
InDesign® Plug-in CookBook 1:

Making Your First

InDesign Plug-in

Adobe Systems Incorporated

Corporate Headquarters

345 Park Avenue

San Jose, CA 95110-2704

(408) 536-6000

Technical Note # 10045-English

Version InDesign 2.0

25 Mar 2002

bc

Copyright 2002 Adobe Systems Incorporated. All rights reserved.

The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a

commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that

may appear in this document. The software described in this document is furnished under license and may only be used or copied in accordance

with the terms of such license.

Adobe® and InDesign® are registered trademarks of Adobe Systems Incorporated in the United States and/or other countries. Macintosh and Ap-

ple are registered trademarks, and Mac OS is a trademark of Apple Computer, Inc. Microsoft, Windows, Windows 95, Windows 98, and Windows

NT are registered trademarks of Microsoft Corporation. Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsys-

tems, Inc. in the U.S. and other countries. All other products or name brands are trademarks of their respective holders.

Rev # Date Author Comments
Draft 1 07-Nov-2001 Mitsutoshi Kikuta First Draft
Draft 1.1 09-Nov-2001 Mitsutoshi Kikuta
Draft 1.2 11-Nov-2001 Mitsutoshi Kikuta
Draft 1.3 07-Feb-2002 Ken Sadahiro Translated to enUS
Draft 1.4 22-Feb-2002 Ken Sadahiro Fixed translations
1.0 01-Mar-2002 Ken Sadahiro English version completed, with extra columns,

formatting fixes.
1.1 04-Mar-2002 Ken Sadahiro Fixed screen shot showing usage from menu
1.2 08-Mar-2002 Ken Sadahiro Added substeps, removed extra column boxes,

and changed code in Step 7/9 to use do-while.
1.3 11-Mar-2002 Ken Sadahiro Added note about InD3 filetype, fixed

StaticTextWidget's associated widget, and

reimported Mac screenshots (CW menu/proj)
1.4 25-Mar-2002 Ken Sadahiro Resynched with Japanese version: Added a

column about plug-in types, split step 1.5 into

1.5/1.6 (bumping subsequent steps up) and

changed step 1.9 to it's own chapter. Replaced

DollyWizard installation instructions with a note

about the Dolly User Manual tech note.

Table of Contents
About this Cookbook ... 5
The Goal of this CookBook... 6

The Story of Our Plug-in ... 6
About DollyWizard.. 8
Step 1: Using DollyWizard to generate a Dialog-based plug-in project..9

Step 1.1: Launch DollyWizard... 9
Step 1.2: Specify Necessary Information.. 9
Step 1.3: Verify Entered Information and Generate Plug-in Project ...11
Step 1.4: Change Creator and Type of DollyWizard-generated Text Files,(Macintosh only)11
Step 1.5: Convert the XML File to a CodeWarrior Project (Macintosh only) ..11
Step 1.6: Build the Plug-in..12
Step 1.7: Prepare to Load the Plug-In..13
Step 1.8: Start InDesign through Your IDE ..13
Step 1.9: Try Debugging...14

Examine the Files Included in the Project Generated by DollyWizard...15
Detailed Descriptions of the Code Generated by DollyWizard...17

Step 2: Add a DropDownListWidget..21
Step 2.1: Add a Widget ID for Our DropDownListWidget...21
Step 2.2: Define String Keys for List Items on Our DropDownListWidget ...21
Step 2.3: Define Locale-specific Strings for List Items on Our DropDownListWidget ..21
Step 2.4: Add a DropDownListWidget to Our Dialog Resource..22
Step 2.5: Save, Build and Test ...23

Step 3: Add a TextEditBoxWidget ...24
Step 3.1: Add a Widget ID for Our TextEditBoxWidget ..24
Step 3.2: Add a TextEditBoxWidget Resource to Our Dialog Resource ...24
Step 3.3: Save, Build and Test ...24

Step 4: Add a StaticTextWidget ...26
Step 4.1: Add a Widget ID for Our StaticTextWidget ..26
Step 4.2: Define a String Key for Our StaticTextWidget ...26
Step 4.3: Define Locale-specific Strings for Out StaticTextWidget..26
Step 4.4: Add a StaticTextWidget Resource to Our Dialog Resource ...26
Step 4.5: Save, Build and Test ...27

The Story About Resources ...28
Step 5: Obtain the value from the DropDownListWidget...37

Step 5.1: Get String Value of Selected Item from DropDownListWidget..37
Step 5.2: Save, Build and Test ...37

Step 6: Get the text in the TextEditBoxWidget ..38
Step 6.1: Get String Value of the Text in TextEditBoxWidget ..38
Step 6.2: Form String to Insert into Text Frame ..38

The Story About Boss Classes ... 39
What are "Boss Classes"? ..39

The Story About Interfaces ..40
What are "Interfaces"? ...40
IPMUnknown, the Parent of (almost) All InDesign Interfaces ...40
Querying for Interfaces, and Refcounts..40
What is InterfacePtr? ..40
Which Variety of InterfacePtr Constructor Should I Use for What Situation?..41

Step 7: Insert the string into a text frame ..44

Table of Contents
Step 7.1: Check if there is a TextFocus ..44
Step 7.2: Query the TextModel from TextFocus..44
Step 7.3: Create a WideString Object from Our PMString...44
Step 7.4: Process the Insert Text Command ...45
Step 7.5: Save, Build and Test ...46

Step 8: Enabling the menu only when there is a text focus or selection ..47
Step 8.1: Modify ActionDef to Disable Menu if Required Selection is not Available..47
Step 8.2: Save, Build and Test ...47

The Story About Commands ...48
A Small Story About MVC.. 49
Step 9: Initialize the dialog widgets ...50

Step 9.1: Add Code to Initialize the DropDownListWidget ..50
Step 9.2: Add Code to Initialize the TextEditBoxWidget..52
Step 9.3: Save, Build and Test ...52

In Conclusion...53

Making Your First InDesign Plug-In 5

InDesign Plug-in Cookbook 1 #10045

About this Cookbook

This Cookbook will guide you through the process of creating a basic InDesign plug-in step by step,

while helping you become more familiar with the process.

The source code for InDesign plug-ins are almost entirely cross-platform compatible. By using the

InDesign SDK, you can develop plug-ins that can be used with InDesign for Windows and Macin-

tosh OS, as well as Mac OS X (starting with InDesign 2.0).

Unlike more other plug-in development processes, the InDesign plug-in development process is

unique in that it has its own user interface (UI) framework as well as an object-oriented application

programming interface (API). This cookbook will focus on these two unique aspects.

Welcome to our first cookbook!

This is the first in our series of InDesign Plug-In Development Cookbooks. We developed the first one (in Japanese, actually) for the November

2002 InDesign Developer BaseCamp in Tokyo. We would like to hear your feedback about this cookbook: what you liked/disliked, what

could be improved, and other types of cookbooks you would like to see in the future. Please submit your feedback to us at http://

partners.adobe.com/asn/developer/feedback.html.

http://partners.adobe.com/asn/developer/feedback.html
http://partners.adobe.com/asn/developer/feedback.html

InDesign Plug-in Cookbook 1

6 Making Your First InDesign Plug-in

#10045

The Goal of this CookBook

Let's start our development by painting a picture in our minds about the finished product: our first

plug-in.

Since this is a Cookbook, we shall incorporate several fundamental and commonly used elements

of InDesign plug-ins: UI elements (menu, dialog, pull-down menu, text edit box, static text field, but-

ton) and text.

The Story of Our Plug-in

Now we will describe a scenario on how we want to use our very first InDesign plug-in.

First, we start InDesign.

Then, we create a new document.

In the new document, we will create a text frame, and place the text cursor in the text frame.

From the menu, we will select Plug-Ins.

Doing that will open up a dialog like this:

From the pull-down menu on this dialog, we select the name of a fish, and in the text edit box, we

enter its price.

When we click on the OK button, the name of the fish we selected from the pull-down menu, and

the price we entered, will appear in the text frame at the insertion point where we had our text cur-

sor.

Making Your First InDesign Plug-In 7

InDesign Plug-in Cookbook 1 #10045

If we have already set our tab stop settings in the text frame, the text should appear like this:

It's a simple plug-in, but it also should serve as a useful starting point.

InDesign Plug-in Cookbook 1

8 Making Your First InDesign Plug-in

#10045

About DollyWizard

Newly introduced in the InDesign 2.0 SDK is a plug-in development tool called DollyWizard. This

application, written entirely in Java, allows you to generate fundamental plug-in projects for Micro-

soft Visual C++ and Metrowerks CodeWarrior (XML, to be imported), by cloning plug-in templates.

By using DollyWizard, you can instantaneously create a starting point for your plug-in development.

DollyWizard is located in the Tools folder in the InDesign SDK. There are installers for both Windows

and Macintosh, so please run the appropriate installer to install DollyWizard on your system.

For details on installing and running Dolly Wizard, please refer to the InDesign SDK TechNote titled

Dolly User Manual.

Where can I obtain the Java 2 Standard Edition Runtime Environment (JRE) ?

If you don't already have JRE installed, you can find out more information about it and download it from http://java.sun.com/j2se/.

http://java.sun.com/j2se/

Making Your First InDesign Plug-In 9

InDesign Plug-in Cookbook 1 #10045

Step 1: Using DollyWizard to generate a Dialog-based plug-in project

By using the templates provided with DollyWizard, you will generate a plug-in project.

Step 1.1: Launch DollyWizard

First, launch DollyWizard. When you launch DollyWizard, you will see a dialog like this:

On this dialog, we will specify all necessary information for DollyWizard to generate the plug-in

code. It would be convenient to generate your own project folder under the {SDK}\SampleCode

folder. For the purpose of this exercise, we will work in a sub folder called MySamples. Make sure

this folder exists on your system.

The Input folder is where you specify the location of the DollyWizard templates. The

Output Folder is where you specify the folder in which DollyWizard generates the plug-in project.

(Macintosh: Make sure you use '/' (forward slash) as a folder delimiter.)

You can specify your own copyright statement as the Copyright string. The Technology to target

pull-down menu is where you specify the target InDesign version. The Plug-in type pull-down

menu is where you select the template that DollyWizard will use.

Step 1.2: Specify Necessary Information

Let's specify the necessary information in each field on the DollyWizard dialog.

InDesign Plug-in Cookbook 1

10 Making Your First InDesign Plug-in

#10045

For Input Folder, specify the complete path to the SDK/Tools/Dolly/Templates folder. (e.g.

C:\Program Files\Adobe\Adobe InDesign 2.0 SDK\Tools\Dolly\Templates, or /Macin-

tosh HD/Adobe/InDesign 2.0 SDK/Tools/Dolly/Templates).

For Output folder, specify the complete path to the SDK/SampleCode/MySamples fold-

er. (e.g. C:\Program Files\Adobe\Adobe InDesign 2.0 SDK\SampleCode\MySamples, or

Macintosh HD:Adobe:InDesign 2.0 SDK:SampleCode:MySamples)

For the time being, leave the Copyright string alone.

For Plug-in type, select Dialog.

Now comes the most important step: specifying our plug-in names. There are two names to specify

in DollyWizard: Long name and Short name.

The Long name specifies the name of the plug-in itself. This name is used as a string under the

Plug-Ins menu as well as the About this Plug-In dialog. The Short Name is very important: this

name is used as part of the source code files and class names that are generated. If you make this

Short Name too long, not only will the class names become very long, but some filenames may

end up being longer than 31 characters, resulting in an unsuccessful generation. It is recommend-

ed that Short name be no longer than 5-6 characters.

For this exercise, specify the Long Name as WriteFishPrice, and Short Name as WFP.

For Author, enter your own name. This string is used in the About this Plug-in dialog as well as

comments in source code.

For Date, enter today's date, for example: 20-Mar-2002.

Next comes the Plug-in Prefix field. A Plug-in Prefix is a unique ID assigned by Adobe Systems for

use of your plug-in development. For production plug-ins that you will release outside your orga-

nization, please make sure that you use an ID prefix assigned to you by Adobe Systems. This is very

important, as the ID prefix is used to define the plug-in's IDs and resources. Therefore, there must

be no overlap in the ID prefixes used by plug-ins. For experimentation purposes, You may reuse the

ID prefixes used in sample plug-ins in the SDK, but be careful not to release plug-ins that use ran-

domly selected prefix IDs. Any plug-in that uses the same ID cannot be used simultaneously.

For this exercise, specify 0x61000. This is an ID prefix that was specially allocated for the purpose of

this exercise.

How do I obtain a Plug-in Prefix?

Please refer to the InDesign SDK Knowledgebase Article #50093.

http://support.adobe.com/devsup/devsup.nsf/docs/50093.htm

Making Your First InDesign Plug-In 11

InDesign Plug-in Cookbook 1 #10045

Step 1.3: Verify Entered Information and Generate Plug-in Project

Have you entered all the fields? Please verify against the screen shot shown here.

Once you have verified your settings, click on the GENERATE PLUG-IN button.

