

R

R

Professional DOS User Manual

The File Transfer Authority

©2000 by BLAST SOFTWARE, INC.
49 Salisbury Street West

Pittsboro, NC 27312
All Rights Reserved

Manual #2MNPDOS
6/00

The information in this manual has been compiled with care, but BLAST, Inc,. makes
no warranties as to accurateness or completeness, as the software described herein may
be changed or enhanced from time to time. This information does not constitute com-
mitments or representations by BLAST, Inc., and is subject to change without notice.

BLAST® is a registered trademark, and BLAST Professional™, BLAST Professional
UNIX™ and TrueTerm™ are trademarks of BLAST, Inc. Any trademarks, trade-
names, service marks, service names owned or registered by any other company and
used in this manual are proprietary to that company.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subdivision (b) (3) (ii) of the Rights in Technical Data and Computer Software
clause at 52.227-7013.

BLAST, Inc.
49 Salisbury Street West

P.O. Box 818
Pittsboro, North Carolina 27312

SALES: (800) 242 - 5278
FAX: (919) 542 - 0161
E-mail: info@blast.com

Technical Support: (919) 542 - 3007
E-mail: support@blast.com

World Wide Web: http://www.blast.com

© Copyright 2000 by BLAST, Inc.

Table of Contents

1 Introduction 1

BLAST Software Registration . 1

The BLAST Package . 2

BLAST Professional Features. 2

How To Use This Manual. 3

BLAST Technical Support . 5

2 The BLAST Environment 7

Introduction. 7

Environment Variables . 8

Command Line Switches . 10

BLAST in the Background . 13

BLAST.OPT . 19

BLAST.OPT Settings . 20

Using BLAST on a LAN . 28

Flow Control . 35

3 BLAST Quickstart 37

Starting BLAST . 37

The BLAST Screen. 38

Three Keys to Remember . 40

The BLAST Menus. 41

A Quickstart File Transfer . 42

4 The Menus 49

Moving Through the Menus . 49

The Keyboard . 50

Using a Mouse . 51

The Offline Menu . 52

The Online Menu . 54

The Filetransfer Menu. 56

The Local Menu . 57

The Remote Menu. 58

Automation with BLASTscript. 59

5 The Setup 61

What is a Setup? . 61

Setup Fields. 65

ANSI Emulation Subwindow . 72

DG Emulation Subwindow. 73

DEC VT Emulation Subwindows. 74

WYSE Emulation Subwindows . 78

HP Emulation Subwindow . 82

BLAST Protocol Subwindow . 87

Kermit Protocol Subwindow. 92

Zmodem Protocol Subwindow . 95

6 BLAST Session Protocol 101

The BLAST Session Protocol. 102

BLAST Protocol Design . 103

Starting a BLAST Session . 105

Ending a BLAST Session . 108

Performing Filetransfer Commands 110

Transfer Command File . 117

BLAST Protocol Remote Menu . 120

Automating the BLAST Session Protocol 121

Fine-Tuning the BLAST Session Protocol 121

Filetransfer Security with BLAST Protocol 123

7 FTP 125

Using FTP . 125

Starting an FTP Session . 126

FTP Filetransfer Menu . 126

Sending and Receiving Files with FTP. 127

Filenames Restrictions with FTP . 128

Ending an FTP Session . 129

FTP Commands . 129

8 Kermit Protocol 131

Kermit Filetransfer Menu . 131

Sending and Receiving Files with Kermit 132

File Transfer Switches with Kermit 134

Filenames Restrictions with Kermit 135

Kermit Remote Menu . 135

9 Xmodem, Ymodem, and Zmodem Protocols 139

Command Line Features . 140

Xmodem Protocol . 140

Ymodem Protocol . 141

Zmodem Protocol . 142

Filenames Restrictions . 143

10 Text Transfers 145

Introduction. 145

Uploading Text to a Remote Computer 145

Downloading Text from a Remote Computer 146

11 BLAST Editor 149

Using BLAST Editor . 149

Quick Reference . 150

Cursor Movement and Scrolling. 151

Inserting and Deleting Text . 151

Managing Text Blocks . 152

Searching. 152

Quitting BLAST Editor. 153

12 Introduction To Scripting 155

Starting Out. 155

Learn Mode. 160

13 BLASTscript Topics 165

Scripting Basics . 165

Manipulating Text. 170

Managing the Screen Display . 174

Communicating with Other Programs 176

File Transfers with BLAST Session Protocol. 178

File Transfers with FTP . 181

File Transfers with Kermit . 181

File Transfers with Xmodem and Xmodem1K. 184

File Transfers with Ymodem and Ymodem G 185

File Transfers with Zmodem. 187

Using Log Files for Error Checking 188

Text Transfers . 190

14 Connecting and Disconnecting 193

Introduction. 193

BLASTscript Libraries . 193

The Index Utility. 199

15 BLASTscript Command Reference 201

Introduction. 201

Data Types . 201

Syntax Rules . 204

Commands That Set @STATUS . 204

BLASTscript Statements . 205

16 BLASTscript Reserved Variables 239

17 Data Stream Control and Terminal Emulation 283

Introduction. 283

Data Stream Filtering and Alteration 283

Terminal Emulation . 287

Keyboard Mapping Utility . 296

18 Remote Control 303

What Is Remote Control? . 303

Connecting to the Host PC . 304

Taking Control . 306

Online Menu Options . 306

Transferring Files to and from the Host PC 307

Disconnecting from the Host PC . 308

Using Access Mode . 308

Using Terminal Mode . 311

Modifying BHOST Settings . 312

Appendix A Error Messages 321

Introduction. 321

BLAST Protocol Functions. 321

Transfer File Management . 322

Utility File Management . 323

Scripting . 323

Initialization . 324

Script Processor . 325

Network. 325

Appendix B Key Definition Charts 327

BLAST Keys. 327

Terminal Emulation Keys . 329

Appendix C Troubleshooting 337

Installing BLAST . 337

Starting BLAST . 338

Going Online. 338

File Transfer . 340

Appendix D The ASCII Character Set 341

Appendix E Autopoll 343

The Autopoll Script. 343

Installing Autopoll . 344

Starting Autopoll. 344

The Site File . 346

Transfer Command File . 347

Overview of Autopoll Script Actions 347

Configuration Example. 349

Other Files Using the Filename Stub 351

Tips and Tricks . 353

Modifying Autopoll . 355

Configuration Worksheets . 357

Appendix F Glossary 361

INDEX 371

Chapter 1

Introduction

BLAST Software Registration

Thank you for buying our communications software and welcome to
the world of BLAST. Before doing anything else, it is very important
that you complete the Warranty Registration Card. Without it, we
cannot provide you with the complete support and continued service
that comes with every copy of BLAST.

The services available to registered owners of BLAST include:

◊ A ninety-day warranty stating that the software will operate ac-
cording to specifications in effect at the time of purchase.

◊ Professional help from our experienced Technical Support staff
for a nominal fee.

◊ New product announcements.

◊ Discounts on product upgrades.
INTRODUCTION 1

Extended warranties, custom support, special training, and corporate
licensing are also available. Please call BLAST, Inc. at (919) 542-
3007 or refer to the enclosed literature for more information.

The BLAST Package

The BLAST package contains the following items:

◊ Two 3-1/2" diskettes containing the BLAST and BHOST pro-
grams.

◊ One BLAST Professional License Agreement and Warranty
found on the front of the diskette package. It is important to read
and understand the terms and conditions in this document be-
fore opening the package.

◊ One Warranty Registration Card. The serial number of your
BLAST program is printed on this card. When placing a call to
BLAST Technical Support, please have this number available.
Also, please read the card, fill it out, and send it immediately to
BLAST, Inc.

◊ The following BLAST documentation: an Installation Guide,
User Manual, Quick Reference card, Quick Start card, and
BHOST User Manual.

If the package does not contain all of these items, please call the
BLAST Customer Support staff.

BLAST Professional Features

BLAST Professional is designed to connect your IBM PC or com-
patible MS-DOS computer to a variety of other computers. You may
use one of the following connections:

◊ any asynchronous modem and regular phone lines

◊ TCP/IP

◊ hard-wired cables

◊ X.25 or ISDN networks and other virtual asynchronous circuits
2 CHAPTER ONE

BLAST Professional transfers files to and from remote computers
with the fast and 100% error-free BLAST protocol. You may also
choose from BLAST’s implementation of FTP, Kermit, Xmodem,
Ymodem, and Zmodem protocols.

BLAST Professional features remote control that allows one PC to
take complete control of another PC. Remote control works over
modems or through a LAN and includes full remote mouse support,
automatic translation between different video modes, password-
protected dial-back security, and a host of other features.

BLAST Professional allows your PC to emulate many popular ter-
minal types, including the VT320 and Wyse 60, for interactive work
on DEC, UNIX, Xenix, Data General, and Hewlett-Packard sys-
tems, as well as other multi-user computers.

BLAST Professional also includes other advanced features such as
data compression, scripting, and keyboard remapping.

How To Use This Manual

Parts of the Documentation System
Each portion of the BLAST documentation system fulfills a specific
need:

◊ Online Help is always available while you are using BLAST. It
is context-sensitive so that the information you need is right at
hand. To access Online Help, press F1.

◊ The Installation Guide contains step-by-step instructions for in-
stalling and configuring BLAST.

◊ The User Manual contains all the information necessary for op-
erating BLAST, including detailed descriptions of Terminal
mode and filetransfer procedures. It also contains general infor-
mation as well as a listing of all BLAST functions, BLAST-
script reserved variables, and BLASTscript statements. The
listing for each BLASTscript statement includes syntax, usage
details, and examples.

◊ The Quick Reference Card is a handy list of BLASTscript com-
mands, BLAST Keys, command line parameters, and more.
INTRODUCTION 3

◊ The Quick Start Card is a condensed BLAST Professional tuto-
rial for experienced users.

◊ The BHOST User Manual guides you through installing and
configuring BHOST, the remote control host program for DOS-
based PCs.

Manual Overview
If you are experienced with telecommunications, you may not need
to read the entire manual to learn how to perform specific tasks with
BLAST. Following is a quick guide to finding important informa-
tion in this manual:

Documentation System Conventions
To help reduce confusion, all BLAST documentation shares several
common name conventions, display conventions, and defined terms:

◊ Examples in the text indicate the actual keystrokes you should
type to perform a function. For example:

send myfile.txt ENTER

instructs you to type “send myfile.txt” and then press the ENTER
key. In early introductory chapters, “ENTER” is included to indi-
cate the keystroke needed to execute input of typed data. In later
chapters, it is assumed and omitted.

If you need information about Look in

General BLAST operation Chapter 3

Creating keyboard maps Chapter 17

How to use the BLAST protocol Chapter 6

How to use FTP Chapter 7

How to use Kermit Chapter 8

How to use Xmodem, Ymodem, & Zmodem Chapter 9

Taking remote control of another PC Chapter 18

Command line options Chapter 2

Communications port assignments Chapter 2

Installing network drivers Chapter 2

Scripting Chapter 12

Modifying BLAST’s support files Chapter 14

Troubleshooting Appendix C
4 CHAPTER ONE

◊ Italics in code indicate that the item (for example, a command
line argument or a string value) is generic and that a more spe-
cific item is needed. For example, in the following lines of code,

Connect
Filetransfer
Send
local_filename
remote_filename
to
esc

specific filenames should be given for local_filename and
remote_filename. An exception to this convention is the
all-italic format used for command descriptions in Chapter 15.

◊ The term “local” computer refers to the machine closest to you,
whereas “remote” computer refers to the system to which your
local machine is connected.

◊ The term “interactive” describes BLAST operation from the
keyboard. When operating interactively, a user presses keys to
control the program. Alternatively, a user may write a BLAST
script to control the program.

◊ Finally, “Terminal mode” describes BLAST operation as a ter-
minal to a remote computer. For example, if you are going to
use BLAST to connect to a remote Data General computer and
you have selected the D200 keyboard emulation in BLAST,
then your keystrokes will be interpreted by the DG computer as
if you were operating from a DG terminal.

Comments and Suggestions
Considerable time and effort have been spent in the development of
this product and its documentation. If you are pleased, or not
pleased, we would like to hear from you. Please send us your com-
ments and suggestions. For your convenience, a FAX reply form is
provided at the back of this manual.

BLAST Technical Support

If you have problems installing or running BLAST, first look for an-
swers in your manuals and in the Online Help. Double-check your
INTRODUCTION 5

communications settings, operating system paths, modem cables,
and modem power switches.

If you are still unable to resolve the problem, contact BLAST Tech-
nical Support. For a nominal fee, a technician will help you with
your problem. Technical Support may be purchased on a per-
incident basis or annually. Contact our Sales Staff for details. If you
purchased BLAST outside of the USA, please contact your autho-
rized distributor for technical support.

What You Will Need To Know
Before you contact us, please have the following information ready:

◊ Your BLAST version number and serial number. These num-
bers appear in the opening banner (when you first start
BLAST), in the Online Help window, and on your distribution
diskettes.

◊ Your operating system version number (e.g., MS-DOS 6.1). To
display your version number, type “VER” at the command line.

How to Contact Us
Telephone support is available Monday through Friday. If voice
support is inconvenient, you may FAX or e-mail your questions to
BLAST, 24-hours-a-day. Please see the title page of this manual for
contact numbers and addresses, and the pages at the end of the man-
ual for a sample FAX cover sheet.
6 CHAPTER ONE

Chapter 2

The BLAST Environment

Introduction

BLAST operates in a complex environment. It is not unusual for a
computer to be connected to a modem, mouse, printer, network in-
terface, and other hardware. BLAST must work smoothly with this
equipment and with other software programs loaded on your system.
Several features of BLAST are designed to help you integrate
BLAST into your computing environment. These features include
support for:

◊ DOS environment variables

◊ Command line switches

◊ Background operation

◊ Runtime configuration file (BLAST.OPT)

◊ Network operation
THE BLAST ENVIRONMENT 7

Environment Variables

When BLAST and BHOST are executed, they check the DOS envi-
ronment for the existence of special variables. If one of these vari-
ables has been defined, its value will override settings that have been
written into the executables or specified in the BLAST.OPT file (see
“BLAST.OPT” on page 19).

To set a DOS environment variable, type:

SET VARIABLE=VALUE

at the DOS command line. Note that there are no spaces on either
side of the equal sign.

To set the variable BLASTDIR to the value C:\BLAST, for exam-
ple, use the command:

SET BLASTDIR=C:\BLAST

You may also include in your AUTOEXEC.BAT a command of this
format. For information on modifying AUTOEXEC.BAT, refer to
your MS DOS manual. Following is a list of environment variables
that BLAST and BHOST check for:

BLASTDIR
Specifies the directory where BLAST looks for BLAST.HLP,
MODEMS.SCR, and SYSTEMS.SCR, and where BHOST looks for
MODEMS.SCR, its accounts file, and its log file.

Note that the BHOST accounts file and log file may also be indepen-
dently specified via BLAST.OPT with ACTFILE and LOGFILE as-
signments.

The value of BLASTDIR is written to the BLAST and BHOST exe-
cutables during installation. It can be changed as shown above and
through BLAST.OPT with a BLASTDIR assignment.

OPTDIR
Specifies the directory where BLAST and BHOST look for the
BLAST.OPT file, which is normally located in BLASTDIR. By set-
ting OPTDIR to a directory containing an alternative BLAST.OPT
file, you may temporarily override existing BLAST.OPT settings.
8 CHAPTER TWO

For example, network users may want to locate a separate
BLAST.OPT file in a directory other than BLASTDIR (for more on
the use of OPTDIR in configuring LANs, see page 17).

SETUPDIR
Specifies the directory where BLAST and BHOST look for setup
files. The value of SETUPDIR is written to the BLAST and BHOST
executables during installation. It may be changed with the DOS
SET command as explained above or through BLAST.OPT with a
SETUPDIR assignment.

TMP
Specifies the directory where BLAST and BHOST store temporary
files. In the following circumstances, BLAST stores temporary files:

◊ When BLAST is in background mode and is toggled to the fore-
ground via the ALT H Hot Key, BLAST saves the graphics
screens of the application toggled to the background.

◊ When Access mode is temporarily suspended, BLAST saves
the graphics screens of the Host PC.

◊ When the BLAST.OPT VIDEOBUF is set to DISK, text screens
are also saved.

BHOST saves graphics screens when the Control PC user tempo-
rarily suspends Access Mode.

If TMP is not defined, temporary files are saved to the directory from
which BLAST or BHOST was executed.

NOTE: Setting TMP to a RAM drive greatly improves perfor-
mance. Also note that the size of the file to be saved varies widely
with the active video mode. Text screens require about 4K of space,
CGA screens about 16K, and VGA screens up to 256K.

Network users, especially those with 8-bit network cards, should set
TMP to a local (non-server) directory or RAM drive.
THE BLAST ENVIRONMENT 9

Command Line Switches

By using command line switches, you can automatically execute
certain BLAST functions at startup. For example you can automati-
cally load a setup and run a BLAST script that brings you directly
into a communications session without interactive input. You may
also suppress screen displays or run BLAST as a memory-resident
program in the background. BLAST recognizes the following
switches and parameters:

blast [setupname] [/sscriptname] [argument] [/b]
[/c] [/i] [/n] [/px] [/q] [/tx] [/v] [/w] [/x] [/y]

One space must precede each switch included on the command line.
Do not insert a space between the switch and the parameter associ-
ated with it.

setupname
specifies a setup file for BLAST to load. It is not necessary to type
the filename extension. If a script is specified as a parameter in the
setup, it will be executed automatically. If no script is specified,
BLAST will load the setup and display the Offline menu. If a setup
is not specified on the command line, BLAST will automatically
load the default setup. BLAST looks for setups in SETUPDIR.
SETUPDIR may be specified as a environment variable (see preced-
ing section).

/sscriptname
specifies the BLAST script that will control the current session.
Control will be passed automatically to the script instead of the reg-
ular BLAST menus and will return to the menu system at comple-
tion. If a valid BLAST script is named in the Script File setup field,
the script specified by the /sscriptname switch will override the
one specified in the setup. No spaces are allowed between /s and
the script name. BLAST looks for scripts in the current directory
first and then in BLASTDIR. BLASTDIR may be specified as a
DOS environment variable (for details, see preceding section).

argument
specifies one of ten optional arguments (text strings) that can be
passed to a BLAST script directly from the command line. These ar-
guments are stored as the BLASTscript reserved variables @ARG0 to
10 CHAPTER TWO

@ARG9. This switch requires that a setup file be specified on the
command line. If no setup is specified, BLAST will interpret the first
argument as a setup name and will generate an error message if no
setup with that name exists.

/b
starts BLAST in background mode, which allows BLAST to reside
in resident memory while another program runs in the foreground;
using the ALT H Hot Key, the user can toggle between BLAST and the
other program (for details, see “BLAST in the Background” on page
13).

/c
specifies that DTR not be dropped when BLAST is exited.

/i
specifies that BLAST bypass checking of ports that may be reserved
by other applications.

/n
forces BLAST to execute in no display mode, in which all displays
are suppressed. This switch allows you to integrate BLAST into
your applications and batch jobs without losing the information pre-
viously written to the screen. BLAST scripts may still select por-
tions of the screen to turn on and off (see “Managing the Screen
Display” on page 174). BLAST automatically uses TTY terminal
emulation in this mode.

/px
specifies the pad character (x) to be used with Xmodem transmis-
sions. The default pad character is a NUL (ASCII 0).

/q
forces BLAST into quiet mode. Audible signals that normally call
attention to prompts and errors are suppressed.
THE BLAST ENVIRONMENT 11

/tx
specifies the end-of-transmission (EOT) timeout for Xmodem trans-
missions in hundredths of seconds—timeout equals x/100 seconds.
The minimum timeout is.1 second (10) and the maximum is 600
seconds (60000). For example, starting BLAST with the
/t1000 switch specifies a 10 second end-of-transmission timeout.

/v
starts BLAST in expert (non-verbose) mode, in which prompts ask-
ing for confirmation to perform an action are suppressed.

/w
with VT320/220 emulation, forces BLAST to use BIOS screen writ-
ing routines instead of direct screen writes. Use /w with multitask-
ing environments or on PCs that are not 100% IBM PC compatible.
Use /w only if you have problems with VT320/220 emulation—the
BIOS screen writing routines are significantly slower than direct
screen writes.

/x
enables Extended Logging, which writes detailed information about
file transfers to your session log. Extended Logging may also be en-
abled with the reserved variable @XLOG.

/y
starts BLAST in four-digit year mode. In four-digit year mode, all
dates stored in the BLASTscript reserved variable @DATE and in log
files will have four-digit year codes.

NOTE: For compatibility with current BLAST products, BLAST
operates by default in two-digit year mode. If you require four-digit
year codes, you must use the /y switch. Be aware that turning on
four-digit year mode will alter the format of both log files and the
@DATE reserved variable. If your current scripts or other applica-
tions parse log files or the output of the @DATE reserved variable
based on fixed offsets, they will require modification to work with
BLAST in four-digit year mode.
12 CHAPTER TWO

Example Command Line
The example command line shown below starts BLAST in back-
ground mode with a setup named DIAL.SU, a script named
NEWYORK.SCR, and “$30” as an argument to be used by the
script:

blast dial /snewyork /b $30

Precedence for Specifying Options
Because the command line can specify options that can also be
named in setups and scripts, BLAST follows a well-defined order of
precedence:

◊ Whenever a command line switch conflicts with a value speci-
fied in a setup also loaded from the command line, the com-
mand line switch overrides the setup value.

◊ Whenever a command line switch conflicts with a setup value
that has been loaded after starting BLAST (through interactive
command or BLASTscript control), the setup value overrides
the command line switch.

◊ Whenever a BLAST script changes a value that was specified in
either the setup or the command line, the script change over-
rides the setup or command line value.

BLAST in the Background

Your PC supports both foreground and background applications.
When you start BLAST with the /b switch, BLAST is forced to run
in background mode, allowing the user to perform other tasks and
DOS commands in the foreground.

When BLAST is started in background mode, you can switch be-
tween BLAST and a foreground program by pressing the ALT H Hot
Key. Although foreground applications are suspended when you
switch to BLAST, BLAST is never suspended. Thus, entire BLAST
sessions may run unattended in the background via script automa-
tion.
THE BLAST ENVIRONMENT 13

Starting BLAST in Background Mode
To start BLAST in background mode, type

blast /b

at the command line. If no GROUND option in the BLAST.OPT file
is set or if the GROUND option has been set to BACKGROUND,
BLAST will begin in interactive mode. If GROUND is set to
FOREGROUND, BLAST will start with no display and immediately
pass control to the DOS system prompt. To access BLAST in inter-
active mode, simply press ALT H. (For more on BLAST.OPT, see
“BLAST.OPT” on page 19 and “BLAST.OPT Settings” on page
20).

Limitations of Background Mode
Some programs may be incompatible with BLAST in the back-
ground because they either use the same commport as BLAST or
they occupy too much memory. BLAST requires approximately
400K of RAM while running in the background, depending on your
BLAST.OPT settings (for details, see “Settings for Minimum Mem-
ory Use” on page 17).

When you switch from a foreground application to BLAST, BLAST
automatically saves the foreground screen so that the screen is re-
stored when you switch back. The amount of memory needed to
save the foreground screen varies with the type of display: about 4K
for monochrome, 16K for CGA, and up to 256K for EGA/VGA.

If there is not enough memory to store your foreground screen,
BLAST automatically attempts to save it in a temporary disk file.
Setting the VIDEOBUF option in BLAST.OPT to DISK forces
BLAST to store the foreground screen on disk. If there is not enough
disk space to store the foreground screen, BLAST beeps three times,
signaling you to exit from the foreground application before switch-
ing to BLAST.

IMPORTANT: The ALT H Hot Key is disabled while BLAST is set to D461 termi-
nal emulation, is set to 132 column compressed mode, or displays
graphics in Access mode.

When BLAST is started with the /b switch, interactive use of the
System and Edit command from the Local menu is not available. Us-
ing the ALT H Hot Key to toggle to the DOS system prompt, however,
you may access system commands and may execute the BLAST ed-
itor by typing
14 CHAPTER TWO

BLASTEDT

at the DOS system prompt. Exit the editor as you would interactively.

Removing BLAST from Memory
Because BLAST occupies memory while in background mode, you
should remove it after you have finished a communications session.
There are three ways to reclaim the extra memory:

1. If you are running BLAST without the video-suppress switch
(/n), you may use the ALT H Hot Key to access BLAST in inter-
active mode and then exit normally.

2. If you are running BLAST with the video-suppress switch, you
may use the program BLASTAT.EXE, included with your dis-
tribution diskette. At the DOS prompt, type

BLASTAT

You will be presented with the following options:

F1 Terminate BLAST after current session completes
F2 Terminate BLAST immediately
F10 Exit this program

Press F1 or F2.

NOTE: With certain installations of Windows 95,
BLASTAT.EXE will not release BLAST from memory.

3. You may run a BLAST script that ends with a QUIT statement.

IMPORTANT: Any program installed as memory-resident after BLAST must be
removed before BLAST can be successfully removed from memory.
Exiting BLAST before exiting the other memory-resident program
will make it impossible for your PC to reclaim BLAST’s memory.
In effect, your PC cannot “reach” BLAST to remove it.

Adjusting BLAST.OPT Settings for Background Mode
The BLAST.OPT file provides you with an easy way to customize
BLAST for efficiency and personal preference. Each time BLAST
is run, if a BLAST.OPT file exists, it is read and the values it speci-
fies remain in effect for the entire session. To optimize a particular
use of BLAST in background mode, adjust the following
BLAST.OPT options: BG_BLK_SIZ, FILEBUF, GROUND,
THE BLAST ENVIRONMENT 15

MEMPOOL, SLICE, and VIDEOBUF. For a detailed description of
each option and its settings, see “BLAST.OPT Settings” on page 20.

You will have to experiment with settings to achieve the best results.
The following sections offer suggested settings for BLAST.OPT op-
tions tailored to specific applications of BLAST in background
mode and a method for testing your settings.

Settings for Efficient Use of BLAST in Background Mode

Some users will start BLAST in the background for minimum use
—for example, to monitor a communications port or to perform oc-
casional BLAST transfers from a command file. For these users, the
efficiency of BLAST is not as important as the efficiency of their
foreground operation. Other users run BLAST as their primary task
but wish to perform simple operating system commands or run an
occasional small application in the foreground. For these users,
BLAST in background mode should be run at maximum efficiency.
For both these users the following BLAST.OPT settings will im-
prove performance:

◊ Increase FILEBUF to 30 or 40. BLAST then uses a larger
buffer size for disk operations, cutting down the number of
times it must access the PC’s drive.

◊ Increase the BG_BLK_SIZ option closer to its limit of 2048.
During BLAST transfer, this setting will minimize the amount
of time needed to block a packet of data before sending it.

◊ Increase the value of MEMPOOL since the total memory over-
head required for BLAST will rise after adjusting
FILEBUF and BG_BLK_SIZ. Some experimenting will be re-
quired to find the best value for MEMPOOL.

Settings for SLICE are different for these two groups of users:

For users making minimal use of BLAST in background mode,
SLICE should be set to 10 (or as close to 1 as possible). This setting
forces BLAST to use the least amount of processor time, effectively
cutting back the time your PC spends working with BLAST.

For users running BLAST as their primary program, SLICE should
be set to 1000 (or as close to 9999 as possible). This setting allows
BLAST to use more processor time; how much depends on how
slowly a user can afford to let the foreground task operate. Note that
a faster PC has more power to spare, but foreground applications us-
ing graphics typically require a lot of the processor’s attention.
16 CHAPTER TWO

Settings for Minimum Memory Use

Finally, some users have less memory in their PCs to devote to
BLAST. Under these conditions, it is best to run BLAST through a
script or command file, to use the no-display option, and to make the
following BLAST.OPT adjustments:

◊ Set VIDEOBUF to DISK. When you use the ALT H Hot Key,
BLAST will save the current screen information to disk rather
than to memory, freeing 4 to 16 kilobytes of memory.

◊ Decrease FILEBUF to 2048, the minimum acceptable.
BLAST then uses a smaller memory buffer for disk operations.

◊ Decrease BG_BLK_SIZ to 1, the minimum acceptable. During
BLAST transfer, less memory will be used to compress and
block each packet of data before it is sent. (Note that you cannot
set the Packet Size used by BLAST to a value larger than
BG_BLK_SIZ).

◊ Decrease the value of MEMPOOL since the total memory over-
head required for BLAST will drop. Some experimenting will
be required to find the proper value for MEMPOOL.

◊ Select TTY as your emulator, minimizing the number of buffers
required in Terminal Mode.

Considerations for BLAST Configured for LANs

When BLAST is configured during installation to support LANs, the
drivers needed for different protocol drivers are written to the
BLAST.OPT. Normally, this action does not effect memory usage
for BLAST since BLAST loads the driver specified in your current
setup only when you go Online; your PC needs only enough memo-
ry for the driver you actually use in a session.

In Background mode, however, BLAST must pre-allocate enough
space for all the drivers you might use by automatically loading ev-
ery driver defined in your BLAST.OPT file, making the memory re-
quired by these drivers unavailable to your other applications.

A way to prevent this large memory allocation is to load drivers se-
lectively. To load drivers selectively, create multiple BLAST.OPT
files in separate directories and then place the appropriate directory
in your search path by setting the OPTDIR environment variable to
your directory’s name. Remember that BLAST adds driver descrip-
tions rather than overwriting them; make sure that other
THE BLAST ENVIRONMENT 17

BLAST.OPT files in your search path do not have other drivers de-
fined.

NOTE: Decreasing the amount of memory BLAST has available
may adversely affect your filetransfer throughput. You may regain
some speed by disabling compression, which is a CPU-intensive
process.

Testing Your Background Settings
Changes to BLAST.OPT may affect:

◊ The total memory required for background (the MEMPOOL).

◊ The speed of BLAST operation.

◊ The efficiency of BLAST transfer.

Therefore, it is important to test your new BLAST.OPT settings to
insure both BLAST and your foreground applications operate as
they should. After creating or modifying any settings:

◊ Perform BLAST tasks in both foreground and background as
well as tasks of the foreground application. For BLAST, this
may include BLAST scripts, command files, or interactive
work using the ALT H Hot Key.

◊ Check programs for errors or unacceptable operation. Are your
tasks running too slowly? If you are performing a background
BLAST transfer session, check the time necessary to complete
the transfer.

Of course, memory limitations may cause errors. If BLAST dis-
plays the error message

Error allocating memory from the system

your MEMPOOL value is probably too large. However, if the er-
ror message

Error allocating memory from the BLAST memory pool

is displayed, your MEMPOOL value is probably too small.

◊ When running BLAST scripts in background with limited
memory, you may wish to display (or write to disk) the value of
18 CHAPTER TWO

@MAXMEM. This variable holds the highest amount of memory
BLAST has used up to the current point in the program.

BLAST.OPT

BLAST.OPT is the BLAST options file. It is used to customize
BLAST and BHOST configurations and to specify alternate config-
urations for multiple users. BLAST.OPT affects background mode,
remote control, and global BLAST operations. If a LAN was speci-
fied during BLAST installation, a BLAST.OPT file was created dur-
ing the installation. You can create or edit a BLAST.OPT directly
with an ASCII text-file editor such as MS-EDIT or the BLAST edi-
tor (for details, see “BLAST.OPT Format” below).

The BLAST.OPT Search Path
BLAST, BHOST, and SETBHOST search for BLAST.OPT as fol-
lows:

◊ First, in the directory where BLAST.EXE or SETBHOST is
stored.

◊ Second, in the directory specified by the OPTDIR environment
variable (if it has been defined).

◊ Third, in the current directory (only if OPTDIR has not been de-
fined).

Reading Multiple BLAST.OPT Files
When BLAST finds more than one BLAST.OPT file in your search
path, most entries are overwritten by the last BLAST.OPT read.
However, unique COMMPORT and NETSERVICE assignments in
each BLAST.OPT are added to the list rather than overwritten.
(Changes to existing COMMPORT entries—such as specifying a new
driver ID—are still overwritten.) This handling of BLAST.OPT files
allows you to selectively install LAN drivers at run time based on
your BLAST.OPT search path in order to optimize memory usage
when BLAST is run in background mode.

BLAST.OPT Format
BLAST.OPT settings may be entered in any order using the follow-
ing format:
THE BLAST ENVIRONMENT 19

SETTING=VALUE

To turn the 16550 option on, for example, use the assignment:

16550=ON

You may enter as many of the options as you need; spaces on either
side of the equals sign are optional.

BLAST.OPT Settings

Following is a description of possible BLAST.OPT options and pos-
sible values for each option.

16550 ON OFF

Enables the FIFO buffers of the 16550 UART, a chip that resides on
the serial cards of some PCs and internal modem. Enabling the FIFO
buffers may improve throughput; however, some early versions of
the 16550 chip are unreliable at speeds below 9600 bits per second.
The default, which is set during the running of BINSTALL, is hard-
ware dependent.

ACTFILE [BLASTDIR\BHOST.ACT]
(BHOST Only) any valid path and filename

Specifies an alternate BHOST accounts file.

BANNERTIME 0 – 99 [4]
Specifies the number of seconds the BLAST banner will display on
the screen before moving to the Offline menu. A setting of 0 causes
the banner to be flashed and immediately removed.

EXAMPLE:

BANNERTIME=1

BG_BLK_SIZ 1 – 2048 [200]
(Background Mode Only)

Specifies the maximum allowable block size, in bytes, for BLAST
transfers in background mode. Like the MEMPOOL setting, a lower
BG_BLK_SIZ setting reduces the amount of memory required for
20 CHAPTER TWO

background operation. If the Packet Size setup field is greater than
this value, BLAST will automatically change it to BG_BLK_SIZ.

The default for this field, 200, should provide optimum perfor-
mance for most situations (and is the required setting for transfers
with BHOST). A setting of 84 saves memory but decreases through-
put. Set BG_BLK_SIZ to 1 only when you will not perform any file
transfers during a session.

EXAMPLE:

BG_BLK_SIZ=000

BLASTDIR any valid path

Specifies the directory where BLAST and BHOST look for
BLAST.HLP, MODEMS.SCR, and SYSTEMS.SCR. BHOST addi-
tionally looks for its accounts file and log file in this directory.

This value is written to the BLAST and BHOST executables during
installation. It may be changed through BLAST.OPT or by setting
the DOS environment variable BLASTDIR to the desired location.

Note that the BHOST accounts file and log file may also be indepen-
dently specified through ACTFILE and LOGFILE BLAST.OPT as-
signments.

EXAMPLE:

BLASTDIR=C:\BLAST

BREAKLEN 0 – 99 [10]
Specifies (in hundredths of a second) the duration value for the break
character.

EXAMPLE:

BREAKLEN=50

COMMPORT label,irq,string_value

Specifies your communications port or network driver that will ap-
pear in the Connection setup field. Label is the name of the port or
network driver; irq is an hexadecimal number specifying an inter-
rupt request line or a command for loading a driver; and
THE BLAST ENVIRONMENT 21

string_value is dependent on the value of irq as shown be-
low:

If BLAST does not recognize label, label becomes a user-
defined network service name.

Possible settings and examples are as follows:

Asynchronous Ports

Label is the name of the port, irq is the port’s interrupt request
line (hexadecimal 1–7F), and string_value is the port’s base
address.

EXAMPLE:

COMMPORT=COM4:,0B,2E8

specifies that COM4: use IRQ 11 and a base address of 2E8.

The communications port default values are:

IMPORTANT: PS/2s and some PC compatibles use the following defaults:

irq string_value
1–F (specifies hardware interrupt) port’s hardware base address (in hexadecimal)

10–7F (specifies software interrupt) optional text description

80–BF (specifies loading of driver) load command for specific BLAST driver

Port IRQ Base Address
COM1: 4 3F8
COM2: 3 2F8
COM3: 4 3E8
COM4: 3 2E8
COM5: 3 4220
COM6: 3 4228
COM7: 3 5220
COM8: 3 5228

Port IRQ Base Address
COM3: 3 3220
COM4: 3 3228
22 CHAPTER TWO

Extended BIOS
(INT 14 Connections)

Label is the name of the port, irq is the label’s interrupt request
line (hexadecimal 10–7F), and string_value is an optional de-
scription.

EXAMPLE:

COMMPORT=COM5:,14,redirected

specifies that COM5: be patched to interrupt request line 14.

Network Connections Using BLAST Drivers

Label is the name of the network driver, irq is a hexadecimal
number (80–BF) specifying that a BLAST driver is to be loaded,
and string_value is the load command for a specific BLAST
driver.

EXAMPLE:

COMMPORT=TCP/IP,85,blasttcp.exe

specifies that the BLAST TCP/IP driver be loaded by running the
BLASTTCP executable.

IMPORTANT: There are restrictions to the use of LAN drivers under Windows
9x/NT. For help in setting up a LAN connection under these sys-
tems, consult our technical support staff.

COMPBUF [0] – 50000
(BHOST Only)

Allocates memory for data compression buffers. BHOST can take
advantage of up to 50,000 bytes to speed file transfers.

BHOST uses data compression during file transfers even if this field
is set to 0; to use compression level 4, however, you must set
COMPBUF to at least 25000.

Slow PCs running at high baud rates or PCs performing node-to-
node file transfers may operate less efficiently with the added over-
head of compression. See “Compression Levels” on page 121 for
more information on data compression.

EXAMPLE:

COMPBUF=25000
THE BLAST ENVIRONMENT 23

EDITOR [BLASTEDT.EXE]
path\name /arguments

Specifies an alternate text editor BLAST will call when using the
Local menu Edit command. If the program is located in the current
working directory or contained in your path, you may specify just
the editor name (with or without an extension). If the editor program
is located elsewhere, you should include the entire path. Optionally,
arguments may be passed to the editor with switches in the form of
/command_line_switch.

EXAMPLE:

EDITOR=C:\BIN\PROEDIT.EXE /b

FILEBUF 2048 – 65536 [20480] (BLAST)
4000 – 65536 [4000 or 7680] (BHOST)

Specifies the number of bytes to be used as file buffers during file
transfers. Large buffers improve throughput by allowing more of the
file to be read at one time, thus minimizing disk access. Small buff-
ers allow BHOST and BLAST (in background mode) to use less
memory, leaving more memory available for foreground applica-
tions.

The default and minimum values for BHOST are 4000 (for MDA,
CGA, and Hercules systems) and 7680 (for EGA, MCGA, and
VGA systems).

NOTE: If you need to specify different values for BLAST and
BHOST, use separate BLAST.OPT files and place them in separate
directories.

EXAMPLE:

FILEBUF=32768

GROUND [BACKGROUND]
(Background Mode Only) FOREGROUND

Specifies which screen the PC will display when BLAST is started
in background mode. If no setting is specified or if BACKGROUND is
specified, BLAST starts in interactive mode. If FOREGROUND is
specified, BLAST starts in no-display mode and immediately re-
turns control to the DOS system prompt. You may toggle between
BLAST and the system prompt (or a program started from the sys-
tem prompt) using the ALT H Hot Key.
24 CHAPTER TWO

EXAMPLE:

GROUND=FOREGROUND

LOGFILE [BLASTDIR\BHOST.LOG]
(BHOST Only) any valid path and filename

Specifies an alternate session log file.

EXAMPLE:

LOGFILE=C:\TEMP\DAILY.TXT

MEMPOOL 6836 – 128000 [90000]
(Background Mode Only)

Specifies the amount of memory BLAST will allocate for back-
ground operation before installing itself as memory-resident. This
memory pool is used by BLAST for saving screens, creating win-
dows, buffer compression, and emulator control. PCs with smaller
amounts of available RAM may require a smaller MEMPOOL for
BLAST to operate in background mode.

EXAMPLE:

MEMPOOL=8192

NETSERVICE service name, label

Specifies a network service name or destination name to be added to
the list of connection names available through the Connection setup
field.

IMPORTANT: Label must have been previously defined as a network connection
using a COMMPORT setting.

EXAMPLE:

NETSERVICE=zeus(196.85.214.57),TCP/IP

PRINTERCHK NO [YES]
Enables/disables BLAST to perform checks on the printer (to see
that it is online and not out of paper). Set PRINTERCHK to NO to re-
direct PRN: printer output to a non-printer device using the MODE
command. For example:

C:> MODE LPT1:=COM2:
THE BLAST ENVIRONMENT 25

will redirect line printer 1 output to the COM2: port.

EXAMPLE:

PRINTERCHK=NO

SETUPDIR any valid path

Specifies the directory where BLAST and BHOST look for setup
files. This value is written to the BLAST and BHOST executables
during installation. It may be changed through BLAST.OPT or by
setting the DOS environment variable SETUPDIR to the desired lo-
cation.

EXAMPLE:

SETUPDIR=C:\JOHN\BLAST

SLICE 0 – 9999 [30 or 100]
Sets the amount of time BLAST passes control to the foreground
task when started in Background mode or when run in a multitasking
environment such as Windows and Desquview. The value entered
here represents the number of times BLAST will execute its event
loop before passing the PC’s processor to the foreground task. For
example, SLICE=99 will result in BLAST passing control to the
foreground task after every 99 event checks. Note that a value of 0
is equivalent to a value of 9999. The default for 80286 CPU and
faster machines is 100; the default for slower machines is 30.

EXAMPLE:

SLICE=500

SPEAKER OFF
(BHOST Only)

Disables the Host PC’s internal speaker. By default, BHOST allows
the foreground application to control the speaker. When this field is
set to OFF, BHOST turns the speaker off each time it scans the ap-
plication screen. If the application turns the speaker on, the speaker
will remain on until the next time BHOST scans the application
screen. OFF is the only acceptable value; otherwise this feature is
disabled.

EXAMPLE:

SPEAKER=OFF
26 CHAPTER TWO

TCPINGW1AD valid IP address

Specifies the network gateway address of a router on the network, in
dotted.decimal form.

EXAMPLE:

TCPINGW1AD=128.1.17.254

TCPINLOCAD valid IP address

Specifies your PC’s dotted.decimal internet protocol address.

EXAMPLE:

TCPINLOCAD=128.1.17.44

TCPINSNMSK valid IP address

Specifies the network mask address, in dotted.decimal form.

EXAMPLE:

TCPINSNMSK=255.255.255.0

TTRAP LEN 2 – [10]
Specifies the number of incoming characters Learn Mode will trap
in a TTRAP statement.

EXAMPLE:

TTRAP LEN=4

VIDEOBUF DISK
(Background Mode Only)

Specifies that the foreground screen be stored to disk rather than in
memory when the ALT H Hot Key is used, thus saving memory. It is
important that you have sufficient free disk space to use this function
(4K for monochrome operation, 16K for CGA, and up to 256K for
EGA/VGA). DISK is the only valid setting; if no setting is specified,
the foreground screen is saved in memory.

EXAMPLE:

VIDEOBUF=DISK
THE BLAST ENVIRONMENT 27

VIDEOMODE hexadecimal video mode

Specifies your EGA or VGA video adapter’s 132 column by 25 line
mode setting in hexadecimal for use with the VT and WYSE emula-
tor 132 Compressed function. If you have selected 132 Compressed,
BLAST will automatically attempt to set your video mode. If
BLAST does not recognize your video adapter, you will need to
specify your correct video mode with this setting. The actual value
of this field varies from manufacturer to manufacturer; check your
adapter card’s technical reference manual or contact the manufactur-
er for the correct mode number. Your video adapter must use the
standard DOS “Set Video Mode” function.

EXAMPLE:

VIDEOMODE=2B

Using BLAST on a LAN

In order for computers to communicate with each other over a LAN,
they must be connected both physically, through cables and LAN
adapters (such as Ethernet), and logically, with LAN software (such
as Novell Netware).

At the heart of the LAN software is a network protocol that tells the
computers how to send and recognize messages from other comput-
ers on the network. Novell Netware, for example, uses the IPX pro-
tocol, while the IBM-PC Network uses the NETBIOS protocol. In
addition, special protocols are required to communicate with devic-
es that are not directly connected to the network, including modems.

For maximum compatibility, BLAST is capable of communicating
with a number of different LAN protocols. These include:

ACS IBM’s Asynchronous Communications Server
NMP Network Products’ communication server
IPX Novell Netware
NETBIOS IBM PC Net and others.
NETBIOSC NetBIOS character mode
TCP/IP Transfer Control Protocol/Internet Protocol

BLAST Network Drivers
In order to communicate with each kind of network protocol,
BLAST must load a driver that supports that network protocol. The
28 CHAPTER TWO

BLAST drivers and corresponding executables for them are as fol-
lows:

BLAST Driver Executable
ACS BLASTACS.EXE
NMP BLASTNMP.EXE
NETBIOS BLASTLAN.EXE
NETBIOSC BLASTLAN.EXE
IPX BLASTIPX.EXE
TCP/IP BLASTTCP.EXE

If a driver is specified during BLAST installation, it is given an as-
signment in a BLAST.OPT file. If it has a BLAST.OPT assignment
and is specified in the Connection setup field, the driver is loaded au-
tomatically when the user enters the Online menu. Below are de-
scriptions of BLAST drivers and options for loading the drivers
from the command line. For a discussion of loading BLAST drivers
when using background mode, see “Considerations for BLAST
Configured for LANs” on page 17.

IMPORTANT: In the following command line descriptions, the underlined space
(“_”) is required between the switch and the value following it.

ACS Driver
This driver provides access to IBM compatible ACS servers and
supports modem sharing, including outbound and inbound calls. The
driver occupies approximately 16.5K of RAM and is loaded when
selected in a setup if it has it has been assigned in a BLAST.OPT
file. It may also be loaded manually by typing:

blastacs /q /i_netid /b_bsize /x_brkcnt /s_paksiz /c_ictimer /p_ptimer /1 /k

where:

/q
suppresses initial driver messages when loading the driver. If used,
it must be the first switch.

/i_netid 80 – 9F [81]
specifies the network ID in hexadecimal.
THE BLAST ENVIRONMENT 29

/b_bsize 84 – 4096 [132]
specifies the network buffer size in bytes.

/x_brkcnt [1]
specifies the break signal count.

/s_paksiz 1 – 1024 [128]
specifies the maximum size of a packet transferred to the LAN de-
vice from the ACS server.

/c_ictimer 1 – 1024 [4]
specifies, in 20 millisecond units, the maximum time between the ar-
rival of two characters. When this amount of time expires between
the arrival of two characters, the buffered data in the server is sent to
the LAN device. The default value, 4, is a good setting for terminal
emulation. To optimize file transfer, increase this number.

/p_ptimer 1 – 1024 [25]
specifies, in 20 millisecond units, the amount of time the server
waits until a packet is full before the buffered data is transferred to
the LAN device.

/1
specifies that lana 1 should be used rather than the default, lana 0.

/kis
unloads the driver and reclaims RAM used by the driver.

NMP Driver
In conjunction with an NMP NCSI or NMP NASI interface, this
driver provides modem sharing on both NETBIOS and Novell
LANs. Therefore, whether the underlying transport layer is IPX or
NETBIOS is of no consequence to the driver. However, the proper
NCSI or NASI network driver must be loaded into RAM before you
start BLAST.
30 CHAPTER TWO

The BLAST NMP driver interfaces to the NCSI or NASI extended
functions—the driver does not have to use the NCSI or NASI Com-
mand Interpreter to connect to the NMP server software. The
BLAST NMP driver occupies approximately 10K of RAM.

The driver is loaded when selected in a setup if it has it has been as-
signed in a BLAST.OPT file. It may also be loaded manually by typ-
ing:

blastnmp /q /i_netid /b_bsize /1 /k

where:

/q
suppresses initial driver messages when loading the driver. If used,
it must be the first switch.

/i_netid 80 – 9F [82]
specifies the network ID in hexadecimal.

/b_bsize 84 – 4096 [128]
specifies the network buffer size in bytes.

/1
specifies that lana 1 should be used rather than the default, lana 0.

/k
unloads the driver and reclaims RAM used by the driver.

IPX Driver
This driver requires that the Novell IPX driver be loaded. It is not
necessary to have logged onto a server.

The BLAST IPX driver is loaded when selected in a setup if it has
been assigned in a BLAST.OPT file. It occupies approximately 26K
of RAM. It may also be loaded manually by typing:

blastipx /q /i_netid /b_bufsize /s_sndbufs /r_rcvbufs /k
THE BLAST ENVIRONMENT 31

where:

/q
suppresses initial driver messages when loading the driver. If used,
it must be the first switch.

/i_netid 80 – 9F [A3]
specifies the network ID in hexadecimal. A network ID of A0 or
greater signifies block mode.

/b_bufsize 1 – [545]
specifies the network buffer size.

/s_sndbufs 1 – [2]
specifies the number of send buffers.

/r_rcvbufs 1 – [18]
specifies the number of receive buffers.

/k
unloads the driver and reclaims RAM used by the drive.

NETBIOS Driver
This driver provides access to login servers, LAN terminal emula-
tion, and BLAST file transfer. The driver occupies approximately
11.5K of RAM and is loaded when selected in a setup if it has been
assigned in a BLAST.OPT file. It may also be loaded manually by
typing;

blastlan /q /i_netid /b_bsize /1 /k

where:

/q
suppresses initial driver messages when loading the driver. If used,
it must be the first switch.
32 CHAPTER TWO

/i_netid 80 – BF [A0]
specifies the network ID in hexadecimal. A network ID of A0 or
greater signifies block mode.

/b_bsize 84 – 4096 [128]
specifies the network buffer size in bytes.

/1
specifies that lana 1 should be used rather than the default, lana 0.

/k
unloads the driver and reclaims RAM used by the drive.

TCP/IP Driver
This driver supports telnet (port 23) and FTP connections. It requires
that a Clarkson compatible packet driver be loaded. Most network
interface card vendors supply drivers that adhere to the Packet Driv-
er specification.

The BLAST TCP/IP driver occupies approximately 88K of memory
and is loaded when selected in a setup if it has been assigned in a
BLAST.OPT file and configured through the BLAST.OPT options
TCPINLOCAD, TCPINGW1AD, and TCPINSNMSK (for details on
these options, see pages 27–27). Following are examples of the in-
stallation details for setting up BLAST to use TCP/IP on a PC run-
ning ODI. This information is provided as a working example only.

Fragment of the BLAST.OPT file:

COMMPORT=TCP/IP,85,BLASTTCP.EXE
TCPINLOCAD=198.85.116.29
NETSERVICE=blaster(198.85.116.11),TCP/IP

Fragment of NET.CFG:

Link Driver NE2000
 PORT 320
 INT 10
 FRAME Ethernet_II
 FRAME Ethernet_802.3
THE BLAST ENVIRONMENT 33

Fragment of CONFIG.SYS:

DEVICE=C:\DOS\SETVER.EXE
DEVICE=C:\DOS\HIMEM.SYS
DOS=HIGH
FILES=40
STACKS=9,256
BUFFERS=30

Fragment of AUTOEXEC.BAT:

C:\DOS\SMARTDRV.EXE /X
ECHO ON
PROMPT pg
PATH C:\NWCLIENT;C:\DOS;C:\BLAST
SET SETUPDIR=C:\BLAST
SET BLASTDIR=C:\BLAST
CD C:\NWCLIENT
LSL
NE2000
ODIPKT

Fragment of the screen output when the PC is booted:

C:\NWCLIENT>LSL
NetWare Link Support Layer v2.01 (921105)
(C) Copyright 1990, 1992 Novell, Inc. All
Rights Reserved.

Max Boards 4, Max Stacks 4

C:\NWCLIENT>NE2000
Novell NE2000 Ethernet MLID v1.34 (910603)
(C) Copyright 1991 Novell, Inc. All Rights
?Reserved.

Int 10, Port 320, Node Address 8060000085
Max Frame 1514 bytes, Line Speed 10 Mbps
Board 1, Frame ETHERNET_II
Board 2, Frame ETHERNET_802.3

C:\NWCLIENT>ODIPKT
ODIPKT 1.1
(c) Copyright Daniel Lanciani 1991-1992. All
rights reserved.
This software is provided with NO WARRANTY.
Using Ethernet framing, class 1
ODIPKT is installed and ready.
34 CHAPTER TWO

Using the BLAST Editor in LAN Environments
When you specify a filename to edit with the BLAST editor, always
prefix the filename with a full path. If the file is in the current direc-
tory, use the prefix “.\” (period backslash) to insure that the file is
saved to the correct directory.

Flow Control

Flow control paces the data stream between computers in order to
prevent the receiving computer from losing characters. Flow control
can be used by the receiving computer when:

◊ Its buffers are full and need to be written to disk, displayed, or
printed before continuing.

◊ System resources are in heavy demand.

◊ Disk operations, such as file opening and writing, require time
to complete.

◊ The communications interpreter is overloaded with requests
from multiple devices.

◊ The receiving modem is error-controlled and its buffers are full.

RTS/CTS Pacing
The RTS/CTS Pacing setup field and @RTSCTS reserved variable
can enable a form of flow control using the RS-232 signals Request-
to-Send and Clear-to-Send. It is sometimes referred to as “hard-
ware” or “out-of-band” flow control. The valid settings are YES to
enable hardware flow control and NO to disable it. Unless you have
an error-correcting modem (such as V.42 or MNP), you will not be
able to use RTS/CTS flow control.

When the RTS/CTS Pacing setup field or @RTSCTS is set to YES
and the device attached to your communications port (such as a mo-
dem, printer, or multiplexor) holds CTS low, BLAST will not send
data. Consequently the communications process may appear to
hang. Conversely, if your communications port holds RTS low, a
device set up to sense RTS will appear to hang and will lose charac-
ters sent to it.
THE BLAST ENVIRONMENT 35

BLAST can control RTS in scripts with the RAISE RTS and DROP
RTS statements.

XON/XOFF
The XON/XOFF Pacing setup field and @XONXOFF reserved vari-
able allow BLAST to use “software” or “in-band” flow control dur-
ing terminal and BLAST transfer operation. XON/XOFF flow
control allows two computers to control the flow of data between
them. When one computer needs to stop the flow of incoming data,
it transmits XOFF (CTRL S) to the other computer. When the comput-
er is again ready to receive data, it transmits XON (CTRL Q).
XON/XOFF is the most widely used form of flow control. However,
it has potential problems:

◊ The protocol must not use the flow control characters to carry
data. A good example is the Xmodem protocol, which can never
be used through a device that honors XON/XOFF control.

◊ Both ends must implement a procedure to restart transmission
if the XON character is lost or the transmission will be irrevo-
cably halted. BLAST, for example, automatically resends a
packet if it does not receive an XON within 30 seconds of re-
ceiving an XOFF.

◊ The sequence of flow control can get very cumbersome when
the computer, a modem, a network, and a terminal server are all
exerting flow control on each other with XON/XOFF.
36 CHAPTER TWO

Chapter 3

BLAST Quickstart
IMPORTANT: The following section assumes that BLAST has been properly in-

stalled. Before proceeding, be sure to:

◊ Successfully complete the entire BLAST installation process as
instructed in the BLAST Installation Guide.

◊ Connect the modem according to the instructions supplied by
the modem manufacturer and turn on the modem.

Starting BLAST

The command to execute BLAST is issued at the operating system
prompt. Type:

BLAST

and press the ENTER key.

If BLAST does not start up, make sure that you are in the directory
where the BLAST program is located or that you have added the
BLAST directory to your PATH. Consult the documentation that
came with your version of DOS to learn how to modify the PATH.
BLAST QUICKSTART 37

If this is the first time you have run BLAST, the Online Help screen
appears automatically (only on the first time). You can either ex-
plore the Help menu now or press ESC to continue. Otherwise,
BLAST displays the Offline menu. At this point, you can control
BLAST interactively.

The BLAST Screen

The BLAST screen (Figure 3-1) includes three sections: the Com-
mand Area, the Scrolling Region, and the Status Line.

FIGURE 3-1

Command Area
The Command Area consists of three lines: the Location Line, the
Command Line, and the Command Description.

Location Line

The Location Line (Figure 3-2) provides information about your lo-
cation within BLAST. The items in the Location Line are:

Current Menu – displays the BLAST menu currently in use. The
possible values are Offline, Online, Filetransfer, Local, and Remote.

Active Setup – displays the setup that is currently loaded (not dis-
played in the Offline menu).

Current Directory – identifies the working disk directory. Use the
Chdir command in the Local menu to change the current directory.

FIGURE 3-2

Location Line
Command Line
Command
Description

Scrolling Area/
File Transfer
Status Area

Status Line

Current Active Current Required
 Menu Setup Directory User Action
38 CHAPTER THREE

Required User Action – displays the action that BLAST expects
from you. Possible values are:

MENU – select a command from the menu.
INPUT – type in data at the prompt.
ERROR – review the error message, then press any key.
WAIT – no action allowed, BLAST is busy.
SCRIPT – a BLAST script is executing.
ONLINE – BLAST is online.

Command Line

The Command Line lists all the commands available for the active
menu.

Command Description

The Command Description gives a one-line explanation of the com-
mand currently highlighted by the cursor. If you need more informa-
tion about the command, press the F1 key for Online Help.

Scrolling Region

The Scrolling Region is the area below the Command Area. If you
are in the Offline menu, the Dialing Directory is displayed in this ar-
ea. When performing a function, BLAST uses this area to display
status and data. The information displays in a variety of formats, de-
pending on the activity. This is also the File Transfer Status Area,
described below.

Status Line
The Status Line (Figure 3-3) displays the status of the current com-
munications session. Each indicator has a fixed position in the Status
Line. If the condition is true, the indicator will be displayed. For ex-
ample, if DCD appears on the Status Line in the second position, it
indicates the existence of a data carrier.

FIGURE 3-3

File Transfer Status Area
 The File Transfer Status Area appears only during a file transfer ses-
sion between two systems. It displays information concerning the

Data Carrier XOFF Elapsed time Learn Current
 is high received in session mode on system time

Help CTS Capture mode on/ Insert Port
 key is high Compression level on settings
BLAST QUICKSTART 39

files being sent and/or received. Figure 3-4 shows the status infor-
mational displayed during a BLAST protocol file transfer session.
Other filetransfer protocols supported by BLAST have displays tai-
lored to the capabilities of the protocol.

FIGURE 3-4

Following is a description of each item, or status indicator, in the
BLAST protocol File Transfer Status Area.

local – the name of the file that your system is sending or receiving.

opt – the optional transfer switches that you selected for this file.

%xfer – the percentage of the file that has been transferred to or from
the remote machine.

file size – the total file size (in bytes).

byte count – the portion of the file that has been transferred to or
from the remote machine (in bytes).

ln qual – a general description of the line quality of the connection
between the computers. Possible values during a transfer are good,
fair, poor, or dead.

Unlike BLAST protocol, other supported protocols do not make use
of all the above status indicators.

Three Keys to Remember

A number of special keys are used within BLAST, but three are used
frequently:
40 CHAPTER THREE

CTRL K CTRL K is the default “Attention (ATTN) Key.” Press CTRL

K to abort script operations or initiate other special key
combinations. Press CTRL K CTRL K to return to the Online
menu from Terminal mode. (For information on redefin-
ing the ATTN key, see “Attention Key” on page 72.)

ESC Press ESC to cancel the current action, return to the pre-
vious menu, or exit BLAST.

F1 Press F1 for context-sensitive Online Help.

The BLAST Menus

Within menus, move from one command to the next by pressing the
SPACEBAR or by using the cursor keys. Select a command by pressing
the capitalized letter in the command or by pressing ENTER when the
cursor rests on the desired command. After opening a submenu, re-
turn to the previous menu by pressing ESC.

Below the menu is a one-line description of the current command
(Command Description Line). To get more information, press F1
when the cursor highlights the appropriate command. After display-
ing text related to the command, BLAST displays a general help sec-
tion on topics not specifically related to any command. See Chapter
4 for a detailed discussion of the menus.

NOTE: Online Help is accessed by pressing F1 everywhere in
BLAST except for Terminal mode, where it is accessed by pressing
CTRL K H.

Menu Summary
Each of the menus offers commands that are grouped together by
function. For example, the Local menu allows you to manage your
system while online with a remote system, whereas the Filetransfer
menu provides functions connected with sending and receiving files.

Following is a brief summary of each menu and its purpose:

Offline – Manages setups (New, Modify, Tag, Remove, and Di-
rectory); loads the selected setup and dials out (Connect);
and starts Learn mode (lEarn).

Online – Manages connecting to and disconnecting from a remote
system (Connect and Disconnect); launches a BLAST
BLAST QUICKSTART 41

script (Script); uploads and captures text files (Upload and
caPture); controls a remote PC (Access); and starts Termi-
nal mode (Terminal).

Filetransfer – Sends and receives files using either BLAST,
FTP, Kermit, Xmodem, Ymodem, or Zmodem pro-
tocol.

Remote – Available with BLAST protocol and Kermit protocol.
Performs file management tasks on the remote system,
such as listing, renaming, deleting, typing, and printing
remote files.

Local – Performs file management on your system (List, Delete,
Rename, Type, Print, Chdir); calls the selected text editor
(Edit); displays snapshots and movies (View); and provides
access to the operating system command line (System).

A Quickstart File Transfer

The most common use of BLAST is communicating between two
computers using standard asynchronous modems and ordinary tele-
phone lines. BLAST provides hands-on experience in this environ-
ment by offering a dial-in computer system called Blaster available
24 hours a day, seven days a week for BLAST demonstrations and
testing. You are encouraged to take advantage of this service to fa-
miliarize yourself with the many features of BLAST.

This section of Quickstart will guide you through:

◊ Selecting the Blaster setup.

◊ Connecting to Blaster.

◊ Performing BLAST protocol transfers.

◊ Logging off Blaster.

Although we recommend that you complete this section in one sit-
ting, you may elect to stop by returning to the Online menu and
choosing the Disconnect command.
42 CHAPTER THREE

Selecting the Blaster Setup
Setups contain all the information that BLAST needs to connect to
and communicate with remote computers. Each setup is a separate
file created and modified through the Offline Menu. This process is
described in detail in Chapter 5. For this demonstration, you will use
a setup called Blaster, which was copied to your disk during BLAST
installation.

If you have been moving through the menus, press the ESC key until
you return to the Offline menu. You should see “Blaster” listed as
one of the entries in the Dialing Directory. Use the cursor keys to
highlight Blaster and then press M. You should see the Setup window
shown in Figure 3-5 below.

FIGURE 3-5

Check to see that the following entries appear correctly in the Setup
window:

Phone Number: 1-919-542-0939

System Type: UNIX

Userid: reliable

Password: XXXXXX (fast-transfer is the actual
password, but it will be masked by “Xs”)

Parity: None

Data/Stop Bits: 8/1

Emulation: VT320

Protocol: BLAST

If any of the entries are incorrect, use the cursor keys to move to the
appropriate field and enter the information. For the fields Phone
BLAST QUICKSTART 43

Number, Userid, and Password, you will need to type in the correct
information (the userid and password are case-sensitive and should
be typed exactly as they appear above). For the remaining fields il-
lustrated above, you can cycle through the available choices by
pressing either the SPACE or the BACKSPACE key. After you are satis-
fied that all of the setup information is correct, press ESC to exit to
the Offline menu. If you made any changes to the setup, you will be
asked if you want to save changes and will be prompted to answer
“Yes” or “No”—press Y to save the changes and return to the Offline
menu.

Connecting to Blaster
Your PC is now ready to begin talking to Blaster. You will connect
to Blaster from the Offline menu by using the Connect command,
which will automatically dial Blaster.

The screen will display messages for each of the steps in the Connect
process. If your modem has a speaker, listen to make sure that it dials
the number. Also, watch the terminal dialogue between the comput-
er and the modem. When the call is successful, a message will dis-
play indicating that the connection has been established:

CONNECT nnnn

where nnnn, if present, gives additional information about the qual-
ity and speed of the connection (Figure 3-6).

