The DDS User Manual

The DDS User Manual

Table of Contents

O g 11 oo 1o ' o PP 1
1.1. The Dynamic DeploymENt SYSEEMcveiutniiiiii ettt et e et e e et eeanes 1

O = (= S PP 1

2. REQUITEIMENTS ...ttt et et ettt ettt e e ettt e et e e bt e et e et n e e e eebeneeeenbnnaeeens 2
2.1 SEIVEITUL et 2

2.2 WOTKENS .ot ettt ean s 2

G 1o 11/ o o= PPN 3
3. 1. DOWNIOAO TOCEIION ...ttt ettt et e et e e e et e et e e e ena e e e ennas 3

3.2. DDS Version NUMbDEr SChEemeoviiiiie e 3

T 01 = = o o PP 4
A1, SHEP H#L: GEE thE SOUMCE ...ttt ettt e ettt e ettt e e ettt e e eenenaaeees 4
4.1.1. from DDS git FEPOSITONY .. .ceeerieiiitie ettt e et et e e et e et eeera s 4

4.1.2. from DDS S0UrCe tarballoviiiiiiiiiii e 4

4.2. Step #2: Configure the SOUMCEiiiie et 4

4.3. Step #3: BUIld and iNSLAlL ..o e 5

4.4, Step #4: DDS ENVITONIMENToiiiiiiiiii ettt e et e e e e 5

4.5. Step #5: DDS shared INSEAlEIIONcouuuiiiiiieie e e 6

B, CONFIGUIBLION ...ttt ettt ettt e ettt e et e b e e et et e e et et e e ettt e e e e et 7
LS o] o (oo |V PP ORI 8
B.1. TOPOIOGY Il ..ttt et 8

6.2. TOPology file @XAMPIE .. .ot e 8

6.3. TOPOology XML tag FEFErENCEu ittt e 10

A 5 [0 A (o TS = | APPSR 16
7.0 ENVIFONIMENE <.ttt et e e et e et e e ettt e e et s e e et e e et e e etn s e e aa e e ea e eetnaeeanaaees 16

A < V< ST 16

7.3, DEDIOY AGENES ...ttt ettt et ettt et e e e e e e e eab e aees 16
7.3.1. Deploy-Agents uSiNg: SSH PIUG-INeeiitieeeii et 16

7.4. Check availability Of AGENES .. coeuiiiiiiie et 16

FASRS = B el o o] [0 o |V PSPPSR 16

7.6, ACHVEIE AGENES ...ttt ettt et ettt et e e et ettt 17

S I [0 A (o T I = PP PPRPTRN 18
8L FIISE SECHION ..ottt ettt 18

9. TULOIT@IS ettt ettt ettt e et e e e et b e e et eb e et et e et e e e s 19
LS 80 T (o4 = O PP 19

LS N © L= o TP PP TPPPPTR 19

0.1.2. RESUIT ..ttt ettt e e et e e et e e e e ae 19

10. CommaNG-1NE INLEITACEceeie e ettt e e e e e eeees 20
(00 Y TP PUP PP PPPPPTRPPIN 21
OS-COMMBNOEY ...ttt ettt et e ettt e et et e et et e e e e et e e e e eba s 22
OSUSEN-OEFALITS ...t ettt e ettt e e et et e et enb e e eentnaeeeees 23
o[0T o0 1) PSP UPPPTPR 24

[0 [0 1S 21 o 1o T PP 25
0015 1= PSP 26

o0 Sy (o] o o] [oe |V AP P TP UP PP UPPPTRRPPPN 27
OS-BOENT-CMA ...ttt e e e e ettt e e e e e e e b 28

L1 SSH PIUGAIN ettt ettt 29
11.1. RESOUICE AEFINITIONeiiteeeiiti ettt ettt e et e e et e e e 29

List of Tables

4.1. DDS configuration VATADIESiiiiieieieit et 4
6.1, TOPOIOGY XML TBOS ... ceeeriieeeeti ettt ettt e e et e et e e et et e e et et e et et e e e ebe e e e enen s 10
6.2. TOPOlOgy XML SIIDULESceeiiieiei et e e 14
11.1. DDS's SSH plug-in configuration fIEldSccoouuiiiiiii e 29

List of Examples

6.1. A topOlOgy fil@ EXBIMPIE e e et e
11.1. An example of an SSH plug-in configuration fileccooiiiiiiii e

1. Introduction
1.1. The Dynamic Deployment System

1.2. Features

2. Requirements
2.1. Server/Ul

DDS Ul/Server/WN run on Linux and Mac OS X.