Check to see if DollyWizard generated files in the folder you specified in Output folder. Do you see

any files there?

Step 1.4: Change Creator and Type of DollyWizard-generated Text Files,(Macintosh only)

If you are using a Macintosh: you have to go through a few extra yet important steps.

The source files generated by DollyWizard don't have their file type and creator set correctly. By us-

ing resource editors, such as ResEdit, edit the creator and filetype of the generated files (*.fr, *.cpp,

*.h, *.xml) as such: Creator: 'CWIE' File type: 'TEXT'.

Step 1.5: Convert the XML File to a CodeWarrior Project (Macintosh only)

Also, to develop on the Macintosh, you must create a CodeWarrior project. DollyWizard generates

an XML file that you can import into CodeWarrior. To create a CodeWarrior project from the XML file,

start your CodeWarrior Pro 7 IDE, and select the File >> Import Project... menu.

Then, select the WFP.mcp.xml file that DollyWizard generated in the WriteFishPrice:Project folder.

If the filetype of this XML file is not "TEXT", the XML file will not appear in this dialog box. When the

XML file is imported, CodeWarrior will ask you for the path of the project to create, so instruct Code-

InDesign Plug-in Cookbook 1

12 Making Your First InDesign Plug-in

#10045

Three types of InDesign Plug-Ins

InDesign has three distinct kinds of plug-ins. On the Mac, these are identified by filetype, and on Windows, they are identified by file extension.

Required Plug-ins : These are plug-ins that must be installed, and are placed in the Required folder. In the Plug-in Settings dialog, these

are listed as “Required”, as they are indicated with a pad lock and an Adobe logo. On the Mac, the filetype is ‘InDr’, and on Windows, the file

extension is “.rpln”.

Adobe Plug-ins : These are plug-ins that are provided by Adobe, and are placed in functionality-based subfolders under the Plug-Ins folder.

In the Plug-in Settings dialog, these are listed as “Adobe”, as they are indicated with an Adobe logo. On the Mac, the filetype is ‘InDa’, and on

Windows, the file extension is “.apln”.

Third-party Plug-ins : These are plug-ins that are developed by third-party developers, and are placed in the Plug-Ins folder. In the Plug-in

Settings dialog, these are listed as “Third Party”. The sample plug-ins in the SDK are placed under this category. The plug-in for this cookbook is

also of this type. On the Mac, the filetype is ‘InD3’, and on Windows, the file extension is “.pln”.

Warrior to create WFP.mcp in your WriteFishPrice:Project folder. When the project is generated,

you will see a panel that looks like the screen shot here.

Finally, select the Edit >> Debug Settings... or Edit >> Release Settings... menu and select

PPC Target. Make sure that the Type is set to InD3, not InDa. Do this under both the Debug and

Release modes.

Step 1.6: Build the Plug-in

All right, let's build our plug-in!

If you are using Windows, open the WFP.dsp in your WriteFishPrice\Project folder with Mi-

crosoft Visual C++ 6.0. (Please be sure to use Service Pack 5 with the InDesign 2.0 SDK.) Once

the project is open, make sure the WFP - Win32 Debug as the active configuration (under

Build >> Set Active Configuration... menu), then select the Build >> Build WFP.pln menu to

build the plug-in.

In CodeWarrior, open the WFP.mcp you just converted from the XML file, and select Debug from

the Set Default Target menu or the Target popup menu. Then, select the Project >> Make menu,

or click on the Make button on the Project Window.

This completes the first step of developing a plug-in with DollyWizard. Were you able to build your

plug-in without compiler errors?

Making Your First InDesign Plug-In 13

InDesign Plug-in Cookbook 1 #10045

Step 1.7: Prepare to Load the Plug-In

The debug build plug-in you just built has the filename WFP.pln, and can be found in the Sample

Code\BuiltPlugIns\Debug folder under your SDK folder. If you build the release build, it will have

the same filename but will be built in the SampleCode\BuiltPlugins\Release folder under your

SDK folder. In either case, the plug-in that you just built needs to be in placed in the Plug-Ins folder

under your InDesign folder for InDesign to load it at start up time. There are three ways to make

this happen:

(1) You can copy the WFP.pln to the Plug-Ins folder under your InDesign folder. NOTE: This is the

recommended way of loading the distribution version of your plug-in.

(2) You can modify the PluginConfig.txt file (Windows: In the "%USERPROFILE%\Local Settings\

Application Data\Adobe\InDesign\Version 2.0" or "Version 2.0J" folder; Mac OS 9: "{System

Folder}:Preferences:Adobe InDesign:Version 2.0" or "Version 2.0J"; Mac OS X: "{SystemDrive}:

Users:{UserName}:Library:Preferences:Adobe InDesign:Version 2.0" or "Version 2.0J") by add-

ing the following (replace with your own paths)

=Path
"C:\Program Files\Adobe\Adobe InDesign 2.0 SDK\SampleCode\BuiltPlugIns\Debug"

or

=Path
"Macintosh HD:Adobe InDesign 2.0 SDK:SampleCode:BuiltPlugIns:Debug"

If you are using the release build of InDesign, change the Debug to Release in the statements

above.

(3) (Macintosh only) You can create an alias to your {SDK}:SampleCode:BuiltPlugIns:Debug (or

Release) folder, and place the alias in the Plug-Ins folder under your InDesign folder.

NOTE: Don't install debug-build plug-ins in the Plug-Ins folder for the Release build version of InDe-

sign, and vice versa. Your plug-in will fail to load.

You can tell when this plug-in is loaded: You will see a Plug-Ins menu item after starting InDesign

(in the next step).

Step 1.8: Start InDesign through Your IDE

If you have successfully built your plug-in, and setup a way for the plug-in to load, then you can

start the InDesign application through your IDE.

In Visual C++: Select the Project >> Settings... menu, and click on the Debug tab. Un-

der the General category, specify the full path to your InDesign.exe application in the

How do I know which service pack of Visual C++ 6.0 I am using?

If you have installed Visual C++ 6.0 Service Pack 5, you will see the following entry in the Windows Registry (regedit.exe):

\\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\6.0\ServicePacks\sp5
Also, you can also see if the following key contains the DWORD value 0x00000005 :

\\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\6.0\ServicePacks\latest
If neither of the above apply to you, chances are you don't have Service Pack 5 installed.

Without Service Pack 5 installed, you may encounter some compilation errors around an InDesign basetype called PMPoint.

InDesign Plug-in Cookbook 1

14 Making Your First InDesign Plug-in

#10045

Executable for the debug session text box. You can also browse for the InDesign.exe application

by clicking on the right arrow button to the right of the same text box. Once you have selected the

InDesign.exe application you want to use for your debug session, click OK. You may optionally

save your workspace (File >> Save Workspace), so you don't have to specify the path the next time

you use this project. To start debugging, select the Build >> Start Debug >> Go menu, or hit the

F5 key.

In CodeWarrior: Select the Edit >> Debug Settings... menu, and select the Runtime Settings un-

der the Target tree item in the Debug Settings dialog. Specify the path (relative to the project or

absolute) to your InDesign 2.0 (or InDesign 2.0J) application. You can also Browse for this path.

Then click Save on the Debug Settings dialog to save this path into your project file, and close

the dialog. To start debugging, select the Project >> Debug menu, or hit the Command-R key se-

quence.

Step 1.9: Try Debugging

Now let's try to put some break points in the code so we can experiment with the debugger.

Put a breakpoint somewhere in one of the .cpp files, say WFPActionComponent.cpp, in the

DoAction() method. Then select the Plug-Ins >> WriteFishPrice menu item. You may also try ex-

amining values of variables.

Once you are done, you can quit InDesign to finish your debugging session. Remember to do this

before editing your code in each of the subsequent major steps in this cookbook.

What are the advantages of using a Debug build of InDesign for developing plug-ins?

The debug build of InDesign enables several key features that aid debugging, such as various asserts, checking for "boss leaks"(more later on

bosses and boss leaks), and being able to get names of various symbols at runtime. Also, by building your plug-ins in the debug mode, you can

debug through your own code with the use of breakpoints, variable checking, and call stack traversal.

The main difference between the debug and release builds of your plug-in projects is that they are linked to a different set of libraries: one set

with extra exports for the debug build ({SDK}\API\LibD), one with only the set of exports for the release build ({SDK}\API\LibR).

Once you have fully tested your plug-in under the debug build of InDesign, you can then build your plug-in in the reelase mode, and test it against

the release build of InDesign.

Making Your First InDesign Plug-In 15

InDesign Plug-in Cookbook 1 #10045

Examine the Files Included in the Project Generated by DollyWizard

Let's take a look at the files that DollyWizard generated for us. Go back to the project in your IDE,

and let's examine each file, one by one.

WFPID.h

This header file is a central repository for the plug-in centric IDs, where an ID can be a numeric or a

string that is unique across the application or within the plug-in. This file plays a critical role in the

plug-in, as it is included by all plug-in project files.

WFPFactoryList.h

This header file contains macros that allow the core InDesign object model to create and destroy

instances of the implementations through factory classes.

WFPNoStrip.cpp

This file prevents the C++ compiler optimizations from "dead stripping", which eliminates what ap-

pears to the compiler as unreferenced code. The most of the code in the plug-in is not used directly

from within the plug-in itself. This file contains a function, void DontDeadStrip(), which includes

WFPFactoryList.h.

WFPID.cpp

This files allows the IDs defined in WFPID.h to be included as strings in the debug build symbols.

SDKPlugInEntrypoint.cpp

This file is located in the Utilities folder under your SDK folder, and specifies the entry point of the

plug-in. This file is not generated, but rather simply included in the project.

SDKUtilities.cpp

This file defines the SDKUtilities class. Just like SDKPlugInEntryPoint.cpp, this file is not gener-

ated, but simply included into the project.

TriggerResourceDeps.cpp

This file ensures that the ODFRC resource is re-linked when the .fr file is compiled under Windows.

WFPDialogController.cpp

This source file contains a class that is used for initializing, validating, and responding to dialog wid-

gets. By writing the WFPDialogController class, you can specify what happens during when the

dialog is initialized, and when you click on the OK button.

WFPDialogObserver.cpp

The WFPDialogObserver class in this file dynamically process changes to the widgets on the dia-

log. In our case, this class observes events pertaining to the information button placed on the dia-

InDesign Plug-in Cookbook 1

16 Making Your First InDesign Plug-in

#10045

log. When the information button is clicked, the About this Plug-In dialog is displayed.

WFPActionComponent.cpp

The WFPActionComponent class in this source file defines what happens when the plug-in's

menu item is selected. In this case, the Plug-Ins menu item and About this Plug-In menu items are

handled.

The About this Plug-In menu is displayed under the Apple Menu (Macintosh) or the Help >> About

Plug-Ins >> SDK (Windows) menu items.

This class also opens the About this Plug-In dialog.

WFP.fr

This file defines resources that are unique to InDesign. These resource definitions are cross-platform

compatible between the Macintosh and Windows platforms. This particular file contains resources

other than strings.

WFP_enUS.fr

This file contains string resources in a string table resource, that is used for the US English locale.

These resources are used when using this plug-in on InDesign US English locale. Also, this file can

contain UI specifications, especially when they differ by locale.

WFP_jaJP.fr

This file contains string resources in a string table resource, that is used for the Japanese locale.

These resources are used when using this plug-in on the InDesign Japanese locale. Also, this file

can contain UI specifications, especially when they differ by locale.

WFP.rc

This file defines Windows-specific resources. In particular, the plug-in file version is defined in this

file.

SDKResources.r

This file defines Macintosh-specific resources. In particular, the plug-in file version is defined in this

file. This file is not generated, but simply included in the project from the Utility folder under your

SDK folder.

What is Doc++, and where can I get it?

Doc++ is a tool that generated hyperlinked documentation from annotated C/C++ source files. It is similar to JavaDoc. The InDesign SDK team

uses it to generate the API reference.

Doc++ can be downloaded from http://sourceforge.net/projects/docpp/. Currently, the Doc++ compiler does not

exist for the Macintosh platform, however, you can download the UNIX source code from http://sourceforge.net/projects/

docpp/ and compile the Doc++ tool on Mac OS X.

http://sourceforge.net/projects/docpp/
http://sourceforge.net/projects/docpp/
http://sourceforge.net/projects/docpp/

Making Your First InDesign Plug-In 17

InDesign Plug-in Cookbook 1 #10045

SDKInfoButton.r

This file contains the Macintosh icon resource for the SDK information button. This file is not gener-

ated, but simply included in the project from the Utility folder under your SDK folder.

SDKInfoButton.ico

This file contains the Windows icon resource for the SDK information button. This file is not gener-

ated, but simply included in the project from the Utility folder under your SDK folder.

WFP.dsp

This is a Visual C++ project file for Windows.

WFP.mcp.xml

This is the XML version of the CodeWarrior project file for Macintosh. You use this by importing it

and creating a CodeWarrior project.

