
United States Patent

US00705l243B2

(12) (10) Patent N0.: US 7,051,243 B2
Helgren et a]. (45) Date of Patent: May 23, 2006

(54) RULES-BASED CONFIGURATION 5,867,714 A 2/1999 Todd et a1.
PROBLEM DETECTION 5,897,630 A 4/1999 Schneider

Huddleston Virta et a1.

(75) Inventors: Matthew J. Helgren, Austin, TX (US); 5,922,079 A 7/1999 Booth et al'

Michael E. Little, Cedar Park, TX i Sin“? 1
(US); Paris E. Bingham, Jr., Aurora, ’ ’ en e a'

CO (US); Rex G. Martin, Plano, TX (Continued)
(US); Alan J. Treece, St. Peters, MO
(Us) FOREIGN PATENT DOCUMENTS

. EP 367 377 5/1990
(73) Ass1gnee: Sun Microsystems, Inc., Santa Clara,

CA (Us) (Continued)

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS

$12318 11S sixteng $142; adjusted under 35 Search Report from UK Patent Application No. 03094851,
' ' ' () y ays' mailed Nov. 27, 2003, 6 pages.

(21) Appl. N0.: 10/135,483 (Continued)

(22) Filed: Apr- 30, 2002 Primary ExamineriRobert W. Beausoliel, Jr.
_ _ _ Assistant ExamineriYolanda L. Wilson

(65) Pnor Pubhcatlon Data (74) Attorney, Agent, or FirmiRobert C. Kowert;

Us Oct~ Meyertons, HOOd, KIVIIII, Kowert & GoetZel, (51) Int CL (57) ABSTRACT

G06F 11/00 (2006.01)
(52) US. Cl. 714/48; 714/26; 714/ 37 A system and method for identifying problems with a system
(58) Field of Classi?cation Search 714/48, Con?guration may evaluate system con?guration informa

714/37’ 26’ 47 tion against one or more con?guration recommendations or
See application ?le for complete Search history, rules. The evaluated system con?guration may include vari

ous types of software and hardware components which may
(56) References Cited impact the operations of the computer system. Rules may be

US. PATENT DOCUMENTS
any information identifying an issue or describing a recom
mended con?guration for the software or hardware compo

4,447,846 A 5/1984 Mccleery nent. A knowledge-based language or a programming lan
4,853,873 A 8/1989 Tsuji et a1‘ guage analyzer may be used to specify the rules. In one
5,111,384 A 5/1992 Aslanian et a1. embodiment, a rules engine may be used as part of the
5,175,800 A 12/ 1992 Galis et a1. problem detection application to evaluate con?guration data
5,179,695 A 1/1993 Deff et a1~ against associated rules. A rules engine may be any mecha
5387505 A 2/1994 Calven et a1~ nism used to recognize, interpret and process the con?gu
5335341 A 8/1994 Charla ration data against the rules. The results of the evaluation
5’664’093 A 9/1997 Barnett et 31' rocess ma be stored for further anal sis
5,678,002 A 10/1997 Fawcett et al. p y y '
5,826,250 A 10/1998 Tre?er
5,862,322 A 1/1999 Anglin et a1. 44 Claims, 8 Drawing Sheets

System
10.1

Soitware Components Hardware Components
11_0 12a

"" iiSBiIiSQi-Eélfiiiiéiiéi""Q
1.00 :

Configuratiom i Rules Data

F m
m :

Problem
Results
1512

US 7,051,243 B2
Page 2

US. PATENT DOCUMENTS

5,974,568 A 10/1999 McQueen
6,029,258 A 2/2000 Ahmad
6,170,065 B1 1/2001 Kobata et a1.
6,219,626 B1 4/2001 Steinmetz et al.
6,298,308 B1 10/2001 Reid et a1.
6,327,677 B1* 12/2001
6,349,335 B1* 2/2002
6,470,464 B1* 10/2002
6,487,677 B1 11/2002
6,529,954 B1 3/2003 Cookmeyer, et al.
6,532,408 B1 3/2003 Breed
6,549,893 B1 4/2003 Lannert et a1.
6,560,592 B1 5/2003 Reid et a1.
6,604,141 B1 8/2003 Ventura
6,615,172 B1 9/2003 Bennett et a1.
6,629,267 B1 9/2003 Glerum et a1.
6,633,782 B1 10/2003 Schleiss et a1.
6,633,876 B1 10/2003 Heatlie
6,678,639 B1 1/2004 Little et a1.
6,681,348 B1 1/2004 Vachon
6,701,514 B1 3/2004 Haswell et al.
6,738,928 B1 5/2004 Brown
6,738,932 B1 5/2004 Price
6,742,141 B1 5/2004 Miller
6,859,893 B1 2/2005 Hines

2002/0073195 A1* 6/2002 Hellerstein et a1. 709/224

2002/0078404 A1
2002/0095615 A1
2003/0028825 A1*
2003/0028857 A1

6/2002 Vachon et al.
7/2002 Hastings et a1.
2/2003 Hines 714/37

2/2003 Zagorski et al.

FOREIGN PATENT DOCUMENTS

GB 2 383 854 7/2003

OTHER PUBLICATIONS

Service Pack Manager 2000, User Manual, “Gravity Storm
Software,” Gravity Storm Software, LLC, 1999-2002, pp.
1-54.

Patwardhan, et al., “Perl in a Nutshell,” O’Reilly, Dec. 1998,
ISBN: 1-56592-286-7, 1 page.
Steve Oualline, “Practical C Programming,” 3rdEdition,
O’Reilly, Aug. 1997, ISBN: 1-56592-306-5, 3 pages.
Pittelli, et al., “Reliable Scheduling in a TMR Database
System, ” ACM, Feb. 1999, 2 pages.
“XML iThe Bene?ts,” Version found via “The Way Back
Machine,” Feb. 26, 2000, http://www.softwareag.com/Xml/
about/xmlibenhtml, 3 pages.
Janice Winsor, “Solaris 8 System Administrator’s Refer
ence,” Prentice Hall PTR, Sep. 7, 2000, ISBN: 0-13
027701-0, 2 pages.
Paul McFedries, “Windows 98 Unleashed, ” Sams Publish
ing, Mar. 12, 1998, ISBN: 0-672-31235-2, 4 pages.
“RS232 Interface: A Tutorial,” Version from Oct. 4, 1999
found via “The Way Back Machine,” http://arcelect.com/
rs232.html, 2 pages.
“How Does Human Memory Compare with Computer
Memory,” Version from Nov. 11, 1999 found via “The Way
Back Machine,” http://www.scism.sbu.ac.uk/inmandw/tuto
rials/memory/qu8.htm, 4 pages.
Alligator Descartes, et al., “Programming the Perl DBI,”
O’Reilly and Associates, Feb. 2000, ISBN: 1-56592-699-4,
2 pages.
Michael Caplinger, “Graphical Database Browsing,” ACM,
1986. 0-89791-210-1/86/1000-0113, 1 page.
James Kavicky, et al., “An Expert System for Diagnosing
and Maintaining the AT&T 3B4000 Computer: An Archi
tecture Description,” ACM, Jun. 1989, pp. 36-45.
Rob McGregor, “Practical C ++,” Que, Aug. 11, 1999,
ISBN: 0-7897-2144-9, 5 pages.
“UC Berkeley Library Internet Glossary,” http://www.lib/
berkeley.edu/TeachingLib/Guides/Intemet/Glossary.html,
Jun. 7, 1997, Version via WayBack Machine (http://www.
archive.org), 3 pages.

