

Mentype[®] Chimera[®] Manual

The new standard for chimerism analysis

aonnuny

Made in Germany

Bio type®

Diagnostic GmbH

Biotype Diagnostic GmbH develops, produces and markets their PCR-based rapid Mentype[®] Detection Kits. Our products provide customers with fast and reliable testing methods for professional medical diagnostics.

Our Mentype $^{\ensuremath{\text{\scriptsize B}}}$ Test Kits guarantee highest quality standards for clinical research and diagnostics.

Benchmark of Progression

For information and enquiries about the Mentype[®] **Chimera**[®] PCR Amplification Kit, please do not hesitate to get in touch or visit <u>www.biotype.de/en/home.html</u>.

Product description

Mentype[®] **Chimera**[®] is a multiplex-PCR application specifically developed for chimerism monitoring after blood stem cell and bone marrow transplantation, respectively. The assay was validated by chimerism analysis of over 200 HLA-matched related donor-recipient-pairs and its suitability was confirmed in a comparative clinical evaluation study. Ever since the assays is successfully used in routine diagnostics. Genetic markers that are addressed by Mentype[®] **Chimera**[®] are distributed over 12 chromosomes and represent highly polymorphic short tandem repeats (STRs) with a very high rate of heterozygosity and a balanced allelic distribution. Together, this significantly increases the chance to identify informative loci for donor-recipient discrimination and provides reliability and robustness of chimerism analyses.

One PCR reaction simultaneously amplifies the autosomal loci **D2S1360**, **D3S1744**, **D4S2366**, **D5S2500**, **D6S474**, **D7S1517**, **D8S1132**, **D10S2325**, **D12S391**, **D18S51**, **D21S2055**, **SE33** (ACTBP2), and the gender-specific locus Amelogenin. . One primer for each locus is fluorescence-labelled with 6-FAM, BTG, or BTY.

The detection limit of the Mentype[®] Chimera[®] PCR amplification kit is 200 pg genomic DNA. The optimal range under standard conditions is 0.2-1.0 ng DNA.

The test kit is validated using the GeneAmp[®] PCR System 9700 Aluminium, Eppendorf Mastercycler ep-S, Biometra T1, ABI PRISM[®] 310 Genetic Analyzer and ABI PRISM[®] 3130 Genetic Analyzer applying the POP-4[®] polymer. Development, manufacture and distribution of Biotype[®] products are certified according to DIN EN ISO 9001:2008.

Content

1. Description of Mentype [®] Chimera [®]	5
2. PCR amplification	8
2.1 Master mix preparation	
2.2 PCR amplification parameter	
3. Electrophoresis using the ABI PRISM® 310 Genetic Analyzer	10
3.1 Matrix generation	10
3.2 Sample preparation	13
3.3 Setting up the GeneScan [®] software	13
3.4 Analysis parameter	14
4. Electrophoresis using the ABI PRISM® 3100-Avant/3100 Genetic Analyzer	15
4.1 Spectral calibration / matrix generation	
4.2 Sample preparation	
4.3 Setting up the GeneScan [®] software	18
4.4 Analysis parameter	19
5. Electrophoresis using the ABI PRISM [®] 3130/3130xl Genetic Analyzer	20
5.1 Spectral calibration / matrix generation	
5.2 Sample preparation	
5.3 Setting up the GeneMapper™ ID software	24
5.4 Analysis parameter / analysis method	
6. Electrophores is using the ABI PRISM® 3500/3500xL Genetic Analyzer	27
6.1 Spectral calibration / matrix generation	
6.2 Sample preparation	
6.3 Setting up a run	
7. Analysis	
7.1 Biotype [®] template files	
7.2 Controls.	37
7.3 Lengths of fragments and alleles	
8. Interpretation of results	43
9. Population-genetic data	44
10. References	
11. Explanation of Symbols	
··· = +······ -· >)	

1. Description of Mentype[®] Chimera[®]

Table 1. Locus-specific information of Mentype[®] Chimera[®]

		51		
Locus	GenBank	Repeat motif	Reference	Allele
	accession	of the reference allele	allele	range
Amelogenin X	M55418			
Amelogenin Y	M55419			
D2S1360	G08130	[TATC] ₉ [TGTC] ₉ [TATC] ₅	23	19-32
D3S1744	G08246	[TCTA] ₂ TA[TCTA] ₁₂ TCA [TCTA] ₂	16	13-22
D4S2366	G08339	[ATAG] ₉ ATTG [ATAG] ₂	12	9-15
D5S2500	G08468	[ATAG] ₁₂	12	9-18
D6S474	G08540	[TAGA] ₅ TGA [TAGA] ₁₂	17	11-20
D7S1517	G18365	[GAAA] ₁₁ CAAA [GAAA] ₂ CAAA [GAAA] ₂	17	14-31
D8S1132	G08685	[TCTA] ₉ TCA [TCTA] ₉ TCTGTCTA	20	12.1-27
D10S2325	G08790	[TCTTA] ₁₂	12	6-23
D12S391	G08921	[AGAT]5 GAT [AGAT]7 [AGAC]6 AGAT	19.3	13-28
D18S51	L18333	[AGAA] ₁₃	13	5.3-42
D21S2055	G27274	[CTAT]₂ CTAA [CTAT]9 CTA [CTAT]3 TAT [CTAT]3 TAT [CTAT]4 CAT[CTAT]2	24	16.1-39
SE33 (ACTBP2)	NG000840		25.2	3-50

Table 1 shows STR loci with respective repeat motifs and alleles that are concordant with the guidelines for the use of microsatellite markers of the International Society for Forensic Genetics (ISFG; Bär *et al.*, 1997). The nomenclature for STR loci D8S1132 and D12S391 is in accordance with Hering and Müller (2001), for loci D4S2366 und D6S474 with Becker *et al.* (2007), for locus D10S2325 with Wiegand *et al.* (1999) and the nomenclature for locus D7S1517 is in accordance with Wiegand and Klintschar (2002). Allele ranges include all known alleles of the National Institute of Standards and Technology (NIST as at 12/2008) and the current literature.

Table 2. Chromosomal mapping for Mentype[®] Chimera[®]

Locus	Chromosomal mapping
Amelogenin X	Xp22.1-22.3
Amelogenin Y	Yp11.2
D2S1360	2p24-p22
D3S1744	3p24
D4S2366	4p16-15.2
D5S2500	5q11.2
D6S474	6q21-22
D7S1517	7q31.33
D8S1132	8q23.1
D10S2325	10p12
D12S391	12p13.2
D18S51	18q21.3
D21S2055	21q22
SE33	6q14.2

Kit content

Mentype[®] Chimera[®] PCR Amplification Kit (100 Reactions)

Nuclease-free water	3.0 ml
Reaction mix A	500 µl
Primer mix	250 µl
Multi Taq2 DNA polymerase	40 µl
Control DNA XY5 (2 ng/µl)	10 µl
DNA Size Standard 550 (BTO)	50 µl
Allelic ladder	25 µl

Ordering information

Mentype [®] Chimera [®]	25 reactions	Cat. No.	45-13210-0025
Mentype [®] Chimera [®]	100 reactions	Cat. No.	45-13210-0100
Mentype [®] Chimera [®]	400 reactions	Cat. No.	45-13210-0400
Mentype [®] Chimera [®]	1000 reactions	Cat. No.	45-13210-1000

Storage

Store all components at -20 °C and avoid repeated thawing and freezing. Primer mix and allelic ladder must be stored protected from light. The DNA samples and post-PCR reagents (allelic ladder and DNA size standard) should be stored separately from PCR reagents. The expiry date is indicated on the kit cover.

Additionally required reagents

Additional reagents required in order to use the Biotype® PCR Amplification Kit:

Reagent	Supplier	Order number
Hi-Di™ Formamide, 25 ml	Life Technologies Corporation	4311320
Matrix Standards BT5 single-capillary instruments (5x25 µl)	Biotype Diagnostic GmbH	00-10411-0025
Matrix Standards BT5 multi-capillary instruments (25 µl)	Biotype Diagnostic GmbH	00-10421-0025
Matrix Standards BT5 multi-capillary instruments (50 µl)	Biotype Diagnostic GmbH	00-10421-0050

Warnings and safety instructions

The PCR Amplification Kit contains the following potentially hazardous chemicals:

Kit component	Chemical
Reaction mix	Sodium azide NaN ₃

Hazards toxic if swallowed, develops toxic gases when it gets in contact with acids

Observe the Material Safety Data Sheets (MSDS) for all Biotype[®] products, which are available on request. Please contact the respective manufacturers for copies of the MSDS for any additionally needed reagents.

Quality assurance

All kit components undergo an intensive quality assurance process at Biotype Diagnostic GmbH. Quality of the test kits is permanently monitored to ensure unrestricted usability. Please contact us if you have any questions regarding quality assurance.

Trademarks and Patents

Mentype[®] and Chimera[®] are registered trademarks of Biotype Diagnostic GmbH. ABI PRISM[®], GeneMapper[®], GeneAmp[®] and Applied Biosystems[®] are registered trademarks of Applied Biosystems LLC.