Files included in the DocSource folder

PluginDesc.txt, WFPBossClasses.txt, WFPDelta.txt, and WFPDesign.txt are files annotated with

Doc++ style comments, and are used for generating online documentation for your plug-in project.

WriteFishPrice.html

This HTML file is used as an entry point to the plug-in project's online documentation. The docu-

mentation is generated by Doc++ in the Documentation\WebDocs folder under your SDK folder.

BuildDoc.bat

This batch file can be used to generate Doc++ documentation.

This concludes a brief description of the files included in the plug-in project generated by Dolly-

Wizard.

Detailed Descriptions of the Code Generated by DollyWizard

Let's go into more detail for the source files that we will be modifying throughout this exercise.

WFPActionComponent.cpp

WFPActionComponent Class

The WFPActionComponent class inherits the CActionComponent class, which implements the

IActionComponent interface. WFPActionComponent class responds to menu selections in the

DoAction() method, and distinguishes the actual selected menu item by means of the correspond-

ing ActionID.

WFPActionComponent::DoAction()

WFPActionComponent::DoAction() method, which overrides the DoAction() method in its par-

ent class, (CActionComponent), receives the selected ActionID as a parameter and compares it

InDesign Plug-in Cookbook 1

18 Making Your First InDesign Plug-in

#10045

with kWFPAboutActionID and kWFPDialogActionID that are defined in WFPID.h. If there is a

match, it calls the DoAbout() and DoDialog() methods (the one we want), respectively.

WFPActionComponent::DoAbout()

WFPActionComponent::DoAbout() method is called from WFPActionComponent::DoAction(),

and displays the About this Plug-In dialog (a simple modal alert box) provided by the SDKUtilities:

:InvokePlugInAboutBox() (in {SDK}\Utilities\SDKUtilities.cpp).

WFPActionComponent::DoDialog()

WFPActionComponent::DoDialog() method first obtains the IApplication interface by means

of gSession. gSession is a global pointer to ISession interface aggregated in the kSessionBoss,

which is a boss class object that describes the current InDesign application session. IApplication is

an interface aggregated on the kAppBoss, which is a boss class object that describes the InDesign

application itself. (More on boss classes later.)

kSessionBoss
ISession

IPMUnknown

kAppBoss
IApplication

IPMUnknown

ISession::QueryApplication()

From the IApplication interface, it obtains the IDialogMgr interface. This enables us to get to

the InDesign dialog manager's boss class. Next, the DoDialog() method eagerly loads the dialog

resources that corresponds to the current UI locale during the first instantiation, and saves to the

InDesign database so that it could be loaded efficiently during subsequent instantiations. The cur-

rent UI locale is obtained by instantiating a RsrcSpec object called dialogSpec by means of calling

LocaleSetting::GetLocale(). There are several different kinds of constructors for the RsrcSpec ob-

ject, but this method uses the following construct.

// Load the plug-in's resource.
PMLocaleId nLocale = LocaleSetting::GetLocale();
RsrcSpec dialogSpec
(
 nLocale, // Locale index from PMLocaleIDs.h.
 kWFPPluginID, // Our Plug-in ID from WFPID.h.
 kViewRsrcType, // This is the kViewRsrcType.
 kSDKDefDialogResourceID, // Resource ID for our dialog.
 kTrue // Initially visible.
);

Once you instantiate a RsrcSpec object, the DoDialog() method now calls the CreateNewDialog()

method on the IDialogMgr interface, as such:

IDialog* dialog = dialogMgr->CreateNewDialog(dialogSpec,IDialog::kMovableModal);

For the parameter list contains the dialogSpec we just instantiated, and a constant that speci-

fies the modality of the dialog (kMovableModal constant defined in the IDialog interface). The

CreateNewDialog() method then creates a movable dialog based on the dialogSpec and returns

Making Your First InDesign Plug-In 19

InDesign Plug-in Cookbook 1 #10045

a pointer to a dialog window (IDialog on kDialogWindowBoss, or a derived boss class).

Finally, the Open() method on the IDialog interface is called, and the dialog is opened.

WFPDialogObserver.cpp

WFPDialogObserver Class

The WFPDialogObserver class inherits the CDialogObserver class, which implements the

IObserver interface. Through the WFPDialogObserver class, you can register to listen to, or "ob-

serve", dynamic changes to the widgets on the dialog. Our example handles the information but-

ton on the dialog. When you click this button, the About this Plug-In dialog is displayed.

The "observer", which extends the IObserver interface, provides a mechanism to listen to changes

to specific objects, known as "subjects". By attaching to a subject, observers can be notified when a

change occurs, without having to poll for changes.

WFPDialogObserver::AutoAttach()

The WFPDialogObserver::AutoAttach() method, which is called by the InDesign application, en-

ables subjects to attach themselves to an observer. In our example, the subject is the information

button widget. If you need to observe other widgets on this dialog, you can add them here. Alter-

natively, you can observe each widget in separate observers, however, to keep the code simple, we

are collectively observing all widgets on this dialog. The OK and Cancel buttons (with widget IDs

of kOKButtonWidgetID and kCancelButton_WidgetID, respectively) are observed by the parent

class, CDialogObserver, by default.

Let's examine how this works. First, the WFPDialogObserver::AutoAttach() method calls the

CDialogObserver::AutoAttach() method in the parent class. This is so that the OK and Cancel but-

tons can be handled. Afterwards, the IPanelControlData interface (from the same boss object that

hosts the current implementation, WFPDialogObserver) is obtained, and by using the parent class'

CDialogObserver::AttachToWidget() method, it attaches the information button widget.

WFPDialogObserver::AutoDetach()

The WFPDialogObserver::AutoDetach() method, which is called by the InDesign application,

allows subjects to be detached. Again, the OK and Cancel buttons are handled by default in the

parent class, CDialogObserver. Like the AutoAttach() method, the CDialogObserver::AutoDeta

ch() method is called to handled the OK and Cancel buttons. Afterwards, the IPanelControlData

interface (from the same boss class that the current class resides in) is obtained, and by using the

parent class' CDialogObserver::DetachFromWidget() method, it detaches the information button

widget.

WFPDialogObserver::Update()

The WFPDialogObserver::Update() method is called by the host when a change occurs to the ob-

served object. In our example, this is when the information button is clicked.

First, we call the CDialogObserver::Update() method to handle the OK and Cancel buttons up

front, then we obtain the IControlView interface of the widget that caused the change, from the

InDesign Plug-in Cookbook 1

20 Making Your First InDesign Plug-in

#10045

theSubject parameter. To determine which widget ID actually caused the change, we call the

GetWidgetID() method on the IControlView interface. If this widget ID corresponds to the ID for

our information button (kWFPIconSuiteWidgetID) and if the message ID from the theSubject

parameter is kTrueStateMessage (indicating that the button is pressed), we display the About this

Plug-In dialog.

WFPDialogController.cpp

The WFPDialogController Class

The WFPDialogController class inherits the CDialogController class, which implements the

IDialogController interface. This class handles the dialog initialization, as well data validation and

the OK button click.

WFPDialogController::InitializeFields()

The WFPDialogController::InitializeFields() method initializes the widgets on the dialog. This

method is called by the parent class when the dialog is opened, and when the dialog's Reset but-

ton (Cancel changes to Reset when you hold the Alt or Option key) is clicked, if you have not over-

ridden the CDialogController::ResetFields() method. This method first needs to call the CDialogC

ontroller::InitializeFields() method in the parent class.

WFPDialogController::ValidateFields()

The WFPDialogController::ValidateFields() method validates the fields on the dialog box. When

the OK button is clicked, this method is called before the ApplyFields() method is called. Again,

we first call the CDialogController::ValidateFields() method in the parent class. If there is even

one field that has an invalid value, you can return the WidgetID to be selected. If all fields have

valid values, then you can return kDefaultWidgetId, which will allow the parent class to call our

ApplyFields() method.

WFPDialogController::ApplyFields()

The WFPDialogController::ApplyFields() method retrieves the values from the dialog fields and

acts on them. In our example, we obtain the values from the widgets on the dialog, and do ap-

propriate processing. The widgetId from the parameter list contains the widget ID that caused this

method to be called. By default, this parameter contains kOKButtonWidgetID.

Where can I learn more about the available objects in the InDesign Object Model?

The InDesign object model is highly extensible, and quite large. There are various references available in the InDesign SDK:

(1) {SDK}\Documentation\InterfaceList.txt : We will show you how to use this file when we discuss resources in the About Resources

section later.

(2) {SDK}\Documentation\IObjectModel_*.txt and .xls : These files make up a set of object model dumps obtained at InDesign run-

time. The XLS version is an Excel spreadsheet with autofiltering, which you can use to help search for specific interfaces or implementations.

(3) {SDK}:Tools:InterfaceListViewer (Mac only): This is a useful tool that allows you to search the InDesign object model based on the

name of a boss class or interface. For details, refer to {SDK}:Tools:InterfaceListViewer:index.html or index-j.html.

Making Your First InDesign Plug-In 21

InDesign Plug-in Cookbook 1 #10045

Step 2: Add a DropDownListWidget

Let's add a DropDownListWidget onto our dialog.

Step 2.1: Add a Widget ID for Our DropDownListWidget

First, to add a widget ID for our DropDownListWidget, open WFPID.h in your IDE.

Around line 63, you will find widget definitions for the dialog and information icon button.

// WidgetIDs:
DECLARE_PMID(kWidgetIDSpace, kWFPDialogWidgetID, kWFPPrefix + 0)
DECLARE_PMID(kWidgetIDSpace, kWFPIconSuiteWidgetID, kWFPPrefix + 1)

This is where we declare the widget ID for our DropDownListWidget.

On the following line, add:

// DropDownList widget ID
DECLARE_PMID(kWidgetIDSpace, kWFPDropDownListWidgetID, kWFPPrefix + 2)

Step 2.2: Define String Keys for List Items on Our DropDownListWidget

Next, let's define string keys for the items in the DropDownList. InDesign has a base type object

called PMString. This string is used extensively for UI strings, and has a locale-based string lookup

mechanism behind the scenes for automatic string translation. The translated strings are defined

in a string table resource, and by specifying a string by its key, InDesign will automatically replace

it with the corresponding localized string. If you look at WFPID.h after line 67, you can see several

string keys defined there.

Now, let's define a string key for the DropDownListWidget items. Find the following in WFPID.h:

// Other StringKeys:
#define kWFPDialogTitleKey kWFPStringPrefix "kWFPDialogTitleKey"
#define kWFPAboutBoxStringKey kWFPStringPrefix "kWFPAboutBoxStringKey"

Right after that, add these lines:

#define kWFPDropDownItem_1Key kWFPStringPrefix "kWFPDropDownItem_1Key" // listitem
#define kWFPDropDownItem_2Key kWFPStringPrefix "kWFPDropDownItem_2Key" // listitem
#define kWFPDropDownItem_3Key kWFPStringPrefix "kWFPDropDownItem_3Key" // listitem
#define kWFPDropDownItem_4Key kWFPStringPrefix "kWFPDropDownItem_4Key" // listitem

If you know what your string key will be (e.g. kWFP_TunaKey), it might easier to define the key us-

ing the string, so that you can find it easier at a later time.

Step 2.3: Define Locale-specific Strings for List Items on Our DropDownListWidget

Next, we will define the string table resource entries that correspond to these string keys we just

defined. These string tables are defined in WFP_enUS.fr and WFP_jaJP.fr, for use under the US

English and Japanese locales, respectively. These two resource files are included by WFP.fr.

Ok, let's start by defining the US English string table entries. If you open WFP_enUS.fr, you will see

that the string keys and the English strings are paired up, as shown below. Let's add strings for the

4 string keys we just added. Look for the following in WFP_enUS.fr:

InDesign Plug-in Cookbook 1

22 Making Your First InDesign Plug-in

#10045

resource StringTable (kSDKDefStringsResourceID + index_enUS)
{
 k_enUS, // Locale Id
 kEuropeanMacToWinEncodingConverter, // Character encoding converter
 {
...omitted
// ----- Panel/dialog strings
 kWFPDialogTitleKey, kWFPPluginName "[US]",

Right after that, add the following:

 // Drop down list item strings
 kWFPDropDownItem_1Key, "Tuna",
 kWFPDropDownItem_2Key, "Salmon",
 kWFPDropDownItem_3Key, "Bonito",
 kWFPDropDownItem_4Key, "Yellowtail",

Similarly, we can add strings to the Japanese string table. Open WFP_jaJP.fr, and look for the fol-

lowing:

resource StringTable (kSDKDefStringsResourceID + index_jaJP)
{
 k_jaJP, // Locale Id
 0, // Character encoding converter
 {
...omitted
 // ----- Panel/dialog strings
 kWFPDialogTitleKey, kWFPPluginName "[JP]",

Right after that, add the following:

 // Drop down list item strings
 kWFPDropDownItem_1Key, "まぐろ ", // Tuna
 kWFPDropDownItem_2Key, "さけ ", // Salmon
 kWFPDropDownItem_3Key, "かつお ", // Bonito
 kWFPDropDownItem_4Key, "ぶり ", // Yellowtail

Step 2.4: Add a DropDownListWidget to Our Dialog Resource

Now, we will add the DropDownListWidget on our dialog resource. The dialog resource is defined in

WFP.fr around line 289. This resource already contains 3 widgets: the default OK button, the cancel

button and the information icon button.