* cited by examiner

U.S. Patent May 23, 2006 Sheet 1 0f 8 US 7,051,243 B2

System
l?l

Software Components Hardware Components
£9 E

Problem Detection Application
1_0_Q

Configuration

Engine
1i

2 5
Data :4} i <: Rules Data m E i Rules-based : m

i i
i .
I I

FIGURE 1

U.S. Patent May 23, 2006 Sheet 2 0f 8 US 7,051,243 B2

System
gm

Software Components Hardware Components
ZlQ 2_2Q

l

: Access To
| Configuration Data
1 22

System |

L1- :
|
l _________________________________ __|

: E Problem Detection Application 5
+ i m 5

Configuration E I
Data :> <: Rules Data
1 30 : Rules-eased : Jim
— : Engine .

5 m 5

Problem
Results
1@

FIGURE 2

U.S. Patent May 23, 2006 Sheet 3 0f 8 US 7,051,243 B2

Problem Detection Ap _lica_tion
Problem Detecmt App lcatton

399

User Interfaces __

QQQ

Configuration . Rules

Data Collection Rule? sEggme Interface
m — Am

Explorer
3Q Problem

Results
_3§Q

FIGURE 3

U.S. Patent May 23, 2006 Sheet 4 0f 8 US 7,051,243 B2

Rules Engine
152

Rules Engine Request/Results Notification Interface
E9 4s_1

Knowledge Iterator
Q

> Rules Data
~ File l/O Q

Analyzers Interpreter
E 5.5.‘;

Configuration Data interface
@

Configuration
Data
@

FIGURE 4

U.S. Patent May 23, 2006 Sheet 5 0f 8 US 7,051,243 B2

Web interfaces
410

Serviets Java Server Pages

Application
Rules-based

Server Java Beans (business logic) <:> Engine
400 Q‘!

Java Blend JDBC

Database(s) R Configuration
uies Data

?g w Data
iiiQ

FIGURE 5

U.S. Patent May 23, 2006 Sheet 6 0f 8 US 7,051,243 B2

o MEDGE

A

Nola. 50622 g @8225 x6362

@qw. 3.10 r 4

gd $250 $004

U.S. Patent May 23, 2006 Sheet 7 0f 8

Receive Request To Validate The
Configuration of A System

E9

l
Access Rules Data and Configuration

Data For The System
191

1
Evaluate Rules From Rules Data

Against Configuration Data
.702

1
Generate Results of Evaluation

Identifying Any Con?guration issues
For The System

1%

FIGURE 7

US 7,051,243 B2

U.S. Patent May 23, 2006 Sheet 8 0f 8 US 7,051,243 B2

Receive Request To Validate The
Configuration of A System

@Q

I
Access Rules Data and Con?guration

Data For The System
$1

I
Begin Rule Evaluation

£32

I

For Rules Requiring User Input of
Con?guration Data, Request

Configuration Data Through User
Interface
@5

Evaluate Rules Data Not Requiring
User Input Against Configuration Data

il?

I
Wait For User Input

.m

I
Evaluate Rules From Rules Data

Against Configuration Data
§1_Q

I V

Generate Results of Evaluation
Identifying Any Configuration Issues

For The System
gig

Generate Results of Evaluation
Identifying Any Configuration Issues

For The System
§1_4.

I

Merge Results
E

FIGURE 8

US 7,051,243 B2
1

RULES-BASED CONFIGURATION
PROBLEM DETECTION

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to hardware and/or software con

?guration of computer systems, and more particularly to
identifying known problems or issues with the con?gura
tion.

2. Description of the Related Art
With the growing deployment of computer system and

software, applications often operate in distributed, hetero
geneous environments. Processing in a complex system may
be partitioned across network segments, CPU clusters, and
storage locations. The con?guration of a complex environ
ment may impact many Quality of Service (QoS) factors
such as reliability, availability, and serviceability. Also, due
to the severe time constraints imposed by rapid deployment,
and the increasing pressure from customers on suppliers to
provide solutions correctly out of the box, quick identi?ca
tion and resolution of system con?guration issues may be
critical.

Numerous problems may arise while attempting to iden
tify potential issues with the system con?guration. The
oversight and management of systems, especially in a com
plex networked environment, may rely heavily on the
knowledge of system administrators and/ or experts from the
system service provider(s). In an e?fort to utiliZe a repeatable
process derived from that knowledge, checklists, operational
procedures, or other similar documentation may be devel
oped. These types of documents may rapidly become obso
lete, especially in cases of new product releases that may
require modi?cation to the documents. Unless proper noti
?cation and release of the modi?cations are made, docu
mentation users may actually apply outdated knowledge
resulting with undermining the use of a repeatable process.
Such manual checklists and procedures may also be inef?
cient to utiliZe.

Additional problems may arise while attempting to
accommodate release or maintenance of system products
and technologies. The procedures used to install or verify
system con?guration may vary from one system to the next
based on a number of factors. For example, the complexity
of the network environment or the knowledge level of the
individual performing the install or verify, may impact the
process. Consistency and reliance on a repeatable process
may not be achieved, further increasing the risk of system
failures and/or unacceptable maintenance issues. Further
more, the process may be resource and training intensive
based on the different variations of con?guration.

A computer system may have many different components
that need to work together correctly for the system to operate
properly or optimally. For example, disk ?rmware should
correctly interact with an operating system and the operating
system should correctly interact with applications and other
components. Thus, there may be numerous layers of com
ponents con?gured in a computer system. The management
and product support of these layered components may be
very complex and often involves manual inspection, manual
veri?cation and other manual operations.