FIGURE 3-6

After recognizing the modem’s CONNECT message, Blaster’s ban-
ner and request for login will be displayed. Your setup file will au-
tomatically enter the userid and password. When the login is
44 CHAPTER THREE

complete, BLAST returns control to you by displaying the Online
menu (Figure 3-7) and waiting for your input.

FIGURE 3-7

Performing BLAST Protocol Transfers
To perform a BLAST protocol transfer, first select the Filetransfer
command from the Online menu (Figure 3-7) by pressing F. In a mo-
ment, Blaster will synchronize with your system and the Filetransfer
menu (Figure 3-8, next page) will be displayed.

Getting a File from Blaster
To get a file from Blaster:

◊ Select Get by pressing G.

◊ At the prompt:

enter remote filename:

type:

blaster.msg ENTER

◊ At the prompt:

enter local filename:

type:

news.msg ENTER
BLAST QUICKSTART 45

◊ At the prompt:

specify transfer options (t=text, o=overwrite, a=append):

type:

t ENTER

to transfer the file using text format translation.

BLAST will begin retrieving the file, and the byte count in the File
Transfer Status Area will increase. After the file has been complete-
ly sent, the byte count will stop, a blank will appear in the byte count
status indicator, and the following message will be displayed at the
bottom of the screen as shown in Figure 3-8 below:

news.msg/T=TXT ... receive completed

FIGURE 3-8

Sending a File
To send a file to Blaster:

◊ Select Send by pressing S.

◊ At the prompt:

enter local filename:

type:

news.msg ENTER
46 CHAPTER THREE

◊ At the prompt:

enter remote filename:

type:

news.msg ENTER

◊ At the prompt:

specify transfer options (t=text, o=overwrite, a=append):

type:

to ENTER

to transfer the file using text format translation and to overwrite
any existing versions of the file.

Again, notice that the status fields are updated as the file transfer
progresses. At the end of the transfer, you will see the following line
displayed on your screen:

news.msg/T=TXT news.msg/OVW/T=TXT ... send completed

After the file transfer is complete, press ESC to return to the Online
menu. An orderly shutdown of the BLAST protocol will follow. Af-
ter a few seconds, the Online menu will be displayed.

Logging Off Blaster
To log off Blaster, select the Disconnect command by pressing D. To
quit BLAST, press ESC twice. BLAST will prompt with:

Do you really want to leave BLAST? NO YES

Type Y to quit.
BLAST QUICKSTART 47

48 CHAPTER THREE

Chapter 4

The Menus

Moving Through the Menus

This chapter guides you through the various BLAST command
menus. Some items are described in more detail in other chapters; in
such cases, you will be referred to the appropriate chapter. A variety
of special keys and support for a mouse allow you to navigate
through the various commands quickly and easily. Each menu offers
commands that are grouped together by function. For example, the
Local menu allows you to manage your system online with a remote
system, whereas the Filetransfer menu allows you to perform func-
tions connected with sending and receiving files.

Within the command line of a menu, move from one command to
another by pressing SPACEBAR, BACKSPACE or by using the left and
right arrow (cursor) keys. Execute a command by pressing the capi-
talized letter in the command or by pressing ENTER when the cursor
rests on the desired command. After opening a submenu, return to
the previous menu by pressing ESC. For a discussion of selecting a
setup and navigating through a Setup window, see “What is a Set-
up?” on page 61.
THE MENUS 49

The Keyboard

BLAST uses special key sequences to differentiate between local
commands and characters meant for the remote system. The BLAST
Keys perform local functions, such as exiting Terminal mode, dis-
playing Online Help, or starting the BLAST editor. BLAST Keys
are most important in Terminal mode, when BLAST ordinarily
sends all keystrokes directly to the remote computer. All of the
BLAST keys are listed in Appendix E. Some of them can be reas-
signed using the BLAST keyboard utility, BLASTKBD (see “Key-
board Mapping Utility” on page 296 for details).

Three Keys to Remember
You will use three of the BLAST Keys most often:

CTRL K CTRL K is the default “Attention (ATTN) Key.” Press CTRL

K to abort script operations; press CTRL K CTRL K to return
to the Online menu from Terminal mode.

ESC Press ESC to cancel the current action, return to the pre-
vious menu, or exit BLAST.

F1 Press F1 for context-sensitive Online Help (In Terminal
mode, press CTRL K H).

The Attention Key

The Attention Key alerts BLAST to prepare for a particular opera-
tion. The Attention Key, represented in this documentation by the
abbreviation ATTN, is actually two keys—CTRL plus another charac-
ter. The default Attention Key is CTRL K. Press CTRL K (ATTN) to abort
script operations or initiate other special key combinations. Press
CTRL K CTRL K (ATTN ATTN) to return to the Online menu from Termi-
nal mode.

You may change the default value of the Attention Key by altering
the value of the Attention Key setup field (page 72) or by setting the
BLASTscript reserved variable @ATTKEY (page 241).

NOTE: If it is necessary to change the Attention Key, be sure to
choose a replacement value that will not interfere with your system’s
designated control codes. In particular, do not use CTRL M, which is
the control code for a carriage return. Check your system manual for
more information about special control codes before you reassign
the Attention Key.
50 CHAPTER FOUR

The Attention Key can initiate many useful functions from Terminal
mode. Please refer to Appendix B for all of the Attention Key se-
quences.

The Cancel Key

The ESC key is used to cancel the current action. It also returns you
to a previous menu from a lower level menu and is used to exit
BLAST from the Offline menu. The exception to this rule is that you
must press ATTN ATTN to escape from Terminal mode.

The Help Key

F1 is the default context-sensitive Help key. When the cursor rests on
a command in the menu, pressing F1 will display Help about that par-
ticular topic. After displaying text related to the command, BLAST
displays a general help section on topics not specifically related to
any command. Note that Help is the F1 key everywhere in BLAST
except Terminal mode, where it is the ATTN H key sequence. The
Help key can be reassigned using the BLAST keyboard utility,
BLASTKBD (see Chapter 17 for details).

Other Special Keys

Two other special types of keys are available through BLAST—Hot
Keys and Soft Keys (see Chapter 17 and Appendix B for details).

Hot Keys – Hot Keys access often-used functions from Terminal,
Filetransfer, and Access modes. Typing ALT F from Terminal mode,
for example, starts Filetransfer mode and automatically returns your
to Terminal mode when the transfer is complete.

Soft Keys – Soft Keys allow you to send often-used character
strings to a remote system with a single keystroke.

Using a Mouse

BLAST provides mouse support for a point-and-click selection of
commands and easy maneuvering within the BLAST menus. To ac-
tivate the mouse, load the mouse driver and start BLAST. You can
then execute any command that appears on the screen by moving the
mouse cursor over that command and clicking the left button.

In addition, BLAST supports several convenient mouse-only short-
cuts:
THE MENUS 51

◊ Clicking on ESC-exit in the right top portion of your screen
is the same as pressing ESC.

◊ Clicking on F1-help in the status line displays Online Help.

◊ Clicking on a setup in the Dialing Directory will highlight it.

◊ Double-clicking on a setup name in the Dialing Directory loads
that setup and dials for a connection.

◊ Clicking while in the Terminal window exits Terminal mode.

◊ Clicking on a setup input field in Modify mode advances the
cursor to that field.

◊ Clicking on a command description at the top of the setup
screen when a multiple-choice field is highlight performs that
command.

◊ Clicking on a multiple choice setup field when the keyboard
cursor is already on that field displays the next option in the list.

◊ Clicking on the XOFF in the status line resets flow control if an
XOFF has been received.

◊ Clicking on Capture in the status line toggles capture on or
off (only after you have named a capture file).

◊ Clicking on the timer (00:00:00) in the status line resets the
timer.

◊ Clicking on LRN (Learn) in the status line turns Learn mode off.

NOTE: Status line shortcuts are only available with the standard
BLAST status line, not with the special VT320 or WYSE60 status
lines.

The Offline Menu

The Offline menu (Figure 4-1, next page) is the first menu displayed
when you execute the BLAST program. The display includes three
sections: the Command Area, the Scrolling Area, and the Status
Line. See “The BLAST Screen” on page 38 for a description of these
sections. We will be concerned here primarily with the Command
Area, specifically the Command Line.
52 CHAPTER FOUR

FIGURE 4-1

If this is the first time that BLAST has run, the help screen will ap-
pear. Press ESC to leave the Help screen. The Command Description
Line below the Command Line offers a brief description of the high-
lighted command. To get more information, press F1 when the cursor
rests on the appropriate command.

Setup Commands
Five of the commands in the Command Line of the Offline menu af-
fect the setups listed in the Dialing Directory (see “What is a Setup?”
on page 61 for more details). Following is a brief description of each
command:

Connect – Loads the highlighted setup into memory and immedi-
ately attempts to dial the phone number contained in that
setup. See “Modifying a Setup” on page 64 for details
concerning the difference between this Connect com-
mand and the Connect command in the Online menu.

New – Prompts you for a new setup name. Type the name and press
ENTER. BLAST will automatically enter the Modify mode
and display in the Setup window the values of the default set-
up.

Modify – Displays the current values of the setup highlighted in
the Dialing Directory. When Modify mode is exited, those
values will be loaded into memory. If you made any
changes, a prompt will ask whether or not you wish to
save the changes.

Tag – Marks an individual setup for deletion.
THE MENUS 53

Remove – Deletes setups that have been marked with the Tag com-
mand.

Other Offline Commands
Directory – Changes the current Dialing Directory (SETUPDIR—

see Chapter 2 for details).

Local – Performs local system commands by taking you to the Lo-
cal menu (described in detail on page 57).

Learn – Builds a script for you by starting Learn mode. When you
execute the Learn command, you are prompted for a script
name. After you type the name and press ENTER, BLAST
records all of subsequent functions in the script file until
you disable Learn mode by selecting the Learn command
again. If you specify an existing filename for the script,
BLAST asks whether you want to append to or overwrite
the original script file. See “Learn Mode” on page 160 for
more details.

Online – Takes you to the Online menu, described in the next sec-
tion.

The Online Menu

Selecting Online from the Offline menu displays a menu like or sim-
ilar to the one shown in Figure 4-2 (next page). All characters re-
ceived and transmitted in Terminal, Capture, and Upload modes are
filtered by the translate file if one is specified in the Translate File
setup field (page 71). See “Translate File Format” on page 284 for
more information on translate files. Following is a brief description
of the commands of the Online menu:

Connect – Dials the phone number stored in memory from the
current setup. See “Modifying a Setup” on page 64 for
details about the difference between this Connect com-
mand and the Connect command in the Offline menu.

Terminal – Makes your system a terminal to the remote system.
The menu commands will no longer be available to you.
Remember that you must press ATTN ATTN in order to
exit Terminal mode and return to the command menus.
See “Terminal Emulation” on page 287 for more infor-
mation.
54 CHAPTER FOUR

FIGURE 4-2

Capture – Causes all incoming text from the remote system to be
captured to a file. When you enter Capture mode by ex-
ecuting the Capture command, you are prompted for a
filename. After you type the name and press ENTER,
BLAST records all of the subsequent text displayed in
the Terminal window in the capture file until you disable
Capture mode by selecting the Capture command again.
If you specify an existing filename for the capture file,
BLAST asks whether you want to append to or overwrite
the original file. See “Downloading Text from a Remote
Computer” on page 146 for more information.

Upload – Sends text from a local file to the remote computer and
displays the text on your screen. When you execute the
Upload command, you are prompted for a filename. After
you type the name and press ENTER, BLAST displays the
text on your terminal screen as well as sending it to the re-
mote system. The remote system must have a text capture
program in order to store the text in a remote file. See
“Uploading Text to a Remote Computer” on page 145 for
more information.

Filetransfer – Takes you to the Filetransfer menu described in
the next section. See also chapters on individual pro-
tocols.

Script – Executes a BLAST script after prompting you to enter the
script name. See Chapters 12–14 for information on scripts.

Local – Allows you to perform local system commands by taking
you to the Local menu described on page 57.
THE MENUS 55

Access – Begins a remote control session. After you enter Access
mode, ATTN takes you to the Access menu (see “The Ac-
cess Menu” on page 308).

Disc – Logs off the remote system cleanly and hangs up the modem
using information from the System Type and Modem Type
setup fields.

The Filetransfer Menu

Selecting the Filetransfer command from the Online menu takes you
to the Filetransfer menu. The Filetransfer menu for BLAST protocol
is shown in Figure 4-3 below. The commands on the Command Line
of the Filetransfer menu vary depending on the protocol. For exam-
ple, the Xmodem, Ymodem, and Zmodem protocols display only the
Get and Send commands, whereas the Kermit protocol has addition-
al options and its own special Remote submenu. Following is a brief
description of the commands of the BLAST protocol Filetransfer
menu. For more information on menu options for specific protocols,
see chapters discussing individual protocols.

Send – Sends a file or files to the remote system.

Get – Retrieves a file or files from the remote system.

Message – Sends a message to the remote operator. Simply type
the message and press ENTER. The message will be
queued for transmission to the remote display.

FIGURE 4-3
56 CHAPTER FOUR

Remote – Performs remote system commands allowing limited ac-
cess to the remote computer. The BLAST protocol Re-
mote menu commands, which are similar to the Local
commands, are described on page 120; see also “Kermit
Remote Menu” on page 135.

Local – Performs local system commands. This command takes you
to the Local menu, described in the next section. Note that
all filetransfer activity is suspended while you are using the
local system. This inactivity may exceed the interval speci-
fied by the BLAST protocol Inactivity Timeout setup field
(page 88) and terminate Filetransfer mode.

File – Executes a transfer command file that can control an entire
BLAST protocol transfer unattended (see “Transfer Com-
mand File” on page 117).

The Local Menu

The Local menu shown below in Figure 4-4 allows you to perform
DOS commands on your local PC, including escaping to a DOS
shell. Local commands affect only files in the current directory un-
less you specify a pathname.

FIGURE 4-4

Following is a brief description of the commands of the Local menu.

List – Displays the contents of the current local directory. You will
be prompted to choose either a detailed (long) or non-detailed
(short) list and then to enter a filename; you may use a specif-
ic filename, a filename with wildcard characters (for exam-
THE MENUS 57

ple, “*”), or press ENTER to display all files in the current local
directory.

Delete – Erases a single file or multiple files. You may use a spe-
cific filename or a filename with wildcard characters (for
example, “*”).

Edit – Invokes the BLAST editor (discussed in Chapter 11). You
may also invoke a different editor by specifying it in a
BLAST.OPT file (see the EDITOR BLAST.OPT option on
page 24).

Rename – Renames a local file.

Type – Displays a local file in the scrolling area.

View – Displays either a “snapshot” or a “movie” that has been
made using the Access menu (see “The Access Menu” on
page 308).

Print – Prints a file to the local printer.

Chdir – Changes from the current local directory to one that you
specify. The current directory is displayed on the top line of
the BLAST screen. BLAST will check this directory for
any files that you specify with the Local menu commands.

System – Performs a local system command. At the prompt, type
a system command and press ENTER. Alternatively, you
may simply press ENTER and escape to a system prompt
that takes over the BLAST display. Typing EXIT and
pressing ENTER returns you to BLAST.

NOTE: When BLAST is started with the /b switch (or
with the /n switch if the display has not been re-enabled
through a script), you cannot escape to a system prompt
with this command (see “Command Line Switches” on
page 10 and “BLAST in the Background” on page 13).

The Remote Menu

If you are using BLAST protocol or Kermit protocol, the Filetrans-
fer menu contains a Remote command that takes you to the Remote
menu. The Remote menu allows a user with no knowledge of the re-
mote operating system to manage files on that system.
58 CHAPTER FOUR

FIGURE 4-5

Figure 4-5 above shows the BLAST protocol Remote menu. The
commands of this menu, which differ from those of the Kermit Re-
mote menu, are described briefly below. For a fuller discussion of
the commands of the Remote menus, see “BLAST Protocol Remote
Menu” on page 120 and “Kermit Remote Menu” on page 135.

List – Lists a remote directory.

Delete – Deletes a file one at a time from the remote system.

Rename – Renames a remote file.

Type – Displays a remote file on the BLAST screen.

Print – Prints a remote file to the remote printer.

Chdir – Changes the current remote directory.

More – Scrolls a page of data output from the List or Type com-
mands.

Automation with BLASTscript

Up to this point, you have been learning about BLAST in interactive
mode, manually pressing keys to perform tasks. To automate com-
munications tasks that are repeated on a daily or weekly basis, use
BLAST’s interpretive programming language, BLASTscript.
THE MENUS 59

BLAST scripts can:

◊ Automate the dial and logon sequences to another computer.

◊ Send and receive files.

◊ Control standard and nonstandard modems and communication
devices.

◊ Customize the user interface.

◊ Perform error-checking for session validation.

◊ Access online information services to send and receive mail.

◊ Poll large numbers of unattended remote sites after regular busi-
ness hours.

Refer to Chapters 12–14 and Appendix E of this manual for detailed
information on the use of BLAST scripts.
60 CHAPTER FOUR

Chapter 5

The Setup

What is a Setup?

Communication between computers requires a great deal of
information: the phone number of the remote computer, the modem
type and baud rate, basic communications parameters, and more.
BLAST keeps this information in individual files called “setups,”
one file for each different system connection. BLAST is distributed
with BLASTER.SU, a setup that contains the correct settings for you
to call the BLAST demonstration line (see “Connecting to Blaster”
on page 44). A setup containing default values, DEFAULT.SU, is
created when BLAST is executed for the first time.

You can customize the setup by selecting the Modify command in
the Offline menu. Although this chapter tells you how to create, edit,
and save setups, the Online Help for some setup fields has more spe-
cific information.

We recommend that you make any changes to the setup through the
Modify menu; however, setups are text files and can thus be edited
with any text editor. Be sure to save the file as “text only” or
“ASCII” and give it the extension “.SU”; do not save it as a word
processor file.
THE SETUP 61

Loading a Setup
In the Offline menu, you will see a Dialing Directory of all available
setup files (Figure 5-1). There are three ways to load a setup file into
memory:

1. To load the setup and connect in one step—use the up and down
arrow keys to highlight the setup file in the directory and then
press C. This both loads the setup file and attempts to connect to
the number specified in the setup file. BLAST will automatical-
ly move to the Online menu.

2. To load the setup for possible modification—use the up and
down arrow keys to highlight the setup file in the directory and
then press M. This will load the setup values into memory and
display the Setup window (Figure 5-2 on the next page). If you
escape from this screen without making any modifications, the
setup values will remain in memory. If you make changes to the
setup, BLAST will prompt you to save or discard the changes.
You will then be returned to the Offline menu.

3. To load the setup without connecting—press S; when you see
the prompt, “Enter setup name to load,” type in the name of the
setup file and press ENTER. BLAST will automatically move to
the Online menu after loading the setup.

NOTE: If you load a mouse driver, you may perform these proce-
dures with a mouse. For details on using a mouse, see “Using a
Mouse” on page 51.

Notice that the name of the setup is now shown on the top line of the
Online menu.

FIGURE 5-1
62 CHAPTER FIVE

The Default Setup
BLAST creates a setup named DEFAULT.SU as part of the instal-
lation procedure. This setup contains default values for each setup
field and is automatically loaded when you start BLAST (unless you
specify another setup on the command line; see “Command Line
Switches” on page 10). BLAST uses the default setup as the tem-
plate for new setups. Each setup you create will use these same val-
ues until you modify them. By customizing DEFAULT.SU with the
values you are most likely to need, you can make creating new set-
ups faster and easier.

If you unintentionally overwrite the original DEFAULT.SU, you
can restore its original settings by deleting or renaming the existing
DEFAULT.SU and restarting BLAST. BLAST will create a new
DEFAULT.SU based on the values you entered during installation.

Creating a New Setup
To create a new setup, select the New option in the Offline menu by
pressing N. BLAST will prompt with:

Enter new setup name:________

Choose a name up to eight characters long. You may want to use the
location of the remote site as the setup name. BLAST will automat-
ically append the extension “.SU” to the filename. Type in the setup
name and press ENTER. BLAST will enter Modify mode (see next
section) and display in the Setup window (Figure 5-2) the values of
default setup. After you modify these values and press ESC, BLAST
will automatically save the new setup file, load its values into mem-
ory, and return to the Offline menu.

FIGURE 5-2
THE SETUP 63

Modifying a Setup
To modify a setup file from the Offline menu, use the up and down
arrow keys to highlight the setup file in the directory and then press
M. This automatically loads the setup values into memory, overrid-
ing a previously loaded setup. You will see the Setup window (Fig-
ure 5-2, preceding page).

A field must be highlighted before you can modify its value. Use the
arrow keys to move from field to field. The third line of the screen
will display the type of action necessary to enter a value. Most fields
are multiple choice. Use SPACEBAR to cycle forward and BACKSPACE
to cycle backwards through the available options in these fields; then
press ENTER to proceed to the next field. Some fields, such as Phone
Number, require your input. To correct a mistake while entering da-
ta, use BACKSPACE to delete the mistake and then continue typing, or
press CTRL T to clear the field and start over.

The Emulation and Protocol fields may require additional input. If
the entry in the field is followed by three periods, e.g., “VT220...,”
there is a subwindow of additional settings. Press ENTER to access the
subwindow. After making the necessary changes to the subwindow,
press the ESC key to return to the Setup window.

After finishing the modifications, press ESC and you will see the fol-
lowing prompt, “...save changes to the current setup?” If you choose
“Yes,” BLAST will overwrite the old file with the new values. The
original settings are lost when you overwrite a file; always use the
New command (instead of Modify) when you do not wish to over-
write existing settings. There are two alternatives if you answer
“No” to the save prompt:

1. If after choosing “No,” you select Connect from the Offline
menu, you will be asked again if you wish to save the changes.
If you answer “No,” BLAST will discard the changes you have
made and connect you using the unmodified values in the setup.

2. If after choosing “No,” you select Online from the Offline
menu, you will enter the Online menu. From the Online menu,
if you select Connect or Terminal, BLAST will use the values
that you have just modified in your setup, but it will not save
them to disk. Before you can modify another setup or quit the
program, BLAST will ask whether or not you want to save the
current changes to your setup file.
64 CHAPTER FIVE

Removing a Setup
To delete a setup, use the up and down arrow keys to highlight the
setup, press T to tag the setup, and then press R. When you are
prompted to delete the setup, select “Yes” to delete the setup or “No”
to cancel the deletion.

Setup Fields

This section briefly discusses the function of each setup field of the
Setup window and indicates default values in brackets and corre-
sponding BLASTscript variables in italics (For more on BLAST-
script variables, see Chapter 16). The Online Help for each field also
contains detailed information. For quick reference, the page num-
bers for descriptions of major setup fields are listed below.

Description user-defined

Provides a detailed description of the setup. This information is a
free form comment; however, scripts can use the variable
@SYSDESC for any purpose. For example, the program can take in-

FIELD PAGE
DESCRIPTION: 65
PHONE NUMBER: 66
SYSTEM TYPE: 66
USERID: 67
PASSWORD: 67
CONNECTION: 67
CONNECTION T/O: 68
ORIGINATE/ANSWER: 68
MODEM TYPE: 69
PULSE DIALING: 70
BAUD RATE: 70
PARITY: 70
DATA/STOP BITS: 71
KEYBOARD FILE: 71
SCRIPT FILE: 71
LOG FILE: 71
TRANSLATE FILE: 71
ATTENTION KEY: 72
EMULATION: 72
ANSI SUBWINDOW: 72
DG SUBWINDOW: 73

FIELD PAGE
DEC VT SUBWINDOW: 74
WYSE SUBWINDOWS: 78
HP SUBWINDOW: 82
FULL SCREEN: 84
LOCAL ECHO: 84
AUTOLF IN: 84
AUTOLF OUT: 85
WAIT FOR ECHO: 85
PROMPT CHAR: 85
CHAR DELAY: 85
LINE DELAY: 86
XON/XOFF PACING: 86
RTS/CTS PACING: 86
PROTOCOL: 87
BLAST SUBWINDOW: 87
KERMIT SUBWINDOW: 92
ZMODEM SUBWINDOW: 95
PACKET SIZE: 99
THE SETUP 65

formation from the description line as input or write to it to save sta-
tus information.

BLASTscript variable: @SYSDESC

Phone Number user-defined

Stores the phone number of the remote computer. This field allows
up to 40 characters. Although any alphanumeric character may be
entered, be careful to avoid using characters that may be misinter-
preted by the modem. Most modems allow commas to signify paus-
es within a dialing string. This string is passed unchanged to the
modem. See your modem manual for details.

For a direct connection, leave the Phone Number field empty.

BLASTscript reserved variable: @PHONENO

System Type any valid system type

Identifies the multi-user computer type to which BLAST will con-
nect. If you are connecting to a computer not listed here or to a
single-user system, select NONE. (Mac and PC types are provided
for consistency with BLAST scripts but are equivalent to NONE.)
The Connect, Disconnect, Filetransfer, and Upload processes use
this information to automate your logons and file transfers.

The available system types are modified periodically by BLAST,
Inc. The the system types in the list below were the ones available at
the time of publication. To obtain the most recent list, you may
download the most recent system script from our FTP site at
ftp://blast.com/dist/scripts/.

None – Single-user system such as IBM PC or Apple Macintosh
PC – IBM PC
Mac – Apple Macintosh
VMS – DEC VAX VMS
AOS – Data General AOS
BHost – BLAST Host
UNIX – UNIX
XENIX – Xenix
AIX – IBM RS/6000
A/UX – Apple UNIX
HP-UX – Hewlett-Packard UNIX
IRIX – Silicon Graphics UNIX
QNX – QNX 4.2
SCO – Santa Cruz Operation UNIX for PC
66 CHAPTER FIVE

SunOS – Sun UNIX
Ultrix – DEC VAX Ultrix
CEO – Data General
MVS/TSO – IBM Mainframe
VM/CMS – IBM Mainframe
WBHOST – WinBLAST

To specify a user-defined system type, enter into this field the name
of the .SCR file (which must reside in the current directory or in
BLASTDIR). See Chapter 14 for more details on SYSTEMS.SCR
and user-defined system scripts.

BLASTscript variable: @SYSTYPE

Userid user-defined

Holds the login ID used to log onto the remote system. With the val-
ue of this field, BLAST’s CONNECT command uses the
SYSTEMS.SCR library to answer logon queries automatically.

BLASTscript variable: @USERID

Password user-defined

Holds the password used to log onto the remote system. With the
value of this field, BLAST’s CONNECT command uses the
SYSTEMS.SCR library to answer password queries automatically.
To maintain security, this field is intentionally overwritten with Xs
in the Setup window and encoded in the setup file on the disk.

As additional security, BLAST prompts you for this password if this
field is left blank; therefore, the password need not be on the disk at
all. For more information, see @PASSWORD on page 259.

BLASTscript variable: @PASSWORD

Connection any valid commport
 or network device

Specifies the communications port or LAN driver and destination
that BLAST will use. This field has two parts:

Connection Type – specifies either an asynchronous communica-
tions port (COMx: or BIOSx:) or a network driver assigned in
BLAST.OPT. For serial connections, acceptable values are COM1:
– COM8:, BIOS1:, BIOS2:, or any user-defined communications
port. For LAN connections, acceptable values are network drivers
THE SETUP 67

that were defined during the installation process or in a valid
BLAST.OPT (for a list of drivers, see “BLAST Network Drivers”
on page 28).

Connection Name – specifies the network destination name if Con-
nection Type is a LAN driver (for example, a valid name would be
blaster(198.116.85.11),TCP/IP; see your Installation
Guide for more information on destination names.)

NOTE: You may type a name at the bottom of the Connection
Name subwindow. This destination name is used for the current ses-
sion but is not added to your default list of Connection Names. The
Connection Name is stored in @NETSERVICE.

To connect with a remote computer through an X.25 gateway, you
must load the X.25 redirection software (such as Netware X.25 or
Eicon X.25) on the network before you run BLAST. When you run
BLAST, choose BIOS1: as your Connection.

The default value of this field is set during BLAST installation if
LAN drivers and destination names are specified during installation.

BLASTscript variable: @COMMPORT (Connection Type)
BLASTscript variable: @NETSERVICE (Connection Name)

Connection T/O 0 – 999 [60]
For network connections, specifies the number of seconds that
BLAST will wait for a network connection after entering the Online
menu. This field has no effect on serial connections.

If the specified amount of time passes and a connection has not been
made, BLAST will display an error message, set @STATUS to a non-
zero value, and return to the Online menu.

If this field is set to 0, BLAST will not time out.

BLASTscript variable: @CONNTIMO

Originate/Answer [ORIGINATE] ANSWER

Specifies what BLAST will do during the automated connect and
disconnect processes. To dial out and initiate a connection, set the
field to ORIGINATE. To set BLAST to wait for a caller to connect,
set the field to ANSWER.
68 CHAPTER FIVE

NOTE: For node-to-node network connections, one system must
be set to ORIGINATE and the other system set to ANSWER. A useful
rule of thumb to maintain consistency is: If the Network Service
name (in the Connection field) is your name, set your Answer/Orig-
inate field to ANSWER; if it is the name of the node you are trying to
call, set the field to ORIGINATE.

BLASTscript variable: @ORGANS

Modem Type any valid modem type

Identifies the modem connected to your communications port.
When you select the Online Connect or Disconnect menu command,
or use the CONNECT or DISCONNECT BLASTscript command,
BLAST uses the modem type named in this field to execute pre-
defined programs from the MODEMS.SCR library. These routines
perform various hardware-specific tasks, such as dialing the phone
and disconnecting from the remote computer.

The available modem types are modified periodically by BLAST,
Inc. The the modem types in the list below were the ones available
at the time of publication. To obtain the most recent list, you may
download the most recent MODEMS.SCR from our FTP site at
ftp://blast.com/dist/scripts/.

None – no modem specified
Hardwire – direct connection
Apex – Apex Data modems
AT – AT command set
AT&T – AT&T Paradyne modems
Boca – Boca modems
Cardinal – Cardinal modems
Codex – Codex modems
GVC – GVC modems
Hayes – Hayes modems
Intel – Intel modems
MegaHz – Megaherz modems
Microcom – Microcom modems
Motorola – Motorola Universal Data Systems (UDS) modems
Multitec – MultiTech modems
Ositech – Ositech modems
Practicl – Practical Peripherals modems
Supra – Supra modems
Telebit – Telebit modems
UDSFasTk – Motorola UDS FasTalk
UDSV3229 – Motorola UDS V3229
USRobot – U.S. Robotics modems
THE SETUP 69

USRV32 – U.S. Robotics Courier V.32, V.32bis, V.42, V.42bis
Zoom – Zoom modems
ZyXEL – ZyXEL modems

If your modem does not appear as a choice in the setup field, you
may specify a user-defined modem type by entering into this field
the name of the .SCR file. See Chapter 14 for more details on
MODEMS.SCR and user-defined modem scripts. The default Mo-
dem Type is set during BLAST Installation.

BLASTscript variable: @MODEM

Pulse Dialing YES [NO]
Specifies whether to use pulse dialing. If this field is set to YES,
pulse dialing is used; if it is set to NO, tone dialing is used.

BLASTscript variable: @PULSEDIAL

Baud Rate 300 600 1200 2400 4800
9600 19.2 38.4 57.6 115K

Indicates the speed of your PC’s communications port, usually the
same as your modem’s top speed. Some older modems are incapable
of negotiating baud rates with other modems. If you have trouble
connecting with other systems, match your Baud Rate setting with
the highest Baud Rate supported by the remote computer.

This is a multiple choice field. The default value is set during
BLAST installation.

Sometimes it is advantageous to run at a lower than maximum baud
rate. Slow PCs may drop characters at very high baud rates, causing
garbled displays in Terminal mode and a high number of block re-
transmissions during file transfers. Throughput may be better at a
slower rate.

BLASTscript variable: @BAUDRATE

Parity [NONE] EVEN ODD MARK SPACE

Sets the parity of the communications port. This setting should
match that of the remote computer.

 BLASTscript variable: @PARITY
70 CHAPTER FIVE

Data/Stop Bits 7/1 7/2 [8/1] 8/2

Sets the number of data bits (7 or 8) and number of stop bits (1 or
2) for the communications port while you are in Terminal mode.

BLASTscript variable: @D/S_BITS

Keyboard File filename

Specifies a user-defined keyboard map for a particular keyboard or
application. This field remains blank unless you create your own
keyboard maps with BLASTKBD, the BLAST keyboard mapping
utility (see “Keyboard Mapping Utility” on page 296).

BLASTscript variable: @KEYFILE

Script File filename

Designates a BLAST script that is executed immediately when the
user selects the Online menu. A script specified on the BLAST com-
mand line overrides a script specified in this field.

Use BLAST scripts to automate part or all of a BLAST session.

BLASTscript variable: @SCRFILE

Log File filename

Names the log file that keeps a record of all session activity. When
a file is transferred, a menu selection made, or a BLASTscript state-
ment executed, the log file records the activity and the time that it
occurred. Extended Logging offers detailed information about file
transfers. For more information on Extended Logging, see the de-
scription of the @XLOG reserved variable on page 278.

If the filename that you enter already exists, BLAST appends the
new session activity information to the existing file; otherwise the
file is created. Log files do not need any particular extension and can
be any combination of the normally accepted filename characters.
You may specify a full path as part of the log filename.

BLASTscript variable: @LOGFILE

Translate File filename

Designates a control file to filter incoming or outgoing characters in
Terminal mode and during text upload and capture. The Translate
File is an ASCII text file that can be edited by a text processor or the
THE SETUP 71

BLAST editor. See “Translate File Format” on page 284 for more
information.

BLASTscript variable: @XLTFILE

Attention Key any Control key [^K]
Defines the key combination interpreted as the Attention Key. This
field accepts a single keystroke, which is used in combination with
the CTRL key. Throughout this manual, the Attention Key is referred
to as ATTN.

If the value of the Attention Key is changed, the replacement value
must be carefully chosen. Certain sequences are special codes used
for text formatting and management. For instance, the ENTER key
sends a ^M as the code for a carriage return. If ^M is used for the at-
tention key, the ENTER key will also function as ATTN, usually with
undesired results: if you press the ENTER key twice in Terminal
mode, you will escape to the Online menu.

We recommend that you do not change this setting.

BLASTscript variable: @ATTKEY

Emulation any valid terminal emulator [VT320]
Specifies the terminal emulator for the communications session.
This is a multiple-choice field.

The possible values for this multiple choice field are VT320,
VT220, VT100, VT52, ANSI, D461, D411, D410, D200,
TV920, D80, ADM3A, WYSE50, WYSE60, HP2392, IBM3101,
and TTY. BLAST also supports pass-through terminal emulation, in
which the characters received on the communications port are dis-
played without change. For complete transparency, set this field to
TTY and set the setup Translate File field to PASSTHRU.TBL.

BLASTscript variable: @EMULATE

ANSI Emulation Subwindow

Selecting the ANSI emulator and pressing ENTER displays the ANSI
Emulation subwindow shown in Figure 5-3 on the next page:
72 CHAPTER FIVE

FIGURE 5-3

ANSI Level 2.x [3.x]
Specifies the correct level of ANSI for your system. Some applica-
tions require ANSI Level 2.x.

BLASTscript variable: @ANSILEVEL

Auto Wrap [YES] NO

Specifies automatic wrapping of lines longer than 80 characters.

BLASTscript variable: @ANSIAUTOWRAP

DG Emulation Subwindow

Selecting any of the Data General (DG) emulators and pressing
ENTER displays the DG Emulation subwindow shown below in Fig-
ure 5-4:

FIGURE 5-4

Cursor Type NONE UNDERLINE
[REVERSE VIDEO]

Determines whether the cursor is displayed as a reverse-video block,
as an underline character, or not displayed.

BLASTscript variable: @DGCURSTYPE

Data Bits 7 [8]
Sets data bits.

BLASTscript variable: @DGDATABITS
THE SETUP 73

Local Print Option [PRINT SCREEN]
PRINT WINDOW

PRINT PASSTHROUGH ON
SIMULPRINT ON PRINT FORM

Sets local print key action.

BLASTscript variable: @DGPRTMODE

Print Window [ENABLED] DISABLED

Specifies whether the local print key and keyboard shortcuts for DG
local print commands are enabled.

BLASTscript variable: @DGPRTWIND

DEC VT Emulation Subwindows

Selecting any of the VT emulators and pressing ENTER will display a
VT subwindow of extended configuration options. The VT320 sub-
window is shown below in Figure 5-5. The VT220 and VT52/100
subwindows are subsets of the VT320 subwindow.

FIGURE 5-5

7/8 Bit Controls [7] 8

Specifies whether “CI” control characters are represented in the
8-bit environment or as 7-bit escape sequences.

BLASTscript variable: @VT8BIT

80/132 Columns [80] 132

Specifies 80-column or 132-column display for text.

BLASTscript variable: @VTDISP132
74 CHAPTER FIVE

132 Compressed YES [NO]
Specifies compressed mode for video when the 80/132 Columns set-
up field is set to 132 or the host sends a sequence to the emulator to
use 132 columns. To use this feature, your PC must be equipped
with an EGA or VGA adapter card and compatible monitor.

BLASTscript variable: @VTCOMPRESSED

Horizontal Scroll [JUMP] SMOOTH NONE

Specifies how to scroll data on an 80-column display when the em-
ulator is in 132-column mode. SMOOTH moves the view of the dis-
play only as necessary to display the cursor position. JUMP adjusts
the view based on the setting of the setup field Jump Scroll Inc.
When NONE is selected, the display does not scroll and the cursor
may disappear from view. The value of this field is ignored when
132 Compressed setup field is set to YES.

BLASTscript variable: @VTHSCROLL

Jump Scroll Inc 1 – 53 [10]
Specifies the number of columns to scroll left or right when the cur-
sor reaches the edge of the screen and the Horizontal Scroll setup
field is set to JUMP.

BLASTscript variable: @VTHSCROLLN

Keypad Mode [NUMERIC] APPLICATION

Specifies whether the numeric keypad keys will send numbers
(NUMERIC) or programming functions defined by the application
(APPLICATION).

BLASTscript variable: @VTKEYPAD

Cursor Keys Mode [NORMAL] APPLICATION
Specifies whether the cursor keys will control cursor movement
(NORMAL) or send application control functions (APPLICATION).

BLASTscript variable: @VTCURSOR

Reset Terminal YES [NO]
Specifies resetting many of the VT320 operating features, such as
scrolling regions and character attributes, to their factory default val-
THE SETUP 75

ues upon entering Terminal mode. YES resets these values; the value
of this variable is then automatically reset to NO.

BLASTscript variable: @VTRESET

Clear Screen YES [NO]
Specifies clearing of the terminal’s video display the next time you
enter Terminal mode. YES clears the terminal’s video display; the
value of this variable is then automatically reset to NO.

BLASTscript variable: @VTCLRSCRN

Answerback Msg up to 30 characters

Contains a message to be sent to the remote computer upon receiv-
ing an inquiry (^E). The message can be up to 30 characters long.

BLASTscript variable: @VTANSBACK

User Def Keys [UNLOCKED] LOCKED

Specifies whether the host system can change user-defined key
(UDK) definitions.

BLASTscript variable: @VTUSERKEYS

Text Cursor [YES] NO

Specifies whether to display the text cursor.

BLASTscript variable: @VTTEXTCURS

Cursor Type BLOCK [LINE]
Specifies whether the cursor is displayed as a reverse-video block or
as an underline character.

BLASTscript variable: @VTCURSTYPE

Auto Wrap YES [NO]
Specifies whether text typed at the right margin will automatically
wrap to the next line.

BLASTscript variable: @VTAUTOWRAP
76 CHAPTER FIVE

New Line YES [NO]
Specifies whether the ENTER key will move the cursor to a new line.
Possible choices are NO (the ENTER key sends only a carriage return)
and YES (both a carriage return and line feed are sent).

BLASTscript variable: @VTNEWLINE

Print Mode [NORMAL] AUTO CONTROLLER

Specifies when information is sent to the printer. In AUTO print
mode, each line of received text is displayed and printed; in
CONTROLLER mode, all received data is sent directly to the printer
without displaying it on the screen; and in NORMAL mode, the user
initiates printing from the keyboard.

BLASTscript variable: @VTPRINT

Print Screen [SCROLL REGION] FULL PAGE

Specifies how much of the screen to print when you press the PRINT

SCREEN key. Choices are FULL PAGE (entire page) and SCROLL
REGION (only the currently defined VT scrolling region).

BLASTscript variable: @VTPRINTPAGE

Intl Char Set [USASCII] UK FRENCH
GERMAN ITALIAN
SPANISH DANISH

Specifies whether 7- or 8-bit data is used for international support.
The default value, USASCII, allows 8-bit data. The high-order
values are used to represent international characters. If any other
character set is selected, specific international characters replace
characters within the ASCII set.

BLASTscript variable: @VTINTL

User Pref Char Set [DEC SUPPLEMENTAL]
ISO LATIN-1

Specifies either DEC SUPPLEMENTAL or ISO LATIN-1 as the
user preferred character set.

BLASTscript variable: @VTUSERCHAR
THE SETUP 77

Status Line [NONE] INDICATOR
HOST WRITABLE

Specifies the status line to be displayed at the bottom of the screen.
The INDICATOR status line displays cursor position, printer status,
and modem status information; the HOST WRITABLE status line
displays messages from the Host computer. Selecting NONE speci-
fies the BLAST status line.

BLASTscript variable: @VTSTATUSLN

WYSE Emulation Subwindows

Selecting the WYSE60, WYSE50, TV920, D80, or ADM3A emulator
and pressing ENTER will display one of two subwindows of extended
configuration options: the WYSE60 Emulation subwindow (Figure
5-6 below) or the WYSE50/TV/D80/ADM3A subwindow. These
subwindows are identical except for the Personality option available
with WYSE60 emulation.

FIGURE 5-6

25th Line [BLAST STATUS LINE]
25th DATA LINE

STANDARD STATUS LINE
EXTENDED STATUS LINE

Specifies how the 25th line will be used. 25th DATA LINE speci-
fies no status line—the 25th line will be used for data. BLAST
STATUS LINE specifies the BLAST status line. STANDARD
STATUS LINE specifies the standard Wyse status line. EXTENDED
STATUS LINE specifies the extended Wyse status line. Both the
standard and extended status lines display keyboard lock informa-
tion, current page number, Wyseword mode, communication mode,
flow control information, printer status, and a host-definable com-
puter message. The standard status line also displays the current
78 CHAPTER FIVE

time and cursor position, and the extended status line also displays
insert mode and field protection status.

BLASTscript variable: @WY25LINE

Page Length [1 * DATA LINES]
2 * DATA LINES 4 * DATA LINES

Specifies page length in number of screens of data. 2* DATA
LINES sets the page length to 48 lines or 50 lines depending on the
value specified in the 25th line setup field.

BLASTscript variable: @WYPAGELEN

Auto Wrap [YES] NO
Specifies automatic line wrapping.

BLASTscript variable: @WYAUTOWRAP

Auto Scroll [YES] NO

Specifies scrolling of the terminal display when the cursor reaches
the bottom of a page. If Auto Scroll is set to OFF, the cursor is placed
at the home position instead of scrolling. The Auto Scroll value is
ignored if Auto Page is set to ON.

BLASTscript variable: @WYAUTOSCROLL

Auto Page YES [NO]

Specifies whether the cursor can move off the current page. If YES
is selected, the cursor can move above the first line to the previous
page or below the last line to the next page.

BLASTscript variable: @WYAUTOPAGE

Wyseword YES [NO]
Specifies whether keys send Wordstar™ functions (YES) or the
standard key codes (NO). (The only keys that are affected are the
Wyse keys that can be mapped with the BLASTKBD utility; see
“Keyboard Mapping Utility” on page 296).

BLASTscript variable: @WYSEWORD
THE SETUP 79

Expanded Memory YES [NO]
Specifies whether “expanded” memory is used. Note that this setting
is not related to DOS expanded memory. Normally, the terminal em-
ulator uses two pages of video display memory. If the maximum of
four pages is required, expanded memory must be set to YES. Note,
however, that more run-time memory will be required by BLAST,
possibly adversely affecting throughput during file transfers.

BLASTscript variable: @WYEXPNDMEM

Write Protect [DIM] REVERSE NORMAL

Specifies the attributes used to display protected fields.

BLASTscript variable: @WYWRITEPROT

Personality [WYSE60]
(WYSE60 Only) PC Term

Specifies WYSE60 or PC Term personality.

BLASTscript variable: @WYPERSONALITY

Answerback up to 20 characters

Contains a message to be sent to the remote computer upon receiv-
ing an inquiry (^E). The message can be up to 20 characters long.

BLASTscript variable: @WYANSBACK

Columns [80] 132

Specifies 80 or 132 columns per row.

BLASTscript variable: @WYDISP80

132 Compressed YES [NO]

Specifies whether compressed mode is used when the Columns set-
up field is set to 132 or the host sends a sequence to the emulator to
use 132 columns. To use this feature, your PC must be equipped
with an EGA or VGA adapter card with 132 column support and a
compatible monitor.

BLASTscript variable: @WYCOMPRESSED
80 CHAPTER FIVE

Horiz Scroll Inc 1 – 53 [10]
Specifies the number of columns to scroll when the cursor reaches
the edge of the screen and the Columns setup field is set to 132 and
the 132 Compressed setup field is set to NO. Note that a value of 1
specifies smooth scrolling. Any other value specifies jump scrolling.

BLASTscript variable: @WYSCROLLINC

Cursor Type [BLOCK] LINE

Specifies whether the cursor is displayed as a reverse-video block or
as an underline character.

BLASTscript variable: @WYCURSTYPE

Display Cursor [YES] NO

Specifies whether the cursor is visible.

BLASTscript variable: @WYDSPCURSOR

Return [CR] CRLF TAB

Specifies the character to send when the RETURN key is pressed.

BLASTscript variable: @WYRETURN

Enter [CR] CRLF TAB

Specifies the character to send when the keypad ENTER key is
pressed.

BLASTscript variable: @WYENTER

Comm Mode [CHARACTER] BLOCK

Specifies whether data is sent after each keystroke (CHARACTER
mode) or grouped in blocks (BLOCK mode).

BLASTscript variable: @WYCOMMODE

Block End [US/CR] CRLF/ETX

Specifies what characters mark the end-of-line and end-of-block
when the terminal is in block mode and sends a block of data. If
THE SETUP 81

US/CR is selected, a US character (\037) is sent at the end of each
line and a CR character (\015) is sent to mark the end of the block.

BLASTscript variable: @WYBLOCKEND

HP Emulation Subwindow

Selecting the HP2392 emulator and pressing ENTER will display the
HP Emulation subwindow shown below in Figure 5-7:

FIGURE 5-7

Terminal Id [2392] any valid terminal ID

Specifies what terminal identification will be sent to the remote
computer when a Terminal Id request (ESC *S^) is made.

BLASTscript variable: @HPTERMID

InhHndShk(G) [NO] YES

Specifies inhibition of D1 handshaking when data is transferred
from the emulator to the remote computer.

InhHndShk (G) is used with Inh DC2(H) setup field to determine
what type of handshaking is used. If InhHndShk(G) is set to YES,
and Inh DC2(H) is set to NO, D1/D2/D1 handshaking is used. If both
InhHndShk(G) and Inh DC2(H) are set to YES, all handshaking is
inhibited.

BLASTscript variable: @HPINHHNDSHK

Inh DC2(H) [NO] YES

Specifies inhibition of D1/D2/D1 handshaking when data is trans-
ferred from the emulator to the remote computer.

Inh DC2(H) is used with InhHndShk(G) setup field to determine
what type of handshaking is used. If Inh DC2(H) is set to YES, and
InhHndShk(G) is set to NO, D1 handshaking is used. If both
82 CHAPTER FIVE

InhHndShk(G) and Inh DC2(H) are set to YES, all handshaking is
inhibited.

BLASTscript variable: @HPINHDC2

InhEolWrp(C) [NO] YES

Specifies inhibition of automatic text wrapping. If this field is set to
NO, text automatically wraps; if it is set to YES, when the cursor
reaches the right margin, it remains there (with succeeding charac-
ters overwriting the existing character) until a carriage return or oth-
er cursor movement is performed.

BLASTscript variable: @HPINHWRAP

Destructive BS [NO] YES

Specifies that BACKSPACE erase the character under the cursor after
moving the cursor one character to the left.

BLASTscript variable: @HPDESTRBS

Start Col [0] YES

Specifies the position of the left margin if no logical start-of-text
pointer has been generated.

BLASTscript variable: @HPSTARTCOL

Line/Page(D) [LINE] PAGE

Specifies whether a line or a page at a time is transmitted in block
mode.

BLASTscript variable: @HPLINEPAGE

FldSeparator any Control character [^]
Specifies the field separator character. When you press ENTER while
in block page mode containing a formatted display, a field separator
character is automatically transmitted at the end of each protected
field (except the final one).

BLASTscript variable: @HPFLDSEP
THE SETUP 83

BlkTerminator any Control character [^^]
Specifies the block terminator character. A block terminator charac-
ter is transmitted to the remote computer at the end of a transfer op-
eration.

BLASTscript variable: @HPBLKTERM

END OF EMULATION
SUBWINDOW DESCRIPTIONS

Full Screen [YES] NO

Indicates whether the top four lines of the menu display will be sup-
pressed in Terminal mode. The default value, YES, suppresses the
menu and allows the top 24 lines of the terminal screen to be used
for data.

BLASTscript variable: @FULLSCR

Local Echo YES [NO]
Specifies whether BLAST will echo typed characters to the screen
in Terminal mode. If this field is set to YES, BLAST will display
typed characters before sending them out the communication port; if
the field is set to NO, BLAST will display characters only if the re-
mote computer sends them back.

If this field is set to YES and double characters are displayed on the
screen, change the setting to NO.

BLASTscript variable: @LOCECHO

AutoLF In YES [NO]
Controls the Terminal mode actions when receiving carriage re-
turns. Some remote systems do not automatically supply line feeds,
causing multiple lines of text written on top of each other on your
monitor. To read incoming text correctly from this computer type,
set AutoLF In to YES. The setting for AutoLF In has no effect on
text received in Capture mode.

BLASTscript variable: @AUTOLFIN
84 CHAPTER FIVE

AutoLF Out YES [NO]
Controls Terminal mode actions when sending carriage returns. A
setting of YES causes BLAST to append a line feed to each carriage
return sent out from the communications port. Line feeds are often
stripped from the data stream to increase throughput. If the remote
system requires a line feed after the carriage return, set AutoLF Out
to YES.

BLASTscript variable: @AUTOLFOUT

Wait for Echo YES [NO]
During text uploads, specifies that BLAST wait for the echo of the
previously sent character before sending another character; this set-
ting has no effect on file transfers.

Wait for Echo “paces” text uploads to slow BLAST down when the
remote computer operates more slowly than the local system. It is
also useful when sending one line commands to modems that cannot
take bursts of high speed data while in Command mode.

BLASTscript variable: @WT4ECHO

Prompt Char [NONE] any ASCII character

Specifies the character that BLAST will use to determine when to re-
sume sending text. After sending a line of text and a carriage return,
BLAST pauses until the remote system sends the prompt character.
Prompting is an effective form of flow control while uploading text.

Any single character, including a control character, is a valid entry.
To enter a control character, prefix the character with a caret (^).
NONE disables prompting.

BLASTscript variable: @PROMPTCH

Char Delay [0] – 999

Specifies the time period (in hundredths of a second) that BLAST
pauses between sending each character to the remote computer. This
pause slows down strings sent by BLAST scripts and text that is up-
loaded.

Character delay is a form of flow control. Use Char Delay when the
remote computer is unable to keep pace with BLAST and no other
form of flow control is available or to slow down the interaction with
a modem or other simple hardware device that does not support oth-
THE SETUP 85

er forms of flow control. The default value, 0, specifies no delay.
Char Delay delay applies only to text uploads; it has no effect on file
transfers.

If you are performing a text upload over a connection that is not
100% error free, it may be necessary to set Char Delay to a value
other than 0 to upload text reliably.

BLASTscript variable: @CHARDLY

Line Delay [0] – 999

Specifies the length of time (in tenths of a second) to pause after
sending a line of data. Line Delay provides a form of flow control
while uploading text to the remote computer. Some remote systems
may be unable to keep pace with BLAST; setting this field to a non-
zero value can prevent overloading the remote computer. If Line De-
lay is set to 0, no delay will occur. Line Delay applies only to text
uploads; it has no effect on file transfers.

If you are performing a text upload over a connection that is not
100% error free, it may be necessary to set Line Delay to a value oth-
er than 0 to upload text reliably.

BLASTscript variable: @LINEDLY

XON/XOFF Pacing YES [NO]
Specifies whether BLAST will use software flow control during text
uploading, Terminal mode operation, and file transfer. When one
computer needs to stop the flow of incoming data, it transmits XOFF
(CTRL S) to the other computer. When the computer is again ready to
receive data, it transmits XON (CTRL Q).

During BLAST protocol transfer, BLAST will wait a maximum of
30 seconds for an XON from the remote. If the XON is not sent,
BLAST will resume transfer. For a detailed discussion of flow con-
trol, see page 35.

BLASTscript variable: @XONXOFF

RTS/CTS Pacing [YES] NO

Enables hardware flow control. RTS/CTS pacing uses the RS-232
signals Request-to-Send and Clear-to-Send for optimized through-
put over error-correcting modems. Set this field to NO unless error-
86 CHAPTER FIVE

correcting modems are on both ends of the connection. For a de-
tailed discussion of flow control, see page 35.

BLASTscript variable: @RTSCTS

Protocol [BLAST] KERMIT
XMODEM XMODEM1K
YMODEM YMODEMG

ZMODEM FTP

Specifies the protocol to be used for file transfers. BLAST protocol
generally runs faster and offers more features than other protocols.

BLASTscript variable: @PROTOCOL

BLAST Protocol Subwindow

Selecting BLAST and pressing ENTER displays the BLAST Protocol
subwindow shown in Figure 5-8 below:

FIGURE 5-8

Logon T/O 0 – 999 [120]
Specifies the number of seconds that BLAST will attempt to estab-
lish a filetransfer session with the remote computer. Logon Timeout
affects BLAST protocol transfers and remote control sessions.
Timeouts can happen if:

◊ There is excessive noise on the line.

◊ There are parity or data/stop bit mismatches.

◊ BLAST is terminated unexpectedly on the remote computer.

◊ The connection is lost.
THE SETUP 87

If Logon T/O is set to 0, no timeout will occur and BLAST will at-
tempt to establish a filetransfer session with the remote computer in-
definitely.

BLASTscript variable: @LOGTIMO

Inactivity T/O 0 – 999 [120]
Defines the time interval (in seconds) that BLAST will stay connect-
ed after the last valid data packet has been received from the remote
computer. Timeouts happen if:

◊ The connection is lost.

◊ There is excessive noise on the line.

◊ The remote computer goes down.

◊ Flow control has not been released.

If Inactivity T/O is set to 0, BLAST never times out.

NOTE: In previous versions of BLAST, this field was named
“Connect Timeout” and was associated with the BLASTscript re-
served variable @CONTIMO.

BLASTscript variable: @INACTIMO

Transfer Password user-defined

Stores a case-sensitive password (up to eight characters) that re-
stricts a remote user’s access. Requests to get files from a password-
protected computer and to do file maintenance functions are not
honored unless the password is received first. Without the password,
the remote machine is limited to sending and receiving messages.

To send the Transfer Password, the remote user should select the
Send menu command from the Filetransfer menu; then, at the local
filename prompt, type the following:

!password=your_password

where your_password is the transfer password. The remote file-
name field and transfer options should be left blank. In a BLAST
script, the SEND statement should be followed by a line with the
password and then two blank lines.
88 CHAPTER FIVE

NOTE: The Transfer Password is intended to validate remote us-
ers logging onto your system. If a local operator uses a setup with a
Transfer Password entered, he or she will not be able to receive files
without the remote computer sending the password.

BLASTscript variable: @TRPASSWD

7-Bit Channel YES [NO]
Defines the logical width of the data path to be used. YES specifies
a 7-bit data encoding scheme; NO specifies an 8-bit encoding
scheme.

Some networks, minicomputers, and asynchronous devices only
support 7-bit path widths. BLAST protocol operates more efficient-
ly using 8-bit encoding; however, the data path width has nothing to
do with the type of data that can be transferred. BLAST protocol
may transfer 8-bit binary or 7-bit ASCII over either 7- or 8-bit data
paths.

BLASTscript variable: @7BITCHN

Window Size 1 – [16]
Specifies the number of packets that can be sent to the remote with-
out BLAST’s waiting for an acknowledgement from the remote. As
packets are acknowledged, the starting point of the window adjusts,
or “slides.” For example, if the window size is 12 and the first 6 of
8 packets sent have been acknowledged, the starting point of the
window moves by 6, and 10 additional packets can be sent before
BLAST must stop and wait for an acknowledgement.

BLASTscript variable: @WDWSIZ

DCD Loss Response ABORT [IGNORE]
Specifies the action BLAST will take after DCD loss during a file-
transfer session:

ABORT – Sets @EFERROR on carrier loss and exits Filetransfer
mode.

IGNORE – Ignores carrier loss. Filetransfer mode continues until the
Inactivity T/O takes effect.

BLASTscript variable: @DCDLOSS
THE SETUP 89

Use “A” Protocol YES [NO]
Specifies whether the BLAST “A” Protocol will be used. YES spec-
ifies communication with older BLAST products.

BLASTscript variable: @APROTO

Filtering ON [OFF]
Specifies filtering out VT sequences sent from a remote computer or
protocol converter. This filtering prevents BLAST protocol from la-
beling these sequences as bad blocks received.

BLASTscript variable: @FILTER

Retransmit Timer 0 – 9999 [4]
Sets the maximum number of seconds BLAST will pause before re-
sending a packet. For example, if Window Size is set to 5 and Re-
transmit Timer is set to 30, BLAST will attempt to resend the fifth
packet every thirty seconds if it receives no acknowledgement.

NOTE: This setting should be less than the that for Inactivity T/O.

BLASTscript variable: @RETRAN

ACK Request Frequency 1 – window size [4]
Specifies the frequency at which an acknowledgement from the re-
ceiving system is requested. The frequency is measured in number
of packets sent. For example, if the ACK Request Frequency is 4,
a request for an acknowledgement is sent to the receiving computer
every four packets. Set this field higher for better performance with
error-correcting modems. See also Window Size setup field on page
89.

BLASTscript variable: @ACKFREQ

Number of Disconnect Blocks 0 – 9 [3]
Set the number of additional disconnect blocks (after the first dis-
connect block) that BLAST sends when exiting Filetransfer mode.
The default value, 3, specifies four total disconnect blocks.

BLASTscript variable: @NUMDISC
90 CHAPTER FIVE

Launch String any ASCII string [\r]
Specifies a string to be appended to BLAST protocol packets. Ap-
pending this string will help communications to a mainframe
through protocol converters. You may send any string of ASCII
characters, including the same control characters used in string con-
stants. Nonprintable characters can be represented with a backslash
followed by a three-digit octal number (for example, a line feed may
be represented as a \012). The string should not be enclosed in
quotes.

BLASTscript variable: @LAUNCHST

Enable /FWD and /STR YES [NO]
Enables the /FWD and /STR file transfer switches. Note that dis-
abling these switches affects only local files. For example, you will
still be able to get a file with the /FWD switch because the success-
fully transferred file will be deleted from the remote system.

BLASTscript variable: @ENABLEFS

Enable /OVW and Remote Cmds [YES] NO

Enables the /OVW file transfer switch and system commands re-
ceived during BLAST Protocol Filetransfer mode. Disabling /OVW
affects only local files. For example, you will still be able to send a
file with the /OVW switch because the file will be overwritten on the
remote system. The List, Type, and More commands remain active
when this field is set to NO; only potentially destructive commands
are disabled.

BLASTscript variable: @ENABLERCMD

Send Compression Level 0 – 6 [4]
Specifies the maximum compression level that can be used while
sending files to the remote computer. Level 0 specifies no compres-
sion; level 6 specifies the highest compression level (see “Compres-
sion Levels” on page 121).

BLASTscript variable: @SCOMP_LEV

Receive Compression Level 0 – 6 [4]
Specifies the maximum compression level that can be used while re-
ceiving files from the remote computer. Level 0 specifies no com-
THE SETUP 91

pression; level 6 specifies the highest compression level (see
“Compression Levels” on page 121).

BLASTscript variable: @RCOMP_LEV

Kermit Protocol Subwindow

Selecting KERMIT and pressing ENTER displays the Kermit Protocol
subwindow shown in Figure 5-9 below:

FIGURE 5-9

Start-of-Packet Char [^A] – ^Z

For sending files with Kermit, specifies a control character to pre-
cede each packet sent from your PC. The same control character
must also be used by the remote Kermit.

BLASTscript variable: @KSSOPKT

For receiving files with Kermit, specifies a control character to pre-
cede each packet received by your PC. The same control character
must also be used by the remote Kermit.

BLASTscript variable: @KRSOPKT

End-of-Packet Char ^A – ^Z [^M]
For sending files with Kermit, specifies a control character to termi-
nate each packet sent from your PC. The same control character
must also be used by the remote Kermit.

BLASTscript variable: @KSEOPKT
92 CHAPTER FIVE

For receiving files with Kermit, specifies a control character to ter-
minate each packet received by your PC. The same control character
must also be used by the remote Kermit.

BLASTscript variable: @KREOPKT

Packet Size 10 – 2000 [90]
For sending files with Kermit, specifies the packet size that your PC
will use when it transmits a file. Note that the remote Kermit server’s
Receive Packet Size should also be set to this value. The larger the
packet, the more efficient the transfer; however, larger packets will
pose problems on a noisy connection. Set larger packet sizes when
there is little line noise, you are communicating with an IBM main-
frame, or you are using V.29 “ping pong” modems.

BLASTscript variable: @KSPKTLEN

For receiving files with Kermit, specifies the packet size that your
PC will use when it receives a file. Note that the remote Kermit serv-
er’s Send Packet Size should also be set to this value. The larger the
packet, the more efficient the transfer; however, larger packets will
pose problems on a noisy connection. Set larger packet sizes when
there is little line noise, you are communicating with an IBM main-
frame, or you are using V.29 “ping pong” modems.

BLASTscript variable: @KRPKTLEN

Pad Character A – ^Z [^@]
For sending files with Kermit, specifies an alternate character to pad
each packet transmitted by your PC.

BLASTscript variable: @KSPADCH

For receiving files with Kermit, specifies an alternate character to
pad each packet received by your PC.

BLASTscript variable: @KRPADCH

Padding 0 – 99 [0]

For sending files with Kermit, specifies the number of padding char-
acters to send per packet. Padding can induce delays during a Kermit
file transfer, allowing slower machines or older versions of Kermit
more time to process the data you send.

BLASTscript variable: @KSPADDNG
THE SETUP 93

For receiving files with Kermit, specifies the number of padding
characters to request per packet. Padding can induce delays during a
Kermit file transfer, allowing slower machines or older versions of
Kermit more time to process the data you receive.

BLASTscript variable: @KRPADDNG

Timeout 0 – 99 [10]
For sending files with Kermit, specifies the number of seconds that
your PC will wait after transmitting a packet before attempting to re-
send it.

BLASTscript variable: @KSTIMEOUT

For receiving files with Kermit, specifies the number of seconds that
your PC will wait to receive a packet before requesting it be resent.

BLASTscript variable: @KRTIMEOUT

Transfer Type [BINARY]
BLAST’s implementation of Kermit supports only binary files;
therefore, the value for this field is always BINARY and cannot be
changed. Text files may be transferred with Kermit, but no special
translation will be performed on them. To translate text file formats
between computers with different platforms, use BLAST protocol.