This is where we will add the DropDownListWidget. Look for this in WFP.fr, around line 289:

What if I can't enter these Japanese characters into the Japanese string table?

For the purpose of these exercises, it is not necessary to enter Japanese characters into the resource string tables. Our SDK sample plug-ins often

put a locale-specific suffix on these strings, such as "MyString [JP]", so that you know the appropriate string table is being used. You can choose to

do the same.

However, if you are actually going to release your plug-ins commercially, there is a chance that some InDesign Japanese version use will be using

your plug-in. It would be a good idea to but in case someone will be using your plug-in in InDesign 2.0's Japanese version, it's a good idea to

define strings for the Japanese string table. Better yet, you may even want to obtain assistance in translating the strings into Japanese, or other

locales supported by InDesign.

Making Your First InDesign Plug-In 23

InDesign Plug-in Cookbook 1 #10045

resource WFPDialogWidget (kSDKDefDialogResourceID + index_enUS)
{
 __FILE__, __LINE__,
 kWFPDialogWidgetID, // WidgetID
 kPMRsrcID_None, // RsrcID
 kBindNone, // Binding
 0, 0, 388,112, // Frame (l,t,r,b)
 kTrue, kTrue, // Visible, Enabled
 kWFPDialogTitleKey, // Dialog name
 {
 ...omitted
 ADBEIconSuiteButtonWidget
 (
 ...omitted
),

Right after that, add the following:

 // DropDownList Widget resource
 DropDownListWidget
 (
 kWFPDropDownListWidgetID, kSysDropDownPMRsrcId, // WidgetId, RsrcId
 kBindNone, // Frame binding
 Frame(10, 16, 140, 36), // Frame (l,t,r,b)
 kTrue, kTrue, // Visible, Enabled
 {{ // List Items
 kWFPDropDownItem_1Key,
 kWFPDropDownItem_2Key,
 kWFPDropDownItem_3Key,
 kWFPDropDownItem_4Key,
 }}
),

This concludes the step of adding a DropDownListWidget to our dialog.

Step 2.5: Save, Build and Test

Now, let's save all of the source files you edited, build the plug-in, load it in InDesign, and try using

our newly added DropDownListWidget.

Does your pull down widget show the 4 strings you just added?

If the 4 strings are showing in your DropDownListWidget, let's move on to the next step.

InDesign Plug-in Cookbook 1

24 Making Your First InDesign Plug-in

#10045

Step 3: Add a TextEditBoxWidget

Step 3.1: Add a Widget ID for Our TextEditBoxWidget

In preparation for adding a TextEditBoxWidget on our dialog, let's open WFPID.h again so we can

define some widget IDs. Right after the place where you added some widget IDs in step 2, we shall

add a widget ID for our TextEditBox. Look for the following:

// WidgetIDs:
DECLARE_PMID(kWidgetIDSpace, kWFPDialogWidgetID, kWFPPrefix + 0)
DECLARE_PMID(kWidgetIDSpace, kWFPIconSuiteWidgetID, kWFPPrefix + 1)
DECLARE_PMID(kWidgetIDSpace, kWFPDropDownListWidgetID, kWFPPrefix + 2) //DropDownList

Add the following on the next line:

DECLARE_PMID(kWidgetIDSpace, kWFPTextEditBoxWidgetID, kWFPPrefix + 3) //TextEditBox

Step 3.2: Add a TextEditBoxWidget Resource to Our Dialog Resource

Next, we shall add the TextEditBoxWidget resource into our dialog resource definition. Just like we

did in step 2, we shall define this right after the place where we added our DropDownListWidget.

Look for the following:

// DropDownList Widget resource
 DropDownListWidget
 (
 // ...omitted
),

Add the following on the next line:

 // TextEditBox Widget resource
 TextEditBoxWidget
 (
 kWFPTextEditBoxWidgetID, // WidgetId
 kSysEditBoxPMRsrcId, // RsrcId
 kBindNone, // Frame binding
 Frame(200, 16, 250, 36), // Frame (l,t,r,b)
 kTrue, kTrue // Visible, Enabled
 0, // Widget id of nudge button (0 so we dont get one)
 0, 0, // small,large nudge amount
 0, // max num chars(0 = no limit)
 kFalse, // is read only
 kFalse, //**new in 2.0: should notify each key stroke
 kFalse, // range checking enabled
 kFalse, // blank entry allowed
 0, // Upper bounds
 0, // Lower bounds
 "", // Initial text
),

We are done adding a TextEditBoxWidget onto our dialog. This is all we need to be able to put a

TextEditBoxWidget on a dialog.

Step 3.3: Save, Build and Test

Now, let's save all of the source files you edited, build the plug-in, load it in InDesign, and try using

our newly added TextEditBoxWidget.

Making Your First InDesign Plug-In 25

InDesign Plug-in Cookbook 1 #10045

Do you see your TextEditBoxWidget as shown in the screen shot above?

Try entering some characters, or even copying some text from another application and pasting it

into the TextEditBoxWidget using shortcut keys. InDesign handles the shortcut keys for us.

If you can do some simple operations with this TextEditBoxWidget, let's move on.

InDesign Plug-in Cookbook 1

26 Making Your First InDesign Plug-in

#10045

Step 4: Add a StaticTextWidget

So far, we have added onto our dialog a DropDownListWidget to select our product and a TextE-

ditBoxWidget to enter the unit price. However, it seems like something is missing, doesn't it? We

should have a currency symbol right next to our TextEditBox. InDesign can be used under various

locales, so let's utilize the power of InDesign's international capabilities and display a $ (dollar sym-

bol) or a ¥, based on the locale.

Step 4.1: Add a Widget ID for Our StaticTextWidget

To add an ID for our StaticTextWidget, open WFPID.h. Right after where we added the TextEditBox-

Widget in the step 3, let's define the ID for our StaticTextWidget. Look for the following:

// WidgetIDs:
DECLARE_PMID(kWidgetIDSpace, kWFPDialogWidgetID, kWFPPrefix + 0)
DECLARE_PMID(kWidgetIDSpace, kWFPIconSuiteWidgetID, kWFPPrefix + 1)
DECLARE_PMID(kWidgetIDSpace, kWFPDropDownListWidgetID, kWFPPrefix + 2) //DropDownList
DECLARE_PMID(kWidgetIDSpace, kWFPTextEditBoxWidgetID, kWFPPrefix + 3) //TextEditBox

Add the following on the next line:

DECLARE_PMID(kWidgetIDSpace, kWFPStaticTextWidgetID, kWFPPrefix + 4) //StaticText

Step 4.2: Define a String Key for Our StaticTextWidget

Next, let's define a string key for each of the currency symbols that will be displayed in the Static-

TextWidget.

// StaticText string key
#define kWFPStaticTextKey kWFPStringPrefix "kWFPStaticTextKey"
 // StaticText string key. (yen or dollar character)

Step 4.3: Define Locale-specific Strings for Out StaticTextWidget

Then, let's define the localized strings that correspond to this string key in the string table resources

in WFP_enUS.fr and WFP_jaJP.fr.

Look for the "// Panel/dialog strings" comment in WFP_enUS.fr, and add the following:

// StaticText string key. (yen or dollar character)
kWFPStaticTextKey, "$",

Look for the "// Panel/dialog strings" comment in WFP_jaJP.fr, and add the following:

// StaticText string key. (yen or dollar character)
kWFPStaticTextKey, "￥",

The yen symbol specified here is a dual-byte character (specifically, ShiftJIS code 0x8F81). If you

can't enter Japanese characters, you can simply specify this string as a "Y" (upper case).

Step 4.4: Add a StaticTextWidget Resource to Our Dialog Resource

Next, let's add the StaticTextWidget resource right after where we added the TextEditBoxWidget in

WFP.fr. Look for the following:

Making Your First InDesign Plug-In 27

InDesign Plug-in Cookbook 1 #10045

 // TextEditBox Widget resource
 TextEditBoxWidget
 (
 // ...omitted
),

Add the following on the following line:

 // StaticText widget resource
 StaticTextWidget
 (
 kWFPStaticTextWidgetID, // WidgetId
 kSysStaticTextPMRsrcId, // RsrcId
 kBindNone, // Frame binding
 Frame(150, 16, 190, 36), // Frame (l,t,r,b)
 kTrue, kTrue, kAlignRight, // Visible, Enabled, Alignment
 kDontEllipsize, //**new element in InDesign 2.0: don't add any ellipses
 kWFPStaticTextKey, // Text
 kWFPTextEditBoxWidgetID // WidgetId for associated cntrl for shortcut focus
),

Step 4.5: Save, Build and Test

Now, let's save all of the source files you edited, build the plug-in, load it in InDesign, and try using

our newly added TextEditBox. When used under the US English locale, you'll see this:

Under the Japanese locale, you'll see this.

As you can see, different strings can be displayed based on the locale. You can do the same with

other UI widgets in InDesign.

In this case, the meaning of the data you enter in the TextEditBoxWidget will change, so we may

have to do some extra processing later.

This concludes our design of the dialog. As we have just demonstrated, you can design your plug-

ins starting with the user interface, before implementating what it does. In otherwords, we can de-

velop the "controller" in a manner that is decoupled from the rest of the plug-in.

InDesign Plug-in Cookbook 1

28 Making Your First InDesign Plug-in

#10045

The Story About Resources

Let's talk about resources very briefly. This plug-in's resources are all defined in WFP.fr (and the

_enUS.fr and _jaJP.fr that are included). InDesign uses resource definitions for strings, dialog,

panels, menus, and boss classes, that are cross-platform between the Macintosh and Windows de-

velopment environments. (There are a few resource types that are not included in these resource

definitions. They are limited to a few types that are not compatible across platforms: file version,

icon, and picture resources.) In order to share resource definitions across platforms, InDesign uses

the OpenDoc Framework Resource Compiler (ODFRC).

Let's take a closer look at the various resources that are defined in WFP.fr.

The PluginVersion Resource
/*
// Plugin version definition.
*/
resource PluginVersion (kSDKDefPluginVersionResourceID)
{
 kTargetVersion,
 kWFPPluginID,
 kSDKDefPlugInMajorVersionNumber, kSDKDefPlugInMinorVersionNumber,
 kSDKDefHostMajorVersionNumber, kSDKDefHostMinorVersionNumber,
 kSDKDefPersistMajorVersionNumber, kSDKDefPersistMinorVersionNumber,
 { kWildFS }
};

This is the resource that describes the plug-in version. kTargetVersion is the build number of InDe-

sign that is the target for the plug-in. You normally specify this using the kTargetVersion macro,

which expands depending on whether the plug-in is being built for the release or debug build.

kWFPPluginID is an ID unique to this plug-in, and is defined in WFPID.h. Following that are the

major and minor versions of the plug-in, the major and minor versions of the host application, and

the major and minor version of the persistent data format used by this plug-in. These version num-

bers are defined in SDKDef.h for the InDesign SDK you are using. Unless you have persistent data

that you read and write from your plug-in, you won't have to change these version numbers. Since

our example doesn't persist any data into InDesign, we will leave these as is.

The last entry, {kWildFS}, is an array that specifies which "feature set" this plug-in works under. A

"feature set" is an abstraction of a set of InDesign features, and is different from the concept of a

UI Locale. The feature set setting allows you to customize not only the user interface but also the

behavior of your plug-in. You can choose from three possible settings: kWildFS (any feature set),

kInDesignRomanFS (Roman feature set), and kInDesignJapaneseFS (Japanese feature set). Our

plug-in is specified to work under any feature set, so it specifies kWildFS. The PluginVersion re-

Where can I find out more about other resources in the InDesign SDK?

While it pertains to the InDesign 1.x API, the UIProgrammingGuide ({SDK}\Documentation\UIProgrammingGuidepdf) offers a

further detailed view of all of these resources that we reviewed in this section.

Making Your First InDesign Plug-In 29

InDesign Plug-in Cookbook 1 #10045

source is defined in {SDK}\API\Includes\objectmodeltypes.fh.

The Boss Class Definition Resource
/*
// Boss class definition.
*/
resource ClassDescriptionTable(kSDKDefClassDescriptionTableResourceID)
{{{
 /**
...omitted
 */
 Class
 {
 kWFPDialogBoss,
 kDialogBoss,
 {
 /** Provides management and control over the dialog.
 */
 IID_IDIALOGCONTROLLER, kWFPDialogControllerImpl,
 /** Allows dynamic processing of dialog changes.
 */
 IID_IOBSERVER, kWFPDialogObserverImpl,
 }
 },
...omitted
}}};

These boss class definitions specify the InDesign object model. You can say that they are somewhat

analogous to C++ class definitions. Boss classes are discussed in further detail in a column later in

this cookbook, so we will only highlight the resource part of the boss class definition in this section.