20

25

30

35

40

45

50

55

60

65

2
SUMMARY

A system and method for identifying problems with a
system con?guration may evaluate system con?guration
information against one or more con?guration recommen

dations or rules. Arules-based problem detection application
may be used for the evaluation process to generate results

regarding any problems identi?ed. The evaluated system
con?guration may include various types of software and
hardware components which impact the operations of the
computer system. For example, software components may
include an operating system (OS), OS patches, OS shared
system libraries, device drivers, applications, other software
products running on the OS, etc. Hardware components may

include processor, memory, disk drives, system controllers,
system cables, storage connection switches, etc.

Rules may be any information identifying a known issue
or describing a recommended or best practice con?guration
for the software or hardware component. A knowledge
based language or a programming language analyZer may be
used to specify the rules, and thus, signify patterns in the
rules. For example, an interpreted programming language
may specify the recommended minimum OS patch version
for the system con?guration as a rule.

In one embodiment, a rules engine may be used as part of
the problem detection application to evaluate con?guration
data against associated rules. A rules engine may be any
mechanism used to recogniZe, interpret and process the
con?guration data against the rules. In one embodiment, the
results of the evaluation process may be stored for further
analysis. The results may include a Boolean result indicating
evaluation of a rule against the associated con?guration
data. Whether the problem passes or fails may be indicated
by the Boolean result. The problem results may include
recommendations or notes for remediation of the problem.

The problem results may include speci?c information
regarding a negative or positive impact to system reliability
or some other service measurement. In one embodiment, the

problem results may be emailed to an email distribution list
or stored in a ?le or database.

In one embodiment, a system that includes a processor

and memory accessible by the processor may include a
problem detection application. The memory may be con?g
ured to store program instructions executable by the pro
cessor to implement the problem detection application. In
one embodiment, the problem detection application may
include a rules engine con?gured to access con?guration
data for a system and rules data. The con?guration data may
comprise information about components con?gured for a
computer system and the rules data may comprise rules for
identifying system con?guration issues. The rules engine
may be con?gured to evaluate the rules from the rules data
against the con?guration data and generate results of any
con?guration issues identi?ed for the computer system.

In one embodiment, a method for identifying issues with
a system con?guration may include receiving a request to
validate a system’s con?guration. The process may include

US 7,051,243 B2
3

receiving rules data that includes one or more rules for

identifying issues in the system’s con?guration. The process
may include receiving con?guration data that has informa
tion about the system’s con?guration. A rules engine may be
used for evaluating the rules data against the con?guration
data to identify issues in the system’s con?guration. The
method may include generating a result of any issues
identi?ed in the system’s con?guration.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a rules-based con?guration problem
detection application, according to one embodiment;

FIG. 2 illustrates a rules-based con?guration problem
detection application running on a system external to the
con?guration components, according to one embodiment;

FIG. 3 illustrates exemplary user interfaces that may be
coupled to a rules-based con?guration problem detection
application, as well as various mechanisms for accessing the
con?guration, rules and problem results data, according to
various embodiments;

FIG. 4 illustrates a rules interface and rules engine,

according to one embodiment;
FIG. 5 illustrates a problem detection application operat

ing in an application server environment, according to one

embodiment;
FIG. 6 illustrates a computer system suitable for imple

menting a problem detection application, according to one
embodiment;

FIG. 7 is a ?owchart representing an exemplary method
from a high-level perspective for a problem detection appli
cation, according to one embodiment;

FIG. 8 is a ?owchart representing an exemplary method
for a problem detection application, according to one
embodiment.

While the invention is susceptible to various modi?ca
tions and alternative forms, speci?c embodiments thereof
are shown by way of example in the drawings and will
herein be described in detail. It should be understood,
however, that the drawings and detailed description thereto
are not intended to limit the invention to the particular form

disclosed, but on the contrary, the intention is to cover all
modi?cations, equivalents and alternatives falling within the
spirit and scope of the invention as de?ned by the appended
claims.

DETAILED DESCRIPTION OF EMBODIMENTS

A system and method for identifying problems with a
system con?guration may evaluate system con?guration
information against one or more con?guration recommen

dations or rules. FIG. 1 illustrates one embodiment of a

rules-based problem detection application 100 for identify
ing problems with system con?guration. Computer system
101 may encompass any computing device having a pro
cessor which executes instructions from a memory medium.

The con?guration of such systems may include various
types of software and hardware components which may
impact the operations of the computer system. For example,
software components 110 may include an operating system
(OS), OS patches, OS shared system libraries, device driv

20

25

30

35

40

45

50

55

60

65

4
ers, applications, other software products running on the OS,
etc. Hardware components 120 may include processor,
memory, disk drives, system controllers, system cables,
storage connection switches, etc. Con?guration information
for the computer system may include information indicating
what software and/ or hardware components are present and
further describing information about each component, such
as name, type, version number, date installed, etc.
The con?guration information may be system data con

taining the existing con?guration of the software and hard
ware components such as con?guration data 130. For
example, con?guration data may include OS patch version
is “1093339-01” or disk drive type is “MAB3091S”. The
con?guration data may indicate “system controller” for a
Secondary Storage Controller (SSC) board. Note the con
?guration data may contain information for components that
rely on human inspection. For example, human inspection
may be required to determine whether or not a system cable
is plugged in or damaged. The con?guration data may
contain information for one or more software and/or hard

ware components. The con?guration data may be accessed
by problem detection application 100 from a source within
application 100 or a source external to application 100 as

depicted by a logical representation (broken line) of appli
cation 100 in FIG. 1.

Rules data 140 may include information for identifying
con?guration issues. In some embodiments, rules data 140
may describe a recommended con?guration for the software
or hardware component. Rules data 140 may include rules
for specifying a potential problem, and may also include
information describing the problem in further detail. For
example, rules data may specify the recommended mini
mum OS patch version identi?er or recommended disk drive

type identi?er for the system con?guration, along with a
problem description providing technical details. Rules data
may include a recommendation that a SSC board identi?er

show “system controller” in its con?guration. Analysis steps
describing step-by-step actions for pinpointing the problem,
or recommendations for eliminating the problem, may be
included. The rules may include a severity of the problem.
The rules data may contain one or more rules for one or more

software and/or hardware components. The rules data may
be accessed by problem detection application 100 from a
source within application 100 or a source external to appli

cation 100 as depicted by a logical representation (broken
line) of application 100 in FIG. 1.
The rules data may be speci?ed using any type of lan

guage capable of being recognized during the evaluation of
con?guration data against the rules. A recogniZer may iden
tify patterns of the rules data. Patterns may be symbols in the
rules data which can be read, recogniZed, and written by the
recognizer. The recogniZer may be able to determine where
each symbol starts and stops, distinguish the symbols, and
derive information based on the arrangement of the symbols.
A knowledge-based language or a programming language
analyZer may be used to specify the rules, and thus, signify
patterns in the rules data. For example, an interpreted
language similar to CLIPS or LISP, or a Java class AnalyZer,
may be used to specify the rules.