BLASTscript variable: @KFILETYP

Retry Limit 1 – 99 [10]
Specifies the number of times Kermit will attempt to send a packet
before aborting. Set this field higher if the connection is intermit-
tently noisy.

BLASTscript variable: @KRETRY

Delay [5]
Specifies the number of seconds of delay between the recognition of
a Send command and the actual beginning of the transmission. The
default value of 5 cannot be changed in BLAST.

BLASTscript variable: @KDELAYOS
94 CHAPTER FIVE

Block-Check-Type 1 – 3 [2]
Specifies the level of error detection. Kermit offers three levels of
error detection, with 3 being the most secure. Level 2 or 3 decrease
the chance of a bad packet being accepted by the receiving computer
but slows file transfer appreciably. Specify a lower level when using
error-correcting modems or when transferring files at 9600 baud and
above.

BLASTscript variable: @KBCHECK

Filename Conversion [YES] NO

Specifies whether to convert a filename from local format to com-
mon Kermit format. For example, lower case is changed to all up-
percase; and “~”, “#”, and all periods after the initial one are
converted to “X”s.

BLASTscript variable: @KFNAMCONV

Incomplete File [DISCARD] KEEP

Specifies whether to KEEP or DISCARD files incompletely re-
ceived, such as a file being transferred when you abort a Get com-
mand. Setting this field to DISCARD insures that any file received
is complete.

BLASTscript variable: @KSAVEINC

Warning [ON] OFF

For Kermit transfers, specifies whether Kermit will automatically
rename a received file if another file with the same name already ex-
ists in the current directory. If the field is set to ON, Kermit will re-
name the file by adding a number (0001, 0002, etc.) to the original
filename; if the field set to OFF, Kermit overwrites the file.

BLASTscript variable: @KWARNING

Zmodem Protocol Subwindow

Selecting ZMODEM and pressing ENTER displays the Zmodem sub-
window shown in Figure 5-10 on the next page:
THE SETUP 95

FIGURE 5-10

Resume Interrupted File YES [NO]
Continues an aborted binary file transfer from the point of interrup-
tion. The destination file must already exist and be smaller than the
source file.

BLASTscript variable: @ZMRESUME

File Must Already Exist YES [NO]
Transfers the file only if it already exists on the destination system.

BLASTscript variable: @ZMEXIST

Conversion Override [NONE] ASCII BINARY

Allows the sender to specify to the receiver whether the data should
be treated as BINARY or ASCII data, overriding the File Conver-
sion setting of the receiving system. If NONE is selected, the data is
handled according to the receiver’s file conversion parameter.

BLASTscript variable: @ZMCONVS

Management Option [NONE] PROTECT
CLOBBER NEWER

NEWER/LONGER DIFFERENT APPEND

Specifies a file management option for files sent. Possible values
are:

NONE – The file is transferred if it does not already exist on the re-
ceiving system.

PROTECT – The file is transferred only if it does not already exist
on the receiving system even if the receiving system has specified
CLOBBER.
96 CHAPTER FIVE

CLOBBER – The file is transferred whether or not it already exists
on the receiving system unless the receiving system has specified
PROTECT.

NEWER – The file is transferred if it does not already exist on the re-
ceiving system or if the source file is newer (by date).

NEWER/LONGER – The file is transferred if it does not already exist
on the receiving system or if the source file is newer (by date) or
longer (in bytes).

DIFFERENT – The file is transferred if it does not already exist on
the receiving system or if the files have different lengths or dates.

APPEND – The file is appended to a file of the same name on the re-
ceiving system based on the value of the receiving system’s Receive
File Conversion setting.

BLASTscript variable: @ZMMANAGS

Esc All Control Chars YES [NO]
For sending files with Zmodem, specifies that all control characters
sent will be link-escape encoded for transparency. By default, only
the characters represented by hexadecimal 10, 11, 13, 90, 91, and 93,
and the sequence “@-CR” are link-escape encoded.

BLASTscript variable: @ZMCTLESCS

For receiving files with Zmodem, specifies that all control charac-
ters received will be link-escape encoded for transparency. By de-
fault, only the characters represented by hexadecimal 10, 11, 13, 90,
91, and 93, and the sequence “@-CR” are link-escape encoded.

BLASTscript variable: @ZMCTLESCR

Limit Block Length [0] 24 – 1024

Overrides the default block length, which is determined by the Baud
Rate of the connection.

Baud Rate Block Length (in bytes)
300 128
600, 1200 256
2400 512
4800 or greater 1024
THE SETUP 97

Specifying a value between 24 and 1024 limits the block length to
the new value. A value of 0 specifies the default block length as de-
termined by the baud rate.

BLASTscript variable: @ZMBLKLN

Limit Frame Length [0] 24 – 1024

For Zmodem transfers, specifies a frame length that forces the send-
er to wait for a response from the receiver before sending the next
frame. The default, 0, specifies no limit to frame length.

BLASTscript variable: @ZMFRMLEN

Size of Tx Window [0] – 9999

Specifies the size of the transmit window, which regulates how
many data subpackets can be “outstanding” (unacknowledged) be-
fore the sender quits sending and waits for acknowledgements. A
value of 0 specifies no limit to window size.

BLASTscript variable: @ZMWINDOW

CRC 16 [32]
Specifies the CRC error-detection method to be used, either 16-bit
or 32-bit.

BLASTscript variable: @ZMCRC

Auto Receive YES [NO]
Specifies Auto Receive mode, in which downloading begins imme-
diately after Filetransfer mode is entered.

BLASTscript variable: @ZMAUTODOWN

File Conversion [ASCII] BINARY

Specifies whether received files will be treated as ASCII or
BINARY. For correct file conversion to ASCII, the remote computer
must send the files as ASCII. This implementation of Zmodem does
not perform any special handling of CR/LF and LF sequences; how-
ever, when appending an ASCII file, the CTRL Z end of file marker is
removed before appending the new text.

BLASTscript variable: @ZMCONVR
98 CHAPTER FIVE

File Management NONE PROTECT
[CLOBBER] APPEND

Specifies a file management option for files received. Possible val-
ues are:

NONE – The file is transferred if it does not already exist on the re-
ceiving system.

PROTECT – The file is transferred only if it does not already exist
on the receiving system even if the sending system has specified
CLOBBER.

CLOBBER – The file is transferred whether or not it already exists
on the receiving system unless the sending system has specified
PROTECT.

APPEND – The file is appended to a file of the same name on the re-
ceiving system based on the value of the receiving system’s File
Conversion setting.

BLASTscript variable: @ZMMANAGR

END OF PROTOCOL
SUBWINDOW DESCRIPTIONS

Packet Size 1 – 4085 [256]
For BLAST protocol transfers, specifies the packet size that your
system will use when it transfers a file. For LAN operations, it also
indicates the size of the packets delivered to the network when using
the NETBIOS or IPX drivers for node-to-node file transfers.

In general, larger packets result in faster throughput; however, larger
packets will pose problems on a noisy connection. Use larger packet
sizes when there is little line noise or you are using V.29 “ping
pong” modems.

This field “negotiates” down. The versions of BLAST running on
the local computer and the remote computer will compare values
and use the smaller of the two values.

While transferring files, watch the line quality and retry count in the
upper right part of the screen. If the quality of the line varies, or there
are a significant number of retries (more than one retry in 20–50
blocks), a smaller packet size will usually improve throughput. The
default value, 256, is the optimum setting for most users.
THE SETUP 99

IMPORTANT: When transferring files with BHOST, always set the Packet Size
to at least 200, which is BHOST’s minimum packet size.

BLASTscript variable: @PAKTSZ
100 CHAPTER FIVE

Chapter 6

BLAST Session Protocol

What is a Protocol?
In the serial communications world, a “protocol” is a set of rules that
determines how two computers will communicate with each other.
These rules define, for example, how to package data for transfer,
how to detect damaged data, and how to optimize throughput. Both
computers must use the same protocol for a communications session
to succeed.

Simple Protocols
During the early days of telecommunications, people who needed to
transfer a file across a phone line or a hardwired asynchronous con-
nection were limited to using text transfer. This is the simplest trans-
fer method, involving only the capturing and transmission of the
data stream with no error detection. To receive a file, a buffer is
opened to save the information; to send a file, the characters from the
chosen file are sent directly out of the communications port to the re-
mote computer.

Of course, no telecommunications connection is perfect, and users
soon found that line noise could easily corrupt a file. Thus, file trans-
fer protocols were developed to provide error control. Kermit, Xmo-
dem, Ymodem, Zmodem, and FTP are examples of protocols widely
BLAST SESSION PROTOCOL 101

used by computer owners to transfer files. These transfer protocols
are fully described the three chapters following this chapter.

The BLAST Session Protocol

BLAST protocol is BLAST, Inc.’s proprietary session protocol. Un-
der the BLAST session protocol, three kinds of tasks can be per-
formed:

1. Files can be transferred between local and remote machines.
The BLAST session protocol permits files to be transferred bi-
directionally—that is, data is sent and received at the same time
with automatic error detection and data compression.

2. Files on the remote machine can be manipulated. For example,
files can be deleted, renamed, or printed on the remote comput-
er. Because these tasks are mediated by the BLAST session pro-
tocol, the commands cannot be garbled by line noise. In
addition, the commands are automatically translated into the ap-
propriate instructions on the remote computer. For example,
when you give the “List Files” command using the BLAST
session protocol, you will receive a directory listing whether the
remote machine is a Macintosh, a VAX, or a computer running
the UNIX operating system. You do not need to know the ma-
chine-specific instruction.

3. Messages can be exchanged between the local and remote com-
puter. Between file transfers, if someone is present at the remote
site, you can transmit messages to and from the remote operator.

The BLAST session protocol is more sophisticated than many file
transfer protocols and is generally faster than most file transfer pro-
tocols because it offers all of the following features:

◊ Bi-directional transfers.

◊ Six levels of compression.

◊ Sliding-window design.

◊ Automatic translation of text files between the local file format
and the format of the remote system.

◊ Resumption of interrupted file transfer from the point of inter-
ruption.
102 CHAPTER SIX

◊ Security for validating remote users.

BLAST Protocol Design

Bi-Directional and Sliding-Window Capability
The BLAST protocol is capable of transmitting and receiving data
packets simultaneously. This simultaneous bi-directional transfer
saves time and online charges when files need to be both sent and
received.

BLAST operates efficiently over circuits with high propagation de-
lays (the length of time from when a character is transmitted to the
time it is received). This resistance to delays is due to BLAST’s
sliding-window design.

The size of a window is the number of packets that can be sent to the
remote computer without BLAST’s having to wait for an acknowl-
edgement from the remote. As the remote computer sends acknowl-
edgements, the window slides so that more packets can be sent. For
example, if the window size is set to 16, and the first 4 of 12 packets
sent have been acknowledged, the window slides to allow 8 more
packets to be sent. In this way, a continuous stream of packets can
be sent without BLAST’s having to wait for an acknowlegement.
The window size and frequency at which acknowledgements are re-
quested can be specified by the user.

These two features—simultaneous bi-directional transfer and
sliding-window design—combine to make BLAST a great time sav-
er for long-distance callers. For example, BLAST can upload daily
production figures to a remote computer over a noisy telephone line
at the same time that it downloads the next day’s production quotas.

CRC Error Detection
BLAST protocol uses the industry-standard CCITT CRC-16 tech-
nique for detecting altered data packets. This is the same method
used in IBM SNA/SDLC networks and X.25 packet-switching net-
works.

Optimized Acknowledgements
When packets of data are transmitted, they must be acknowledged
by the receiving computer so that the sender knows that the transfer
is complete and accurate. When data is being transmitted in only one
BLAST SESSION PROTOCOL 103

direction, the BLAST protocol uses a minimal number of acknowl-
edgement packets flowing in the opposite direction. When data is
being transferred in both directions, the data and acknowledgement
packets are combined into a single packet. This efficient use of pack-
ets is important when working with networks because network
charges are often computed on a per-packet rather than a per-byte
basis.

Adjustable Packet Size

The BLAST packet size can be set from 1 to 4085 bytes according
to the quality and type of connection. A small size minimizes the
amount of data that must be retransmitted if line noise is a problem.
With high quality connections or with error-detecting modems,
packet size can be increased to reduce transmission overhead. Pack-
et size can also be set to optimize network packet use.

BLAST Protocol Circuit Requirements
BLAST is flexible in its circuit requirements. Because BLAST does
not use any of the ASCII control codes, it is compatible with the use
of these control codes for other purposes. For example, if the XON/
XOFF Pacing setup field is set to ON, BLAST can be used on circuits
where software flow control (CTRL Q and CTRL S) is in use. This fea-
ture is very important for load sharing on network virtual circuits
and time-shared mini-computers. In contrast, because they use CTRL

Q and CTRL S, Xmodem and Ymodem protocols cannot be used for
file transfers with devices that honor XON/XOFF control.

BLAST can operate on 7-bit or 8-bit circuits. 7-bit operation allows
BLAST to communicate with parity. This does not inhibit BLAST’s
ability to transmit binary data—you may transfer either 7- or 8-bit
data over both 7- and 8-bit circuits.

When using BLAST to communicate with computers that require 7-
bit circuits, the setup parameter 7-Bit Channel must be set to YES.
Note that transfer throughput is slower over a 7-bit channel than it is
over an 8-bit channel.
104 CHAPTER SIX

Starting a BLAST Session

Starting BLAST on a Multi-User System
There are three ways to start a BLAST session on a remote multi-
user computer after your PC connects. Note that you should already
be logged into the remote system and appropriate directory.

Manual Method

◊ Select Terminal from the Online menu.

◊ Type the appropriate commands to the remote computer to start
a BLAST session. Usually this is:

blast -h

at the command line.

◊ You should see either one of two messages from the remote:

;starting BLAST protocol.

or

ppp... (only for earlier versions of BLAST)

After the message appears, press ATTN ATTN to exit Terminal
mode; then select Filetransfer from the Online menu.

Interactive Automatic Method

Select Filetransfer from the Online menu. Your PC will automatical-
ly start the BLAST session on the remote system.

NOTE: The type of multi-user remote operating system must be
identified in the System Type setup field for this method to work.
BLAST will then know which automation information to retrieve
from the SYSTEMS.SCR library program.

BLASTscript Automatic Method

Write a BLAST script that includes a FILETRANSFER statement.
This script can be executed from the command line or from the On-
line menu. The FILETRANSFER statement will start a BLAST ses-
sion on the remote system and initiates the BLAST session locally.
BLAST SESSION PROTOCOL 105

NOTE: The type of multi-user remote operating system must be
identified in the System Type setup field for this method to work.
BLAST will then know which automation information to retrieve
from the SYSTEMS.SCR library program.

Starting BLAST on a PC or Other Single-User Computer
If the remote computer is a single-user system, such as a another PC,
you may start the BLAST session in one of three ways:

Assisted Method

◊ Select Connect from either the Offline or Online menu.

◊ Select Filetransfer from the Online menu.

◊ Have the operator on the remote machine select Filetransfer
from the BLAST menu.

After the session has started, you can control both PCs from your
keyboard; therefore, the remote operator is no longer necessary. In
order for you to be able to complete all transfers and end the session
without remote assistance, however, the remote operator must press
ESC before leaving so that the remote system will terminate the ses-
sion on your command.

Unattended Method

◊ Run the BLAST script SLAVE.SCR on the remote PC. This
script places the remote in “slave” mode, waiting for incoming
calls. See “Slave Script” on page 198 for details.

◊ Select either the Offline or Online menu Connect command.

◊ When connected, you have 25 seconds to select Filetransfer
from the Online menu. If Filetransfer is not selected within this
time, the slave assumes the call is not for BLAST, hangs up the
modem, and resets for the next call. When the remote receives
your Filetransfer command, it automatically initiates the
BLAST session.

BHOST

◊ Run BHOST on the remote system if the remote system is a PC
running DOS. BHOST occupies less than 100K of RAM and
performs file transfers in background mode.

◊ After establishing a connection with the BHOST machine (see
“Connecting to the Host PC” on page 304), initiate the local
106 CHAPTER SIX

BLAST session by any of the methods described above.
BHOST will automatically complete the protocol link.

Automatic Filetransfer Handshaking
While entering Filetransfer mode, the two computers will communi-
cate for a few seconds on their own—they will “shake hands” by ex-
changing information. During handshaking, your PC will:

◊ Send its BLAST version and type to the remote computer to be
displayed and written to a log file if it exists.

◊ Exchange filetransfer and communication parameters with the
remote computer and adjust itself to the other machine’s lowest
setup values. For instance, if your setup specifies a Packet Size
of 256 bytes and the remote computer is set to 2048, then the
lower value of 256 will be used.

◊ Display the Filetransfer menu and an initial assessment of com-
munication line quality.

This process can fail if it does not occur within the time period spec-
ified in the Logon Timeout setup field. If handshaking fails, BLAST
displays a “Logon Timeout” error message and returns to the Online
menu.

BLAST Protocol Timeouts
There are two types of timeouts in BLAST protocol: the Logon
Timeout and the Inactivity Timeout. Both timeout values can be
specified in setup fields of the BLAST Protocol subwindow (see
page 87).

The Logon Timeout is the maximum time in seconds after initiating
the BLAST session protocol that BLAST will wait for the initial
handshake with another system. The default value is 120. If a
Logon Timeout exists and the maximum time specified to establish
the session elapses, BLAST will return to the Online menu.

Setting the Logon Timeout 0 disables the timeout. If the initial hand-
shaking between computers is aborted and the Logon Timeout on
the remote computer is set to 0, the remote computer will attempt to
enter BLAST session protocol indefinitely, making the remote com-
puter inaccessible. You may, however, force the remote system to
abort its attempt to enter BLAST session protocol by following these
steps:
BLAST SESSION PROTOCOL 107

◊ Select the Terminal command to enter Terminal mode.

◊ When you see the BLAST message

;starting BLAST protocol.

on the display, type:

;DISC.

Because the message you type will not be echoed on the screen, re-
peat it several times if necessary. Note that the command is case-
sensitive. The remote system prompt will appear when the remote
computer has aborted its attempt to enter BLAST session protocol.

The Inactivity Timeout is the maximum time in seconds allowed be-
tween the transmission of valid BLAST protocol transfer packets.
The default is 120 seconds. If BLAST times out, it will return to the
Online menu.

Setting the Inactivity Timeout to 0 disables the timeout. If file trans-
fer is interrupted and the Inactivity Timeout on the remote computer
is set to 0, the remote computer will remain in Filetransfer mode in-
definitely, making the remote computer inaccessible. You may,
however, force the remote system to abort Filetransfer mode by en-
tering Terminal mode and typing “;DISC.” as described above (you
will probably not, however, see “;starting BLAST protocol”).

NOTE: Using the Local menu during a file transfer suspends trans-
fer activity, causing Filetransfer mode to terminate if the Inactivity
Timeout interval is exceeded.

Ending a BLAST Session

The BLAST session can be terminated in one of four ways:

Normal Menu Escape
Press ESC at the Filetransfer menu or include an ESC statement in a
BLAST script to end a filetransfer session.

◊ The files queued for transmission and the files currently being
processed complete transmission normally.
108 CHAPTER SIX

◊ The computers complete an exit handshake and display normal
end messages.

◊ Control passes to the Online menu or to the BLASTscript state-
ment following the ESC.

Note that for completion of the handshake, the remote operator must
have pressed ESC unless the remote system is in host mode or is run-
ning a script with an ESC statement, in which case the remote sys-
tem will automatically recognize your command.

Single-Attention Abort
Press the ATTN key once to quit a transfer:

◊ The files queued for transmission will not be sent, and the file
currently being transmitted will be marked on the receiving side
as interrupted.

◊ The computers complete an exit handshake and display normal
end messages.

◊ Control passes to the Online menu or to the BLAST script.

Double-Attention Abort
Press the ATTN key twice to quit immediately.

◊ The files queued for transmission will not be sent, and the file
currently being transmitted will be marked on the receiving side
as interrupted.

◊ The computers do not complete an exit handshake.

◊ The remote is left to time out on its own. You may force a dis-
connect by typing ;DISC. as described earlier.

◊ Control passes to the Online menu or to the BLAST script.

Timeout Abort
If a communications failure causes a timeout, the phone is discon-
nected, or no activity takes place, both computers send an exit hand-
shake when the timeout value is reached.
BLAST SESSION PROTOCOL 109

Performing Filetransfer Commands

Filetransfer Menu
After the handshaking is completed, BLAST will display the Trans-
fer Status Area and the Filetransfer menu as shown in Figure 6-1 be-
low:

FIGURE 6-1

The basic functions of a filetransfer session are controlled by the fol-
lowing commands of the Filetransfer menu:

Send – Sends a file or files to the remote system.

Get – Receives a file or files from the remote system.

Message – Sends a text message of up to 67 characters in length to
the remote operator. Simply type the message and press
ENTER. The message will be queued for transmission to
the remote display following completion of other pend-
ing filetransfer commands.

Remote – Takes user to the Remote menu, which performs remote
system commands. See “BLAST Protocol Remote
Menu” on page 120 for more detailed information.

Local – Takes user to the Local menu, which performs local system
commands. See “The Local Menu” on page 57 and the note
concerning the Local menu and Inactivity Timeout under
the section “BLAST Protocol Timeouts” on page 107.

File – Executes a transfer command file that can control an entire
filetransfer session unattended (see “Transfer Command File”
on page 117).

Transfer Options
Three transfer options can be used in file transfers via the Filetrans-
fer menu command or a BLASTscript FILETRANSFER statement:

t translate the file from the originating system’s text file format
to the destination system’s text file format. This option should
110 CHAPTER SIX

only be used with ASCII files—do not send binary files using
the t option.

o have the transmitted file overwrite an existing file with the same
name on the receiving system. This option will result in the de-
struction of the original file on the receiving system, so use it
with caution. An error will result if this option is not used and
the file already exists on the receiving system.

a append the transmitted file to the end of an existing file with the
same name on the receiving system. If the file does not exist on
the receiving system, it will be created.

When using the Filetransfer menu command, you are prompted to
type one or more of these letters (t, o, or a) to specify your transfer
option(s). In a BLAST script, type the letter(s) on a separate line fol-
lowing the name of the file or files to be transferred. For more on us-
ing transfer options in a BLAST script, see “Getting and Sending
Files” on page 178.

Sending a File
To send a file,

◊ First, select Send from the Filetransfer menu by pressing S.

◊ At the prompt:

enter local filename:

enter a single filename from the current directory or a path spec-
ification with a single filename; you may use wildcards and file
transfer switches (see the section “Wildcards” on the next page
and “File Transfer Switches” on page 114). After entering the
filename and any switches, press ENTER.

◊ At the prompt:

enter remote filename:

Press ENTER or type a single filename with any optional switches
or type a “%”.

Pressing ENTER only will transfer the file to the remote system
using the local filename (and path if included with the local file-
name). Typing a different filename (and path, if necessary) will
rename the file when it is created on the remote system. See
BLAST SESSION PROTOCOL 111

“File Transfer Templates Using the ‘%’ Character” on page 113
for an explanation of “%”.

IMPORTANT: If wildcards are used in the local filename designation, you must
use “%” when sending from a PC to another system type, such as a
UNIX machine.

Some remote computers will interpret optional file transfer
switches sent with the remote filename as file-handling and file-
attribute controls. If you have specified a remote filename, press
ENTER.

 ◊ At the prompt:

specify transfer options: (t=text, o=overwrite, a=append):

type any combination of the letters t, o, and a or press ENTER
only to specify no options. For a fuller description of transfer
options, see the preceding section, “Transfer Options.”

If you do not specify any options, the file will be transferred to
the remote system byte-for-byte as a binary file. If the file exists
on the remote system, the transfer will abort.

After specifying options, press ENTER; you will be returned to
the Filetransfer menu, and the transfer will begin. The number
of bytes sent will appear, as well as a percentage estimate of the
amount of data transferred. When the file transfer completes, a
message will be sent to your system.

Getting a File
Receiving a file differs only slightly from sending a file. Press G
from the Filetransfer menu. You will be prompted for the remote
filename first and then the local filename. Any switches added to the
end of the remote filename must be valid for that operating system.

Wildcards
By using the wildcard characters “*” and “?”, you can transfer mul-
tiple source files with similar names. The source files must reside in
the same directory and path. The wildcard specifications are as fol-
lows:

? Substitutes for a single character.
112 CHAPTER SIX

* Substitutes for multiple characters (up to 8 characters of the file-
name, up to 3 of the extension).

File Transfer Templates Using the “%” Character
When a “%” is entered in the filename field for the target drive, file-
name(s) from the source drive are transferred to the target drive
without the source drive path specification(s).

IMPORTANT: “%” is required for the target filename when the source filename
contains a “?” or an “*” or when the source filename includes a path
and the target filename does not (that is, the target directory is the
current working directory).

Some examples are:

Source Name Target Name Result

C:\test1.asc C:\test1.asc one file in directory C:\ sent
to the target directory C:\ (C:\
must exist).

C:\test1.asc % one file in directory C:\ sent
to the remote current directo-
ry

C:\test?.asc % multiple files—for example,
test1.asc, test2.asc, and
test3.asc—in directory C:\
sent to the current target di-
rectory, retaining their source
names

C:\test1.* % multiple files in directory
C:\—for example, test1.asc,
test1.lst, and test1.txt—sent
to the current target directo-
ry, retaining their source
names

C:*.* C:\BIN\% all files in directory C:\ sent
to the target directory
C:\BIN\, retaining their
source names.
BLAST SESSION PROTOCOL 113

File Transfer Switches
Instead of specifying transfer options at the prompt, you can append
the appropriate file transfer switches to both the local and remote
filename specifications. Some remote computers will recognize
switches sent with the remote filename as file-handling and file-
attribute controls. Experiment with the transfer switches until you
obtain the correct results. The valid switches are:

/APP Append to a file with the same name if it exists.

/COMP=n Switch compression level value from the value in
the compression field of the setup. Use the
/COMP=n switch at the end of the filename where
n equals the level of compression (0–6). Setting
the level to 0 turns off compression.

/FWD Delete file from sending system if the transfer was
successful. The /FWD switch is disabled by de-
fault. To enable it, toggle the Enable /FWD and
/STR setup field (page 91) in the BLAST Protocol
subwindow to YES. For the /FWD switch to work,
it must be enabled on the sending system.

NOTE: The /FWD switch is a very powerful
feature of BLAST. Because it allows files to be
automatically deleted from the sending system,
always exercise caution when using it.

/OVW Overwrite a file with the same name if it exists.
The ability to use the /OVW switch is enabled by
default. To disable use of it, toggle the Enable
/OVW and Remote Cmds setup field (page 91) in
the BLAST Protocol subwindow to NO (see also
“Disabling File Overwrites and Remote Com-
mands” on page 123).

NOTE: If use of the /OVW switch is disabled
on the receiving system, BLAST protocol will not
allow the file to be overwritten.

/STR Delete file from receiving system if transfer was
unsuccessful. The /STR switch is disabled by de-
fault. To enable it, toggle the Enable /FWD and
/STR setup field (page 91) in the BLAST Protocol
subwindow to YES on the receiving system (see
114 CHAPTER SIX

also “Disabling the /FWD and /STR Switches” on
page 123).

/TXT Perform text translation. BLAST will convert car-
riage returns, line feeds, and end-of-file markers
to the receiving system’s text format.

You might, for example, specify text translation and overwriting of
an existing file with the following filename:

test1.doc/TXT/OVW

Or you might specify that the file be sent with a compression level of
6 and automatically deleted from your system if it is successfully sent:

test1.doc/FWD/COMP=6

Filenames Restrictions with BLAST Protocol
With BLAST protocol, you should not give a file the same name as
a switch since BLAST protocol will assume that the file is a switch
and will look for a file with the name of the folder containing the file
if forward slashes are used in the pathname. Thus, the transfer of the
file will not occur and you will get an error message. Some of the
more common switches to avoid in naming files (uppercase or low-
ercase) are: app, comp=n, follow=nn, fwd, group, ovw, owner=nn,
perms=nnnn, str, and txt (where n is a number from 0 to 9).

You can work around this restriction by using backslashes for the lo-
cal path and, if the operating system allows, the remote path as well.
If the remote path does not allow backward slashes, you can change
your remote working directory to the one containing the file you
want to transfer and use % instead of the remote path and filename
(see the discussion of % on page 113). To change your remote work-
ing directory interactively, choose the Chdir command from the Re-
mote menu. Alternatively, you may do a scripting workaround:

FILETRANSFER
REMOTE
 Chdir # Change remote working directory
 /u/customer # Name of new directory
 ESC
SEND
C:\Pat\Work\App # Local path with backslashes
% # Original filename w/ path stripped

ESC
BLAST SESSION PROTOCOL 115

If, on the receiving system, you give the file a new name that is not
that of a switch, you can give a path. For instance, if in the script
above, App was given the new name sales.txt on the receiving ma-
chine, you could change the script to the following:

FILETRANSFER
Send
C:\Pat\Work\App # Local path with backslashes
/u/customer/sales.txt # New filename and full path

Esc

Restarting an Interrupted File Transfer
Disconnections and interruptions in sending long files can be costly
and time-consuming. BLAST can restart transfer of files from the
point of interruption without having to restart transmission from the
beginning of the file.

If a filetransfer session is interrupted and you wish to restart from the
point of interruption, both local and remote systems must time out
or be interrupted by ATTN ATTN. After the session has been interrupt-
ed or aborted, you may restart the session by following these steps:

◊ Reconnect, if necessary, and restart the filetransfer session.

◊ Send the exact file that was being sent when interrupted.

◊ Do not indicate the overwrite or append options.

BLAST restarts from the last point at which its buffers were flushed
to disk. This may be right at the interrupt point or as much as 10K
before the interrupt point.

NOTE: Adding the /STR switch to a filename eliminates the possi-
bility of resuming an interrupted transfer of that file.

Transfer to a Printer
With BLAST protocol, you may specify a printer as the destination
on a remote computer. For instance, in a PC-to-PC transfer, the
Sending PC would use the device name “PRN” as the destination
filename on the receiving PC. BLAST will exert flow control as nec-
essary to accommodate the speed of the printer, but you should be
aware that unexpected events, such as the printer running out of pa-
per, will cause BLAST to time out and end the transfer.
116 CHAPTER SIX

NOTE: If you have the disk space available, it is always better to
send a file to disk and then print the file.

When you send to a printer, restarting from the point of interruption
is not supported; also, you may need to specify the /TXT switch for
the data to print properly.

An example in BLASTscript might look like this:

FILETRANSFER
SEND
sample.fil
PRN
T
ESC

Transfer Command File

A transfer command file is a text file that contains line-by-line in-
structions describing functions to be performed during a BLAST
protocol filetransfer session. Any word processor or editor can cre-
ate a transfer command file, but it must be saved in text only or
ASCII format under any name that you choose. Transfer command
files are also called error-free command files.

A transfer command file can be invoked interactively by selecting
the File command from the Filetransfer menu, or from within a
BLAST script by using the following BLASTscript commands:

FILETRANSFER
FILE
Filename # name of the transfer command file
ESC

If the transfer command file is in the current directory, you only have
to specify the filename; if it is in any other directory, you must spec-
ify the full path.

The command file contains an unlimited number of commands, each
as a separate line of text. Files, messages, and certain remote com-
mands can be sent and remote files can be received. Filetransfer
commands are entered as one line, with the source and destination
specifiers separated by a space. If any file transfer switches are re-
quired, they are entered following the file specifier(s).
BLAST SESSION PROTOCOL 117

Command Formats
The text in a transfer command file must begin in the first column of
every line. Commands in a transfer command file accomplish one of
four tasks:

1. Send a File:

No special character is required; simply type the name of the lo-
cal file to send and, separated by a space, the name for the file
on the remote system. If no remote name is given, BLAST will
use the local name. Any file transfer switches must be typed im-
mediately following the filename:

local_filename[switches] [remote_filename[switches]]

2. Get a File:

The first character in the line must be a plus sign (+). Immedi-
ately following the “+”, enter the name of the file to receive
from the remote system and, with no intervening space, any file
transfer switches. If a different name is desired for the local file,
type a single space after the remote filename and then type the
local filename with any switches immediately following:

+remote_filename[switches] [local_filename[switches]]

Note that it is more efficient to put all Gets (lines beginning with
“+”) first, so that the remote file requests queue up on the re-
mote. This order allows for true bi-directional transfer during
command file operations.

3. Send a Display Message:

The first character in the line must be a semicolon (;). Immedi-
ately following the semicolon (;), type the desired message,
which will be transmitted to the remote display and the remote
log, if specified:

;Now Sending Sales Reports

4. Send a Command to the Remote Computer:

The character in the first column must be an exclamation point
(!). Immediately following the exclamation point, type the com-
mand to be sent to the remote computer, for example:
118 CHAPTER SIX

!dir

The valid remote commands are:

DIR
Display the contents of the current remote directory.

TYPE filename
Type the contents of the specified remote file to the screen.

C
Display the next page of a multi-page display.

PRINT filename
Print the specified file on the remote printer.

REN oldname newname
Rename the specified remote file to the new name.

ERA filename
Erase the specified remote file.

CHDIR path
Change from the current remote directory to the specified re-
mote directory.

Example

To understand the use of transfer command files, imagine that a
salesman named Joe is using BLAST to keep track of current pricing
changes and to send in current orders. He will always get the file
called CURPRICE.FIL and send the file called JOEORDER.FIL.
Joe can create an error-free command file named JOE.CMD, which
looks like this:

;I want to get current price lists
+CURPRICE.FIL/txt JOEPRICE.FIL/txt/ovw
;Now I am about to send in today's orders
JOEORDER.FIL/txt TODAYORD.FIL/txt/ovw
!DIR

To use this command file, Joe would choose File from the Filetrans-
fer menu and type in the name JOE.CMD at the prompt. The follow-
ing sequence of events then takes place:
BLAST SESSION PROTOCOL 119

◊ The first message in the command file appears on the screen.

◊ The file CURPRICE.FIL is retrieved and overwrites the old
JOEPRICE.FIL.

◊ The second message appears.

◊ JOEORDER.FIL is sent and overwrites the old
TODAYORD.FIL.

◊ Finally, the contents of the current directory of the remote com-
puter are displayed on Joe’s screen.

BLAST Protocol Remote Menu

The Filetransfer menu contains a Remote command that takes you
to the Remote menu. The Remote menu allows a user with no
knowledge of the remote operating system to manage files on that
system. For example, you can delete a file on a remote UNIX system
without actually typing the UNIX delete command. BLAST will
“translate” the command automatically. Remote commands affect
only files in the current remote directory unless you specify a path-
name.

NOTE: The Enable /OVW and Remote Cmds setup field (page 91)
in the BLAST protocol subwindow must be enabled on the remote
system in order for you to delete, rename, or print files on the remote
system.

Following is a description of the Remote menu commands:

List – Operates like the Local List command except that it displays
the contents of the current remote directory. You will be
prompted to choose either a detailed (long) or non-detailed
(short) list and then to specify a filename; you may use a spe-
cific filename, a filename with wildcard characters (for exam-
ple, “*”), or press ENTER to display all files in the current
remote directory.

Delete – Deletes a single file or multiple files from the remote sys-
tem. You may use a specific filename or a filename with
wildcard characters (for example, “*”).

Rename – Renames a remote file.
120 CHAPTER SIX

Type – Displays a remote file on the BLAST screen.

Print – Prints a remote file to the remote printer.

Chdir – Changes the current remote directory to one that you name.
BLAST will check this directory for any files that you spec-
ify with the Remote menu commands.

More – Scrolls a page of data when either the List or Type com-
mands causes more than one full screen of data to be re-
ceived. You will be prompted to execute the More
command in order to see the remaining pages, one page at a
time.

Automating the BLAST Session Protocol

The BLAST session protocol can be fully automated through script-
ing. For information on writing scripts using the BLAST protocol,
see “File Transfers with BLAST Session Protocol” on page 178.

Fine-Tuning the BLAST Session Protocol

You may fine-tune throughput by adjusting packet size and com-
pression level:

Packet Size
Most computers can process packets of 256 characters. Set the Pack-
et Size setup field (page 99) to 256 or higher unless phone line qual-
ity is poor. Small packet sizes reduce the number of bytes requiring
retransmission over noisy lines. Computers connected directly by
cables will benefit from a much larger packet size, such as 4085. In
a BLAST script, the reserved variable for packet size, @PAKTSZ,
can be set anytime before entering a filetransfer session.

Compression Levels
BLAST performs automatic data compression during file transfers
with the BLAST protocol, reducing the number of characters sent
and the transfer time.

Compression level is specified in BLAST Protocol subwindow set-
up fields (page 91). Possible values for Receive Compression Level
BLAST SESSION PROTOCOL 121

and Send Compression Level are 0 (no compression) to 6. The de-
fault is 4, which provides the best performance for average-sized
files. Compression can also be selected by the @RCOMP_LEV (re-
ceive) and @SCOMP_LEV (send) BLASTscript reserved variables.

Data compression requires additional RAM during file transfers.
The amount of RAM necessary varies with the compression level.
Following is a brief explanation of each compression level and rec-
ommendations for its use:

Compression Level 0 – Level 0 specifies that no compression will
be used. Choose level 0 when your CPU is slow and the baud rate is
high. In this situation, the overhead needed for compression can ac-
tually increase transfer time.

IMPORTANT: Always use compression level 0 when transferring pre-compressed
files.

Compression Level 1 – Use level 1 when your data has strings of
duplicate characters. Such data could include row and column re-
ports, which have many embedded blanks, and executable files with
blocks of nulls. In some cases, compression level 1 improves perfor-
mance over high-speed modems with hardware data compression
enabled.

Compression Level 2 – Starting with level 2, compression requires
more work by both computers. With a standard modem and two fast
machines, however, levels 2–4 will save transmission time.

Compression Level 3 and 4 – Levels 3 and 4 of compression are
most effective when a limited character set is used or there are rep-
etitious patterns. Because spreadsheets and databases have many
repetitious patterns and a limited character set, they are highly com-
pressible.

Compression Level 5 and 6 – Levels 5 and 6 compression are
most effective for large files (above 500 K). On large files, the re-
ceiving computer may notice a significant delay before the first
block is received while the sending computer calculates maximum
compression.
122 CHAPTER SIX

Filetransfer Security with BLAST Protocol

Disabling File Overwrites and Remote Commands
The Enable /OVW and Remote Cmds setup field (page 91) and the
BLASTscript variable @ENABLERCMD (page 248) control whether
or not remote commands and file overwrites are allowed during
Filetransfer mode. Note that disabling /OVW affects only local files.
For example, you will still be able to send a file with the /OVW
switch because the file will be overwritten on the remote system.

Disabling the /FWD and /STR Switches
The Enable /FWD and /STR setup field (page 91) and the
@ENABLEFS (page 248) script variable control whether or not the
/FWD and /STR file transfer switches are allowed during Filetrans-
fer mode. Note that disabling these switches affects only local files.
For example, you will still be able to get a file with the /FWD switch
because the transferred file will be deleted from the remote system.
See “File Transfer Switches” on page 114.

NOTE: Adding the /STR switch to a filename eliminates the pos-
sibility of resuming an interrupted transfer of that file.

Using the Transfer Password

When you specify a Transfer Password on your PC, BLAST will re-
strict access by a remote user during BLAST protocol transfer. If the
remote user does not have the password, he may only send and re-
ceive messages while in Filetransfer mode. The Transfer Password
can be set by entering it into the Transfer Password setup field (page
88) or by setting the reserved variable @TRPASSWD (page 269) in a
slave script on the remote system.

After entering a filetransfer session, the remote user must send the
transfer password to your machine using the Send command from
the Filetransfer menu or a FILETRANSFER statement in a script. If
the user issues a Send command from the Filetransfer menu, the fol-
lowing special format for the local filename must be used:

!password=your_password

where your_password represents the password stored on the
your system. The remote filename field is left blank as are the text,
overwrite, and append options. If the correct password is successful-
BLAST SESSION PROTOCOL 123

ly sent, the remote user will see a message stating that the password
has been validated. The password must be typed exactly as it is set
on the your system.

If a BLAST script is used, the same special local filename format
must be used for sending the password to your computer, for exam-
ple:

FILETRANSFER
SEND
!password=blue2

SEND
myfile.rpt
yourfile.rpt
ta
ESC

Because the remote filename and send transfer options are not used,
two blank lines must follow the !password=your_password
statement. See “Getting and Sending Files” on page 178 for infor-
mation on scripting file transfers.

Since the remote user has to enter the password through BLAST in-
teractively or through a script, the use of Transfer Password deters
an unauthorized user from breaking your security by submitting a
rapid series of passwords.

NOTE: The Transfer Password is intended to validate remote users
logging onto your system. If a local operator uses a setup with a
Transfer Password entered, he or she will not be able to receive files
without the remote user sending the password.
124 CHAPTER SIX

Chapter 7

FTP
With a compatible packet driver installed, BLAST can establish FTP
connections over TCP networks using BLASTTCP (see “TCP/IP
Driver” on page 33 for information on installing and configuring
BLASTTCP). For information on scripting FTP sessions, see “File
Transfers with FTP” on page 181.

Using FTP

Most users will be transferring files to a multi-user host such as a
UNIX-based computer. Create a setup that includes the following
choices:

System Type: UNIX
Connection: TCP/IP ->
Modem Type: None
Originate/Answer: Originate
Protocol: FTP

Be sure you have also entered your Userid and Password so that
BLAST can log you into the remote system. The Connection field
should contain the name of your local server.
FTP 125

Starting an FTP Session

After creating the appropriate setup file, you can establish FTP ses-
sions in two ways. If you use the Connect command first from the
Offline menu, FTP will start a Telnet session with the remote host.
You can then issue the Filetransfer command, which will suspend
the Telnet session and start the FTP session. When you exit FTP,
your Telnet session will resume.

Alternatively, you can go to the Online menu and issue the Filetrans-
fer command without connecting first. Blast will establish the FTP
session and close the connection after you leave filetransfer.

FTP Filetransfer Menu

The FTP Filetransfer menu (Figure 7-1) is slightly different from the
menu displayed during a BLAST protocol session.

FIGURE 7-1

Following is a brief description of the commands of FTP Filetransfer
menu:

Send – Sends a file to the an FTP server. You will be prompted for
a local and remote filename.

Get – Receives a file from an FTP server. You will be prompted for
a remote and local filename.

Command – Sends a command to the remote computer. You will
be prompted for the command. For example, if you
126 CHAPTER SEVEN

type “help” and press ENTER, you will see a list of com-
mands available on the remote system. For informa-
tion on a specific command, type “help” followed by
the name of the command, and then press ENTER. See
also “FTP Commands” on page 129.

Local – Takes you to the local menu, which performs local system
commands (see “The Local Menu” on page 57). Note that
all filetransfer activity is suspended while you are using the
local system.

Sending and Receiving Files with FTP

The following two sections describe interactive file transfers. For a
discussion of scripting FTP file transfers, see “File Transfers with
FTP” on page 181.

Sending Files with FTP
To send a file, select Send from the Filetransfer menu and enter the
name of the file that you wish to send. You will then be prompted
for a remote filename.

IMPORTANT: FTP will overwrite a file of the same name on the remote system
without warning you first.

You may use standard wildcard characters in the filenames. If you
wish to append a local file to a file of the same name on the remote
system, select Command from the file menu and enter APPE fol-
lowed by a space and the name of the file that you wish to append.
This will automatically append the local file to the remote file. For
more on FTP commands, see “FTP Commands” on page 129.

When the FTP transfer completes, a message will be sent to your
system and you will be returned to the Filetransfer menu.

Getting Files with FTP
Select Get from the filetransfer menu, enter the name of the remote
filename, and then the local filename. By default, the file will be
stored in the current local directory, but you may specify a specific
directory path. You may use standard wildcard characters in the file-
names.
FTP 127

NOTE: FTP GETs should be used with caution. In the FTP proto-
col, the markers for end-of-file and for close-connection are the
same. Thus, incomplete file receives resulting from connection fail-
ures are reported as successful file transfers in both the File Transfer
Status Area and the log file.

Filenames Restrictions with FTP

With FTP, you should not give a file the same name as a switch since
BLAST FTP will assume that the file is a switch and ignore it if for-
ward slashes are used in the pathname. In such a case, the transfer of
the file will not occur, and you will get an error message. Some of
the more common switches to avoid in naming files (uppercase or
lowercase) are: app, comp=n, follow=nn, fwd, group, ovw, own-
er=nn, perms=nnnn, str, and txt (where n is a number from 0 to 9).

You can work around this restriction by using backslashes if both the
local and remote operating systems support them. If not, you can
change your local and remote working directories to the ones con-
taining the file you want to transfer and give the local and remote
filenames without a path. To change your local working directory
interactively, choose Chdir command from the Local menu. To
change your remote working directory interactively, choose Com-
mand from the Filetransfer menu and type in CWD and the name of
the new directory (see “FTP Commands” on page 129).

Alternatively, you may do a scripting workaround:

FILETRANSFER
LCHDIR "/u/Pat/work" # Change local dir.
REMOTE
 Cwd # Change working dir.
 /usr/customer # Name of new directory
 ESC
SEND
App # Filename only--no path

ESC

If, on the receiving system, you give the file a new name that is not
that of a switch, you can give a path. For instance, if in the script
above, App was given the new name sales.txt on the receiving ma-
chine, you could change the script to the following:
128 CHAPTER SEVEN

FILETRANSFER
LCHDIR "/u/Pat/work" # Change local directory
Send
App # Filename only--no path
/usr/customer/sales.txt # Give new name and full path
Esc

Ending an FTP Session

FTP sessions end automatically when all specified files are trans-
ferred or remote commands executed and you press ESC to exit File-
transfer mode.

FTP Commands

You can perform commands on the remote computer by choosing
Command from the FTP Filetransfer menu and typing one of the fol-
lowing commands at the prompt.

Service Commands
ABOR Abort last command
ALLO number_bytes Allocate file space
APPE remote_filename Append to file
DELE filename Delete file
HELP [command] Help
LIST [pathname] List files
MKD new_directory_name Make directory
NLST [pathname] Name list
NOOP No operation
PWD Print working directory
REST byte_number Restart transfer at
RETR remote_filename Retrieve file
RMD directory_name Remove directory
RNFR current_filename Rename from
RNTO new_filename Rename to
SITE site_parameter Site specific parliamentary
STAT [pathname] Return server status
STOR local_filename Store file
STOU local_filename Store as unique name
SYST Return server OS type
FTP 129

Access Control Commands
ABOR Abort last command
ACCT account Specify account
CDUP Change to parent directory
CWD new_directory Change directory
PASS password Password
QUIT Quit transfer and log out
REIN Reinitialize
SMNT pathname Structure mount
USER username Login ID

Transfer Parameter Commands
MODE mode_code Transfer mode (S or B)
PASV Passive transfer
STRU structure_code File structure (F)
TYPE type_code File type (I or A N)
130 CHAPTER SEVEN

Chapter 8

Kermit Protocol
Many communication products support Kermit protocol on a wide
range of computers, but you should be aware that there are many dif-
ferent versions of Kermit, two with which BLAST can communi-
cate. The simplest version is a file transfer program that requires
commands to be entered at both the sending and receiving comput-
ers (using the Send and Receive commands). The second, more so-
phisticated version is the Kermit server. The Kermit server accepts
commands from a remote user and performs specified operations
(using the Send, Get, and Remote commands). For information on
scripting Kermit sessions, see “File Transfers with Kermit” on page
181.

Kermit Filetransfer Menu

You will notice that the Kermit Filetransfer menu (Figure 8-1, next
page) is slightly different from the menu displayed during a BLAST
protocol session. Below is a brief description of the command op-
tions of this menu:

Send – Sends a file to a Kermit program. You will be prompted for
the local and remote filenames.
KERMIT PROTOCOL 131

FIGURE 8-1

Get – Receives a file from a Kermit server. You will be prompted
for the remote and local filenames.

Receive – Receives a file from a simple Kermit. You must specify
a local filename.

Remote – Takes you to the Remote menu, which performs remote
Kermit server commands. This option allows a user with
no specific knowledge of the remote operating system to
manage files on the remote computer. For example, a PC
user can delete a file without actually typing the delete
command of the remote operating system (see “Kermit
Remote Menu” on page 135).

Finish – Returns you to the Online menu. Kermit server finishes

transfer and exits without logging off; thus, you may con-
tinue the session.

Bye – Ends Kermit server mode and logs off of the remote system.
Depending on the remote modem settings, the connection
may or may not be broken. You will be returned to the Online
menu.

Sending and Receiving Files with Kermit

The following two sections describe interactive file transfers. For a
discussion of scripting Kermit file transfers, see “File Transfers with
Kermit” on page 181.
132 CHAPTER EIGHT

Sending Files with Kermit

Kermit Server

◊ In Terminal mode, begin the Kermit program on the remote sys-
tem.

◊ Exit Terminal mode, select the Filetransfer command from the
Online menu, and then select the Send command. You will be
prompted for the local and remote filenames. For the local file-
name, you may enter a single filename from the current directo-
ry or a path specification with a single filename. You may use
wildcards (see “Wildcards” on page 112), but you cannot use
file transfer switches.

◊ The transfer will begin, and the number of bytes sent will be dis-
played in the File Transfer Status Area.

Simple Kermit

◊ In Terminal mode, begin the simple Kermit program on the re-
mote system.

◊ In simple Kermit on the remote system, issue a receive com-
mand.

◊ Exit Terminal mode, select Filetransfer, and then select Send.
You will be prompted for local and remote filenames. If you
designate a remote filename with the simple Kermit receive
command, a filename entered at the remote filename prompt
will be ignored.

Receiving Files with Kermit
BLAST’s implementation of Kermit supports both the Kermit server
Get command and the simple Kermit Receive command to transfer
files from a remote computer. Following are directions for transfers
from a remote computer:

Kermit Server

◊ In Terminal mode, begin the Kermit server program on the re-
mote system.

◊ Exit Terminal mode, select the Filetransfer command from the
Online menu, and then select the Get command. You will first
be prompted for the remote filename—you may enter a single
filename from the current directory or a path specification with
a single filename; you may include wildcards (see “Wildcards”
KERMIT PROTOCOL 133

on page 112). You will then be prompted for a local filename.
Optionally, you may add any supported file transfer switches
(see “File Transfer Switches with Kermit” on page 134). Once
you have entered the filenames and any switches, the transfer
request is automatically sent to the remote.

◊ Unless you specify otherwise, the received file will be saved to
your current directory.

NOTE: If you have an existing file with the same name, the trans-
ferred file will be renamed by adding a number (0001, 0002, etc.) to
the original filename when the Warning setup field (page 95) is set
to ON. When this field is set to OFF, the existing file will be auto-
matically overwritten.

Simple Kermit

◊ In Terminal mode, begin the simple Kermit program on the re-
mote system.

◊ In Kermit on the remote system, send the file by invoking the
send command.

◊ Exit Terminal mode, select Filetransfer, and then select Re-
ceive. You will then be prompted for a local filename; option-
ally, you may add any supported file transfer switches (see the
next section “File Transfer Switches with Kermit”).

◊ Unless you specify otherwise, the received file will be saved to
your current directory.

NOTE: If you have an existing file with the same name, the trans-
ferred file will be renamed by adding a number (0001, 0002, etc.) to
the original filename when the Warning setup field (page 95) is set
to ON. When this field is set to OFF, the existing file will be auto-
matically overwritten.

File Transfer Switches with Kermit

Kermit ignores all file transfer switches on sending filenames and
supports the following file transfer switches on receiving filenames:

/APP Append to a file with the same name if it exists.

/OVW Overwrite a file with the same name if it exists.
134 CHAPTER EIGHT

Filenames Restrictions with Kermit

With Kermit Protocol, you should not give a file the same name as
a switch since, if forward slashes are used in the pathname, BLAST
will assume that the file is a switch and either ignore it (if the switch
is unsupported by Kermit) or look for a file with the name of the
folder containing the file (if the switch is supported by Kermit). In
either case, the transfer of the file will not occur and you will get an
error message. Some of the more common switches to avoid in nam-
ing files (uppercase or lowercase) are: app, comp=n, follow=nn,
fwd, group, ovw, owner=nn, perms=nnnn, str, and txt (where n is a
number from 0 to 9).

You can work around this restriction by using backslashes if both the
local and remote operating systems support them. If not, you can
change your local and remote working directories to the ones con-
taining the file you want to transfer and give the local and remote
filenames without a path. To change your local working directory
interactively, choose the Chdir command of the Local menu. To
change your remote directory interactively using Kermit server,
choose Remote from the Kermit Filetransfer menu and then select
the Cwd (Change Working Directory) command. To change your re-
mote directory interactively using simple Kermit, access Terminal
mode and give the “change current directory” command for that op-
erating system.

Alternatively, you may do a scripting workaround. To change the lo-
cal working directory, use the LCHDIR command. To change the re-
mote working directory using the Kermit server, issue a
FILETRANSFER/REMOTE/Cwd multi-line command statement.
To change the remote working directory using simple Kermit or
Kermit server, TSEND a “change working directory” command to
the remote. For example, the following script fragment changes the
current remote directory on a UNIX machine to /u/sales.

TSEND "cd /u/sales", LF

See “File Transfers with Kermit” on page 181 for more on scripting
for Kermit.

Kermit Remote Menu

Notice that the Kermit Remote menu (Figure 8-2, next page) offers
a selection of commands different than those of the BLAST proto-
KERMIT PROTOCOL 135

col. These functions operate on the remote system in Kermit server
mode. However, unreliable results can occur if you use a command
that is not supported by the server.

FIGURE 8-2

The Remote menu commands are:

Directory – Displays the server’s current working directory or a
directory you specify; wildcards can be used.

Erase – Deletes a file in the server’s current working directory or
in a directory you specify by giving the full path of the file;
wildcards can be used.

Type – Displays a remote file on your local screen. Since Kermit
does not support a page pause, you must use CTR S to pause
and CTRLQ to resume the flow of text.

Cwd – Changes the server’s working directory. You will be prompt-
ed for the new directory pathname.

Space – Displays the server’s free drive space.

Who – Displays users currently logged onto the remote. If you
specify a user name, information on that name only will ap-
pear.

Message – Sends a one-line message to be displayed to the remote
operator.

Host – Sends an operating system command to the Kermit server.
The command is executed immediately.
136 CHAPTER EIGHT

Kermit – Sends a Kermit language command to modify session pa-
rameters, for example, SET FILE TYPE BINARY.

Help – Displays a short list of the commands currently available on
the Kermit server. Because servers can support different
commands, the Help command can be a valuable reminder
of what is available through the Kermit server.

The Kermit DISABLE command can lock most of these menu com-
mands. For example, the command DISABLE ERASE will prevent
files from being deleted on the remote system.
KERMIT PROTOCOL 137

138 CHAPTER EIGHT

Chapter 9

Xmodem, Ymodem,
and Zmodem Protocols

BLAST includes Xmodem, Ymodem, and Zmodem protocols for
transferring files as an alternative to BLAST protocol.

Before choosing Xmodem, Ymodem, or Zmodem for a major appli-
cation, ask yourself:

◊ Will you need to transfer files with computers using other oper-
ating systems?

◊ Do your transfers need to be fast and 100% error free?

◊ Do you want the ability to execute commands on the remote
system without special knowledge of the command syntax?

If you have answered “Yes” to any of these questions, you should
use BLAST protocol on your remote system if it is available; Xmo-
dem, Ymodem, and Zmodem protocols do not support both near-
transparent remote access to other operating systems nor fast, 100%
error-free transfers.

The following instructions are very general. Actual procedures for
using Xmodem, Ymodem, and Zmodem will vary depending on the
XMODEM, YMODEM, AND ZMODEM PROTOCOLS 139

implementation of these protocols on the remote system. Many com-
munications products support the standard implementation of these
protocols; nevertheless, you should be aware that there are different,
incompatible versions that might not work successfully with
BLAST.

Command Line Features

If you have chosen the Xmodem or Ymodem protocol in your setup,
you can specify an end-of-transmission (EOT) timeout parameter
using a command line switch in the following format:

/tx

where timeout is equal to number/100 seconds. The minimum time-
out is .1 second (10), and the maximum is 60 seconds (6000). For
example, /t1111 sets the timeout to 11.11 seconds.

You can also select the pad character for Xmodem using the follow-
ing format:

blast /px

where x specifies the character expressed as a hexadecimal value.
For example, /p21 specifies “21” as the pad character.

Invoking a command line parameter affects these protocols only for
the duration of that communications session.

Xmodem Protocol

BLAST supports Xmodem1K CRC as well as Xmodem CRC and
the standard Xmodem checksum protocol. When you select Xmo-
dem as your protocol, BLAST will automatically determine which
implementation of Xmodem is on the remote system and choose the
correct counterpart on your local system.

NOTE: Xmodem is only compatible with 8-bit connections.

The following two sections describe interactive file transfers. For a
discussion of scripting Xmodem file transfers, see “File Transfers
with Xmodem and Xmodem1K” on page 184.
140 CHAPTER NINE

Sending Files with Xmodem
To send a file using Xmodem:

◊ Begin the Xmodem receive program on the remote computer,
specifying a filename if needed. For example, if the remote
computer were a UNIX system running Xmodem, you would
enter Terminal mode, begin the remote receive command on the
remote computer, and then exit Terminal mode.

◊ Select the Filetransfer command from the Online menu, and
then select the Send command. You will be prompted for the lo-
cal filename.

Receiving Files with Xmodem
To receive a file using Xmodem:

◊ Begin the Xmodem send program on the remote computer. For
example, if the remote computer were a UNIX system running
Xmodem, you would enter Terminal mode, begin the remote
send command on the remote computer, and then exit Terminal
mode.

◊ Select the Filetransfer command from the Online menu, and
then select the Get command. You will be prompted for the file-
name. If the file already exists on the local machine, it will be
automatically overwritten.

Ymodem Protocol

BLAST supports the standard Ymodem and Ymodem G protocols.
Do not use Ymodem G protocol unless there are properly configured
error-correcting modems on both ends of the connection.

The following two sections describe interactive file transfers. For a
discussion of scripting Ymodem file transfers, see “File Transfers
with Ymodem and Ymodem G” on page 185.

Sending Files with Ymodem
To send a file using Ymodem:

◊ Begin the Ymodem receive program on the remote computer,
specifying a filename if needed. For example, if the remote
XMODEM, YMODEM, AND ZMODEM PROTOCOLS 141

computer were a UNIX system running Ymodem, you would
enter Terminal mode, begin the remote receive command on the
remote computer, and then exit Terminal mode.

◊ Select the Filetransfer command from the Online menu and then
select the Send command. You will be prompted for the file-
name. You may enter a single filename from the current direc-
tory or a path specification with a single filename; you may use
wildcards (see “Wildcards” on page 112).

Receiving Files with Ymodem
To receive a file using Ymodem:

◊ Begin the Ymodem send program on the remote computer,
specifying a filename if needed. For example, if the remote
computer were a UNIX system running Ymodem, you would
enter Terminal mode, begin the remote send command on the
remote computer, and then exit Terminal mode.

◊ Select the Filetransfer command from the Online menu and then
select the Get command. The transfer will begin immediately
without prompting for a local filename.

Zmodem Protocol

BLAST supports the standard Zmodem protocol in both single-file
and batch modes. BLAST also supports a variety of special Zmodem
features that can be activated through the setup fields of the Zmodem
protocol subwindow (page 95).

The following two sections describe interactive file transfers. For a
discussion of scripting Zmodem file transfers, see “File Transfers
with Zmodem” on page 187.

Sending Files with Zmodem
To send a file using Zmodem:

◊ Begin the Zmodem receive program on the remote computer,
specifying a filename if needed. For example, if the remote
computer were a UNIX system running Zmodem, you would
enter Terminal mode, begin the remote receive command on the
remote computer, and then exit Terminal mode.
142 CHAPTER NINE

◊ Select the Filetransfer command from the Online menu and then
select the Send command. You will be prompted for the file-
name. You may enter a single filename from the current direc-
tory or a path specification with a single filename; you may use
wildcards (see “Wildcards” on page 112).

Receiving Files with Zmodem
To receive a file using Zmodem:

◊ Begin the Zmodem send program on the remote computer,
specifying a filename if needed. For example, if the remote
computer were a UNIX system running Zmodem, you could en-
ter Terminal mode, begin the remote send command on the re-
mote computer, and then exit Terminal mode.

◊ Select the Filetransfer command from the Online menu and then
select the Get command. The transfer will begin immediately
without prompting for a local filename.

NOTE: If the Auto Receive setup field (@ZMAUTODOWN) is set to
YES, you do not have to select the Get command; Zmodem transfers
the file automatically when you enter Filetransfer mode.

Filenames Restrictions

With Xmodem, Ymodem, and Zmodem, you should not use any file
transfer switches. Also you should not give a file the same name as
a switch if forward slashes are used in the pathname—BLAST will
either ignore the file or look for a file with the name of the folder
containing the file. In either case, the transfer of the file will not oc-
cur and you will get an error message. Some of the more common
switches to avoid in naming files (uppercase or lowercase) are: app,
comp=n, follow=nn, fwd, group, ovw, owner=nn, perms=nnnn, str,
and txt (where n is a number from 0 to 9).

You may work around this restriction by using backslashes if both
the local and remote systems support them. If not, you can change
your local and remote current directories to the one containing the
file you want to transfer and give the filename without a path.
Change your local working directory by accessing the Local menu
and choosing the Chdir command. Change your remote working di-
rectory by accessing Terminal mode and giving the “change current
directory” command for that operating system.
XMODEM, YMODEM, AND ZMODEM PROTOCOLS 143

Alternatively, you may do a scripting workaround. To change the lo-
cal working directory use the LCHDIR command. To change the re-
mote directory TSEND a “change working directory” command for
that operating system. For example, the following script fragment
will change the current remote directory on a UNIX machine to
/u/sales.

TSEND "cd /u/sales", LF
144 CHAPTER NINE

Chapter 10

Text Transfers

Introduction

In BLAST session protocol, you may transfer text directly to and
from a remote computer using the respective Online commands Up-
load and Capture.

Uploading Text to a Remote Computer

Uploading is the process of sending text from your PC to a remote
computer. When you upload, the text being uploaded will display on
your screen. The receiving computer does not need to be running
BLAST, but it must have a program capable of capturing text and re-
sponding to flow control.

Because there is no error detection, characters may be dropped or
noise may change the characters in the data stream. The following
setup fields, however, can assist in regulating the flow of data during
text uploads to help prevent the receiving computer from losing
characters: Wait for Echo, Prompt Char, Char Delay, and Line De-
lay. See Chapter 5 for details on using these functions.
TEXT TRANSFERS 145

After you have connected, there are three ways to start the upload
process with another system:

Manual Method
◊ Select Terminal from the Online menu.

◊ Type the appropriate commands for the remote computer to
start a text capture program. Note that an entry is not required
in the System Type setup field for this method.

◊ When the remote capture program is ready, press ATTN ATTN to
exit Terminal mode and then select Upload from the Online
menu. Specify the desired local filename, but not a remote file-
name.

◊ After the upload is completed, you will be returned to Terminal
mode. Save the file containing the newly captured text, specify-
ing a name if you have not already done so on the command
line, and then quit the capture program.

Interactive Automatic Method
Select the Upload command from the Online menu. You must spec-
ify both the local and remote filenames. Your PC will automatically
send the file to the remote system if text capture is supported by that
system.

NOTE: The remote computer type must be entered in the System
Type setup field for this method to work because BLAST uses the
SYSTEMS.SCR library to automate the process. BLAST will start
the remote text capture program for you.

BLASTscript Automatic Method
See “Text Transfers” on page 190 for details on scripting uploads.