Each boss class definition shown in this file begins with the resource keyword Class. This keyword

Class is used to define a new boss class in the InDesign object model.

Also, while this plug-in doesn't define one, you can also start a boss class with the keyword AddIn.

This allows you to add interfaces to existing boss class definitions. (You can refer to the SDK sample

plug-in {SDK}\SampleCodeGraphics\FrameLabel to see an example of an AddIn resource.)

Let's come back to our plug-in. The next line, kWFPDialogBoss, is the ID for this boss class.

The next line, kDialogBoss , indicates the ID of the parent boss class. This specifies our

kWFPDialogBoss will inherit from kDialogBoss. All the functionality provided by kDialogBoss

(all implementations backing the interfaces aggregated on the boss class) is provided for

kWFPDialogBoss. kWFPDialogBoss can extend this functionality (by adding other interfaces),

or adapt it (by overriding existing interfaces, mapping them onto its own implementation). If you

don't want to specify a parent boss class, you specify kInvalidClass in its place.

Next is the interface-to-implementation mapping list for the boss class. In this dialog boss class, we

are overriding the IID_IDIALOGCONTROLLER and IID_IOBSERVER interfaces from kDialogBoss.

The actual C++ implementations are referred to indirectly by their implementation IDs, namely

kWFPDialogControllerImpl and kWFPDialogObserverImpl, respectively.

In InDesign plug-ins, you use the CREATE_PMINTERFACE() macro to bind a specific implementa-

tion ID onto a specific C++ class. This allows InDesign to call the C++ implementation by its imple-

mentation ID.

InDesign Plug-in Cookbook 1

30 Making Your First InDesign Plug-in

#10045

Let's open a text file called InterfaceList.txt, located in your {SDK}\Documentation folder, and

search for "kDialogBoss". You can see that kDialogBoss inherits another boss class called kPrima

ryResourcePanelWidgetBoss, and overrides 8 different interfaces. As you can see, the entire InDe-

sign object model is built by a collection of these "Boss" classes, and we can build our plug-ins by

overriding and/or extending existing boss classes, like you saw in kWFPDialogBoss.

kDialogBoss
kPrimaryResourcePanelWidgetBoss
 IID_ICONTROLVIEW, kPanelViewImpl, //"../API/WidgetIncludes/PanelView.h"
 IID_IOBSERVER, kCDialogObserverImpl, //"../API/WidgetIncludes/CDialogObserver.h"
 IID_IDIALOGCONTROLLER, kCDialogControllerImpl, //"../API/WidgetIncludes/CDialog..."
 IID_IPREVIEWDIALOGERRORHANDLER, kCPreviewDialogErrorHandlerImpl, //"../API/..."
 IID_ISYSFILEDATA, kPlugInFileDataImpl,
 // inherited from kPrimaryResourcePanelWidgetBoss
 IID_IWIDGETPARENT, kWidgetParentImpl, //"../API/Interfaces/UI/IWidgetParent.h"
 IID_IRESOURCESRCFILEINFO, kResourceSrcFileInfoImpl, //"../API/Interfaces/UI/IRes..."
 IID_ISYSFILEDATA, kPlugInFileDataImpl,
 // inherited from kGenericPanelWidgetBoss
 IID_IEVENTHANDLER, kPanelEventHandlerImpl, //"../API/Includes/CEventHandler.h"
 // rest omitted...

Implementation Definition Resource
/*
// Implementation definition.
*/
resource FactoryList (kSDKDefFactoryListResourceID)
{
 kImplementationIDSpace,
 {
#include "WFPFactoryList.h"
 }
};

This resource allows you to register the implementation IDs for your C++ implementations into the

InDesign object model. The include file, WFPFactoryList.h, registers the implementation IDs with

the use of the REGISTER_PMINTERFACE() macro, and is also included in WFPNoStrip.cpp to pre-

vent deadstripping. By sharing this piece of code, we prevent a situation where we forget to specify

the implementation ID in one place or the other.

The REGISTER_PMINTERFACE() macro in WFPFactoryList.h, defines the implementation ID when

used in a resource definition, and prevents deadstripping when used in a .cpp file.

Making Your First InDesign Plug-In 31

InDesign Plug-in Cookbook 1 #10045

Menu Definition Resource
/*
// Menu definition.
*/
resource MenuDef (kSDKDefMenuResourceID)
{
 {
 // The About Plug-ins sub-menu item for this plug-in.
 kWFPAboutActionID, // ActionID (kInvalidActionID for positional entries)
 kWFPAboutMenuPath, // Menu Path.
 kSDKDefAlphabeticPosition, // Menu Position.
 kSDKDefIsNotDynamicMenuFlag, // kSDKDefIsNotDynamicMenuFlag or ...

 // The Plug-ins menu sub-menu items for this plug-in.
 kWFPDialogActionID,
 kWFPPluginsMenuPath,
 kWFPDialogMenuItemPosition,
 kSDKDefIsNotDynamicMenuFlag,

 }
};

This defines the menu. The 1st block defines the menu that is used to show the About this Plug-

In dialog, and the second block defines the menu that is used to show the dialog that we just de-

signed in our plug-in.

The first line in each block is the action ID that is issued when of the menu is selected.

The second line specifies the menu path that corresponds to the action ID specified right above it.

In our example, kWFPAboutMenuPath is a preprocessor #define that expands to "Main:AppleMe

nu:AboutPlugins:SDK" on the Macintosh, and "Main:&Help:AboutPlugins:SDK" on Windows.

The third line specifies the position of the menu item, relative to the other menu items under the

same menu path. kSDKDefAlphabeticPosition is defined in SDKDef.h. If you use this constant

(defined as 1.0), InDesign will build the menu after sorting individual menu items under the same

path. In most cases, you can just use this constant.

The fourth line defines the behavior of the menu item. If you want to change the menu each time

it is displayed, set this to kSDKDefIsDynamicMenuFlag, otherwise, set it to kSDKDefIsNotDynam

icMenuFlag. Normally, you specify kSDKDefIsNotDynamicMenuFlag.

InDesign Plug-in Cookbook 1

32 Making Your First InDesign Plug-in

#10045

Action Definition Resource
/*
// Action definition.
*/
resource ActionDef (kSDKDefActionResourceID)
{
 {
 kWFPActionComponentBoss, // ClassID of bossclass that implements ActionID.
 kWFPAboutActionID, // ActionID.
 kWFPAboutMenuKey, // Sub-menu string.
 kOtherActionArea, // Area name (see ActionDefs.h).
 kNormalAction, // Type of action (see ActionDefs.h).
 kDisableIfLowMem, // Enabling type (see ActionDefs.h).
 kInvalidInterfaceID, // Selection InterfaceID this action cares about...
 kSDKDefVisibleInKBSCEditorFlag, // kSDKDefVisibleInKBSCEditorFlag...
 ...omitted
 }
};

This defines the action that will be invoked from the menu. (An action is an abstrac-

t ion for what happens when a menu item is selected or a shor tcut key is pressed.)

kWFPActionComponentBoss, in the first line, is a boss class that handles the action IDs.

kWFPAboutActionID, in the second line, is an action ID that is to be handled by the boss class

specified in the first line. kWFPAboutMenuKey, in the third line, is the string key that corresponds

to the action ID listed in the second line. kOtherActionArea, in the fourth line, specifies the key-

board shortcut editor (KBSCE) area , and in our example, we are using "other". You can find KBSCE

areas defined in {SDK}\API\Includes\ActionDefs.h.

The fifth line specifies the action type. You generally specify kNormalAction here. The sixth

line specifies how the menu is enabled or disabled. Again, these enabling types are defined in

ActionDefs.h. The seventh line specifies the interfaceID for the selection that is required for the

action to be active. If you do not require any selections for your action to be active, you can spec-

ify kInvalidInterfaceID. The eighth line specifies whether the shortcut key entry is visible in the

KBSCE or not.

Currently, all plug-in code that DollyWizard generates, makes even the About this Plug-In action

visible in the KBSCE, however, it is probably better that you change it to kSDKDefInvisibleInKBSCE

ditorFlag.

Making Your First InDesign Plug-In 33

InDesign Plug-in Cookbook 1 #10045

LocaleIndex Resource Definitinon for String Tables
/*
// LocaleIndex Definition.
// The LocaleIndex should have indices that point at your
// localizations for each language system that you are
// localized for.
*/
/*
// String LocaleIndex.
*/
resource LocaleIndex (kSDKDefStringsResourceID)
{
 kStringTableRsrcType,
 {
 kWildFS, k_enUS, kSDKDefStringsResourceID + index_enUS
 kInDesignJapaneseFS, k_jaJP, kSDKDefStringsResourceID + index_jaJP
 }
};

This resource cross-references the string tables with the InDesign Feature Set and locale informa-

tion.

kStringTableRsrcType specifies the type of resource we are cross-referencing. In this case, this re-

source is used as a locale index resource to switch the string tables. kWildFS means that this entry

applies to all Feature Sets (defined in FeatureSets.h). k_enUS specifies that the corresponding

locale is US English. So the first line in the curly brackets after kStringTableRsrcType means: "For

all feature sets and in the US English locale, use the string table that is referenced by the resource ID

kSDKDefStringsResourceID + index_enUS".

The next l ine specifies that when the feature set is kInDesignJapaneseFS and the lo -

cale is Japanese (k_jaJP) , use the str ing table that is referenced by the resource ID

kSDKDefStringsResourceID + index_jaJP. In our example, we have omitted resource definitions

for other locales (e.g.: French, German, UK English, etc.). It is extra work to define resources for other

languages from the beginning of development, so if you change the k_enUS to kWild in the first

line, your plug-in will use the US English string resources for locales other than Japanese. This is

probably a practical change to make, until you can actually get time to define your resources for

other locales.

As a side note, InDesign currently supports 13 different locales: US English, UK English, German,

French, Japanese, Spanish, Portuguese, Swedish, Danish, Dutch, Italian, Norwegian, and Finnish.

resource LocaleIndex (kSDKDefStringsNoTransResourceID)
{
 kStringTableRsrcType,
 {
 kWildFS, k_Wild, kSDKDefStringsNoTransResourceID + index_enUS
 }
};

resource StringTable (kSDKDefStringsNoTransResourceID + index_enUS)
{
 k_enUS, // Locale Id
 kEuropeanMacToWinEncodingConverter, // Character encoding converter
 {
 // No-Translate strings go here:
 }
};

The next LocaleIndex resource defines a no-translation string table, as there may be strings that

InDesign Plug-in Cookbook 1

34 Making Your First InDesign Plug-in

#10045

we don't want translated automatically.

LocaleIndex Resource Definition for Dialogs
/*
// Dialog LocaleIndex.
*/
resource LocaleIndex (kSDKDefDialogResourceID)
{
 kViewRsrcType,
 {
 kWildFS, k_Wild, kSDKDefDialogResourceID + index_enUS
 }
};

This is similar to the LocaleIndex resource for the string tables, however, dialogs are defined as

kViewRsrcType resources, instead of kStringTableRsrcType. In our example, all feature sets and

locales use the same US English dialog resource. Despite the fact that the dialog resource comes

strictly from the US English locale index, don't worry: the strings on the dialog are indeed localized,

as we have defined above with kStringTableRsrcType.

Custom Type Definitions
/*
// Type definition.
*/
type WFPDialogWidget(kViewRsrcType) : DialogBoss(ClassID = kWFPDialogBoss)
{
};

This resource defines a widget type. In our example, WFPDialogWidget belongs to the

kViewRsrcType resource type, and inherits the DialogBoss widget. (NOTE: This really should be

DialogWidget, however for historical reasons, the name of the widget is kept as DialogBoss). This

statement defines the boss class that backs the UI of this type.

The DialogBoss widget type inherits from another widget called PrimaryResourcePanelWidget,

and are both defined in {SDK}\API\WidgetIncludes\Widgets.fh.

Making Your First InDesign Plug-In 35

InDesign Plug-in Cookbook 1 #10045

Dialog (View) Resource
resource WFPDialogWidget (kSDKDefDialogResourceID + index_enUS)
{
 __FILE__, __LINE__,
 kWFPDialogWidgetID, // WidgetID
 kPMRsrcID_None, // RsrcID
 kBindNone, // Binding
 0, 0, 388,112, // Frame (l,t,r,b)
 kTrue, kTrue, // Visible, Enabled
 kWFPDialogTitleKey, // Dialog name
 {
 DefaultButtonWidget
 (
 kOKButtonWidgetID, // WidgetID
 kSysButtonPMRsrcId, // RsrcID
 kBindNone, // Binding
 292, 16, 372, 36, // Frame (l,t,r,b)
 kTrue, kTrue, // Visible, Enabled
 kSDKDefOKButtonApplicationKey, // Button text
),
 ...omitted
 },
};

This resource defines our plug-in's dialog. This dialog is specified for the US English locale, however,

as we specified in the LocaleIndex resource above, it will be used for all feature sets and locales.