In one embodiment, a rules engine 150 may be used as
part of problem detection application 100 to evaluate con

US 7,051,243 B2
5

?guration data against associated rules. A rules engine may
be any mechanism used to recognize, interpret and process
the con?guration data against the rules. In one embodiment,
the rules engine may be an application that reads the
con?guration and rule data, evaluates the con?guration
against the speci?ed rules, and produces a result of the
evaluation. In one embodiment, the rules engine may be a
knowledge-based application capable of applying arti?cial
intelligence algorithms to interpret and process the con?gu
ration data against the rules data. The detection process
based on interpreting and processing the rules may be
automation of consistent knowledge (representative of rules
data 140) against the con?guration data. Automation of
consistent knowledge may apply the rules describing a
recommended con?guration for the software or hardware
component over time. For example, the recommended con
?guration for the component may be derived based on past
knowledge of the con?guration. In another embodiment, a
programming language Analyzer may be used instead of or
in addition to a knowledge-based interpreter. One example
is Java AnalyZers. The AnalyZers may be implemented in a
reusable manner in order to return a detailed evaluation of

rules that are not easily represented in other rules languages.

After problem detection application 100 evaluates con
?guration data against rules data, any issues identi?ed in the
detection process may be stored for further analysis in
problem results 160. In one embodiment, the problem results
may include a Boolean result indicating evaluation of a rule
against the associated con?guration data. Whether the prob
lem passes or fails may be indicated by the Boolean result.
The problem results may contain a Boolean result for one or

more rules for one or more software and/or hardware com

ponents. The problem results may include recommendations
or notes for eliminating the problem. The problem results
may include speci?c information regarding any impact to
system reliability, serviceability, availability, or other ser
vice measurements. For example, the problem results may
show a reliability measurement decrease if certain con?gu
ration components are updated. In one embodiment, the
problem results may be emailed to an email distribution list
for additional analysis. In another embodiment, text based
results may be stored in a ?le or a Relational Database

Management System (RDBMS). The problem results may
be accessed by problem detection application 100 from a
source within application 100 or a source external to appli

cation 100 as depicted by a logical representation of appli
cation 100 in FIG. 1.

The following examples illustrate example rules for rules
data 140. Example 1 deals with the con?guration of an OS
software component. A rule for the OS software component
may recommend patch 109339-01 or later for con?guration
of OS version 5.6 or patch 103680-04 or later for con?gu
ration of OS version 5.5.1. Problem detection application
100 may return a Boolean result indicating whether the rule
passes or fails. The rule may fail if the system does not have
patch 109339-01 or later installed for OS version 5.6 or

patch 103680-04 or later for OS version 5.5.1. Thus, a
problem with the OS software component would be identi
?ed and included in the problem results. Other example
follow.

6
EXAMPLE 1

Check failed if patch 109339-01 or latter is not installed for OS 5.6

Check failed if patch 103680-04 or latter is not installed for OS 5.5.1

10 #

(or

(and
(osCompare rJSunOSRev “==” “5.6”)

15 (patchCheck “109339” 1)

(patchCheckInstalled ?HostId ?PatchMinNum “<” ?PatchMinRev)

)

(and
20 (osCompare rJSunOSRev “==” “5.5.1”)

(patchCheck “103680” 4)

(patchCheckInstalled ?HostId ?PatchMinNum “<” ?PatchMinRev)

)

25)

EXAMPLE 2

30

Get the latest version for this hard drive

35 #

(set ?Type “MAB3091S”)
(set ?Ver(classSlot “MasterFirmware” ?Type “latestVersion”))

#Get the lists of disks on the host

40 (set ?Drives (classSlot “Host” ?HostId “diskInstances”))

For each disk, check for the speci?ed type and level of ?rmware

(set ?DrivesOk false)
45 (eachElement ?diskId ?Drives

(and
Get the product type and compare it to

(set ?VProd (trim (substr (factSlot “HostDisk”
?diskId “product”) 1 8)))

(compare ?VProd “==” ?Type)
50 # Get the ?rmware revision and compare it

(set rJFW (factSlot “HostDisk” ?diskId “revision”))
(fmCompare rJFW “!=” 7Ver)
(set ?DrivesOk true)

)
(nop ?DrivesOk) 55

EXAMPLE 3

60

Applicable only for 5.8

65 (osCompare (classSlot “Host” ?HostId “sunOSRevision”) “==” “5.8”)

7
US 7,051,243 B2

8
EXAMPLE 4

-continued

(if
5 (not ?InstalledOk)

Applicable only for Cluster 3.x (and
(set rJBadl ttue)
(classslot “Host” 7Host1d iiisclust?r”) (Badl: optional boolean (nop ?Bad1))
(classSlot “HostPackage” ?Host1d “SU \l Wscr” “isInstalled”) (Set 7Ch6ckPass £3156)
(match (classSlot “HostPackage” ?Host1d “SU \lWscr” “version” “/ 3/”))

10)

Check failed since the system is not an E420R and 109657-03 and
hi er has not been installed

EXAMPLE 5 # gh

(if
15 (not ?InstalledOk)

(and
(set ?Bad2 ttue)

(Nad2: optional boolean (nop ?Bad2))
Check failed since the system is an E420R and 109657-03 and higher (set ?CheckPass false)
has not been installed)
20))
(if

(and
(set ?sysCon?g (classSlot “Host” ?Host1d “systemCon?guration”))

EXAMPLE 6

Set path

(set ?checkPlatform (systemControlleiCheck “SunFire”))

Examine each sc/sscname/shoWplatformf-dfxout ?le for ’interleave—scope’ variable

If this variable is set to “across-boards”, this check fails.

If this variable is set to “Within-board” or “Within-cpu”, this check passes

(set ?scopeOk ttue)

(set ?platfo1mdomains (classSlot “Host” ?Host1d “scPlatformDomains”))

(set ?failingDomains (createList))
(if rJcheckPlatfoIm

(and
(set rJ?lePath (concat “sc/” ?mainPlatfo1m “/”))

(eachElement ?aDomain ?platformdomains

(and
(set ?num (factSlot “SCDomain” ?aDomain “domainld”))

(set ??le (concat “shoWplatformf-df” (toLoWer ?num) “.out”))

(set ?path (concat ??lePath ??le))

(not (containsLine rJPath “/interleave—scope.+Within—(boardlcpu)/”))

(set ?scopeOk false)
(set ?failingDomains (appendList ?failingDomains ??le))

US 7,051,243 B2
9

EXAMPLE 7

EXAMPLE 8

5

10
system 201. The logical representation of access 202 to the
con?guration data may be any mechanism capable of pro
viding the con?guration data for system 201 to problem
detection application 100. For example, the con?guration
data may be uploaded to system 101 via a netWork connec
tion or from a portable device.