Downloading Text from a Remote Computer

Downloading is the process of capturing text sent from another sys-
tem to your computer. When you capture text from a remote com-
puter, the text being downloaded will display on your screen. The
sending computer does not need to be running BLAST, but it must
have a program capable of sending text and responding to flow con-
trol. If flow control is specified in the setup, BLAST will pause
146 CHAPTER TEN

transmission for a few moments when the buffers are full. After con-
necting, there are two ways to start the download process:

Manual Method
◊ Select the Capture command from the Online menu and specify

the desired filename for the capture file.

◊ Select Terminal from the Online menu. Type the appropriate
command for the remote computer to start typing the text. For
example, at the “$” prompt on a UNIX system, you might type:

cat test.fil

◊ When the download has completed, press ATTN ATTN to exit
Terminal mode. Turn Capture off by selecting it again.

BLASTscript Automatic Method
See “Text Transfers” on page 190 for details on scripting down-
loads.
TEXT TRANSFERS 147

148 CHAPTER TEN

Chapter 11

BLAST Editor

Using BLAST Editor

BLAST editor is available through the Edit command of the Local
menu. Using it, you can modify BLAST scripts or any ASCII text
file. Files created using BLAST editor contain no special formatting
codes, such as overstrike, underline, bold, or word wrapping. The
maximum file size that can be edited with BLAST editor is 57996
bytes.

If a file is changed, the original file is renamed with a “.BAK” ex-
tension. You may recover the previously saved version of the file by
exiting BLAST editor, deleting the current version of the file, and re-
naming the “.BAK” file the original name.

If you prefer a different text editor, you may link your editor to the
Edit menu command by setting the EDITOR option in BLAST.OPT
(see page 24).

NOTE: Some systems use the CTRL S and CTRL Q characters for
flow control. Also note that, in a LAN environment, when you spec-
ify a filename to edit with BLAST Editor, you should always prefix
the filename with a full path. If the file is in the current directory, use
BLAST EDITOR 149

the prefix “.\” (period backslash) to insure that the file is saved to the
correct directory.

Quick Reference

This section provides a quick reference to BLAST Editor key se-
quences. Note that quick movement keys included in the list below
require pressing CTRL Q and then a letter. Similarly, blocking keys re-
quire pressing CTRL K and then a letter.

Cursor Movement
CTRL S or ← cursor moves space to the left
CTRL D or → cursor moves space to the right
CTRL A cursor moves word to the left
CTRL F cursor moves word to the right
CTRL I cursor moves to next tab stop (insert

mode off)
CTRL Q S or F5 cursor moves to start of line
CTRL Q D or F6 cursor moves to end of line
CTRL E or ↑ cursor moves to preceding line
CTRL X or ↓ cursor moves to next line
CTRL Q G or F8 cursor moves to line number
CTRL Q E or HOME cursor moves to top of screen
CTRL Q X or END cursor moves to bottom of screen
CTRL R or PG UP cursor moves up a page
CTRL C or PG DN cursor moves down a page
CTRL Q R or F9 cursor moves to start of file
CTRL Q C or F10 cursor moves to end of file
CTRL Q P cursor moves to previous position

Scrolling
CTRL C scroll down one screen
CTRL R scroll up one screen
CTRL W scroll up one line
CTRL Z scroll down one line

Insertion/Deletion
CTRL V toggle insert mode on/off
CTRL P insert control character
CTRL N insert blank line
CTRL K R insert contents of file at cursor position

(you will be prompted for a filename)
CTRL G or DELETE delete character
CTRL H delete preceding character
CTRL T delete word
150 CHAPTER ELEVEN

CTRL Y delete line
CTRL Q Y delete text from cursor to end of line
CTRL K Y delete block
CTRL I move text on right to next tab stop (insert

mode on)

Blocking
CTRL K B or F3 mark beginning of block
CTRL K K or F4 mark end of block
CTRL K H or F2 unmark block
CTRL K C copy block
CTRL K Y delete block
CTRL K V move block to current cursor position
CTRL K P print block
CTRL K W write block into a file (you will be

prompted for a filename)

Searching
CTRL Q F or F7 find word or phrase
CTRL Q A find and replace word or phrase
CTRL L find and/or replace word or phrase again

Quitting
CTRL K X save file and exit

Cursor Movement and Scrolling

The cursor in BLAST Editor can be positioned to any location with-
in the file. You may not, however, place the cursor in locations that
do not contain characters. You may view text without moving the
cursor by using several scrolling keys. For a list of key sequences for
cursor movement and scrolling, see “Quick Reference” in the pre-
ceding section.

Inserting and Deleting Text

BLAST Editor enters text in two ways. When insert mode is on, add-
ed characters move all other characters to the right, thus inserting the
text. When insert mode is off, typed characters replace existing char-
acters. CTRL V toggles insert mode on and off. When insert mode is
on, “ins” appears at the top of your screen. BLAST editor begins
with insert mode on. For a list of key sequences for inserting and de-
leting text, see “Quick Reference” above.
BLAST EDITOR 151

Managing Text Blocks

BLAST Editor block keys provide an easy-to-use cut and paste ca-
pability. A “block” is a specified area of text that can be modified in
a single operation.

To define a block, you must first mark the beginning and the end of
the text to be blocked. Use CTRL K B to mark the beginning of the
block and CTRL K K to mark the end of the block. The marked text will
be highlighted on the screen. Once the text is defined, you may copy,
delete, move, write, or read the block of text. If you make a mistake
while deleting text, you can recover the lost text by retyping or by
copying the .BAK file. Below are key sequences for editing blocks
of text:

CTRL K B or F3 mark beginning of block
CTRL K K or F4 mark end of block
CTRL K H or F2 unmark block
CTRL K C copy block
CTRL K Y delete block
CTRL K V move block to current cursor position
CTRL K P print block
CTRL K W write block into a file (you will be prompted

for a filename—if a file with that name al-
ready exists, you will be asked if you want to
overwrite it; if a file with that name does not
exist, it will be created)

Searching

Searching text provides a convenient way to move the cursor to a de-
sired place in a file without inspecting the entire file on the screen.
Searching and replacing text provides an easy way to find and re-
place one word, phrase, or character string without explicitly posi-
tioning the cursor, deleting the old text and typing in the new. The
following key sequences are used in searching:

CTRL Q F or F7 find word or phrase
CTRL Q A find and replace word or phrase
CTRL L find and/or replace word or phrase again
152 CHAPTER ELEVEN

Finding Text
To find a particular string of text, press the Find key, CTRL Q F or F7.
You will be prompted for the search string. After entering the search
string, you will be presented with the following search options:

a=all find/replace all occurrences
b=backward search backward from cursor position
k=within marked block search within marked block
u=ignore case make search case-insensitive

Enter a, b, k, or u or any combination of these to specify your search
option(s). BLAST Editor will then find the first occurrence of the
search string, placing the cursor at the end of the string (unless you
choose the “a” option). After making any edits, simple press CTRL L

to find the next occurrence of the text string.

Finding and Replacing Text
To find and replace text, press CTRL Q R. You will be prompted for
the search string and replacement text. After entering these, you will
be presented with the same options as noted above for find. After
you have specified any options, BLAST Editor will find and high-
light the first occurrence of the text string (unless you choose the “a”
option). You will then be presented with the following options:

^Y replace & find next ^N find next ^A find and replace all

If you make any edits instead of choosing one of these options, you
may resume you search-and-replace without re-entering the search
and replace strings by using CTRL L key sequence.

Quitting BLAST Editor

When you have finished entering text, press ESC. At the prompt,
press one of the following: Y to save the file and return to the Local
menu, N to exit to the Local menu without saving, or ESC to resume
editing. Alternatively, after entering text, you may press CTRL K X to
save the file and exit.
BLAST EDITOR 153

154 CHAPTER ELEVEN

Chapter 12

Introduction To Scripting

Starting Out

Scripts allow BLAST to automate communications tasks. Scripts are
often used for tasks such as logging into remote hosts and handling
the details of communications sessions that are repetitive or that in-
experienced users would find overwhelming. This chapter introduc-
es the BLASTscript language and describes an important feature of
BLAST that aids scripting—Learn Mode. With Learn mode,
BLAST writes your scripts so that learning scripting is made easier.

Executing BLAST Scripts
BLAST scripts can be invoked using one of three different methods.

◊ From the Online menu, select the Script command. When
prompted for the script name, enter the name of the file. This in-
teractive method of starting a script is preferable when you wish
to automate only a portion of your communications session.

◊ In a setup, enter the name of a BLAST script in the Script File
field. After the setup is loaded into memory and the Online
command is selected from the Offline menu, the script named
INTRODUCTION TO SCRIPTING 155

in the setup will execute automatically. This is useful if you al-
ways use a specific script with a particular setup.

◊ From the operating system command line, specify a BLAST
script name with the /s switch (see “Command Line Switches”
on page 10). The script specified on the command line takes
precedence over a script listed in the Script File setup field.

You can include a directory path when you specify a script filename.
If you do not name a directory, BLAST will first search the current
directory and then the SETUPDIR directory.

To abort a script completely, press ATTN ATTN. To abort a script af-
ter the currently executing statement completes execution, press
ATTN once.

Writing a Script
The best way to learn how to write a script is by doing it. First, start
BLAST Editor, another text-file editor on your computer, or a word
processing program. If you prefer to use a word processor for creat-
ing script files, be aware that your scripts must always be saved as
text files, not word processor documents. Your scripts should be
saved in the directory from which you normally operate BLAST, or
in the BLAST directory. These are the only two locations where
BLAST will search for script files unless you specify a search path.

If you choose to use BLAST’s own text-file editor for writing your
scripts, select the Edit option from the Local menu and enter a valid
filename, such as:

HELLO.SCR

The .SCR extension identifies the file as a script file. The extension
is not required, but it is recommended.

You can now enter text as you would in a word processor. For a sum-
mary of the editing commands available in BLAST’s editor, see
Chapter 11.

After starting the editor, type in the following short script:

HELLO.SCR
#
Just wanted to say hi
#
.begin
156 CHAPTER TWELVE

 display "Hello, world!"
 return
#
End of script.

Save this file and go to BLAST’s Online menu. Choose the Script
option and enter the filename

HELLO

When HELLO.SCR executes, it displays the message

Hello, world!

on your screen and then returns control to you.

About HELLO.SCR
As simple as HELLO.SCR is, it illustrates several important script-
ing concepts. All the lines starting with “#” are comments explain-
ing the functions of the script commands and are not displayed. You
may be surprised how quickly you can forget why you wrote a par-
ticular script or how an especially difficult section of code actually
works. Comments can clarify what you are trying to accomplish
with your script.

In HELLO.SCR, the line beginning with a period, .begin, is
called a label. A label serves not only as a supplemental comment,
but also as the destination for a GOTO command, discussed later.

The DISPLAY command causes text to be displayed on your com-
puter screen; it does not cause text to be transmitted through the se-
rial port. Another script command, introduced later, performs this
task.

Finally, the RETURN command returns control of BLAST to you.

A Sample Script
To learn more about scripting, it is helpful to imagine a problem that
can be solved through scripting. Suppose an art supply company has
several retail stores and a central headquarters. Each evening, the
stores must send an updated inventory to the central office by mo-
dem.

Pam, the system administrator for the central office VAX computer,
determines that the local managers should dial into the VAX at their
INTRODUCTION TO SCRIPTING 157

convenience and use BLAST protocol to transfer their files. She has
assigned a unique filename on the VAX for each store’s inventory
information—STORE01.DAT, STORE02.DAT, and so forth. Each
store keeps its inventory in a file called INVNTRY.DAT. For each
local manager, Pan provides a script to do the following:

1. Connect to the remote VAX system

2. Send the inventory file to the VAX

3. Disconnect

A script that meets these requirements is illustrated below. The
script DAILYRPT.SCR is certainly more complicated than
HELLO.SCR, but the same three sections that originally outlined
are present. To make it easier to discuss the script, we will refer to
the line numbers shown in brackets next to the script statements.
You would not include these numbers in an actual script.

CONNECTING (Section 1)

The first section of the script (.begin) establishes the connection
with the head office. Line 9 sets a variable, called @ONERROR. In a
BLAST script, all variables begin with “@”. Some variables are re-
served variables, meaning that they are defined by BLAST for spe-
cial purposes; other variables can be created by you (see Chapter
16). @ONERROR is a reserved variable that determines how BLAST
will respond to routine (nonfatal) errors. By giving @ONERROR the
value CONTINUE, Pam is telling BLAST to skip error messages
rather than pause and wait for a human operator to respond.

[1] # DAILYRPT.SCR
[2] #
[3] # A script to send daily inventory reports to the
[4] # head office
[5] #
[6] # Section 1: CONNECTING
[7] #
[8] .begin
[9] set @ONERROR = "CONTINUE"
[10] connect
[11] if @STATUS = "0" goto .xfer
[12] display "No Connection! Error code: ", @STATUS
[13] return
[14] #
[15] # Section 2: TRANSFERRING
[16] #
[17] .xfer
158 CHAPTER TWELVE

[18] filetransfer # enter BLAST protocol
[19] send # prepare to send a file
[20] invntry.dat # local filename
[21] store02.dat # remote filename
[22] t # specify text file
[23] esc # exit Filetransfer mode
[24] if @EFERROR not = "0"
[25] display "An error occurred during file transfer."
[26] display "Please examine the log file."
[27] end
[28] #
[29] # Section 3: DISCONNECTING
[30] #
[31] .finish
[32] disconnect
[33] return
[34] #
[35] # End of script.

Line 10, the CONNECT statement, is responsible for a great deal of
work. The CONNECT statement, like Connect from BLAST’s inter-
active menus, initializes the modem, dials the head office, and enters
the username and password for the store’s VAX account. All of this
information—the modem type, phone number, remote system type,
and account information—is taken from the setup (see Connecting
and Disconnecting on page 193).

Line 11 demonstrates how scripts are programmed to make choices
with the IF (conditional) statement. After the CONNECT command
executes, it sets the value of @STATUS to indicate whether or not the
connection was successful. The IF statement tests the value of
@STATUS in its conditional clause. If @STATUS equals 0, the con-
nection was successful and the script performs the GOTO command,
sending the script to the section labeled .xfer, which controls file
transfer.

if @STATUS = "0" goto .xfer

conditional executes if conditional
statement clause is true

If @STATUS equals any value other than 0, script execution contin-
ues on line 12, displaying “No Connection” and an error code. At
this point, RETURN aborts further execution of the script and control
is returned to the user.
INTRODUCTION TO SCRIPTING 159

TRANSFERRING (Section 2)

The second section, under the .xfer label, begins with the
FILETRANSFER statement. The FILETRANSFER statement
works like the Filetransfer command of the Online menu. When it is
executed, BLAST attempts to start the BLAST software on the re-
mote computer, and the script pauses until Filetransfer mode is en-
tered or a time limit expires. The exact events that occur when
FILETRANSFER command is executed depend on the setting of the
System Type setup field (page 66).

The next four lines (19–22) provide the information BLAST proto-
col needs to send the required file as a text file. If another protocol
were used, this section would be scripted differently (for more infor-
mation on scripting for alternative protocols, see Chapter 13). Line
23, ESC, ends the filetransfer session.

Lines 24–27 illustrate another form of the IF command, IF-END.
With IF-END, several lines of script can be executed in a block if
the conditional clause is true. In line 24, the @EFERROR reserved
variable is tested, which indicates if any errors occurred during a
BLAST protocol file transfer. If @EFERROR equals 0, no errors
were encountered. For any value other than 0, two messages (lines
25–26) are displayed and the IF statement ends. In either case, the
script advances to the .finish label.

DISCONNECTING (Section 3)

The final section of the script, under the .finish label, begins with
the DISCONNECT command. Like CONNECT and FILETRANSFER,
DISCONNECT performs the same operation as the corresponding
command of the Online menu. As you become more familiar with
BLAST’s scripting language, you will discover that many script
commands are similar to the options on BLAST’s interactive menus.
RETURN ends the script and returns control of BLAST to you.

Learn Mode

An important aid to writing your own scripts is BLAST’s Learn
mode. With Learn, you perform a communications task exactly as
the script should perform it, and BLAST creates the script from the
actions you take. Typically, the Learn script serves as a rough draft
of the final script.

To start Learn mode, select Learn from the Offline menu. BLAST
will prompt you to name the Learn script. The status indicator
160 CHAPTER TWELVE

“LRN” will appear in the Status Line at the bottom of the screen to
remind you that your keystrokes are being recorded.

Suppose that you wanted to write a script to log into a computer for
which there is no standard system type in the BLAST setup. A
bank’s computerized account service, for example, may have an un-
usual login. Assume that after the modems connect, the bank issues
the prompt “MIDAS>,” waits for your user identification
(AlbertyArtCo), and then issues the prompt “?:”.

To help you write your login script, start Learn mode and then pro-
ceed to log in as usual, being careful to avoid spelling errors and oth-
er trivial mistakes. When you finish, return to the Offline menu and
select Learn again to turn off Learn mode.

An example of what the Learn script might look like is shown be-
low:

BLAST Learn mode script
Original filename: BANK.SCR
Date: 01/1/99
Time: 11:00:00
#
CONNECT
entering TERMINAL mode
#
ttrap 6, "\012\015MIDAS>"
tsend "Alber"
tsend "tyArtCo" CR
ttrap 3, "\012\015\012\015\?:"
exiting TERMINAL mode
RETURN commented out for appending

Even though the script has a strange appearance, you can decipher
it. TSEND is the script command for transmitting text through the se-
rial port. This command is used for sending the user ID to the bank.
TTRAP is used for checking text coming into the serial port, so it is
used for detecting the prompts issued by the bank’s system. Without
doing any more work, this script will actually perform the login.

Editing the Learn Script
Because BLAST cannot distinguish the meaning of any of the data
entering or leaving the serial port, Learn mode may “break” strings
of text inappropriately. Editing the Learn script to make the TSEND
statements meaningful to human readers is a good idea, but it is not
necessary. Likewise, TTRAP statements may contain unneeded
INTRODUCTION TO SCRIPTING 161

characters when scripted by Learn mode. In the example above, \012
is the octal representation of the line feed and \015 is the octal form
of the return character. These characters are not needed to detect the
prompts issued by the bank, so they may be edited for clarity.

After you have cleaned up the Learn script, it could look like this:

BANK.SCR
#
A script to log into the bank
#
.begin
 CONNECT
 ttrap 6, "MIDAS>"
 tsend "AlbertyArtCo", CR
 ttrap 3, "?:"
 return
#
End of script.

Now the script can be read more easily. After connecting, the script
will wait for up to six seconds for the string “MIDAS>.” Next, the
script will send the string “AlbertyArtCo” and a carriage return. Fi-
nally, the script will wait for up to three seconds for the “?:” prompt
and then return control to you.

Polishing the Learn Script
After being edited, the Learn script makes better sense to human
readers, but it can still be improved. Take a moment to assess it.
What’s left to be done?

One area for improvement is in error handling. You saw earlier that
@STATUS could be tested after the CONNECT command to deter-
mine whether a connection was established. Similar error checking
should be added to the Learn script.

Another area for improvement is in the use of variables. At present,
the user ID is “hard-coded” into the script, meaning that it has a
fixed value. If the userid is placed in the appropriate field of the set-
up, the script can access it with the @USERID reserved variable.
Thus, a more polished version of the Learn script might look like:
162 CHAPTER TWELVE

BANK.SCR
#
A script to log into the bank
#
.begin
 CONNECT
 if @STATUS not = "0" return
 ttrap 6, "MIDAS>"
 tsend @USERID, CR
 ttrap 3, "?:"
 return
#
End of script.

As you can see, Learn mode and your own knowledge of BLAST’s
scripting language simplify the process of automating your commu-
nications tasks.

Writing Your Own Scripts
You have now seen enough of the scripting language to begin writ-
ing your own scripts. You may wish to read Chapter 13, which de-
scribes techniques for working with disk files, manipulating strings,
and interacting with programs in your system. Chapter 14 discusses
the BLAST method of connectiing and disconnecting, which relies
heavily on scripts. Chapters 15 and 16 serve as reference guides for
all scripting commands and reserved variables, respectively. Many
examples are included in these chapters to help you get started. In
addition, sample scripts are available for download from Blaster (see
“Connecting to Blaster” on page 44).
INTRODUCTION TO SCRIPTING 163

164 CHAPTER TWELVE

Chapter 13

BLASTscript Topics

Scripting Basics

Although scripts can address a wide range of communications
needs, most scripts handle a limited number of common tasks, such
as capturing text to a file, displaying information on the screen, and
communicating with other programs in the computer. In this chapter
we will demonstrate scripting techniques for such tasks.

Programming Style
It may sound strange to say that a script should conform to a certain
“style,” but following a logical style will make it easier for others to
understand your script. For example, indenting sections of script that
execute together, such as the code in a conditional (IF-END) block,
is a simple stylistic convention that helps readability, as in the fol-
lowing script:
BLASTSCRIPT TOPICS 165

Start of script
#
.begin
 display "Hello, world!"
 if @EMULATE = "TTY"
 display "Your emulation is set correctly"
 end
 else
 set @EMULATE = "TTY"
 display "Your emulation is now TTY"
 end
 return
#
End of script

Your programming style also affects how efficiently the script will
execute. BLAST scripts are interpreted, meaning that BLAST deci-
phers the instructions in each line of your script as it executes. To
make your script run most efficiently, you should:

◊ Use spaces between expressions. For instance, the script inter-
preter can evaluate the first line in the example below more eas-
ily than it can the second line because of the spaces placed
around “=”.

if @STATUS = "0" set @mystat = "GO"

if @STATUS="0" set @mystat="GO"

◊ If certain labels in your script will be frequent destinations for
the GOTO command, place those labels near the beginning of
the script. BLAST looks for labels from the start of the script
and works down.

Legal and Illegal Expressions
An error that you may encounter during script development is “ille-
gal menu selection.” This error indicates that BLAST has encoun-
tered a command in your script that it could not execute. Every line
in a script must be executable or contain a comment preceded by #.
Blank lines are rarely executable (except for special cases discussed
later); thus, do not use blank lines in a script to separate lines of code
visually. If BLAST encounters a blank line in a script where it is un-
expected, the script interpreter will generate the “illegal menu selec-
tion” error.
166 CHAPTER THIRTEEN

ILLEGAL LEGAL

if @STATUS = "0" if @STATUS = "0"
 #
disconnect disconnect
 #
end end
return return

A typing mistake in a script line can also generate an error message.
For example, a line such as

ig @STATUS = "0"

will generate the “illegal menu selection” error because “ig” is not a
valid script command.

The Status of @STATUS
The result of many script operations is reported in the reserved vari-
able @STATUS, which has a number of functions, including indicat-
ing whether an error occurred during the CONNECT command and
identifying which item in a list of target strings was detected by
TTRAP. Because @STATUS is affected by so many script opera-
tions, you may need to save the value of @STATUS in a “safe” vari-
able so that you can refer to it later in your script, as in the following
example:

Following is the target list:
#
 ttrap 5, "Apples", "Oranges", "Peaches"
#
Save @STATUS in a user-defined variable.
#
 set @fruit = @STATUS
#
@STATUS will be changed below by the DISCONNECT statement
#
 disconnect
 if @STATUS = "0" display "Disconnected OK"
 else display "Disconnect failure!"
 if @fruit = "0" display "No fruit was selected"
 if @fruit = "1" display "Apples are delicious"
 if @fruit = "2" display "Oranges are tasty"
 if @fruit = "3" display "Peaches are nice, too"
 return
#
End
BLASTSCRIPT TOPICS 167

For a list of all the commands that set @STATUS, see “Commands
That Set @STATUS” on page 204.

The CALL Command
When you set out to write a complicated script, ask yourself whether
the script is made up of logically distinct sections. If so, you may be
able to code each section as a separate script and write a “master”
script that calls each section as required, checking for errors. Work-
ing with several small scripts is generally preferable to a single large
one because it is easier to follow the logic of the program and find
errors. The CALL command is used to transfer execution to another
script. For example,

call "GETDATA"

calls the script named “GETDATA.” When the RETURN command
is executed in the called script, control returns to the calling script:

return [exit_code]

The exit code is optional. When control is returned to the calling
script, the value of @STATUS in the calling script is equal to the val-
ue of the exit code. For example, the script TESTONE.SCR would
call the script TESTTWO.SCR as follows:

TESTONE.SCR
#
 display "This script calls TESTTWO.SCR"
 call "TESTTWO.SCR"
...

At this point, TESTTWO.SCR executes:

TESTTWO.SCR
#
 ask "Enter a number: ", @input
 return @input
#
End

The value of @STATUS in TESTONE.SCR has now been set to the
value of @input entered in TESTTWO.SCR, and TESTONE.SCR
continues with the remainder of its commands:
168 CHAPTER THIRTEEN

...
 display "Now @STATUS = ", @STATUS
 return
#
End

A script that has been called may call another script, a process
known as “nesting.” Scripts may be called recursively to the limit of
available system resources.

All variables in a script are global, meaning that they can be read and
changed anywhere. For example, you can write a script that only sets
the variables you will use. Your “master” script then calls this script
at the beginning of execution. The master script and any other scripts
you call afterward will “see” the variables that you created.

Executing in a Loop
To create a loop, you can write a script to keep track of a loop
counter and use the GOTO command:

looping demo number 1
#
 set @count = "10"
.loop
 display "Countdown: ", @count
 let @count = @count - "1"
 if @count not = "0" goto .loop
 display "BLAST off!"
 return

Running the script would result in the following display on your
screen:

Countdown: 10
Countdown: 9
Countdown: 8
Countdown: 7
Countdown: 6
Countdown: 5
Countdown: 4
Countdown: 3
Countdown: 2
Countdown: 1
BLAST off!
BLASTSCRIPT TOPICS 169

An alternative method of looping uses the REPS command. With
REPS, the previous script could be written as:

looping demo number 2
#
 reps 10
.loop
 display "Counting down..."
 if reps goto .loop
 display "BLAST off!"
 return

Since testing the value of REPS in an IF statement automatically
decrements it, REPS is a more compact way of executing a loop than
a loop counter. In the example above, the GOTO statement is execut-
ed while REPS is greater than zero, so that the loop is exited after
the message “Counting down...” has been displayed 10 times. As
shown in the illustration below, this method of writing the script pro-
duces a different display than that of a loop counter. Note that if the
number of repetitions is taken from a variable, the countdown oc-
curs, but the variable retains its initial value.

Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
BLAST off!

Manipulating Text

A number of script commands are available for manipulating text
files and text strings. The commands that work with text strings in-
clude:

STRCAT string1, string2, [, ...] – Combine two or
more strings to make a single, longer string. The longer string re-
places string1.
170 CHAPTER THIRTEEN

STRINX string1, string2 – Find the first occurrence of
string2 in string1. @STATUS holds the position of the first
character in string1 where a match was found.

STRLEN string1 – Find the length of a string. @STATUS is set
to the value of the length.

STRTRIM, string1, position1, position2 – Extract
a substring of string1 beginning at position1 and ending at
position2. After the substring has been extracted, the value of
string1 is set to the substring.

There are other commands for string manipulation, such as the com-
mands to find the ASCII value of a character, to convert all charac-
ters in a string to upper or lower case, and to request interactive
string input from the user. These and other commands for string ma-
nipulation are discussed in Chapter 15.

The following example illustrates the use of string commands:

String demo - extract first and last name from a string
#
Set variables
#
 set @name = "Johnson, Alfred"
 set @first = @name
 set @last = @name
#
Find the comma in the name string
#
 strinx @name, ","
#
Move to last char of last name and extract last name

 let @STATUS = @STATUS - "1"
 strtrim @last, 1, @STATUS
 display "Client's last name: ", @last

Move forward to first char of first name and extract
everything from there to the end of the string
#
 let @STATUS = @STATUS + "2"
 strtrim @first, @STATUS
 display "Client's first name: ", @first

Rebuild full name by concatenating first and last names

BLASTSCRIPT TOPICS 171

 strcat first, " ", @last
 display "Client's full name: ", @first
 return
#
End of script.

Capturing Text
Two commands, TCAPTURE and SETTRAP, are available for cap-
turing text as it enters the serial port. The TCAPTURE command is
used if the text is to be placed in a disk file. The following script il-
lustrates a simple implementation of TCAPTURE.

Capture demo
#
 tcapture on "SALES.RPT"
#
Pause script until 4 sec of "quiet" elapses
#
 wait 4 idle
 tcapture off
#
End of script.

The TCAPTURE command itself does not initiate the text capture.
Text capture starts when a WAIT, TSEND, TTRAP, or TUPLOAD
command is executed.

The second method, SETTRAP, allows incoming text to be captured
into a script variable. The SETTRAP command itself does not cause
any text to be captured, but it prepares TTRAP to capture text by set-
ting a variable into which the captured text is to be saved and speci-
fying a limit on the number of characters saved into the variable. A
simple form of SETTRAP/TTRAP is:

Settrap/ttrap demo
#
settrap @input, 65 # Capture up to 65 char till end of
 # line reached
ttrap 30, "^M^J"
#
End of script.

In this example, up to 65 characters are saved into the variable
@INPUT. The string ^M^J (carriage return/line feed) triggers the
end of the captured text, which includes the trigger string and any
text preceding the trigger—up to 65 characters. If no incoming char-
172 CHAPTER THIRTEEN

acters match the trigger within 30 seconds, the last 65 characters of
text are saved to the variable @INPUT.

More complex forms of the TCAPTURE and SETTRAP commands
are described in Chapter 15.

Reading and Writing Text Files
A script can read and write entire lines of text from a text file. As
many files can be open at a time as there are file handles available in
your system. The commands for opening a file are:

FOPENA handle, filename – Open a file for appending.

FOPENR handle, filename – Open a file for reading.

FOPENW handle, filename – Open a new file for writing
(overwrites existing file).

These commands must specify two pieces of information: the file-
name and a file handle. The file handle is an integer that other com-
mands in the script will use to refer to the file. @STATUS is set to the
value 0 if the file is opened successfully.

The commands for reading, writing, and closing files are:

FREAD handle, variable – Read a line of text.

FWRITE handle, string [, string] – Write a line of
text.

FCLOSE handle – Close the file.

To be read properly, a line of text cannot be longer than the maxi-
mum length of a variable, which is 139 characters. When read and
write operations are successful, @STATUS is set to 0. If they are un-
successful—for example, a script attempts to read past the end of a
file—@STATUS is set to a nonzero value.

Following is an example of a script that uses file handling com-
mands:

File read/write demo
#
Open MODEMS.SCR and count the number of lines.
Write the result in a new file called LINE.CNT.
#

BLASTSCRIPT TOPICS 173

.begin
 clear
 set @file = "MODEMS.SCR"
 fopenr 1, @file
 if @STATUS not = "0"
 werror "Can't open MODEMS.SCR"
 return
 end
 fopenw 2, "LINE.CNT"
 set @count = "0"
 display "One moment, please."
 cursor 10, 6
 put "Reading line #"
.loop
 fread 1, @input
 #
 # If @STATUS is 0, count line and return for another
 #
 if @STATUS = "0"
 let @count = @count + "1"
 cursor 10, 21
 put @count
 goto .loop
 end
.continue # end of file!
 fwrite 2, @count, " lines in MODEMS.SCR."
 fclose 1
 fclose 2
 display "Done! Check LINE.CNT for line count."
 return
End of script.

Managing the Screen Display

Thoughtful screen displays help users gain a sense of being “in good
hands.” Informing users of the progress of a lengthy job, such as a
file transfer, frees them to do other things while the software does its
job. Displaying too much text onto the screen at once or neglecting
the screen completely, however, can make users wonder instead if
their session has malfunctioned. BLAST’s scripting language pro-
vides a number of commands and reserved variables for controlling
the screen to present the right amount of information.
174 CHAPTER THIRTEEN

Turning Off the Screen
For some applications, you may wish to turn off regions of the
screen while running a script. (To disable screen displays altogether,
include the /n switch on the command line when you start BLAST;
see “Command Line Switches” on page 10) The following reserved
variables control particular regions of the display:

@USERIF – The user interface area, or menu area, at the top of the
screen.

@SCRLREG – The scrolling region in the middle of the screen.

@STATUSLN – The status line at the bottom the screen.

@TRANSTAT – The File Transfer Status Area of the screen.

Set these variables to 0 or OFF to disable the corresponding screen
areas. Set the variables to 1 or ON to enable them. For example, if
you do not want the BLAST menus to be displayed while your script
is running, you would put the statement

set @USERIF = "0"

in your script. The top four lines of the display would then become
part of the scrolling region.

IMPORTANT: You must remember to turn the menu region back on in the script
or the user will not be able to see the BLAST menus after the script
is finished.

Displaying Text in the Menu Region
Two script commands permit you to display text in the menu region:

WRITE string [, string] – Prints a message.

WERROR string [, string] – Prints a message in the menu
region and then waits for the user to press a key. (The script will not
pause if @ONERROR is set to CONTINUE.)

These commands are normally used for displaying errors or progress
messages.
BLASTSCRIPT TOPICS 175

Displaying Text in the Scrolling Region
The most common way to display text in the scrolling region is with
the DISPLAY statement, described on page 209. The DISPLAY
command prints a string or a list of strings at the current cursor po-
sition; depending on the emulation you have chosen, the cursor may
or may not advance to the next display line.

Another method of displaying text uses a pair of commands, CURSOR
and PUT:

CURSOR row, column – Position cursor.

PUT string [, string] – Print string.

The following script demonstrates an application of these com-
mands:

Screen Display Demo
Hide modem control strings from the user
#
.begin
 set @ONERROR = "CONTINUE"
 set @USERIF = "OFF"
 clear # Erase the screen
 cursor 12, 30
 put "Now connecting, please wait."
 set @SCRLREG = "OFF"
 connect
 set @SCRLREG = "ON"
 if @STATUS not = "0"
 set @USERIF = "ON"
 clear
 write "Can't connect or log in."
 return
 end
 terminal # enter Terminal mode
 set @USERIF = "ON" # don't forget this!
 return
End of script.

Communicating with Other Programs

In some BLAST applications, the end user is not even aware that
BLAST is operating in the system. BLAST provides a simple inter-
176 CHAPTER THIRTEEN

face that lets other programs control BLAST, hiding the existence of
BLAST completely from the user if necessary.

Passing Information to BLAST
The command line can contain up to ten “arguments,” or parameters,
that pass information to a BLAST script. Command line arguments
follow the setup name on the command line (see “Command Line
Switches” on page 10). For example, consider the following BLAST
command line:

blast chicago /ssales 12:05 midwest

This command line will start BLAST with the CHICAGO.SU setup,
execute the script called SALES.SCR using the /s switch, and store
the arguments “12:05” and “midwest” in the reserved variables
@ARG0 and @ARG1, respectively.

A program can also pass information to a script by writing a text file
that the script opens and interprets. Alternatively, because a script it-
self is just a text file, your controlling software can write a script that
can be executed by BLAST “on the fly.”

Controlling Other Programs from BLAST
While a script is executing, it can start other programs in your com-
puter with the LOCAL/SYSTEM command (memory permitting).
This command allows your script to execute a single command as
you would type it on the DOS command line. The following script
demonstrates use of the LOCAL/SYSTEM command:

Local System demo
#
Set the system clock from a script using the
"Time" system command
#
 set @syscmd = "TIME"
 ask "What time", @input
 strcat @syscmd, " ", @input # "TIME 2:30"
 local
 system
 @syscmd
 esc
 return
End of script.
BLASTSCRIPT TOPICS 177

File Transfers with BLAST Session Protocol

Chapter 6 describes the BLAST session protocol, including some in-
formation about scripting file transfers. This section provides de-
tailed information about writing file transfer scripts.

The coding that performs a file transfer in a script closely follows the
sequence of menu choices and prompts that BLAST uses when the
same task is performed manually. Thus, it makes sense to practice a
communications task interactively before attempting to write the
script that will automate the task. Learn mode (page 160) provides
another means of getting an idea about how a particular task can be
coded in a script.

Getting and Sending Files
A simple GET and SEND could be coded like this (remember, you
would not include the numbers in brackets):

[1] filetransfer
[2] get
[3] yourfile.rpt
[4] myfile.rpt
[5] ta
[6] send
[7] labdata.dat
[8]
[9]
[10] esc

in this script, yourfile.rpt (line 3) is the response to the Remote File-
name prompt that BLAST issues when the get command is given,
and myfile.rpt (line 4) is the response to the Local Filename prompt.
The transfer options t and a (line 5) specify “text” and “append” in
this example—the same symbols you would use if you were per-
forming the file transfer interactively.

In the SEND example, two blank lines (lines 8 and 9) are entered to
specify that BLAST use default values for these responses. Thus, the
remote filename will be the same as the local filename, and no trans-
fer options are specified (the file transfer will be binary). Blank lines
representing default filenames and file attributes (t, o, a) cannot
contain comments.

Other than the preceding exceptions, you should not have blank
lines in a script unless they contain the comment character, #. The
178 CHAPTER THIRTEEN

ESC statement represents pressing the ESC key, which is the action
that you normally take to exit Filetransfer mode.

Performing Remote Commands
The BLAST session protocol allows you to perform remote system
commands without special knowledge of the command syntax of the
remote machine. Remote commands are coded in a script like this:

filetransfer
remote
 chdir
 /usr/customer
 esc
esc

The first ESC represents the ESC keystroke that will move you from
the Remote menu to the Filetransfer menu. The second ESC termi-
nates the session in the usual manner.

Using Transfer Command Files
A powerful feature of the BLAST session protocol is the ability to
take its commands from a transfer command file (see “Transfer
Command File” on page 117). To use a transfer command file in a
script, the following syntax is used:

filetransfer
file
transfer.tcf
esc

where transfer.tcf is the command filename. The extension
.TCF is often used to identify a transfer command file, but this con-
vention is not required.

Sending Messages
BLAST protocol can send messages between systems during a
BLAST session (see the description of the Message menu option on
page 110). String-variables may be substituted for messages.

filetransfer # issue the transfer command
message # sending a message
 Sending Sales Reports # the message
esc # exit Filetransfer mode
BLASTSCRIPT TOPICS 179

Special Considerations
To take full advantage of the BLAST session protocol, keep the fol-
lowing points in mind:

◊ BLAST attempts to queue as many remote commands as possi-
ble (like GETs) before issuing local commands (like SENDs).
This behavior permits BLAST to transmit files in both direc-
tions simultaneously, but it also means that files may not be
transmitted in the order specified in the script.

◊ Many filetransfer and file management commands can be com-
bined into one FILETRANSFER-ESC block, as in the follow-
ing example:

filetransfer # begin Filetransfer mode
send # send files that
*.TXT # match the template
%
ta
remote # begin remote file mgmt
 chdir
 /usr/customer
 print
 client.log
 esc # leave remote file mgmt
file # use a command file
site3.tcf
esc # exit Filetransfer mode

Combining operations allows BLAST to work more efficiently,
saving online charges or other long-distance telephone costs.

◊ Errors that occur during file transfer can be checked by testing
the value of @EFERROR or by examining an @EFLOG file after
exiting Filetransfer mode. If Extended Logging is enabled, ad-
ditional reserved variables give information about the number
of successful transfers and the number of failures. These re-
served variables are described in Chapter 15. See also “Using
Log Files for Error Checking” on page 188.

If the line is dropped during a file transfer, BLAST can either
ignore the problem or abort Filetransfer mode immediately. The
action BLAST takes is determined by the setting of the DCD
Loss Response setup field. Your choice in setting DCD Loss
Response (ABORT or IGNORE) may depend on your environ-
ment. For instance, you might need to ignore carrier loss if the
180 CHAPTER THIRTEEN

carrier drops intermittently due to line noise and your modems
are configured to retrain automatically.

File Transfers with FTP

The syntax for FTP file transfers is the same as for BLAST protocol
except that there are no transfer options; therefore, there is no line
for transfer options in FTP scripts. The basic file transfer syntax is:

filetransfer
send
local_filename
remote_filename
get
remote_filename
local_filename
esc

As with BLAST protocol, a blank line for the receiving filename in-
dicates that the file will retain its original name. For example, in the
following script

filetransfer
get
newinventory.txt

esc

the local filename will remain the same as the remote filename—
newinventory.txt.

File transfer scripts can be improved by adding error-checking fea-
tures. For a discussion of error checking in file transfer scripts, see
“Using Log Files for Error Checking” on page 188.

File Transfers with Kermit

Before writing scripts for Kermit, you may want to review the gen-
eral information in Chapter 8, Kermit Protocol, on page 131. Learn
mode (page 160) is also a good tool for obtaining a rough draft of a
script you will need in a particular case. The scripting syntax shown
below for Kermit assumes a connection to a multi-user system such
as UNIX.
BLASTSCRIPT TOPICS 181

Sending Files
Before issuing a SEND command, you must start simple Kermit or
Kermit server on the remote machine.

Simple Kermit

After starting simple Kermit, you must issue a SEND command on
the remote machine. The basic syntax for sending files using simple
Kermit is as follows (the actual receive command depends on the
specific implementation of simple Kermit):

connect
tsend "kermit", LF
tsend "receive_command local_filename", LF
filetransfer
send
local_filename
esc

Kermit Server

Before issuing a SEND command, you must start Kermit server on
the remote machine. For most UNIX machines, this command is
“kermit -x.” The basic syntax for sending files using Kermit server
is as follows:

connect
tsend "kermit -x", LF
filetransfer
send
local_filename
remote_filename
esc

Receiving Files
Kermit has been implemented on many computer systems.
BLAST’s implementation of Kermit supports both “receiving” and
“getting” files from remote computers. The RECEIVE command is
used to transfer a file from simple Kermit, whereas a GET command
is used for transferring a file from a Kermit server.

Simple Kermit

Before issuing a RECEIVE command, you must start simple Kermit
on the remote machine and issue a send command. The basic syntax
for receiving files using simple Kermit is as follows (the actual send
command depends on the specific implementation of simple Ker-
mit):
182 CHAPTER THIRTEEN

connect
tsend "kermit", LF
tsend "send_command remote_filename", LF
filetransfer
receive
local_filename
esc

Kermit Server

Before issuing a GET command, you must start Kermit server on the
remote machine. For most UNIX machines, this command is “ker-
mit -x.” The basic syntax for GETs using Kermit server is as follows:

connect
tsend "kermit -x", LF
filetransfer
get
local_filename
remote_filename
esc

Transferring More Than One File
Unless you exit simple Kermit or Kermit server on the remote com-
puter, you do not have to issue the command to start Kermit for ev-
ery transfer block, only the first one. For example, using Kermit
server, you could run the following script:

connect
tsend "kermit -x", LF
get
salesreport.txt
store1sales.txt
send
store1inventory.txt
inventory.txt
esc
tsend "quit", LF

For simple Kermit, however, you have to issue the simple Kermit
send or get command each time you transfer a file, as in the follow-
ing example:
BLASTSCRIPT TOPICS 183

connect
tsend "kermit", LF
tsend "send salesreport.txt", LF
filetransfer
receive
store1sales.txt
esc
tsend "receive store1inventory.txt", LF
filetransfer
send
inventory.txt
esc
tsend "quit", LF

File transfer scripts can be improved by adding error-checking fea-
tures. For a discussion of error checking in file transfer scripts, see
“Using Log Files for Error Checking” on page 188.

File Transfers with Xmodem and Xmodem1K

Before writing scripts for Xmodem and Xmodem1K, you may want
to review the general information in Chapter 9 on the use of these
protocols. Learn mode (page 160) is also a good tool for obtaining a
rough draft of the script you will need in a particular case. The
scripting syntax shown below for Xmodem assumes a connection to
a multi-user system such as UNIX.

Sending Files
Before issuing a SEND command, you must issue the Xmodem re-
ceive command on the remote computer for the remote system’s im-
plementation of Xmodem. The basic syntax for sending a file using
Xmodem is:

connect
tsend "receive_command remote_filename", LF
filetransfer
send
local_filename
esc

Receiving Files
The syntax for receiving files is:
184 CHAPTER THIRTEEN

connect
tsend "send_command remote_filename", LF
filetransfer
get
local_filename
esc

Transferring More Than One File
A separate FILETRANSFER-ESC block is required for each file
that is transferred. For example, to send two files and get one file,
three FILETRANSFER-ESC blocks are needed, as in the following
example:

3-File Xmodem Transfer
connect
tsend "rx sales.txt", LF
filetransfer
send
s1sales.txt
esc
tsend "rx order.txt", LF
filetransfer
send
s1order.txt
esc
tsend "sx inventory.txt", LF
filetransfer
get
s1inventory.txt
esc

File transfer scripts can be improved by adding error-checking fea-
tures. For a discussion of error checking in file transfer scripts, see
“Using Log Files for Error Checking” on page 188.

File Transfers with Ymodem and Ymodem G

Before writing scripts for Ymodem and Ymodem G, you may want
to review the general information in Chapter 9 on the use of these
protocols. Learn mode (page 160) is also a good tool for obtaining a
rough draft of the script you will need in a particular case. Because
the filename is passed to the receiving computer, a filename is not
needed when receiving a file. The scripting syntax shown for Ymo-
dem assumes a connection to a multi-user system such as UNIX.
BLASTSCRIPT TOPICS 185

Sending Files
Before issuing a SEND command, you must issue the Ymodem re-
ceive command on the remote computer for the remote system’s im-
plementation of Ymodem. The basic syntax for sending a file using
Ymodem is:

connect
tsend "receive_command", LF
filetransfer
send
local_filename
esc

Receiving Files
The syntax for receiving files is:

connect
tsend "send_command remote_filename", LF
filetransfer
get
esc

Transferring More Than One File
A separate FILETRANSFER-ESC block is required for each file
that is transferred. For example, to send two files and get one file,
three FILETRANSFER-ESC blocks are needed, as in the following
example:

3-File Ymodem Transfer
connect
tsend "rb", LF
filetransfer
send
sales.txt
esc
tsend "rb", LF
filetransfer
send
order.txt
esc
tsend "sb inventory.txt", LF
filetransfer
get
esc
186 CHAPTER THIRTEEN

File transfer scripts can be improved by adding error-checking fea-
tures. For a discussion of error checking in file transfer scripts, see
“Using Log Files for Error Checking” on page 188.

File Transfers with Zmodem

Before writing scripts for Zmodem, you may want to review the gen-
eral information in Chapter 9. Learn mode (page 160) is also a good
tool for obtaining a rough draft of a script.

The Zmodem protocol is configured through the Zmodem setup sub-
window. An important parameter for scripting purposes is Auto Re-
ceive. With Auto Receive set to YES in the setup file or the reserved
variable @ZMAUTODOWN set to YES in a script, Zmodem will only
receive files. Note that a setting for @ZMAUTODOWN in a script over-
rides the setting of Auto Receive in the setup file.

Because the filename is passed to the receiving computer, a filename
is not needed when receiving a file.

The scripting syntax shown for Zmodem assumes a connection to a
multi-user system such as UNIX.

Sending Files
Before issuing a SEND command, you must issue the Zmodem re-
ceive command on the remote computer for the remote system’s im-
plementation of Zmodem. In the basic syntax for sending a file using
Zmodem below, @ZMAUTODOWN, the reserved variable for Auto
Receive, is set to NO in case the Setup file has Auto Receive set to
YES or @ZMAUTODOWN has been set to YES earlier in the session:

set @ZMAUTODOWN = "NO"
connect
tsend "receive_command", LF
filetransfer
send
local_filename
esc

Receiving Files
The syntax for receiving files depends on the how you set
@ZMAUTODOWN. If @ZMAUTODOWN is set to NO, you need a GET
statement:
BLASTSCRIPT TOPICS 187

set @ZMAUTODOWN = "NO"
connect
tsend "send_command remote_filename", LF
filetransfer
get
esc

If @ZMAUTODOWN is set to YES, you do not need a GET statement

set @ZMAUTODOWN = "YES"
connect
tsend "send_command remote_filename", LF
filetransfer
esc

Transferring More Than One File
As with Xmodem and Ymodem protocols, with Zmodem protocol
each FILETRANSFER-ESC block can specify only one file, as in
the following example:

set @ZMAUTODOWN = "NO"
connect
tsend "rz", LF
filetransfer
send
sales.txt
esc
tsend "sz inventory.txt", LF
filetransfer
get
esc

File transfer scripts can be improved by adding error-checking fea-
tures. For a discussion of error checking in file transfer scripts, see
the next section.

Using Log Files for Error Checking

Checking for errors after a file transfer is an important part of a good
script. Messages generated during a file transfer are written to the
session log file, which you can open and read as you would any other
file. For example, the following script automates a BLAST session
and checks for errors:
188 CHAPTER THIRTEEN

 set @ftlog = "session.log"
 if exist @ftlog ldelete @ftlog
 set @LOGFILE = @ftlog
 filetransfer
 send
 orange.txt
 fruit.txt
 to
 esc
 set @xferok = "NO" # initialize user flag
 set @LOGFILE = "" # close session log
 fopenr 1, @ftlog # now open it for reading
.check
 fread 1, @logline
 if @STATUS = "0" # successful read
 strinx @logline, "send complete" # crucial!
 if @STATUS = "0" goto .check # no match
 set @xferok = "YES" # matched, set user flag
 end
 fclose 1
 if @xferok = "YES" display "Transfer successful"
 else display "Could not transfer the file"
 return # or whatever else

Another log file, the error-free log, is available for similar error
checking. The error-free log, or “eflog,” contains just the status mes-
sages generated during a file transfer and is overwritten each time a
FILETRANSFER-ESC block is executed, unlike the session log,
which is always appended. Consequently, an eflog can be scanned
more quickly than a session log because there are fewer lines to read
and discard (see @EFLOG on page 247).

The following script fragment demonstrates how @EFLOG may be
used to check for errors.

set @EFLOG = "xmodem.log"
filetransfer
get
portland.dat
esc
fopenr 1, @EFLOG # check the log
fread 1, @input # only 1 line to look at!
fclose 1
strinx @input, "ERROR"
if @STATUS = "0" display "No error occurred."
else display "Error!"
BLASTSCRIPT TOPICS 189

Text Transfers

The following section describes scripting for text transfers to and
from a multi-user system such as UNIX. The receiving computer
does not need to be running BLAST, but it must have a program ca-
pable of capturing text and responding to flow control. See Text
Transfers on page 145 for more information about text transfers.

Uploading Text
To upload a text file from within a script, write a BLAST script that
includes:

◊ a TSEND command to start an editor to capture the data on the

remote system and any commands needed for overwriting or
appending the file.

◊ a TUPLOAD statement (this will honor the setup fields for flow
control—XON/XOFF, Wait for Echo, Line Delay, Character
Delay, Prompt Character—and linefeed handling). The
TUPLOAD command sets @STATUS to 0 if successful; it re-
turns some file I/O errors.

◊ a TSEND command to exit the editor on the remote system.

When uploading to a remote computer, remember that some of the
data may be buffered. This means that the upload may complete well
before all the characters have passed completely to the remote sys-
tem. Any activity immediately following a TUPLOAD may have to
deal with both the trailing characters of the uploaded file and the de-
lay before other activity can be initiated. To avoid these problems,
you can:

◊ TTRAP for the characters issued by the remote system upon ex-
iting the text editor.

◊ Use a WAIT IDLE statement to be sure the buffers have a
chance to clear.

The sample script below assumes that the remote computer is run-
ning UNIX using the text editor vi. The script TTRAPs for the file-
name in quotation marks used in vi’s exit status line; the WAIT
command gives the buffers on the local and remote computers time
to clear.

190 CHAPTER THIRTEEN

connect
tsend "vi cih4", LF # Send cmd to start editor on remote
wait 3
tsend "G", LF # Move cursor to end of file
tsend "o", LF # Start new line for appending
tupload "cih4"
wait 3 idle
tsend "\033", LF # Send escape cmd to remote system
wait 1
tsend ":x", LF # Send cmd to exit editor on remote
ttrap 30, "\042cih4\042"
set @hold = @status
wait 3 idle
if @hold = "0"
 display "Tupload not completed."
 return
end
else display "Tupload successful."
wait 10

For more specific error checking, you can check @STATUS for
TUPLOAD:

connect
tsend "vi cih4", LF
wait 3
tsend "G", LF
tsend "o", LF
tupload "cih4"
set @hold1 = @status
wait 3 idle
if @hold1 = "0" display "Tupload cmd execution complete."
else
 display "Tupload cmd failure; error ", @hold1
 tsend "\033", LF
 tsend ":q!", LF # Quit editor without saving file
 return
end
tsend "\033", LF
wait 1
tsend ":x", LF
ttrap 30, "\042cih4\042"
set @hold2 = @status
wait 3 idle
if @hold2 = "0"
 display "Tupload not completed."
 return
BLASTSCRIPT TOPICS 191

end
else display "Tupload completed."
wait 5

Downloading Text
To download a text file from within a script, write a BLAST script
that includes a TCAPTURE statement. TCAPTURE will receive the
specified file from the remote system and activate capture to receive
it.

While TTRAP handles a small number of characters for processing
by a BLAST script, TCAPTURE accepts large amounts of data and
saves it to a disk file. The APPEND option writes the captured data
to the end of an existing file or creates a new file. The OVERWRITE
option deletes and recreates an existing file or creates a new file. If
BLAST is unable to use the specified file, the statement will set
@STATUS to an error code.

Once capture has been enabled, the program must execute one of the
following statements before capture begins: TERMINAL, TTRAP,
TUPLOAD, or WAIT (with CARRIER or IDLE option). To close the
file and save any data that has been captured, use TCAPTURE OFF.
The following example shows how a file can be displayed and cap-
tured from a remote computer running UNIX:

connect
tsend "cat payroll.dat", LF
tcapture ON "payroll.cap" # turn capture on
wait 5 idle # wait for data to stop
tcapture OFF # end capture, close file
192 CHAPTER THIRTEEN

Chapter 14

Connecting
and Disconnecting

Introduction

Connecting and disconnecting are crucial operations. Normally,
BLAST initializes the modem and dials a remote system under the
control of a specialized modem script called MODEMS.SCR. Log-
ging into a remote system, such as a VAX or a UNIX-based comput-
er, is likewise handled by a special script called SYSTEMS.SCR.
These scripts are called by BLAST when the Connect command is
issued from a menu or the CONNECT statement is executed in a
script. Similarly, disconnecting is managed by MODEMS.SCR and
SYSTEMS.SCR. It is important to understand the structure and op-
eration of these two scripts and how you can modify the scripts.

BLASTscript Libraries

BLAST comes with two script “libraries,” MODEMS.SCR and
SYSTEMS.SCR, that provide the information BLAST needs to con-
CONNECTING AND DISCONNECTING 193

trol your modem and to log onto remote computers. These libraries
are collections of scripts combined into large files and indexed for
rapid access. BLAST automatically chooses the proper scripts
from these libraries based on the values of the System Type and
Modem Type setup fields. If you should choose to modify either
MODEMS.SCR or SYSTEMS.SCR, be sure to make a backup copy
of the file first under another name. As with any other script file,
MODEMS.SCR and SYSTEMS.SCR should always be saved as
text-only or ASCII files. Do not save them as word-processor files.

These script libraries are activated through menu commands or
script commands, as follows:

Connect – Uses commands in MODEMS.SCR and
SYSTEMS.SCR to dial out and log onto the remote system.

Upload – Uses commands in SYSTEMS.SCR to prepare the re-
mote computer for the text upload.

Filetransfer – Uses commands in SYSTEMS.SCR to start
BLAST on the remote computer (if the remote computer is a multi-
user computer).

Disconnect – Uses commands in MODEMS.SCR and
SYSTEMS.SCR to log off the remote system and hang up the mo-
dem.

By automating these processes, BLAST allows you to exchange in-
formation between many different computer types without requiring
technical proficiency in each system.

Modem Control
The MODEMS.SCR library handles a wide range of different mo-
dems, some of which may use proprietary commands to perform
functions under computer control. BLAST uses the Modem Type
setup field or the @MODEM reserved variable to select the proper
script from this library and the Originate/Answer setup field or the
@ORGANS reserved variable to tell the modem either to originate or
to wait for calls.

Remote System Control
The SYSTEMS.SCR library controls the commands sent to the re-
mote computer. By using this library, your PC can start BLAST in
host mode on the remote computer. BLAST also uses this library to
control text uploading and downloading. BLAST uses the System
194 CHAPTER FOURTEEN

Type setup field or the @SYSTYPE reserved variable to select the
proper script from this library.

Creating New Libraries
You can create alternate system and modem control files that con-
tain only the necessary commands for your particular hardware—
this is more efficient than the standard libraries that include many
modems and systems that you are not likely to need. BLAST will al-
ways look for individual files in the same directory specified by the
BLASTDIR environment variable as MODEMS.SCR and
SYSTEMS.SCR before using the standard libraries. For example, if
you specify TBLAZER in the Modem Type setup field or set
@MODEM to TBLAZER, CONNECT will use a stand alone script
named TBLAZER.SCR if it exists to control modem handling in-
stead of the TBLAZER entry in MODEMS.SCR.

The Connection Process in Detail
The MODEMS.SCR library can be used to automate the connection
process. If the Modem Type setup field is empty or set to hardwire,
BLAST assumes that your PC is hardwired to the remote computer
and does not open MODEMS.SCR.

When a Modem Type has been selected and the Originate/Answer
setup field is set to ANSWER, control is passed to the .ANSWER sec-
tion in MODEMS.SCR, which initializes the modem and waits for
the call.

When the Originate/Answer field is set to ORIGINATE and the
Connect command or CONNECT statement is used, control is passed
to the .DIAL section. If a phone number is specified in the Phone
Number field, .DIAL sends the phone number to the modem as a dial
command. If the Phone Number field is empty, .DIAL prompts the
user to enter a number. After dialing, it waits for a message from the
modem indicating a successful connection has been made.

If a System Type is specified, the corresponding .LOGON section in
SYSTEMS.SCR is called for logging onto the remote system. If
System Type is empty, BLAST assumes that you do not want system
handling and the Connect process ends, returning you to the Online
menu or the calling script with @STATUS set to 0.

If an error is detected by MODEMS.SCR or SYSTEMS.SCR, the
scripts return to BLAST with @STATUS set to reflect one of the er-
rors listed below:
CONNECTING AND DISCONNECTING 195

0 No error
1 Unable to initialize the modem (MODEMS.SCR)
2 No answer (MODEMS.SCR)
3 Can’t log in: wrong userid, password (SYSTEMS.SCR)
4 No Carrier (MODEMS.SCR and SYSTEMS.SCR)
5 Busy (MODEMS.SCR)
6 No Dialtone (MODEMS.SCR)
7 Error (MODEMS.SCR)
8 OK unexpected (MODEMS.SCR)

Your script can check @STATUS to determine whether a connection
is successful.

The Disconnection Process in Detail
There are four ways to disconnect from another system:

◊ You can select Terminal from the Online menu and manually
type the appropriate commands to the modem and the remote
computer.

◊ You can select Disconnect from the Online menu and allow
BLAST to automate the process through the SYSTEMS.SCR
and MODEMS.SCR libraries.

◊ You can write a BLAST script that uses the DISCONNECT
statement, which operates similarly to the Disconnect com-
mand.

◊ You can physically hang up the modem by powering off. This
is, of course, not recommended.

The Disconnect process attempts to log off the remote computer us-
ing the .LOGOFF section in SYSTEMS.SCR. Control is then trans-
ferred to the .HANGUP section in MODEMS.SCR to hang up the
modem.

If an error is detected by MODEMS.SCR or SYSTEMS.SCR, the
scripts return to BLAST with @STATUS set to reflect one of the er-
rors listed below:

0 No error
1 Unable to initialize the modem (MODEMS.SCR)
3 Can’t log out correctly (SYSTEMS.SCR)
196 CHAPTER FOURTEEN

Sample Modem Script
The following script illustrates the parts of a modem script. You can
incorporate this script into MODEMS.SCR or keep it as a separate
file, QUICK.SCR. If you incorporate the script into MODEMS.SCR,
you must index the script (see “The Index Utility” on page 199). If
you incorporate and index the script, QUICK will appear automati-
cally as a new modem type in the Modem Type setup field. Other-
wise, you must enter it manually into the Modem Type setup field.

:QUICK
A sample modem control script illustrating the required
sections .DIAL, .ANSWER, .HANGUP, and .END.
#
Dial
.DIAL
 if NULL @PHONENO
 ask "enter phone number", @PHONENO
 if NULL @PHONENO or @STATUS = "-1" return 1
 end
 tsend "ATDT", @PHONENO, CR
 ttrap 45, "CONNECT", "NO CARRIER", "BUSY", "NO DIAL"
 if @STATUS = "1"
 ttrap 2, "\015"
 return 0
 end
 let @STATUS = @STATUS + 2" # set up return code
 return @STATUS
#
Answer
#
.ANSWER
 tsend "ATS0=1", CR
 ttrap "CONNECT"
 return 0
#
Hangup
#
.HANGUP
 wait 2
 tsend "+++"
 ttrap 3, "OK", "NO CARRIER"
 if @STATUS = "1"
 wait 1
 tsend "ATH", CR
 ttrap 10, "OK", "NO CARRIER"
 if @STATUS = "0" return 1
CONNECTING AND DISCONNECTING 197

 end
 wait 1
 tsend "ATS0=0", CR
 return 0
.END
:
#
End of QUICK.SCR

The required sections for a modem script are .DIAL, .ANSWER,
.HANGUP, and .END. The appropriate section is activated when the
Connect or Disconnect commands are given. The .END section ter-
minates the script (or separates the script from the next one in
MODEMS.SCR) and requires a final colon (:). With this sample,
you should be able to write your own modem scripts or modify the
scripts in MODEMS.SCR. Likewise, you can modify or enhance the
system scripts in SYSTEMS.SCR.

Slave Script

Dialing into a Computer That is Running SLAVE.SCR

Included with the BLAST media is a “slave” script called
SLAVE.SCR, which keeps BLAST continually ready to accept any
incoming calls from a computer running BLAST protocol. When
you dial into a computer running SLAVE.SCR and then enter File-
transfer, the remote computer becomes a “slave” to your computer.
While the remote computer is in slave mode, you have access to all
Filetransfer menu options.

NOTE: After you have connected to the computer running
SLAVE.SCR, you have 25 seconds to select Filetransfer from the
Online menu. If Filetransfer is not selected within this time, the slave
assumes that the call is not for BLAST, hangs up the modem, and
resets for the next call. Also note, if you exceed the Inactivity Time-
out while performing local commands via the Filetransfer Local
menu option, you will be disconnected.

To end a “slave” session, simply exit Filetransfer mode.

Setting Up BLAST to Run in Slave Mode

If you choose to setup your computer to accept incoming calls and
run in slave mode, you must follow these steps:

◊ Set the Connection setup field to the modem port.

◊ Set the Protocol setup field to BLAST.
198 CHAPTER FOURTEEN

◊ From the Offline menu, choose Online (do not choose Connect).

◊ From the Online menu, choose Script.

◊ At the prompt for a script filename, type “slave” (the “.scr” ex-
tension is not needed).

◊ Press ENTER.

BLAST will then be set to receive incoming calls and to begin slave
mode when the remote user enters Filetransfer. When the remote
user disconnects, SLAVE.SCR resets BLAST to accept the next in-
coming call.

The Index Utility

Three files used by BLAST contain an index at the beginning of the
file: BLAST.HLP, MODEMS.SCR, and SYSTEMS.SCR. Each in-
dex contains references to specific sections in the file. For instance,
MODEMS.SCR contains a BLASTscript section to control the
US Robotics Courier modem. The index at the beginning of
MODEMS.SCR contains a reference to this section.

Indexing a file allows BLAST to jump to a particular section of a file
quickly. Each section of the file should begin with a label in the
form:

:LABEL

The index itself is in the form of lines of text, each beginning with
the greater-than sign (>). The Index utility adds the numeric refer-
ences that send control to the referenced section of the file.