Since our plug-in does not require a different dialog definition per locale (that is, the widget ar-

rangement the same no matter what locale is used), we have consolidate the definitions into one

.fr file.

Since this resource is complex, here's a good way to navigate through the resource definitions.

First, let's look at the definition of the parent widget type, DialogBoss. Open {SDK}\API\WidgetInc

ludes\Widgets.fh.

type DialogBoss (kViewRsrcType) : PrimaryResourcePanelWidget (ClassID = kDialogBoss)
{
};

You can see that the parent of DialogBoss is PrimaryResourcePanelWidget. Now, if we examine

the definition of PrimaryResourcePanelWidget, you discover that its parent is the root Widget,

so we've reached the top of the hierarchy. Let's take a look at PrimaryResourcePanelWidget.

type PrimaryResourcePanelWidget (kViewRsrcType) : Widget (ClassID = kPrimaryResourceP
anelWidgetBoss)
{
 ResourceSrcFileInfo;
 CControlView;
 CTextControlData;
 CPanelControlData;
};

Now, let's drill down further and examine CControlView. This is also defined in the same file,

Widgets.fh.

InDesign Plug-in Cookbook 1

36 Making Your First InDesign Plug-in

#10045

type CControlView : Interface (IID = IID_ICONTROLVIEW)
{
 longint; // fWidgetId
 PMRsrcID; // fRsrcId, fRsrcPlugin
 integer; // fFrameBinding
 Frame; // fFrame
 integer; // fVisible
 integer; // fEnabled
};

Take a look at the first line in the type definition here. It's a bit different than other widget type

definitions we have seen so far, as it specifies an IID instead of ClassID. This is known as an "inter-

face type". This indicates that CControlView is a persistent interface in kPrimaryResourcePanelW

idgetBoss.

Try searching for kPrimaryResourcePanelWidgetBoss in InterfaceList.txt. You will see its aggre-

gated interfaces.

String Table Resource

Next is the String Table Resource. WFP.fr includes two other .fr files, WFP_enUS.fr and

WFP_jaJP.fr. They specify US English and Japanese string table resources, respectively. By separat-

ing the string table resources by locale, they become easier to manage. Let's take a closer look.

resource StringTable (kSDKDefStringsResourceID + index_enUS)
{
 k_enUS, // Locale Id
 kEuropeanMacToWinEncodingConverter, // Character encoding converter
 {
 ...omitted
 kWFPDropDownItem_1Key, "Tuna",
 ...omitted
 }
};

This is the US English string table resource definition. The first line specifies the locale ID, k_enUS.

The next line specifies the character encoding converter, which absorbs the differences between

the hi-ASCII characters on the Macintosh and Windows platforms. The next line is where the actual

string table is defined. The string key and the corresponding localized strings are paired up, sepa-

rated by a comma.

Next, let's take a look at the Japanese locale string table. The first line specifies the locale ID, k_jaJP.

Since we don't need to use a character encoding converter for Japanese, the next line contains a

zero. The actual string table is defined after that, like in the US English string table, where the string

key and the localized strings are paired up and separated by a comma.

resource StringTable (kSDKDefStringsResourceID + index_jaJP)
{
 k_jaJP, // Locale Id
 0, // Character encoding converter
 {
 ...omitted
 kWFPDropDownItem_1Key, "まぐろ ", // Tuna
 ...omitted
 }
};

That was a brief tour of the string table resource definition.

Making Your First InDesign Plug-In 37

InDesign Plug-in Cookbook 1 #10045

Step 5: Obtain the value from the DropDownListWidget

In this step, we will obtain the string value from a dialog widget, and create a string that we could

insert into an InDesign document.

Step 5.1: Get String Value of Selected Item from DropDownListWidget

First, we shall add code to get the fish name from the DropDownListWidget. In this plug-in, when

the user clicks on the OK button, we want to insert text into the InDesign document. As you may

recall, the method that gets called when the OK button is clicked is WFPDialogController::Apply

Fields(). Since we had delegated the actual handling of the button click to CDialogController, the

parent class of WFPDialogController, we had some basic dialog functionality in our plug-in.

Let's add some more functionality to the WFPDialogController::ApplyFields() method. Currently,

your WFPDialogController::ApplyFields() method should contain the following code:

/* ApplyFields
*/
void WFPDialogController::ApplyFields(const WidgetID& widgetId)
{
 // Replace with code that gathers widget values and applies them.
 SystemBeep();
}

This code was generated by DollyWizard from the Dialog template. Delete the line with

SystemBeep().

In its place, we will call CDialogController::GetTextControlData() to obtain the text on the widget.

This method requires a widget ID as a parameter and returns a PMString object. We will use this

method (from the ITextControlData interface in the dialog boss class) to obtain the text data on

the widget. The string that we get back is not the string that we see on our dialog, but actually the

string key that we defined in the string table resource.

On the next line, by using the lookup feature of the PMString object, we will translate the

PMString to a string in our current locale. Add the following code:

 //Get Selected text of DropDownList.
 PMString resultString;

 resultString = this->GetTextControlData(kWFPDropDownListWidgetID);
 resultString.Translate(); // Look up our string and replace.

Step 5.2: Save, Build and Test

Let's build our plug-in, move the plug-in to InDesign's Plug-Ins folder if needed, put a break point in

WFPDialogController::ApplyFields() on the line with resultString.Translate(), and start InDesign.

Then, select our plug-in from the Plug-Ins menu, which will open the dialog box, and select Bonito

from the DropDownListWidget, and click the OK button. The execution should break at the break

point. Now step over that one line. Did the fABuffer (platform specific character encoding) field in

the resultString change to the same value as the currently selected item on your DropDownList-

Widget?

If you have verified that you are indeed getting the same string as selected, let's move on.

InDesign Plug-in Cookbook 1

38 Making Your First InDesign Plug-in

#10045

Step 6: Get the text in the TextEditBoxWidget

Step 6.1: Get String Value of the Text in TextEditBoxWidget

Just as we did in the previous step, we will use the CDialogController::GetTextControlData()

method. Add this code right after the line after the line with resultString.Translate().

 // Get the editbox list widget string.
 PMString editBoxString = this->GetTextControlData(kWFPTextEditBoxWidgetID);

Step 6.2: Form String to Insert into Text Frame

Let's move on. Let's concatenate a string to insert into the InDesign document. Again, we will utilize

the PMString class.

We will concatenate the string in the following order: product name, tab character, currency sym-

bol, price, new line.

 PMString moneySign(kWFPStaticTextKey);
 moneySign.Translate(); // Look up our string and replace.

 resultString.Append('\t'); // Append tab code.
 resultString.Append(moneySign);
 resultString.Append(editBoxString);
 resultString.Append('\r'); // Append return code.

In the code above, we created a PMString object called moneySign, which holds the string key for

our currency symbol. Then we translate it based on the current locale.

Then, we concatenated the tab character, the actual currency symbol, the TextEditBoxWid-

get string that represents the price the user will enter, and a new line character, using the

PMString::Append() method.

The PMString class has a wide variety of methods and is quite useful. It is frequently used in InDe-

sign, so we recommend that you browse through the PMString.h file in the API\Includes folder in

your InDesign SDK folder.

Making Your First InDesign Plug-In 39

InDesign Plug-in Cookbook 1 #10045

The Story About Boss Classes

What are "Boss Classes"?

Boss Classes refer to a class of objects in the InDesign object model. It is similar to a C++ class,

however, boss classes are declared differently. You declare boss classes in a unique way. InDesign

consists of boss classes that represent document objects, such as images, text, and layers, as well as

widgets, such as dialog buttons and input fields. For example, InDesign pages are represented in

this object hierarchy: document -> spread -> spread layer -> page. This hierarchy is represented by

a boss class architecture.

Third party developers can access these boss class objects when developing InDesign plug-ins.

However, in order to use the appropriate boss class for the desired task at hand, you must under-

stand the InDesign object model and its architecture. Also, you need to be aware of which boss

class provides what kind of functionality. The boss class objects, similar to C++ objects, can be

invoked by calling methods (or member functions), but the way you call boss class objects differs

from how you call methods in C++. Details are on the following section about "Interfaces".

A lso, just l ik e in C++ c lasses, boss c lasses can inher i t other boss c lasses . For ex -

ample, kSplineItemBoss inherits from kDrawablePageItemBoss , and fur thermore,

kDrawablePageItemBoss inherits from kPageItemBoss. Child boss classes can call methods in

the parent boss classes, making for a truly abstract object-oriented programming model.

Also, boss classes in plug-ins developed by third-party developers are recognized immediately by

InDesign, and are used just like boss classes that are part of the core InDesign application. For ex-

ample, you can make a new boss class (in this case, this would be a custom page item) that inherits

kDrawablePageItemBoss, instantiate this boss class, and put it on an InDesign document.

Where can I find out more about objects in an InDesign document?

Refer to the Document Structure chapcter of the InDesign Programming Guide ({SDK}\Documentation\ProgrammingGuide.pdf).

InDesign Plug-in Cookbook 1

40 Making Your First InDesign Plug-in

#10045

The Story About Interfaces

What are "Interfaces"?

When you call methods in a boss class, you call them in a style that is different from how you nor-

mally call a method on a C++ class. First, you obtain what's known as an "interface" from a boss

class, and then call a method on that interface. We use the term "interface", referring to something

unique in the InDesign object model. If you have experience with the Microsoft Component Object

Model (COM), you might see the resemblance between InDesign "interfaces" and COM "interfaces",

as they are analogous.

Normally, you would group together related methods into a set. Interfaces in the InDesign object

model comprise a set of such grouped methods, and are denoted as pure abstract C++ classes. By

denoting them as pure abstract C++ classes, you can call all methods within a particular interface in

a boss class, even from outside the interface itself.

For example, kPageItemBoss is a boss class that represents the base class for all page items that can

be placed on a document. This boss class aggregates (contains) an interface called IHierarchy. By

obtaining this interface and calling its methods, you can obtain information about the object hier-

archy of image and text frame items in an InDesign document.

You may have noticed by now that InDesign uses a naming convention such that all interface

names begin with a capital "I", so that you can quickly determine interfaces at a glance.

IPMUnknown, the Parent of (almost) All InDesign Interfaces

The base class of almost all InDesign interfaces is IPMUnknown. In order for InDesign's ob-

ject model to function correctly, interfaces must inherit from IPMUnknown, and support the

QueryInterface(), AddRef(), and Release() methods. You can query a boss for an interface pointer

of type IPMUnknown, and get back a valid interface pointer.

Querying for Interfaces, and Refcounts

QueryInterface() is used to query for an interface on a boss. This function returns a pointer to an

interface, or nil if an instance of the interface is not available. QueryInterface() automatically per-

forms an AddRef(), which increments the refcount on the interface. The object model keeps track

of the refcount (reference count) for interfaces on bosses. If all of the interfaces on a boss have a

refcount of zero, the boss can be marked for deletion. If you have used QueryInterface() to obtain

an interface pointer, it is necessary to call the Release() method when you are through with the in-

terface, so that the refcount for the interface is decremented correctly. Forgetting to call Release()

will result in an interface with a positive refcount. This condition is known as a "boss leak", which is

a memory leak in the InDesign object model.

What is InterfacePtr?

InterfacePtr ({SDK}\API\Includes\InterfacePtr.h) is a wrapper class that wraps QueryInterface().

In addition to the AddRef() that is automatically performed by QueryInterface(), this template-

based wrapper class also performs a Release() when the pointer goes out of scope. This ensures

Making Your First InDesign Plug-In 41

InDesign Plug-in Cookbook 1 #10045

that Release() is called on an interface, and prevents boss leaks.

Here is a sample of how you would instantiate an interface pointer to an ISpreadList from

IDocument, using InterfacePtr:

InterfacePtr<ISpreadList> iSpreadList(iDocument, UseDefaultIID());

Which Variety of InterfacePtr Constructor Should I Use for What Situation?

There are as many as 10 different InterfacePtr constructors, so it may seem a bit overwhelming,

however, there are 3 major types of constructors that are commonly used.

Type 1a: When you want to obtain an interface in the same boss class (using default PMIID)
InterfacePtr::InterfacePtr(const IPMUnknown* p, const UseDefaultIID&)

This assumes that you already have an InterfacePtr of some kind, or a pointer to an object derived

from the IPMUnknown. You use this when you want to obtain an interface aggregated on the

same boss class. If the interface declaration defines an enum kDefaultIID, the UseDefaultIID()

construct will automatically grab the default PMIID (interface ID). In this case, the newly created

InterfacePtr has its reference count incremented by means of the IPMUnknown::AddRef() meth-

od.

Example: See IDocument, ISpreadList

IDocument* doc = ::GetFrontDocument();
InterfacePtr<ISpreadList> iSpreadList(doc, UseDefaultIID());

Type 1b: When you want to obtain an interface in the same boss class (specifying PMIID)
InterfacePtr::InterfacePtr(const IPMUnknown* p, PMIID iid);

This assumes that you already have an InterfacePtr of some kind, or a pointer to an object derived

from IPMUnknown. You use this when you want to obtain an interface aggregated on the same

boss class, but the interface declaration does not define an enum kDefaultIID. You also use this

when there are multiple implementations of the same interface aggregated on the same boss class.

