
Real-Time Remote Control of a Robot Manipulator
using Java and Client-Server Architecture

F. M. RAIMONDI - L. S. CIANCIMINO - M. MELLUSO

Dipartimento di Ingegneria dell’Automazione e dei Sistemi (D.I.A.S.)
Università di Palermo

Viale delle Scienze, 90128 Palermo
ITALY

Abstract: - The control of complex systems through PC networks is becoming increasingly important
nowadays, both in the industries and in R&D centers. In this paper, a novel architecture is described which
provides 24-h-a-day access to a remote system for remote control or supervision. The system can be controlled
by any PC's integrated in a TCP/IP network using a Client Server communication. The Client Server protocol is
a custom light textual protocol that allows the fast update of the plant model also using a very small bandwidth
communication link. The server controls the plant through two RS232 interfaces connected to the driver of the
planar manipulator with two links and two non flexible joints. The clients are connected to the server through a
TCP/IP network and they are granted plant control and supervision privileges through authentication. The client
is made up of a console window representing the present state of the system both in textual and in graphical
form. This window also contains the buttons which allow the control of the manipulator.

Key-Words: - Remote control, Planar Manipulator, Internet, Client, Server, Real-Time, RS232, Java,
communication protocol.

1 Introduction
In classical telerobotics the feedback of rich data,
such as live video picture, from the physical
hardware to the operator site via Internet or mobile
communication links, is bandwidth limited and
contains uncertain delay. Examples of this approach
are Mercury project [3] and Telegarden project [4]
where users were able to control the position of the
robot arm and to view the scene as a series of
periodically updated static images. Problems with
static pictures can be avoided by using video
technology. Video transfer is currently the hardest
task to be performed within data transmission via
Internet. The transfer of fluent video demands a high
bandwidth capacity therefore such approach clearly
needs a high-speed network to achieve the on-line
control of the robot. The data transmission time
across Internet depends heavily on the transient
loading of the network, making direct teleoperation
unsuitable for time critical and dangerous
interactions.
In this paper we present a Client Server architecture
with an innovative couple of plant model and light
protocol allowing a real-time control of a Remote
Manipulator by a computer on a Local Area
Network or Internet.
In order to minimize data transmission, data
transmission time, problem of unpredictable
communication speed and network bandwidth
capacity, we use a mathematical model of the robot
arm in its environment. We also employ the network

to transfer, using the light textual protocol, only the
variations of the mathematical model state which are
very small in comparison with the live video and
easily transferable in every network state. So users
are able to control the position of the robot arm, to
view the graphical representation of the robot and its
environment in real-time without add-on DSP, from
every position on Internet.

Fig.1: Remote Control System: Principle Scheme

2 Main Characteristics
The control system is made up of a standard network
supporting TCP/IP protocol stack with two or more
PC's and a two link planar manipulator (see fig. 1).
The roles of this elements are:

1. The two link planar manipulator is the plant to
be controlled. It consist of two main parts: the
drivers and the arms (see fig. 2). The two arms
are moved by two Brushless motors, one for
every arm. The drivers implement the RS232
interfaces which interpret their input as a
command or a setting instructions. The drivers
give the motors the appropriate current for the
movement. They also implement the local
position control loop (see fig. 3) using a resolver
for the feedback. All the parameters of the local
Position Control (separately for the two driver)
can be set via RS232 interface, by the Client part
of the control system, to adjust the performance
of the system. The driver also close the control
loop with the server using the serial interface:
the feedbak is the response of “TP5” command
to the serial interface of the driver to the server.

2. The first PC is called Server because it is
connected to the manipulator drivers trough two
RS232 interfaces, one for every arm, and also
because it runs the server part of the software of
the control system. The server is the center of
the control system. In fact it collects the
command sent by the client in custom protocol
and translates it in serial commands for the
manipulator. The server checks the correctness
of the manipulator state and, if correct, sends
commands to the manipulator. The server grants
the feedback both with respect to the plant and
to the clients, closing the control loop of the
system. In fact it reads the current state of the
manipulator, as response of “TP5” command to
the serial interface of the driver, and sends the
updated state to the clients by TCP/IP
connection.

3. The other PC's are called client because they run
the client part of the software of the control
system. They are connected to the server by a
TCP/IP network and allow the user
authentication through user-name and password.
The client is the tool that allows the user to
control the system by a graphical interface
containing the graphical representation of the
manipulator, the textual representation of the
robot state, button setting control parameters and
sending commands to the manipulator. The
client also closes the control loop by TCP/IP
connection. When the user tells a command the
server sends a response to confirm the command
and, it depends on the case, sends the update
state of the manipulator.

The Client and Server programs are written in 100%
pure Java. This grants the Multiplatform of the
software which can run under Microsoft Windows,
Unix-Like Operative Systems or in general under

any operative system supporting Java (like Palm OS
etc.).