General requirements:
* Incoming connection on dds-commander port (configurable)

e aC++11 compiler

cmake 2.8.11 or higher

BOOST 1.54 or higher (built by a C++11 compiler, with C++11 enabled)

shell: BASH

Additional requirementsfor SSH plug-in:

* A public key access (or password less, via ssh-agend, for example€) to destination worker nodes.

2.2. Workers

General requirements:

» Outgoing connection on dds-commander's port (configurable). This is required by dds-agent to be able to
connect to DDS commander server

» shell: BASH

http://www.cmake.org/
http://www.boost.org/
http://en.wikipedia.org/wiki/Bash_(Unix_shell)
http://en.wikipedia.org/wiki/Bash_(Unix_shell)

3. Download

3.1. Download location

Please, use DDS's Download page to get the latest version and all other versions of DDS.

3.2. DDS Version Number Scheme

DDS version has aform of MAJOR.MINOR(.PATCH), where:
* MAJOR - the major number isincreased when there are significant jumps in functionality.
* MINOR - the minor number isincremented when only minor features or significant fixes have been added.

» PATCH - represents a number of commits (patches) to a current major.minor pair.
= Note
The DDS's version scheme reflects the fact that DDS is both a production system and a research

project. DDS uses odd minor version numbers to denote development releases and even minor
version numbers to denote stable releases.

http://dds.gsi.de/download.html

4. Installation

DDS supports Private and Shared installations.

A Private Installation - it is when a user installs DDS for individual usage in his’her local folder. Any Private
Installation can be used by other users aswell. It's just a matter of file privileges.

A Shared Ingtallation - it iswhen a site administrator installs DDS in some central location, so it can be shared by
many users. This type of installation may be convenient for some users, since they don't need to install DDS by
their own. In case of ashared Installation you need to execute one additional step, see Section 4.5, “ Step #5: DDS
shared Installation”. All the rest is the same as with Private Installations.

Be advised, that in both cases DDS acts identically and always provides private clusters, one for each user.
In case of a shared installation, users share only binaries and configurations, but each user gets its own DDS
instance and can't disturb other users. Each user can tune DDS by changing the DDS user defaults configuration
in $SHOVE/ . DDS/ DDS. cf g.

4.1. Step #1: Get the source
4.1.1. from DDS git repository

git clone https://github. com Fai r Root Group/ DDS. gi t DDS- nast er

4.1.2. from DDS source tarball

Unpack DDS tarball:
tar -xzvf DDS-X. Y.Z-Source.tar.gz

Tar will created anew directory . / DDS- X. Y. Z- Sour ce, where X. Y. Z represents aversion of DDS.

4.2. Step #2: Configure the source

Change to the DDS source directory:

cd ./ DDS-X. Y. Z-Source

You can adjust some configuration settings in the Bui | dSet up. cnake bootstrap file. The following is alist
of variables:

Table 4.1. DDS configuration variables

Variable Description

CMAKE_INSTALL_PREFIX Install path prefix, prepended onto install directories.
(default SHOME/DDS/[DDS Version])

CMAKE_BUILD_TYPE Set cmake build type. Possible options are: None,
Debug, Release, RelWithDeblnfo, MinSizeRel (default
Release)

BUILD_DOCUMENTATION Build source code documentation. Possible options are:
ON/OFF (default OFF)

Installation

Variable Description
BUILD_TESTS Build DDStests. Possible optionsare: ON/OFF (default
OFF)

Now, prepare a build directory for an out-of-source build and configure the source:

nkdir build
cd build
cmake -C ../ Buil dSetup. crmake ..

i Ti p
|
d If for some reason, for example a missing dependency, configuration failed. After you get the issue
fixed, right before starting the cmake command it is recommended to delete everything in the build
directory recursively. Thiswill guaranty aclean build every timethe source configurationisrestarted.