In this case, the newly created InterfacePtr has its reference count incremented by means of the

IPMUnknown::AddRef() method. There are situations where you must specify a PMIID, such as

when you want to obtain an IStyleNameTable on kWorkspaceBoss/kDocWorkspaceBoss. But

you can also regard this as a trick to aggregate multiple implementations of the same interface into

your boss class.

Example: See IStyleNameTable, TextID.h.

// docWorkspace is an IWorkspace aggregated on kDocBoss.
InterfacePtr<IStyleNameTable> iParaStyleTable(docWorkspace, IID_IPARASTYLENAMETABLE);
InterfacePtr<IStyleNameTable> iCharStyleTable(docWorkspace, IID_ICHARSTYLENAMETABLE);

Type 2: When you get a specific interface, not IPMUnknown*, from a bridge method
explicit InterfacePtr::InterfacePtr(IFace* p);

Generally, Query***() methods (commonly known as "bridge methods", see column below), return

a pointer to an interface derived from IPMUnknown, and also increments the reference count.

However, you would still like to take advantage of InterfacePtr's automated cleanup. To prevent

reference counts from incrementing, like in Type 1a/b above, you can use this constructor that does

not call IPMUnknown::AddRef().

InDesign Plug-in Cookbook 1

42 Making Your First InDesign Plug-in

#10045

Example: See ISpread, IGeometry.

InterfacePtr<IGeometry> iPageGeometry(iSpread->QueryNthPage(0));

NOTE: This looks like perfectly innocent code, however, if you execute this and shut down InDesign,

you will get a boss leak.

InterfacePtr<IGeometry> iPageGeometry(iSpread->QueryNthPage(0), UseDefaultIID());

If you look carefully, ISpread->QueryNthPage(0) increments the reference count, and also, by

means of InterfacePtr constructor Type 1a, the reference count increments again.

The easiest remedy is to remove UseDefaultIID(), however, if you leave it as is, and fail to notice

that a call to iPageGeometry->Release() is necessary, you will get a boss leak.

Type 3a: When you want to obtain a persistent object on a database using a UIDRef
InterfacePtr::InterfacePtr(const UIDRef& ref, PMIID iid);
// Usable when kDefaultIID is defined
InterfacePtr::InterfacePtr(const UIDRef& ref, const UseDefaultIID&);

In this case, you will use a preexisting UIDRef on a boss class. A UIDRef is a combination of the da-

tabase that is the target of persistence, and a unique ID (UID) of a boss class object. This construc-

tor is useful after obtaining a UIDList from a command or a selection target.

Example 1 : Af ter process ing New Fra m e C m d , obta in the f rame's I H i e ra rc hy . S ee

IHierarchy, UIDList.

InterfacePtr<IHierarchy> newPageItemHierarchy((newFrameCmd->GetItemListReference()).G
etRef(0), UseDefaultIID());

Example 2: Code to obtain the first layer that actually contains page items. See IDocument,

IHierarchy, ISpreadLayer.

IDocument* iDocument = ::GetFrontDocument();
UIDRef layerRef(::GetDataBase(iDocument), iSpreadHier->GetChildUID(2));
InterfacePtr<ISpreadLayer> spreadLayer(layerRef, UseDefaultIID());

Type 3b: When you want to obtain a persistent object on a database using a UID
InterfacePtr::InterfacePtr(IDataBase *db, UID uid, PMIID iid);
// Usable when kDefaultIID is defined
InterfacePtr::InterfacePtr(IDataBase *db, UID uid, const UseDefaulIID&);

This is similar to Type 3a, but is useful when you don't need to create another UIDRef, specifically

when you are getting interfaces on the same database. This is commonly used when you navigate

the page item parent/child relationship.

Example 1: Code to obtain the first layer (spread layer index 2) that actually contains page items. See

IDataBase, IDocument, IHierarchy, ISpreadLayer.

About Databases and Objects

In InDesign, document files are called databases. (Let's leave aside the reason why they are called databases.) You can persist boss class objects

into databases. In a C++ programming model, C++ classes are generally declared with a "class" keyword, and are instantiated in memory (e.g.

heap). By "serializing" the data in the instantiated object, we can store the data in a complex class structure onto a file, and retrieve the same data

from the file.

In order to store boss class objects into a database, a unique identifier known as a UID is assigned to each boss class object. UIDs, which are

type-defined as 32-bit integers, are treated somewhat like a pointer in the InDesign object model. For example, a document boss (kDocBoss)

aggregates ISpreadList, an interface that owns the UIDs of all spreads within a document, and within each spread, you can obtain page item

Making Your First InDesign Plug-In 43

InDesign Plug-in Cookbook 1 #10045

IDocument* iDocument = ::GetFrontDocument();
IDataBase* iDataBase = ::GetDataBase(iDocument);
InterfacePtr<ISpreadLayer> spreadLayer(iDataBase, iSpreadHier->GetChildUID(2),
UseDefaultIID());

Example 2: Code to navigate up from kFrameItemBoss(ITextFrame), kMultiColumnItemBoss, and

to kSplineItem. See IDataBase, IHierarchy.

InterfacePtr<IHierarchy> frameItemHierarchy(iTextFrame, UseDefaultIID());
InterfacePtr<IHierarchy> mcitemHierarchy
 (iDataBase, frameItemHierarchy->GetParentUID(), UseDefaultIID());
InterfacePtr<IHierarchy> splineItemHierarchy
 (iDataBase, mcitemHierarchy->GetParentUID(), UseDefaultIID());

objects and pages by means of the UIDs obtained from IHierarchy (a bridge interface for the object tree in a document). Furthermore, these UIDs

are persistent across InDesign application sessions, so even after quitting and restarting InDesign, the UIDs stored in your documents continue to be

valid.

However, in order to call methods on interfaces aggregated on these boss class objects in a C++ program, the actual objects must be instantiated

in memory as C++ objects. You can obtain pointers to these interfaces using the various Get...() and Query...() methods. These are called

bridge methods. The general rule of thumb with bridge methods is that that Get...() methods do not increment refcount, while Query...()

methods do increment refcount.

InDesign Plug-in Cookbook 1

44 Making Your First InDesign Plug-in

#10045

Step 7: Insert the string into a text frame

This is where we get into the main part of our plug-in. We will insert the string that we created in

the previous step into a text frame in InDesign.

Step 7.1: Check if there is a TextFocus

The first thing we have to do is to check if the focus is on a text frame and whether we could insert

text into it. Add these include statements at the top of WFPDialogController.cpp:

#include "ITextFocus.h"
#include "SelectUtils.h"

Then, add this code right after the last resultString.Append(...) statement in the WFPDialogContr

oller::ApplyFields() method:

do {
 // Insert resultString to TextFrame.
 // Check Text focus.
 InterfacePtr<ITextFocus> pFocus(QueryTextFocus());
 if(pFocus == nil)
 {
 ASSERT_FAIL("WFPDialogController::ApplyFields: ITextFocus is nil!");
 break;
 }

We are using a selection utility method called QueryTextFocus(), defined in {SDK}\API\Includes\S

electUtils.h. As long as there is a text focus, this method will return a valid pointer to a ITextFocus

interface. If there is no text focus, this returns nil.

Also, we are using a do-while loop is to avoid deep nesting of if (...) statements for checking the

validity of the InterfacePtr's. If an InterfacePtr turns out to be nil, we want to abort our operation

by showing an assertion failure message (appears only in debug build) and breaking out of the

do-while loop. (If you have nested loops, remember to use extra precaution.)

Step 7.2: Query the TextModel from TextFocus

Now, if the text focus is valid, we will use the ITextFocus::QueryModel() method to obtain a point-

er to the ITextModel interface, which describes the "model" of the text frame. Add the following

include statement at the top of WFPDialogController.cpp:

#include "ITextModel.h"

Then, add this code right after the line with if (pFocus) in the WFPDialogController::ApplyFields(

) method:

 // Obtain TextModel from TextFocus.
 InterfacePtr<ITextModel> pTextModel(pFocus->QueryModel());
 if(pTextModel == nil)
 {
 ASSERT_FAIL("WFPDialogController::ApplyFields: ITextModel is nil!");
 break;
 }

Step 7.3: Create a WideString Object from Our PMString

Before we insert some text, there is one more important thing to do. The text insert command (see

The Story of Commands for more info about commands in general) in InDesign takes a WideString

class. This class is a wrapper for UNICODE strings, the internal text storage format in InDesign.

Making Your First InDesign Plug-In 45

InDesign Plug-in Cookbook 1 #10045

By specifying a PMString object in the constructor of the WideString class, we can instantiate a

WideString object that contains a converted UNICODE string. Insert this code on the next line:

 // Create WideString from PMString
 WideString* resultWideString = new WideString(resultString);

Now, we are ready to insert the actual string.

Step 7.4: Process the Insert Text Command

Next, we will process an InDesign command . Add the following include statements at the top of

WFPDialogController.cpp:

#include "ICommand.h"
#include "CmdUtils.h"

Then, add this code right after the line where we instantiated the WideString object in the WFPDi

alogController::ApplyFields() method:

 // Process InsertTextCommand
 InterfacePtr<ICommand> pInsertTextCommand
 (pTextModel->InsertCmd(pFocus->GetStart(nil), resultWideString, kFalse));
 if (pInsertTextCommand == nil)
 {
 ASSERT_FAIL("WFPDialogController::ApplyFields: InsertTextCommand is nil!");
 break;
 }
 if (CmdUtils::ProcessCommand(pInsertTextCommand) != kSuccess)
 {
 ASSERT_FAIL("WFPDialogController::ApplyFields: can't process InsertCmd");
 }
} while (kFalse);

In the above code, we created an interface pointer to the text insert command by using the

ITextModel::InsertCmd() method. This method takes the insertion point, the UNICODE

string to insert, and a boolean indicating whether we want to have it create an internal deep

copy of the UNICODE string. We set this boolean to kFalse, since we have instantiated a new

WideString earlier. (Note the lack of the delete operator.) To obtain the insertion point, we call the

ITextFocus::GetStart() method. If there is a range of text that is selected in the text frame, this

method will return the offset to the first character in the selection relative to the text in the model,

and if the text cursor is shown, it will return the offset of the text cursor.

If the ICommand interface pointer is valid, we then call the CmdUtils::ProcessCommand() method

to instruct InDesign to process the text insert command.

Bonus topic: Inserting Text Without Using Commands (New in InDesign 2.0)

In InDesign 2.0, you can use the newly introduced ISelectionUtils interface (aggregated on

kUtilsBoss) and ITextEditSuite interface (aggregated on kIntegratorISuiteBoss) and insert text

into a text focus with less lines of code, as shown here. (This would replace the above code starting

from InterfacePtr<ITextFocus> pFocus(QueryTextFocus()) , Steps 7.1-7.4):

InDesign Plug-in Cookbook 1

46 Making Your First InDesign Plug-in

#10045

 InterfacePtr<ITextEditSuite> textEditSuite
 ((ITextEditSuite*)Utils<ISelectionUtils>()->QuerySuite
 (ITextEditSuite::kDefaultIID));
 if (textEditSuite->CanEditText())
 {
 ErrorCode status = textEditSuite->InsertText(WideString(resultString));
 ASSERT_MSG(status == kSuccess,
 "WFPDialogController::ApplyFields: can't insert text");
 }

The code we added in our exercise utilizes existing API calls from InDesign 1.x. Inside the

ITextEditSuite interface, text is inserted in a very similar fashion by processing a command.

We wanted to introduce you to the concept of processing commands to InDesign, so that is why we

opted for the classical method of inserting text. There are situations where you cannot use these

selection-based suites: namely, when there is no active selection. If you want to be able to add text

into the text model of an existing document outside of the context of a current user selection, you

must use the text insert command, as we did in our example.

Step 7.5: Save, Build and Test

Once you have made the changes, save all of your edited source files, build the plug-in, move the

plug-in to the Plug-Ins folder if needed, and run it. First, create a text frame on a new document,

and make sure the cursor is blinking. Then select the Plug-in menu so that your dialog shows up,

select a fish type and enter its price. Then click OK.

Does your text appear in the text frame? If your plug-in is working, let's move on.

Making Your First InDesign Plug-In 47

InDesign Plug-in Cookbook 1 #10045

Step 8: Enabling the menu only when there is a text focus or selection

Since we don't want this dialog to be opened when there is no text selection or text focus, we will

make some changes so that the menu is disabled under those circumstances.