Under the law of Europe POP-4[®] is a registered trademark of Applied Biosystems LLC. POP-4[®] is registered as trademark of Life Technologies Corporation in the US. The PCR is covered by patents. Patentees are Hoffmann-La Roche Inc. and F. Hoffmann-La Roche (Roche).

Protocols for PCR amplification, electrophoresis, and analysis

2. PCR amplification

2.1 Master mix preparation

The table below shows the volumes of all PCR reagents per 25 μ l reaction volume, including a sample volume of 1.0 μ l (template DNA). The number of reactions to be set up shall be determined taking into account positive and negative control reactions. Add one or two reactions to this number to compensate the pipetting error.

Component	Volume
Nuclease-free water	16.1 µl
Reaction mix A*	5.0 µl
Primer mix	2.5 µl
Multi Taq2 DNA Polymerase (hot start, 2.5 U/µl)	0.4 µl
Volume of master mix	24.0 µl

* contains Mg2+, dNTPs, BSA

All components should be mixed (vortex) and centrifuged for about 10 s before preparing the master mix. The volume of DNA applied to the assay depends on its concentration. For reference samples 1 μ I is mostly sufficient. For critical patient samples the amount of template can be increased appropriately. Fill up the final reaction volume to 25 μ I with nuclease-free water.

Generally, DNA templates shall be stored in nuclease-free water or in diluted TE buffer (10 mM Tris HCl, pH 8.0 and 1 mM EDTA), e.g. 0.1 x TE buffer.

The primer mixes are adjusted for balanced peak heights at **30 PCR cycles** and **0.5 ng Control DNA XY5** in a reaction volume of 25 μ l. If more DNA template is applied, higher peaks can be expected for small PCR fragments and relatively low peaks for large fragments. Reduce the amount of DNA template to correct this imbalance.

Positive control

For the positive amplification control, dilute Control DNA XY5 to 0.5 $ng/\mu l$. Instead of template DNA, pipette diluted Control DNA into a reaction tube containing the PCR master mix.

Negative control

For the negative amplification control, pipette nuclease-free water instead of template DNA into a reaction tube that contains the PCR master mix.

Template DNA

Sometimes, measured DNA concentration varies depending on the quantification method used. It might thus be necessary to adjust the optimal DNA amount.

2.2 PCR amplification parameter

Perform a "hot start" PCR in order to activate the Multi Taq2 DNA Polymerase and to prevent formation of non-specific amplification products.

Number of PCR cycles depend on the amount of DNA applied. 30 PCR cycles are recommended for all samples. In case of critical samples (< 100 pg DNA), the number of PCR cycles can be increase from 30 to 32.

Standard method

Recommended for all DNA samples

Temperature	Time	
94 °C	4 min (hot start	for activation of the Multi Taq2 DNA Polymerase)
94 °C	30 s	
60 °C	120 s	30 cycles
72 °C	75 s	-
68 °C	60 min	
10 °C	x	hold

Optional

Recommended for small amounts of DNA

Temperature 94 °C	Time 4 min (hot start	for activation of the Multi Taq2 DNA Polymerase)
94 °C	30 s	
60 °C	120 s	32 cycles
72 °C	75 s	
68 °C	60 min	
10 °C	œ	hold

Note: If thermal cyclers with rapid heating and cooling steps (> 2 °C/s) are used, ramping should be adjusted to 2 °C/s in order to provide an optimal kit balance.

Very small amounts of DNA may result in statistical dropouts and imbalances of the peaks. Increasing numbers of PCR cycles raise the risk of cross contamination caused by minimal amounts of impurities. Furthermore, unspecific amplification products could appear.

3. Electrophoresis using the ABI PRISM[®] 310 Genetic Analyzer

For general instructions on instrument setup, matrix generation and application of the GeneScan[®] or GeneMapper[®] ID software, refer to the *ABI PRISM[®] 310 Genetic Analyzer User's Manual*. Electrophoresis using the GeneScan[®] software is described below.

The virtual **filter set G5** shall be used for combined application of the five fluorescent labels **6-FAM**, **BTG**, **BTY**, **BTR**, and **BTO** (the matrix standard will be called **BT5** hereinafter).

Material

Capillary 47 cr Polymer POP-Buffer 10x 0

47 cm / 50 μm (green) POP-4[®] for 310 Genetic Analyzer 10x Genetic Analyzer Buffer with EDTA

3.1 Matrix generation

Prior to conducting DNA fragment size analysis with the filter set G5, a matrix with five fluorescent labels **6-FAM**, **BTG**, **BTY**, **BTR**, and **BTO** must be generated.

Color	Matrix standard
Blue (B)	6-FAM
Green (G)	BTG
Yellow (Y)	BTY
Red (R)	BTR
Orange (O)	BTO

Five electrophoresis runs shall be conducted, one for each fluorescent label, **6-FAM**, **BTG**, **BTY**, **BTR**, and **BTO**, use the same conditions as for samples and allelic ladders of the Biotype[®] test kit to generate suitable matrix files.

Matrix sample Matrix sample 1	Component Hi-Di™ Formamide Matrix standard 6-FAM	Volume 12.0 μl 1.0 μl
Matrix sample 2	Hi-Di™ Formamide Matrix standard BTG	12.0 μl 1.0 μl
Matrix sample 3	Hi-Di™ Formamide Matrix standard BTY	12.0 μl 1.0 μl
Matrix sample 4	Hi-Di™ Formamide Matrix standard BTR	12.0 µl 1.0 µl
Matrix sample 5	Hi-Di™ Formamide Matrix standard BTO	12.0 µl 1.0 µl

- Denaturation for 3 min at 95 °C

- Cool down to 4 °C and place samples on the autosampler tray

- Create a Sample Sheet, choose 5 Dyes and enter a sample designation

Injection list for matrix generation

Parameter	Set up
Module File	GS STR POP-4 (1 ml) G5
Matrix File	NONE
Size Standard*	NONE
Injection [s]	5
Injection [kV]	15.0
Run [kV]	15.0
Run [°C]	60
Run Time [min]	24

* Prepare matrix standards always without DNA Size Standard (BTO)

Analysis of the matrix samples

- Run the GeneScan[®] software
- File \rightarrow New \rightarrow Project (open folder of current run) \rightarrow Add Sample Files
- Select a matrix sample in the Sample File column

- Sample \rightarrow Raw Data

 Check the matrix samples for a flat baseline. As shown in the figure below there should be at least five peaks with peak heights about 1000-4000 RFU (Y-axis) for each matrix sample (optimal range: 2000-4000 RFU)

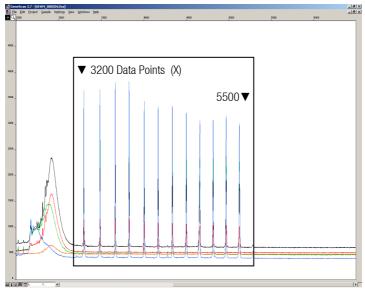


Fig. 1 Electropherogram with raw data of the matrix standard 6-FAM

- Select an analysis range with flat baseline and re-inject the matrix sample if necessary
- Note down start and end value (data points) of the analysis range, e.g. start value 3200, end value 5500
- Calculate the difference, e.g. 5500-3200 = 2300 data points

Generation of a new matrix

- File \rightarrow New \rightarrow Matrix

🗽 Make New Matrix		×
Select the Matrix Standard Sample Files	Number Of Dyes:	5 🔻
B 6FAM_080204.fsa	Start At:	3200
G BTG_080204.fsa	Start At:	3000
Y BTY_080204.fsa	Start At:	3000
BTR_080204.fsa	Start At:	3000
0 BTO_080204.fsa	Start At:	3000
	Points:	2300
	Cancel	OK

Fig. 2 Matrix sample selection

- Import matrix samples for all dyes (B, G, Y, R, O)
- Enter a Start At value, e.g. 3200
- Enter the calculated difference under Points, e.g. 2300
- Click on **OK** to calculate the new matrix

📆 Matria	x BT5.mtx				×
			Reactions		
	В	G	Y	R	0
В	1.0000	0.1811	0.0051	0.0418	0.0006
G	0.6891	1.0000	0.2056	0.3259	0.0017
Y	0.4687	0.8068	1.0000	0.9119	0.0029
н	0.1944	0.3619	0.5311	1.0000	0.0095
0	0.0160	0.0304	0.0477	0.2082	1.0000

Fig. 3 New matrix BT5

- Save the matrix in the matrix folder: File \rightarrow Save as, e.g. Matrix BT5

Matrix check

Check the new matrix with current samples.

- File \rightarrow New \rightarrow Project (open folder of the respective run) \rightarrow Add Sample Files
- Select sample(s) in the Sample File column
- Sample Install New Matrix (open matrix folder and select new matrix)
- Re-analyse your samples

There should be $\underline{\mathbf{no}}$ pull-up peaks between the dye panels (B, G, Y, R, O) with the new matrix.