4.3. Step #3: Build and install

Issue the following commands to build and install DDS:

make -j
make install

@ I nstallation Prefix

Please note, that by default DDSwill beinstalled in $HOVE/DDS/X.Y .Z, where X.Y .Z isaversion of
DDS. However users can change this behavior by setting theinstall prefix path in the bootstrap script
Bui | dSet up. crmake. Just uncomment the setting of CMAKE_INSTALL_PREFIX variable and
change dummy MY_PATH_HERE to adesired path.

4 i WN package
|

Users have a possibility to additionally build DDS worker package for the local platform. In case
if you have same OS types on all of the target machines and don't want to use WN packages from
the DDS binary repository, just issue:

make -j wn-bin
make install

the commands will build and install a DDS worker package for the given platform.

4.4. Step #4: DDS Environment

In order to enable DDS's environment you need to sourcethe DDS_env. sh script. Changeto your newly installed
DDS directory and issue:

cd [DDS | NSTALL DI RECTORY]
source DDS env. sh

You need to source this script every time before using DDS in a new system shell. Simplify it by sourcing the
script in your bash profile.

Installation

Now theinstallation is done. But if you were preparing a shared installation, then please see the Section 4.5, “ Step
#5: DDS shared Installation” aswell.

4.5. Step #5: DDS shared Installation

TODO

5. Configuration

TODO

6. Topology

The definition of the topology by the user has to be simple and powerful at the sametime. Therefore asimple and
powerful so called topology language has been devel oped.

Thebasic building block of the system isatask. Namely, atask isauser defined executable or ashell script, which
will be deployed and executed by DDS on a given Resource Management System.

In order to describe dependencies between tasks in a topology we use properties. In run-time properties will be
turned into simple key-value pairs. DDS uses its key-val ue propagation engine to make sure, that once property is
set by onetask, it will be propagated to other depended tasks. DD Streats values of properties as simple stringsand
doesn't do any special treatment/preprocessing on them. So, basically tasks can write anything into the values of
properties (256 char max). Any of depended tasks can set properties. Anytime property is set it will be propagated
to other depended tasks. (see for details TODO:"key-value propagation").

am Tip

|

\d For example, if one task needs to connect with another task they can have the same property. A
"server" task can store its TCP/IP port and host in the property. Once the property set, DDS will
notice that and propagate it to other tasks.

Tasks can be grouped into collections and groups. Both collections and groups can be used to group several tasks.
The main difference between collections and groups is that a collection requests from DDS to execute its tasks
on the same physical machine, if resource alow that. Thisis useful if tasks suppose to communicate alot or they
want to access the same shared memory. A set of tasks and task collections can be also grouped into task groups.
Another difference between groups and collection is that only groups can define multiplication factor for al its
child elements.

Main group defines the entry point for task execution. Only main group can contain other groups.

6.1. Topology file

At the moment we use an XML based file to store topologies. XML is chosen because it can be validated against
XSD schema. DDS's XSD schema file can be found in $DDS_LOCATI QV shar e/ t opol ogy. xsd.

<t opol ogy i d="nyTopol ogy" >

[... Definition of tasks, properties, and collections ...]
<mai n name="mai n">

[... Definition of the topology itself, where also groups can be defined ...]
</ mai n>

</t opol ogy>

Thefileisbasically divided on two parts. declaration and main part.

All properties, tasks and collections should be defined in the declaration part of the file. Users can define any
number of topology entitiesin that block, even some, which are not going to be used in the main block.

In the main block the topology itself is defined. Groups and multiplication factors are al so defined in main block.