If you modify any of these files, the index must be recalculated so
that BLAST can read the file properly. For example, if you add a
new system type to SYSTEMS.SCR or add your own Online Help
text to BLAST.HLP, you must run the Index utility copied to your
directory during installation to re-index the file. Indexing should
only be performed on these three files. Before modifying or re-
indexing any of these files, however, be sure to make a backup copy
of the file under another name and save the file you are modifying
as text-only or ASCII.

If you create a separate modem script, such as MYMODEM.SCR,
and enter MYMODEM as the Modem Type in a setup, indexing is not
CONNECTING AND DISCONNECTING 199

required. If you modify any of the three standard files, however, you
must re-index them. Follow this procedure to index a file:

1. Make a backup copy of the original file under another name.

2. Make the required changes to the original file.

3. Save the file as text-only.

4. Rename the modified file.

5. Type the following command:

index oldfile newfile

where oldfile is the modified file and newfile is the name
of the new indexed file. For example, if you modified
SYSTEMS.SCR and saved it under the name SYS.SCR, you
would type the following:

index sys.scr systems.scr

Remember also that BLAST will not operate properly if the fi-
nal name of the file is not exactly as described above, that is, ei-
ther SYSTEMS.SCR, MODEMS.SCR, or BLAST.HLP.
200 CHAPTER FOURTEEN

Chapter 15

BLASTscript
Command Reference

Introduction

As you learned in Chapter 12, BLAST’s script commands are
English-like statements that automate communications functions.
This chapter defines and illustrates the use of BLAST’s script com-
mands.

To use the script commands correctly, you must understand the data
types supported by BLASTscript and the syntax rules defining a le-
gal script statement.

Data Types

All data is stored as strings that may be up to 139 characters in
length.
BLASTSCRIPT COMMAND REFERENCE 201

Variables
Variables start with “@”, followed by up to eight unique characters
and any additional characters. For example:

@X
@Fred
@123
@logdateformat

Names are not case-sensitive. Thus @Fred, @fred, and @FRED all
refer to the same variable.

Numeric Constants
Numeric constants are sequences of digits enclosed in double quota-
tion marks. They may not be preceded by a minus sign. For example:

"4"
"4789"
"56"

Numeric Strings
Numeric strings are sequences of digits enclosed in double quotation
marks. Numeric strings may be preceded by a minus sign. For exam-
ple:

"-4"
"4789"
"-56"

Numeric Values
Numeric values may be variables, numeric constants, or numeric
strings as defined above.

String Constants
String constants are alpha-numeric sequences enclosed in double
quotation marks. For example:

"THIS IS A STRING CONSTANT"
"12345"
"123ABC"

String constants may contain special control characters:
202 CHAPTER FIFTEEN

\r carriage return
\l linefeed
\f formfeed
\b backspace
\t tab
\\ backslash character
\xxx where xxx is the three-digit octal value of the character ex-

cept for the octal value of null (\000), which is not permit-
ted because null characters are treated as end-of-string
characters. When encountered, nulls stop string processing.

Specifically, keep the backslash character in mind in writing scripts.
If you quote a pathname, you will need to use double backslashes,
as in the following example:

set @mydir = "\\DOS\\cih"
filetransfer
send
cih
@mydir

esc

If you want to include quotation marks in a DISPLAY or WRITE
statement, a backslash must precede the quotation marks; otherwise,
BLAST interprets the second quotation mark as the end of the string.
For example, to display the following

Processing "Weekly Reports" -- please wait.

your script statement would be:

display "Processing \"Weekly Reports\" -- please wait."

Control characters may be coded in a string by preceding the char-
acter with “^”. For example, ^M is equivalent to \r and \015:

set @msg = "3 carriage returns: ^M, \r, \015"

To code a single ^ in a string, two ^ characters are coded together.

String Values
String values may be string constants or variables as defined above.
BLASTSCRIPT COMMAND REFERENCE 203

Reserved Variables
Reserved variable values correspond to setup fields and physical or
logical program conditions. See Chapter 16 for more information.

Syntax Rules

The number of characters in a script statement is limited to 131 char-
acters. Indentation makes code easier to read and has no effect on
operation. Commands and variable names are not case-sensitive.
Thus,

SET @FILENAME = "C:\\BLAST\\default.su"

is equivalent to

set @filename = "C:\\BLAST\\default.su"

When strings are numeric values, mathematical operations (+, -, *, /)
can be performed in a LET statement. Parentheses are not allowed,
however, and expressions are evaluated left to right without prece-
dence.

Comment lines begin with “#”. Comments may also be placed on the
same line as a BLASTscript statement by putting a # in the line; all
characters from the # to the end of the line are treated as a comment.

Every line in a script must be executable or contain a comment. As
a consequence, blank lines, which are rarely executable, cannot be
used to separate script code visually.

BLASTscript is highly space-sensitive. When in doubt, separate all
elements of a statement with spaces and enclose all constants,
strings, or numerals in quotation marks. For example:

set @variable = "hello, world"

Commands That Set @STATUS

A number of script commands set the value of @STATUS, indicating
whether the command was executed successfully. In general,
@STATUS is set to 0 to indicate success. Some commands that re-
204 CHAPTER FIFTEEN

turn numeric results (e.g., STRINX, TTRAP) set @STATUS to 0 to
indicate a null condition. The following commands set @STATUS:

Setup Reserved Variables and @STATUS
@STATUS is also set by the following commands when the com-
mands assign a value to a reserved variable associated with a setup
field: ASK, FREAD, LET, LOWER, SET, STRTRIM, and UPPER.

BLASTscript Statements

This section is organized alphabetically by command. The following
conventions are used throughout:

[] Indicates that enclosed phrases or characters are option-
al.

... Indicates that the preceding statement or line may be re-
peated.

{ xx | yy } Indicates that either the xx or yy phrase is required.
Choose only one.

ASCII

get ASCII value of a character

FORMAT: ASCII_string_ value, numeric_value

ASCII sets @STATUS to the ASCII value of the character at posi-
tion numeric_value within string_value. The first position is 1. The
ASCII value is the decimal value given to the ASCII character. For
these values, see Appendix D.

ASCII
ASK
CALL
CONNECT
DISCONNECT
DROP
FCLOSE
FILETRANSFER
FOPENA

FOPENR
FOPENW
FREAD
FREWIND
FWRITE
LCHDIR
LDELETE
LLIST
LOAD

LPRINT
LRENAME
LTYPE
NEW
RAISE
REMOVE
RETURN
SELECT
STRINX

STRLEN
TCAPTURE
TSEND
TTRAP
TUPLOAD
WAIT CARRIER
WAIT IDLE
BLASTSCRIPT COMMAND REFERENCE 205

EXAMPLE:

set @filename = "\\path\\filename"
ASCII @filename, 1 # get ASCII code for the first
 # character in @filename
if @STATUS = "92" # ASCII 92 is a backslash (\)
 display @filename, "is a full pathname"
end

ASK

prompt for a string from the user

FORMAT: ASK [NOECHO] string_value, variable

ASK prompts the user with the string_value displayed at the top left
of the screen. The input from the user will be placed in variable. Be-
cause of display limitations, the combined length of string_value
and variable should not exceed 80 characters.The NOECHO option
causes BLAST to suppress user input. Use the NOECHO option when
entering a password or other sensitive data.

If the input ends with ENTER, @STATUS will be set to 0. If ESC is
pressed instead of ENTER, @STATUS will be set to a nonzero value
unless the variable in the ASK statement is a reserved variable; in
this case, the behavior of ASK is undefined. For this reason, we
strongly recommend that you not use reserved variables in an ASK
statement.

EXAMPLE:

ASK "what month", @month
ASK NOECHO "Password?", @secret # no display

CALL

call another script

FORMAT: CALL string_value

CALL loads and executes another BLAST script, after which the
called script returns to the calling script. String_value contains the
filename of the called program. If thescript is successfully called,
@STATUS is set to 0; if the called script does not exist, @STATUS is
set to 1.

On return from the called script, @STATUS is set to the value of the
exit code in the called program’s RETURN statement or to 0 if no
exit code value is given. Since all values are global, any values set
206 CHAPTER FIFTEEN

in the calling script will be retained in the called script and vice ver-
sa. CALL searches for the script name in the following order:

1. Files without “.SCR” extension in current working directory.

2. Files with “.SCR” extension in current working directory.

3. Files without “.SCR” extension in BLASTDIR directory.

4. Files with “.SCR” extension in BLASTDIR directory.

IMPORTANT: When writing a script that will be CALLed, you may not want to
assign a RETURN value of 1 if the calling script checks @STATUS
to determine the success of CALL. Since @STATUS is set to 1 when
a CALLed script cannot be found, assigning a value of 1 in the
RETURN statement would invalidate the check of CALL.

EXAMPLE:

CALL "backup.scr"
if @STATUS = "0" display "Backup Successful"

CLEAR

clear the scrolling region

FORMAT: CLEAR

CLEAR clears the scrolling region of the screen. This command af-
fects only script operations, not terminal emulation.

EXAMPLE:

CLEAR

CLEOL

clear to the end of the line

FORMAT: CLEOL

CLEOL clears from the current cursor position to the end of the cur-
rent line in the scrolling region. This command affects only script
operations, not terminal emulation.

EXAMPLE:

CLEOL
BLASTSCRIPT COMMAND REFERENCE 207

CONNECT

connect to a remote

FORMAT: CONNECT

CONNECT directs BLAST to execute routines in the MODEMS.SCR
and SYSTEMS.SCR libraries to dial the modem and log on if the
Modem and System Type setup fields are specified. If CONNECT is
successful, @STATUS is set to 0. For more information about the op-
eration of the CONNECT command, see Chapter 14.

EXAMPLE:

CONNECT
if @STATUS = "0" display "OK"

CURSOR

position the cursor within the scrolling region

FORMAT: CURSOR numeric_value1, numeric_value2

CURSOR positions the cursor to a given row (numeric_value1) and
column (numeric_value2) in the 20 x 80 scrolling region. The row
ranges from 0 to 19, column from 0 to 79. If @USERIF is set to 0
or OFF, the full 24 x 80 screen will be addressed.

Use PUT statements following cursor position to write on the screen.

EXAMPLE:

CURSOR 4, 10 # move to row 4, column 10
put "1. Get sales figures"
CURSOR 6, 10
put "2. Send pricing"
ask "enter option (1 or 2)", @opt

DISCONNECT

disconnect from a remote

FORMAT: DISCONNECT

DISCONNECT directs BLAST to execute routines in
SYSTEMS.SCR and MODEMS.SCR to log off and hang up the mo-
dem if the System and Modem Type setup fields are specified. If
DISCONNECT is successful, @STATUS is set to 0. See Chapter 14
for a full discussion.
208 CHAPTER FIFTEEN

EXAMPLE:

DISCONNECT
if @STATUS = "0" display "OK"

DISPLAY

display strings to display region

FORMAT: DISPLAY string_value, ...

DISPLAY displays messages in the scrolling region of the screen. If
a log file has been specified, these messages will also be sent to the
log file.

EXAMPLE:

DISPLAY "Dialing...", @PHONENO

DROP

drop DTR / RTS

FORMAT: DROP {DTR | RTS }

DROP terminates signals on the RS-232 interface. If the value is
DTR, the Data-Terminal-Ready signal drops, hanging up most mo-
dems (cable and modem configuration permitting). If the value is
RTS, the Request-to-Send signal drops, causing some devices to
stop transmitting. DROP DTR and DROP RTS commands are sup-
ported for standard internal (non-multiplexor) ports only. If DROP
DTR or DROP RTS is successful, @STATUS is set to 0.

EXAMPLE:

DROP DTR # drop DTR signal
DROP RTS # drop RTS signal

ECHO

enable/disable script display

FORMAT: ECHO {ON | OFF }

ECHO ON traces BLASTscript statements, displays them on the
screen as they are executed, and writes them to a log file if one is
specified. When executing CONNECT and DISCONNECT state-
ments, the statements in the MODEMS.SCR and SYSTEMS.SCR
libraries are also echoed. If you do not wish to see all these state-
ments, turn ECHO ON only as needed.
BLASTSCRIPT COMMAND REFERENCE 209

Because the statements displayed by ECHO are interspersed with the
standard interactive dialog, ECHO is particularly useful in under-
standing what activity is triggered by what response within a
BLAST script.

EXAMPLE:

ECHO ON # set echo on
ECHO OFF # set echo off

ERRSTR

store script error text

FORMAT: ERRSTR numeric _value, string_variable

ERRSTR puts the English language error message corresponding to
numeric_value in string_variable. This statement is commonly used
in association with the reserved variable @SCRIPTERR, which con-
tains the number of the last BLASTscript error encountered.

For a list of error messages, see Appendix A. Note that not all error
messages listed are possible errors in all versions of BLAST; some
are operating system specific.

EXAMPLE:

fopenr 1, "nonexist.fil"
if @STATUS not = "0"
 ERRSTR @SCRIPTERR, @MESSAGE
 display "ERROR #", @SCRIPTERR, "-", @MESSAGE
end

FCLOSE

close an open file

FORMAT: FCLOSE_numeric_constant

FCLOSE closes an open file. Numeric constant is a number, called a
handle, that other file statements use to refer to the file. The file han-
dle can range from 1 to the number of file handles available through
the operating system. If FCLOSE is successful, @STATUS is set to 0.

EXAMPLE:

fopenr 1, "input.fil" # open file 1 for reading
FCLOSE 1 # close file 1
210 CHAPTER FIFTEEN

FILETRANSFER FILE

perform commands from a BLAST TCF

FORMAT: FILETRANSFER
FILE
filename
ESC

In BLAST protocol, this multi-line statement performs commands
read from a transfer command file (TCF). Filename is the transfer
command file, which may be specified with a string variable. See
“Transfer Command File” on page 117 for a complete description of
the transfer command file format.

EXAMPLE:

connect
FILETRANSFER
FILE
command.fil
ESC
disconnect
quit

FILETRANSFER GET / SEND

get/send file

FORMAT: FILETRANSFER FILETRANSFER
GET SEND
{protocol-dependent string(s) ...} {protocol-dependent string(s) ...}
ESC ESC

These statements transfer files to and from the remote computer.
The exact syntax is protocol-dependent. For a full description of the
syntax of the individual protocols, see “File Transfers with BLAST
Session Protocol” on page 178 and the sections on scripting file
transfers for the other supported protocols in Chapter 13.

EXAMPLE:

set @protocol = "BLAST"
set @new = "usr\\blast\\readme"
FILETRANSFER # enter Filetransfer mode
GET # get a file with BLAST
getme.fil # remote filename
@new # local filename stored in a variable
to # text conversion and overwrite
SEND # send a file with BLAST
BLASTSCRIPT COMMAND REFERENCE 211

*.DOC # may be lots of files
% # resolve multiple names with %

SEND # send a file with no remote filename
samename.fil # this will also be the remote name

t # send as text file
ESC # end BLAST protocol session

FILETRANSFER LOCAL

perform local commands using BLAST protocol
FORMAT:

FILETRANSFER

This multi-line statement performs Local menu commands within a
FILETRANSFER-ESC block using BLAST protocol. Note that
Local menu commands may also be performed with the LLIST,
LDELETE, LPRINT, LTYPE, LRENAME, and LCHDIR statements.

LOCAL is followed by one or more commands. Most of the com-
mands are followed by a filename, which may include wildcards or
a string variable. Please note that lengthy local functions may force
either the remote system or your system to time out, so keep local
functions as short as possible or change the Inactivity T/O setup field
to allow more time.

LIST – Display your local directory listing. The line after LIST
must specify either SHORT or LONG. The second line after
LIST can be left blank to display all files or it can be a file-
name, which may include wildcards (e.g., *.TXT).

DELETE – Delete a file or files on your system. The line following
DELETE is the filename, which may include wildcards.

RENAME – Rename a file on your system. The line after RENAME is
the old filename; the second line after RENAME is the
new filename.

TYPE – Type a file on your system’s display. The line following
TYPE is the filename.

LOCAL
{LIST | DELETE | RENAME | TYPE | PRINT | CHDIR | SYSTEM}
{SHORT | LONG} filename oldname filename filename pathname command
filename ESC newname ESC ESC ESC ESC
ESC ESC ESC ESC ESC ESC ESC
ESC ESC
212 CHAPTER FIFTEEN

PRINT – Print a file on your system’s default printer. The line fol-
lowing PRINT is the filename.

CHDIR – Change the working directory of your system. The line fol-
lowing CHDIR is the pathname of the new working direc-
tory.

SYSTEM – Perform a local system command. The line following
SYSTEM is a system command. If this line is left blank,
BLAST invokes the operating system interactively.
When you are finished with the command interpreter,
you must return to BLAST by typing exit and pressing
ENTER. When BLAST is started with the /b switch (or
with the /n switch if the display has not been re-enabled
through a script), you cannot escape to a system prompt
(see “Command Line Switches” on page 10).

EXAMPLE:

set @protocol = "BLAST"
FILETRANSFER # start BLAST session protocol
GET
daily.dat
new.dat
to
LOCAL # begin LOCAL commands
 PRINT
 new.dat
 RENAME
 new.dat
 old.dat
 ESC # end LOCAL commands
SEND
sendme.fil
toyou.fil
t
ESC # end BLAST protocol session

FILETRANSFER MESSAGE

send messages using BLAST Protocol

FORMAT: FILETRANSFER
MESSAGE
message
ESC

Using BLAST protocol, MESSAGE sends a text string that is dis-
played in the scrolling region of both computers’ displays. The line
BLASTSCRIPT COMMAND REFERENCE 213

after MESSAGE is a message—a line of text up to 67 characters or a
variable containing a line of text up to 67 characters.

EXAMPLE:

FILETRANSFER # enter Filetransfer mode
MESSAGE # send a message
Sending Sales Reports # specify the message
ESC

FILETRANSFER REMOTE

perform remote commands

FORMAT for BLAST protocol:

FILETRANSFER

This multi-line statement performs error-free file management on
the remote computer during BLAST session protocol. Multiple
commands may follow the REMOTE command, and filenames (valid
pathnames for the remote computer) or string variables may follow
each command. Some older versions of BLAST do not support
REMOTE commands. During a BLAST protocol session, the follow-
ing commands are available:

LIST – Display the remote directory listing. The line after LIST
must specify either SHORT or LONG. The second line after
LIST can be left blank to display all files or it can be a file-
name, which may include wildcards (e.g., *.TXT).

DELETE – Delete a file or files on the remote system. The line fol-
lowing DELETE is the filename, which may include
wildcards.

RENAME – Rename a remote file. The line after RENAME is the old
filename; the second line after RENAME is the new file-
name.

TYPE – Type a remote file on your system’s display. The line fol-
lowing TYPE is the filename.

REMOTE
{LIST | DELETE | RENAME | TYPE | PRINT | CHDIR | MORE}
{SHORT | LONG} filename oldname filename filename pathname ESC
filename ESC newname ESC ESC ESC ESC
ESC ESC ESC ESC ESC ESC
ESC ESC
214 CHAPTER FIFTEEN

PRINT – Print a remote file to the remote system default printer.
The line following PRINT is the filename.

CHDIR – Change the working directory on the remote computer.
The line following CHDIR is the pathname of the new
working directory.

MORE – Continue displaying data from the remote computer after a
page pause.

FORMAT for Kermit server protocol:

FILETRANSFER

During a Kermit server protocol session, the available commands
depend upon both the version and the configuration of the remote
Kermit server. A command may fail if the remote Kermit server
does not support the command. You must start Kermit remote server
on the remote system before entering Kermit Filetransfer mode.
Kermit remote commands include:

DIRECTORY – Display a directory on the remote server. The line af-
ter DIRECTORY is the pathname (with or without
wildcards) of the remote directory for which you
want a listing; if you leave this line blank, the cur-
rent working directory listing of the remote server
will be displayed. The second line after DIRECTORY
is the password that may be required to gain access
to the directory listing. If no password is required,
leave this line blank.

ERASE – Delete a file on the server. The line following ERASE is
the filename (with or without wildcards) of the file to be
erased. If you do not specify a full path for the file, the file
(if it exists) will be removed from the current working di-
rectory of the remote server.

TYPE – Display a remote-server file on your screen. The line fol-
lowing TYPE is the filename of the file to be displayed.
Kermit does not support a page pause, so you must use CTRL

S to pause and CTRL Q to resume the flow of data.

CWD – Change the server’s working directory. The line following
CWD is the pathname of the new working directory.

REMOTE
{DIRECTORY | ERASE | TYPE | CWD | SPACE | WHO | MESSAGE | HOST | KERMIT | HELP}
pathname filename filename pathname pathname user message command message ESC
password ESC ESC ESC ESC ESC ESC ESC ESC ESC
ESC ESC ESC ESC ESC ESC ESC ESC ESC
ESC
BLASTSCRIPT COMMAND REFERENCE 215

SPACE – Display unused drive space of a directory on the remote
server. The line following SPACE is the pathname (with
or without wildcards) of the directory for which unused
drive space is to be reported.

WHO – Display information on user(s) currently logged onto the
server. The line following WHO is the user for whom you want
information. If you leave this line blank, information on all
users logged onto the server will be displayed.

MESSAGE – Send a one-line message to be displayed to the remote
operator. The line following MESSAGE is the one-line
message to be displayed to the remote operator.

HOST – Send an operating system command to the server. The line
following HOST is the operating system command to be
sent to the remote server. The command is executed imme-
diately.

KERMIT – Send a Kermit language command to modify session pa-
rameters. The line following KERMIT is the message
(Kermit language command) to be issued to the Kermit
server, for example, SET FILE TYPE BINARY.

HELP – Display a short list of the available commands on the server.

EXAMPLE:

tsend "kermit -x", LF # start kermit server on remote
FILETRANSFER # enter Filetransfer mode
get
daily.dat
new.dat
REMOTE # start REMOTE commands
 CWD
 /usr/customer
 TYPE
 contactlist.txt
 ESC # end REMOTE commands
send
sendme.fil
toyou.fil
ESC # end Kermit protocol session
216 CHAPTER FIFTEEN

FLUSH

clear the input buffer

FORMAT: FLUSH

FLUSH clears the communications port input buffer. Only charac-
ters received after the FLUSH command has been executed will be
available.

EXAMPLE:

FLUSH # empty buffer
ttrap 10, "@" # trap for "@"

FOPENA

open a file for appending

FORMAT: FOPENA numeric_constant, string_value

FOPENA opens a file for appending. If the file does not exist, it will
be created. If it does exist, it will be opened and subsequent writes
will append data to the end of the file. String_value is the filename
of the file to be opened. Numeric_constant is a number, called a han-
dle, that other file statements use to refer to the file. The file handle
can range from 1 to the number of file handles available through the
operating system. If FOPENA is successful, @STATUS is set to 0.

EXAMPLE:

FOPENA 1, "script.log" # open file 1 for appending
fwrite 1, "got this far" # adds string to the file
fclose 1 # close file 1

FOPENR

open a file for reading

FORMAT: FOPENR numeric_constant, string_value

FOPENR opens a file for reading. The file must already exist.
String_value is the filename of the file to be opened.
Numeric_constant is a number, called a handle, that other file state-
ments use to refer to the file. The file handle can range from 1 to the
number of file handles available through the operating system. If
FOPENR is successful, @STATUS is set to 0.
BLASTSCRIPT COMMAND REFERENCE 217

EXAMPLE:

FOPENR 1, "command.fil" # open file 1 for reading
fread 1, @input # read the first line
fclose 1 # close file 1

FOPENW

open a file for writing

FORMAT: FOPENW numeric_constant, string_value

FOPENW opens a file for writing. If the file does not exist, it will be
created. If it does exist, all data in the file will be overwritten.
String_value is the filename of the file to be opened, and
numeric_constant is a number, called a handle, that other file state-
ments use to refer to the file. The file handle can range from 1 to the
number of file handles available through the operating system. If
FOPENW is successful, @STATUS is set to 0.

EXAMPLE:

FOPENW 1, "cscript.log" # open file 1 for writing
fwrite 1, "got this far" # write string to file 1
fclose 1 # close file 1

FREAD

read a line from a file

FORMAT: FREAD numeric_constant, variable

After an FOPENR command, FREAD reads a line of text into
variable. Numeric_constant is the file handle assigned the file in the
FOPENR statement. If FREAD is successful, @STATUS is set to 0. A
nonzero value indicates an error reading the file or end of file. If the
variable in an FREAD statement is a reserved variable, the behavior
of FREAD is undefined. For this reason, we strongly recommend that
you not use reserved variables in an FREAD statement.

EXAMPLE:

fopenr 1, "command.fil" # open file 1 for reading
FREAD 1, @input # read line into @input
if @STATUS not = "0"
 display "End of file reached"
end
fclose 1 # close file
218 CHAPTER FIFTEEN

FREE

release a variable from memory

FORMAT: FREE user-defined variable

FREE releases memory allocated to the specified user-defined vari-
able. To recover all memory, you must FREE variables in the re-
verse order in which they were defined.

EXAMPLE:

FREE @input

FREWIND

rewind a file

FORMAT: FREWIND numeric_constant

FREWIND “rewinds” a file by resetting the file pointer to the begin-
ning of the file. Numeric_constant is the file handle assigned the file
in an FOPENR, FOPENW, or FOPENA statement. If FREWIND is
successful, @STATUS is set to 0.

EXAMPLE:

fopenr 1, "commands.fil" # open file 1 for reading
fread 1, @input # read first line of file 1
FREWIND 1 # rewind file 1
fread 1, @also # read first line again
fclose 1 # close file 1

FWRITE

write a line to a file

FORMAT: FWRITE numeric_constant, string_value,...

After an FOPENW command, FWRITE writes out a series of one or
more strings to a file as a single line of text. Numeric_constant is the
file handle assigned the file in an FOPENW or FOPENA statement. If
FWRITE is successful, @STATUS is set to 0.

EXAMPLE:

fopenw 1, "output.fil"
FWRITE 1, "the userid is: ", @USERID
fclose 1
BLASTSCRIPT COMMAND REFERENCE 219

GOTO

branch to another point in program

FORMAT: GOTO .LABEL

GOTO branches unconditionally to another location in the program.
GOTO will abort the program if .LABEL cannot be found. The label
is not case-sensitive and consists of eight characters or less, not
counting the initial period.

EXAMPLE:

.PWD
 ask "enter the secret word", @pword
 if @pword = "rosebud" GOTO .CONT
 werror "invalid name"
 GOTO .PWD
.CONT
 display "Good morning, Mr. Phelps"

IF

perform single action if condition is true

FORMAT: IF condition [{and / or}...] statement

IF performs statement when condition is true. Evaluation is from
left to right. Parentheses and arithmetic functions are not permitted
in the condition. The syntax of condition can be one of two forms.
The first form is valid for string values only:

string_value1 [NOT][>|>=|<|<=|=] string_value2

The condition is true when string_value1 is:

> greater than

>= greater than or equal to

< less than

<= less than or equal to

= equal to

string_value2.

The comparison is based on the ASCII values and the length of the
strings. If the strings are not equal, the comparison is performed on
the first different character in the strings.
220 CHAPTER FIFTEEN

The second form of the conditional clause is valid for numeric val-
ues only:

numeric_value1 [NOT][GT|GE|LT|LE|EQ] numeric_value2

The condition is true when numeric_value1 is:

GT greater than

GE greater than or equal to

LT less than

LE less than or equal to

EQ equal to

numeric_value2.

Some special qualifiers provide an implied condition:

[NOT]NULL string_value
True [False] when string_value is of zero length.

[NOT]numeric_constant
True [False] when numeric_constant equals @STATUS.

[NOT]REPS
True [False] when the REPS counter is not zero (see page 170 for
more information on using REPS and loops).

[NOT]EXIST string_value
True [False] when a file named the value of string_value exists.

[NOT]OK
True [False] when @STATUS = "0".

EXAMPLE:

IF EXIST "file.one" LDELETE "file.one"
IF NOT NULL @VAR Display "@VAR is not empty"
IF @USERID = "FRED" GOTO .SENDFILES

The following three statements are all equivalent:

IF OK GOTO .RUN
IF @STATUS = "0" GOTO .RUN
IF 0 GOTO .RUN
BLASTSCRIPT COMMAND REFERENCE 221

IF – ELSE

perform action for true or false conditions

FORMAT: IF condition [{and / or}...] statement
ELSE statement

IF-ELSE performs statement based upon condition. When the con-
dition is true, the statement following the condition executes. When
condition is false, the statement after ELSE executes. Statement
must be on the same line as condition.

EXAMPLE:

connect
IF @STATUS = "0" write "Logged on successfully."
ELSE write "Logon failed!"

IF – END

perform multiple actions if condition is true

FORMAT: IF condition [{and / or} condition...]
statement
END

This multi-line clause performs several statements based upon
condition. When the condition is true, subsequent statements up to
the END are executed.

EXAMPLE:

IF @USERID NOT = "Annie"
 display "You can't run this script!"
 return 2
END

IF – END / ELSE – END

perform several actions for true or false conditions

FORMAT: IF condition [{and / or} condition...]
statement
END
ELSE
statement
END

This multi-line clause performs several statements based upon
condition. When the condition is true, the statements up to the first
222 CHAPTER FIFTEEN

END are executed. When the condition is false, the statements fol-
lowing ELSE and up to the END are executed.

When execution speed is important, use this statement instead of
GOTO. Also, programs using this programming structure are gener-
ally easier to understand and maintain than programs using GOTO.

EXAMPLE:

ask "Ok to Log on?", @answer
IF @answer = "YES"
 display "Now Logging on"
 tsend @USERID, CR
END
ELSE
 display "Will not attempt to Log on"
 tsend "BYE", CR
END

LCHDIR

change working directory

FORMAT: LCHDIR string_value

LCHDIR changes the current working directory on the local comput-
er to the directory specified in the string_value. Note that you must
use double backslashes inside of quotation marks. If LCHDIR is suc-
cessful, @STATUS is set to 0.

EXAMPLE:

LCHDIR "\\work" # change directory to \work
if @STATUS = "0" # if the return status is 0
 display "CHDIR ok" # success!
end

LDELETE

delete a file on the local system

FORMAT: LDELETE string_value

LDELETE deletes from the local computer the file specified in
string_value. If LDELETE is successful, @STATUS is set to 0.

EXAMPLE:

LDELETE "sales.jun"
if @STATUS = "0" display "sales.jun deleted"
BLASTSCRIPT COMMAND REFERENCE 223

LET

perform simple arithmetic

FORMAT: LET variable = numeric value [{+ | – | * | /} numeric value]...

LET does simple integer arithmetic. The expression is evaluated
from left to right, with no grouping or precedence. The result is
placed in variable. The maximum and minimum integer values are
32,767 and negative 32,768, respectively. If the variable in a LET
statement is a reserved variable, the behavior of LET is undefined.
For this reason, we strongly recommend that you not use reserved
variables in an LET statement.

EXAMPLE:

display "Polling statistics:"
LET @total = @numbad + @numgood
display "Total sites polled: ", @total
LET @next = @next + "1"
display "Next site is site number: ", @next

LLIST

display a listing of files on the system

FORMAT: LLIST [LONG] string_value

LLIST displays a directory listing on the local computer as speci-
fied by string_value. Wildcards may be used. If no path is given,
items from the local current directory are listed. If LONG is speci-
fied, the listing will give all accompanying data rather than just the
filenames and directory names. If the LLIST is successful,
@STATUS is set to 0.

EXAMPLE:

LLIST LONG "*.BAT" # long listing of file info
if @STATUS = "0" display "list OK"

LOAD

load a system setup

FORMAT: LOAD string_value

LOAD loads a setup from the directory specified by the SETUPDIR
environment variable. String_value is the name of the setup. The set-
up name should not include the .SU extension. This statement oper-
ates like the Offline menu Select command and the SELECT
224 CHAPTER FIFTEEN

statement. If the setup has been successfully loaded, @STATUS is set
to 0.

EXAMPLE:

LOAD "Blaster"
if @STATUS = "0"
 display "Setup Blaster is the current setup"
end
else
 display "can't load the setup Blaster"
end

LOCAL SYSTEM

perform operating system command

FORMAT: LOCAL
SYSTEM
string_value
ESC

This multi-line statement performs local operating system com-
mands. The line following SYSTEM is the system command. If this
line is left blank, BLAST invokes the operating system interactively.
When you are finished with the command interpreter, you must re-
turn to BLAST by typing exit. Because of memory constraints, we
do not recommend escaping to a system prompt and executing an-
other program.

EXAMPLE:

set @syscmd = "dir /w > catalog.txt"
LOCAL
SYSTEM
COPY A:FRED B:WILMA
SYSTEM
@syscmd
ESC

LOWER

convert variable to lowercase

FORMAT: LOWER variable

LOWER changes all uppercase characters in a variable to lowercase.
If the variable in a LOWER statement is a reserved variable, the be-
havior of LOWER is undefined. For this reason, we strongly recom-
mend that you not use reserved variables in a LOWER statement.
BLASTSCRIPT COMMAND REFERENCE 225

EXAMPLE:

ask "Enter your name:", @name
LOWER @name

LPRINT

print a file on the local printer

FORMAT: LPRINT string_value

LPRINT prints the file specified by string_value to the local printer.
If LPRINT is executed, @STATUS is set to 0. For information on
how to specify the printer used, see Online Help for the Local menu
Print command.

EXAMPLE:

LPRINT "salesdata"
if @STATUS = "0" display "print worked ok"

LRENAME

rename a file on the local system

FORMAT: LRENAME string_value1, string_value2

LRENAME renames the local file specified in string_value1 to the
name specified in string_value2 on the local computer. If LRENAME
is successful, @STATUS is set to 0.

EXAMPLE:

LRENAME "f1.dat", "f2.dat"
if @STATUS = "0" display "Rename worked"

LTYPE

type a file on the local screen

FORMAT: LTYPE string_value

LTYPE types the local file specified in string_value on the screen. If
the LTYPE is successful, @STATUS is set to 0.

EXAMPLE:

LTYPE "salesdata" # display salesdata
if @STATUS = "0" display "LTYPE worked"
226 CHAPTER FIFTEEN

MENU

enable/disable menu display during script execution

FORMAT: MENU {ON | OFF}

MENU ON leaves the menu displayed for debugging purposes while
a BLAST script is executing. Normally, menu display is suppressed
during script execution.

EXAMPLE:

MENU ON # set the menu display on

NEW

create a new BLAST setup

FORMAT: NEW string_value

NEW creates a new setup in the directory specified by the SETUPDIR
environment variable (see page 9), based on the current values in
memory. String_value is the name of the setup. The setup name
should not include the .SU extension.

The NEW statement operates like the Offline menu New command.
If you specify a setup name that already exists, NEW will load that
setup instead of creating a new one. If the setup has been successful-
ly created, @STATUS is set to 0.

NOTE: Before creating a new setup, the user should first check to
see if a setup with the same name already exists. The user can do this
with an IF EXIST statement as shown in the example below:

EXAMPLE:

if exist "CI.SU"
 display "Setup with that name already exists."
end
else
 NEW "CI" # create setup named ci.su
 if ok display "New setup created."
 else display "Couldn't create new setup."
end
BLASTSCRIPT COMMAND REFERENCE 227

PUT

output strings to the scrolling region

FORMAT: PUT string_value,...

PUT outputs one or more strings to the scrolling region. There is no
implicit carriage return or new line after the output. This command
is usually used in conjunction with the CURSOR statement.

EXAMPLE:

cursor 9, 30 # put cursor in row 9,col 30
PUT "The winner is ", @win # display string at

 # cursor position

QUIT

quit BLAST and return to system with exit code

FORMAT: QUIT numeric_constant

QUIT aborts BLAST and returns to the operating system.
Numeric_constant is an exit code that can be tested by the operating
system.

EXAMPLE:

QUIT 123 # exit to operating system, exit status 123

RAISE

raise DTR/RTS

FORMAT: RAISE {DTR | RTS}

RAISE raises the Data-Terminal-Ready signal (DTR) or the
Request-to-Send signal (RTS) on the RS-232 interface. These sig-
nals are normally used with modems. Some systems have DTR and
RTS tied together so that raising either one affects both signals.
RAISE DTR and RAISE RTS commands are supported for standard
internal (non-multiplexor) ports only. If RAISE DTR or RAISE
RTS is successful, @STATUS is set to 0.

EXAMPLE:

RAISE DTR # raise the DTR signal
RAISE RTS # raise the RTS signal
228 CHAPTER FIFTEEN

REMOVE

remove a system setup

FORMAT: REMOVE string_value

REMOVE deletes a setup from the directory specified by the
SETUPDIR environment variable. String_value is the name of the
setup. The setup name should not include the .SU extension. If the
setup has been successfully removed, @STATUS is set to 0.

EXAMPLE:

REMOVE "blaster" # delete blaster.su
if @STATUS = "0" display "Setup Blaster has been removed."

REPS

set repetition counter

FORMAT: REPS numeric_value

REPS creates loops in BLAST scripts. When REPS is used in an IF
statement, it keeps track of the number of repetitions performed. The
REPS numeric value is decremented and then tested for a value of
zero. If numeric_value is a variable, the countdown occurs, but the
variable retains its initial value.

EXAMPLE:

 REPS 3 # loop three times
.loop
 display "hello"
 IF REPS GOTO .loop # decrement; if REPS greater
 display "goodbye" # than 0, branch to .loop;

RETURN

return to a calling program

FORMAT: RETURN numeric_constant

RETURN returns control to the menu system or the calling BLAST
script. @STATUS of the calling script is set to numeric_constant, or
0 if no numeric constant is specified.

IMPORTANT: When writing a script that will be CALLed, you may not want to
assign a RETURN value of 1 if the calling script checks @STATUS
to determine the success of CALL. Since @STATUS is set to 1 when
BLASTSCRIPT COMMAND REFERENCE 229

a CALLed script cannot be found, assigning a value of 1 in the
RETURN statement would invalidate the check of CALL.

EXAMPLE:

RETURN 2 # return with @STATUS set to 2

SAVE

save a BLAST setup

FORMAT: SAVE

SAVE saves the current setup.

EXAMPLE:

SAVE # save current setup

SELECT

select a system setup

FORMAT: SELECT string_value

SELECT loads a setup from the directory specified by the
SETUPDIR environment variable. The setup name should not in-
clude the .SU extension. This statement operates like the Offline
menu Select command. If the setup has been successfully loaded,
@STATUS is set to 0.

EXAMPLE:

SELECT "Blaster"
If OK display "Setup successfully loaded."
Else display "Couldn't load setup."

SET

set script variables to a string

FORMAT: SET variable = string_value

SET assigns a value to a variable. SET differs from the LET state-
ment in that mathematical operations cannot be performed in a SET.
If variable is a reserved variable, the resulting value of @STATUS is
undefined.
230 CHAPTER FIFTEEN

EXAMPLE:

SET @command = "blast -h"
SET @BAUDRATE = "9600" # set baud rate in setup
SET @PARITY = "NONE" # set parity in setup

SETTRAP

capture commport data to a script variable

FORMAT: SETTRAP variable, numeric_constant1 [, numeric_constant2]

SETTRAP prepares a TTRAP command to capture incoming data
into a user-defined variable. Note that SETTRAP will not perform
the capture itself—one or more TTRAPs must follow. Once a
SETTRAP is issued, it remains in effect until another SETTRAP is
issued; therefore, one SETTRAP can be used for multiple TTRAPs.

Variable specifies the destination for the TTRAP data. It may be ei-
ther a new or previously used variable.

Numeric_constant1 defines the maximum number of characters to
save into the variable. It must be greater than 0 and may be up to
139 long.

Only the last incoming characters, specified by numeric_constant1,
will be saved. When set to 0, SETTRAP is disabled completely and
the TTRAP(s) following will operate normally.

Numeric_constant2 contains the maximum amount of characters the
TTRAP(s) will check for a match. If this value is reached, the
TTRAP(s) will return to the calling script with @STATUS set to -5,
and the TTRAP internal counter will be reset. Note that this is not on
a per-TTRAP basis; the value is accumulated over one or more
TTRAPs. This feature may be disabled by setting
numeric_constant2 to 0 or omitting it.

EXAMPLE:

SETTRAP @CAP, 10, 85 # set TTRAP to capture data into
 # @CAP--10 chars max, TTRAP exits
 # if 85 chars are received before
 # TTRAP matches string or times out
ttrap 6, "\015" # trap next carriage return
SETTRAP @CAP, 20 # No character count, so TTRAP
 # will timeout or match string.
 # 20 chars are placed in @CAP
ttrap 45, "Logout"
BLASTSCRIPT COMMAND REFERENCE 231

STRCAT

combine strings

FORMAT: STRCAT variable, string_value [,string_value ...]

STRCAT appends string_value to variable.

EXAMPLE:

set @string1 = "abc"
set @string2 = "xyz"
STRCAT @string1, @string2 # append string2 to string1
display "alpha=", @string1 # display abcxyz

STRINX

find the first occurrence of one string in another

FORMAT: STRINX string_value1, string_value2

STRINX finds the first occurrence of string_value2 in
string_value1. @STATUS is set to the starting character position of
string_value2 in string_value1, or set to 0 if there is no match.

EXAMPLE:

set @string1 = "0123456"
STRINX @string1, "3" # look for pattern "3"
display "The number 3 occurs at position ", @STATUS

STRLEN

determine the length of a string

FORMAT: STRLEN variable

STRLEN sets @STATUS to the length of variable.

EXAMPLE:

STRLEN @string
display "The length of @string is", @STATUS
232 CHAPTER FIFTEEN

STRTRIM

extract part of a string

FORMAT: STRTRIM variable, numeric_value1, numeric_value2

STRTRIM extracts a substring from variable. Variable is reset to the
substring that begins at position numeric_value1 and ends at posi-
tion numeric_value2. If the original string will be required for fur-
ther processing, a copy of it should be made before operating with
STRTRIM, because STRTRIM changes the contents of variable. If
the variable in a STRTRIM statement is a reserved variable, the be-
havior of STRTRIM is undefined. For this reason, we strongly rec-
ommend that you not use reserved variables in a STRTRIM
statement.

EXAMPLE:

set @name = "A:\\file.dat" # name is A:\file.dat
set @drive = @name # make a copy of string
STRTRIM @drive, 1, 2 # trim out drive name
display "Filename is ", @name
display "Drive name is ", @drive?

TCAPTURE

enable text file capture

FORMAT: TCAPTURE {ON [APPEND | OVERWRITE] | OFF} string_value

TCAPTURE enables or disables text capturing while in Terminal
mode. TCAPTURE ON enables Capture mode, and TCAPTURE OFF
disables it. APPEND and OVERWRITE are used only with ON to in-
dicate whether an existing file should be appended or overwritten. If
neither is specified, APPEND is assumed.

@STATUS is set to 0 if string_value is a valid filename that can be
written to; otherwise, @STATUS is set to an error code. TCAPTURE
OFF does not affect @STATUS. No data is captured until one of the
following is executed: TSEND, TTRAP, TUPLOAD, or WAIT with
the CARRIER or IDLE option.

IMPORTANT: After issuing a TCAPTURE command, you should perform a WAIT
IDLE or TTRAP to be sure that a stopping point has been reached in
the data stream before exiting.
BLASTSCRIPT COMMAND REFERENCE 233

EXAMPLE:

TCAPTURE ON APPEND "test.cap" # capture on; append
 # to file test.cap
if @STATUS not = "0" # if not OK
 display "can't enable capture" # write to screen
 return 2 # return error code
end
tsend "type bob.mail", CR # send command to the
 # the remote system
wait 10 idle # wait till no comm
 # port activity
TCAPTURE OFF # turn capture off

TERMINAL

become a terminal

FORMAT: TERMINAL

TERMINAL puts BLAST into Terminal mode, allowing the user to
interact with the remote computer. Control cannot return to the
script until the user types ATTN ATTN. TERMINAL will not function
if BLAST is started with the /b switch (batch mode) or /n switch
(no display, unless the /n switch setting has been reset in the ses-
sion—for example, in a script with the following command: SET
@SCRLREG = "ON").

EXAMPLE:

display "Script paused..."
TERMINAL
display "Script continuing..."

TSEND

send strings to the remote computer

FORMAT: TSEND {BREAK | CR | LF | string_value},...

TSEND sends breaks, carriage returns, line feeds, or strings to the re-
mote computer. Any combination of strings, line terminating char-
acters, and/or breaks can be sent. If TSEND is successful, @STATUS
is set to 0.

NOTE: @STATUS does not reflect whether the remote computer
successfully received a string, only that the TSEND command was
successfully executed. Also note that some operating systems (in-
cluding DOS) expect a CR/LF instead of a LF at the end of a line.
234 CHAPTER FIFTEEN

Take this into consideration and use CR/LF instead of LF for these
systems. You might define an end-of-line variable at the beginning
of a BLAST script to make these programs easily transportable to
other systems.

EXAMPLE:

set @endline = "CR/LF"
TSEND BREAK # send break signal
TSEND "ATDT", @PHONENO, @endline # dial the modem

TTRAP

trap for output from the remote computer

FORMAT: TTRAP [mm:ss | ss,] string_value1[,...string_value8]

TTRAP pauses the BLAST script in Terminal mode, testing data
flow to the communications port. When TTRAP sees one of the
string values, it continues to the next statement. If mm:ss (min-
utes:seconds) is given and none of the string values is received in
that length of time, TTRAP times out. TTRAP sets @STATUS to the
number of the string that was found, or sets @STATUS to 0 if TTRAP
timed out.

EXAMPLE:

set @x = "NO CARRIER"
TTRAP 30, "CONNECT", @x
if @STATUS = "0" write "Timeout on trap"
if @STATUS = "1" write "Connected!"
if @STATUS = "2" write "No carrier!"

TUPLOAD

upload a text file to the remote system

FORMAT: TUPLOAD string_value

TUPLOAD opens the file specified by string_value and sends the text
to the remote computer. The transmission is paced by any flow con-
trol options specified in the setup. TUPLOAD sets @STATUS to 0 on
completion of the text upload. If the upload is unsuccessful,
@STATUS is set to the applicable BLAST error code. For example,
if the file could not be found, @STATUS is set to 51 (error opening
data file).

Some computers buffer the flow of data extensively. This means the
TUPLOAD statement may complete well before all the characters
clear the local and remote computer buffers. Thus, after a TUPLOAD
BLASTSCRIPT COMMAND REFERENCE 235

command has been issued, it is a good idea to TTRAP for characters
signaling the end of the upload or do a WAIT mm:ss IDLE. Exiting
BLAST before the buffers are emptied may cause BLAST to termi-
nate abnormally. See “Downloading Text” on page 192.

EXAMPLE:

TUPLOAD "file.txt"
wait 3 idle
ttrap 30, "-End-" # -End- is the last line if
 # @status = "0"
 ttrap 30, "-End-" # wait 30 more seconds
 if @STATUS = "0" return # Return an error end
wait 10 idle # Make sure buffer is empty

UPPER

convert a variable to uppercase

FORMAT: UPPER variable

UPPER changes all lowercase characters in variable to uppercase.
When the variable in an UPPER statement is a reserved variable, the
behavior of UPPER is undefined. For this reason, we strongly rec-
ommend that you not use reserved variables in an UPPER statement.

EXAMPLE:

UPPER @salesdata

WAIT

wait for time to pass

FORMAT: WAIT {mm:ss | string_value}

WAIT pauses the BLAST script for mm minutes and ss seconds.
String_value must be in the format mm:ss. The maximum value is
60 minutes (60:00).

EXAMPLE:

WAIT 2:02 # wait two minutes, two seconds
WAIT 2 # wait two seconds
WAIT 60:00 # wait one hour
236 CHAPTER FIFTEEN

WAIT CARRIER

wait for a phone call

FORMAT: WAIT {mm:ss | string_value} CARRIER

WAIT CARRIER pauses the BLAST script mm minutes and ss sec-
onds, or until the modem raises carrier detect. If the modem raises
carrier detect, @STATUS is set to 0. If the statement times out,
@STATUS is set to a nonzero value. The maximum value is 60 min-
utes (60:00). Carrier detection may not be available on some com-
munications ports if the device driver does not provide the signal.
Make sure that the modem and cable are configured to indicate when
the carrier signal is present.

EXAMPLE:

WAIT 2:02 CARRIER # wait two minutes and
 # two seconds for a call
WAIT 12:00 CARRIER # wait 12 minutes for a call
WAIT 12 CARRIER # wait 12 seconds for a call

WAIT IDLE

wait for communications port activity to finish

FORMAT: WAIT {mm:ss | string_value} IDLE

WAIT IDLE pauses the script until no characters are received on the
communications port for mm minutes and ss seconds. The maximum
value is 60 minutes (60:00). If the script pauses for the specified
time, @STATUS is set to 0; if the script does not pause for the spec-
ified time, @STATUS is unchanged.

EXAMPLE:

WAIT 2:02 IDLE # wait for two minutes and
 # two seconds of idle
WAIT 1:00 IDLE # wait for one minute of idle
WAIT 1 IDLE # wait for one second of idle

WAIT UNTIL

wait for a specified time of day

FORMAT: WAIT UNTIL {hh:mm | string_value}

WAIT UNTIL pauses the script until the time is hh hours (24-hour
clock) and mm minutes.
BLASTSCRIPT COMMAND REFERENCE 237

EXAMPLE:

WAIT UNTIL 2:02 # wait till 2:02 am
WAIT UNTIL 1:00 # wait till 1:00 am
WAIT UNTIL 13:30 # wait until 1:30 pm

WERROR

write an error message to the second menu line

FORMAT: WERROR string_constant

WERROR writes an error message to the operator and the log file. If
@ONERROR is set to the default setting, STOP, WERROR pauses for
a key to be pressed before continuing. Do not use this statement
when writing a BLAST script that will be unattended unless
@ONERROR is set to CONTINUE.

EXAMPLE:

WERROR "no response" # display error message
return 2 # return with @STATUS set to 2

WRITE

write a message to the second menu line

FORMAT: WRITE string_constant

WRITE displays a message to the operator and the log file (without
pausing as in WERROR).

EXAMPLE:

WRITE "dialing CHICAGO"
238 CHAPTER FIFTEEN

Chapter 16

BLASTscript
Reserved Variables

BLASTscript reserved variables are an important part of any pro-
gram that tests the condition of the communication session or the re-
sults of other statements.

There are two types of BLASTscript reserved variables: read-only
and read/write. BLAST scripts can test a physical signal or logical
condition using read-only variables. With read/write variables,
scripts may not only test but also change a condition by using the
SET command.

Reserved variables that reflect multiple-choice setup fields may be
SET by using a value offered by the setup field. For example,

SET @DCDLOSS = "ABORT"

will change the value of the DCD Loss Response setup parameter in
the BLAST protocol to ABORT.

In the following descriptions, if the reserved variable is associated
with a setup field, the setup field will be indicated by italic print as
the last line of the variable description. The characteristics of such
BLASTSCRIPT RESERVED VARIABLES 239

fields are described in Chapter 5. The default value of the reserved
variable is indicated by bold print and brackets.

@7BITCHN read/write
YES [NO]

For BLAST protocol transfers, specifies the data-path width.

BLAST Protocol subwindow: 7-Bit Channel

@ACKFREQ read/write
1 – window size [4]

For BLAST protocol transfers, specifies the frequency at which an
acknowledgement from the receiving system is requested. The fre-
quency is measured in number of packets sent. See also @WDWSIZ
(page 274).

BLAST Protocol subwindow: Ack Request Frequency

@ANSIAUTOWRAP read/write
[YES] [NO]

For ANSI emulation, specifies automatic wrapping of lines longer
than 80 characters.

ANSI Emulation subwindow: Auto Wrap

@ANSILEVEL read/write
2.x [3.x]

For ANSI emulation, specifies the correct level of ANSI for your
system. Some applications require ANSI Level 2.x.

ANSI Emulation subwindow: ANSI Level

@APROTO read/write
YES [NO]

For BLAST protocol transfers, specifies whether the BLAST “A”
Protocol will be used. Set this field to YES to communicate with old-
er versions of BLAST.

BLAST Protocol subwindow: Use “A” Protocol
240 CHAPTER SIXTEEN

@ARGn read/write
user-defined

Stores variables passed from the operating system command line.
This variable is a read-only variable where n specifies the argument,
from 0 to 9 (@ARG0, @ARG1, etc.). The command line must include
a setup name before the first command line parameter is given (see
“Command Line Switches” on page 10).

@ATTKEY read/write
any Control Key [^K]

Specifies the attention key (ATTN).

Setup field: Attention Key

@AUTOGROUND read/write
 (background only) [YES] NO BEEP

Specifies whether a BLAST script running in the background auto-
matically switches to foreground when user input is required. The
user must then manually return BLAST to the background. When
this variable is set to NO, no automatic switching occurs. When this
variable is set to BEEP, BLAST will give three quick beeps without
swapping screens

@AUTOLFIN read/write
YES [NO]

Specifies whether BLAST—while in Terminal mode—inserts a
linefeed character after every carriage-return character displayed.

Setup field: AutoLF In

@AUTOLFOUT read/write
YES [NO]

Specifies whether BLAST—while in Terminal mode—inserts a
linefeed character after every carriage-return character that leaves
the communications port.

Setup field: AutoLF Out
BLASTSCRIPT RESERVED VARIABLES 241

@BAUDRATE read/write
300 600 1200 2400 4800

[9600] 19.2 38.4 57.6 115K

Specifies the speed of your PC’s communications port. The default
value of this variable is set during the BLAST installation process.
Some systems may not support higher baud rates.

Setup field: Baud Rate

@BLASTDIR read-only

Stores the directory path for BLAST executable files and support
files. BLASTDIR is specified during initial installation, but it may
be modified by setting the BLASTDIR environment variable or the
BLASTDIR option in BLAST.OPT (see “Environment Variables”
on page 8 and “BLAST.OPT Settings” on page 20).

@CHARDLY read/write
[0] – 999

Specifies the time delay (in hundredths of a second) between each
character sent to the remote computer when uploading text or exe-
cuting TSEND commands.

Setup field: Char Delay

@COMMPORT read/write
any valid device

Specifies the communications port or LAN driver to use for the cur-
rent session. For serial connections, acceptable values are COM1: –
COM8:, BIOS1:, BIOS2:, or a user-defined label.

NOTE: For LAN connections, acceptable values are network driv-
ers that were defined during the installation process or in a valid
BLAST.OPT COMMPORT assignment. Note that this variable only
stores the value of the Connection Type; the Connection Name is
stored in @NETSERVICE.

See your Installation Guide for more information on installing LAN
drivers and destination names.

The default value of this variable is set during the BLAST installa-
tion process.

Setup field: Connection
242 CHAPTER SIXTEEN

@COMP_LVL read/write
0 – 6 [4]

For BLAST protocol transfers, specifies the maximum sending and
receiving compression levels to be used. Level 0 specifies no com-
pression; level 6 specifies the highest level of compression. Setting
this variable is effectively equal to setting both the @RCOMP_LEV
and @SCOMP_LEV reserved variables (see “Compression Levels”
on page 121).

@CONNTIMO read/write
0 – 999 [60]

Specifies the number of seconds BLAST will wait for a network
connection before timing out. This field has no effect on serial con-
nections.

Setup field: Connection T/O

@CONTIMO read/write
0 – 999 [120]

Used with older versions of BLAST. For BLAST protocol transfers,
specifies the number of seconds that BLAST will wait for a packet
of data from the remote computer before timing out.

IMPORTANT: This reserved variable has been replaced by the reserved variable
@INACTIMO and should not be used. Do not confuse it with the
@CONNTIMO reserved variable described directly above.

@CTS read-only

Stores the Clear-to-Send (CTS) device status. If @CTS is set to 1, the
device, usually a modem, is ready to receive characters. @CTS is set
to 0 if the device is not ready to receive characters. The value of this
variable is valid only when BLAST is talking to a hardware port.

@D/S_BITS read/write
7/1 7/2 [8/1] 8/2

Specifies data and stop bits for the communications port.

Setup field: Data/Stop Bits
BLASTSCRIPT RESERVED VARIABLES 243

@DATE read-only

Contains the current date. By default the format is mm/dd/yy. This
format may be changed using the reserved variable @DATEFORMAT
or the /y switch (see the discussion of /y on page 12).

@DATEFORMAT read/write
template

Sets the format of the @DATE variable. Setting the @DATEFORMAT
reserved variable overrides the format in which BLAST was started.
The format of the output of the @DATE reserved variable will be de-
termined by the @DATEFORMAT template set by the user. The value
of the replacement sequences are as follows:

%A full weekday name (Monday)
%a abbreviated weekday name (Mon)
%B full month name (January)
%b abbreviated month name (Jan)
%c standard date/time representation (%a %b %d %H:%M:%S %Y)
%d day-of-month (01-31)
%H hour (24 hour clock) (00-23)
%I hour (12 hour clock) (01-12)
%j day-of-year (001-366)
%M minute (00-59)
%m month (01-12)
%p local equivalent of AM or PM
%S second (00-59)
%U week-of-year, first day Sunday (00-53)
%W week-of-year, first day Monday (00-53)
%w weekday (0-6, Sunday is 0)
%X standard time representation (%H:%M:%S)
%x standard date representation (%a %b %d %Y)
%Y year with century
%y year without century (00-99)
%Z time zone name
%% percent sign

For example, to set @DATEFORMAT to generate a date in the format
of 19-March-1998, your script would read

set @DATEFORMAT = "%d-%B-%Y"
244 CHAPTER SIXTEEN

@DCD read-only

Stores the Carrier-Detect status from the modem. If @DCD is set to
1, the carrier is detected by the modem. If @DCD is set to 0, the mo-
dem does not sense a carrier from another modem. The modem must
be set appropriately for this variable to reflect the state of the data
carrier; and the modem cable, if present, must have the appropriate
conductor.

@DCDLOSS read/write
ABORT [IGNORE]

For BLAST protocol transfers, specifies whether BLAST will
ABORT after or IGNORE DCD loss. This feature requires appropri-
ate modem initialization (see discussion of @DCD above).

BLAST Protocol subwindow: DCD Loss Response

@DGCURSTYPE read/write
[REVERSE VIDEO]

NONE UNDERLINE

For DG emulation, specifies the cursor type for DG emulation.

DG Emulation subwindow: Cursor Type

@DGDATABITS read/write
7 [8]

For DG emulation, specifies data bits for DG emulation.

DG Emulation subwindow: Data Bits

@DGPRTMODE read/write
[PRINT SCREEN]
PRINT WINDOW

PRINT PASSTHROUGH ON
SIMULPRINT ON PRINT FORM

For DG emulation, specifies local print key action.

DG Emulation subwindow: Local Print Option
BLASTSCRIPT RESERVED VARIABLES 245

@DGPRTWIND read/write
[ENABLED] DISABLED

For DG emulation, specifies whether the local print key and key-
board shortcuts for DG local print commands are enabled.

DG Emulation subwindow: Print Window

@EFERROR read/write

For BLAST protocol, returns the error code of the last error in a file
transfer (see Appendix A). If no error occurs during the BLAST ses-
sion, @EFERROR will remain set at 0. @EFERROR should be reset
to 0 for continued testing during a session. Because BLAST queues
filetransfer requests and then continues execution until ESC is en-
countered, testing @EFERROR within a FILETRANSFER-ESC
block may not produce expected results.

Following completion of a BLAST protocol file transfer, @EFERROR
will be set to a transfer file management error (error 31–49; see
“Transfer File Management” on page 322) or one of the following
values reflecting the way in which Filetransfer mode was exited:

 0 No errors
-1 Initialization error
-2 Local operator ended activity with ATTN
-3 Remote disconnect
-4 Never got starting message (Logon Timeout)
-5 Lost communications with remote system (In-

activity Timeout)
-6 Private network error; private network version of BLAST

required
-7 DCD loss during Filetransfer logon
-8 DCD loss during Filetransfer session

Example:

connect
set @protocol = "BLAST" # BLAST protocol only!!
set @EFERROR = "0"
filetransfer
send
test1.fil
recv1.fil
to
esc
if @EFERROR not = "0"
246 CHAPTER SIXTEEN

 display "Error number = ", @EFERROR, "occurred"
 display "See Chapter 16 and Appendix A for details."
 set @EFERROR = "0"
end
disconnect
return 0

@EFLOG read/write
filename

Specifies a separate error-free log file that will log all filetransfer
session errors or completions, or both, depending on the setting of
@EFLOGGING. The default of @EFLOGGING is BOTH. Setting
@EFLOG = "" (null) turns off filetransfer session logging. The in-
formation written to the file appears exactly as it does on the user’s
screen, allowing easier parsing of a filetransfer session.

@EFLOGGING read/write
[BOTH] ERRORS

COMPLETIONS

Specifies whether the log file named in @EFLOG will log filetransfer
ERRORS, COMPLETIONS, or BOTH. Refer to @EFLOG above for
further information.

@ELAPTIME read-only

Contains the current elapsed online time for a BLAST communica-
tions session. The value is in hh:mm:ss format. This variable can be
reset within a BLAST script by any SET statement, for example:

set @ELAPTIME = "it doesn't matter"

The current value is not checked and is simply reset to 00:00:00.

@EMULATE read/write
any valid terminal emulator

Specifies the terminal type to emulate in Terminal mode. Acceptable
values are VT320, VT220, VT100, VT52, ANSI, D461, D411,
D410, D200, TV920, D80, ADM3A, WYSE60, WYSE50, HP2392,
IBM3101, and TTY.

Setup field: Emulation
BLASTSCRIPT RESERVED VARIABLES 247

@ENABLEFS read/write
YES [NO]

For BLAST protocol transfers, enables the /FWD and /STR file
transfer switches, which automatically delete files.

BLAST Protocol subwindow: Enable /FWD and /STR

@ENABLERCMD read/write
[YES] NO

For BLAST protocol transfers, enables the /OVW (overwrite) file
transfer switch and allows system commands to be sent from the re-
mote system.

BLAST Protocol subwindow: Enable /OVW and Remote Cmds

@FILTER read/write
ON [OFF]

For BLAST protocol transfers, specifies whether the protocol filter
is turned on. When @FILTER is set to ON, BLAST strips VT se-
quences sent from a mainframe protocol converter, preventing
BLAST protocol from labeling these as bad blocks.

BLAST Protocol subwindow: Filtering

@FULLSCR read/write
[YES] NO

Specifies whether the top four lines of the BLAST menu region will
be suppressed while in Terminal mode. Set to YES to suppress the
menu and NO to enable it.

Setup field: Full Screen

@GROUND read/write
(background only) FOREGROUND

[BACKGROUND]
Specifies whether the PC will display the foreground application
screen or the background BLAST screen. @STATUS is set to 0 if the
change in ground was successful.
248 CHAPTER SIXTEEN

@HOTKEY read/write
(background only) [ENABLED] DISABLED

Enables/disables the background Hot Key (ALT H). When disabled,
the Hot Key has no effect on background/foreground switching;
when enabled, the Hot Key toggles between the foreground applica-
tion and BLAST in background mode.

IMPORTANT: The user will not be able to return to BLAST running in the back-
ground if the foreground is displayed and the Hot Key is disabled. If
a script disables @HOTKEY without re-enabling it or setting
@GROUND to background, then the BLASTAT.EXE program will be
required to terminate BLAST (see the discussion of BLAST.EXE on
page 15).

@HPBLKTERM read/write
any control character [^^]

For HP emulation, specifies the block terminator character. A block
terminator character is transmitted to the remote computer at the end
of a transfer operation.

HP Emulation subwindow: BlkTerminator

@HPDESTRBS read/write
[NO] YES

For HP emulation, specifies that BACKSPACE erase the character
above the cursor after moving the cursor one character to the left.

HP Emulation subwindow: Destructive BS

@HPFLDSEP read/write
any control character [^]

For HP emulation, specifies the field separator character. When you
press ENTER while in block page mode containing a formatted dis-
play, a field separator character is automatically transmitted at the
end of each protected field (except the final one).