3.2 Sample preparation

Component	Volume
Hi-Di [™] Formamide	12.0 µl
DNA Size Standard 550 (BTO)	0.5 µl
prepare 12 µl of the mix (formamide + DNA size standard) for all samples	
add 1 µl PCR product (diluted if necessary) or allelic ladder	

- Denaturation for 3 min at 95 °C

- Cool down to 4 °C

-

- Cool down to 4 °C and place samples on the autosampler tray

Signal intensities

Options to increase the signal intensity:

- Reduce the volume of the DNA Size Standard 550 (BTO) to peak heights of about 500 relative fluorescent units (RFU)
- Purify the PCR products before starting the analysis

3.3 Setting up the Data Collection Software

- Create a Sample Sheet and enter sample designation

Injection list

Parameter	Set up
Module File	GS STR POP-4 (1 ml) G5
Matrix File	e.g. Matrix BT5
Size Standard	e.g. SST-BT0_60-500bp
Injection [s]*	5
Injection [kV]	15.0
Run [kV]	15.0
Run [°C]	60
Run Time [min]**	28

* Deviating from the standard settings, the injection time may range between 1 and 20 s depending on the type of sample. If reference samples with very high signal intensities are recorded, a shorter injection time may be selected in order to avoid pull-up peaks. For samples with low cDNA content or critical patient samples an injection time of up to 20 s may be necessary.

** Depending on the analysis conditions, the run time for Mentype[®] Chimera[®] was modified in order to analyse fragments with lengths of up to **500 bp**.

3.4 Analysis parameter / analysis method

The recommended analysis parameters are:

Analysis Range	Start: 2000 Stop: 10000
Data Processing	Baseline: Checked
	Multicomponent: Checked Smooth Options: Light
Peak Detection	Peak Amplitude Thresholds B:* Y:* G:* R:* O:* Min. Peak Half Width: 2 pts Polynominal Degree: 3 Peak Window Size: 11 pts**
Size Call Range	Min: 60
	Max: 550
Size Calling Method	Local Southern Method
Split Peak Correction	None

* The peak amplitude threshold (cut-off value) corresponds to the minimum peak height that will be detected by the GeneScan[®] or GeneMapper[®] ID software. Thresholds are usually 50-200 RFU and should be determined individually by the laboratory. Recommendation: The minimal peak height should be three times as high as the background noise of the baseline.

** Point alleles (i.e. alleles with at least 1 bp difference to the next integer allele) may occasionally not be distinguished. For improved peak detection, minimise the Peak Window Size further.

4. Electrophoresis using the ABI PRISM® 3100-Avant/3100 Genetic Analyzer

For detailed instructions on instrument setup, spectral calibration, application of the ABI PRISM[®] 3100 Data Collection Software version 1.0.1 or 1.1 and the GeneScan[®] software, refer to the *ABI PRISM[®] 3100-Avant/3100 Genetic Analyzer User's Manual*. For systems with Data Collection Software 2.0 or 3.0 refer to chapter 5.

The system with 4 capillaries is named ABI 3100-Avant, and the system with 16 capillaries is named ABI 3100.

The virtual **filter set G5** shall be used for combined application of the five fluorescent labels **6-FAM**, **BTG**, **BTY**, **BTR**, **and BTO** (the matrix standard will be called **BT5** hereinafter).

Material

Capillary	36 cm Capillary Array for 3100-Avant/3100
Polymer	POP-4 [®] Polymer for 3100
Buffer	10x Genetic Analyzer Buffer with EDTA

4.1 Spectral calibration / matrix generation

Proper spectral calibration is critical to evaluate multicolour systems with the ABI PRISM[®] 3100-Avant/3100 Genetic Analyzer and shall be done prior to conducting fragment length analysis with the five fluorescent labels **6-FAM**, **BTG**, **BTY**, **BTR**, and **BTO**. The calibration procedure creates a matrix which is used to correct the overlapping of fluorescence emission spectra of the dyes.

Spectral calibration comprises the following steps:

- Preparation of the spectral calibration standards
- Loading the standards to the 96-well reaction plate (one sample per capillary)
- Entering the plate composition
- Performing a spectral calibration run and checking the matrix

Setting up the spectral calibration standard

Example for 4 capillaries/ABI 3100-Avant

Component	Volume
Hi-Di [™] Formamide	60.0 µl
Matrix standard BT5	5.0 µl

- Load 12 μl of the mix to a 96-well reaction plate, e.g. position $\ensuremath{\textbf{A1-D1}}$

- Denaturation for 3 min at 95 °C

- Cool down to 4 °C and place samples on the autosampler tray

Example for 16 capillaries/ABI 3100

Component	Volume
Hi-Di [™] Formamide	204.0 µl
Matrix standard BT5	17.0 µl

- Load 12 µl of the mix to a 96-well reaction plate, e.g. position A1-H1 and A2-H2

- Denaturation for 3 min at 95 °C

- Cool down to 4 °C and place samples on the autosampler tray

Performing a spectral calibration run

First of all, the parameter file for **DyeSetG5** must be modified once to achieve successful calibration with the Data Collection Software version 1.0.1 or 1.1.

Spectral parameter

To change settings in the parameter file go to the following path: D:\AppliedBio\Support Files\Data Collection Support Files\CalibrationData\Spectral Calibration\ParamFiles

- Select MtxStd{Genescan_SetG5} to open the PAR-file
- Change **Condition Bounds Range** to [1.0; 20.0]
- Select File \rightarrow Save As to save the parameter file under a new name, e.g. MtxStd{Genescan_SetG5_BT5}.par

Always use this parameter file for spectral calibration runs using ${\rm Biotype}^{\circledast}$ matrix standard ${\bf BT5}.$

Plate Editor for spectral calibration (I)

- Place the 96-well plate on the autosampler tray
- Run the ABI PRISM® 3100 Data Collection Software
- In Plate View click New to open the Plate Editor dialog box
- Enter a name of the plate
- Select Spectral Calibration
- Select 96-Well as plate type and click on Finish

Plate editor for spectral calibration (II)

Parameter	Set up
Sample Name	Enter name for the matrix samples
Dye Set	G5
Spectral Run Module	Default (enter the name for spectral run module)
Spectral Parameters	MtxStd{GeneScan_SetG5_BT5}.par (parameters created before)

- Click into the column header to select the entire column, select Edit \rightarrow Fill Down to apply the information of the selected samples and confirm with OK
- Link your reaction plate on the autosampler tray with the created plate ID and start the run
- On completion of the run check in the **Spectral Calibration Result** dialog box if all capillaries have successfully passed calibration (label **A**). If individual capillaries are labelled **X**, refer to *ABI PRISM*[®]*Genetic Analyzer User's Manual*.
- Click on OK to confirm completion of the run

Matrix check

- Select Tools \rightarrow Display Spectral Calibration \rightarrow Dye Set \rightarrow G5 to review the spectral calibration profile for each capillary
- The quality value (**Q value**) must be greater than 0.95 and the condition number (**C value**) must be between 1 and 20. Both values must be within the previously determined range
- Check the matrix samples for a flat baseline. There should be five peaks with peak heights of about 1000-5000 RFU (Y-axis) in each matrix sample (optimal range: 2000-4000 RFU)
- If all capillaries have passed the calibration, the last calibration file for Dye Set G5 must be activated manually under Tools → Set Active Spectral Calibration.
 Rename the calibration file under Set Matrix Name (e.g. BT5 Date of calibration)
- If calibration was not successful, try to re-inject the samples with higher injection voltage or injection time. The editing of the Spectral Run Module will be necessary. You can re-inject the same samples up to three times. Otherwise use more matrix standard for spectral calibration
- Check the new matrix with your current samples. There should be <u>no</u> pull-up peaks between the dye panels (B, G, Y, R, O) with the new matrix

Component	Volume
Hi-Di [™] Formamide	12.0 µl
DNA Size Standard 550 (BTO)	0.5 µl
Prepare 12 µl of the mix (formamide + DNA size standard) for all samples	s
Add 1 µl PCR product (diluted if necessary) or allelic ladder	
- Denaturation for 3 min at 95°C	

- Cool down to 4°C

- For analysis: load samples on the tray

1 2 Sample preparation

Since injections take place simultaneously on all capillaries, 4 or 16 samples must be pipetted on the plate of multi-capillary analyzers. If fewer samples are analysed, the empty positions must be filled with 12 μ l Hi-DiTM Formamide.

To ensure a reliable allelic assignment on multi-capillary analyzers, several allelic ladders should be run.

Room temperature may influence the performance of PCR products on multi-capillary instruments, so that shoulder peaks or split peaks occur especially at low temperatures. Pay attention to keeping ambient conditions as recommended by the instrument manufacturer. Optimal will be a stable room temperature > 22 °C.

Signal intensities

Options to increase the signal intensity:

- Reduce the volume of the DNA Size Standard 550 (BTO) to peak heights of about 500 relative fluorescent units (RFU)
- Purify the PCR products before starting the analysis

Edit the default run module in Dye Set G5 once for the first run.