6.2. Topology file example

Example 6.1. A topology file example

<t opol ogy i d="nyTopol ogy" >

<var id="appNaneVar" val ue="appl -1 -n --tasklndex % asklndex% --coll ectionlndex %ol

Topology

<var id="nof G oups" val ue="10" />

<property id="propertyl" />
<property id="property2" />

<decl requi renent id="requirenmentl">
<host Pattern val ue="+. gsi.de"/>
</ decl requi r ement >

<decl task id="taskl">
<r equi r ement >r equi r enent 1</ r equi r ement >
<exe reachabl e="true" >${appNaneVar } </ exe>
<env reachabl e="fal se">envl</env>
<properties>
<id access="read" >propertyl</id>
<id access="readwite">property2</id>
</ properties>
</ decl t ask>
<decl task id="task2">
<exe>app2</ exe>
<properties>
<id access="write">propertyl</id>
</ properties>
</ decl t ask>

<decl col l ection id="col |l ectionl">
<r equi r ement >r equi r enent 1</ r equi r ement >
<t asks>
<i d>t aski</i d>
<i d>t ask2</i d>
<i d>t ask2</i d>
</t asks>
</ decl col | ecti on>

<decl col | ection id="col |l ecti on2">
<t asks>
<i d>t askil</i d>
<i d>t askil</i d>
</t asks>
</ decl col | ecti on>

<mai n id="nmain">
<t ask>t askl</t ask>
<col | ection>col | ecti onl</coll ection>
<group id="groupl" n="${nof G oups}">
<t ask>t askl</t ask>
<col | ection>col | ecti onl</coll ection>
<col | ecti on>col | ecti on2</col | ecti on>
</ group>
<group id="group2" n="15">
<col | ecti on>col | ecti onl</coll ection>
</ group>
</ mai n>

</t opol ogy>

DDS alows to define variables which later can be used inside the topology file. During the preprocessing all
variable are replaced with their values. Variables are defined using the var tag which has two attributesi d and

Topology

val ue. Inside the file variable can be used as follows ${variable name}. In the above example we define two
variables ${appNameVar} and ${nofGroups}.

When a particular task or collection is multiplied, sometimes it is necessary for the user to get the index of
the task or collection instance. This can be done in two different ways. In the definition of the executable path
one can use specia tags %tasklndex% and %collectionlndex% to get the task and collection index respectiviey.
Before the task execution these tags are replaced with real values. The second possibility is to get task and
collection index from environment. Two environment variables are defined for each task $DDS TASK _INDEX
and $DDS COLLECTION_INDEX.

For each user task a set of environment variables is populated. $DDS TASK _PATH - full path to the
user task, for example, main/groupl/collection 12/task 3. $DDS GROUP_NAME - ID of the parent group.
$DDS COLLECTION _NAME - ID of the parent collection if any. $DDS TASK_NAME - ID of the task.

In the example above we define 2 properties - propertyl and property2. Asyou can seethepr opert y tagisused
to define properties. id attribute is required and has to be unique for all properties.

Requirements is another nice feature of DDS. Requirements is away to tell the DDS that atask or collection has
to be deployed to a particular computing node. As of now only host name requirement is supported. Reguirements
are defined using decl r equi r enent tag. id attribute is required and has to be unique for all requirements.
Pattern of the host name is defined using host Pat t er n tag which attribute val ue can be either a full host
name or aregular expression which matches the required host name.

In the next block we define tasks. For this the decl t ask tag is used. A task must also have the i d attribute
whichisrequired and hasto be uniquefor al declared tasks. Ther equi r enent element isoptional and specifies
the already declared requirement for the task. The exe element defines path to executable. The path can include
program options, even options with quotes. DDS will automatically pars the path and extractor program options
inruntime. The exe tag has an optional attributer eachabl e, which defines whether executable is available on
worker nodes. If it is not available, then DDS will take care of delivering it to an assigned worker in run-time.

In case when there is a script, that, for example sets environment, has to be executed prior to main executable one
can specify it using the env element. Theenv tag also haver eachabl e attribute.