In some embodiments, problem detection application 100
may be used after initial installation of a system, installation
of a hardWare or software component or at any point in time
to identify potential problems With the system con?guration.

Check Whether both SSC boards shoW “System Controller” in showboardsivput ?le
for their Component Type

(set ?checkFail false)
(set ?bothSysController true)
(set ?failedBoards (createList))
(set ?systemBoards (classSlot “Host” ?Hostld “scBoards”))
(eachElement ?aBoard ?systemBoards

(and
(match (factSlot “SCBoard” ?aBoard “boardld”) “/SSC/i”)
(not (match (factSlot “SCBoard” ?aBoard “componentType”) “/System Controller/i”))
(set ?bothSysController false)

Check Whether either one is not powered on, or is in “Failed” or “Degraded” status

If it does, the check fails

(if
(nop ?bothSysController)

(eachElement ?bBoard ?systemBoards
(and

Match (factSlot “SCBoard” ?bBoard “boardld”) “/SSC/i”)
(or

(not (match (factSlot “SCBoard” ?bBoard “poWer”) “/On/i”))
(match (factSlot “SCBoard” ?bBoard “status”) "/(FailedlDegraded)/i”)

)
(set ?failedBoards (appendList ?failedBoards ?bBoard))
(set ?checkFail true)

)
)
(nop ?checkFail)

Rules may also include applicabilities. An applicability
may indicate if a speci?c rule(s) is applicable to the system
being evaluated. For example, if the con?guration data
indicates a system for Which an rule applies according to an
applicability for the rule, then the rule is executed. Once
executed, a pass or fail condition may be generated for the
rule, for example. Rules that are not applicable to the system
being evaluated may be skipped (e.g. not executed by the
rules engine).
As illustrated in FIG. 1, problem detection application

100 may run on the same system to Which the con?guration

data 130 pertains. In other embodiments, as illustrated in
FIG. 2, the problem detection application may run on a
system other than the system(s) to Which the con?guration
data 130 pertains. For example, problem detection applica
tion 100 may run on system 101 and evaluate the con?gu
ration of softWare and hardWare components contained on
system 201. Thus, con?guration data 130 may include the
con?guration of softWare and hardWare components on

50

55

60

65

The installation of the system may involve a full system

implementation or installation of a neW hardWare or soft

Ware component to the system. For example, the service

provider or systems administrator may install a neW system

or disk controller to an existing system and use problem

detection application 100 to verify no problems are present
With the system con?guration after the installation (eg the
neWly installed disk drivers are correct for the system OS).
Conversely, after a system has been operating for a period of
time, problem detection application 100 may be used to
detect any problems With the current con?guration. Con
?guration issues may develop overtime, for example, a neW
OS patch may have been released. Rules data 140 may be
updated for neW issues and problem detection application
100 run to detect such neW issues.

FIG. 3 illustrates a block diagram of problem detection
application 100, according to one embodiment. As shoWn in
FIG. 3, problem detection application 100 may include one

US 7,051,243 B2
11

or more user interfaces 330, a con?guration data collection

unit 310, a rules interface 350 and a results unit 360, in
addition to rules engine 150. Problem detection application
300 may enable the user to manage the con?guration data,
rules data and problem results data through user interfaces
330. The user interfaces may be a graphical and/or command
line interfaces for providing display and/or interactive
access to the user. The user interfaces may be one interface

or multiple interfaces. Con?guration, rules and problem
results data may be accessed by problem detection applica
tion 100 from a source Within application 100 or a source

external to application 100. The folloWing embodiments
describe exemplary mechanisms for accessing the con?gu
ration, rules and problem results data.

In one embodiment, problem detection application 100
may provide the ability to input con?guration data required
for rules dependent on user input (e.g. human inspection)
through a user interface. For example, human inspection
may be required to determine if a system cable is installed
for a system cable rule and hence a user may input the
system cable con?guration data through a user interface. The
rules data may specify a required user input response of
“yes” for a system cable rule evaluating installation to the
system cable. A user interface may be used to collect any
con?guration data that may not be accessible by problem
detection application 100 from any other source.

In one embodiment, con?guration data collection unit 310
may be any mechanism used to gather and/or enable access
of con?guration data 130 to problem detection application
100. In one embodiment, the collection of con?guration data
may include an uploading of data from a handheld infor
mation device or via a netWork connection. For example, a

service provider engineer may collect the con?guration data
using a Palm Pilot during a service appointment. Later, the
con?guration data may be uploaded for access and use by
problem detection application 100 utiliZing a Java conduit,
for example. The con?guration day may be transferred for
access and use by application 100 utiliZing a generic conduit
for data exchange betWeen computers. In one embodiment,
the collection of con?guration data may be data generated
and transferred via the netWork by some other application
running on a system in a remote location. For example, an

application may run on a different computer other than
problem detection application 100, collect con?guration
data, generate the con?guration data in a format understood
by problem detection application 100, and initiate transfer of
the data to con?guration data collection unit 310 of problem
detection application 100.

In one embodiment, con?guration data collection unit 310
may include an explorer mechanism 320 to identify and/or
collect con?guration data that is accessible to problem
detection application 100. Explorer 320 may be an auto
mated con?guration data collection process. In some sys
tems, con?guration data may be maintained by various
source, eg the OS, third part softWare vendors, system
vendor speci?c locations, etc. Problem detection application
100 may initiate an explorer 320 process to automatically
collect and compile con?guration data from one or more
different sources. Explorer 320 may collect con?guration
data such as data location, computer system name and
identi?er, OS version, system type, serial number and third

20

25

30

35

40

45

55

60

65

12
party product information. For example, the explorer 320
may identify a third party softWare product released from a
different supplier other than the supplier of the computer
system.
A user interface 330 may include a menu system and a

display of the current rule being detected for a problem. For
example, the menu may alloW graphical selection of various
menu operations or provide a display shoWing a rule that is
currently being evaluated. The menu system may alloW a
user to edit Which menu operations Will be included prior to
running problem detection application 100. The interface
may display the percentage of rules completed as part of the
detection process. For example, the interface may display a
graphical percentage of rules completed. The interface may
display a numerical percentage of rules completed.