- Select Module Editor to open the dialog box
- Select the appropriate Run Module as template from the GeneScan table
- Modify the Injection Voltage to 3 kV and the Injection Time to 10 s

Run Module 3kV_10s_500bp

Parameter Run Temperature [°C]	Set up Default
Cap Fill Volume	Default
Maximum Current [A]	Default
Current Tolerance [A]	Default
Run Current [A]	Default
Voltage Tolerance [kV]	Default
Pre Run Voltage [kV]	Default
Pre Run Time [s]	Default
Injection Voltage [kV]	3.0
Injection Time [s]*	10
Run Voltage [kV]	Default
Number of Steps	Default
Voltage Step Interval	Default
Data Delay Time [s]	Default
Run Time [min]**	26

* Deviating from the standard settings, the injection time may range between 1 and 20 s depending on the type of sample. If reference samples with very high signal intensities are recorded, a shorter injection time may be selected in order to avoid pull-up peaks. For samples with low DNA content or critical patient samples an injection time of up to 20 s may be necessary.

** Depending on the analysis conditions, the run time for Mentype[®] Chimera[®] was modified in order to analyse fragments with lengths of up to **500 bp**.

- Click on Save As, enter the name of the new module (e.g. 3kV_10s_500bp) and confirm with OK
- Click on Close to exit the Run Module Editor

Starting the run

- Place the prepared 96-well plate on the autosampler tray
- Run the ABI PRISM® 3100 Data Collection Software
- In Plate View click on New to open the Plate Editor dialog box
- Enter a name of the plate
- Select GeneScan
- Select 96-Well as plate type and click on Finish

Plate Editor

Parameter

Sample Name Dyes Colour Info Project Name Dye Set Run Module* Analysis Module 1 Set up Enter name for the samples O Ladder or sample e.g. 3100_Project1 G5 3kV_10s_500bp DefaultAnalysis.gsp

* parameter see above

- Complete the table in the Plate Editor and click on OK
- Click into the column header to select the entire column and select $Edit \rightarrow Fill$ **Down** to apply the information of the selected samples
- Link your reaction plate on the autosampler tray with the created plate ID and start the run
- On completion of the run, view data as Color Data in Array View of the 3100 Data Collection Software or as Analyzed Sample Files under D:/AppliedBio/3100/DataExtractor/ExtractRuns

4.4 Analysis parameter / analysis method

The recommended analysis parameters are:

Analysis Range	Start: 2000 Stop: 10000
Data Processing	Baseline: Checked
	Multicomponent: Checked
	Smooth Options: Light
Peak Detection	Peak Amplitude Thresholds
	B:* Y:*
	G:* R:*
	0:*
	Min. Peak Half Width: 2 pts
	Polynominal Degree: 3
	Peak Window Size: 11 pts**
Size Call Range	Min: 60
-	Max: 550
Size Calling Method	Local Southern Method
Split Peak Correction	None

background noise of the baseline.

* The peak amplitude threshold (cut-off value) corresponds to the minimum peak height that will be detected by the GeneScan or GeneMapper[®] ID software. Thresholds are usually 50-200 RFU and should be determined individually by the laboratory. Recommendation: The minimal peak height should be three times as high as the

** Point alleles (i.e. alleles with at least 1 bp difference to the next integer allele) may occasionally not be distinguished. For improved peak detection, minimise the Peak Window Size further.

5. Electrophoresis using the ABI PRISM® 3130/3130xl Genetic Analyzer

For detailed instructions on instrument setup, spectral calibration, or application of the ABI PRISM[®] Data Collection Software version 3.0 and the GeneMapper[®] ID/ID-X Software, refer to the *ABI PRISM*[®] 3130/3130xI Genetic Analyzers Getting Started *Guide.*

The system with 4 capillaries is named ABI 3130 and the system with 16 capillaries is named ABI 3130xl.

The virtual **filter set Any5Dye** shall be used for the combined application of the five fluorescent labels **6-FAM**, **BTG**, **BTY**, **BTR**, **and BTO** (the matrix standard will be called **BT5** hereinafter).

Material

Capillary	36 cm Capillary Array for 3130/3130xl
Polymer	POP-4 [®] Polymer for 3130
Buffer	10x Genetic Analyzer Buffer with EDTA

5.1 Spectral calibration / matrix generation

Prior to conducting DNA fragment size analysis, it is necessary to perform a spectral calibration with the fluorescent labels **6-FAM**, **BTG**, **BTY**, **BTR**, and **BTO** for each analyzer. The calibration procedure creates a matrix that is used to correct the overlap of fluorescence emission spectra of the dyes.

Spectral calibration comprises the following steps:

- Preparation of spectral calibration standards
- Loading standards to the 96-well reaction plate (one sample per capillary)
- Creating the instrument protocol for spectral calibration (Protocol Manager)
- Defining the plate composition in the plate editor (Plate Manager)
- Performing a spectral calibration run and checking the matrix

Setting up the spectral calibration standards

Example for 4 capillaries/ABI 3130

Component	Volume
Hi-Di [™] Formamide	60.0 µl
Matrix standard BT5	5.0 µl

- Load 12 µl of the mix to a 96-well reaction plate, e.g. position A1-D1

- Denaturation for 3 min at 95 °C

- Cool down to 4 °C and place samples on the autosampler tray

Example for 16 capillaries/ABI 3130xl

Component	Volume
Hi-Di [™] Formamide	204.0 µl
Matrix standard BT5	17.0 µl

- Load 12 µl of the mix to a 96-well reaction plate, e.g. position A1-H1 and A2-H2

- Denaturation for 3 min at 95 °C

- Cool down to 4 °C and place samples on the autosampler tray

Performing a spectral calibration run

- Place the 96-well plate on the autosampler tray
- In the Protocol Manager of the Data Collection Software click on New in Instrument Protocol to open the Protocol Editor dialog box

Instrument Protocol for spectral calibration

Protocol Editor	Set up
Name	User (enter name)
Туре	SPECTRAL
Dye Set	Any5Dye
Polymer*	User (POP4)
Array Length*	User (36cm)
Chemistry	Matrix Standard
Run Module*	Default (enter a name for the run module)

* Depends on the type of polymer and length of capillary used

- Click on OK to leave the Protocol Editor dialog box
- In the **Plate Manager** of the Data Collection Software, click on **New** to open the **New Plate Dialog** box

Plate Editor for spectral calibration (I)

New Plate Dialog	Set up
Name	e.g. Spectral_BT5_date
Application	Spectral Calibration
Plate Type	96-Well
Owner Name / Operator Name	

- Click on OK. A new table in the Plate Editor will open automatically

Plate Editor for spectral calibration (II)

Parameter	Set up
Sample Name	Enter name for the matrix samples
Priority	e.g. 100
Instrument Protocol 1	Spectral36_POP4_BT5 (setting described before)

- Click into the column header to select the entire column, select ${\rm Edit} \to {\rm Fill}~{\rm Down}$ to apply the information to all selected samples, and click on ${\rm OK}$
- In the **Run Scheduler** click on **Find All**, select **Link** to link the reaction plate on the autosampler to the newly created plate record (position A or B) and start the run

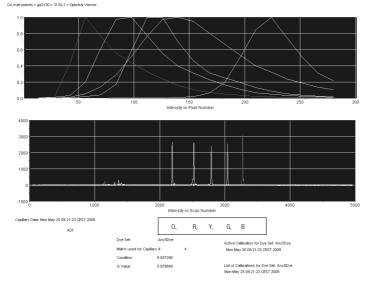


Fig. 4 Electropherogram of spectral calibration with matrix standard BT5 on an ABI 3130

Matrix check

- The quality value (**Q value**) of each capillary must be greater than 0.95 and the condition number range (**C value**) must be between 1 and 20
- Check the matrix samples for a flat baseline. As shown in the figure above, there should be five peaks with peak heights of about 1000-5000 RFU (Y-axis) in each matrix sample (optimal range: 2000-4000 RFU)
- If all capillaries have passed the test, the last calibration file for the Dye Set Any5Dye is activated automatically in the Spectral Viewer. Rename the calibration file (e.g. BT5_Date of calibration) using the respective button
- If calibration was not successful, try to re-inject the samples with higher injection voltage or injection time. Editing of the Spectral Run Module will be necessary. You can re-inject the same samples up to three times. Otherwise use more matrix standard for spectral calibration

- Check the new matrix with your current samples. There should be <u>no</u> pull-up peaks between the dye panels (B, G, Y, R, O) with the new matrix

5.2 Sample preparation

Component	Volume
Hi-Di™ Formamide	12.0 µl
DNA Size Standard 550 (BTO)	0.5 µl
prepare 12 µl of the mix (formamide + DNA size standard) for all samples	
add 1 µl PCR product (diluted if necessary) or allelic ladder	

- Denaturation for 3 min at 95 °C

- Cool down to 4 °C and place samples on the autosampler tray

Since injections take place simultaneously on all capillaries, 4 or 16 samples must be pipetted on the plate of multi-capillary analyzers. If fewer samples are analysed, the empty positions must be filled with 12 μ l Hi-DiTM Formamide.

To ensure a reliable allelic assignment on multi-capillary analyzers, several ladders should be run.