HP Emulation subwindow: FldSeparator
BLASTSCRIPT RESERVED VARIABLES 249

@HPINHDC2 read/write
[NO] YES

For HP emulation, specifies inhibition of D1/D2/D1 handshaking
when data is transferred from the emulator to the remote computer.

@HPINHDC2 is used with @HPINHHNDSHK to determine what type
of handshaking is used. If @HPINHDC2 is set to YES and
@HPINHHNDSHK is set to NO, D1 handshaking is used. If both
@HPINHHNDSHK and @HPINHDC2 are set to YES, all handshaking
is inhibited.

HP Emulation subwindow: Inh DC2(H)

@HPINHHNDSHK read/write
[NO] YES

For HP emulation, specifies inhibition of D1 handshaking when data
is transferred from the emulator to the remote computer.

@HPINHHNDSHK is used with @HPINHDC2 to determine what type
of handshaking is used. If @HPINHHNDSHK is set to YES and
@HPINHDC2 is set to NO, D1/D2/D1 handshaking is used. If both
@HPINHHNDSHK and @HPINHDC2 are set to YES, all handshaking
is inhibited.

HP Emulation subwindow: InhHndShk(G)

@HPINHWRAP read/write
[NO] YES

For HP emulation, specifies inhibition of automatic text wrapping.
If @HPINHWRAP is set to NO, text automatically wraps; if it is set to
YES, when the cursor reaches the right margin, it remains there
(with succeeding characters overwriting the existing character) until
a carriage return or other cursor movement is performed.

HP Emulation subwindow: InhEolWrp(C)

@HPLINEPAGE read/write
[LINE] PAGE

For HP emulation, specifies whether a line or a page at a time is
transmitted when operating in block mode.

HP Emulation subwindow: Line/Page(D)
250 CHAPTER SIXTEEN

@HPSTARTCOL read/write
[0] YES

For HP emulation, specifies the position of the left margin if no log-
ical start-of-text pointer has been generated.

HP Emulation subwindow: Start Col

@HPTERMID read/write
[2392A] any valid terminal ID

For HP emulation, specifies what terminal identification will be sent
to the remote computer when a Terminal Id request (ESC *S^) is
made.

HP Emulation subwindow: Terminal Id

@INACTIMO read/write
0 – 999 [120]

For BLAST protocol transfers, specifies the number of seconds that
BLAST will wait for a packet of data from the remote computer dur-
ing BLAST transfer, before timing out.

NOTE: This variable replaces the @CONTIMO variable of older
versions.

BLAST Protocol subwindow: Inactivity T/O

@KBCHECK read/write
1 – 3 [2]

For Kermit transfers, specifies the level of error-detection.

Kermit Protocol subwindow: Block-Check-Type

@KDELAYOS read/write
1 – 99 [5]

For Kermit transfers, specifies the number of seconds of delay be-
tween the recognition of a Send command and the actual beginning
of the transmission.

Kermit Protocol subwindow: Delay
BLASTSCRIPT RESERVED VARIABLES 251

@KEYBOARD read/write
[ON] OFF

Specifies whether data may be entered from the keyboard. If ON, the
keyboard is unlocked and may be used. If OFF, the keyboard is
locked. When started in video-suppress mode (/n command line
switch—see page 11), BLAST sets this variable to OFF. If
@KEYBOARD is set to ON, it returns the value 1; if it is set to OFF, it
returns the value 0.

IMPORTANT: If you need to enter input from the keyboard after running a script
with @KEYBOARD set to OFF, remember to reset @KEYBOARD to
ON in your script. If you do not and include a RETURN statement in
your script, you will be returned to the Online menu, but your key-
board will be locked.

@KEYFILE read/write
filename

Specifies a user-defined keyboard map for a particular keyboard or
application. Keyboard maps are created with BLASTKBD, the
BLAST keyboard remapping utility (see “Keyboard Mapping Utili-
ty” on page 296 for details).

Setup field: Keyboard File

@KFILETYP read-only
[BINARY]

For Kermit transfers, specifies the type of file being transferred.
BINARY is the only possible value.

Kermit Protocol subwindow: Transfer Type

@KFNAMCONV read/write
[YES] NO

For Kermit transfers, converts a filename from local format to com-
mon format.

Kermit Protocol subwindow: Filename Conversion
252 CHAPTER SIXTEEN

@KREOPKT read/write
^A – ^Z [^M]

For Kermit transfers, specifies a control character to terminate each
packet received. The same control character must also be used by the
remote Kermit.

Kermit Protocol subwindow: End-of-Packet Char

@KRETRY read/write
1 – 99 [10]

For Kermit transfers, specifies the number of times Kermit will at-
tempt to send a single packet before aborting.

Kermit Protocol subwindow: Retry Limit

@KRPADCH read/write
^A – ^Z [^@]

For Kermit transfers, specifies an alternate character to pad each
packet received by your PC.

Kermit Protocol subwindow: Pad Character

@KRPADDNG read/write
[0] – 99

For Kermit transfers, specifies the number of padding characters to
request per packet.

Kermit Protocol subwindow: Padding

@KRPKTLEN read/write
10 – 2000 [90]

For Kermit transfers, specifies the packet size your PC will use when
it receives a file. Note that the remote Kermit’s Send packet size
should also be set to this length.

Kermit Protocol subwindow: Packet Size
BLASTSCRIPT RESERVED VARIABLES 253

@KRSOPKT read/write
[^A] – ^Z

For Kermit transfers, specifies the control character that marks the
start of each packet received by your PC. The same control character
must also be used by the remote Kermit.

Kermit Protocol subwindow: Start-of-Packet Char

@KRTIMEOUT read/write
0 – 99 [10]

For Kermit transfers, specifies the number of seconds that your PC
will wait to receive a packet before requesting that it be resent.

Kermit Protocol subwindow: Timeout

@KSAVEINC read/write
[DISCARD] KEEP

For Kermit transfers, specifies whether to KEEP or DISCARD files
not completely received, such as a file being transferred when you
abort a Get command.

Kermit Protocol subwindow: Incomplete File

@KSEOPKT read/write
^A – ^Z [^M]

For Kermit transfers, specifies a control character to terminate each
packet sent by your system. The same control character must also be
used by the remote Kermit.

Kermit Protocol subwindow: End-of-Packet Char

@KSPADCH read/write
^A – ^Z [^@]

For Kermit transfers, specifies an alternate character to pad each
packet sent by your PC.

Kermit Protocol subwindow: Pad Character
254 CHAPTER SIXTEEN

@KSPADDNG read/write
[0] – 99

For Kermit transfers, specifies the number of padding characters to
send per packet.

Kermit Protocol subwindow: Padding

@KSPKTLEN read/write
10 – 2000 [90]

For Kermit transfers, specifies the packet size your PC will use when
it sends a file. Note that the packet size of the remote Kermit must
also be set to this length.

Kermit Protocol subwindow: Packet Size

@KSSOPKT read/write
[^A] – ^Z

For Kermit transfers, specifies the control character that marks the
start of each packet sent by your PC. The same control character
must also be used by the remote Kermit.

Kermit Protocol subwindow: Start-of-Packet Char

@KSTIMEOUT read/write
0 – 99 [10]

For Kermit transfers, specifies the number of seconds that your PC
will wait for the acknowledgement of a packet before resending it.

Kermit Protocol subwindow: Timeout

@KWARNING read/write
[ON] OFF

For Kermit transfers, specifies whether Kermit will automatically
rename a received file if another file with the same name already ex-
ists in the current directory. If @KWARNING set to ON, Kermit auto-
matically renames the file by appending a number (0001, 0002, etc.)
to the filename; if it is set to OFF, Kermit overwrites the file.

Kermit Protocol subwindow: Warning
BLASTSCRIPT RESERVED VARIABLES 255

@LAUNCHST read/write
any ASCII string [\r]

For BLAST protocol transfers, specifies the launch string to be ap-
pended to BLAST protocol packets. Any ASCII string may be used,
with control characters represented by a backslash followed by a
three-digit octal number (see the discussion of special control char-
acters on page 202). The default is a carriage return (\r). This vari-
able may be necessary for protocol converter connections.

BLAST Protocol subwindow: Launch String

@LINEDLY read/write
[0] – 999

Specifies the length of time (in tenths of a second) that BLAST paus-
es after sending a line of characters and a carriage return during a
text upload.

Setup field: Line Delay

@LOCECHO read/write
YES [NO]

Specifies whether BLAST will echo typed characters to the screen
while in Terminal mode. If @LOCECHO is set to YES, BLAST will
display typed characters before sending them out the communica-
tion port; if @LOCECHO is set to NO, the characters will be displayed
only if the remote computer sends them back.

If @LOCECHO is set to YES and double characters are displayed on
the screen, change the setting to NO.

Setup field: Local Echo

@LOGDATEFORMAT read/write
template

Specifies the format of the date written in the date stamp of the log
file. Setting @LOGDATEFORMAT overrides the two-digit year or
four-digit year mode in which BLAST was started. The format of
dates written in the log file will be determined by the template set by
the user. The value of the replacement sequences are the same as
those described above in the @DATEFORMAT reserved variable.
256 CHAPTER SIXTEEN

@LOGFILE read/write
filename

Specifies the name of the log file that will record all communications
session activity. Setting @LOGFILE = @LOGFILE flushes the log
file buffers to disk. Setting @LOGFILE = "" closes the current log
file.

Setup field: Log File

@LOGTIMEFORMAT read/write
template

Sets the format of the time written in the time stamp of the log file.
The format of times written in the log file will be determined by
@LOGTIMEFORMAT template set by the user. The value of the re-
placement sequences are the same as those described above in the
@DATEFORMAT reserved variable.

@LOGTIMO read/write
0 – 999 [120]

For BLAST protocol, specifies the number of seconds that BLAST
will attempt to establish a filetransfer session with the remote com-
puter before aborting. @LOGTIMO affects BLAST protocol File-
transfer and Access modes. If @LOGTIMO is set to 0, no timeout will
occur and BLAST will attempt to establish a filetransfer session
with the remote computer indefinitely.

BLAST Protocol subwindow: Logon T/O

@MAXMEM read/write
(background only) user-defined

Stores the amount of memory used from the BLAST.OPT mempool
during the current BLAST script execution. This is not the amount
of memory BLAST is presently using, but the maximum that
BLAST has used so far. This read-only variable can help in mini-
mizing the amount of memory BLAST uses during background op-
eration.
BLASTSCRIPT RESERVED VARIABLES 257

@MODEM read/write
any valid modem type

Specifies the modem type on the local computer. The name must be
defined in the MODEMS.SCR library or exist as a separate script.

Setup field: Modem Type

@NETSERVICE read/write
any valid commport

or network driver

Specifies the Connection Name for the LAN driver defined in
@COMMPORT. See your Installation Guide for more information on
installing LAN drivers and destination names. The default value of
this variable is set during the installation process if a LAN driver
was installed.

@NUMDISC read/write
0 – 9 [3]

For BLAST protocol, sets the number of additional disconnect
blocks (after the first disconnect block) that BLAST sends when ex-
iting Filetransfer mode. Possible values are 0–9. The default value
of 3 indicates four total disconnect blocks.

BLAST Protocol subwindow: Number of Disconnect Blocks

@ONERROR read/write
[STOP] CONTINUE

Specifies BLAST’s response to nonfatal BLASTscript errors. A
nonfatal error is one that results in the message “Press any key to
continue.”

When @ONERROR is set to STOP, BLAST will pause when an error
is encountered, display the appropriate message, and wait for the
user to press a key before continuing. When @ONERROR is set to
CONTINUE, BLAST will display the same message, pause for one
second, and then automatically continue script execution.
258 CHAPTER SIXTEEN

@ORGANS read/write
[ORIGINATE] ANSWER

Specifies how the Connect command will operate. If @ORGANS is
set to ANSWER, Connect will wait for a remote computer to establish
the communications link. If it set to ORIGINATE, Connect will try
to dial a number.

NOTE: For node-to-node connections, one system must be set to
ORIGINATE and the other system set to ANSWER.

Setup field: Originate/Answer

@PAKTSZ read/write
1 – 4085 [256]

For BLAST protocol transfers, specifies the size of the packet. For
LAN operations, it also indicates the size of the packets delivered to
the network when using the NetBIOS and IPX drivers for node-to-
node file transfers.

Setup field: Packet Size

@PARITY read/write
[NONE] EVEN ODD

MARK SPACE

Sets the parity of the communications port. This setting should
match that of the remote system.

Setup field: Parity

@PASSWORD write only
user-defined

Stores the user’s password for the remote computer. The
SYSTEMS.SCR library program uses @PASSWORD to answer
prompts from a multi-user computer. The CONNECT command will
prompt the user to enter a password if none is specified in the Setup.
Thereafter, the variable @PASSWORD contains the value entered by
the user. For security, the value of @PASSWORD cannot be displayed
to the screen. This feature applies to all string values that match
@PASSWORD. Thus, script commands such as

set @trick = @PASSWORD
display @trick
BLASTSCRIPT RESERVED VARIABLES 259

will not display the value of the password.

BLAST makes an effort to keep stored passwords secure. Unfortu-
nately, it is a very simple task to echo a stored password off either a
modem or a remote system that has echo enabled. A script as simple
as “tsend @password” can compromise stored passwords. If the
security of a password is vital, BLAST recommends not storing it in
the setup.

Setup field: Password

@PHONENO read/write
user-defined

Specifies the phone number of the remote computer. The CONNECT
statement uses this number to dial out.

Setup field: Phone Number

@PROMPTCH read/write
[NONE] any ASCII character

Specifies the prompt character used during text uploads to half-
duplex systems. BLAST waits after each line for the remote comput-
er to send the prompt before sending the next line.

Setup field: Prompt Char

@PROTOCOL read/write
[BLAST] FTP KERMIT
XMODEM XMODEM1K

YMODEM YMODEM G ZMODEM

Specifies the protocol for a communications session.

Setup field: Protocol

@PULSEDIAL read/write
YES [NO]

Specifies whether to use pulse dialing. If this field is set to YES,
pulse dialing is used; if it is set to NO, tone dialing is used.

BLASTscript variable: Pulse Dialing
260 CHAPTER SIXTEEN

@RBTOT read-only

If Extended Logging is enabled, holds the total number of bytes re-
ceived during the file transfer session. You must write a display
statement (e.g. Display "@RBTOT is ", @RBTOT) for this
variable to be displayed in the Extended Log file. See @XLOG (page
278) for more information.

@RBYTES read-only

In the BLAST Extended Log, holds the number of bytes received in
the current transfer. Note that this value can be different than the ac-
tual file size. You must have Extended Logging enabled for this
variable to return a value. See @XLOG (page 278) for more informa-
tion.

@RCOMP_LEV read/write
0 – 6 [4]

For BLAST protocol transfers, specifies the maximum receiving
level of compression that can be used during a session. Level 0 spec-
ifies no compression; level 6 specifies the highest compression level
(see “Compression Levels” on page 121).

BLAST Protocol subwindow: Receive Compression Level

@RETRAN read/write
0 – 9999 [4]

For BLAST protocol transfers, sets the maximum number of sec-
onds BLAST will pause before resending a packet. For example, if
@WDWSIZ is set to 5 and @RETRAN is set to 30, BLAST will at-
tempt to resend the fifth packet every thirty seconds if no acknowl-
edgement is received.

BLAST Protocol subwindow: Retransmit Timer

@RFAILURE read-only

For BLAST protocol, stores the number of files unsuccessfully re-
ceived during a file transfer session.

@RLINEQ read-only

For BLAST protocol transfers, stores the current receiving line qual-
ity. Possible values are GOOD, FAIR, POOR, or DEAD.
BLASTSCRIPT RESERVED VARIABLES 261

@RLQ read-only

In the BLAST Extended Log, holds the line quality for the file being
received. You must have Extended Logging enabled for this variable
to return a value. Possible values are GOOD, FAIR, POOR, or DEAD.
See @XLOG (page 278) for more information.

@RNAME read-only

In the BLAST Extended Log, holds the name of the file being re-
ceived. You must have Extended Logging enabled for this variable
to return a value. See @XLOG (page 278) for more information.

@ROPTIONS read-only

In the BLAST Extended Log, holds the value of the options for the
file being received. You must have Extended Logging enabled for
this variable to return a value. See @XLOG (page 278) for more in-
formation.

@RPACK read-only

In the BLAST Extended Log, holds the number of packets received
in the transfer. You must have Extended Logging enabled for this
variable to return a value. See @XLOG (page 278) for more informa-
tion.

@RPTOT read-only

In the BLAST Extended Log, holds the total number of packets re-
ceived during the file transfer session. You must have Extended
Logging enabled for this variable to return a value. See @XLOG
(page 278) for more information.

@RRET read-only

In the BLAST Extended Log, holds the number of retries for the file
being received. You must have Extended Logging enabled for this
variable to return a value. See @XLOG (page 278) for more informa-
tion.
262 CHAPTER SIXTEEN

@RSIZE read-only

In the BLAST Extended Log, holds the size of the file being re-
ceived. You must have Extended Logging enabled for this variable
to return a value. See @XLOG (page 278) for more information.

@RSTART read-only

In the BLAST Extended Log, holds the interrupt start point for an
interrupted received file. You must have Extended Logging enabled
for this variable to return a value. See @XLOG (page 278) for more
information.

@RSTATUS read-only

In the BLAST Extended Log, holds the completion status of the file
being received. Possible values are:

RCOMP – Receive completed.

LERROR – Receive not complete due to local error.

RERROR – Receive not completed due to remote error.

RINTR – Receive not completed due to operator interruption.

You must have Extended Logging enabled for this variable to return
a value. See @XLOG (page 278) for more information.

@RSUCCESS read-only

For BLAST protocol, stores the number of files successfully re-
ceived during a file transfer session.

@RTIME read-only

In the BLAST Extended Log, holds the elapsed time for the file be-
ing received. You must have Extended Logging enabled for this
variable to return a value. See @XLOG (page 278) for more informa-
tion.
BLASTSCRIPT RESERVED VARIABLES 263

@RTSCTS read/write
[YES] NO

Specifies whether hardware flow control is enabled. Not all comput-
ers support RTS/CTS flow control. The value of this variable is valid
only when BLAST is talking to a hardware port.

Setup field: RTS/CTS Pacing

@SBTOT read-only

If Extended Logging is enabled, holds the total number of bytes sent
during the file transfer session. You must write a display statement
(e.g. Display "@SBTOT is ", @SBTOT) for this variable to
be displayed in the Extended Log file. See @XLOG (page 278) for
more information.

@SBYTES read-only

In the BLAST Extended Log, holds the number of bytes sent in the
current transfer. Note that this value can be different than the actual
file size. You must have Extended Logging enabled for this variable
to return a value. See @XLOG (page 278) for more information.

@SCOMP_LEV read/write
0 – 6 [4]

For BLAST protocol transfers, specifies the maximum sending
compression level that can be used during a session. Level 0 speci-
fies no compression; level 6 specifies the highest compression level
(see “Compression Levels” on page 121).

BLAST Protocol subwindow: Send Compression Level

@SCRFILE read/write
filename

Specifies the name of a BLAST script that will start immediately af-
ter BLAST begins execution.

Setup field: Script File
264 CHAPTER SIXTEEN

@SCRIPTERR read/write
any integer

Returns the numeric value of the last error that occurred in the
BLAST script.

@SCRLREG read/write
[ON] OFF

Controls data display in the scrolling region (lines 5–24). If
@SCRLREG is set to ON, characters received in Terminal mode will
be displayed and BLAST scripts can use the DISPLAY statement. If
BLAST is started in video-suppress mode (/n switch on the operat-
ing system command line—see page 11), @SCRLREG is set to OFF.

NOTE: If @SCRLREG is set to ON, it returns the value 1; if it is set
to OFF, it returns the value 0.

@SETUPDIR read-only

Contains the directory path in which BLAST setup files are stored.
SETUPDIR is specified during installation, but it may be modified
in the DOS environment or in BLAST.OPT. For additional informa-
tion about environment variables and BLAST.OPT, see “Environ-
ment Variables” on page 8 and “BLAST.OPT Settings” on page 20.

@SFAILURE read-only

For BLAST protocol, stores the number of files unsuccessfully sent
during a file transfer session.

@SLINEQ read-only

For BLAST protocol, stores the current sending line quality during
a file transfer. Increase packet size to take advantage of clean lines,
or decrease packet size to avoid problems with noisy lines. Possible
values are GOOD, FAIR, POOR, or DEAD.

@SLQ read-only

In the BLAST Extended Log, holds the line quality for the file being
sent. You must have Extended Logging enabled for this variable to
return a value. See @XLOG (page 278) for more information.
BLASTSCRIPT RESERVED VARIABLES 265

@SNAME read-only

In the BLAST Extended Log, holds the name of the file being sent.
You must have Extended Logging enabled for this variable to return
a value. See @XLOG (page 278) for more information.

@SOPTIONS read-only

In the BLAST Extended Log, holds the value of the options for the
file being sent. You must have Extended Logging enabled for this
variable to return a value. See @XLOG (page 278) for more informa-
tion.

@SPACK read-only

In the BLAST Extended Log, holds the number of packets sent in the
transfer. You must have Extended Logging enabled for this variable
to return a value. See @XLOG (page 278) for more information.

@SPTOT read-only

In the BLAST Extended Log, holds the total number of packets sent
during the file transfer session. You must have Extended Logging
enabled for this variable to return a value. See @XLOG (page 278) for
more information.

@SRET read-only

In the BLAST Extended Log, holds the number of retries for the file
being sent. You must have Extended Logging enabled for this vari-
able to return a value. See @XLOG (page 278) for more information.

@SRTOT read-only

In the BLAST Extended Log, holds the total number of retries for
files being sent during the file transfer session. You must have Ex-
tended Logging enabled for this variable to return a value. See
@XLOG (page 278) for more information.

@SSIZE read-only

In the BLAST Extended Log, holds the size of the file being sent.
You must have Extended Logging enabled for this variable to return
a value. See @XLOG (page 278) for more information.
266 CHAPTER SIXTEEN

@SSTART read-only

In the BLAST Extended Log, holds the interrupt start point for an
interrupted sent file. You must have Extended Logging enabled for
this variable to return a value. See @XLOG (page 278) for more in-
formation.

@SSTATUS read-only

In the BLAST Extended Log, holds the completion status of the file
being sent. Possible values are:

SCOMP – Send completed.

LERROR – Send not completed due to local error.

RERROR – Send not completed due to remote error.

SINTR – Send not completed due to operator interruption.

You must have Extended Logging enabled for this variable to return
a value. See @XLOG (page 278) for more information.

@SSUCESS read-only

For BLAST protocol, stores the number of files successfully sent
during a file transfer session.

@STATUS read/write
command-specific

Returns a condition code set by the last statement that reported a
completion status. Most statements that succeed set @STATUS to
0 and return a nonzero value for an error. For example, the
FILETRANSFER command sets @STATUS to 0 if Filetransfer
mode was successfully entered.

Checking @STATUS at the end of a FILETRANSFER block, how-
ever, does not reflect the success of an entire FILETRANSFER
block, but rather the @STATUS setting of the last command in the
block capable of setting @STATUS. (To check the overall success of
a FILETRANSFER block, use the reserved variable @EFERROR).

Some commands that return numeric results (e.g., STRINX,
TTRAP) set @STATUS to 0 to indicate a null condition.
BLASTSCRIPT RESERVED VARIABLES 267

On returning from a called script, @STATUS is set to the numeric
constant given in the RETURN statement, or to 0 if no numeric con-
stant is given.

For a list of commands that set @STATUS, see “Commands That Set
@STATUS” on page 204.

@STATUSLN read/write
[ON] OFF

Specifies whether the BLAST status line (line 25) is displayed. This
variable is set to OFF when BLAST is started in video suppress
mode (/n on the operating system command line).

@STIME read-only

In the BLAST Extended Log, holds the elapsed time for the file be-
ing sent. You must have Extended Logging enabled for this variable
to return a value. See @XLOG (page 278) for more information.

@SYSDESC read/write
user-defined

Specifies a user-defined description of the remote computer. This
field may be up to 40 characters. No special processing is done based
on the information in this field.

Setup field: Description

@SYSTYPE read/write
any valid system type

Specifies the remote computer type (UNIX, VMS, etc.). The
SYSTEMS.SCR library uses this variable to determine how to per-
form certain system functions, such as logging on and disconnecting
from remote multi-user computers.

Setup field: System Type

@TIME read-only

Contains the current time in hh:mm:ss format. This is a read-only
variable; an error message will be displayed if a script attempts to
write to it.
268 CHAPTER SIXTEEN

@TIMEFORMAT read/write
template

Sets the format of the @TIME variable. Setting the @TIMEFORMAT
reserved variable overrides the format in which BLAST was started.
The format of the output of the @TIME reserved variable will be de-
termined by the template set by the user. The value of the replace-
ment sequences are the same as those described above in the
@DATEFORMAT reserved variable.

@TRANSTAT read/write
[ON] OFF

Specifies whether the File Transfer Status Area will be displayed. If
@TRANSTAT is set to ON, the area is active. This variable is set to
OFF when BLAST is started in video-suppress mode (/n on the op-
erating system command line—see page 11).

NOTE: If @TRANSTAT is set to ON, it returns the value 1; if it is
set to OFF, it returns the value 0.

@TRPASSWD write-only
up to 8 characters

For BLAST protocol, specifies a password that a remote user must
send before a file transfer is allowed. If this variable is set to other
than null, then the remote computer must send the password before
a file can be transferred to or from your computer.

NOTE: @TRPASSWD is intended to validate remote users logging
onto your system. If the BLAST running on the local system exe-
cutes a script that sets @TRPASSWD to something other than a null,
the local computer will not be able to receive files without the re-
mote computer sending the password.

BLAST Protocol subwindow: Transfer Password

@TTIME read-only

In the BLAST Extended Log, holds the total elapsed time of the file
transfer session. You must have Extended Logging enabled for this
variable to return a value. See @XLOG (page 278) for more informa-
tion.
BLASTSCRIPT RESERVED VARIABLES 269

@USERID read/write
user-defined

Stores the user’s identification for the remote computer. The
SYSTEMS.SCR library uses this variable in answering the logon
prompts from a multi-user computer.

Setup field: Userid

@USERIF read/write
[ON] OFF

Specifies whether the menu region (lines 1–4) is displayed. If
@USERIF is set to ON, the menu region is displayed; if it is set to
OFF, lines 1–4 become part of the scrolling region. When BLAST is
started in the video-suppress mode (/n on the operating system
command line—see page 11), this variable is turned OFF.

NOTE: If @USERIF is set to ON, it returns the value 1; if it is set
to OFF, it returns the value 0.

@VERSION read-only

Stores the version of BLAST that is running.

@VT8BIT read/write
[7] 8

For VT emulation, specifies whether C1 control characters are rep-
resented in the 8-bit environment or as 7-bit escape sequences.

VT Emulation subwindows: 7/8 Bit Controls

@VTANSBACK read/write
user-defined ASCII string

For VT emulation, contains a message to be sent to the remote com-
puter upon receiving an inquiry (^E). The field can be up to 30 char-
acters in length. The default value is an empty string—nothing is
sent.

VT Emulation subwindows: Answerback Msg
270 CHAPTER SIXTEEN

@VTAUTOWRAP read/write
YES [NO]

For VT emulation, specifies whether text typed at the right margin
will automatically wrap to the next line.

VT Emulation subwindows: Auto Wrap

@VTCLRSCRN read/write
YES [NO]

For VT emulation, specifies compressed mode for video when
@VTDISP132 is set to 132 or the host sends a sequence to the em-
ulator to use 132 columns. Setting @VTCLRSCRN to YES clears the
display; the value is then reset to NO.

VT Emulation subwindows: Clear Screen

@VTCOMPRESSED YES [NO]
For VT emulation, specifies whether the monitor is in compressed
mode when @VTDISP132 is set to 132 or when the host sends a
sequence to the emulator to use 132 columns.

VT Emulation subwindows: 132 Compressed

@VTCURSOR read/write
[NORMAL] APPLICATION

For VT emulation, specifies whether the cursor keys will control
cursor movement or send application control functions.

VT Emulation subwindows: Cursor Keys Mode

@VTCURSTYPE read/write
BLOCK [LINE]

For VT emulation, specifies whether the cursor is displayed as a re-
verse-video block or as an underline character.

VT Emulation subwindows: Cursor Type
BLASTSCRIPT RESERVED VARIABLES 271

@VTDISP132 read/write
[80] 132

For VT emulation, specifies column display for text.

VT Emulation subwindows: 80/132 Columns

@VTHSCROLL [JUMP] SMOOTH NONE

For VT emulation, specifies how to scroll data on an 80-column dis-
play when @VTDISP132 is set to 132. SMOOTH scroll will change
the view of the display only as necessary to display the cursor posi-
tion. JUMP scroll will adjust the view based on the setting of
@VTHSCROLLN. When NONE is selected, the display will not scroll
and the cursor may disappear from view. When @VTCOMPRESSED
is set to YES, the setting of @VTHSCROLL is ignored.

VT Emulation subwindows: Horizontal Scroll

@VTHSCROLLN 1 – 53 [10]
For VT emulation, specifies the number of columns to scroll when
the cursor reaches the edge of the screen and @VTHSCROLL is set to
JUMP.

VT Emulation subwindows: Jump Scroll Inc

@VTINTL [USASCII] UK
FRENCH GERMAN

ITALIAN SPANISH DANISH

For VT emulation, specifies whether 7- or 8-bit data is used for in-
ternational support. The default value, USASCII, allows 8-bit data
with the high-order data used for international characters.

VT Emulation subwindows: Intl Char Set

@VTKEYPAD [NUMERIC] APPLICATION

For VT emulation, specifies whether the numeric keypad keys will
send numbers or programming functions defined by the application.

VT Emulation subwindows: Keypad Mode
272 CHAPTER SIXTEEN

@VTNEWLINE read/write
YES [NO]

For VT emulation, specifies whether the ENTER key will move the
cursor to a new line. Possible choices are NO (the ENTER key sends
only a carriage return) and YES (both a carriage return and line feed
are sent).

VT Emulation subwindows: New Line

@VTPRINT read/write
[NORMAL] AUTO

 CONTROLLER

For VT emulation, specifies when information is sent to the printer.
In AUTO print mode, each line of received text is displayed and
printed; in CONTROLLER mode, all received data is sent directly to
the printer without displaying it on the screen; in NORMAL mode, the
user initiates printing from the keyboard.

VT Emulation subwindows: Print Mode

@VTPRINTPAGE read/write
[SCROLL REGION]

FULL PAGE

For VT emulation, specifies how much of the screen to print when
you press the PRINT SCREEN key.

VT Emulation subwindows: Print Screen

 @VTRESET read/write
YES [NO]

For VT emulation, specifies resetting many of the VT320 operating
features, such as scrolling regions and character attributes, to their
factory default values upon entering Terminal mode. If @VTRESET
is set to YES, the features are reset; the value is then automatically
reset to NO.

VT Emulation subwindows: Reset Terminal
BLASTSCRIPT RESERVED VARIABLES 273

@VTSTATUSLN [NONE] INDICATOR
HOST WRITABLE

For VT320 emulation, specifies the status line to be displayed at the
bottom of the screen. Setting @VTSTATUSL to INDICATOR dis-
plays a status line showing cursor position, printer status, and mo-
dem status information; setting it to HOST WRITABLE displays a
status line showing messages from the Host computer; and setting it
to NONE displays the BLAST status line.

VT Emulation subwindows: Status LIne

@VTTEXTCURS read/write
[YES] NO

For VT emulation, specifies whether to display the text cursor.

VT Emulation subwindows: Text Cursor

@VTUSERCHAR read/write
[DEC SUPPLEMENTAL]

ISO LATIN-1

For VT320 emulation, specifies either DEC SUPPLEMENTAL or
ISO LATIN-1 character set as the user preferred character set.

VT Emulation subwindows: User Pref Char Set

@VTUSERKEYS read/write
[UNLOCKED] LOCKED

For VT emulation, specifies whether the host system can change
user-defined key definitions.

VT Emulation subwindows: User Def Keys.

@WDWSIZ read/write
1 – [16]

For BLAST protocol, specifies the window size of the “B” protocol.
“Window” refers to the number of BLAST protocol packets that can
be sent to the remote without BLAST waiting for an acknowledge-
ment from the remote. As packets are acknowledged, the start point
of the window is adjusted, or “slides.” See “BLAST Protocol De-
sign” on page 103 for a fuller discussion of window size.

BLAST Protocol subwindow: Window Size
274 CHAPTER SIXTEEN

@WT4ECHO read/write
YES [NO]

Specifies whether BLAST will wait for the remote computer to echo
each character of uploaded text before sending the next character.

Setup field: Wait For Echo

@WY25LINE [BLAST STATUS LINE]
25th DATA LINE

STANDARD STATUS LINE
EXTENDED STATUS LINE

For WYSE emulation, specifies how the 25th line of your PC’s
screen will be used.

WYSE Emulation subwindow: 25th line

@WYANSBACK read/write
user-defined

For WYSE emulation, contains a user-created message to be sent to
the host when an inquiry is received.

WYSE Emulation subwindow: Answerback

@WYAUTOPAGE read/write
YES [NO]

For WYSE emulation, specifies whether the cursor can move off the
current page when an attempt is made to move the cursor before the
home position or beyond the end of the page.

WYSE Emulation subwindow: Auto Page

@WYAUTOSCROLL read/write
[YES] NO

For WYSE emulation, specifies whether to scroll the terminal dis-
play when the cursor reaches the bottom of a page.

WYSE Emulation subwindow: Auto Scroll
BLASTSCRIPT RESERVED VARIABLES 275

@WYAUTOWRAP read/write
[YES] NO

For WYSE emulation, specifies automatic line wrapping.

WYSE Emulation subwindow: Auto Wrap

@WYBLOCKEND read/write
[US/CR] CRLF/ETX

For WYSE emulation, specifies which characters are used to mark
the end-of-line and end-of-block when the terminal is in block
mode.

WYSE Emulation subwindow: Block End

@WYCOMMODE [CHARACTER] BLOCK

For WYSE emulation, specifies whether data is sent after each key-
stroke (CHARACTER mode) or grouped in blocks (BLOCK mode).

WYSE Emulation subwindow: Comm Mode

@WYCOMPRESSED YES [NO]
For WYSE emulation, specifies whether compressed mode is used
when @WYDISP80 is set to 132 or the host sends a sequence to the
emulator to use 132 columns. To use this feature, your PC must be
equipped with an EGA or VGA adapter card with 132 column sup-
port and a compatible monitor.

WYSE Emulation subwindow: 132 Compressed

@WYCURSTYPE [BLOCK] LINE

For WYSE emulation, specifies whether the cursor is displayed as a
reverse-video block or an underline character.

WYSE Emulation subwindow: Cursor Type

@WYDISP80 read/write
[80] 132

For WYSE emulation, specifies a display of 80 or 132 columns per
row.

WYSE Emulation subwindow: Columns
276 CHAPTER SIXTEEN

@WYDSPCURSOR read/write
[YES] NO

For WYSE emulation, specifies that the cursor is visible.

WYSE Emulation subwindow: Display Cursor

@WYENTER read/write
[CR] CRLF TAB

For WYSE emulation, specifies the character to send when the key-
pad ENTER key is pressed.

WYSE Emulation subwindow: Enter

@WYEXPNDMEM read/write
YES [NO]

For WYSE emulation, specifies whether expanded memory is used.
Note that this is not related to DOS expanded memory.

WYSE Emulation subwindow: Expanded Memory

@WYPAGELEN read/write
[1*DATA LINES]

2*DATA LINES 4*DATA LINES

For WYSE emulation, specifies the length of a screen page.

WYSE Emulation subwindow: Page Length

@WYPERSONALITY [WYSE60]
PC Term

For WYSE60 emulation, specifies WYSE60 or PC Term personali-
ty.

WYSE Emulation subwindow: Return

@WYRETURN read/write
[CR] CRLF TAB

For WYSE emulation, specifies the character to send when the
RETURN key is pressed.

WYSE Emulation subwindow: Return
BLASTSCRIPT RESERVED VARIABLES 277

@WYSCROLLINC 1 – 53 [10]
For WYSE emulation, specifies the number of columns to scroll
when the cursor reaches the edge of the screen and @WYDISP80 is
set to 132 and @WYCOMPRESSED is set to NO.

Wyse Emulation subwindow: Horiz Scroll Inc

@WYSEWORD read/write
YES [NO]

For WYSE emulation, specifies whether keys send Wordstar™
functions instead of standard key codes. The only keys affected are
WYSE keys that can be remapped with the BLASTKBD utility (see
“Keyboard Mapping Utility” on page 296).

WYSE Emulation subwindow: Wyseword

@WYWRITEPROT read/write
[DIM] REVERSE NORMAL

For WYSE emulation, specifies the attribute used to display protect-
ed fields.

WYSE Emulation subwindow: Write Protect

@XLOG read/write
ON [OFF]

Specifies whether Extended Logging is enabled. Extended Logging
provides detailed information about BLAST protocol file transfers.
The following variables return values during Extended Logging:

@SNAME @RNAME @STIME @RTIME
@SOPTIONS @ROPTIONS @SPACK @RPACK
@SSTATUS @RSTATUS @SRET @RRET
@SSIZE @RSIZE @SPTOT @RPTOT
@SSTART @RSTART @SRTOT @RRTOT
@SBYTES @RBYTES @SBTOT @RBTOT
@SLQ @RLQ @TTIME

During Extended Logging, all the values listed above are written to
the log file except for @RBTOT and @SBTOT, which may be written
to the log file by issuing a display statement (e.g., display
"@RBTOT is ", @RBTOT).
278 CHAPTER SIXTEEN

Extended Logging may also be enabled with the /x command line
switch.

@XLTFILE read/write
filename

Stores the name of the Translate File used in Terminal mode to filter,
translate, or substitute characters (see “Translate File Format” on
page 284).

Setup field: Translate File

@XONXOFF read/write
YES [NO]

Specifies whether software flow control is enabled. Not all comput-
ers support XON/XOFF flow control.

Setup field: XON/XOFF Pacing

@ZMAUTODOWN read/write
YES [NO]

For Zmodem transfers, specifies Auto Receive mode, in which
downloading begins immediately after Filetransfer mode is entered.

Zmodem Protocol subwindow: Auto Receive

@ZMBLKLN read/write
[0] 24 – 1024

For Zmodem transfers, overrides the default block length, which is
determined by the baud rate of the connection. The default, 0, spec-
ifies no limit to block length.

Zmodem Protocol subwindow: Limit Block Length

@ZMCONVR read/write
[ASCII] BINARY

For Zmodem transfers, specifies whether received files will be treat-
ed as ASCII or BINARY. For correct file conversion to ASCII, the
remote computer must send the files as ASCII.

Zmodem Protocol subwindow: File Conversion
BLASTSCRIPT RESERVED VARIABLES 279

@ZMCONVS read/write
[NONE] ASCII BINARY

For Zmodem transfers, specifies whether files sent are to be treated
as BINARY or ASCII, overriding the File Conversion setting of the
receiving system. NONE specifies no override.

Zmodem Protocol subwindow: Conversion Override

@ZMCRC read/write
16 BITS [32 BITS]

For Zmodem transfers, specifies which CRC error detection is to be
used.

Zmodem Protocol subwindow: CRC

@ZMCTLESCR read/write
YES [NO]

For Zmodem transfers, specifies whether all control characters re-
ceived will be link-escape encoded for transparency.

Zmodem Protocol subwindow: Esc All Control Chars

@ZMCTLESCS read/write
YES [NO]

For Zmodem transfers, specifies whether all control characters sent
will be link-escape encoded for transparency.

Zmodem Protocol subwindow: Esc All Control Chars

@ZMEXIST read/write
YES [NO]

For Zmodem transfers, specifies whether transfers will occur only if
the file already exists on the destination system.

Zmodem Protocol subwindow: File Must Already Exist
280 CHAPTER SIXTEEN

@ZMFRMLEN read/write
[0] 24 – 1024

For Zmodem transfers, specifies a limit for frame length that forces
the sender to wait for a response from the receiver before sending the
next frame. The default, 0, specifies no limit to frame length.

Zmodem Protocol subwindow: Limit Frame Length

@ZMMANAGR read/write
NONE PROTECT

[CLOBBER] APPEND

For Zmodem transfers, specifies a file management option for files
received. See the File Management setup field (page 99) for a de-
scription of each option.

Zmodem Protocol subwindow: File Management

@ZMMANAGS read/write
[NONE] PROTECT
CLOBBER NEWER

NEWER/LONGER
DIFFERENT APPEND

For Zmodem transfers, specifies a file management option for files
sent. See the Management Option setup field (page 96) for a descrip-
tion of each option.

Zmodem Protocol subwindow: Management Option

@ZMRESUME read/write
YES [NO]

For Zmodem transfers, specifies continuation of an aborted file
transfer from point of interruption. The destination file must already
exist and must be smaller than the source file.

Zmodem Protocol subwindow: Resume Interrupted File
BLASTSCRIPT RESERVED VARIABLES 281

@ZMWINDOW read/write
[0] – 9999

For Zmodem transfers, specifies the size of the transmit window.
The default, 0, specifies no limit to the size of the transmit window.

Zmodem Protocol subwindow: Size of Tx Window
282 CHAPTER SIXTEEN

Chapter 17

Data Stream Control
and Terminal Emulation

Introduction

All versions of BLAST support data filtering and translation of in-
coming and outgoing data streams. This chapter describes these fea-
tures as well as terminal emulation and keyboard mapping. Through
terminal emulation, BLAST provides terminal functionality for a
range of popular character terminals. With keyboard mapping, you
can reassign the functions of the standard keyboard keys as well as
the “BLAST keys” that control BLAST functions.

Data Stream Filtering and Alteration

BLAST allows for the translation, substitution, or filtering (remov-
al) of individual characters in the data stream during terminal ses-
DATA STREAM CONTROL AND TERMINAL EMULATION 283

sions. This character manipulation can be used to do one of the
following:

◊ Prevent the display of unwanted characters.

◊ Display international character sets.

◊ Prevent the transmission of certain key codes.

◊ Remap keys to send characters other than their defaults.

◊ Prevent characters from being saved in the capture file.

◊ Prevent characters from being sent with a file upload.

For example, Dow Jones News Service sends special start- and end-
of-record characters that print non-ASCII characters on the screen.
The standard translate file supplied with BLAST filters out these
characters so that they do not appear on your display. If you wanted
to automate your access to Dow Jones by writing a script, you might
need to TTRAP for these filtered characters. For the TTRAP to see
these characters, you would have to change the filter in order to al-
low these characters to pass.

Translate File Format
A copy of the standard translate file is on your distribution media as
TRANSLAT.TBL. This file is distributed with the defaults used
when the Translate File setup field (page 71) is empty. The translate
file contains two tables: the receive table, which operates on char-
acters received from the remote system, and the transmit table,
which operates on characters sent to the remote system.

The receive and transmit tables within a BLAST translate file con-
tain an array of 256 hexadecimal values. These values correspond to
the 8-bit ASCII character set. The decimal value of a character rang-
ing from 0 to 255 is used as an index to the character positions in the
table. The hexadecimal value at that location in the table is substitut-
ed for the hexadecimal value of the original character.

TRANSLAT.TBL contains the following receive and transmit de-
fault tables:
284 CHAPTER SEVENTEEN

:RECVTABL
-00, -01, -02, -03, -04, -05, -06, 07,
08, 09, 0A, 0B, 0C, 0D, 0E, 0F,

-10, -11, -12, -13, -14, -15, -16, -17,
-18, -19, -1A, -1B, -1C, -1D, -1E, -1F,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 2A, 2B, 2C, 2D, 2E, 2F,
30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 3A, 3B, 3C, 3D, 3E, 3F,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 4A, 4B, 4C, 4D, 4E, 4F,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 5A, 5B, 5C, 5D, 5E, 5F,
60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 6A, 6B, 6C, 6D, 6E, 6F,
70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 7A, 7B, 7C, 7D, 7E, 7F,

-00, -01, -02, -03, -04, -05, -06, 07,
08, 09, 0A, 0B, 0C, 0D, 0E, 0F,

-10, -11, -12, -13, -14, -15, -16, -17,
-18, -19, -1A, 1B, -1C, -1D, -1E, -1F,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 2A, 2B, 2C, 2D, 2E, 2F,
30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 3A, 3B, 3C, 3D, 3E, 3F,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 4A, 4B, 4C, 4D, 4E, 4F,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 5A, 5B, 5C, 5D, 5E, 5F,
60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 6A, 6B, 6C, 6D, 6E, 6F,
70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 7A, 7B, 7C, 7D, 7E, 7F,

:XMITTABL
00, 01, 02, 03, 04, 05, 06, 07,
08, 09, 0A, 0B, 0C, 0D, 0E, 0F,
10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 1A, 1B, 1C, 1D, 1E, 1F,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 2A, 2B, 2C, 2D, 2E, 2F,
30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 3A, 3B, 3C, 3D, 3E, 3F,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 4A, 4B, 4C, 4D, 4E, 4F,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 5A, 5B, 5C, 5D, 5E, 5F,
60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 6A, 6B, 6C, 6D, 6E, 6F,
70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 7A, 7B, 7C, 7D, 7E, 7F,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 8A, 8B, 8C, 8D, 8E, 8F,
90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 9A, 9B, 9C, 9D, 9E, 9F,
A0, A1, A2, A3, A4, A5, A6, A7,
A8, A9, AA, AB, AC, AD, AE, AF,
B0, B1, B2, B3, B4, B5, B6, B7,
B8, B9, BA, BB, BC, BD, BE, BF,
C0, C1, C2, C3, C4, C5, C6, C7,
C8, C9, CA, CB, CC, CD, CD, CF,
D0, D1, D2, D3, D4, D5, D6, D7,
D8, D9, DA, DB, DC, DD, DE, DF,
E0, E1, E2, E3, E4, E5, E6, E7,
E8, E9, EA, EB, EC, ED, EE, EF,
F0, F1, F2, F3, F4, F5, F6, F7,
F8, F9, FA, FB, FC, FD, FE, FF,
DATA STREAM CONTROL AND TERMINAL EMULATION 285

TRANSLAT.TBL can either filter, translate, or substitute charac-
ters.

Filtering – The default values of the receive table cause it to filter
the following characters:

NUL (00) ACK (06) NAK (15) ESC (1B)
SOH (01) DLE (10) SYN (16) FS (1C)
STX (02) DC1 (11) ETB (17) GS (1D)
ETX (03) DC2 (12) CAN (18) RS (1E)
EOT (04) DC3 (13) EM (19) US (1F)
ENQ (05) DC4 (14) SUB (1A)

Values to be filtered from the transmitting or receiving data stream
are preceded by a minus sign. A minus sign indicates that the value
following it is ignored.

Translation – The default receive table also translates all “high”
ASCII characters (8-bit characters above 127 [decimal] or 7F [hexa-
decimal] in value) to “low” ASCII (7-bit) characters by stripping the
8th bit. You will notice in the :RECVTABL illustrated above that
the 17th row of the table begins, as does the 1st row, with “-00” and
that the lower half of the table duplicates the upper half.

Substitution – A new hexadecimal value can be substituted for
any existing default value in either the receive or transmit table. For
example, suppose that you want to replace all upper case “A”s from
the received data stream with lower case “b”s. You would:

◊ Find the character “A” in the ASCII table in Appendix D. You
will see that the decimal value of “A” is 65 whereas the hexa-
decimal value is 41.

◊ Now find the hexadecimal value located in the 65th position of
the translate table. Begin counting at the upper left-hand corner
of the table (“-00” or “00”), moving from left to right and count-
ing down the rows. Start your count from zero, and count until
you reach the 65th position. The value in the 65th position is 41,
the hexadecimal value for “A”.

◊ Look in Appendix D again and determine the hexadecimal val-
ue for “b”. That value is 62.

◊ Replace the value 41 in the translate table with 62. From now
on, all “A”s in the received data stream will be translated to
“b”s.
286 CHAPTER SEVENTEEN

NOTE: The default transmit table transmits all characters without
filtering, translation, or substitution.

Creating and Editing a Translate File
When specifying new values for a translate file, be sure not to delete
an entry in the table completely. This will cause all entries in the ta-
ble to shift values. To modify the file:

◊ Make a copy of the TRANSLAT.TBL file.

◊ Modify the new file using BLASTEDT or ASCII text editor.
Save the file in text format only.

◊ Locate the desired character position in the table and either en-
ter a new value or place a minus in front of the existing value in
the table.

◊ Save the new table where BLAST can access it. BLAST will
look in the current directory first and then in BLASTDIR.

Specifying a Translate File in Your Setup
To specify a translate file for use during a session, type its name in
the Translate File setup field.

International and Graphic Character Sets
For international and graphic character sets using TTY emulation,
specify PASSTHRU.TBL in your Translate File setup field. This
file takes into consideration those users requiring more than 128
characters to pass through without translation. Graphic terminals re-
quiring special graphics characters using TTY emulation must also
use this table. International and graphic character sets require 8-bit
transparency to be set in the emulator. For DG emulation, set the
Data Bits setup field of the DG Emulation subwindow to 8.

Terminal Emulation

A “terminal” is a video monitor and keyboard that has been custom
configured to generate and respond to formatting codes used by a
particular computer system. The VT100 terminal, for example, was
originally designed to operate with a Digital Equipment Corporation
VAX computer. Particular sequences of ASCII characters were de-
fined to signal special actions, such as cursor movement, printer ac-
DATA STREAM CONTROL AND TERMINAL EMULATION 287

tivation, and screen display behavior. In order to use your PC as a
terminal to a multi-user host like a VAX, it must be able to produce
and respond to the host’s terminal control codes—a process called
“terminal emulation.” BLAST’s VT100 terminal emulation allows
your PC to operate like a VT100 terminal.

The following emulators are available in BLAST:

BLAST Emulator Terminal Emulated
ADM3A Lear Siegler ADM3A
D80 Ampex Dialog 80
D200 Data General D200
D411 Data General D411
D410 Data General D410
D461 Data General D461
HP2392 Hewlett-Packard 2392A
IBM3101 IBM 3101
ANSI PC ANSI Color
TTY Standard ANSI terminal
TV920 Televideo 920 series
VT52 DEC VT52
VT100 DEC VT100
VT220 DEC VT220
VT320 DEC VT320
WYSE50 Wyse 50
WYSE60 Wyse 60

Most of these terminals feature unique keys to perform certain func-
tions, for example, the DO key on a VT220 terminal. Often, it is pos-
sible to assign a PC key to perform the same task as a special
terminal key. In other cases, it may be necessary to assign a combi-
nation of PC keys to perform the function—the DO key is equivalent
to ALT F5. Thus, your keystrokes are “mapped” or “routed” through
BLAST’s software to generate the required sequence of ASCII code
for each terminal function. The default keyboard maps for all of
BLAST’s emulators are in Appendix B. With the remapping soft-
ware (see “Keyboard Mapping Utility” on page 296 later in this
chapter), you can reassign terminal function keystrokes.

The default emulator for a session is specified in the Emulation setup
field. All of the emulators available except TTY and IBM3101 have
subwindows that appear automatically when you press ENTER. See
Chapter 5 for more information on these setup subwindows fields.

NOTE: To use 132-column compressed mode in VT and WYSE
series emulations, your PC must be equipped with an EGA or VGA
adapter card with full 132-column hardware support. Your monitor
288 CHAPTER SEVENTEEN

must also support 132-column mode. Check the documentation for
your video card and monitor to see if 132-column mode is support-
ed. A description of the terminal emulations supported by BLAST
follows:

TTY Emulation

TTY Emulation Using Default Translate Table

If you choose TTY emulation and leave the Translate File setup field
blank, BLAST will use an internal default translate file similar to
TRANSLAT.TBL. As noted in the “Data Stream Filtering and Al-
teration” section of this chapter, TRANSLAT.TBL filters the fol-
lowing characters:

NUL (00) ACK (06) NAK (15) ESC (1B)
SOH (01) DLE (10) SYN (16) FS (1C)
STX (02) DC1 (11) ETB (17) GS (1D)
ETX (03) DC2 (12) CAN (18) RS (1E)
EOT (04) DC3 (13) EM (19) US (1F)
ENQ (05) DC4 (14) SUB (1A)

The receive table also converts all 8-bit characters (above 7F in val-
ue) to 7-bit characters.

Transparent TTY Emulation Using Pass-Through Table

In typical terminal operation, the video display and the operating
system pass four different types of information to each other:

◊ Readable text.

◊ Screen formatting commands to the display.

◊ Flow control between the display and the system.

◊ Interrupt and function codes.

When using BLAST to act as a terminal to a remote computer, all
the different types of information must be passed from the display
through the PC to the remote computer. No characters should be
changed, discarded, or processed by the local computer. It must act
as a “cable” between the PC display and the remote computer.

For complete 8-bit transparency, BLAST requires that you do the
following:
DATA STREAM CONTROL AND TERMINAL EMULATION 289

◊ Enter the name PASSTHRU.TBL in the Translate File setup
field. PASSTHRU.TBL is a file supplied with BLAST.

◊ Set the XON/XOFF Setup field to NO. (Flow control characters
will be passed through, and flow control will be disabled.)

◊ Set the RTS/CTS Setup field for hardware flow control set to
YES if supported by your system.

◊ Set the Emulator setup field to TTY.

◊ Set the Baud Rate setup field on both the local and remote com-
puters to a setting lower than the baud rate between the local
computer and the local terminal. This will insure that the remote
computer cannot send lines of text faster than they can be dis-
played locally.

DEC VT320, VT220, VT100, and VT52 Emulation
The BLAST VT emulators provide precise emulation of the DEC
VT320, VT220, VT100, and VT52 terminals. For a description of
the setup options for these emulators, see “DEC VT Emulation Sub-
windows” on page 74.

Supported Features

These emulators support the following features:

◊ All cursor positioning sequences and tab settings.

◊ All of the software-selectable operating states (or modes) avail-
able for the VT series of terminals, including standard ANSI
and DEC private modes.

◊ The USASCII, UK, FRENCH, GERMAN, ITALIAN,
SPANISH, and DANISH character sets. The default value is
USASCII which, allows 8-bit data; the other character sets al-
low only 7-bit data.

◊ The DEC Supplemental Graphics and ISO LATIN-1 character
sets.

◊ Scrolling regions, line and character editing, and character at-
tribute commands.

◊ All print operations including Autoprint, Print Screen, and
Printer controller (printer pass-through).
290 CHAPTER SEVENTEEN

◊ 132-column compressed video modes on EGA/VGA systems.

◊ Horizontal scrolling control to accommodate 132-column dis-
play on a standard PC 80-column screen. The Scroll Left, Scroll
Right, and Scroll mode keys may be used within Terminal mode
and may be redefined with the BLASTKBD utility (see “Key-
board Mapping Utility” on page 296 later in this chapter). To set
the default mode for the number of columns to scroll, specify
the column width in the VT Emulation setup subwindow (page
74).

Special Considerations

The following features are not supported by these emulators:

◊ Smooth scrolling.

◊ Downloadable character sets. These will be ignored by the ap-
plication.

The following features are supported in the specified limited manner:

◊ Double-width characters are handled by displaying a single-
width character and a space in a double-width position.

◊ Double-height characters are displayed in the top half of a
double-height position.

For the Key Definition Charts for these emulators, see “DEC VT320
and VT220 Keys” on page 330 and “DEC VT100 and VT52 Keys”
on page 331.

ANSI Emulation
The BLAST ANSI emulator provides functional emulation of the
IBM PC ANSI standard, including full color and extended attribute
support. Choose ANSI for dialing Bulletin Board Systems or other
computers that offer ANSI support. For a description of the BLAST
ANSI emulation setup options, see “ANSI Emulation Subwindow”
on page 72; for the Key Definition Chart for the BLAST ANSI em-
ulator, see “ANSI Keys” on page 331.

DG D200, D410, D411, and D461 Emulation
The BLAST DG emulators provide precise emulation of the Data
General D200, D410, D411, and D461 terminals. For a description
of the setup options for these emulators, see “DG Emulation Sub-
window” on page 73.
DATA STREAM CONTROL AND TERMINAL EMULATION 291

Special Considerations

There are a few restrictions to using Data General emulation in
BLAST:

◊ ANSI mode is not supported—BLAST provides ANSI and
VT320/220/100/52 emulators for ANSI emulation.

◊ User-defined character sets are not supported, and the sequenc-
es associated with defining and loading user-defined character
sets are ignored.

◊ The maximum number of characters that define a pattern for a
line is limited to 16 characters as opposed to 32 characters in the
set pattern command.

◊ The scrolling rate commands are ignored.

◊ 135 column displays are not supported.

For the Key Definition Chart for these emulators, see “Data General
D461, D411, D410, D200 Keys” on page 332.

WYSE50/60, TV920, D80, and ADM3A Emulation
The BLAST WYSE50/TV920/D80/ADM3A and WYSE60 emula-
tors are functionally equivalent to the WYSE 50+, Televideo family,
Ampex D80, Lear Siegler ADM 3A, and WYSE 60 terminals, re-
spectively. For a description of the setup options for these emulators,
see “WYSE Emulation Subwindows” on page 78.

Supported Features

These emulators support the following terminal features:

◊ 24 or 25 data lines.

◊ User selectable status line.

◊ 80- or 132- column modes. (132-column mode is represented in
a compressed fashion if hardware support is available).

◊ Multiple pages (up to 4; the default is 1).

◊ Split screens.

◊ Normal, dim, blink, blank, underline, and reverse attributes.
292 CHAPTER SEVENTEEN

◊ Protected fields.

◊ Graphics characters.

◊ Print functions.

◊ Editing functions.

◊ Ability to choose PC Term or WYSE Personality (WYSE60
only).

◊ 8-bit data support (WYSE60 only).

For the Key Definition Chart for these emulators, see “WYSE60,
WYSE50, TV920, D80, and ADM3A Keys” on page 333.

HP2392 Emulation

The BLAST HP2392 emulator is functionally equivalent to the
Hewlett Packard 2392 terminal. For a description of the setup op-
tions for the BLAST HP2392 emulator, see “HP Emulation Subwin-
dow” on page 82

Supported Features

The following features of the HP 2392A series are supported within
BLAST:

◊ Terminal identification for terminal ID requests.

◊ Handshaking options.

◊ Automatic text wrapping.

◊ BACKSPACE erase.

◊ Block mode operation.

For the Key Definition Chart for the BLAST HP2392 emulator, see
“HP2392 Keys” on page 334.

IBM3101 Emulation
The BLAST IBM3101 emulator is functionally equivalent to the
IBM 3101 series terminal.
DATA STREAM CONTROL AND TERMINAL EMULATION 293

Supported Features

The following features of the IBM 3101 series are supported within
BLAST:

◊ Character mode operation.

◊ Block mode operation.

◊ Programming mode operation.

◊ Most dip switch functions (exceptions are noted below).

These features of the IBM 3101 series are not supported within
BLAST:

◊ Transparent mode operation.

◊ Local mode operation.

◊ International support ‘dead keys.’

◊ The following dip switch functions: Send Line option, Number
of Time Fill characters, Reverse Video on/off, Blink Cursor on/
off, Line Speed for Auxiliary Interface.

For the Key Definition Chart for the BLAST IBM 3101 emulator,
see “IBM3101 Keys” on page 335

NOTE: BLAST uses a default configuration for the 3101 dip
switches unless the user specifies overriding values in a file called
“CONFIG.31.” If CONFIG.31 does not exist when the user goes
into Terminal mode, the dip switch settings will default to the fol-
lowing values:

MODE: CHAR (character vs. block mode)

LTA: CR (line turnaround character is a carriage
return)

NULL_SUPP: ON (null suppression is on)

AUTO_NL: ON (auto newline/autowrap is on)

AUTO LF: OFF (auto linefeed is off)

CR_LF: OFF (carriage returns are not followed by line

feeds)

SCROLL: OFF (end-of-screen scrolling is off)
294 CHAPTER SEVENTEEN

To customize the dip switch configuration, create the CONFIG.31
file using the format <name: value. The possible names and val-
ues are:

MODE ON or OFF

LTA CP, EOT, ETX, or XOFF

NULL_SUPP ON or OFF

AUTO_LF ON or OFF

CR_LF ON or OFF (ON implies a line
feed with a CR)

SCROLL ON or OFF

For example, the following command substitutes an XOFF as the
line turnaround character and forces scrolling at the end of the
screen.

<LTA: XOFF

<SCROLL: ON

The 3101 half-duplex dip switch may be configured by toggling the
Local Echo setup field to ON for half duplex and OFF for full duplex.

Transparent Print/Auxiliary Print
BLAST supports Transparent Print mode (data redirected to an at-
tached printer as well as displayed on the screen) under the VT,
ANSI, and WYSE60/50 emulations. Additionally, WYSE 60/50
emulations support Auxiliary Print mode (data redirected to an at-
tached printer only).

BLAST recognizes the following codes for these functions:

WYSE60/50
Transparent Print mode on: ESC d #

Auxiliary Print mode on: CTRL R

Transparent and Auxiliary Print mode off: CTRL T

ANSI/VT
Transparent Print mode on: ESC [5i

Transparent Print mode off: ESC [4i

BLAST defaults to LPT1: for these print functions.
DATA STREAM CONTROL AND TERMINAL EMULATION 295

Keyboard Mapping Utility

Computer users sometimes encounter difficulties when emulating a
terminal. For example:

◊ A key sequence meant to be passed to the remote computer is
instead intercepted by an application (or the operating system).

◊ An emulator keymap is awkward for a particular application.

◊ Repetitive keystrokes are required for a particular application.

◊ A required key does not exist on the user’s keyboard.

The keyboard mapping utility BLASTKBD helps address these
problems. In BLASTKBD, there are three types of specially as-
signed key subsets in the BLAST key set: Soft Keys, BLAST Keys,
and Hot Keys. In addition, BLASTKBD includes Emulator Maps
and User-Defined Maps. Below is a brief description of each, fol-
lowed by sections giving instructions on mapping and/or remapping
each key set:

Soft Keys – allow you to send often-used character strings to a re-
mote system with a single keystroke. The use of Soft Keys is de-
scribed later in this chapter.

BLAST Keys – allow you to use special key sequences to differ-
entiate between local commands and characters meant for the re-
mote system. The BLAST Keys perform local functions, such as
exiting Terminal mode. The BLAST Keys are listed in Appendix B.

Hot Keys – allow access to often-used functions from Terminal,
Filetransfer, and Access modes. Hot Keys are essentially macros
that activate BLAST menu commands and return you to your start-
ing point with just a few keystrokes. Typing ALT F from a console in
Terminal mode, for example, starts Filetransfer mode and automat-
ically returns you to Terminal mode when file transfer is completed.
The Hot Keys are listed in Appendix B.

Emulator Maps – keyboard maps for emulators within the
BLAST program. With BLASTKBD, you can reroute existing func-
tions to different keys on your keyboard. For a list of keys for the ex-
isting emulators, see “Terminal Emulation Keys” on page 329.

User-Defined Maps – keyboard maps that can be created for
different applications, keyboards, or users. Unlike the emulator
maps, user-defined maps can specify functions as well as keys.
296 CHAPTER SEVENTEEN

Running BLASTKBD
You can start BLASTKBD by typing “blastkbd” on the command
line or, during a terminal session, by pressing ATTN M or ATTN E.
ATTN M will display the main selection window (Figure 17-1) where-
as ATTN E will take you directly to the specific map subwindow for
the current emulator. From the emulator map, pressing ESC will re-
turn you to Terminal mode if that is where you started. If you started
BLASTKBD from the command line, pressing ESC from the main
BLASTKBD window will return you to the command line.