If atask depends on some properties this can de specified using the pr oper t i es tag together with alist of i d
elements which specify 1D of already declared properties. Each property has an optional access attribute which
defines whether user task will read (r ead), write (wri t e) or both read and write (r eadwr i t €) a property.
Defaultisr eadwri t e.

Collectionsaredeclared usingthedecl col | ect i on tag. It containsalist of t ask tagswith IDswhich specified
already declared tasks. Task hasto be declared beforeit can be used in the collection. Asfor the task collection has
anoptional r equi r ement element whichisused to specify the requirement for the collection. If the requirement
defined for both task and collection than collection requirement has higher priority and is used for deployment.

Themai n tag declaresthetopology itself. Intheexample our main block consists of onetask (taskl), one collection
(collectionl) and two groups (groupl and group?2).

A group is declared using the gr oup tag. It has a required attribute i d, which is used to uniquely identify the
group and optional attribute n, which defines multiplication factor for the group. In the example groupl consists of
onetask (taskl) and two collections (collection1 and collection2). group2 consists of one collection (collectionl).

6.3. Topology XML tag reference

Table6.1. Topology XML tags
Tag Description

t opol ogy Parents. No
Children: property,task,col |l ecti on,main

Attributes: i d

10

Topology

Tag Description
Description:

Declares atopology.

<t opol ogy i d="nyTopol ogy" >
[... Definition of tasks,
properties, collections and

groups ...]
</t opol ogy>

var Parents: t opol ogy
Children: No
Attributes: i d, val ue
Description:

Declares a variable which can be used inside the topology file as ${variable_name}.

<var id="var1" val ue="val uel"/>
<var id="var?2" val ue="val ue2"/>

property Parents: t opol ogy
Children: No
Attributes: i d
Description:

Declares a property.

<property id="propertyl"/>
<property id="property2"/>

decl requi r ement Parents: t opol ogy
Children: hostPattern
Attributes: i d
Description:

Declares arequirement for tasks and collections.

<decl requirement id="requirementl1l">
<host Pattern val ue="+.gsi.de"/>
</ decl requi renment >

host Pattern Parents: decl r equi r errent
Children: no

Attributes: val ue

11

Topology

Teag

decl t ask

decl col | ecti on

t ask

col l ection

Description
Description:

Declares a pattern of the host name.

<host Pattern val ue="+. gsi .de"/>
Parents. t opol ogy

Children: exe, env, r equi r enent , properties
Attributes: i d

Description:

Declares atask.

<decl task id="taskl">
<exe reachabl e="true">appl -|I -n</exe>
<env reachabl e="fal se">envl</env>
<requi rement >r equi r enent 1</ requi r enent >
<properties>
<id access="read">propertyl</id>
<id access="readwite">property2</id>
</ properties>
</ decl t ask>

Parents: t opol ogy
Children: t ask
Attributes: i d
Description:

Declares a collection.

<decl col | ection id="col |l ecti onl1">
<t ask>t askl</t ask>
<t ask>t askl</t ask>

</ decl col | ecti on>

Parents: col | ecti on, group
Children: No

Attributes: No

Description:

Specifies the unique ID of the already defined task.

<t ask>t askl</t ask>

Parents: gr oup

12

Topology

Tag Description
Children: No

Attributes: No
Description:

Specifies the unique ID of the already defined collection.

<col | ecti on>col | ecti onl</col |l ection>
group Parents: mai n

Children: t ask, col | ecti on

Attributes: i d, n

Description:

Declares agroup.

<group id="groupl" n="10">
<t ask>t askl</t ask>
<col | ecti on>col | ecti onl</coll ection>
<col | ecti on>col | ecti on2</col | ecti on>
</ group>

mai n Parents. t opol ogy
Children: t ask, col | ecti on, group
Attributes: i d
Description:

Declares amain group.

<mai n id="min">
<t ask>t askl</t ask>
<col I ection>col | ecti onl</coll ection>
<group id="groupl" n="10">
<t ask>t askl</t ask>
<col I ection>col | ecti onl</coll ection>
<col I ection>col | ecti on2</col | ecti on>
</ gr oup>
</ mai n>

exe (required) Parents: decl t ask
Children: No
Attributesr eachabl e
Description:

Defines path to the executable or script for the task.