Room temperature may influence the performance of PCR products on multi-capillary instruments, so that shoulder peaks or split peaks occur especially at low temperatures. Pay attention to keeping ambient conditions as recommended by the instrument manufacturer. Optimal will be a stable room temperature > 22 °C.

Signal intensities

Options to increase the signal intensity:

- Reduce the volume of the DNA Size Standard 550 (BTO) to peak heights of about 500 relative fluorescent units (RFU)
- Purify the PCR products before starting the analysis

5.3 Setting up the Data Collection Software

Edit the Run Module as follows for the first run:

 In the Module Manager of the Data Collection Software click on New to open the Run Module Editor dialog box

Run Module 3kV_10s_500bp

Parameter	Set up
Oven Temperature [°C]	Default
Poly Fill Volume	Default
Current Stability [µA]	Default
PreRun Voltage [kV]	Default
PreRun Time [s]	Default
Injection Voltage [kV]	3.0
Injection Time [s]*	10
Voltage Number of Steps	Default
Voltage Step Interval	Default
Data Delay Time [s]	Default
Run Voltage [kV]	Default
Run Time [s]**	1560

* Deviating from the standard settings, the injection time may range between 1 and 20 s depending on the type of sample. If reference samples with very high signal intensities are recorded, a shorter injection time may be selected in order to avoid pull-up peaks. For samples with low DNA content or critical patient samples an injection time of up to 20 s may be necessary.

** Depending on the analysis conditions, the run time for Mentype[®] Chimera[®] was modified in order to analyse fragments with lengths of up to **500 bp**.

- Click on Save As, enter the name of the new module (e.g. $3kV_10s_500bp$) and confirm with OK
- Click on Close to exit the Run Module Editor

Starting the run

- Place the prepared 96-well plate on the autosampler tray
- In the **Protocol Manager** of the Data Collection Software, click on **New** in the **Instrument Protocol** window to open the **Protocol Editor** dialog box

Instrument Protocol

Protocol Editor Name Type Run Module* Dye Set Set up enter a name REGULAR 3kV_10s_500bp Any5Dye

* parameter see above

- Click on OK to exit the Protocol Editor

Prior to each run, it is necessary to create a plate definition as follows:

- In the Plate Manager of the Data Collection Software click on New to open the New Plate Dialog box

Plate Editor (I)

New Plate Dialog Name Application Plate Type Owner Name / Operator Name Set up e.g. Plate_BT5_Date Select GeneMapper Application 96-Well

- Click on OK. A new table in the Plate Editor will open automatically

Plate Editor (II)

Parameter	Set up
Sample Name	Enter a name for the samples
Priority	e.g. 100 (Default)
Sample Type	Sample or allelic ladder
Size Standard	e.g. SST-BTO_60-500bp
Panel	e.g. Chimera_Panels_v1
Analysis Method	e.g. Analysis_HID_3130
Snp Set	-
User-defined 1-3	-
Results Group 1	(select results group)
Instrument Protocol 1	Run36_POP4_BT5_26min (setting described before)

- Click into the column header to select the entire column, select ${\rm Edit} \to {\rm Fill}~{\rm Down}$ to apply the information to all selected samples and click on ${\rm OK}$
- In the **Run Scheduler**, click on **Find All**, select **Link** to link the reaction plate on the autosampler to the newly created plate record (position A or B) and start the run
- During the run, view **Error Status** in the **Event Log** or examine the quality of the raw data for each capillary in the **Capillaries Viewer** or the **Cap/Array Viewer**
- View data as overview in **Run History** or **Cap/Array Viewer** of the Data Collection Software. Run data are saved in the **Run Folder** of the previously chosen **Result Group**

5.4 Analysis parameter / analysis method

The recommended analysis parameters are:

Peak Detection Algorithm	Advanced
Ranges	Analysis: Partial Range
	Start Pt: 2000; Stop Pt: 10000
	Sizing: All Sizes
Smoothing and Baselining	Smoothing: Light
	Baseline Window: 51 pts
Size Calling Method	Local Southern Method
Peak Detection	Peak Amplitude Thresholds
	B:* Y:*
	G:* R:*
	0:*
	Min. Peak Half Width: 2 pts
	Polynominal Degree: 3
	Peak Window Size: 11 pts**
	Slope Thresholds: 0.0
	•

* The peak amplitude threshold (cut-off value) corresponds to the minimum peak height that will be detected by the GeneMapper[®] ID/ID-X software. The thresholds are usually 50-200 RFU and should be determined individually by the laboratory. Recommendation: The minimal peak height should be three times as high as the background noise of the baseline.

** Point alleles (i.e. alleles with at least 1 bp difference to the next integer allele) may occasionally not be distinguished. For improved peak detection, minimise the Peak Window Size further.

6. Electrophoresis using the ABI PRISM[®] 3500/3500xL Genetic Analyzer

For detailed instructions on instrument setup, spectral calibration, or application of the Applied Biosystems 3500 Series Data Collection Software version 1.0 and the GeneMapper[®] ID-X software version 1.2, refer to the *Applied Biosystems* 3500/3500xL Genetic Analyzers User Guide.

The system with 8 capillaries is named AB 3500 and the system with 24 capillaries is named AB 3500xL.

The virtual **filter set Any5Dye** shall be used for the combined application of five fluorescent labels **6-FAM**, **BTG**, **BTY**, **BTR**, **and BTO** (the matrix standard will be called **BT5** hereinafter).

Material

Capillary Polymer Buffer 36 cm Capillary Array for 3500/3500xL POP-4[®] Polymer for 3500/3500xL 10x Genetic Analyzer Buffer with EDTA for 3500/3500xL

6.1 Spectral calibration / matrix generation

Prior to conducting DNA fragment size analysis, it is necessary to perform a spectral calibration with the fluorescent labels **6-FAM**, **BTG**, **BTY**, **BTR**, and **BTO** for each analyzer. The calibration procedure creates a matrix that is used to correct the overlap of fluorescence emission spectra of the dyes.

Spectral calibration comprises the following steps:

- Preparation of spectral calibration standards
- Loading the standards to the multi-well reaction plate (one sample per capillary)
- Preparation of instrument and creating a Dye Set BT5
- Performing a spectral calibration run and checking the matrix

Setting up the spectral calibration standards

Example for 8 capillaries/ABI 3500

Component	Volume
Hi-Di [™] Formamide	108.0 µl
Matrix standard BT5	9.0 µl
Lead 10 of the minter of the minter of the state of the section Ad 11	

- Load 12 µl of the mix to a 96-well reaction plate, e.g. position A1-H1

- Denaturation for 3 min at 95 °C

- Cool down to 4 °C and place samples on the autosampler tray

Example for 24 capillaries/ABI 3500xL

Component	Volume
Hi-Di [™] Formamide	300.0 µl
Matrix standard BT5	25.0 µl

- Load 12 µl of the mix to a 96-well reaction plate, e.g. position A1-H1, A2-H2 and A3-H3*

- Denaturation for 3 min at 95 °C

- Cool down to 4 °C and place samples on the autosampler tray

* When using a 384-well plate, load 10 µl of the mixtures to columns 1, 3, and 5

in rows A, C, E, G, I, K, M, and O.

Performing a spectral calibration run

- Place the multi-well plate on the autosampler tray
- Now prepare the instrument and specific spectral calibration run settings

Preparation of the instrument

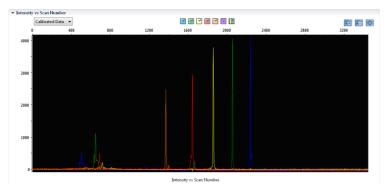
Before starting the spectral calibration process ensure that the spatial calibration has been performed. This process is necessary if a new capillary array was installed before and is described in detail in the *Applied Biosystems 3500/3500xL Genetic Analyzers User Guide*.

Preparation of dye set BT5

Prior to the spectral calibration, a dye set for the matrix standard BT5 needs to be setup.

- 1. To create a new dye set, go to **Library** and select **Analyze**, followed by **Dye Sets** and click **Create**.
- 2. Enter a Dye Set Name, e.g. BT5.
- 3. Select **Matrix Standard** as a chemistry and **AnyDye Template** as a Dye Set Template.
- 4. Disable **Purple** in the field **Arrange Dyes**. Ensure that all other colors are enabled.
- 5. Under Calibration Peak Order the colors need to be arranged as Follows: 5 – blue, 4 – green, 3 – yellow, 2 – red, and 1 – orange.
- 6. Do not alter the **Parameter** settings.
- 7. Click Save to confirm the changes.

📜 Create New Dye Set											X
Setup a Dye Set											•
* Dye Set Name	BT5										
* Chemistry	Matrix Stan	dard .	•								
* Dye Set Template	AnyDye Ter	mplate ·	-								
- Arrange Dyes Dye Selection	20 20									June	
Reduced Selection											
Calibration Peak Order			<u>≜</u> 3	v	<u>_</u> 2		<u>+</u> 0		<u>↑</u> 1	e	*
	Upper Limit * After Scan nit Scans To Sensitivity	20.0 300 20000 0.1		36cm o		array a	nd polyr	mer PC	Ρ4		
Matrix Std. BT5 multi cap.											*
Close										Si	ave


Fig. 5 Setup for dye set BT5

- In the **Protocol Manager** of the Data Collection Software click on **New** in **Instrument Protocol** to open the **Protocol Editor** dialog box

Performing a spectral calibration run

Once the multi-well plates containing the spectral calibration mixture is placed in the autosampler tray the spectral calibration process can be started.