After you have edited a keyboard map or one of the BLAST special
key sets, press S to save your changes. Press ESC if you wish to exit
without saving the changes.

To select a BLAST special assigned key subset or a map from the
BLASTKBD main window, use the commands described at the bot-
tom of the window to highlight the desired selection and press
ENTER.

FIGURE 17-1

NOTE: In the subwindows discussed below, some characters can-
not be entered merely by pressing the corresponding key on the key-
board. The following table indicates how these characters are to be
entered:

ESC CTRL [
TAB CTRL I
ENTER CTRL M

For example, to include the escape character in a key sequence, press
CTRL [instead of pressing ESC. Some characters may appear in octal
form, for example, CTRL^ may appear as \036.
DATA STREAM CONTROL AND TERMINAL EMULATION 297

Soft Keys
Many terminals offer a way of storing a set of often-used character
strings that can be sent to the remote system with a single keystroke.
BLAST provides this capability with Soft Keys. If you highlight
Soft Keys in the main window and press ENTER, the Soft Key win-
dow (Figure 17-2) will appear.

FIGURE 17-2

To create a Soft Key, highlight the sequence for the Soft Key you
have selected (0–9) and enter the text string to be sent to the remote
system when that Soft Key is pressed. Each string can be up to 69
characters long.

BLAST allows ten Soft Keys. A Soft Key is activated from within
Terminal mode with the following combination:

ATTN Soft_Key_number

where Soft_Key_number is the number key corresponding to
the number of the text string. For example, 0 corresponds to .00 text
string, 1 to the .01 text string, and 2 to the .02 text string.

BLAST Keys
You can also use BLASTKBD to modify the BLAST key subset.
When you select BLAST from the BLAST Key set in the
BLASTKBD main window and press ENTER, the BLAST Key sub-
window (Figure 17-3, next page) will appear.
298 CHAPTER SEVENTEEN

FIGURE 17-3

There are four columnsthe first displays the functions supported
by the BLAST Keys and the other three contain the key sequences
you choose to perform that function. Up to three key sequences may-
be specified for the same function. To remap a function, highlight
one of the three key sequences to the right of the function and press
ENTER. The message “Press any key to remap function...” is dis-
played. Type the key (or combination of keys) that will serve as this
function. Repeat this process until you have remapped all the func-
tions that you want; then press S to save your remappings and return
to the BLASTKBD main window.

NOTE: BLAST keys do not change from emulator to emulator. For
example, if you map the Cursor Down function as CTRL 2 in the
BLAST Keys subwindow while using the VT320 emulator, that se-
quence will also perform the same function if you switch to the
WYSE60 emulator.

You cannot use BLASTKBD to remap Attention (ATTN) Key se-
quences. The Attention Key can be remapped via the Attention Key
setup field (page 72).

Hot Keys
Hot Keys allow access to often-used functions from Terminal, File-
transfer, and Access modes. If you select Hot Keys from the BLAST
Key set in the BLASTKBD main window and press ENTER, the Hot
Key subwindow will appear (Figure 17-4, next page). Hot Keys
override all other functions. For example, if you map both the VT
Find key and the Filetransfer Hot Key to ALT F, pressing ALT F will
always start Filetransfer mode and never act as the VT Find key.
DATA STREAM CONTROL AND TERMINAL EMULATION 299

FIGURE 17-4

To map or remap a function, highlight the first key sequence to the
right of the function and press enter. The message “Press any key to
remap function...” is displayed. Type the key (or combination of
keys) that will serve as this function. Repeat this process until you
have remapped all the functions that you want; then press S to save
your remappings and return to the BLASTKBD main window.

NOTE: A Hot Key can only be mapped to a single keystroke. Any
keystrokes entered into the second column will be ignored by
BLAST.

Emulator Maps
Emulator maps act as links between your keyboard and the terminal
you are emulating. For example, if you are using an AT extended
keyboard through the VT320 emulator to a VAX minicomputer, the
keymap will link the FI key to the VT320 PF1 function. To select an
emulator, highlight the emulator in the BLASTKBD main window
and press ENTER; the emulator subwindow will then appear. For ex-
ample, if you select VT320/VT220, the subwindow in Figure 17-5
(next page) will appear.

To remap a function, highlight one of the three key sequences to the
right of the function and press ENTER. The message “Press any key
to remap function...” is displayed. Type the key (or combination of
keys) that will serve as this function. Repeat this process until you
have remapped all the functions that you want; then press S to save
your remappings and return to the BLASTKBD main window. Up
to three key sequences maybe specified for the same function.
300 CHAPTER SEVENTEEN

FIGURE 17-5

User-Defined Maps
A powerful feature of BLASTKBD is the option to create your own
keyboard maps for different applications, keyboards, or users. For
example, you can customize a map for a remote database application
and save it under the name “data,” ready for use with BLAST. Once
you have finished working with the database, you can load another
map for another application.

To create a map, press A at the BLASTKBD main window. You will
be prompted for the name of the new map. Pressing ENTER after typ-
ing in the name of the new map will add the map name to the list of
maps in the BLASTKBD main window (the map name will also ap-
pear as a selection in the Keyboard File setup field). Pressing ENTER
again will display the mapping subwindow (Figure 17-6). Unlike the
emulator maps, user-defined maps allow you to specify the function
as well as the keys.

FIGURE 17-6
DATA STREAM CONTROL AND TERMINAL EMULATION 301

The first step in assigning a function is to type the name of the func-
tion. If no functions have been assigned, simply type the name of the
function in the field highlighted. To add a function, type A and then
the name of the function you would like to add.

After typing the name of the function, press ENTER. The first key se-
quence will automatically be highlighted. Type the key sequence for
the function you have just added and press ENTER. At the bottom of
your screen, you will be prompted for the ASCII control sequence.
Type either the ASCII control sequence or octal value for that func-
tion (for a list, see Appendix D) and press ENTER.

If you would like to add a second key sequence for the function or
change an existing key sequence, highlight the desired key sequence
to the right of the function and follow the same steps as you followed
in entering the first key sequence. After you have finished mapping
functions, press S to save your map.

Keyboard Map Selection in the Setup
All maps that you create are saved in a file called BLAST.TDF.
Each time that you start BLAST, it will search the current directory
for BLAST.TDF. If it cannot be located, BLAST then checks
BLASTDIR. You can easily assign separate keymaps for several us-
ers or applications by copying different BLAST.TDF files into each
directory. When you run BLAST from within an application direc-
tory, the proper BLAST.TDF file will automatically be loaded.

To select a specific user map from within a given .TDF file, high-
light the Keyboard File setup field and use the SPACEBAR to cycle
through the map choices. If you would like a map to be loaded auto-
matically on startup, save it as a part of the setup.
302 CHAPTER SEVENTEEN

Chapter 18

Remote Control

What Is Remote Control?

The Remote Control features of BLAST allow you to access and
control a remote PC’s screen, keyboard, disk drives, and printer. Re-
mote control is ideal for troubleshooting remote sites, training and
supporting PC operators, using your office databases or spread-
sheets from home—any time you need complete control over a re-
mote PC

This chapter introduces basic concepts and guides you through the
process of configuring BLAST for remote control. The BHOST User
Manual included with the BLAST package describes how to set up
the remote computer for control by BLAST.

Remote control allows one PC (the Control PC) to completely con-
trol another PC (the Host PC). The two PCs may be attached to mo-
dems communicating over a telephone circuit, hardwired together
with a null modem cable, or connected to a Local Area Network.

The Control PC can run programs on the Host PC’s hard drive, print
documents, edit files, and more, as if the user were typing on the
Host PC’s keyboard. All video output and graphics (Hercules, CGA,
REMOTE CONTROL 303

MCGA, EGA, and VGA) are displayed simultaneously on both PCs,
with automatic translation between different video modes.

The Host PC
The Host PC runs a special program called BHOST, which operates
in the background and is transparent to the Host PC user. BHOST
“watches” the communications port and, when a call comes in,
prompts the caller for a user identification and password. Once the
caller is logged in, BHOST makes the Host PC’s services available
to the Control PC.

The Host PC has access to a number of security features, including
login accounts, multiple control levels, call-back security, and a log
file to record system activity.

BHOST also offers background file transfers. The Control PC may
transfer files to and from the Host PC while the Host PC user con-
tinues to work on other applications.

Nearly all of the configuration for a remote control session takes
place on the Host PC through SETBHOST, a special administration
that sets system defaults and keeps track of login accounts.

The Control PC
For the Control PC, Dialing into a Host PC is just like an ordinary
terminal session except that, once connected, the Control PC selects
Access from the Online menu. Access mode allows complete con-
trol of the Host PC and high-speed file transfers using the BLAST
session protocol. (File Transfer Only and Terminal modes, dis-
cussed later, offer more limited control.)

In Access mode, the Control PC has access to a number of security
features, including the ability to disable the Host PC’s keyboard,
mouse, and screen during a session to prevent unauthorized opera-
tion.

Connecting to the Host PC

Connecting to the Host PC is the same as connecting to any other re-
mote system. BLAST can automatically dial the phone (or connect
to the network) and send your login ID and password to the Host PC.
You may also perform this process manually.
304 CHAPTER EIGHTEEN

Be sure that BHOST has been installed and configured on the Host
PC before attempting to connect. See the BHOST User Manual for
more information on installing and configuring BHOST.

Creating a BLAST Setup for BHOST
To automate your connection to a Host PC, create and save a new
BLAST setup for your sessions with the Host PC (see Chapter 5 for
a detailed description of setups). In the new setup:

◊ If you are using a modem, set the Phone Number to the phone
number of the Host PC.

◊ Set the System Type field to BHOST if your BHOST account re-
quires a login ID and password; set System Type to PC or NONE
if your BHOST account does not require a login ID or pass-
word.

◊ If your BHOST account requires a login ID and password, enter
these into the Userid and Password setup fields, respectively,
exactly as they appear in SETBHOST on the Host PC. These
fields are case-sensitive.

◊ Set Emulation to TTY or VT320.

◊ Set Protocol to BLAST.

◊ Set Packet Size to at least 200, BHOST’s minimum setting; the
maximum setting is 4085.

◊ In the BLAST protocol setup subwindow, set Compression
Level according to the type of data you will transfer. Note that
BHOST’s compression level defaults to 1. Any additional com-
pression is determined by the amount of memory allocated by a
COMPBUF assignment in BLAST.OPT on the Host PC. BHOST
supports compression levels 0–4.

◊ If you are making a node-to-node connection across a LAN, set
the Connection field to the same value as that in the Connection
field of the BLAST Host setup on the Host PC.

Making the Connection and Logging On
Highlight the new Host PC setup in your Dialing Directory and se-
lect Connect from the Offline menu. BLAST will dial the modem (or
connect to the network), log you onto the Host PC, and return to the
Online menu.
REMOTE CONTROL 305

NOTE: If your BHOST Account is set to Dial Back, BLAST
will not return to the Online menu immediately. Instead, BHOST
will disconnect after you log in and then dial your phone number
from the Host PC. Once the connection has been re-established,
BLAST will return to the Online menu.

Taking Control

How you take control of the Host PC depends on the Control mode
setting in your BHOST Account. The possible settings are Access,
File Transfer Only, and Terminal. The default Control
mode, Access, provides complete control over the Host PC.

Access Mode – If your Control mode is set to Access, then press
A from the Online menu to enter Access mode. You will then have
complete control over the Host PC. All of your keystrokes are sent
to the Host PC, and all of the Host PC’s screen displays are sent to
your PC. Access mode offers a number of powerful features. See
“Using Access Mode” on page 308 for complete details.

Terminal Mode – If your Control mode is set to Terminal,
you have limited control through the BLAST Remote menu in addi-
tion to limited Terminal access. To enter Terminal mode, press T

from the Online menu. You will be limited to ASCII text display.
Programs using graphics or full-screen text modes will execute, but
the screen display will be corrupted and no error detection will be
performed. Terminal mode requires special keyboard sequences to
send control characters. See “Using Terminal Mode” on page 311.

File Transfer Only Mode – If your Control mode is set to File
Transfer Only, then press F from the Online menu to enter
BLAST Filetransfer mode and then R to access the Remote menu.

Online Menu Options

All three Control modes give you access to the following Online
menu options: Connect, Capture, Filetransfer, Script, and Discon-
nect. In addition, with Access Control mode, you may select the
Access menu option (see “Using Access Mode” on page 308), and
with Terminal Control mode, you may select Terminal menu op-
tion (see “Using Terminal Mode” on page 311).
306 CHAPTER EIGHTEEN

NOTE: TERMINAL, TSEND, TTRAP, and TUPLOAD commands
can only be used with Terminal Control mode.

Transferring Files to and from the Host PC

With all three control modes, BLAST protocol is available for trans-
ferring files to and from the Host PC. Your transfers will take place
in the background on the Host PC, transparent to the Host PC user.

Starting Filetransfer Mode
There are several ways to initiate a file transfer to or from the Host
PC. In each case, the BLAST Filetransfer menu appears, and you
will be able to Send and Get files and execute operating system com-
mands from the Local and Remote menus.

◊ From the Online menu — Press F to start Filetransfer mode.
Use this method if your BHOST account is set to File
Transfer Only.

◊ From Access mode — Press the ALT F Hot Key, or press ATTN
ESC to return to the Online menu and then press F to start File-
transfer mode.

◊ From Terminal mode — Press ESC CTRL X to start Filetransfer
mode on the Host PC; then use one of the above methods to start
Filetransfer locally. Alternatively, you may script file transfers.

Transferring Files
You may transfer files interactively (see “Performing Filetransfer
Commands” on page 110) or via a BLAST script (see “File Trans-
fers with BLAST Session Protocol” on page 178).

Ending Filetransfer Mode
When you have finished transferring files, press ESC to end File-
transfer mode. If you started Filetransfer mode with a Hot Key, you
will be returned to Access or Terminal mode. Otherwise, you will be
returned to the Online menu.
REMOTE CONTROL 307

Disconnecting from the Host PC

From Access mode – Press ATTN ESC to return to the Online
menu.

From File Transfer Only mode – Press ESC to return to the
Online menu.

From Terminal mode – Press ESC CTRL L to log off of the Host
PC and then press ATTN ATTN to return to the Online menu. Select
the Disconnect command to disconnect from the Host PC.

Using Access Mode

If your BHOST account is set to Access Control mode, you may
enter Access mode from the Online menu by selecting Access. Your
screen will display the remote terminal screen—all you have to do
is type commands as if you were seated at the Host PC.

The Access Menu
From Access mode, you may display the Access menu (Figure 18-
1) by pressing ATTN.

FIGURE 18-1

The Access menu provides the following features:

◊ Split-screen Chat mode, for communicating interactively with
the Host PC user.
308 CHAPTER EIGHTEEN

◊ Two camera modes, one for taking “snapshots” of individual
screens and one for recording “movies” of your session.

◊ A simple menu for fine-tuning your remote control settings.

◊ Hot Keys to start file transfers, exit to a DOS shell, reboot the
Host PC, and more.

To select a command from the Access menu, press the capitalized
letter in the command name or move the cursor over the command
and press ENTER. Following is a description of each command:

Resume – Press R to return to Access mode.

Chat – Press C to start Chat mode. Chat mode allows the Host and
Controller to type messages to each other on the Chat screen
(Figure 18-2), which is displayed on both the Controller and
the Host screens. Either side may initiate a Chat unless the
Host keyboard has been disabled. Once the Controller ini-
tiates a Chat, a disabled Host keyboard becomes active for
the duration of the Chat.

FIGURE 18-2

The Chat screen contains two windows, one for the Control-
ler’s messages and one for the Host’s messages. Both sides
may type at the same time. Chat mode will terminate when
either user presses ESC.

Parameters – Press P to display the Session Parameters window
containing parameter fields that can be adjusted to
improve BHOST performance (see “Session Param-
eters Window” on page 313 for details).
REMOTE CONTROL 309

Snapshot – Press S to take a snapshot of the current screen. You will
be prompted for a filename. After typing the filename
and pressing ENTER, you will be returned to the Access
menu. The current screen image will be saved to your
current directory. If you type in a filename without an
extension, BLAST automatically uses the extension
“.001.” Then, each time you take another snapshot,
BLAST increments the extension by one (up to .099)
and prompts you to save the new file.

BLAST saves text screens in standard ASCII file format
and graphic screens in the .PCX format, which can be
displayed with the View command from the Local menu
or by a variety of third-party applications.

Record – Press E to record a “movie” of the screen appearance
during your session (except Chat mode displays). You
will be prompted for a filename. Type the filename and
press ENTER. BLAST will then begin recording from the
Host PC similar to VCR recording from a television. Es-
caping from the remote session screen for any reason will
terminate the movie.

Movies can be replayed with the View command from the
Local menu. By default, a movie is replayed at the same
speed at which it was recorded. Press the up or down cur-
sor keys during replay to speed up or slow down the mov-
ie. Note that movies can take up large amounts of disk
space.

Local – Press L to display the Local menu for local PC commands.
This command is identical to the Local command available
from the Offline and Online menus (see “The Local Menu”
on page 57 for details).

Access Mode Hot Keys
The following subset of the regular BLAST Hot Keys are active dur-
ing Access mode:

Function Default Key Sequence
Chat mode *
Background ALT H

Local View *
Local System *
Remote Reboot *
Snapshot *
310 CHAPTER EIGHTEEN

Function Default Key Sequence
Parameters *
Record a movie *
Filetransfer mode ALT F

* To avoid potential conflicts with the programs running on the Host
PC, these keys do not have default values. When you assign keys
through the BLASTKBD utility, remember that the values you pick
will not be available to the Host PC programs. For example, if you
assign the ALT V key combination to the Local View function, then
ALT V will never be sent to the Host PC, because it will be interpreted
as a local command.

See “Hot Keys” on page 299 and Appendix B for more information
on remapping Hot Keys.

Using Terminal Mode

Accessing and Logging Off Terminal Mode
If your BHOST account is set to Terminal Control mode, you
may enter Terminal mode by choosing Terminal from the Online
Menu. You will be prompted for a login ID and password on the ter-
minal screen. You can return to the Online menu at any time by
pressing ATTN ATTN.

In Terminal mode, a remote user can run programs with line-mode
ASCII text displays. Programs using graphics or full-screen text
modes will execute, but the screen display will be corrupted and no
error detection will be performed.

When you are ready to log out, you must log out of Terminal mode
correctly: Press ESC CTRL L—you will automatically be logged out
of BHOST on the Host PC. You can then return to the Online menu
by pressing ATTN ATTN; then hang up the modem by selecting Dis-
connect.

Terminal mode via BHOST is useful for accessing Host PCs from
minicomputers or other computers that are not running BLAST. Any
communications software that is capable of dialing the Host PC can
connect with BHOST and act as a terminal to the Host PC.
REMOTE CONTROL 311

Escape Sequences
Terminal mode requires special escape sequences to represent cer-
tain keys to the Host PC:

PC Key Escape Sequence
Left Arrow ESC F

Right Arrow ESC G

Up Arrow ESC T

Down Arrow ESC V

Home ESC H

End ESC E
Page Up ESC P
Page Down ESC Q
Insert ESC I
Delete ESC D

Numeric Keypad 5 ESC .

Numeric Keypad * ESC *

Break ESC S
Caps Lock ESC K
Num Lock ESC N

Numeric Keypad + ESC +

Numeric Keypad - ESC -

F1–F10 ESC 1 – ESC 0

Esc ESC ESC

All keys released ESC SPACE

Ctrl ESC C
Alt ESC A
Left Shift ESC Z

Right Shift ESC /

The following escape sequences send special commands to BHOST:

PC Key Escape Sequence
Filetransfer mode ESC CTRL X

Repaint Screen ESC CTRL R

Open Session Command window ESC CTRL M

Log off ESC CTRL L

Modifying BHOST Settings

There are three different ways to alter BHOST parameter settings—
through SETBHOST, the Session Parameters Window, or the Ses-
sion Command Window.
312 CHAPTER EIGHTEEN

SETBHOST
You may alter BHOST parameter settings by starting SETBHOST
on the Host PC by typing SETBHOST at the HOST PC’s DOS
prompt. For details on configuring BHOST via SETBHOST, see the
BHOST User Manual. Note that the new settings will not take effect
until BHOST has been restarted.

Session Parameters Window
If you are in Access mode and have a Superuser account, you
may alter BHOST session parameters by choosing Parameter from
the Access Menu. The Session Parameters window will then appear
as shown in Figure 18-3 below. Move through the fields by pressing
the arrow keys; move through the options of a field by pressing
SPACE or BACKSPACE.

FIGURE 18-3

If you have a User account, you may change all of the settings on
the Session Parameters screen except Inactivity T/O, Timeout Re-
sponse, and DCD Loss Response. If you have a Restricted ac-
count, you cannot change any of the session parameter settings. If
you change any of the settings via the Session Parameters window,
the new settings will be in effect only for the duration of the session.
Following is a description of the Session Parameter fields.

Scaling Ratio [1:1] 1:4 1:16 1:64

Specifies how the Host PC’s graphics are scaled for screen updates.
BHOST usually sends the entire Host screen to the Control PC. The
Scaling Ratio allows certain portions of the screen to be omitted, re-
sulting in much faster performance. Scaling Ratio only applies to
graphics screens.
REMOTE CONTROL 313

When Scaling Ratio is set to a value other than 1:1, BHOST divides
the Host PC screen into square grids and sends only the value of the
first pixel in the grid. The Control PC then substitutes that value for
each of the remaining pixels in the grid. For example, when Scaling
Ratio is set to 1:4, BHOST sends only the first pixel of a 4-pixel
grid. The Control PC writes that value for all four of the pixels in the
grid.

1:1 – the entire Host screen is sent to the Control PC.

1:4 – the Host PC sends 1 pixel from a 4-pixel grid. (25% of the
Host PC screen).

1:16 – the Host PC sends 1 pixel from a 16-pixel grid. (6.25% of
the Host PC screen).

1:64 – the Host PC sends 1 pixel from a 64-pixel grid. (1.5% of the
Host PC screen).

Use a higher Scaling Ratio (1:4, 1:16, or 1:64) when you want
to see screens as quickly as possible and image quality is not impor-
tant. For example, to move quickly through the opening screens of
graphics applications, set Scaling Ratio to 1:64 as soon as you log
onto the Host PC; then set it to 1:4 or 1:16 for fast updates, or to
1:1 for exact screens.

Scan Interval NONE HIGH [MEDIUM] LOW

Specifies how often BHOST scans the Host PC’s display to see if the
display has changed since the last scan. If it has, BHOST rescans the
display and sends the new screen to the Control PC.

The higher the Scan Interval, the more often the display is updated.
A higher Scan Interval, however, usually means slower program
speed since the foreground application on the Host PC must be in-
terrupted for the scan, and each image must be sent to the Control
PC.

HIGH – The Host screen is scanned 18.2 times per second (after each
PC clock tick).

MEDIUM – The Host screen is scanned twice per second (after each
8 PC clock ticks).

LOW – The Host screen is scanned once per second (after each 18 PC
clock ticks).
314 CHAPTER EIGHTEEN

NONE – The Host screen is scanned only when the operating system
is not updating the screen.

Sync Mode [ON] OFF

Specifies whether the Host PC and the Control PC screens will be
synchronized. When this field is set to ON, the Host PC screen is fro-
zen while screen updates are sent to the Control PC. This mode com-
pletely synchronizes the two displays, but it slows the application
speed. When this field is set to OFF, the Host PC screen is not fro-
zen, resulting in significantly faster performance. The Control PC,
however, may miss some intermittent screen images.

Special Kbd Handling ON [OFF]
Enables/disables Special Keyboard mode, which is necessary for
machines running applications that intercept keyboard interrupt 9,
such as pop-up TSRs, Microsoft Windows 3.1, IBM 5250 terminal
emulation, 3270 Irma boards, and some implementations of BASIC.

Since Special Keyboard mode slows down the session, it should
only be used when an application requires it. When in doubt, first try
the default (OFF). If the application does not seem to respond, then
set Special Kbd Handling to ON.

If you are using an international keyboard with an ALT-GR key to the
right of the spacebar, set Special Kbd Handling to ON.

Precision Mouse [ON] OFF

Enables/disables Precision Mouse control, which greatly enhances
remote mouse support. This feature will only be evident to the Con-
trol PC user. Precision Mouse displays a second mouse cursor on the
Control PC’s screen that shows the cursor’s movement immediately,
before the information is sent to the Host PC. This allows the Con-
trol PC user to accurately track the cursor’s movement, even during
lengthy screen updates. Precision Mouse is unnecessary during
node-to-node sessions when throughput is fast enough for “real-
time” mouse control. Applications which take direct control of the
mouse may not support Precision Mouse control.

Inactivity T/O 0 - 999 [120]
Specifies the number of seconds the Host PC will wait after no data
has been sent or received before performing the action specified in
REMOTE CONTROL 315

the Timeout Response field (RESTART or REBOOT). If this field is
set to 0, the Host PC will not time out.

If this field is set to 0 and the DCD Loss Response field is set to
IGNORE, the Host PC modem may reset itself immediately after
carrier is lost, even though BHOST is not ready to process incoming
calls. In this case, BHOST will not restart without manual interven-
tion, but the modem will continue to answer calls. To restart BHOST
manually from the Control PC, first connect to the Host PC’s mo-
dem; then enter Terminal mode and type:

;DISC.

Note that you will not be able to see your keystrokes. This sequence
will interrupt the BLAST protocol and allow BHOST to restart—it
may also cause the Host PC’s modem to hang up. After BHOST has
restarted, you may log on as usual.

Timeout Response [RESTART] REBOOT

Specifies the action that the Host PC will take if an Inactivity Time-
out occurs. RESTART prepares the Host PC for the next caller, dis-
connecting the current user. REBOOT forces the Host PC to perform
a warm boot just as if it had been physically rebooted with the CTRL

ALT DEL sequence.

NOTE: If this field is set to REBOOT, the Host PC will not neces-
sarily reload BHOST—you must specify BHOST in the Host PC’s
AUTOEXEC.BAT file to insure that the Host PC will be ready to
answer incoming calls.

DCD Loss Response RESTART
REBOOT [IGNORE]

Specifies the Host PC’s actions if the modem’s Data Carrier Detect
(DCD) signal is lost during a session.

RESTART – restarts BHOST after DCD loss and prepares for the
next caller. This is the recommended setting if you are using a mo-
dem and have an appropriate connection between the system and
modem.

REBOOT – reboots the Host PC after DCD loss. Note that, with this
setting, BHOST will not necessarily be reloaded. If BHOST is not
loaded from the Host PC’s AUTOEXEC.BAT file, the Host PC will
remain at the DOS prompt when rebooted.
316 CHAPTER EIGHTEEN

IGNORE – ignores DCD loss. In order for BHOST to detect DCD
Loss through an external modem, the modem cable must support the
DCD signal. All standard modem cables support this signal.

IMPORTANT: If DCD Loss Response is set to IGNORE and carrier is lost during
a session, the Host PC modem may reset itself immediately, even
though BHOST is not ready to process incoming calls. In this case,
BHOST will not restart and the Host PC will not be able to process
incoming calls until the Logon T/O or Inactivity T/O takes effect.

Host Keyboard [ON] OFF

Enables/disables the Host PC’s keyboard. If this field is set to OFF
when BHOST is started, the Host Keyboard is completely disabled;
to regain control of the keyboard, you must reboot the Host PC or
change this setting remotely. The Control PC may still initiate Chat
Mode with the Host PC; in this case, the Host keyboard is enabled
for the duration of the Chat.

IMPORTANT: If Host Keyboard is set to OFF and BHOST is started from the
Host PC’s AUTOEXEC.BAT, the Host PC’s keyboard will remain
disabled, even after rebooting. If this situation occurs, dial into the
Host PC and change the Host Keyboard setting through
SETBHOST.

This feature prevents unauthorized interference with a Control ses-
sion.

Host Mouse [ON] OFF

Enables/disables the Host PC’s mouse. When this field is set to OFF,
the Host mouse is completely disabled, preventing unauthorized in-
terference with a session.

Host Screen [ON] OFF

Enables/disables the Host PC’s screen. When this field is set to OFF,
the Host screen is completely disabled when BHOST is started, pre-
venting anyone from seeing what is being sent to the Control PC’s
display.

When Host Screen is set to OFF, the Control PC may still initiate
Chat Mode with the Host PC; in this case, the Host screen is enabled
for the duration of the Chat.
REMOTE CONTROL 317

IMPORTANT: If Host Screen is set to OFF and BHOST is started from the Host
PC’s AUTOEXEC.BAT, the Host PC’s screen will remain disabled
even after rebooting. If this situation occurs, try typing BHOST /k
at the DOS prompt (you will not be able to see the characters on the
screen). If that does not work, dial into the Host PC and change the
Host Screen setting through SETBHOST.

Host Printer [NONE] LPT1 LPT2 LPT3

Specifies the Host PC printer to be used during a session. BHOST
will monitor the printer port you specify here and redirect printing
to the locations listed in the Printer(s) Enabled field. If you plan to
print during a session, set this field to the Host PC’s printer port. You
may notice a slight performance decrease. If you do not plan to print
during a session, set this field to NONE.

Printer(s) Enabled [NONE]
CONTROL HOST BOTH

Specifies which printers will be active during a session. When an ap-
plication issues a print command, the command will be executed on
the printers specified here. Note that the Host Printer field must be
set properly for this field to work.

NONE – printing is disabled.

CONTROL – enables only the Control PC’s default printer.

HOST – enables only the Host PC’s printer as specified in the Host
Printer field.

BOTH – enables both Host and Control printers.

Session Command Window
If you are in Terminal mode, you may alter the BHOST session pa-
rameters via the Session Command window (Figure 18-4, next
page). To open the Session Command window from Terminal mode,
press ESC CTRL M. Commands are entered as lines of text using the
following format:

parameter_command=value

where parameter_command is one of the parameter commands
listed in the table below and value is a valid setting for the param-
eter (see preceding section for setting options).
318 CHAPTER EIGHTEEN

To check the current value of a session parameter, simply type the
parameter_command for the parameter. For example, to display
the current value for the Host Keyboard parameter, type:

keyboard

To see the values for all session parameters, type:

settings

Each parameter will be listed along with its current value. The fol-
lowing commands are available:

Parameter Command Parameter
DCDResp DCD Loss Response
Inactimo Inactivity T/O
Keyboard Host Keyboard
Mouse Host Mouse
Print Printer(s) Enabled
PMouse Precision Mouse
Printer Host Printer
Screen Host Screen
Scale Scaling Ratio
Scan Scan Interval
SKeyboard Special KBD Mode
Sync Sync Mode
TimoResp Timeout Response

To close the Session Command window, press ESC.

FIGURE 18-4
REMOTE CONTROL 319

320 CHAPTER EIGHTEEN

Appendix A

Error Messages

Introduction

The following is a list of BLAST error codes and a brief description
of the cause of each error. Some error messages for other versions of
BLAST are included in this list. Even though the codes may not ap-
ply to the version running on the local computer, they may occur on
the remote system. Wording of messages may vary slightly depend-
ing on the version of BLAST.

BLAST Protocol Functions

20 loss of carrier during protocol logon
21 logon timeout

(A BLAST protocol session was not established within
the time specified by the BLAST protocol Logon
Timeout. See Logon Timeout setup field on page 87
for details.)

22 console interrupt
(The ATTN key was typed)

23 connect timeout
ERROR MESSAGES 321

24 error in processing command file
25 cannot start protocol on remote system
26 Filetransfer terminated by remote system

(The remote system timed out during a BLAST protocol
session or the remote operator pressed the ATTN key.)

27 attempt to connect with an incompatible private net-
work
(There are special versions of BLAST that are limited
to use within a particular network of systems. Use of
these special versions outside of the network or use of
a standard BLAST version within the network will
give this message.)

29 connection control string timeout
30 loss of carrier during protocol connection

Transfer File Management

31 error-free file not found, or cannot be accessed
(Often occurs because the file or directory does not
have read permission.)

32 error-free file cannot be created
(Often occurs because the file or directory does not
have write permission.)

33 error-free file cannot be deleted
(Check permissions on the directory.)

34 error occurred while closing the error-free file
(This error occurs whenever BLAST cannot close an
open file during Filetransfer mode.)

35 cannot position within the error-free file
(This error occurs when BLAST cannot close an open
file during Filetransfer mode.)

36 error occurred while reading the error-free file
37 error occurred while writing to the error-free file

(Running out of disk space is a common cause of this
error.)

38 size conflict
39 filename is too long or invalid
40 a file already exists with that name
41 error reading file directory

(Check the permissions of the directory.)
42 error writing to disk; disk is full
48 permission denied

(Your user profile on a multi-user system or the file at-
tributes do not permit the current BLAST operation.)

49 transfer not allowed
322 APPENDIX A

Utility File Management

51 error opening a data file
52 error creating a data file
53 error deleting a data file
54 error closing a data file
55 error positioning within a data file
56 error reading from a data file
57 error writing to a data file
58 error in the size of a data file
59 error renaming a data file
60 BLASTDIR is invalid
61 SETUPDIR is invalid
62 OPTDIR is invalid

Scripting

65 script variable is READ-only; can’t be set
66 user-defined script error command
67 cannot find entry in modems.scr or systems.scr
68 no matching label for GOTO
70 error executing command.com
71 all local commands complete
72 invalid switch specified
73 cannot overwrite or append
74 unknown file type
75 file already exists
76 too many open scripts
77 cannot load setup
78 setup already exists or cannot be created
79 not a valid directory
80 no setups found
81 no setup has been selected
82 upload cancelled
83 8-bit protocol requires an 8-bit channel; switching to

7-bit
84 packet size is too large; packet size too small for Ac-

cess
85 remote control terminated by remote system
86 incompatible video mode
88 cannot initialize emulator
89 error printing, cannot open file
90 error processing a command file
ERROR MESSAGES 323

Initialization

100 error allocating memory from the BLAST memory
pool

101 environment variable TERM is too large
102 cannot extract control strings from terminal informa-

tion database
(The TERM environment variable is not defined or the
specified terminal type in TERM is incorrect.)

103 terminfo control string is too large
104 environment variable TERM is empty

(Set the TERM environment variable. Depending on
operating system, you may have to “export” TERM.)

105 error allocating memory from the system
108 cannot load specified setup file

(The setup file specified does not exist in either the
current directory or the directory specified by the
SETUPDIR environment variable.)

109 error in processing translate table update file
110 usage error
111 cannot execute a child process
112 error creating a pipe
113 cannot fork
117 cannot ioctl () the console port
118 cannot open the console port
119 cannot ioctl () the communications port
120 cannot open the communications port

1) You may have selected an invalid communications
port.

2) Check the physical connection to the port. Make
sure that the port specified is the actual port set up
for communications.

3) The port may be in use or may not have been re-
leased by another system process. Reboot the com-
puter and load only BLAST to test the physical
connection.

4) The computer may be using an interrupt
and/or base address that is not standard. Edit the
BLAST.OPT to include proper address and IRQ.

5) The hardware flow control (RTS/CTS) or Carrier
Detect signals may not be configured to handle the
port signals directly.

6) Other applications may not have closed all ports
when exiting. From the :\BLAST directory, type
“blast /i” so that BLAST bypasses any checking of
ports done by other applications.
324 APPENDIX A

121 a lock file exists for the communications port
(Check the \usr\spool\uucp and/or \user\spool\locks
directories for a LCK.Portname file. Delete the lock
file if appropriate. This is a System Administrator
function.)

122 error in terminal definition
123 function not available in background mode
127 control pipe io error
128 unexpected signal
133 network error occurred
134 BLASTNMP.EXE not loaded
135 network drivers not loaded

(If using TCP/IP, be sure that the name of the TCP/IP
TSR matches the one specified in BLAST.OPT.)

210 compression error
253 internal error

Script Processor

300–399 syntax error in command
400 too many strings

Network

502 fatal network error; BHOST terminated
ERROR MESSAGES 325

326 APPENDIX A

Appendix B

Key Definition Charts

BLAST Keys

Local BLAST functions are controlled by the following keys. They
can be remapped with the BLAST Keyboard Utility, BLASTKBD
(see “Keyboard Mapping Utility” on page 296). “EXT” indicates
keys in the extended area of the keyboard, such as the numeric key-
pad.

Function PC Key 1 PC Key 2
Cursor Up UP (↑) EXT UP

Cursor Down DOWN (↓) EXT DOWN

Cursor Left LEFT (←) EXT LEFT

Cursor Right RIGHT (→) EXT RIGHT

Home HOME EXT HOME

End END EXT END

Page Up PGUP EXT PGUP

Page Down PGDN EXT PGDN

Esc ESC

Del Char DEL EXT DEL

Insert Mode INS EXT INS

Help F1
KEY DEFINITION CHARTS 327

Attention Key Sequences
Attention Key sequences are only active from Terminal mode. The
sequences cannot be remapped, but the Attention key can be rede-
fined by entering a new setting in the Attention Key setup field (page
72).

ATTN ATTN Return to the Online menu.

ATTN B Send a break signal (also interrupts an active
BLAST script).

ATTN C Toggle Capture mode on or off.

ATTN E Start BLASTKBD, the BLAST keyboard remap-
ping utility, with the current emulator selected.

ATTN H Display Online Help.

ATTN M Start BLASTKBD, the BLAST keyboard remap-
ping utility.

ATTN N Reset XON/XOFF Pacing.

ATTN P Toggle printer logging on or off.

ATTN R Reset the elapsed time clock.

ATTN S Stop the elapsed time clock.

ATTN 0 – 9 Start a BLAST Soft Key (digit is the Soft Key num-
ber).

Hot Keys
BLAST features Hot Keys for accessing certain functions from Ter-
minal, Filetransfer, and Access modes. Not all functions are avail-
able from all modes (see chart below). Hot Keys are essentially
macros that activate BLAST menu commands and return you to
your starting point with just a few keystrokes. For example, in Ter-
minal mode, typing ALT F starts Filetransfer mode and automatically
returns you to Terminal mode when file transfer is completed.

Hot Keys are not available while BLAST scripts are running. To
make Hot Keys active after an automated logon, be sure that the
script command after TERMINAL is either QUIT or RETURN. You
can remap Hot Keys with BLASTKBD, the BLAST keyboard
remapping utility (see “Keyboard Mapping Utility” on page 296).
328 APPENDIX B

Function Key Available Mode
Background ALT H Always (if /b)
Abort BLAST ALT X Terminal
Connect ALT C Terminal
Disconnect ALT D Terminal
Capture ALT O Terminal
Learn ALT R Terminal
Select setup ALT S Terminal
Modify setup ALT M Terminal
New setup ALT N Terminal
Access ALT A Terminal
Local Edit ALT E Terminal, FT
Local Print * Terminal, FT
Local Type * Terminal, FT
Local List ALT L Terminal, FT
Local View * Terminal, FT, Access
Local System * Terminal, FT, Access
Filetransfer ALT F Terminal, Access
Remote Reboot * Access
Snapshot * Access
Chat * Access
Parameters * Access
Record * Access

FT=Filetransfer

* To avoid potential conflicts during remote control sessions, these
keys do not have default values. When you assign keys through the
BLAST keyboard mapping utility, BLASTKBD, remember that the
values you pick will not be available to the Host PC programs during
remote control sessions.

Terminal Emulation Keys

Press ATTN E or ATTN M from Terminal mode to view the
BLASTKBD screen for these emulators (see “Terminal Emulation”
on page 287).
KEY DEFINITION CHARTS 329

DEC VT320 and VT220 Keys
Function PC Key
Backspace CTRL BACKSPACE

Del BACKSPACE

Cursor Up UP
Cursor Down DOWN
Cursor Left LEFT
Cursor Right RIGHT
Keypad 0 – 9 KEYPAD 0 – 9
Keypad - KEYPAD -

Keypad , KEYPAD *

Keypad Enter Key KEYPAD +

Keypad . KEYPAD .

PF1 – PF4 F1 – F4

Hold Screen F5

Print Screen ALT P

Toggle Auto Print CTRL PRTSC

Scroll Left CTRL LEFT

Scroll Right CTRL RIGHT

Scroll Mode (not mapped)
Find INS

Ins Here HOME

Remove PGUP

Select DEL

Prev Screen END

Next Screen PGDN

F6 – F12 F6 – F12

F13 – F20 ALT F3 – ALT F10

Help ALT F5

Do ALT F6

Shift 6 – F12 SHIFT F6 – F12

Shift F13 – F20 CTRL F3 – F10
330 APPENDIX B

DEC VT100 and VT52 Keys
Function PC Key
Backspace CTRL BACKSPACE

Del BACKSPACE

Cursor Up UP
Cursor Down DOWN
Cursor Left LEFT
Cursor Right RIGHT
Keypad 0 – 9 KEYPAD 0 – 9
Keypad - KEYPAD -
Keypad , KEYPAD *
Keypad Enter Key KEYPAD +

Keypad . KEYPAD .
PF1 – PF4 F1 – F4

Hold Screen F5

Print Screen ALT P

Toggle Auto Print CTRL PRTSC

Scroll Left CTRL LEFT

Scroll Right CTRL RIGHT

Scroll mode (not mapped)

ANSI Keys
Function PC Key
Backspace BACKSPACE

Del DEL

Cursor Up UP

Cursor Down DOWN

Cursor Left LEFT

Cursor Right RIGHT

PF1 – PF4 F1 – F4
KEY DEFINITION CHARTS 331

Data General D461, D411, D410, D200 Keys
Function PC Key
Newline ENTER

CR CTRL ENTER

Break ALT 255

Del BACK

Erase EOL KEYPAD -

Erase Page DEL

Cursor Up UP

Shift Up CTRL UP

Cursor Down DOWN

Shift Down CTRL DOWN

Cursor Left LEFT

Shift Left CTRL LEFT

Cursor Right RIGHT

Shift Right CTRL RIGHT
Cursor Home KEYPAD 5

Shift Home CTRL KEYPAD 5

Print Window KEYPAD *

Print Form ALT P

Local Print ALT T

SPCL ALT Q

Hold ALT Z

Send Graphics Cursor ALT G

C1 HOME

C2 PGUP

C3 END

C4 PGDN

Shift C1 CTRL HOME

Shift C2 CTRL PGUP

Shift C3 CTRL END

Shift C4 CTRL PGDN

F1 – F12 F1– F12

F13 – F15 ALT 3 – 5

Shift F1 – F12 SHIFT F1 – F12

Shift F13 – F15 ALT 23 – 25

Ctrl F1 – F12 CTRL F1 – F12

Ctrl F13 – F15 ALT 13 – 15

Ctrl Shift F1 – F12 ALT F1 – F12

Ctrl Shift F13 – F15 ALT 33 – 35
332 APPENDIX B

WYSE60, WYSE50, TV920, D80, and ADM3A Keys
Function PC Key
Backspace CTRL BACK

Del BACK

Enter ENTER

Return KEYPAD +

Back Tab SHIFT TAB

Print ALT P

Send ALT B

Scroll Lock ALT Z

Unlock Kybd ALT U

Cursor Up UP

Cursor Down DOWN

Cursor Left LEFT

Cursor Right RIGHT

Home HOME

Shift Home CTRL HOME

Page Up PGUP

Page Down PGDN

Clear Line END

Clear Screen CTRL END

Del Char DEL

Del Line CTRL DEL

Ins Char INS

Ins Line CTRL INS

Ins/Replace ALT I

F1 – F12 F1 – F12

F13 – F16 CTRL F3 – CTRL F6

Shift F1 – Shift F12 SHIFT F1 – SHIFT F12

Shift F13 – Shift F16 (not mapped)
KEY DEFINITION CHARTS 333

HP2392 Keys
Function PC Key
Soft Reset ALT 1

Hard Reset ALT 2

Backtab SHIFT TAB

Return ENTEr
Enter KEYPAD +

Home Up HOME

Home Down CTRL HOME

Cursor Up UP

Cursor Down DOWN

Cursor Left LEFT

Cursor Right RIGHT

Roll Text Down CTRL DOWN

Roll Text Up CTRL UP

Next Page PGDN

Previous Page PGUP

Insert Mode INS

Delete Char DEL

Insert Line CTRL INS

Delete Line CTRL DEL

Clear Display END

Clearline CTRL END

F1 – F8 F1 – F8

User Defined Keys F9

User Sys Keys F10

Default User Keys SHIFT F10
334 APPENDIX B

IBM3101 Keys
Function PC Key
PF1 – PF8 ALT F1 – F8

Cursor Home HOME

Cursor Up UP

Cursor Down DOWN

Cursor Left LEFT

Cursor Right RIGHT

Ins Char INS

Ins Line KEYPAD 0

Del Char DEL

Del Line KEYPAD .

Erase EOS F4

Clear SHIFT F4

Erase EOF/EOL F2

Erase Input SHIFT F2

Print F7

Print Msg F5

Print Line SHIFT F5

Aux SHIFT F7

Send F10

Send Msg F6

Send Line SHIFT F6

Newline KEYPAD +

Back Tab SHIFT TAB

Del Key CTRL HOME

Reset F9

Cancel SHIFT F9

Prgm Mode SHIFT F1

Attr Mode F1

DS: Mode ALT 1

DS: LTA ALT 2

DS: Null Supp ALT 3

DS: Auto NL ALT 4

DS: Auto LF ALT 5

DS: CR or CRLF ALT 6

DS: Scroll ALT 7
KEY DEFINITION CHARTS 335

336 APPENDIX B

Appendix C

Troubleshooting
Problems in quotations are error messages.

Installing BLAST

“Invalid serial number”

The serial number consists of two capital letters followed by ten dig-
its. Make sure that the number is being entered correctly. The serial
number printed on the BHOST diskette will not be accepted as a
BLAST serial number.

The 132-column mode isn’t recognized.

Consult the documentation for your video adapter to find the mode
number (a two-digit hexadecimal value) for 132-column support.
Enter this number at the prompt.

Modem type isn’t listed.

Use the “AT” modem type. Consult the modem’s documentation for
the form of flow control supported by the modem and choose setup
parameters accordingly.
TROUBLESHOOTING 337

Starting BLAST

“Copy protection error ”

If you receive this error on initial startup, reinstall the software, be-
ing careful to complete the entire installation—do not abort the pro-
cess at any point.

“Can’t load setup”

Check SETUPDIR. Setup files should have the required extension
.SU; make sure that the file you want to load has the correct name.

“Can’t open script file”

Check the path in the setup file or on the command line.

“Can’t find ... in MODEMS.SCR (or SYSTEMS.SCR)”

The BLAST support file has been modified but not re-indexed.

Going Online

“Can’t open the communications port”

Other communications software may be running on the same com-
munications port that BLAST is attempting to use. Remove any
TSRs (such as BHOST or resident fax software). Try starting
BLAST with the /i switch (page 11).

“Illegal menu selection”
There is an error in the startup script. Check the setup for the name
of the script, and examine the script for errors.

“Can’t connect to the remote system”

Check the setup for correct settings for Communications Port, Baud
Rate, Data/Stop Bits, Parity, Modem Type, and System Type. If mo-
dem initialization strings are not seen on the screen, check cable and
modem power.

“Modem is not responding”

Check the communications port setting in the setup, the modem ca-
ble, and modem power. For internal modems, make sure that a
unique IRQ and base address has been specified for the port in
338 APPENDIX C

BLAST.OPT. Check that the modem is set to respond to “AT” com-
mands with English language responses.

If you are running Windows, you can check your base address and
IRQ number by doing the following:

◊ In Control Panel, double-click on System to open the System
Properties window.

◊ Select the Device Manager tab.

◊ Locate and double-click on the commport you want to check.

◊ Click on the Resources tab.

◊ The first number in the “Input/Output Range” is the base ad-
dress. The “Interrupt Request” number is the IRQ number.

If your modem is plug-and-play, you may not see a commport listing
for it in Device Manager. If not, you may get your base address and
IRQ number by doing the following:

◊ In Control Panel, double-click on Modems to access the Mo-
dem Properties window.

◊ Select the Diagnostic tab.

◊ Locate your modem in the list and highlight the commport op-
posite your modem type.

◊ Click on the “More Info” button to get the base address and IRQ
number.

After getting your base address and IRQ number, make sure there
are no conflicts and that your BLAST.OPT file reflects the correct
settings. Remember that, if your IRQ number is higher than 9, you
will need to give the hexadecimal equivalent in your BLAST.OPT
file (see “BLAST.OPT Settings” on page 20).

If your modem is still not responding, you may have a Winmodem,
which DOS BLAST does not support. Check with your modem doc-
umentation to find out if your modem is a Winmodem. If it is, you
will need to use a different modem or upgrade your BLAST to our
Windows product, Data Pump, which will work with Winmodems.
TROUBLESHOOTING 339

Network connection timeout.

Check network drivers for compatibility (see “BLAST Network
Drivers” on page 28).

File Transfer

“Can’t log on with remote system”

Make sure you are using the correct protocol. If you are connecting
to a multi-user host, such as a UNIX-based computer, you may have
to start BLAST on the remote system in order to perform filetrans-
fers. Consult the system administrator of the remote system for the
proper command.

“Copy protection error”

If you receive this error during file transfer, it means that BLAST
has encountered the same serial number on both the local and remote
computers. It is illegal to run the same copy of BLAST on more than
one computer.

Unable to perform remote commands

The remote system may have disabled access to remote commands.
Consult the system operator of the remote system.

All filetransfer requests are ignored

Make sure that parity and data/stop bits settings match on both sides
of the connection. Check that the 7-Bit Channel setup field in the
BLAST protocol subwindow matches the setting on the remote sys-
tem.

Too many retries

Make sure that flow control (XON/XOFF or RTS/CTS) is set cor-
rectly between each computer and its modem. If modem-based error
control is available, make sure that it is being used.
340 APPENDIX C

 D – decimal; H – hexadecimal; O – octal; M – mnemonic

Appendix D

The ASCII Character Set
D H O M
 0 00 00 nul
 1 01 01 soh
 2 02 02 stx
 3 03 03 etx
 4 04 04 eot
 5 05 05 enq
 6 06 06 ack
 7 07 07 bel
 8 08 10 bs
 9 09 11 ht
10 0A 12 lf
11 0B 13 vt
12 0C 14 ff
13 0D 15 cr
14 0E 16 so
15 0F 17 si
16 10 20 dle
17 11 21 dc1
18 12 22 dc2
19 13 23 dc3
20 14 24 dc4
21 15 25 nak
22 16 26 syn
23 17 27 etb
24 18 30 can
25 19 31 em
26 1A 32 sub
27 1B 33 esc
28 1C 34 fs
29 1D 35 gs
30 1E 36 rs
31 1F 37 us

D H O M
32 20 40 space

33 21 41 !
34 22 42 ”
35 23 43 #
36 24 44 $
37 25 45 %
38 26 46 &
39 27 47 ’
40 28 50 (
41 29 51)
42 2A 52 *
43 2B 53 +
44 2C 54 ,
45 2D 55 -
46 2E 56 .
47 2F 57 /
48 30 60 0
49 31 61 1
50 32 62 2
51 33 63 3
52 34 64 4
53 35 65 5
54 36 66 6
55 37 67 7
56 38 70 8
57 39 71 9
58 3A 72 :
59 3B 73 ;
60 3C 74 <
61 3D 75 =
62 3E 76 >
63 3F 77 ?

D H O M
64 40 100 @
65 41 101 A
66 42 102 B
67 43 103 C
68 44 104 D
69 45 105 E
70 46 106 F
71 47 107 G
72 48 110 H
73 49 111 I
74 4A 112 J
75 4B 113 K
76 4C 114 L
77 4D 115 M
78 4E 116 N
79 4F 117 O
80 50 120 P
81 51 121 Q
82 52 122 R
83 53 123 S
84 54 124 T
85 55 125 U
86 56 126 V
87 57 127 W
88 58 130 X
89 59 131 Y
90 5A 132 Z
91 5B 133 [
92 5C 134 \
93 5D 135]
94 5E 136 ^
95 5F 137 -

D H O M
96 60 140 ‘
97 61 141 a
98 62 142 b
99 63 143 c
100 64 144 d
101 65 145 e
102 66 146 f
103 67 147 g
104 68 150 h
105 69 151 i
106 6A 152 j
107 6B 153 k
108 6C 154 l
109 6D 155 m
110 6E 156 n
111 6F 157 o
112 70 160 p
113 71 161 q
114 72 162 r
115 73 163 s
116 74 164 t
117 75 165 u
118 76 166 v
119 77 167 w
120 78 170 x
121 79 171 y
122 7A 172 z
123 7B 173 {
124 7C 174 |
125 7D 175 }
126 7E 176 ~
127 7F 177 del
THE ASCII CHARACTER SET 341

The chart below is a list of the standard ASCII control codes—with the decimal, hexa-
decimal, and octal values; the ASCII mnemonic; the key sequence, and a short expla-
nation.

D H O M Sequence Explanation
0 00 00 nul <ctrl> @ used for padding
1 01 01 soh <ctrl> A start of header
2 02 02 stx <ctrl> B start of text
3 03 03 etx <ctrl> C end of text
4 04 04 eot <ctrl> D end of transmission
5 05 05 enq <ctrl> E enquire
6 06 06 ack <ctrl> F positive acknowledgement
7 07 07 bel <ctrl> G audible alarm
8 08 10 bs <ctrl> H backspace
9 09 11 ht <ctrl> I horizontal tab
10 0A 12 1f <ctrl> J line feed
11 0B 13 vt <ctrl> K vertical tab
12 0C 14 ff <ctrl> L form feed
13 0D 15 cr <ctrl> M carriage return
14 0E 16 so <ctrl> N shift out
15 0F 17 si <ctrl> O shift in
16 10 20 dle <ctrl> P data link escape
17 11 21 dcl <ctrl> Q device control 1 (resume output)
18 12 22 dc2 <ctrl> R device control 2
19 13 23 dc3 <ctrl> S device control 3 (pause output)
20 14 24 dc4 <ctrl> T device control 4
21 15 25 nak <ctrl> U negative acknowledgement
22 16 26 syn <ctrl> V synchronization character
23 17 27 etb <ctrl> W end of text block
24 18 30 can <ctrl> X cancel
25 19 31 em <ctrl> Y end of medium
26 1A 32 sub <ctrl> Z substitute
27 1B 33 esc <ctrl> [escape
28 1C 34 fs <ctrl> \ frame separator
29 1D 35 gs <ctrl>] group separator
30 1E 36 rs <ctrl> ^ record separator
31 1F 37 us <ctrl> _ unit separator

D – decimal; H – hexadecimal; O – octal; M – mnemonic
342 APPENDIX D

Appendix E

Autopoll

The Autopoll Script

BLAST features Autopoll, a sample script that allows your unat-
tended system to call a series of remote computers and exchange in-
formation. Autopoll performs the following tasks:

◊ reads a list of sites to be polled,

◊ connects to each site,

◊ executes a transfer command file to transfer files,

◊ disconnects,

◊ scans the log file to determine which transfers were successful,

◊ builds retry files as required,

◊ and adds the results to a status file.
AUTOPOLL 343

Autopoll checks carefully for errors while polling. If an error is
found, the problem site is scheduled to be retried. Only the file trans-
fer commands that failed are attempted again.

Installing Autopoll

Autopoll consists of eight scripts that were copied into your BLAST
directory when the BLAST program was installed on your system.
The scripts are:

autopoll.scr – master script.
autoinit.scr – initializes variables and files.
autoierr.scr – reports initialization errors.
autodisp.scr – draws screen displays.
autoline.scr – reads site information.
autopsnd.scr – checks log for status of SENDs.
autoprcv.scr – checks log for status of GETs.
autoparx.scr – updates status files.

The scripts may be moved to any convenient directory in your sys-
tem. For instance, you could segregate Autopoll from other BLAST
files by creating a poll directory:

cd c:\blast
mkdir poll
move auto*scr poll

In addition to these script files, you must have a BLAST setup called
“autopoll” located in the BLAST Setup Directory. It must include a
valid communications port and other connection information such as
modem type and baud rate. You may also specify the script
autopoll.scr in the Script File field of the setup, simplifying the com-
mand line to start Autopoll.

Starting Autopoll

Autopoll must be started from the directory in which the Autopoll
scripts and support files (site and transfer command files) are found.
If BLAST.EXE is not in this directory, you need to add the full path
for BLAST.EXE to your PATH or give the full path in the command
line. If autopoll.scr has been entered in the Script File field of
the autopoll setup, the format for invoking Autopoll from the com-
mand line is:
344 APPENDIX E

blast autopoll max_cycles site_file [start_time]

If autopoll.scr has not been entered in the Script File field of
the setup, the command line must explicitly include the script:

blast autopoll /sautopoll.scr max_cycles site_file [start_time]

The command line parameters have the following meaning:

autopoll the autopoll setup.

/sautopoll.scr the autopoll script.

max_cycles the maximum number of attempts to com-
plete all specified transfers.

site_file the filename “stub” (the part of the filename
before the extension) of the site description
file.

[start_time] [optional] the time, in 24-hour format, that
Autopoll will begin polling. The WAIT
UNTIL command in BLASTscript requires
the 24-hour format. If this parameter is omit-
ted, Autopoll begins polling immediately.

[TRACE] [optional] the command to enable a capture
file of the entire polling session. The capture
file contains the text of login dialogs, modem
initialization commands, and so forth. This
feature is used primarily for troubleshooting.

Here are some example command lines:

blast autopoll 3 retail 10:45
blast autopoll 2 daily 1:05 TRACE

In the first example, a maximum of three attempts will be made to
poll the sites listed in the site file retail.dat starting at 10:45 am. No-
tice that the command line specifies just the stub “retail” of the site
filename retail.dat. (Autopoll appends a variety of extensions to the
filename stub to specify the names of special files.)

In the second example, a maximum of two attempts will be made to
poll the sites listed in the site file daily.dat starting at 1:05 am, and a
trace of the polling session will be made.
AUTOPOLL 345

The Site File

The site file is the “master list” of information about the sites to be
polled. Site files may use any valid filename, but the extension must
be .dat. Each line in the site file holds the parameters needed to con-
nect to and transfer files to and from one site. Each line, or site
record, consists of five fields separated by exclamation marks, also
called “bangs,” in the form:

setup_name!site_name!phone_number!baud_rate!TCF_name

where

setup_name specifies a setup to be used for polling. If
omitted, the field defaults to autopoll.

site_name contains a descriptive label for the site. If
omitted, the field defaults to the Description
field of setup_name.

phone_number specifies the phone number to be used for the
site. If omitted, Autopoll uses the Phone
Number field of setup_name.

baud_rate specifies the baud rate to be used for this site.
If omitted, Autopoll uses the Baud Rate field
of setup_name.

TCF_name specifies the transfer command file (TCF) to
be used for this site. If omitted, this field de-
faults to autopoll.tcf.

Each line must contain four bangs. Any fields that are to be skipped
must be indicated by consecutive bangs (!!). Blank lines and lines
beginning with a space, tab, or pound sign (#) will be skipped, so
you may freely comment your site file using these characters. Lines
may not exceed 100 characters in length. Some example record lines
are as follows:

[the ruler is shown to indicate column position]

1 10 20 30 40 50
|...|....|....|....|....|....|....|....|....|....|
!Blaster!1(919)542-0939!!
store06!!!!nightly.tcf
NewYork!Albany!782-8311!19.2!ny.tcf
346 APPENDIX E

In the first site record, no setup is specified, so autopoll.su will be
loaded. The site name will be “Blaster,” overriding the Description
field of the setup. The phone number will be 1(919)542-0939. The
baud rate will be taken from the setup because that field is blank, and
the transfer command file will default to autopoll.tcf.

In the second record, the setup store06.su will be loaded. The site
name, phone number, and baud rate will default to the values given
in store06.su. The transfer command file will be nightly.tcf.

In the last record, the file NewYork.su will be loaded. The site name
will be “Albany,” the phone number will be 782-8311, the baud rate
will be set to 19.2 kbps, and the transfer command file will be ny.tcf.

Transfer Command File

Autopoll uses a standard transfer command file (TCF) to specify
files to be sent and received. You may use a unique TCF for each site
listed in your site file, or you may use one TCF for multiple sites.
For a complete description of the Transfer Command File, see
“Transfer Command File” on page 117.

IMPORTANT: Autopoll treats wildcards and remote commands (such as remote
print and remote rename) as “try once” specifications. These trans-
fers and commands are attempted during the first cycle only. Even
if errors occur, Autopoll does not attempt the transfers or commands
again. For this reason, wildcards and remote commands should be
used with caution.

Overview of Autopoll Script Actions

A brief overview of the basic actions of the autopoll scripts follows
to give users a clearer understanding of the Autopoll process. Much
of the error checking, which comprises most of the scripts, is not in-
cluded.

1. Autopoll.scr starts, reads the command line parameters, and
puts them into variables.

2. If an error is found, autopoll.scr calls autoierr.scr, which reports
errors and terminates the Autopoll session.
AUTOPOLL 347

3. If no errors are found, autopoll.scr calls autoinit.scr, which ini-
tializes variables and files. Specifically, using the stub of the
site file, autoinit.scr sets variables that allow Autopoll to create
retry and summary files and to find stop and banner files (see
“Other Files Using the Filename Stub” on page 351) to be used
in the Autopoll session. Autoinit.scr then returns control to
autopoll.scr.

4. Autopoll.scr calls autoline.scr, which reads and interprets the
site file line by line for @SYSDESC, @PHONENO, @WORKTCF,
and @LOGFILE and returns control to autopoll.scr.

5. Autopoll.scr calls autodisp.scr, which displays on-screen status
information during polling and then returns control to
autopoll.scr.

6. Autopoll.scr uses variables gleaned from the site file by
autoline.scr to begin file transfer of the first site. After it fin-
ishes the first filetransfer session, autopoll.scr loops back to call
autoline.scr to get information for the next filetransfer session
until it finishes attempting the complete cycle of file transfers.

7. Autopoll.scr calls autoprcv.scr and autosnd.scr to check the er-
ror-free log file for errors generated in the filetransfer sessions.

8. Autopoll.scr calls autoparx.scr to update the screen and status
file.

9. If more than one cycle is designated in the command line,
autopoll.scr uses the updated status file to retry any files that
failed in the first cycle.

10. Steps 7–9 are repeated until all files have been successfully

transferred or until the number of cycles designated in the com-
mand line has been completed.

11. Autopoll.scr quits

NOTE: Autopoll.scr also calls any userscripts that may be created.
See the section “User-Supplied Scripts” on page 355 for details on
creating these scripts and on the points at which autopoll.scr calls
these scripts.
348 APPENDIX E

Configuration Example

Assume that you have been asked to set up a polling network for a
client who has a central PC and two remote sites running BHOST.
How do you set up Autopoll for this configuration? First, you install
BLAST on the central and remote sites and verify that connections
can be made reliably. This step is best performed interactively, that
is, while you are present at the central system issuing commands di-
rectly to BLAST. When you are satisfied that BLAST is correctly in-
stalled, you need to create the following:

◊ setup files

◊ the site file

◊ transfer command files

The Setup Files
Suppose the sites are configured as follows:

Site name Phone Login, password

Sam’s Discount Mart 542-0307 buz, apollo11
Metro Army Surplus 542-5694 neil, saturn5

Because the logins are different, different BLAST setup files are
needed for each site. The setups, called “sam” and “metro,” are cre-
ated by running BLAST at the central site (see “Creating a New Set-
up” on page 63).

The Site File
Using the setups, you could write a site file named retail.dat:

1 10 20 30 40 50
|...|....|....|....|....|....|....|....|....|....|
 Retail Site List for My Polling Network
sam!Sam's Discount!542-0307!!sams.tcf
metro!Metro Army Surplus!542-5694!!metro.tcf

The first line of the file is treated as a comment because it begins
with a space. The last two lines are the actual site records. In this
case, the site records may be duplicating information already speci-
fied in the Phone Number and Description fields of the setups. If so,
the site records could be simplified:
AUTOPOLL 349

1 10 20 30 40 50
|...|....|....|....|....|....|....|....|....|....|
 Retail Site List for My Polling Network
 (Phone number and Description loaded from setups)

sam!!!!sams.tcf
metro!!!!metro.tcf

The site file now has an additional comment line (five lines altogeth-
er); otherwise it is equivalent to the previous site list.