Problem detection application 100 may provide various
Ways to manipulate and store the problem results generated
during the problem detection process through user interface
330 and results unit 360. In one embodiment, a user interface

may be provided to help manage the problem results data. A
resolution process may include a resolution manager inter

face to enable the user to vieW, sort, and/or manipulate the
results for desired presentation. In one embodiment, the
results interface 360 may provide a mechanism to directly
store and access the problem results data from a database.

For example, the results interface may alloW the problem
results data to be stored and directly accessed by Oracle
Relational Database System (Oracle RDBMS). The user
interfaces for manipulation of the data may be interfaces
developed With a RDBMS. In one embodiment, results
interface 360 may provide for eXtensible Markup Language
@(ML) problem results to be emailed to a service provider.
The service provider may use the problem results data to
obtain service level metrics and trend analysis. For example,
the problem results data may be used for obtaining reliability
measurements to determine the long-term impact after a
hardWare component Was replaced by a different supplier. In
another embodiment, text based problem results may be
stored in a ?le or displayed to the user. Metrics from

repeated execution of a problem detection application across
a span of time may also be displayed.

In one embodiment, through rules interface 350, a rules
manager user interface of user interfaces 330 may enable the
user to edit the rules data or input additional notes or

comments regarding a problem identi?ed by a rule. In one

embodiment, a rules manager user interface may alloW
selection of problems to be included in the detection process.
For example, a rules-based ?lter may be included as part of
a user interface to alloW selection of speci?c problems, and
therefore speci?c rules. The rules data may contain an
indication to include or exclude the problem in the detection
process. Based on the rules-based ?lter, the rules data may
be ?ltered include only rules for con?guration data not
relying on human inspection or rules associated only With
softWare components. The rules-based ?lter may be pro
vided by rules interface 350 and accessed through user
interface 330.

In one embodiment, a feature may be provided to alloW
the rules data and/or rules engine 340 to remain up-to-date.
The rules and rules engine may require synchronization to
ensure the rules engine can recogniZe, interpret and process

US 7,051,243 B2
13

the rules data. For example, a reminder may be displayed
from a user interface indicating an expiration date When the
rules engine Will not be able to process a rule in the rules
data. The user may select Whether to update the rules engine
at that moment or Wait until another period in time to update
the rules engine. In one embodiment, the rules and/or rules
engine may be automatically updated based on user selec
tion of an update interval. For example, the update interval
may be de?ned as quarterly and an update of the rules may
automatically occur every quarter as selected by the user.

The rules engine may communicate obtain rules to be
evaluated through rules interface 350. Rules interface 350
may be any mechanism that handles communication
betWeen the rules engine and rules data 140.

FIG. 4 illustrates a block diagram of rules engine 150,
according to one embodiment. The rules engine may include
request/results noti?cation interface 451, iterator 452, ana
lyZers 453, interpreter 454 and con?guration data interface
455. The request/results noti?cation interface 451 may be
con?gured to receive a request for the rules engine to
evaluate speci?ed con?guration data against speci?ed rules
data. Request/results noti?cation interface 451 may also
provide a noti?cation (eg to a user interface) of completion
of results generated from a rules evaluation. The rules
engine may also use the request/results noti?cation interface
to communicate an error to the problem detection applica

tion 100. Iterator 452 may parse data (eg XML) containing
the rules and iterate through each rule as processing is
completed. The rules may be sent to the analyZer(s) 453 or
interpreter 454 for processing. As part of the interpreter, a
facts repository may be used to store facts on the con?gu
ration data after the con?guration data is parsed. Facts may
represent past knoWledge about the con?guration data.
Rules may then be evaluated to a Boolean result based on the

predicate and operator Boolean values against facts used in
the rules. The Boolean result may be used to determine if the
rule associated With the problem passes or fails. Results may
by returned through the request/results noti?cation interface.
The results may be stored through results interface 360
and/or displayed through user interface 330.

FIG. 5 illustrates one embodiment application server

environment for a problem detection application. For
example, the problem detection application may operate in
a Java-based application server environment With access to

other applications running across a network. In addition to

rules engine 150, a Web user interface(s), as represented by
410, may be coupled to applications Within the environment.
The application server may include Java servlets, Java
Server Pages (JSP), Java Beans, Java Blend, and/or Java
Database Connectivity (JDBC). Referring back to FIG. 3 by
Way of example, the user interface 330 may be implemented
using Java servlets for receiving requests to evaluate a
system’s con?guration, and Java Server Pages for displaying
results, etc. Java Beans may be used for implemented other
logic, such as explorers, in the problem detection applica
tion. Java Blend and JDBC may be used for accessing rules
data and con?guration data. For example, rules data 440 or
con?guration data 450 may be stored in a database such as
Oracle RDBMS or a simple ?at ?le structure.

Suitable for implementing various embodiments, FIG. 6
illustrates a computer system 600 that may contain the

20

25

30

35

40

45

50

55

60

65

14
hardWare and/or softWare components for Which con?gura
tion data may be used in the detection process of a problem
detection application 608 running on this system. Altema
tive, the system of FIG. 6 may be the system Which executes
problem detection application 100 to evaluate system con
?gurations supplied for other systems. The computer system
may include at least one central processing unit (CPU) or
processor 606. The CPU may be coupled to a memory 607
storing program instructions to implement problem detec
tion application 100 as described above. The memory 607 is
representative of various types of possible memory media
Which may also be referred to as computer readable media.
Examples are hard disk storage, ?oppy disk storage, remov
able disk storage, ?ash memory or random access memory

(RAM). The terms memory and memory medium may
include an installation medium, e.g., a CD-ROM, ?oppy
disk, or computer system memory such as SDRAM. The
memory medium may include other types of memory as
Well, or combinations thereof. For one embodiment, the
memory media may include storage of problem detection
application 608. For one embodiment, the memory media
may include storage of the rules data, con?guration data,
and/or problem results data derived from execution of a
problem detection application. The system may also include
an I/O interface to various peripheral l/O or local devices

603 (eg hard disk, monitor, keyboard, mouse, etc) and a
netWork interface 604 for coupling the system to a netWork.