13

Topology

Tag Description

<exe reachabl e="true">appl -1 -n</exe>
env (optional) Parents: decl t ask

Children: No

Attributes: r eachabl e
Description:

Defines the path to script that has to be executed prior to main executable.

<env reachabl e="f al se">set Env. sh</ env>
properties Parents: decl t ask
(optional)

Children: i d

Attributes: No

Description

Defines alist of dependent properties.

<properties>
<i d>propertyl</id>
<i d>property2</id>
</ properties>
i d (required) Parents: properties
Children: No
Attributes access

Description

Defines an ID of the already declared property.

<i d>propertyl</id>

Table6.2. Topology XML attributes

Attribute Description
id Use: required
Default: No

Tags: t opol ogy, pr operty, decl t ask, decl col | ecti on,group, nai n
Restrictions:

String with minimum length of 1 character.

14

Topology

Attribute Description
Description:

Defines identificator (ID) for topology, propertiy, task, collection and group. ID has to be
unique within its scope, i.e. ID for tasks has to be unique only for tasks.

<t opol ogy i d="nyTopol ogy" >
reachabl e Use: optional

Default: true

Tags: exe, env

Restrictions: truejfalse

Description:

Definesif executable or script is available on the worker node.

<exe reachabl e="true">app -I|</exe>
<env>env1l</ env>

n Use: optional
Default: 1
Tags. gr oup
Restrictions: unsigned integer 32-bit which is more or equal to 1
Description:

Defines multiplication factor for group.

<exe reachabl e="true">app -I|</exe>
<env>envl</env>

access Use: optional
Default: readwrite
Tags: i d
Restrictions: read|writeJreadwrite
Description:

Defines access type from user task to properties.

<id access="read">propertyl</id>

15

/. How to Start

7.1. Environment

In order to enable DDS environment you need to source the DDS_env. sh script. The script is located in the
directory where you installed PoD.

cd [DDS | NSTALLATI ON|
source DDS _env. sh

7.2. Server

Use the dds-server command to st ar t /st op/st at us DDS servers.

dds-server start

7.3. Deploy Agents
In order to deploy agents you can use different DDS plug-ins.
7.3.1. Deploy-Agents using: SSH plug-in

DDS's SSH plug-in is the best and the fastest way to deploy DDS agents. When you don't have an RMS or you
want to use a Cloud based system or even if you want just to use resources around you, like computers of your
colleagues, then the plug-in is the best way to go.

First of all you need to define resources.

Then use dds-submit to deploy DDS agents on the given resources:

dds-submit --rms ssh --ssh-rms-cfg FULL_PATH TO YOUR SSHPLUG N_RESOURCE_FI LE

7.4. Check availability of Agents

Using dds-info you can query different kinds of information from DDS. For example you can check how many
agents are already online;

dds-info -n
or query more detailed info about agents:
dds-info -1

7.5. Set Topology

To assign atopology to your deployment use:

16

How to Start

dds-topol ogy --set FULL _PATH TO YOUR TOPOLOGY_FI LE

7.6. Activate Agents

Once you get enough online agents, you can activate them. Activation of agents means, that DDS will use the
given topology to distribute user tasks across available resources (agents):

dds-t opol ogy --activate

DDS will automatically check whether available resources are actually sufficient to execute the given topology.

17

8. How to Test

XXXX

8.1. First Section

XXXX

18

O. Tutorials
9.1. Tutorial 1

Thistutorial demonstrates how to deploy asimple topology of 2 types of tasks (TaskTypeOne and Task TypeTwo).
By default, there will be deployed one instance of TaskTypeOne and 5 instances of TaskTypeTwo. Additionally
TaskTypeOne subscribes on key-value property from TaskTypeTwo, which name is TasklndexProperty. Once
TaskTypeOnereceivesvaluesof TasklndexProperty from all TaskTypeTwo, it will set the ReplyProperty property.