Fig.2: IMI Planar Manipulator

Fig.3: Position Control block diagram

3 Communication Protocols
A communication protocol is a set of key-words and
grammatical rules allowing unambiguous
communication between two or more entities that
want to exchange information. In this application we
use two protocols in order to make the client-server
communication independent with respect to the
server-manipulator communication. It is important
to underline the difference between the two
communication protocols :
The first protocol is employed between client and
server (encapsulated in TCP protocols) and flows
under Ethernet-like network. The second is between
server and manipulator and flows in RS232 standard
interfaces.

The server-manipulator (in the future S-M) protocol
is a low level protocol highly dependent from the
hardware drivers of the manipulator. It was
developed by NSK's engineers and it is immutable.
The client-server (in the future C-S) protocol is a
high level protocol developed to allow simple
unambiguous communication between clients and
server. This protocol is independent from S-M so we
can use the same protocol to control different plants
and we can change it without changing the S-M
protocol. The server part executes the conversion
from C-S to S-M protocols so we can update the
server without changing the client part.
The information flow between client ad server in
most cases consists in instructions about robot
setting such as maximum acceleration or maximum
velocity during movement and motion command (in
the joint space).
The server examines all messages that come from
client and, if the message is recognized as a valid
command or setting it updates the state of the robot
to check if the setting or the command is valid in the
current state. In this case it will send the message to
the robot using the S-M protocol.
The S-M protocol is made for serial communication.
It is a textual protocol where the messages are made
up by key-words representing a command or a
variable and/or (it depends on the case) and
information data in numeric format such as velocity,
acceleration or angle.
For example, to set the maximum velocity to 1.5
r.p.s. we must send the string MV1.5 plus carriage
return code (0Dh or char '\r'). The driver will give
back the echo of the string plus line-feed code (0Ah
or char '\n') . In case of syntax, error the command
will not be recognized and the driver will give back
the echo plus a question mark ('?') to notify the error.
In case of correct syntax, the command will be
executed and the driver will give back the echo plus
a prompt (':') as notify.
Since there is one driver for every link, the C-S
protocol is able to made control one link at the same
time with an appropriate command. For example, to
set the maximum velocity of link 1 to 1.5 r.p.s. (if
the actual maximum velocity is 0.5) we will (the
client) have to send the string :

 setResolution= 1
 theta1Speed++

the first line sets the resolution (of the incremental
command like teta1Vel++) to 1.0, the second line
sets the maximum velocity to 0.5+1=1.5 r.p.s. To
decrease the maximum velocity simply change
teta1Vel++ with teta1Vel--. When the server
receives the two commands, it updates the local

model, and sends the appropriate command to the
driver and to all the client connected.

4 Performance
In the preceding paragraph, we overviewed the C-S
and S-M protocols. In this paragraph we will study
the performance and the precision of the control
system. The max resolution of the S-M protocol is
0.01 degree so we can not overcome this precision.
With regard to the performance we estimate the time
necessary: to send a command from client to server,
to elaborate the message (by server), to update the
local model, to send the command to the driver.
To simplify the compute, we can suppose null the
elaboration time in the server so we can simply
compute the time transmission in network and in the
serial RS232 interface. As to the serial RS232
interface, since the driver needs a velocity equal to
9600 b.p.s, suppose we send 10 char we spend about
10*9/9600 = 9,3 ms.
The transmission time in network is limited only by
the technology used. If we suppose a standard
100Mb/s to send 10 char we spend about
10*9/100000000= 0,0009 ms and if we have a dial-
up connection with V.90 standard modem we can
suppose 50kb.p.s so we spend about 10*9/50000=
1,8 ms. In this case, if we consider the Round Trip
time, we spend about 2*(9,3+1,8)=22,2ms to send
the message to the server, to send it to the
manipulator and to receive the response.
With Regard to the unpredictable delays, the very
small dimension of the TCP/IP packets let us think
they will be minimal compared to the packets
dimension. In conclusion we can say that the
precision is the same of the robot arm and the
response time is very little so we have a very real-
time remote control system.
It is important to underline that we do not have to
make hypotheses about the type of network; in other
words we can chose an heterogeneous network
containing wireless links (UMTS, IEEE 802.11 WI-
fi, Bluetooth , Satellite etc) that can give many
advantages. First, we can put the "plant" on a mobile
support working with more motion freedom. We
also can work on uncovered land with a Satellite
communication. It is obvious that the performances
are worse than in the traditional wire network but we
have the advantages we have already described.
The use of Java languages to develop the Client-
Server software control system permits to work in a
multi-tasking mode; so the Server can serve many
users at the same time.
The user connected to the server can have different
roles such as a full control of the plant or a

supervision if it simply observes the state of the
plant.

5 Hardware and Software
Environment
It is important to underline the very exiguous
requirement of software of the control system. It
simply needs a standard PC that can run the Java
Runtime Environment (JRE) version 1.3 or later.
The server also needs two standard RS232 interfaces
and the Java Comm API.