- 1. To access the Spectral Calibration screen, select **Maintenance** on the Dashboard of the 3500 Series Data Collection Software.
- The number of wells in the spectral calibration plate and their location in the instrument must be specified.
- Select Matrix Standard as a chemistry standard and BT5 for dye set.
- 4. (Optional) Enable **Allow Borrowing**.
- 5. Click Start Run.

Matrix check

- The quality value (**Q value**) of each capillary must be greater than 0.8 and the condition number range (**C value**) must be between 1 and 20
- Check the matrix samples for a flat baseline. As shown in the figure above, there should be five peaks with peak heights of about 1000-5000 RFU (Y-axis) in each matrix sample (optimal range: 2000-4000 RFU)
- A successful calibration will be displayed in green in **Overall** and for each capillary
- If all capillaries have passed the test, Accept Results
- If calibration failed, **Reject Results** and refer to **spectral calibration troubleshooting** of Applied Biosystems 3500/3500xL Genetic Analyzer User Guides

6.2 Sample preparation

Component	Volume
Hi-Di [™] Formamide	12.0 µl
DNA Size Standard 550 (BTO)	0.5 µl
prepare 12 µl of the mix (formamide + DNA size standard) for all samples	
add 1 µl PCR product (diluted if necessary) or allelic ladder	

- Denaturation for 3 min at 95 °C

- Cool down to 4 °C and place samples on the autosampler tray

Since injections take place simultaneously on all capillaries, 8 or 24 samples must be pipetted on the plate of multi-capillary analyzers. If fewer samples are analysed empty positions need to be filled with 12 µl Hi-Di[™] Formamide.

To ensure a reliable allelic assignment on multi-capillary analyzers, several ladders should be run.

Room temperature may influence the performance of PCR products on multi-capillary instruments, so that shoulder peaks or split peaks occur especially at low temperatures. Pay attention to keeping ambient conditions as recommended by the instrument manufacturer. Optimal will be a stable room temperature > 22 °C.

Signal intensities

Options to increase the signal intensity:

- Reduce the volume of the DNA Size Standard 550 (BTO) to peak heights of about 500 relative fluorescent units (RFU)
- Purify the PCR products before starting the analysis

6.3 Setting up a run

For the first run using the Mentype[®] **Chimera**[®] Kit you will need to setup a number of protocols within the 3500 Series Data Collection Software.

Create Instrument protocol

- Go to Library and select Analyze / Instrument protocol and click Create
- Change the parameters according the table below

Instrument protocol for Mentype[®] Chimera[®]

Parameter Application Type	Set up HID / Microsatellite
Capillary Length Polymer	Default Default
Dye Set	BT5
Run Module	Default
Protocol Name	e.g. Mentype Chimera
Oven Temperature [°C]	Default
Run Voltage [kV]	Default
Injection Voltage [kV]	3.0
Run Time [s]**	1560
PreRun Time [s]	Default
Injection Time [s]*	10
Data Delay Time [s]	Default
Advanced Options	Default

* Deviating from the standard settings, the injection time may range between 1 and 20 s depending on the type of sample. If reference samples with very high signal intensities are recorded, a shorter injection time may be selected in order to avoid pull-up peaks. For samples with low DNA content or critical patient samples an injection time of up to 20 s may be necessary.

** Depending on the analysis conditions, the run time for Mentype[®] Chimera[®] was modified in order to analyse fragments with lengths of up to **500 bp**.

- Click on Save to confirm the settings

Create Size Standard

- Go to Library and select Analyze / Size Standards and click Create
- Change the parameters according the table below

Parameter	
Size Standard	
Dye Color	

Set up BTO_550 Orange

The DNA Size Standard 550 (BTO) should be used with the following lengths of fragments: **60**, **80**, **90**, **100**, **120**, **140**, **160**, **180**, **200**, **220**, **240**, **250**, **260**, **280**, **300**, **320**, **340**, **360**, **380**, **400**, **425**, **450**, **475**, **500**, **525**, and **550** bp.

- Click on Save to confirm the settings

Create QC (Size Calling) Protocol

- Go to Library and select Analyze / QC (Size Calling) and click Create
- Change the parameters according the table below

Parameter Protocol Name Size Standard Sizecaller Set up enter a name BTO_550 (from above) Size Caller v.1.1.0

- Go to Analysis Settings / Peak Amplitude Treshold and disable purple. All
- other colours should be enabled
- Keep all other settings as Default
- Click on Save to confirm the settings

Create an Assay

- Go to Library and select Manage / Assays and click Create
- Change the parameters according the table below

Parameter	Set up
Assay Name	e.g. Mentype Chimera
Color	Default
Application Type	HID
Instrument Protocol	e.g. Mentype Chimera
QC Protocols	e.g. BT0_550
Genemapper Protocol	could be defined
Genemapper Protocol	could be defined

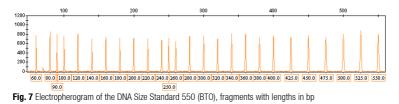
- Click on **Save** to confirm the settings

Starting the run

- Place the prepared multi-well plate on the autosampler tray
- In the Dashboard of the Data Collection Software, click Create New Plate
- Go to Define Plate Properties and select Plate Details
- Change the parameters according the table below

Plate Details

Property	Set up
Name	e.g. Mentype Chimera
Number of Wells	96 or 384
Plate Type*	HID
Capillary Length	36cm
Polymer	POP4


- Click Assign Plate Contents to confirm the settings
- Define well position of each sample or ladder for data collection and processing by entering sample names
- Assign an Assay (required) a File Name Conventions and a Result Group to all named wells in the plate
- Click Link the plate for Run and enter Run Name
- Click Start Run

7. Analysis

For general instructions on automatic sample analysis refer to the *GeneScan*[®] or *GeneMapper*[®] *ID* or *GeneMapper*[®] *ID*-X Software User's Manual.

Note: Within the Mentype[®] Chimera[®] the red panel should be faded out.

Finding the exact lengths of amplified products depends on the device type, the conditions of electrophoresis, as well as the DNA size standard used. Due to the complexity of some STR loci, size-determination should be based on evenly distributed references. The DNA Size Standard 550 (BTO) shall thus be used with the following lengths of fragments: **60**, **80**, **90**, **100**, **120**, **140**, **160**, **180**, **200**, **220**, **240**, **250**, **260**, **280**, **300**, **320**, **340**, **360**, **380**, **400**, **425**, **450**, **475**, **500**, **525**, and **550** bp.

Note: The provided template files for the DNA size standard SST-BTO_60-500bp can be applied for the evaluation and analysis of the Mentype[®] **Chimera**[®] using the GeneMapper[®] ID or ID-X Software.

7.1 Biotype® template files

Allele allocation should be carried out with suitable analysis software, e.g. GeneMapper[®] ID/ID-X or Genotyper software in combination with the Mentype[®] **Chimera**[®] template files from Biotype. Biotype[®] template files are available on our homepage (www.biotype.de) for download or as CD-ROM on request.

Recommended Biotype[®] templates for GeneMapper[®] ID/ID-X Software are:

Panels	Chimera_Panels_v1/v1X
BinSets	Chimera_Bins_v1/v1X
Size Standard	SST-BT0_60-500bp
Analysis Method	Analysis_HID_310
	Analysis_HID_3130
	Analysis_HID_310_50rfu
	Analysis_HID_3130_50rfu
Plot Settings	PlotsBT5_4dyes
Table Settings	Table for 2 Alleles
	Table for 10 Alleles

Panels and BinSets always have to be used, whereas the other template files are optional.

Additional Biotype[®] templates for GeneMapper[®] ID-X Software:

Stutter* Chimera_Stutter_v1X or higher version

* When loading the above mentioned panels, the stutter settings will not be accepted. Thus, the stutter data has to be imported separately.

Recommended Biotype[®] template files for Genotyper Software are: Mentype_Chimera_v1 or higher versions

Important Note: Import and allele calling with provided template files is only guarantied using GeneMapper[®] ID/ID-X software. If GeneMapper[®] software is applied you may experience import problems using some template files. You may have to adjust Panels and Bins with one ore more runs of the allelic ladder on your specific instrument setup. Contact us for support (support@biotype,de).