In different embodiments, the computer system may take
various forms, including a personal computer system, desk
top computer, mainframe computer system, another suitable
device, or combinations thereof. In general, the term com
puter system may be broadly de?ned to encompass any
device having a processor Which executes instructions from
a memory medium. The computer system may be con?gured
as a cluster of computer systems. In one embodiment, the
problem detection application may operate in stand-alone
mode on one computer system. In one embodiment, the
problem detection application may include a user interface
to select Which computer systems Will be included in the
detection process. For example, single, multiple, and/or a
cluster con?guration of systems may be included in the
detection process.
The computer system may be coupled to a netWork

through netWork interface 604, Which may provide access to
a plurality of netWork attached devices, such as storage
devices or other computer peripheral devices. The CPU may
acquire instructions and/or data through an input/output
interface 605. Through the input/output interface, the CPU
may also be coupled to one or more local devices 603, such

as local input/output devices (video monitors or other dis
plays, track balls, mice, keyboards, etc.), local storage
devices (hard drives, optical storage devices, etc.), local
printers, plotters, scanners, and any other type of local I/O
devices for use With a computer system.
As depicted in FIG. 7, a ?oWchart represents one embodi

ment of a method for evaluating con?guration data against
rules data to identify problems With a system con?guration.
A request is received by the problem detection application to
validate the con?guration of a system in 700. The request
may specify a source for rules data and a source for

con?guration data. 1 some embodiment, the request may

US 7,051,243 B2
15

indicate one or more systems for Which con?guration data is

to be evaluated against speci?ed rules data. In response to
the request, the problem detection application may access
the indicated rules data and con?guration data for the
system(s) being analyZing as part of the detection process in
701. The rules data is then evaluated against the con?gura
tion data, as indicated at 702. In one embodiment, the
evaluation of the con?guration data against associated rules
data may be performed by a rules engine as described above.
A result of the evaluation identifying any con?guration
issues is provided, as indicated at 706. Whether each issue
passes or fails may be indicated by a Boolean result, in one
embodiment. The issues or problems identi?ed in the evalu
ation are generated as results and may be stored for further
analysis.
As depicted in FIG. 8, a ?owchart represents one embodi

ment of a method for evaluation of con?guration data
against rules data for rules requiring user input and/or rules
not requiring user input. A request is received by the
problem detection application to validate the con?guration
of a system in 800. The problem detection application may
access the rules data and con?guration data for the system
being analyZing as part of the detection process in 801. The
evaluation of the con?guration data against associated rules
may be begun, eg by a knoWledge-based system or rules
engine, in 802. In one embodiment, the detection process for
evaluating rules not relying on user input may operate in
parallel to the detection process evaluating rules relying on
use input. For example, for rules dependent on user input, a
request for the user input may be made through a user
interface and the evaluation of the rule requiring the user
input may be put on hold Waiting for the input, as indicated
at 804 and 808. Once user input is received, the evaluation
of rules relying on user input may then be performed in 810.
Rule evaluations not dependent on user input may proceed
in parallel Without being held-up by the user input dependent
rules, as indicated at 806. The con?guration problems or
issues identi?ed in both of the evaluations are generated as
results in 812 and 814. The results may be merged and stored
for further analysis and/or display in 816.

Note that the How charts described herein represent
exemplary embodiments of methods. The methods may be
implemented in softWare, hardWare, or a combination
thereof. The order of method may be changed, and various
elements may be added, reordered, combined, omitted,
modi?ed, etc. For example in FIG. 8, the user interface may
requests con?guration data in 804 before, after or during
processing of rules by the rules engine in 806. As an
additional example, generation of problem results in 812
may be performed before the problem results are updated or
stored in 814.

Various modi?cations and changes may be made to the
invention as Would be obvious to a person skilled in the art

having the bene?t of this disclosure. It is intended that the
folloWing claims be interpreted to embrace all such modi
?cations and changes and, accordingly, the speci?cations
and draWings are to be regarded in an illustrative rather than
a restrictive sense.

Various embodiments may further include receiving,
sending or storing instructions and/or data implemented in
accordance With the foregoing description upon a computer

20

25

30

35

40

45

50

55

60

65

16
readable medium. Generally speaking, a computer readable
medium may include storage media or memory media such
as magnetic or optical media, e. g., disk or CD-ROM, volatile
or non-volatile media such as RAM (e.g. SDRAM, DDR

SDRAM, RDRAM, SRAM, etc.), ROM, etc. as Well as
transmission media or signals such as electrical, electromag
netic, or digital signals, conveyed via a communication
medium such as netWork and/or a Wireless link.

What is claimed is:
1. A system, comprising:
a processor;

a memory accessible by the processor and con?gured to
store program instructions executable by the processor
to implement a problem detection application, Wherein
the problem detection application comprises:
a rules engine con?gured to access con?guration and

rules data, Wherein the con?guration data comprises
information about components con?gured for a com
puter system and the rules data comprises rules for
identifying system con?guration issues;

Wherein the rules engine comprises a knoWledge-based
interpreter to evaluate rules speci?ed in a knoWl
edge-based rules language, and a programming lan
guage analyZer to evaluate rules that are not speci?ed
in a knoWledge-based rules language;

Wherein the rules engine is con?gured to evaluate the
rules from the rules data against the con?guration
data and generate a result of any con?guration issues
for the computer system.

2. The system as recited in claim 1, Wherein the con?gu
ration data comprises information about softWare compo
nents installed on the computer system.

3. The system as recited in claim 1, Wherein in the
con?guration data comprises information about hardWare
components installed in or connected to the computer sys
tem.

4. The system as recited in claim 1, Wherein the rules data
comprises a rule to determine Whether or not an unsupported
device is connected to the computer system.

5. The system as recited in claim 1, Wherein the con?gu
ration issues comprise Whether or not incorrect ?rmWare is
installed for a device attached to the computer system.

6. The system as recited in claim 1, Wherein the con?gu
ration issues identify if a neWer version is available for a
component installed on or connected to the computer sys
tem.

7. The system as recited in claim 1, Wherein the con?gu
ration issues identify knoWn bugs for a component installed
on or connected to the computer system.

8. The system as recited in claim 1, Wherein the con?gu
ration issues comprise Whether or not a current operating
system patch is installed on the computer system.

9. The system as recited in claim 1, Wherein the con?gu
ration issues comprise data alfecting reliability, availability
or serviceability for the computer system.

10. The system as recited in claim 1, Wherein the rules
from the rules data are Written in an interpreted rules
language including operators and predicates for identifying
the con?guration issues, Wherein the rules engine is con?g
ured to interpret the rules language.

11. The system as recited in claim 1, Wherein the rules
engine is con?gured to access the con?guration data from a
con?guration source stored on a storage device for the
computer system.

US 7,051,243 B2
17

12. The system as recited in claim 1, Wherein the problem
detection application further comprises a con?guration
explorer to collect con?guration data for the computer
system.

13. The system as recited in claim 1, Wherein the problem
detection application is con?gured to receive the con?gu
ration data over a netWork connection.