6 Start Up the control’s software
In order to start the server part, firstly we must
connect the two RS232 interfaces to the driver and
the network cable to the LAN (or establish the
communication for other types of link in use).
Then we turn on the IMI robot and start the server
with the command at the prompt:

 Java ManRoboServer <port>

where the port parameter is the server TCP/IP
connection local port.

Fig.4: The Server Interface

To start the Client we employ the command at the
prompt:

 Java ManRoboClient <address> <port>

where the port parameter is the local port of the
client TCP/IP connection and the address parameter
is the server’s IP address.
When the first user begins to connect to the server,
the serial communication were set up and the client
server application is ready for the remote control
system.

7 Client Window Use

After authentication the client interface appears to
the user (see fig. 5). It consist in many parts in order
to simplify the plant control.
• In the upper part, there is the button menu bar

that allows to send the most important
commands to the server. These commands are:
setting commands for important variables
(movement direction and resolution, maximum
speed and acceleration during the movement
etc.), incremental movement commands (in the
joint space) for the specified arm for an angle
equal to the current resolution in the current
direction.

• In the central part, there are two fields: the left
one is the graphical and textual representation of
the current state of the robot arm, the right one
shows the information flow between the clients
and the server. The graphical representation is
very simple: the two arms are represented by
two red lines with two red circles as a motor.
The yellow circle represents the possible
trajectory of the second arm supposing
motionless the first. The blue box represents a
hypothetical obstacle near the manipulator. The
black circle represents the end-effector.

• In the bottom part, there is the text field which
allows the user to send particular commands to
the server or a text message to the other clients
connected like in a simple chat.

Fig.5: The Client window

When the server receives a command changing the
manipulator position (and its state), it will send the
manipulator state update (in broadcast mode) to the
clients updating the window. In fig. 6 we can see a
collection of manipulator configurations. On the left,
there is the manipulator at the limit of the work
space. In this position, if the client tries to move up
the joint, the server checks the robot model without
sending any command to the driver because the

robot can not move the arm in this direction. In this
position the client can move the joint only in the
direction to leave the work-space limit. On the right
three canonical positions. The Home position is
represented by : theta1=0 radians and theta2=0
radians. In the same figure we can see the
configuration: theta1= 90 radians and theta2= 90
radians and theta1= -90 radians and theta2= -90
radians.

Fig.6: Work-space limit and canonical position

On fig. 7 we show the ambiguous problem obtained
when we try to invert the cinematics of the robot
manipulator. The (x,y) coordinates of the end-
effector is the same in both cases but on the left
theta2 is positive, in the right one theta2 is negative.
In the first case, we do not have a collision but in the
second we can have a collision with an obstacle.

Fig.7: Ambiguous problem demonstration

8 Conclusion and Further Work
This paper present the work-in-progress of a Java
Client-Server controller for a robotic manipulator.
The control software accomplishes its objective of
maintaining the control of the robot via the Internet
(in general) connection. The client interface allows
the user to move the arms with the same precision of
the original system. The feedback information is
provided by an update flow of the robot state. The
control system is closed loop type because it is made
up of three control loops between clients and server,
server and drivers and, at the end, between drivers
and the arm’s motor.
Further developments include task-oriented
manipulation (rather than step by step control) to

permit the programming of the manipulator
operation and, in general, to add functionality and to
increase the control possibilities starting from the
inversion of the mouse-graphical selected (x,y)
coordinates. Other future works are: on-line
estimation of the plant model parameters, web
access to the collected data and to port the client
window towards any Mobile Phone supporting Java
2 Micro edition (J2ME) in order to supervise and/or
control the remote plant.

References:
[1] L. Sciavicco, B. Siciliano, Robotica Industriale:

modellistica e controllo di manipolatori,
McGraw-Hill libri Italia, Milano 2000.

[2] Megatorque Motor System User’s Manual, NSK
Ltd., 1995

[3] K. Goldberg; M. Maschna, Center S., et al.,
Desktop Teleoperation via The WWW, Roc. Of
IEEE International Conf. On Robotics and
Automation, 1995

[4] http://telegarden.aec.at
[5] J. Sanchez, S. Dormido, R. Pastor, F. Morilla, A

Java/Matlab-Based Enviroment for Remote
Control System Laboratories: Illustarated Whith
an Inverted Pendulum, IEEE, 2004

[6] S. Chakrabarti, L. Wu, S. Vuong, V. C. M.
Leung, A Remote Controlled Wireless Enabled
Enviroment, University of British Columbia
Vancouver, Canada, IEEE 2004

[7] R. Safaric, I. Hedrih, R. Klobucar, Remote
Controlled Robot Arm, University of Maribor,
IEEE 2003

[8] A. Malinowski, T. Konetski, B. Davis, D.
Schertz, Web-controlled Robotic Manipulator
using Java and Client-Server Architecture,
Bradley University, IEEE 1999

[9] I. F. Darwin, Java Cookbook, Solutions and
Examples for Java Developers: cap. 11
Programming Serial and Parallel Ports,
O'Reilly, 2001