General procedure for the analysis

- 1. Check the DNA size standard
- 2. Check the allelic ladder
- 3. Check the positive control

or higher versions or higher versions

- Check the negative control
 Analyse and interpret the sample data

7.2 Controls

The Control DNA XY5 of the test kit and other commercially available DNA from standard cell lines represent the following alleles:

Locus	Control DNA XY5	ATCC K-562	CCR 9947A	CCR 9948	CCR 3657
Amelogenin	X/Y	X/X	X/X	X/Y	X/Y
D2S1360	22/25	20/28	23/24	22/25	22/23
D3S1744	17/18	18/18	17/17	18/18	14/17
D4S2366	9/12	13/13	11/13	9/14	9/14
D5S2500	10/11	15/15	15/16	11/15	11/16
D6S474	15/16	14/17	13/17	16/16	15/16
D7S1517	22/27	21/24/25	19/25	20/22	24/25
D8S1132	18/20	20/24	19/21	20/24	17/18
D10S2325	13/14	7/13	9/10	8/14	9/14
D12S391	17/19	23/23	18/20	18/24	18/19
D18S51	13/15	15/16	15/19	15/18	12/20
D21S2055	25/27	28/35	19.1/26	19.1/26	19.1/25
SE33	15/21.2	26.2/28.2	19/29.2	23.2/26.2	22.2/27.2

For further confirmation, the table above displays alleles of reference DNA purchased from ATCC (http://atcc.org/Produtcs/PurifiedDNA.cfm#celllines), as well as three assignments of reference DNA purchased from Coriell Cell Repositories (CCR; http://locus.umdnj.edu/nigms/) standard of Szibor *et al.* (2003).

7.3 Lengths of fragments and alleles

Table 4 to **table 6** show the fragment lengths of individual alleles that refer to the DNA Size Standard 550 (BTO). All analyses have been performed on an ABI PRISM[®] 310/3130 Genetic Analyzer with POP-4[®] polymer. Different analysis instruments, DNA size standards or polymers may result in different fragment lengths. In addition, a visual alignment with the allelic ladder is recommended.

Scaling

Horizontal: 70-480 bp Vertical: Depending on signal intensity

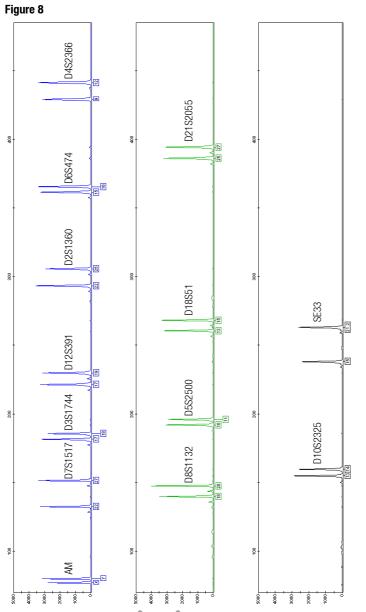


Fig. 8 Electropherogram of the Mentype[®] Chimera[®] using 500 pg Control DNA XY5. Analysis was performed on an ABI PRISM[®] 3130 Genetic Analyzer with the DNA Size Standard 550 (BT0). Allele assignment was performed using the GeneMapper[®] ID Software and the Mentype[®] Chimera[®] template file.

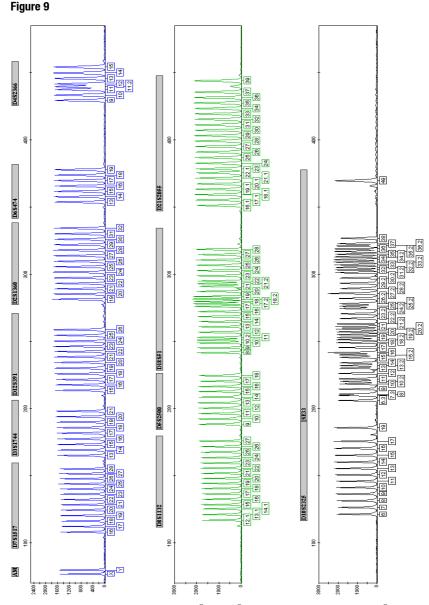


Fig. 9 Electropherogram of the allelic ladder Mentype[®] Chimera[®]. Analysis was performed on an ABI PRISM[®] 3130 Genetic Analyzer with the DNA Size Standard 550 (BTO). Allele assignment was performed using the GeneMapper[®] ID Software and the Mentype[®] Chimera[®] template file.

Marker/allele	Size [bp]*	Further alleles**	Marker/allele	Size [bp]*	Further alleles**	Marker/allele	Size [bp]*	Further alleles**
Amelogenin	6-FAM		D12S391	6-FAM		D6S474	6-FAM	
Х	77		15	213		13	354	11, 12
Y	80		16	217	16.3	14	358	
			17	221	17.3	15	362	
D7S1517	6-FAM		18	226	18.3	16	366	
16	108	14, 15	19	230	19.1, 19.3	17	370	
17	112		20	234	20.3	18	374	
18	116		21	238		19	378	
19	120		22	242				
20	124		23	246		D4S2366	6-FAM	
21	128		24	250		9	429	9.2
22	132		25	254		10	433	10.2
23	136		26	258	27	11	437	
24	140					11.2	440	
25	144		D2S1360	6-FAM		12	441	
26	148		19	281		13	445	
27	152		20	285		14	449	
28	155	29	21	289		15	454	
			22	293				
D3S1744	6-FAM		23	297				
13	165		24	302				
14	169		25	306				
15	173		26	310				
16	177		27	314				
17	182		28	318				
18	186		29	322				
19	190		30	326				
20	194		31	330				
21	198	22	32	334				

Table 4. Fragment lengths of the Mentype[®] Chimera[®] allelic ladder analysed on anABI PRISM[®] 3130 Genetic Analyzer with POP-4[®] polymer. (blue panel)

Marker/allele	Size [bp]*	Further alleles**	Marker/allele	Size [bp]*	Further alleles**	Marker/allele	Size [bp]*	Further alleles*
D8S1132	BTG		D18S51	BTG		D21S2055	BTG	
12.1	117	12, 13	8	241	7	16.1	351	
13.1	121		9	245	9.2	17.1	355	
14.1	125	14.3	10	249		18.1	359	
15	128		10.2	251		19.1	363	
16	132		11	253	11.2	20.1	367	
17	136		12	257	12.2	21.1	371	
18	140		13	261	13.2	22.1	375	22
19	144		14	264	14.2	23	378	23.1
20	148		15	268		24	382	
21	151		16	272	16.2	25	386	
22	155		17	276		26	390	
23	159		17.2	278	17.3	27	395	
24	163		18	279		28	399	
25	167		18.2	281		29	403	
26	171		19	283	19.2	30	406	
27	175		20	287		31	411	
			21	291		32	415	
D5S2500	BTG		21.2	293		33	419	
9	188		22	295		34	423	
10	192		23	299	23.1	35	427	
11	196		24	302		36	431	
12	200		25	306		37	435	38
13	204		26	310		39	443	
14	208		27	314				
15	212		28	318	29			
16	216							
17	220							
18	224							

Table 5. Fragment lengths of the Mentype[®] Chimera[®] allelic ladder analysed on anABI PRISM[®] 3130 Genetic Analyzer with POP-4[®] polymer (green panel)

Marker/allele	Size [bp]*	Further alleles**	Marker/allele	Size [bp]*	Further alleles**	Marker/allele	Size [bp]*	Further alleles**
D10S2325	BTY		SE33	BTY		SE33	BTY	
6	121		6.3	205	4.2, 5.3	25.2	278	
7	126		7.3	209	7	26.2	282	26
8	131		8	210	8.2	27.2 ‡	285	27
9	136		9	214	9.2	28.2	289	28, 28.3
10	141		10	218		29.2	293	29
11	145		10.2	220		30.2	297	30
12	150		11	222	11.2	31.2	301	31
13	155		12	226	12.2	32	303	
14	160		13	230		32.2	305	
15	165		13.2	232	13.3	33	307	
16	170		14	234	14.2, 14.3	33.2	309	
17	175	18	15	238		34	311	
19	185		15.2	240		34.2	313	
			16 [‡]	241	16.2, 16.3	35	315	
			17	245	17.2, 17.3	35.2	317	
			18	249		36	318	
			18.2	251	18.3	36.2	321	
			19	253		37	322	37.2
			19.2	255		38	326	39,42
			20	257	20.1	49	369	50
			20.2	259				
			21	261				
			21.2	263	22			
			22.2	267				
			23.2	270	23			
			24.2	274	24			
			25	276				

Table 6. Fragment lengths of the Mentype[®] Chimera[®] allelic ladder analysed on anABI PRISM[®] 3130 Genetic Analyzer with POP-4[®] polymer (yellow panel)

* rounded to integer

** The "off-ladder" alleles of Biotype's DNA pool are allocated with the actual Biotype® template files for GeneMapper® ID or Genotyper software. For further alleles see amongst others http://www.cstl.nist.gov/biotech/strbase/str_fact.htm

[‡] For better orientation, these alleles are heightened within the allelic ladder.

8. Interpretation of results

As mentioned above, post PCR analysis and automatic allele assignment with suitable analysis software ensure a precise and reliable discrimination of alleles.

An automated calculation of the donor/recipient DNA ratio, as well as standard deviations and detection limits can be obtained directly from raw data of a fragment size analysis using e.g. Chimeris[™] **Monitor** Software from Biotype Diagnostic GmbH.

If results that are obtained with Mentype[®] **Chimera**[®] should be harmonized to results from cytological analyses, make sure that cytological analyses were performed with at least 500 leucocytes.