After DDSisinstalled the tutorial can be found in $DDS_LOCATI ON/ tut ori al s/tutorial 1

The source code of tasksislocated in" DDS_SRC DI R'/ dds-tutori al s/dds-tutoriall

Files of the tutorial

* task-type-one: executable of the task TaskTypeOne
* task-type-two: executable of the task TaskTypeTwo
* tutoriall_topo.xml: atopology file

* tutoriall_hosts.cfg: a configuration file for DDS SSH plug-in

9.1.1. Usage

cd $DDS_LOCATION/'tutorial s/tutoriall

dds-server start -s

dds-subnit -r ssh --ssh-rns-cfg tutoriall hosts.cfg
dds-topol ogy --set tutoriall topo.xm

dds-t opol ogy --activate

9.1.2. Result

To check the result, change to ~/ t np/ dds_wn_t est . If the default setup was used, then there will be WN
directories located: wn, wn_1, wn 2, wn_3, wn_4, wn 5.

DDS catches output of tasks and saves it in log files under names [task_name]_[date time]_outlerr.log. For
exmaple: TaskTypeOne_2015-07-16-11-44-42 6255430612052815609 out. | og

19

10. Command-line interface

20

Command-lineinterface

Name

dds-server — wraps to manage DDS commander server daemon
UNIX/Linux/OSX

Synopsis
dds- server {[[start] | [-9]] [[restart] | [-S]] | [stop] | [status]}

Description

Using this command users can st art /st op/r est art /st at us DDS commander server. The command is
actually awrapper for the dds-commander command (DDS commander server) which become a daemon process
when started.

Options

start
Start DDS commander server.

At the server start DDS will detect availability of DDS WN bin. packages and download them from the DDS
repository if they are missing. Users can provide an additional parameter - s (the parameter can be specified
withst art andr est ar t). When the parameter is provided, DDSwill check availability of abinary package
compatible with the local system only.

To build abinary package for the local system, just issue:

make -j wn_bin
make -j install

restart
Restart DDS commander server.

stop
Stop DDS commander server.

st at us
Request the status information. It will show process id of the DDS commander server daemon and the TCP

port it listens on.

21

Command-lineinterface

Name

dds-commander — manages DDS facility
UNIX/Linux/OSX

Synopsis
dds- commander [[-h, --help]|[-Vv, --version]]{[start]|[stop]}

Description

® Warning
The command must not be used directly. Please use the dds-server command instead.

22

Command-lineinterface

Name

dds-user-defaults — get and set global DDS options
UNIX/Linux/OSX

Synopsis

dds-user-defaults[[-h, --help]|[-v, --version]|[-V, --verbose]|[-p, --path]|[-d,
--default]][-c, --configarg][-f, --force][[--keyarg]|[--wkpkg]|[--wkscript]]
[--rms-sandbox-dir]|[--user-env-script]|[--server-info-file]]

Description

The dds-user -defaults command can be used to get and set global DDS options. It also can be used to get different
static settings, related to the current deployment.

Options

-h, --help
Shows usage options.

-V, --version
Shows version information.

-V, --verbose
Causes the command to verbose additional information and error messages.

-p, --path
Shows default DDS user defaults config file path.

-d, --default
Generates adefault DDS configuration file.

-f, --force
If the destination file exists, removesit and creates anew file, without prompting for confirmation. Can only
beused withthe-d, --default options.

-c, --configarg
This options can be used together with other optionsto specify non-default location of the DDS configuration
file. By default the command uses~/ . DDS/ DDS. cf g.

--keyarg
Gets avalue for the given key from the DDS user defaults.

- -wr kpkg
Shows the full path of the worker package. The path must be evaluated before use.

--w kscri pt
Shows the full path of the worker script. The path must be evaluated before use.

--rns- sandbox- di r
Shows the full path of the RMS sandbox directory. It returns server.sandbox_dir if it is not empty, otherwise
server.work_dir isreturned. The path must be evaluated before use.

--user-env-script
Shows the full path of user's environment script for workers (if present). The path must be evaluated before
use.