Step 8.1: Modify ActionDef to Disable Menu if Required Selection is not Available

Open up the resource file, WFP.fr, and go down to the ActionDef resource, and down to the sec-

ond block that which begins with kWFPActionComponentBoss. Change kDisableIfLowMem to

kDisableIfSelectionDoesNotSupportIID, and on the next line, change kInvalidInterfaceID to

IID_NEED_TEXTSELECTION. These constants are defined in ActionDefs.h and ActionID.h. There

are plenty of other related constants, so take a look at ActionDefs.h in {SDK}\API\Includes.

resource ActionDef (kSDKDefActionResourceID)
{
 {
 kWFPActionComponentBoss, // ClassID of boss class that implements
ActionID.
 kWFPAboutActionID, // ActionID.
 kWFPAboutMenuKey, // Sub-menu string.
 kOtherActionArea, // Area name (see ActionDefs.h).
 kNormalAction, // Type of action (see ActionDefs.h).
 kDisableIfLowMem, // Enabling type (see ActionDefs.h).
 kInvalidInterfaceID, // Selection InterfaceID this action cares about...
 kSDKDefVisibleInKBSCEditorFlag, // kSDKDefVisibleInKBSCEditorFlag...

 kWFPActionComponentBoss,
 kWFPDialogActionID,
 kWFPDialogMenuItemKey,
 kOtherActionArea,
 kNormalAction,
 kDisableIfSelectionDoesNotSupportIID, // change this!
 IID_NEED_TEXTSELECTION, // change this!
 kSDKDefVisibleInKBSCEditorFlag,
 }
};

Step 8.2: Save, Build and Test

Once you have made the changes, save all of your edited source files, build the plug-in, move the

plug-in to the Plug-Ins folder if needed, and run it. Is the menu enabled when there is no text se-

lection? Now create a new document, put a new text frame on it, and see if the menu is enabled.

If the menu is working as specified, let's move on.

InDesign Plug-in Cookbook 1

48 Making Your First InDesign Plug-in

#10045

The Story About Commands

InDesign uses a construct called a Command to modify internal data. By using commands, we gain

the following 3 benefits.

(1) We don't have to modify the internal data directly, or the internal data can stay encapsulated.

This internal data is referred to as the "model".

(2) Commands facilitate actions such as Undo and Redo.

(3) Commands allow you to be notified about details about changes to the model.

Besides, you could create your custom commands. If you create your custom commands, you can

separate the user interface and core feature implementation components, making for a more ex-

tensible design.

To fine out more about processing commands or creating custom commands, you can refer to the

sample plug-ins in the {SDK}\SampleCode\Commands folder. Please have a look.

Making Your First InDesign Plug-In 49

InDesign Plug-in Cookbook 1 #10045

A Small Story About MVC

By now you must have noticed that it is possible to de-couple the user interface components and

the core components that process user input in your plug-ins. In the object-oriented world, we call

the user interaction component a "controller".

In this exercise, we were able to insert text into an InDesign text frame by processing a text insert

command from the dialog controller.

When text is inserted, or in other words, when InDesign's internal data (the model) is changed, In-

Design draws the text inside the text frame.

In the object-oriented world, the space that InDesign uses to draw the visible regions of the docu-

ment including the text frame, is called a "view".

Collectively, such a programming model comprises what is known as the Model-View-Controller

set of patterns, or more commonly known by the acronym, by taking the initials, the "MVC" pattern.

There is an excellent book we generally recommend to all developers of InDesign plug-ins. This

book, Design Patterns, describes in detail what an MVC pattern is and provides some concrete ex-

amples to deepen you understanding.

Design Patterns: Elements of Reusable Object-Oriented Software

(Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John)

ISBN:0-201-63361-2 Addison Wesley

There are other numerous patterns included in this book that are incorporated into the InDesign

architecture.

InDesign Plug-in Cookbook 1

50 Making Your First InDesign Plug-in

#10045

Step 9: Initialize the dialog widgets

We are close to completing our first plug-in that inserts the name of the selected fish and the price

entered on the TextEditBox.

However, as shown in the dialog below, the DropDownListWidget shows nothing and the TextEdit-

BoxWidget is blank when we open the dialog. Not quite the user-friendly UI that we want.

Also, there's a hidden feature in this dialog. While the dialog is displayed, try holding down the Op-

tion key (Macintosh) or the Alt key (Windows). Did you notice a change in the dialog? Pay close

attention to the buttons: The string on the Cancel button changed to Reset. Dialogs in InDesign

have the capability to reset fields to an initial state.

By adding functionality to the WFPDialogController::InitializeFields() method, you can handle

the initialization and resetting of dialog fields.

So let's add some functionality to the InitializeFields() method.

Step 9.1: Add Code to Initialize the DropDownListWidget

Open WFPDialogController.cpp.

We will add some code to the WFPDialogController::InitializeFields() method. This method first

delegates to the same method in the parent class, CDialogController::InitializeFields(). The par-

ent class method sets a flag that keeps track of whether this InitializeFields() method was called,

so make sure you call CDialogController::InitializeFields().

Making Your First InDesign Plug-In 51

InDesign Plug-in Cookbook 1 #10045

/* InitializeFields
*/
void WFPDialogController::InitializeFields()
{
 CDialogController::InitializeFields();

 // Put code to initialize widget values here.
}

We will add some code to initialize the DropDownListWidget.

By calling the CDialogController::QueryIfNilElseAddRef() method, we will obtain a pointer to the

IPanelControlData interface. This method takes an IPanelControlData interface pointer as a pa-

rameter, but if that pointer is nil, it returns the IPanelControlData interface of the same boss class,

and if the pointer is not nil, it increments the refCount to that pointer and returns it. Add the fol-

lowing include file at the top of WFPDialogController.cpp:

#include "IPanelControlData.h"

Next, insert the following code right after where CDialogController::InitializeFields() is called.

do {
 // Get current panel control data.
 InterfacePtr<IPanelControlData> pPanelData(QueryIfNilElseAddRef(nil));
 if(pPanelData == nil)
 {
 ASSERT_FAIL("WFPDialogController::InitializeFields: PanelControlData is nil!");
 break;
 }

If the pPanelData interface pointer is valid, we will call the IPanelControlData::FindWidget() in

the IPanelControlData interface to obtain an IControlView interface pointer. This method takes

a widget ID as a parameter, and returns the corresponding IControlView interface pointer. (Note:

IControlView is the interface for CControlView. Do you remember seeing CControlView some-

where before? That's right, we saw it while climbing up the hierarchy of widget type definitions!)

Insert the following code:

if(pPanelData != nil){
 // Find dropdown list menu control view from panel data.
 IControlView* pDropDownListControlView =
 pPanelData->FindWidget(kWFPDropDownListWidgetID);
 if(pDropDownListControlView == nil)
 {
 // Is the widget on the dialog?
 ASSERT_FAIL("WFPDialogController::InitializeFields: DDListCtrlView is nil!");
 break;
 }

Using the obtained IControlView interface pointer, we will obtain the IDropDownListController

interface pointer, which exists in the same boss class, kDropDownListWidgetBoss. The

kDropDownListWidgetBoss is responsible for controlling the DropDownListWidget (as defined in

the resource definitions). However, to use the IDropDownListController interface, we must add

the following include statement at the top of WFPDialogController.cpp:

#include "IDropDownListController.h"

Then add the following code right after the call to pPanelData->FindWidget(...):

InDesign Plug-in Cookbook 1

52 Making Your First InDesign Plug-in

#10045

 // Get IDropDownListController interface pointer.
 InterfacePtr<IDropDownListController> pDropDownListController
 (pDropDownListControlView, UseDefaultIID());
 if(pDropDownListController == nil)
 {
 // Is the controller available?
 ASSERT_FAIL("WFPDialogController::InitializeFields: DDListCtrler is nil!");
 break;
 }

If the pDropDownListController interface pointer is valid, then we call the IDropDownListContr

oller::Select() method to set the initial state of the DropDownListWidget to show the first element.

If nothing is selected in the DropDownListWidget, the IDropDownListController::GetSelected()

method returns -1, which is an invalid index. We must keep in mind that the top of the list is index

'0'. Add the following code right where we left off:

 // Select the element at the given position in the list.
 pDropDownListController->Select(0);

Step 9.2: Add Code to Initialize the TextEditBoxWidget

Next, we will initialize the TextEditBox. We will create an initial string using a PMString initialized

with a NULL string. Then, we will set the value of the TextEditBoxWidget to the initial string by call-

ing the SetTextControlData() method. Add the following code:

 // Initialize TextEditBox.
 PMString InitialString("");
 SetTextControlData(kWFPTextEditBoxWidgetID, InitialString);
} while (kFalse);

Step 9.3: Save, Build and Test

Ok. Let's build our plug-in, move it to the Plug-Ins folder if needed, and start InDesign so we can try

out our plug-in. When the dialog is opened, do you see the first list element automatically shown in

the DropDownListWidget? Try selecting something else in the DropDownListWidget.

Then hold down the Option or Alt key and click the Reset button on the dialog. Does the Drop-

DownListWidget reset to its initial state?

If every thing is working, give yourself a pat on the back, because our plug-in is done! Congratula-

tions!

Making Your First InDesign Plug-In 53

InDesign Plug-in Cookbook 1 #10045

In Conclusion

In this cookbook, we aimed to help you become familiar with developing plug-in based solutions

for InDesign. This only amounts to having taken the first step in the vast world of InDesign, how-

ever, we went over many of the important fundamental aspects. If you study the code and header

files used in our completed plug-in line by line, you will perhaps find more hidden functionality.

The Adobe InDesign SDK contains an enormous amount of information to help you develop plug-

in based solutions for InDesign. At first, you may be overwhelmed by the amount. If you try to at-

tack of that information right from the start, you may be discouraged. Instead, we recommend that

you start by building some of the provided sample plug-in projects and using them with the debug

build of InDesign. We hope you will find the sample plug-ins useful.

Well then, we wish you lots of luck and enjoyment in your InDesign plug-in development efforts, as

we conclude the first cookbook. We hope to see you in the next edition!

	About this Cookbook
	The Goal of this CookBook
	The Story of Our Plug-in

	About DollyWizard
	Step 1: Using DollyWizard to generate a Dialog-based plug-in project
	Step 1.1: Launch DollyWizard
	Step 1.2: Specify Necessary Information
	Step 1.3: Verify Entered Information and Generate Plug-in Project
	Step 1.4: Change Creator and Type of DollyWizard-generated Text Files,(Macintosh only)
	Step 1.5: Convert the XML File to a CodeWarrior Project (Macintosh only)
	Step 1.6: Build the Plug-in
	Step 1.7: Prepare to Load the Plug-In
	Step 1.8: Start InDesign through Your IDE
	Step 1.9: Try Debugging

	Examine the Files Included in the Project Generated by DollyWizard
	Detailed Descriptions of the Code Generated by DollyWizard

	Step 2: Add a DropDownListWidget
	Step 2.1: Add a Widget ID for Our DropDownListWidget
	Step 2.2: Define String Keys for List Items on Our DropDownListWidget
	Step 2.3: Define Locale-specific Strings for List Items on Our DropDownListWidget
	Step 2.4: Add a DropDownListWidget to Our Dialog Resource
	Step 2.5: Save, Build and Test

	Step 3: Add a TextEditBoxWidget
	Step 3.1: Add a Widget ID for Our TextEditBoxWidget
	Step 3.2: Add a TextEditBoxWidget Resource to Our Dialog Resource
	Step 3.3: Save, Build and Test

	Step 4: Add a StaticTextWidget
	Step 4.1: Add a Widget ID for Our StaticTextWidget
	Step 4.2: Define a String Key for Our StaticTextWidget
	Step 4.3: Define Locale-specific Strings for Out StaticTextWidget
	Step 4.4: Add a StaticTextWidget Resource to Our Dialog Resource
	Step 4.5: Save, Build and Test

	The Story About Resources
	Step 5: Obtain the value from the DropDownListWidget
	Step 5.1: Get String Value of Selected Item from DropDownListWidget
	Step 5.2: Save, Build and Test

	Step 6: Get the text in the TextEditBoxWidget
	Step 6.1: Get String Value of the Text in TextEditBoxWidget
	Step 6.2: Form String to Insert into Text Frame

	The Story About Boss Classes
	What are "Boss Classes"?

	The Story About Interfaces
	What are "Interfaces"?
	IPMUnknown, the Parent of (almost) All InDesign Interfaces
	Querying for Interfaces, and Refcounts
	What is InterfacePtr?
	Which Variety of InterfacePtr Constructor Should I Use for What Situation?

	Step 7: Insert the string into a text frame
	Step 7.1: Check if there is a TextFocus
	Step 7.2: Query the TextModel from TextFocus
	Step 7.3: Create a WideString Object from Our PMString
	Step 7.4: Process the Insert Text Command
	Step 7.5: Save, Build and Test

	Step 8: Enabling the menu only when there is a text focus or selection
	Step 8.1: Modify ActionDef to Disable Menu if Required Selection is not Available
	Step 8.2: Save, Build and Test

	The Story About Commands
	A Small Story About MVC
	Step 9: Initialize the dialog widgets
	Step 9.1: Add Code to Initialize the DropDownListWidget
	Step 9.2: Add Code to Initialize the TextEditBoxWidget
	Step 9.3: Save, Build and Test

	In Conclusion

