM4 4DS

*» FRANCE
French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
31100 Toulouse
(16-61)44.03.06
FIG des Alpes Chapter
Annely
Georges Seibel, 50 57 0280

+ GERMANY
Hamburg FIG Chapter
4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

« HOLLAND
Holland Chapter
Contact Adriaan van Roosmalen
Heusden Houtsestraat 134

« REPUBLIC OF CHINA
(R.O.C)
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

- SWEDEN
Swedish Chapter
Hans Lindstrom, 46-31-166794

* SWITZERLAND
Swiss Chapter
Contact Max Hugelshofer
ERNI & Co., Elektro-Industrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

SPECIAL GROUPS

» Apple Corps Forth Users
Chapter
st & 3rd Tues., 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Dudley Ackerman
(415) 626-6295

» Baton Rouge Atari Chapter
Chris Zielewski (504) 292-1910

* FIGGRAPH
Howard Pearimutter
(408) 425-8700

« NC4000 Users Group
John Carpenter (415) 960-1256

« UTAH B-6290 Nalinnes
North Orem FIG Chapter 071213858 e Breda
Contact Ron Tanner CANADA
748 N. 1340 W. . R
Orem, UT 84057 Northern Alberta Chapter ll:f;nAgl?apter
4th Sat,, 1 pm.
» VERMONT N. Alta. Inst. of Tech. Coniact Bugh Dobbs
Vermont Chapter Tony Van Muyden (403) 962-2203 Waterford
Vergennes Nova Scotla Chapter 0S1/75757 or 051/74124
3rd Mon., 7:30 p.m. Halifax
Vergennes Union High School Howard Harawitz (902) 477-3665
Rm. 210, Monkton Rd. Southern Ontario Chapter « ITALY
Don VanSyckel (802) 388-6698 Quarterly, 1t Sat., 2 p.m. FIG Italia
VIRGINIA Geal. Sci. Bld;., Rm 212 Contact Marco Tausel
’ McMaster University Via Gerolamo Fomi 48
First Forth of Hampton Dr. N. Solntseff (416) 525-9140 20161 Milano
Roads ext. 3 02/435249
William Edmonds (804) 898-4099 Toronto Chapter
Potomac Chapter Contact John Clark Smith
Arlington P.O. Box 230, Suation H « JAPAN
2nd Tues., 7 pm. Toronto, ON M4C 512 Japan Chapter
Lee Center Vancouver Chapter Contact Toshi Tnoue
Lee Highway at Lexington St. Don Vanderweele (604) 941-4073 Dept. of Mineral Dev. Eng
Joel Shprentz (703) 860-9260 University of Tokyo o
Richmond Forth Group +« COLOMBIA 7-3-1 Hongo, Bunkyo 113
2nd Wed., 7 p.m. Colombia Chapter 8122111 ext. 7073
154 Business School Contact Luis Javier Parra B.
Univ. of Richmond Aptdo. Aereo 100394 - NORWAY
Donald A. Full (804) 739-3623 Bogota 2140345 Bergen Chapter
Kjell Birger Faeraas, 47-518-7784
Volume IX, Number 6 39 Forth Dimensions

Australia $2550*

Forth Symposium—Sydney May 19-20
Organized by Forth users from industrial and
academic organizations, the focus is Forth as a
programming system for productivity. It will
feature presented papers, demonstrations, and
commercial exhibits. Charles Moore, Forth's
inventor, is the keynote speaker.

World Expo 88—Brisbane May 21-24
The highlight of Australia's Bicentenary
celebration, World Expo 88 features more than
30 nations and 20 corporations showcasing their
achievements under the theme "Leisure in the
Age of Technology".

Great Barrier Reef—Hamilton Island
May 25-27

You can fish, waterski, parasail, scuba dive,
snorkel, play tennis or squash, cruise, sail, visit
the Great Barrier Reef by helicopter or
launch—or just soak up the sun around the
Pacific's largest fresh water swimming pool.

Group Tour

Departs San Francisco May 16,1988 and
returns May 28, 1988. Group travel
includes air fare, ground transportation
between airports and hotels, and hotel
accommodations. Forth Symposium
attendance is an additional $70 for each
attendee and symposium banquet
attendance is $20 per person. Local tours
will be arranged for non-conference guests.

A brochure with a complete itinerary and
additional information is available from
the Forth Interest Group or Silicon Valley
Travel, Inc.

Payment must be received by
March 31, 1988. After this date
trans-Pacific fares will increase by
$150 per person which will increase
the tour price to $2700.

Make reservations directly with Silicon Valley Travel, Inc., 100-68 West
El Camino Real, Mountain View, CA 94040. Telephone (415) 962-9820.

Forth Interest Group
P.O.Box 8231
San Jose, CA 95155