--server-info-file
Shows the full path of the DDS server info file. The path must be evaluated before use.

23

Command-lineinterface

Name

dds-submimt — submits and activates DDS agents
UNIX/Linux/OSX

Synopsis

dds-subnmit [[-h, --help]|[-v, --version]|[-c, --configarg]][-r, --rmsarg]][--
ssh-rms-cf g arqg]

Description

The command is used to submit DDS agents to allocate resources for user tasks. Once enough agents are online
use the dds-topology command to activate the agents - i.e. distribute user tasks across agents and start them.

Options

-h, --help
Shows usage options.

-V, --version
Shows version information.

-c, --configarg
Only for advanced users. This options can be used to specify the location of the dds-submit configurationfile.

--r, --rnearg
Defines a destination resource management system. At the moment only the SSH plug-in is supported,
therefore ar g should be equal to: ssh

--ssh-rns-cfgarg
Specifies an SSH plug-in resource definition file.

24

Command-lineinterface

Name

dds-info — can be used to query different kinds of information from DDS commander server
UNIX/Linux/OSX

Synopsis

dds-info [[-h, --help]]|[-v, --version]]|[[--comuander-pid]|][--status]|][-n,
agent s-nunber]|[-1, --agents-list]]
Description

The command can be used to query different kinds of information from DDS commander server.

Options

- - conmander - pi d
Return the pid of the commander server

--status
Query current status of DDS commander server

-n, --agents-nunber
Returns a number of online agents

-1, --agents-list
Show detailed info about all online agents

25

Command-lineinterface

Name

dds-test — allows to test the running system
UNIX/Linux/OSX

Synopsis

dds- t est {[-t, --transport]}
Description

This command allows test the system after run.
Options

-t, --transport
Performs transport test.

26

Command-lineinterface

Name

dds-topology — topology related commands
UNIX/Linux/OSX

Synopsis

dds-topol ogy [[- h, --hel p]|[-v, --version]|[-V, --verbose]|[[--set arg]|[--di sabl e-
val idation]]|[--activate]|[--stop]|[--validatearqg]]

Description

This command allows to perform topology related tasks.

Options

-h, --help
Shows usage options.

-V, --version
Shows version information.

-V, --verbose
Causes the command to verbose additional information and error messages.

--set arg
Sets the given topology for the currently running DDS session.

--di sabl e-val i dati on
Switches off topology validation.

--activate
Requests DDS to activate agents, i.e. distribute and start user tasks.

--stop
Requests DDS to stop execution of user tasks. Stop the active topology.

--validatearg
Validates topology file against DDS's XSD schema.

27

Command-lineinterface

Name

dds-agent-cmd — send commands to agent
UNIX/Linux/OSX

Synopsis

dds-agent-cnd[[- h, --hel p]|[-Vv, --version]|[conmand, --conmand arg]]{[get!| ogar g]
{[-a, --all]}|[update-key arg]{[--keyarg]|[--val uearqg]}}

Description

This command allows to send commands to DDS agents.
Options

getlogarg
Download log files from all active workers.

-a, --all
Download al log files.

updat e- key arg
TODO

28

11. SSH plug-in

11.1. Resource definition

DDS's SSH plug-in is capable to deploy DDS agents on any resource machine available for password-less access
(public key, ssh agent, etc.) To define resources for the SSH plug-in we use a comma-separated values (CSV)
configuration file. Fields are normally separated by commas. If you want to put acommain afield, you need to
put quotes around it. Also 3 escape sequences are supported.

Table11.1. DDS's SSH plug-in configuration fields

1 2 3 4 5

id (must be any a host name with additional SSH a remote working RESERVED
unique string). or without a params (could be directory
login, in a form: empty)
This id string |ogin@host.fqdn
is used just to
distinguish different
DDS workers in the
plug-in.

Example 11.1. An example of an SSH plug-in configuration file

ri, anar @xg0527.gsi.de, -p24, /tnp/test, O
this is a comment

r2, user@xi 001. gsi . de,,/home/user/dds, 0
125, user2@ost, , /tnp/test,

29