14. The system as recited in claim 1, Wherein the problem
detection application is con?gured to receive a request to
validate the computer system’s con?guration, Wherein the
request identi?es a source for the con?guration data and a
source for the rules data.

15. The system as recited in claim 1, Wherein the Wherein
the rules data is stored on a storage device for the computer
system.

16. The system as recited in claim 15, Wherein the rules
data is con?gured to be updated over a netWork connection.

17. The system as recited in claim 1, Wherein the problem
detection application further comprises a user interface
con?gured to display the result generated by the rules
engine.

18. The system as recited in claim 1, Wherein the problem
detection application further comprises a user interface
con?gured to request con?guration data from a user.

19. The system as recited in claim 18, Wherein the rules
engine is con?gured to evaluate con?guration data against
the rules While concurrently receiving and evaluating con
?guration data input through the user interface against the
rules.

20. The system as recited in claim 19, Wherein one or
more of the rules indicate con?guration data to be requested
from the user through the user interface.

21. The system as recited in claim 1, Wherein the problem
detection application further comprises a user interface to
update the rules data and rules engine.

22. A method for identifying issues With a system con
?guration, comprising:

receiving a request to validate the system con?guration,
Wherein the system con?guration comprises compo
nents in a computer system;

receiving rules data comprising one or more rules for
identifying issues in the system con?guration;

receiving con?guration data comprising information
about the system con?guration;

a rules engine evaluating the rules data against the con
?guration data to identify issues in the system con?gu
ration, Wherein the rules data comprises rules speci?ed
in a knowledge-based rules language and rules that are
not speci?ed in a knowledge-based rules language,
Wherein said evaluating comprises evaluating the rules
speci?ed in a knoWledge-based rules language using a
knowledge-based interpreter and evaluating the rules
that are not speci?ed in a knowledge-based rules lan
guage using a programming language analyZer; and

generating a result of any issues identi?ed in the system
con?guration.

23. The method as recited in claim 22, Wherein the
con?guration data comprises information about softWare
components installed on the computer system.

24. The method as recited in claim 22, Wherein the
con?guration data comprises information about hardWare
components installed in or connected to the computer sys
tem.

25. The method as recited in claim 22, Wherein the rules
data comprises a rule to determine Whether or not an
unsupported device is connected to the computer system.

20

25

30

35

40

45

50

55

60

65

18
26. The method as recited in claim 22, Wherein the rules

data comprises a rule to determine Whether or not incorrect
?rmware is installed for a device attached to the computer
system.

27. The method as recited in claim 22, Wherein the rules
data comprises a rule to identify if a neWer version is
available for a component installed on or connected to the
computer system.

28. The method as recited in claim 22, Wherein the rules
data comprises a rule to identify knoWn bugs for a compo
nent installed on or connected to the computer system.

29. The method as recited in claim 22, Wherein the rules
data comprises a rule to determine Whether or not a current
operating system patch is installed on the computer system.

30. The method as recited in claim 22, Wherein the rules
data comprises a rule to identify an issue affecting reliability,
availability or serviceability for the computer system.

31. The method as recited in claim 22, Wherein the rules
from the rules data are Written in an interpreted rules
language including operators and predicates for identifying
issues in the system con?guration, Wherein the rules engine
evaluating the rules comprises the rules engine interpreting
the rules according to the rules language.

32. The method as recited in claim 22, Wherein said
receiving the con?guration data comprises receiving the
con?guration data from a con?guration source stored on a
storage device for the computer system.

33. The method as recited in claim 22, further comprising:
a con?guration explorer collecting con?guration informa

tion for the computer system;
Wherein said receiving the con?guration data comprises

receiving the con?guration information from the con
?guration explorer.

34. The method as recited in claim 33, Wherein said
receiving the con?guration data comprises receiving the
con?guration data over a netWork connection.

35. The method as recited in claim 22, Wherein the request
to validate the system con?guration identi?es a source for
the con?guration data and a source for the rules data.

36. The method as recited in claim 22, Wherein said
receiving rules data comprises receiving the rules data from
a storage device for the computer system.

37. The method as recited in claim 36, further comprising:
updating the rules data over a netWork connection.

38. The method as recited in claim 22, further comprising
displaying, through a user interface, the result of any issues
identi?ed in the system con?guration.

39. The method as recited in claim 22, Wherein one or
more of the rules indicate a portion of the con?guration data
to be requested from a user through a user interface, the
method further comprising:

requesting the indicated portion of the con?guration data
from the user through the user interface; and

the user interface receiving the indicated portion of the
con?guration data.

40. The method as recited in claim 39, Wherein said rules
engine evaluating comprises the rules engine evaluating a
portion of the con?guration data not requested from the user
against the rules data While Waiting for the user interface to
receive the portion of the con?guration data indicated by one
or more of the rules to be requested from the user.

41. The method as recited in claim 22, further comprising
receiving a request from a user interface to update the rules
data and rules engine.

US 7,051,243 B2
19

42. A system, comprising:
a processor;

a memory accessible by the processor and con?gured to
store program instructions executable by the processor
to implement a problem detection application, Wherein
the problem detection application comprises:
a rules engine con?gured to access con?guration and

rules data, Wherein the con?guration data comprises
information about components con?gured for a com
puter system and the rules data comprises rules for
identifying system con?guration issues;

Wherein the rules engine is con?gured to evaluate the
rules from the rules data against the con?guration
data and generate a result of any con?guration issues
for the computer system; and

a user interface con?gured to request con?guration data
from a user;

Wherein, for rules not requiring user input, the rules
engine is con?gured to evaluate con?guration data
against the rules While Waiting to receive con?gu
ration data input through the user interface for rules
requiring user input of con?guration data.

43. The method as recited in claim 42, Wherein one or
more of the rules indicate con?guration data to be requested
from the user through the user interface.

20

20
44. A method for identifying issues With a system con

?guration, comprising:
receiving a request to validate the system con?guration,

Wherein the system con?guration comprises compo
nents in a computer system;

receiving rules data comprising one or more rules for
identifying issues in the system con?guration;

receiving con?guration data comprising information
about the system con?guration;

requesting con?guration data from a user through a user
interface, Wherein one or more of the rules indicate the
con?guration data to be requested from the user
through the user interface;

a rules engine evaluating the rules data against the con
?guration data to identify issues in the system con?gu
ration, Wherein said rules engine evaluating comprises
the rules engine evaluating the con?guration data not
requested from the user against the rules data While
Waiting for the user interface to receive the con?gura
tion data indicated by one or more of the rules to be
requested from the user; and

generating a result of any issues identi?ed in the system
con?guration.