Pull-up peaks

Pull-up peaks may occur if peak heights are outside the linear detection range, or if an incorrect matrix was applied. They appear at positions of specific peaks in other color channels, typically with lower signal intensities.

Stutter peaks

The occurrence of stutter peaks depends on the sequence of the repeat structure and the number of alleles. N-4 peaks are caused by a loss of a repeat unit during amplification of tetranucleotide STR motives, caused by slippage effects of the Taq DNA Polymerase. Interpretation of those peaks should be done in accordance with the template files of the Genotyper and GeneMapper[®] ID/ID-X software.

Template-independent addition of nucleotides

Because of its terminal transferase activity, the Multi Taq DNA Polymerase tends to add an adenosine radical at the 3'-end of the amplified DNA fragments. The artefact peak is one base shorter than expected (-1 bp peaks). All Biotype[®] primers are designed to minimise these artefacts. Artefact formation is further reduced by the final extension step of the PCR protocol at 68°C for 60 min. Peak height of the artefact correlates with the amount of DNA. Laboratories should define their individual limits for analysis of the peaks.

Artefacts

Room temperature may influence the performance of PCR products on multi-capillary instruments, shoulder peaks or split peaks occur. Furthermore, automated assignment could be influenced in some cases. If these effects occur we recommend injecting the sample again at higher room temperature and maybe using more than one allelic ladder sample per run.

Influence of polymers

The Mentype[®] **Chimera**[®] kit was validated and certified for the analysis on POP-4[®] polymer.. The use of other polymers (e.g. POP-7[™] or POP-6[™]) might influence the run behaviour of specific PCR products. Furthermore background noise might increase through different behaviour of free fluorescent dyes.

9. Population-genetic data

Most important population-genetic data of the STR markers are listed in **table 7-10**. The formula to calculate **Polymorphism Information Content** (PIC) was published by Botstein et al. (1980), **Expected Heterocygosity** (HET) by Nei and Roychoudhury et al. (1974), and, **Power of Discrimination** (PD) refers to Jones et al. (1972). All formulas are suitable for autosomale markers.

PIC =
$$1 - \sum_{i=1}^{n} f_i^2 - 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} f_i^2 f_j^2$$

HET = $\frac{n}{n-1} \left(1 - \sum_{j=1}^{K} f^2 \right)$
PD = $1 - \sum_i f_i^2$

Tabelle 7. Population-genetic d	lata
---------------------------------	------

Ма	Marker D2S1360		arker D3S1744	Marker D4S2366		
Allele	Allele frequency	Allele	Allele frequency	Allele	Allele frequency	
19	0.007	13	0.007	9	0.347	
20	0.126	14	0.104	10	0.179	
21	0.060	15	0.053	11	0.074	
22	0.309	16	0.100	12	0.147	
23	0.142	17	0.319	13	0.168	
24	0.098	18	0.197	14	0.074	
25	0.086	19	0.130	15	0.011	
26	0.093	20	0.067			
27	0.035	21	0.023			
28	0.023					
29	0.012	PIC	0.790	PIC	0.760	
30	0.002	PD	0.943	PD	0.919	
31	0.005	HET	0.792	HET	0.795	
32	0.002					
PIC PD HET	0.820 0.955 0.856					

Ма	Marker D5S2500		arker D6S474	Ма	nker D7S1517
Allele	Allele frequency	Allele	Allele frequency	Allele	Allele frequency
9	0.007	13	0.246	16	0.007
10	0.084	14	0.212	17	0.007
11	0.313	15	0.154	18	0.049
12	0.161	16	0.285	19	0.120
13	0.061	17	0.097	20	0.101
14	0.042	18	0.005	21	0.099
15	0.213			22	0.082
16	0.103	PIC	0.740	23	0.077
17	0.009	PD	0.918	24	0.155
18	0.007	HET	0.733	25	0.230
				26	0.054
PIC	0.780			27	0.014
PD	0.938			28	0.005
HET	0.804				
				PIC	0.860
				PD	0.967
				HET	0.826

Tabelle 8. Population-genetic data

Tabelle 9. Population-genetic data

Marker D8S1132		Ма	rker D10S2325	Marker D12S391		
Allele	Allele frequency	Allele	Allele frequency	Allele	Allele frequency	
16	0.007	6	0.002	15	0.035	
17	0.095	7	0.102	16	0.019	
18	0.221	8	0.056	17	0.107	
19	0.153	9	0.121	17.3	0.019	
20	0.128	10	0.142	18	0.215	
21	0.119	11	0.144	18.3	0.007	
22	0.133	12	0.193	19	0.121	
23	0.077	13	0.133	19.3	0.016	
24	0.056	14	0.065	20	0.117	
25	0.005	15	0.037	21	0.093	
26	0.005	16	0.005	22	0.114	
27	0.002			23	0.072	
		PIC	0.860	24	0.040	
PIC	0.850	PD	0.967	25	0.021	
PD	0.964	HET	0.851	26	0.002	
HET	0.828					
				PIC	0.870	
				PD	0.971	
				HET	0.893	

М	arker D18S51	Ma	rker D21S2055	Marke	Marker SE33 (ACTBP2)		
Allele			Allele frequency	Allele	Allele frequency		
10	0.005	16.1	0.056	11	0.002		
12	0.103	17.1	0.021	12	0.014		
13	0.110	18.1	0.023	13	0.002		
14	0.157	19.1	0.274	13.2	0.002		
15	0.199	20.1	0.040	14	0.026		
16	0.161	21.1	0.019	15	0.049		
17	0.112	22.1	0.005	16	0.047		
18	0.072	23	0.007	17	0.070		
19	0.028	25	0.112	17.3	0.002		
20	0.030	26	0.116	18	0.044		
21	0.021	27	0.016	18.3	0.002		
24	0.002	28	0.007	19	0.082		
		29	0.030	19.2	0.009		
PIC	0.850	30	0.021	20	0.044		
PD	0.964	31	0.023	20.2	0.009		
HET	0.902	32	0.026	21	0.035		
		33	0.067	21.2	0.019		
		34	0.074	22	0.007		
		35	0.053	22.2	0.035		
		36	0.007	23.2	0.023		
		37	0.002	24	0.002		
				24.2	0.035		
		PIC	0.870	25.2	0.044		
		PD	0.971	26.2	0.040		
		HET	0.856	27.2	0.084		
				28.2	0.084		
				29.2	0.051		
				30	0.002		
				30.2	0.061		
				31.2	0.028		
				32.2	0.023		
				33	0.009		
				33.2	0.005		
				34	0.002		
				36	0.002		
				PIC	0.950		
				PD	0.990		
				HET	0.949		

Tabelle 10. Population-genetic data

All population-genetic data based on an analysis of ca. 210 unlinked Caucasians performed by Biotype Diagnostic GmbH.

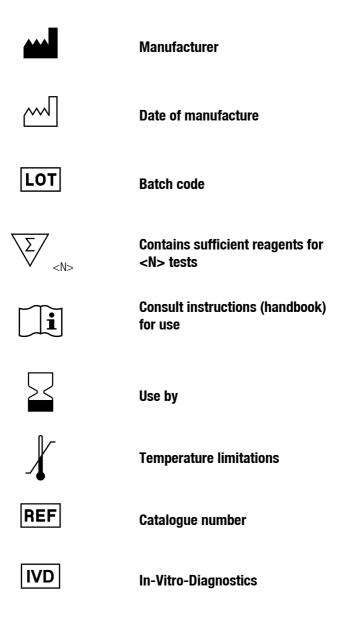
10. References

Bär W, Brinkmann B, Budowle B, Carracedo A, Gill P, Lincoln P, Mayr W, Olaisen B (1997) DNA Recommendations. Further report of the DNA commission of the ISFG regarding the use of short tandem repeat systems. *Int J Legal Med* 110:175-176.

Becker D, Vogelsang D, Brabetz W (2007) Population data on the seven short tandem repeat loci D4S2366, D6S474, D14S608, D19S246, D2OS480, D21S226 and D22S689 in a German population. *Int J Legal Med 121:78-81.*

Botstein D, White RI, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. *Am J Hum Genet* 32:314–331.

Hering S, Müller E (2001) New allele and mutational events in D12S391 and D8S1132: sequence data from an eastern German population. *Forensic Sci Int* 124:187-191.


Jones DA (1972) Blood samples: Probability of Discrimination. J Forensic Sci Soc 12:355-359.

Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. *Genetics 76:379–390.*

Szibor R, Edelmann J, Hering S, Plate I, Wittig H, Roewer L, Wiegand P, Cali F, Romano V, Michael M (2003) Cell line DNA typing in forensic genetics – the necessity of reliable standards. *Forensic Sci Int 138: 37-43.*

Wiegand P, Lareu M. V., Schürenkamp M (1999) D18S535, D1S1656 and D10S2325: three efficient short tandem repeats for forensic genetics. *Int J Legal Med* 112:360-363.

Wiegand P, Klintschar M (2002) Population genetic data, comparison of the repeat structure and mutation events of two short STRs. *Int J Legal Med* 116:258-261.

Notes

Notes