Transfer Command Files
According to the site list, a transfer command file called sams.tcf
will be executed when Autopoll connects to Sam’s Discount Mart,
and the transfer command file metro.tcf will be executed when
Autopoll connects to Metro Army Surplus.

Suppose you need to get two files from Sam and send one to him.
The file sams.tcf might look like this:

1 10 20 30 40 50
|...|....|....|....|....|....|....|....|....|....|
+c:\buz\acq12.txt c:\client\sam1
+c:\buz\wk_82 c:\client\sam2
c:\tmp\message c:\tmp\read_me/OVW

As explained in “Transfer Command File” on page 117, the “+” sign
in column 1 of a line signifies that BLAST will perform a GET.
Thus, in the file sams.tcf above, BLAST will get c:\buz\acq12.txt
and give it the local filename usr\client\sam1. BLAST will also get
c:\buz\wk_82 and give it the local filename c:\client\sam2. The ab-
sence of a “+” in the last line of the TCF signifies that BLAST will
perform a SEND. Thus, BLAST will send usr\tmp\message and give
it the filename c:\tmp\read_me on the remote system. The added
/OVW switch signifies that BLAST will overwrite an existing file of
the same name on the remote system (see “File Transfer Switches”
on page 114 for more information about filetransfer switches).

Metro.tcf is similar to sams.tcf:

1 10 20 30 40 50
|...|....|....|....|....|....|....|....|....|....|
+c:\neil\acq12.txt c:\client\metro1
+c:\neil\wk_82 c:\client\metro2
c:\tmp\message c:\tmp\read_me/OVW
350 APPENDIX E

Where to Save Autopoll Files
The site file retail.dat and transfer command files sams.tcf and
metro.tcf are created using the BLAST editor and saved as text files
only in the same directory as the Autopoll scripts.

IMPORTANT: Autopoll script files, transfer command files, and site files must be
stored in the same directory, which must be your current working di-
rectory.

Starting Autopoll
With the required files ready, the BLAST command line to start
Autopoll might be:

blast autopoll 3 retail

which specifies a maximum of three attempts to complete the poll-
ing session with retail.dat.

Other Files Using the Filename Stub

Autopoll distinguishes several special files by appending different
extensions to the site filename stub. The extensions for retail.dat are
listed below (next page):

Extension Created by Meaning Example
.dat user (required) Site file retail.dat
.stp user (optional) Stop file retail.stp
.hdr user (optional) Banner file retail.hdr
.log Autopoll Short summary file retail.log
.prn Autopoll Long summary file retail.prn

Site File
The site file (retail.dat) is the master list of information about the
sites to be polled.

Stop File
The stop file (retail.stp) is an optional file the user can create that al-
lows BLAST to exit prematurely but gracefully from a polling ses-
sion. Autopoll checks for the existence of the stop file in the
Autopoll directory before each connection to a site. If the file is
found, the polling session is terminated.
AUTOPOLL 351

For example, suppose you want to halt Autopoll because you have
found out that the files to be transferred to the last 10 sites of a poll-
ing session have been corrupted as a result of an error in database re-
porting. Creating a stop file—a file with the stub of the site file and
the extension “.stp”—will allow BLAST to quit the polling session
gracefully instead of connecting to the last 10 sites.

Since the existence of the stop file—and not its contents—signify to
BLAST that a session should be terminated, the contents of the file
are irrelevant. You can create a file called “retail.stp” using the
BLAST editor. To ensure the completion of future transfers for the
site file, Autopoll deletes the stop file before exiting.

Banner File
The banner file (retail.hdr) is an optional file created by the user. Au-
topoll prints the banner file prior to printing the summary file at the
end of polling. Printing is performed by the BLASTscript LPRINT
command. You might want this file to contain special text or graph-
ics to distinguish the summary file within a large queue of printouts.

Long and Short Summary Files
Autopoll maintains two summary files, a long summary file and a
short summary file. Prepared by Autopoll but not printed, the long
summary file (retail.prn) is helpful for troubleshooting. Printed au-
tomatically at the end of polling, the short summary file (retail.log)
is most helpful when polling goes well because a quick glance will
confirm a successful polling session. The files are saved in the Au-
topoll directory.

A typical short summary file looks like this:

********************* 02/09/96 11:15:29 *********************
Cycle 1
1. FAILED:Sam's Discount < Error transferring 3 file(s). >
2. success: Metro Army Surplus

Cycle 2
 1. success: Sam's Discount
**
Note: check retail.prn for complete session information.
352 APPENDIX E

A typical long summary file looks like this:

02/09/96 **
11:15:33 * Cycle: 1 Site: 1
 *
 * Name: Sam's Discount
 * Phone: 542-0307
 * TCF: sams.tcf
 * Log: C1S001.log
 *
 *———————— SESSION INFORMATION ————————
 * Filetransfer error -8: DCD lost during transfer
 * Error transferring 3 file(s). Log file follows:
 *
 * **** BLAST Professional UNIX 10.7.3 on remote system [uov]
 * LOSS OF CARRIER, ending Filetransfer
 * File transfer interrupted, 12% of file acq12.txt received
 **

02/09/96 **
11:16:30 * Cycle: 1 Site: 2
 *
 * Name: Metro Army Surplus
 * Phone: 542-5694
 * TCF: metro.tcf
 * Log: C1S002.log
 *
 *—————————— SESSION INFORMATION —————————
 * No errors encountered.
 * Log file has been deleted.
 **

02/09/96 **
11:18:49 * Cycle: 2 Site: 1
 *
 * Name: Sam's Discount
 * Phone: 542-0307
 * TCF: C1S001.tcf
 * Log: C2S001.log
 *
 *—————————— SESSION INFORMATION —————————
 * No errors encountered.
 * Log file has been deleted.
 **

02/09/96 **
11:20:41 * Polling complete: all sites polled successfully.
 **

Tips and Tricks

Following are a few tips and tricks to help insure successful execu-
tion of Autopoll:

Keep it Simple

Polling sessions can quickly become complicated if several file
transfers must be performed over a large network of remote sites.
AUTOPOLL 353

Create simple but sensible directory structures to support the polling
network. As a rule of thumb, command files should contain lines no
longer than 80 characters so that they can be easily viewed and edit-
ed on standard terminals.

Go Step by Step

Build your network methodically. It may be worthwhile to set up
only a few remote sites initially and use them to test the features of
Autopoll. Add sites to the network in groups of five or ten, eliminat-
ing problems as you go, until the complete network is installed.

Problems Do Not “Just Go Away”

In a large polling network, it is not uncommon to have problems
with a few remote sites; intermittent problems are especially frus-
trating. Take some time to examine these difficulties carefully be-
cause they can point to problems that actually affect the entire
network. Following are some questions to ask in helping to identify
a problem:

◊ Are the phone lines reliable?

◊ Could fax machines, answering machines, call waiting (or other
phone company services) be interfering with modems making
connections?

◊ Are the modems compatible with each other?

◊ Is BLAST or BHOST being initiated correctly on the remote?

◊ Are the expected files consistently present (on both sides)?

◊ Are directory and file permissions set appropriately?

Tune BLAST Protocol Parameters

Some BLAST protocol parameters, such as the following, can be
tuned for better performance with Autopoll:

Logon Timeout: 20

Inactivity Timeout: 20

DCD Loss Response: ABORT

These settings noted above permit Autopoll to react more quickly to
lost connections than do the default settings. You may also wish to
experiment with compression levels and packet size to find settings
for best throughput. If your remote sites are running BHOST, bear
in mind that the highest compression level supported by BHOST is
354 APPENDIX E

1 unless additional memory is allocated for compression buffers.
Consult the BHOST User Manual for further information.

Modifying Autopoll

Because Autopoll is written in BLAST’s scripting language, it is
easy to customize and is thoroughly commented.

User-Supplied Scripts
The behavior of Autopoll can also be changed by writing one or
more user-supplied scripts. Because Autopoll checks for the exist-
ence of these scripts at various points during execution, the scripts
should be named as shown below. If Autopoll finds a user-supplied
script, the script is executed by the BLASTscript CALL command.
Autopoll tests the value of @STATUS when the called script returns
command to Autopoll; polling continues normally if @STATUS
equals 0; otherwise the site is marked as failed.

User-supplied scripts reside in the same directory as the Autopoll
scripts. They are called at the following points during execution:

autousr0.scr before the first site is polled (polling is aborted if
this script fails).

autousr1.scr before every attempt to CONNECT.

autousr2.scr before every attempt to start FILETRANSFER.

autousr3.scr before every attempt to DISCONNECT.

autousr4.scr before Autopoll terminates.

Because BLASTscript variables are global, a user-supplied script
must not disturb the contents of any variables needed by Autopoll.
The following variables may be changed freely by any user-supplied
script:

@STATUS @EFERROR

@input @temp

@xferok @msg

@start @filename
AUTOPOLL 355

You can also create new variables if you wish. To help prevent con-
fusion, begin new variables with “u”, for example, @uvar2.

File I/O with User-Supplied Scripts
Autopoll opens files specified by file handles 1 through 7 at various
points during execution. The handles have the following functions:

1 read-only current site (or retry) file.

2 utility I/O.

3 utility I/O.

4 utility I/O.

5 write-only complete polling results.

6 write-only retry file for next cycle.

7 write-only brief polling results (printed out).

Any of the handles reserved for utility I/O may be opened by user-
supplied scripts as long as the handles are freed before the scripts re-
turn to Autopoll (i.e., each user script must close its own files). User
scripts may also write to the status files specified by handles 5 and 7

Autopoll closes the standard BLAST log file before calling user-
supplied scripts. If a user script opens a log of its own, the log must
be closed before execution returns to Autopoll.

Sample User-Supplied Script
The following user-supplied script allows a user to create a TCF file
from a directory listing, thereby avoiding the need to know specific
filenames or to use wildcards, which prevent filetransfer retries.

autousr0.scr
#
This script extracts the names of text files from a directory and uses the
names to create a tcf file. Without the user having to know specific
filenames, the script creates a tcf file that will transfer to the remote
system all the text files from a specific directory, thus avoiding the use
of wildcards, which prohibits filetransfer retries.
#
The script returns the following errors:
#
0 - no error
1 - cannot delete file
2 - cannot create/open file
3 - no files found in directory
#
if exist "files.log" ldelete "files.log
if @status not = "0" return 1
set @logfile = "files.log"
llist long "c:\\stinven" # capture dir listing in log file
set @logfile = ""
356 APPENDIX E

if exist "auto.log" ldelete "auto.log"
if @status not = "0" return 1
set @logfile = "auto.log"
set @ustring1 = ".txt" # set strings to find filenames
set @ustring2 = "*"
let @ucount = "0"
fopenr 2, "files.log"
if @status not = "0" return 2
if exist "invent.tcf" ldelete "invent.tcf"
if @status not = "0"
 fclose 2
 return 1
end
fopena 3, "invent.tcf" # create tcf file to writing to
if @status not = "0"
 fclose 2
 return 2
end
.SEARCHLOOP
fread 2, @uline # read log file & extract filenames
if @status = "0"
 strinx @uline, @ustring1
 if @status not = "0"
 let @ucount = @ucount + "1"
 let @uposend = @status + "3"
 strinx @uline, @ustring2
 let @upostart = @status + "8"
 set @ufname = @uline
 strtrim @ufname, @upostart, @uposend
 fwrite 3, "c:\\stinven\\", @ufname, " c:\\newinv\\", @ufname # write file-
 end # names to tcf
 goto .SEARCHLOOP
end
fclose 2
fclose 3
ltype "invent.tcf" # type tcf file for testing
if @ucount = "0" return 3 # no files found - will be aborted
set @logfile = ""
return

This script can be modified to create more than one TCF and to cre-
ate TCFs for the remote system

Configuration Worksheets

The following worksheets may help you organize the large amount
of information needed to set up a polling network successfully.

A. List Machines

List the machines in your polling network. For completeness, in-
clude information for the central site as well.
AUTOPOLL 357

Site Name Phone Modem Type Port BLAST Version System Type

Central

1.

2.

3.

B. Decide on Setups

Decide whether or not different setup files will be needed for each
site. If so, create the setups and list their names. Remember, Auto-
poll loads the setup autopoll.su by default.

Site Name Setup Name

1.

2.

3.

C. Set Up the Remote Sites

Set up the remote sites and test each connection manually. Make
sure the following sequence of keyboard commands work flawless-
ly:

Connect dials the modem and logs in if necessary.

Filetransfer enters BLAST filetransfer.

ESC exits BLAST filetransfer.

Disconnect logs off and hangs up the phone.

D. Create the Site File

Build the entries in the site file with any standard text editor, select-
ing appropriate name(s) for the TCF files.

site filename: __________.dat

Setup Name Phone Baud TCF
358 APPENDIX E

E. Create the Transfer Command Files

List the files to be transferred to and from each site and the direction
of transfer (S=SEND, G=GET). Afterward, write the various TCF
files and put them in the autopoll directory.

Site S/G Remote Name Local Name Options

1.

2.

3.

F. Decide on Cycles

Decide how many cycles to allow for polling and when to start:

Cycles:

Start time:

G. Build the Command Line to Start Autopoll

Use the following format:

blast autopoll /sautopoll max_cycles site_file [start_time]

H. Check Environment Variables

Check the values of BLASTDIR, SETUPDIR, and PATH. When
they are correct, change to the autopoll directory, type in the com-
mand line, and let Autopoll take over!
AUTOPOLL 359

360 APPENDIX E

Appendix F

Glossary

Acknowledgement
Confirmation by the receiving computer to the sender that the trans-
mission of packets is complete and accurate. With BLAST protocol,
the frequency at which acknowledgements are requested may be set
by the user via the ACK Request Frequency setup field (page 90)
and the reserved variable @ACKFREQ (page 240).

Asynchronous
Refers to the mode of data communication that provides a variable
time interval between characters during transmission. The data is
sent at irregular intervals, but each character is preceded by one start
bit and followed by one stop bit. This is the opposite of synchronous
data transmission in which characters are sent at a fixed time inter-
val.

BLASTDIR
The disk directory where BLASTscripts and Online Help files are
stored. BLAST records this directory as part of its installation pro-
cess. You may change your BLASTDIR by running BINSTALL
with the CUSTOM option, by making a BLASTDIR assignment in
GLOSSARY 361

your BLAST.OPT file (page 21), or by setting the BLASTDIR envi-
ronment variable to the value of the new directory (page 8).

BLAST Keys
Keys used for program control, such as CTRL K H for online help (see
“BLAST Keys” on page 298).

BLAST.OPT
The BLAST options file that allows you to customize BLAST’s set-
tings. See “BLAST.OPT” on page 19 for more information.

BLAST Protocol
Also called BLAST session protocol, BLAST’s, Inc., proprietary
sliding-window protocol. BLAST protocol is designed to work over
7-bit and 8-bit connections and is compatible with both software and
hardware flow control. Other features include: simultaneous bi-
directional transfer, adjustable packet and window size, restart from
the point of interruption, data compression, text translation between
systems, and remote file management. For more information on
BLAST protocol, see Chapter 6.

BLASTscript Programming
BLAST’s built-in programming language designed for communica-
tion applications. BLASTscript allows you to automate partially or
totally any communications task you would otherwise do interac-
tively. For more information on BLASTscript, see Chapter 12 (In-
troduction To Scripting) and Chapter 13 (BLASTscript Topics).

Compression
Automatic and systematic reduction of the number of characters sent
during BLAST protocol transfer. By applying a set of compression
rules to the data stream at both ends of a communications link, data
can be reconstructed intact. For more information, see “Compres-
sion Levels” on page 121.

CRC-16
An acronym for Cyclic Redundancy Check, which is a technique for
detecting data packets that have been altered by noise. This tech-
362 APPENDIX F

nique, used by BLAST, is the one used in IBM SNA/SDLC net-
works and in X.25 packet-switching networks.

Current Menu
The currently operative BLAST command menu. The possible val-
ues are Offline, Online, Filetransfer, Access, Local, and Remote.

Data Stream
The flow of characters between two computers over a communica-
tions link. The stream is serial (that is, one bit after another).

Editor
The built-in text editor BLASTEDT. Chapter 11 fully describes the
use of the Editor. You may also link your own text editor for use in
BLAST by including an EDITOR assignment in BLAST.OPT (see
the discussion of EDITOR on page 24 for more information).

Emulator
A program that makes a standard display appear as if it is a particular
terminal type to another computer. The emulation ensures that the
keyboard and display simulate those of the chosen terminal as close-
ly as possible. BLAST offers several terminal emulators (see “Ter-
minal Emulation” on page 287).

Flow Control
Regulation of the flow of information between computers so that no
data is lost. There are two types of flow control, one-ended and two
ended:

One-ended flow control is performed entirely by one computer and
can be used only for text uploading. The other system does not par-
ticipate in the flow control process. Examples of one-ended flow
control are character delay (in which each character transmitted is
followed by a pause) and line delay (each line transmitted is fol-
lowed by a pause).

Two-ended flow control is more common because it involves both
computers working together to avoid data loss while maintaining
data stream movement as rapidly as possible.
GLOSSARY 363

FTP
Standard protocol for file transmission over TCP networks. FTP (an
acronym for file transfer protocol) was designed to promote sharing
of files across networks while shielding users from variations in how
files are accessed and stored on different computer systems. For
more information on BLAST’s implementation of FTP, see Chapter
7.

Full-Duplex
A telephone term that refers to the ability of a circuit to carry sound
in both directions at the same time. Almost all telephone connec-
tions are full-duplex, that is, each party may hear and speak simulta-
neously.

In data communications, full-duplex refers to simultaneous trans-
mission to and from a remote computer. See also “simultaneous bi-
directonal transfer” below.

Half-Duplex
A telephone term that refers to the inability of a circuit to send and
receive sound and data in both directions at the same time. For both
ends of a half-duplex circuit to communicate, they must establish a
protocol to intermittently “turn the line around.”

In data communications, this term refers to transmission of data in
only one direction at a time.

Host Mode
The mode of operation of a multi-user computer in which a remote
computer calls the multi-user computer, logs onto it, and starts a
communications session. The remote machine has control of the
multi-user computer in the transfer.

Interactive
Control of a program via the keyboard by pressing keys to make
commands happen. This differs from performing the same function
via a script.
364 APPENDIX F

Kermit
Protocol created by Columbia University for file transfer. Some ver-
sions of Kermit can act as host “servers,” allowing other computers
to dial in and control a Kermit session. For a full discussion of Ker-
mit and how it is may be implemented by BLAST, see Chapter 8.

Keyboard Mapping
Process of selecting which physical keys on your keyboard will send
commands and data to the remote computer. If a key sequence is
awkward, or a key does not exist on your PC, BLAST allows you to
“map” that function to another keystroke using the BLASTKBD
utility. Mapping allows you to create custom keyboards and emula-
tors for many tasks (see “Keyboard Mapping Utility” on page 296).

Launch String
String that signals to the network interface unit where to break the
BLAST protocol data stream into packets. Launch string is especial-
ly important for sessions using protocol converters. The default
launch string for BLAST is the ASCII carriage return code. This
string may be reassigned using the Launch String setup field (page
91) or the reserved variable @LAUNCHST (page 256).

Local Computer
Computer in front of you, which you operate via its keyboard.

Menus
Displays containing commands and functions from which the user
may chose.

Modems
Electronic devices that transfer data over telephone lines from one
computer to another.

MODEMS.SCR
Portion of BLAST’s script library containing controlling statements
for the modems available in the Modem Type setup field. Connect
and Disconnect commands from the Online menu invoke
GLOSSARY 365

MODEMS.SCR in order to get modem information for connecting
and disconnecting from a remote computer.

Online Help
Context-sensitive information available about BLAST and its use.
For help on a specific menu command or setup field, place the cursor
on that item and press F1. While connected as a terminal to another
system, press CTRL H for Online Help.

OPTDIR
Environment variable that specifies the directory where BLAST and
BHOST look for the BLAST.OPT file, which is normally located in
BLASTDIR. By setting OPTDIR to a directory containing an alter-
native BLAST.OPT file, you may temporarily override existing
BLAST.OPT settings. For example, network users may place a sep-
arate BLAST.OPT file in a directory other than BLASTDIR (for
more on the use of OPTDIR in configuring LANs, see page 17).

Packet
The unit in which BLAST protocol transmits data. The amount of
data in each packet may be set by the Packet Size setup field (page
99) and @PAKTSZ reserved variable (page 259) in order to optimize
data throughput over various line conditions. Over a noisy telephone
line, smaller packets are more likely to get through unaltered. For
lines not normally subject to noise, such as a direct-connect cable,
larger packets can maximize throughput.

Padding
Extra characters added to the beginning or the end of a file. Padding
is often required when transferring fixed-length records to and from
a remote computer, or when a data file must contain only certain
characters as nulls.

Propagation Delay
The length of time from when a character is transmitted to the time
it is received. A propagation delay of as little as a half-second can
dramatically degrade throughput for some communications applica-
tions. BLAST, however, is highly resistant to propagation delay.
366 APPENDIX F

Protocol
A set of rules controlling the method by which data is transmitted
and received. Both computers in a data exchange must be using the
same protocol or the data will not be sent and received correctly.

Remote Computer
Computer with which your local computer is communicating during
a transfer session.

Retransmission
Transmission of a packet of data that has already been sent but has
been corrupted in the original transmission (usually because of tele-
phone line noise). With BLAST, the sending computer retransmits a
packet until it arrives intact at the receiving machine.

Scrolling Region
Area of the screen displaying program status and data when opera-
tions are being performed.

Setup
A file containing all the information necessary for BLAST to com-
municate with another system, including terminal parameters such
as emulation and parity. The user may create, change, and delete set-
ups from within BLAST. All Setup files end with a “.SU” extension.
For detailed information on setups, see Chapter 5.

SETUPDIR
The disk directory where setups are stored. BLAST records this di-
rectory as part of its installation process. You may change your
SETUPDIR by running BINSTALL with the CUSTOM option, by
making a SETUPDIR assignment in BLAST.OPT (page 26), or by
setting the SETUPDIR environment variable to the value of the new
directory (page 9).

Simultaneous Bi-Directional Transfer
Refers to the ability to transfer files both to and from a computer si-
multaneously. Unlike other file transfer applications, BLAST sup-
ports simultaneous bi-directional transfer.
GLOSSARY 367

Sliding Window
Design that allows the transmission of data packets while the com-
puter is waiting for acknowledgements that previous packets were
correctly received. This design, employed by BLAST, makes trans-
fer much more efficient over circuits with long propagation delays,
such as satellite links and network virtual circuits. For a detailed dis-
cussion of sliding window, see “Bi-Directional and Sliding-Window
Capability” on page 103.

SoftKeys
A set of ten single keystrokes that send often-used character strings
to the remote system. The character strings are mapped by the user.
See “Soft Keys” on page 298 for details.

SYSTEMS.SCR
Portion of BLAST’s script library containing identifying character-
istics of the multi-user systems available in the System Type setup
field. Filetransfer and Upload commands from the Online menu in-
voke SYSTEMS.SCR in order to get system information to carry out
file transfer and uploading.

Terminal Definition File
Holds the values of the BLAST Keys and the terminal characteris-
tics of the local video display. This file, called BLAST.TDF, may be
modified using BLAST’s keyboard mapping utility, BLASTKBD
(see “BLAST Keys” on page 298).

Text Capture
Direct transfer of incoming text from a remote computer. For more
information, see “Downloading Text from a Remote Computer” on
page 146.

Text Upload
Direct transfer of text to a remote computer. For more information,
see “Uploading Text to a Remote Computer” on page 145.
368 APPENDIX F

Throughput
The measurement of the total amount of data transferred between
two computers. Throughput is usually measured in characters-per-
second, which is ten times the bits-per-second.

TMP
Environment variable that specifies the directory where BLAST and
BHOST save temporary files. Setting TMP to a RAM drive can sig-
nificantly enhance performance. For more information, see the dis-
cussion of TMP on page 9.

Translation
The filtering of selected characters in the data stream while in Ter-
minal mode and during text uploading and downloading. Via a
translate file specified in the Translate File setup field, a user may
substitute one character for another. You may also completely re-
move a character from an uploaded or downloaded file. For more in-
formation on translation, see “Data Stream Filtering and Alteration”
on page 283.

Video Suppression
The mode of operation in which an application, such as BLAST,
does not read or write to the video display.

Xmodem
Half-duplex protocol that uses 128-byte packets and works only on
8-bit systems. Because it cannot transmit the name of the file, Xmo-
dem requires that the filename be entered on the receiving system.
Also, because it can only transmit 128-byte packets, Xmodem pads
the last packet to 128 bytes, thus often increasing the size of the orig-
inal file. For more information on BLAST’s implementation of
Xmodem, see “Xmodem Protocol” on page 140.

Ymodem
Half-duplex protocol that uses 1024-byte packets. Unlike Xmodem,
it transmits the filename as part of the file transfer and can transmit
the exact file size. For more information on BLAST’s implementa-
tion of Ymodem, see “Ymodem Protocol” on page 141.
GLOSSARY 369

Ymodem G
A variation of Ymodem that transmits a continuous stream of pack-
ets without error correction. If an error occurs, the receiver sends an
error signal that causes the entire file transfer to abort.

Zmodem
A sliding-window protocol that uses variable packet sizes and works
over both 7- and 8-bit connections. It is compatible with both soft-
ware and hardware flow control and can restart a file transmission
from the point of interruption. For more information on BLAST’s
implementation of Zmodem, see “Zmodem Protocol” on page 142.
370 APPENDIX F

Index
Symbols
/APP

BLAST Protocol 114
Kermit Protocol 134

/COMP=n 114
/FWD

BLAST Protocol 114
Enabling/Disabling 91, 123, 248

/OVW
BLAST Protocol 114
Enabling/Disabling 91, 248

/STR
BLAST Protocol 114–115
Enabling/Disabling 91, 123, 248

/TXT
BLAST Protocol 115

@STATUS 267–268
Commands Set by 204–205
Saving Value of 167–168

A
Access Menu 308–311

Chat 309
Parameters 309
Record 310
Snapshot 310

Access Mode 306–311
File Transfer from 307
Hot Keys 310–311
See also Access Menu

ASCII
Character Set 341
Control Codes 342
Script Command 205

Attention Key. See ATTN Key
ATTN Key 41, 50–51

Aborting Scripts 156
Sequences 328
Setup Field 72

Automation
BLAST Protocol 121
Scripting 59–60

See also Autopoll
Autopoll 343–359

Banner File 352
Command Line 344–345
Configuration 349–351, 357–359
Installing 344
Modifying 355–357
Remote Commands 347
Setup 344–345, 346, 349
Site File 346–347, 349–350
Starting 344–345, 351
Stop File 351–352
Summary Files 352–353
Tips 353–355
Transfer Command Files 347, 350
User-Supplied Scripts 355–357
Wildcards 347

B
Background Mode 13–19

Adjusting BLAST.OPT Settings 15–19
Hot Key 13, 249
LANs and 17–18
Limitations 14–15
Memory Use 15–19
Starting 14

Baud Rate
Autopoll Site File 346
Compression Level and 122
Reserved Variable 242
Setup Field 70
TTY Emulation 290
Zmodem Block Length and 97–98, 279

BHOST 303–319
BLAST Setup 305
Compression Level 305
Login 305
Modifying Settings 312–319
Online Menu Options 306–307
Packet Size 100, 305
Security Features 304
Session Parameters Window 313–318
Starting BLAST 106–107
Transferring Files 307
See also BHOST Settings

BHOST Settings 312–319
INDEX 371

DCD Loss Response 316–317
Host Keyboard 317
Host Mouse 317
Host Printer 318
Host Screen 317–318
Inactivity T/O 315–316
Precision Mouse 315
Printer(s) Enabled 318
Scaling Ratio 313–314
Scan Interval 314–315
Special KBD Handling 315
Sync Mode 315
Timeout Response 316

BLAST
Background Mode 13–19
Host Mode 303–319
On a LAN 28–35
Other Programs and 176–177
Removing from Memory 15
Screen 38–40
Starting 37–38
Unattended 343–359

BLAST Editor 149–153
Cursor Movement 151
Flow Control and 149
Inserting and Deleting Text 151
LANs and 35, 149–150
Managing Text Blocks 152
Quick Reference 150–151
Quitting 153
Scrolling 151
Searching 152–153

BLAST Key Set 296–300
BLAST Keys 296, 298–299
Hot Keys 296, 299–300
Soft Keys 296, 298

BLAST Keys 296, 298–299
Definition Charts 327–329
Frequently Used 50–51

BLAST Protocol 101–124
Advantages 102–103
Automating 121
Circuit Requirements 104
Compression Level 121–122
CRC Error Detection 103
Design 103–104
Ending File Transfer 108–109

Extended Logging 278–279
File Transfer 110–124, 178–181
File Transfer Switches 114–115
File Transfer Templates 113
Filetransfer Menu 56–57, 110
Fine-Tuning 121–122
Getting Files 112, 178–179
Message 56, 179, 213–214
Packet Acknowledgement 90, 103–104,
240
Packet Size 104, 121, 259
Remote Commands 179, 214–215
Remote Menu 110, 120–121
Restarting Interrupted Transfer 116
Scripting Considerations 180–181
Security 123–124
Sending Files 111–112, 178–179
Setup Subwindow 87–92
Slave Mode 198–199
Starting File Transfer 105–108
Timeouts 107–108

See also main entry Timeouts
Transfer Command Files 117–120, 179
Transfer Options 110–111
Transfer Password 88–89, 123–124, 269
Transfer to a Printer 116–117
Wildcards 112–113
Window Size 89, 274

BLAST Session Protocol. See BLAST Proto-
col
BLAST.OPT 19–28

Background Mode and 19
Command Format 19–20
LAN Drivers and 19
Multiple Files 19
Search Path 19
See also BLAST.OPT Settings

BLAST.OPT Settings
16550 20
ACTFILE 20
Adjusting for Background Mode 15–19
BANNERTIME 20
BG_BLK_SIZ 16, 17, 20–21
BLASTDIR 21
BREAKLEN 21
COMMPORT 21–23
COMPBUF 23
372 INDEX

EDITOR 24
FILEBUF 16, 17, 24
GROUND 24–25
LOGFILE 25
MEMPOOL 16, 17, 25
NETSERVICE 25
PRINTERCHK 25–26
SETUPDIR 26
SLICE 16, 26
SPEAKER 26
TCPINGW1AD 27
TCPININLOCAD 27
TCPINSNMSK 27
TTRAP LEN 27
VIDEOBUF 17, 27
VIDEOMODE 28

BLASTAT.EXE 15
BLASTDIR

BLAST.OPT Setting 21
Environment Variable 8

Blaster (Online Demonstration and Testing
Service) 42–47

Connecting to 44–45
File Transfer 45–47
Logging Off 47
Setup 43

BLASTKBD 296–302
BLASTscript. See Script Commands and
Scripting
Buffers

Data Compression 23
FIFO 20
File 24

C
CALL Statement 168–169, 206–207
CANCEL Key 51
Capture 55, 147, 233–234
Chat, Access Menu Option 309
Command Area 38–39
Command Line Arguments 10–11

Autopoll 344–345
Passing Information to BLAST 177

Command Line Switches 10–13
/b 11
/c 11

/i 11
/n 11, 175, 252, 265
/px 11
/q 11
/sscriptname 10, 156, 177
/tx 12
/v 12
/w 12
/x 12, 278–279
/y 12
argument 10–11, 177, 344–345
Autopoll 344–345
For Loading Drivers 29–32
setupname 10
Xmodem Protocol 140
Ymodem Protocol 140

Communications Port
BLAST.OPT Setting 21–23
Reserved Variable 242
Setup Field 67–68

Compression Buffers 23
Compression Level

BHOST 305
BLAST Protocol 121–122
Reserved Variables 243, 261, 264
Setup Fields 91–92

CONNECT Statement 159, 208
Connecting 159, 193–196

Troubleshooting 338–340
Connection Timeout 68
CRC Error Detection 103

D
Data Stream

Alteration 283–287
Control 283–302
Filtering 283–287
Substitution 286–287
Translate File 284–287
Translation 286

Date Format
@DATE 244
@DATEFORMAT 244
@LOGDATEFORMAT 256

DCD Loss Response 89, 180–181, 316–317
Default
INDEX 373

Setup 63
Values for Reserved Variables 240

Demo Line. See Blaster
Demonstration Service. See Blaster
Dialing Directory 62
Disconnecting 193–194, 196–198
DISPLAY Statement 176, 209
Documentation 3–5
Downloading Text 146–147, 192
Driver Command Line Switches

BLASTACS 29–30
BLASTIPX 31–32
BLASTLAN 32–33
BLASTNMP 30–31
BLASTTCP 33

E
Echo

Local 84, 256
Password Security and 260
Script Command 209–210
Wait for 85, 275

Editor
BLAST.OPT Setting 24
Executing from Background Mode 14–15
Executing from Menu 58
See also BLAST Editor

Emulation. See Terminal Emulation
Emulator Maps 296, 300
Environment Variables 8–9
Error Checking 188–189
Error Detection, CRC 98, 103, 280
Error Messages 321–325

BLAST Protocol Functions 321–322
Initialization 324–325
Network 325
Script Processor 325
Scripting 323
Transfer File Management 322
Utility File Management 323

Extended Logging 278–279

F
File Transfer

BHOST 307
BLAST Protocol 110–124, 178–181

Blaster, with 45–47
Error Checking 188–189
FTP 126–129, 181
Kermit Protocol 131–135, 181–184
Troubleshooting 340
Xmodem Protocol 140–141, 184–185
Ymodem Protocol 141–142, 185–187
Zmodem Protocol 142–143, 187–188

File Transfer Status Area 39–40
File Transfer Switches

BLAST Protocol 114–115
Kermit Protocol 134
Security with 123
Setup Fields for Enabling 91
See also Filename Restrictions and specif-
ic file transfer switches

File Transfer Templates 113
Filename Restrictions

BLAST Protocol 115–116
FTP 128–129
Kermit Protocol 135
X, Y, and Zmodem Protocols 143–144

Filetransfer Menu 56–57
BLAST Protocol 110
FTP 126–127
Kermit Protocol 131–132
Xmodem Protocol 56
Ymodem Protocol 56
Zmodem Protocol 56

FILETRANSFER Statement 160, 211–
216

See also File Transfer
Filtering

Data Stream 283–287
VT Sequences 90, 248

Flow Control 35–36
Downloading Text 146–147
Editor and 149
Uploading Text 145

FTP 125–130
Commands 129–130
Ending a Session 129
File Transfer 126–129, 181
Filename Restrictions 128–129
Filetransfer Menu 126–127
Getting Files 127–128, 181
Sending Files 127, 181
374 INDEX

Setup Settings 125
Starting a Session 126

G
Global Variables, Defined 169
Glossary 361–370

H
Help 41, 53

Automatic Display 38
Context-Sensitive 51

Hot Keys 296, 299–300
Access Mode 310–311
Background 249
Definition Chart 328–329

I
IF Statement 159, 160, 220–223
Inactivity Timeout

Reserved Variable 251
Setup Field 88

Index Utility 199–200
Installation, Troubleshooting 337

K
Kermit Protocol 131–137

File Transfer 131–135, 181–184
File Transfer Switches 134
Filetransfer Menu 131–132
Packet Size 93, 253, 255
Receiving Files 133–134, 182–183
Remote Commands 135–137, 215–216
Remote Menu 132, 135–137
Sending Files 133, 182
Setup Subwindow 92–95
Timeout 94, 254
Versions 131
Wildcards 133

Keyboard 50–51
ATTN Key 50–51
BHOST Settings 315, 317
BLAST Keys 50, 296, 298–299, 327–329
CANCEL Key 51
Definition Charts 327–335

Emulation Keys 329–335
Emulator Maps 296, 300
Frequently Used Keys 40–41, 50–51
Hot Keys 296, 299–300, 328–329
Mapping 296–302
Soft Keys 296, 298
User-Defined Maps 296, 301–302

Keyboard File
Creation 301–302
Reserved Variable 252
Setup Field 71
See also Keyboard

Keyboard Mapping. See Keyboard
Keys. See Keyboard

L
LAN Drivers. See Network Drivers
LANs 28–35

Background Mode and 17–18
Communication Port Setting 23
Network Protocols 28–35

Learn Mode 54, 160–163
Local Commands 57–58, 212–213
Local Menu 57–58
Log File

BLAST.OPT Setting 25
Error Checking 188–189
Reserved Variables 247, 257
Setup Field 71

Login
BHOST 305
Password 67, 259–260
System Scripts 193, 195
Userid 67, 270, 305

M
Menus 49–59

Access 308–311
Filetransfer 56–57, 110, 131–132
Local 57–58
Navigation through 41, 49
Offline 52–54
Online 54–56
Remote 58–59, 120–121, 135–137
Summary of 41–42

Message 56, 110, 179, 213–214
INDEX 375

Modem
Scripts 193, 197–198
Setup Field 69–70
Troubleshooting 337, 338–339
Winmodem 339

Mouse Support 51–52, 315

N
Network Address

BLAST.OPT Settings 25, 27
Setup Field 67–68

Network Drivers 28–34
ACS 29–30
Installation Example 33–34
IPX 31–32
NETBIOS 32–33
NMP 30–31
Reserved Variable 242
TCP/IP 33

Network Protocols 28–35
Numeric Constant, Defined 202
Numeric String, Defined 202
Numeric Value, Defined 202

O
Offline Menu 52–54
Online Demonstration and Testing Service.
See Blaster
Online Menu 54–56
OPTDIR 8–9, 17

P
Packet Acknowledgement 103–104

Request Frequency 90, 240
Window Size and 89, 274

Packet Size
BHOST 100, 305
BLAST Protocol 104, 121, 259
Kermit Protocol 93, 253, 255
Line Quality and 265
Setup Field 93, 99–100

Parity
7-Bit Operation and 104
Blaster Setup Field 43
Reserved Variable 259

Setup Field 70
Password

Reserved Variable 259–260
Security 260
Setup Field 67
See also Transfer Password

Printing
Auto Print Command 330, 331
Autopoll Banner Files 352
Autopoll Summary Files 352
BHOST Settings 318
Error Message 323
Hot Keys 329
Local PRINT Command 213
LPRINT Command 226
Print Command 58, 59, 121, 333
Print Mode Setup Field 77
Print Screen Command 77, 330, 331
Printer Logging 328
Remote 59, 119, 120, 121, 215
Terminal Emulation 273, 290, 295, 330

Protocols
Definition 101
Reserved Variable 260
Setup Field 87
Setup Subwindows 87–99
See also individual protocols: BLAST
Protocol, FTP, Kermit Protocol, Xmodem
Protocol, Ymodem Protocol, and Zmodem
Protocol

R
Record, Access Menu Option 310
Registration 1–2
Remote Commands

Autopoll 347
BLAST Protocol 120–121, 179, 214–215
Enabling/Disabling 91, 248
Kermit Protocol 135–137, 215–216

Remote Control 303–319
Access Menu 308–311
Access Mode 306, 308–311
Connecting to Host PC 304–306
Disconnecting from Host PC 308
File Transfer Only Mode 306
Terminal Mode 306, 311–312
376 INDEX

Remote Menu 58–59
BLAST Protocol 110, 120–121
Kermit Protocol 132, 135–137

Reserved Variables 239–282
@7BITCHN 240
@ACKFREQ 240
@ANSIAUTOWRAP 240
@ANSILEVEL 240
@APROTO 240
@ARGn 241
@ATTKEY 241
@AUTOGROUND 241
@AUTOLFIN 241
@AUTOLFOUT 241
@BAUDRATE 242
@BLASTDIR 242
@CHARDLY 242
@COMMPORT 242
@COMP_LVL 243
@CONNTIMO 243
@CONTIMO 243
@CTS 243
@D/S_BITS 243
@DATE 244
@DATEFORMAT 244
@DCD 245
@DCDLOSS 245
@DGCURSTYPE 245
@DGDATABITS 245
@DGPRTMODE 245
@DGPRTWIND 246
@EFERROR 160, 246–247
@EFLOG 189, 247
@EFLOGGING 247
@ELAPTIME 247
@EMULATE 247
@ENABLEFS 248
@ENABLERCMD 248
@FILTER 248
@FULLSCR 248
@GROUND 248
@HOTKEY 249
@HPBLKTERM 249
@HPDESTRBS 249
@HPFLDSEP 249
@HPINHDC2 250
@HPINHHNDSHK 250

@HPINHWRAP 250
@HPLINEPAGE 250
@HPSTARTCOL 251
@HPTERMID 251
@INACTIMO 251
@KBCHECK 251
@KDELAYOS 251
@KEYBOARD 252
@KEYFILE 252
@KFILETYP 252
@KFNAMCONV 252
@KREOPKT 253
@KRETRY 253
@KRPADCH 253
@KRPADDNG 253
@KRPKTLEN 253
@KRSOPKT 254
@KRTIMEOUT 254
@KSAVEINC 254
@KSEOPKT 254
@KSPADCH 254
@KSPADDNG 255
@KSPKTLEN 255
@KSSOPKT 255
@KSSTIMEOUT 255
@KWARNING 255
@LAUNCHST 256
@LINEDLY 256
@LOCECHO 256
@LOGDATEFORMAT 256
@LOGFILE 188–189, 257
@LOGTIMEFORMAT 257
@LOGTIMO 257
@MAXMEM 257
@MODEM 258
@NETSERVICE 258
@NUMDISC 258
@ONERROR 158, 258
@ORGANS 259
@PAKTSZ 259
@PARITY 259
@PASSWORD 259–260
@PHONENO 260
@PROMPTCH 260
@PROTOCOL 260
@PULSEDIAL 260
@RBTOT 261
INDEX 377

@RBYTES 261
@RCOMP_LEV 261
@RETRAN 261
@RFAILURE 261
@RLINEQ 261
@RLQ 262
@RNAME 262
@ROPTIONS 262
@RPACK 262
@RPTOT 262
@RRET 262
@RSIZE 263
@RSTART 263
@RSTATUS 263
@RSUCCESS 263
@RTIME 263
@RTSCTS 264
@SBTOT 264
@SBYTES 264
@SCOMP_LEV 264
@SCRFILE 264
@SCRIPTERR 265
@SCRLREG 175, 265
@SETUPDIR 265
@SFAILURE 265
@SLINEQ 265
@SLQ 265
@SNAME 266
@SOPTIONS 266
@SPACK 266
@SPTOT 266
@SRET 266
@SRTOT 266
@SSIZE 266
@SSTART 267
@SSTATUS 267
@SSUCCESS 267
@STATUS 167–168, 204–205, 267–268
@STATUSLN 175, 268
@STIME 268
@SYSDESC 268
@SYSTYPE 268
@TIME 268
@TIMEFORMAT 269
@TRANSTAT 175, 269
@TRPASSWD 269
@TTIME 269

@USERID 270
@USERIF 175, 270
@VERSION 270
@VT8BIT 270
@VTANSBACK 270
@VTAUTOWRAP 271
@VTCLRSCRN 271
@VTCOMPRESSED 271
@VTCURSOR 271
@VTCURSTYPE 271
@VTDISP132 272
@VTHSCROLL 272
@VTHSCROLLN 272
@VTINTL 272
@VTKEYPAD 272
@VTNEWLINE 273
@VTPRINT 273
@VTPRINTPAGE 273
@VTRESET 273
@VTSTATUSLN 274
@VTTEXTCURS 274
@VTUSERCHAR 274
@VTUSERKEYS 274
@WDWSIZ 274
@WT4ECHO 275
@WY25LINE 275
@WYANSBACK 275
@WYAUTOPAGE 275
@WYAUTOSCROLL 275
@WYAUTOWRAP 276
@WYBLOCKEND 276
@WYCOMMODE 276
@WYCOMPRESSED 276
@WYCURTYPE 276
@WYDISP80 276
@WYDSPCURSOR 277
@WYENTER 277
@WYEXPNDMEM 277
@WYPAGELEN 277
@WYPERSONALITY 277
@WYRETURN 277
@WYSCROLLINC 278
@WYSEWORD 278
@WYWRITEPROT 278
@XLOG 278–279
@XLTFILE 279
@XONXOFF 279
378 INDEX

@ZMAUTODOWN 143, 187–188, 279
@ZMBLKLN 279
@ZMCONVR 279
@ZMCONVS 280
@ZMCRC 280
@ZMCTLESCR 280
@ZMCTLESCS 280
@ZMEXIST 280
@ZMFRMLEN 281
@ZMMANAGR 281
@ZMMANAGS 281
@ZMRESUME 281
@ZMWINDOW 282

RTS/CTS Pacing 35–36
Reserved Variable 264
Setup Field 86–87

S
Screen

Command Area 38–39
Description of 38–40
File Transfer Status Area 39–40
Host PC 317–318
Scrolling Region 39, 176
Status Line 39

Script Commands 201–238
ASCII 205–206
ASK 206
CALL 168–169, 206–207
CLEAR 207
CLEOL 207
CONNECT 159, 208
CURSOR 208
DISCONNECT 160, 208–209
DISPLAY 157, 176, 209
DROP 209
ECHO 209–210
ERRSTR 210
FCLOSE 173–174, 210
FILETRANSFER FILE 211
FILETRANSFER GET/SEND 211–
212
FILETRANSFER LOCAL 212–213
FILETRANSFER MESSAGE 213–
214
FILETRANSFER REMOTE 214–216

FLUSH 217
FOPENA 173, 217
FOPENR 173–174, 217–218
FOPENW 173–174, 218
FREAD 173–174, 218
FREE 219
FREWIND 219
FWRITE 173–174, 219
GOTO 169, 220
IF 159, 220–221
IF-ELSE 222
IF-END 160, 222
IF-END/ELSE-END 222–223
LCHDIR 223
LDELETE 223
LET 224
LLIST 224
LOAD 224–225
LOCAL SYSTEM 177, 225
LOWER 225–226
LPRINT 226
LRENAME 226
LTYPE 226
MENU 227
NEW 227
PUT 228
QUIT 228
RAISE 228
REMOVE 229
REPS 170, 229
RETURN 229–230
SAVE 230
SELECT 230
SET 230–231, 239
SETTRAP 172–173, 231
STRCAT 170–172, 232
STRINX 171, 232
STRLEN 171, 232
STRTRIM 171, 233
TCAPTURE 172–173, 233–234
TERMINAL 234
That Set @STATUS 204–205
TSEND 161–162, 234–235
TTRAP 161–162, 235
TUPLOAD 190–192, 235–236
UPPER 236
WAIT 236
INDEX 379

WAIT CARRIER 237
WAIT IDLE 237
WAIT UNTIL 237–238
WERROR 175, 238
WRITE 175, 238

Script File
Reserved Variable 264
Setup Field 71

Scripting 155–192
Automation with 59–60, 343–359
Blank Lines in 166–167, 178–179, 181,
204
CALL Statement 168–169, 206–207
Capturing Text 172–173
Comments in 157, 204
Communication with Other Programs
176–177
CONNECT Statement 159, 208
Data Types 201–204
Downloading Text 192
Error Checking 162–163, 188–189
FILETRANSFER Statement 160, 211–
216
IF Statement 159, 160, 220–223
Labels 157, 166
Learn Mode 160–163
Legal and Illegal Expressions 166–167
Loop in 169–170
Messages 179, 213–214
Programming Style 165–166
Reading Files 173–174
Remote Commands 179, 214–216
Sample 157–163
Screen Display 174–176
Syntax Rules 204
Text Manipulation 170–174
Text Transfers 190–192
Transfer Command Files 117–120, 179
Uploading Text 190–192
Writing Files 173–174
See also Script Commands, Scripting File
Transfers, and Scripts

Scripting File Transfers 178–189
BLAST Protocol 178–181
Error Checking 188–189
FTP 181
Kermit Protocol 181–184

Xmodem Protocol 184–185
Ymodem Protocol 185–187
Zmodem Protocol 187–188
See also Script Commands, Scripting, and
Scripts

Scripts
Aborting 156
Index Utility 199–200
Invoking 155–156
Modem 193, 197–198
Slave 106, 123, 198–199
System 193, 194–195
Writing 156–163
See also Script Commands, Scripting, and
Scripting File Transfers

Scrolling Region 39
Display Control 175, 265
Displaying Text 176

Security
@PASSWORD and 260
BLAST Protocol 123–124

Session Command Window 318–319
Setup 61–100

ANSI Emulation Subwindow 72–73
Autopoll 344–345, 346, 349
BHOST 305
BLAST Protocol Subwindow 87–92
Blaster 43
Creating 63
DEC VT Emulation Subwindow 74–78
Default 63
DG Emulation Subwindow 73–74
Directory 62–63
HP Emulation Setup Subwindow 82–84
Kermit Protocol Subwindow 92–95
Loading 62
Modifying 64
Protocol Subwindows 87–99
Removing 65
Subwindows 64, 72–84, 87–99
Terminal Emulation Subwindows 72–84
WYSE Emulation Subwindow 78–82
Zmodem Protocol Subwindow 95–99
See also Setup Fields

Setup Fields 65–100
132 Compressed 28, 75, 80
25th Line 78–79
380 INDEX

7/8 Bit Controls 74
7-Bit Channel 89
80/132 Columns 74
ACK Request Frequency 90
ANSI Level 73
Answerback 80
Answerback Msg 76
Attention Key 72
Auto Page 79
Auto Receive 98, 143
Auto Scroll 79
Auto Wrap 73, 76, 79
AutoLF In 84
AutoLF Out 85
Baud Rate 70
BlkTerminator 84
Block End 81–82
Block-Check-Type 95
Char Delay 85–86
Clear Screen 76
Columns 80
Comm Mode 81
Connection 67–68
Connection T/O 68
Conversion Override 96
CRC 98
Cursor Keys Mode 75
Cursor Type 73, 76, 81
Data Bits 73
Data/Stop Bits 71
DCD Loss Response 89
Delay 94
Description 65–66
Destructive BS 83
Display Cursor 81
Emulation 72, 288
Enable /FWD and /STR 91
Enable /OVW and Remote Cmds 91
End-of-Packet Char 92–93
Enter 81
Esc All Control Chars 97
Expanded Memory 80
File Conversion 98
File Management 99
File Must Already Exist 96
Filename Conversion 95
Filtering 90

FldSeparator 83
Full Screen 84
Horiz Scroll Inc 81
Horizontal Scroll 75
Inactivity Timeout 88
Incomplete File 95
Inh DC2(H) 82–83
InhEolWrp(C) 83
InhHndShk(G) 82
Intl Char Set 77
Jump Scroll Inc 75
Keyboard File 71, 301, 302
Keypad Mode 75
Launch String 91
Limit Block Length 97–98
Limit Frame Length 98
Line Delay 86
Line/Page(D) 83
Local Echo 84
Local Print Option 74
Log File 71
Logon T/O 87–88
Management Option 96–97
Modem Type 69–70
New Line 77
Number of Disconnect Blocks 90
Originate/Answer 68–69
Packet Size 93, 99–100
Pad Character 93
Padding 93–94
Page Length 79
Parity 70
Password 67
Personality 80
Phone Number 66
Print Mode 77
Print Screen 77
Print Window 74
Prompt Char 85
Protocol 87
Pulse Dialing 70
Receive Compression Level 91
Reset Terminal 75–76
Resume Interrupted File 96
Retransmit Timer 90
Retry Limit 94
Return 81
INDEX 381

RTS/CTS Pacing 86–87
Script File 71
Send Compression Level 91
Size of Tx Window 98
Start Col 83
Start-of-Packet Char 92
Status Line 78
System Type 66–67
Terminal Id 82
Text Cursor 76
Timeout 94
Transfer Password 88–89
Transfer Type 94
Translate File 71–72, 284, 287, 290
Use “A” Protocol 90
User Def Keys 76
User Pref Char Set 77
Userid 67
Wait for Echo 85
Warning 95
Window Size 89
Write Protect 80
Wyseword 79
XON/XOFF Pacing 86
See also Setup

Setup Subwindow. See Setup and Setup
Fields
Setup Window. See Setup and Setup Fields
SETUPDIR

BLAST.OPT Setting 26
Environment Variable 9

Slave Mode. See Slave Script
Slave Script 106, 123, 198–199
Sliding-Window Design 103
Snapshot, Access Menu Option 310
Soft Keys 296, 298
Speaker, BLAST.OPT Setting 26
Starting BLAST 37–38

Background Mode 14
Troubleshooting 338

Status Line 39, 78, 175, 268
String Constant, Defined 202–203
String Values, Defined 203
System Scripts 193, 194–195

T
Technical Support 5–6
Terminal Emulation 287–295

ADM3A 292–293, 333
ANSI 72–73, 291, 331
BLAST Keys 299
D80 292–293, 333
DEC VT 12, 74–78, 290–291, 330–331
DG 73–74, 291–292, 332
HP2392 82–84, 293, 334
IBM 3101 335
IBM3101 293–295
Keyboard Mapping 296, 300
Printing 295
Reserved Variable 247
Setup Field 72
Setup Subwindows 72–84
TTY 11, 289–290
TV920 292–293, 333
WYSE 78–82, 292–293, 333

Terminal Mode 54
BHOST 306, 311–312
Local Echo 84, 256
Script Command 234

Terminals. See Terminal Emulation and Ter-
minal Mode
Testing Service. See Blaster
Text Transfers 145–147

Downloading Text 146–147, 192
Scripting 190–192
Uploading Text 145–146, 190–192

Time Format
@LOGTIMEFORMAT 257
@TIME 268
@TIMEFORMAT 269

Timeout
BHOST Settings 315–316
BLAST Protocol 107–108
Connection 68, 243
Inactivity 88, 251
Kermit Protocol 94, 254
Logon 87–88, 257

TMP 9
Transfer Command Files 117–120, 179

Autopoll 347, 350
Transfer Password 123–124

Reserved Variable 269
382 INDEX

Setup Field 88–89
Translate File 284–287

PASSTHRU.TBL 290
Reserved Variable 279
Setup Field 71–72

Troubleshooting 337–340
TSRs 315

U
Uploading Text 145–146, 190–192

Error Detection 145
Flow Control 145
Scripting 190–192
Upload Menu Option 55

User-Defined Maps 296, 301–302

V
Variables

Defined 202
See also Reserved Variables

View Command 58

W
Wildcards 112–113

Autopoll 347
BLAST Protocol 112–113
FTP 127
Kermit Protocol 133
Ymodem Protocol 142
Zmodem Protocol 143

Winmodem 339

X
Xmodem Protocol 140–141

Command Line Switches 140
Connection Restriction 140
File Transfer 140–141, 184–185
Filename Restrictions 143–144
Filetransfer Menu 56
Limitations 139
Receiving Files 141, 184–185
Sending Files 141, 184

XON/XOFF Pacing 36
8-Bit Transparency and 290

ATTN Key Sequence for 328
Reserved Variable 279
Setup Field 86

Y
Ymodem Protocol 141–142

Command Line Switches 140
File Transfer 141–142, 185–187
Filename Restrictions 143–144
Filetransfer Menu 56
Limitations 139
Receiving Files 142, 186
Sending Files 141–142, 186
Wildcards 142

Z
Zmodem Protocol 142–143

Auto Receive 98, 143, 187–188, 279
File Transfer 142–144, 187–188
Filename Restrictions 143–144
Filetransfer Menu 56
Limitations 139
Receiving Files 143, 187–188
Sending Files 142–143, 187
Setup Subwindow 95–99
Wildcards 143
INDEX 383

384 INDEX

TO: BLAST Technical Support FAX #: 919-542-0161

FROM: Voice #:
COMPANY: FAX #:

DATE:

IMPORTANT: Please provide us with the following information:

Your BLAST version # Serial #

Your operating system Version #

Where does the problem occur? (please circle)

Installation File Transfer Terminal Emulation Scripting

Background Remote Control Other

Please describe the problem:

How Was It?

We would like to hear your feedback on the usefulness of this document. Your opin-
ions can help us improve it in the future.

BLAST Professional DOS User Manual 2MNPDOS June 2000

1. Please rate the following: Excellent Good Fair

Ease of finding information

Clarity

Completeness

Accuracy

Organization

Appearance

Examples

Illustrations

Overall satisfaction

2. Please check areas that could be improved:

Introduction More step-by-step procedures
Organization Make it more concise
Include more figures Make it less technical
Include more examples More quick reference aids
Add more detail Improve the index

3. Please elaborate on specific concerns and feel free to comment on any topics not
raised previously:

Please FAX or mail these comments to us. Our contact information is listed on the title
page of this manual. Thank you for your input.

	Table of Contents
	Introduction
	BLAST Software Registration
	The BLAST Package
	BLAST Professional Features
	How To Use This Manual
	Parts of the Documentation System
	Manual Overview
	Documentation System Conventions
	Comments and Suggestions

	BLAST Technical Support
	What You Will Need To Know
	How to Contact Us

	The BLAST Environment
	Introduction
	Environment Variables
	BLASTDIR
	OPTDIR
	SETUPDIR
	TMP

	Command Line Switches
	setupname
	/sscriptname
	argument
	/b
	/c
	/i
	/n
	/px
	/q
	/tx
	/v
	/w
	/x
	/y
	Example Command Line
	Precedence for Specifying Options

	BLAST in the Background
	Starting BLAST in Background Mode
	Limitations of Background Mode
	Removing BLAST from Memory
	Adjusting BLAST.OPT Settings for Background Mode
	Testing Your Background Settings

	BLAST.OPT
	The BLAST.OPT Search Path
	Reading Multiple BLAST.OPT Files
	BLAST.OPT Format

	BLAST.OPT Settings
	16550
	ACTFILE
	BANNERTIME
	BG_BLK_SIZ
	BLASTDIR
	BREAKLEN
	COMMPORT
	Asynchronous Ports
	Extended BIOS (INT 14 Connections)
	Network Connections Using BLAST Drivers

	COMPBUF
	EDITOR
	FILEBUF
	GROUND
	LOGFILE
	MEMPOOL
	NETSERVICE
	PRINTERCHK
	SETUPDIR
	SLICE
	SPEAKER
	TCPINGW1AD
	TCPINLOCAD
	TCPINSNMSK
	TTRAP LEN
	VIDEOBUF
	VIDEOMODE

	Using BLAST on a LAN
	BLAST Network Drivers
	ACS Driver
	/q
	/i_netid
	/b_bsize
	/x_brkcnt
	/s_paksiz
	/c_ictimer
	/p_ptimer
	/1
	/kis

	NMP Driver
	/q
	/i_netid
	/b_bsize
	/1
	/k

	IPX Driver
	/q
	/i_netid
	/b_bufsize
	/s_sndbufs
	/r_rcvbufs
	/k

	NETBIOS Driver
	/q
	/i _netid
	/b_bsize
	/1
	/k

	TCP/IP Driver

	Using the BLAST Editor in LAN Environments

	Flow Control
	RTS/CTS Pacing
	XON/XOFF

	BLAST Quickstart
	Starting BLAST
	The BLAST Screen
	Command Area
	Scrolling Region
	Status Line
	File Transfer Status Area

	Three Keys to Remember
	The BLAST Menus
	A Quickstart File Transfer
	Selecting the Blaster Setup
	Connecting to Blaster
	Performing BLAST Protocol Transfers
	Getting a File from Blaster
	Sending a File
	Logging Off Blaster

	The Menus
	Moving Through the Menus
	The Keyboard
	Three Keys to Remember
	Using a Mouse
	The Offline Menu
	Setup Commands
	Other Offline Commands

	The Online Menu
	The Filetransfer Menu
	The Local Menu
	The Remote Menu
	Automation with BLASTscript

	The Setup
	What is a Setup?
	Loading a Setup
	The Default Setup
	Creating a New Setup
	Modifying a Setup
	Removing a Setup

	Setup Fields
	Description
	Phone Number
	System Type
	Userid
	Password
	Connection
	Connection T/O
	Originate/Answer
	Modem Type
	Pulse Dialing
	Baud Rate
	Parity
	Data/Stop Bits
	Keyboard File
	Script File
	Log File
	Translate File
	Attention Key
	Emulation
	ANSI Emulation Subwindow
	ANSI Level
	Auto Wrap

	DG Emulation Subwindow
	Cursor Type
	Data Bits
	Local Print Option
	Print Window

	DEC VT Emulation Subwindows
	7/8 Bit Controls
	80/132 Columns
	132 Compressed
	Horizontal Scroll
	Jump Scroll Inc
	Keypad Mode
	Cursor Keys Mode
	Reset Terminal
	Clear Screen
	Answerback Msg
	User Def Keys
	Text Cursor
	Cursor Type
	Auto Wrap
	New Line
	Print Mode
	Print Screen
	Intl Char Set
	User Pref Char Set
	Status Line

	WYSE Emulation Subwindows
	25th Line
	Page Length
	Auto Wrap
	Auto Scroll
	Auto Page
	Wyseword
	Expanded Memory
	Write Protect
	Personality
	Answerback
	Columns
	132 Compressed
	Horiz Scroll Inc
	Cursor Type
	Display Cursor
	Return
	Enter
	Comm Mode
	Block End

	HP Emulation Subwindow
	Terminal Id
	InhHndShk(G)
	Inh DC2(H)
	InhEolWrp(C)
	Destructive BS
	Start Col
	Line/Page(D)
	FldSeparator
	BlkTerminator

	Full Screen
	Local Echo
	AutoLF In
	AutoLF Out
	Wait for Echo
	Prompt Char
	Char Delay
	Line Delay
	XON/XOFF
	RTS/CTS Pacing
	Protocol
	BLAST Protocol Subwindow
	Logon T/O
	Inactivity T/O
	Transfer Password
	7-Bit Channel
	Window Size
	DCD Loss Response
	Use “A” Protocol
	Filtering
	Retransmit Timer
	ACK Request Frequency
	Number of Disconnect Blocks
	Launch String
	Enable /FWD and /STR
	Enable /OVW and Remote Cmds
	Send Compression Level
	Receive Compression Level

	Kermit Protocol Subwindow
	Start-of-Packet Char
	End-of-Packet Char
	Packet Size
	Pad Character
	Padding
	Timeout
	Transfer Type
	Retry Limit
	Delay
	Block-Check-Type
	Filename Conversion
	Incomplete File
	Warning

	Zmodem Protocol Subwindow
	Resume Interrupted File
	File Must Already Exist
	Conversion Override
	Management Option
	Esc All Control Chars
	Limit Block Length
	Limit Frame Length
	Size of Tx Window
	CRC
	Auto Receive
	File Conversion
	File Management

	Packet Size

	BLAST Session Protocol
	What is a Protocol?
	Simple Protocols
	The BLAST Session Protocol
	BLAST Protocol Design
	Bi-Directional and Sliding-Window Capability
	CRC Error Detection
	Optimized Acknowledgements
	Adjustable Packet Size
	BLAST Protocol Circuit Requirements

	Starting a BLAST Session
	Starting BLAST on a Multi-User System
	Starting BLAST on a PC or Other Single-User Comput...
	Automatic Filetransfer Handshaking
	BLAST Protocol Timeouts

	Ending a BLAST Session
	Normal Menu Escape
	Single-Attention Abort
	Double-Attention Abort
	Timeout Abort

	Performing Filetransfer Commands
	Filetransfer Menu
	Transfer Options
	Sending a File
	Getting a File
	Wildcards
	File Transfer Templates Using the “%” Character
	File Transfer Switches
	Filenames Restrictions with BLAST Protocol
	Restarting an Interrupted File Transfer
	Transfer to a Printer

	Transfer Command File
	BLAST Protocol Remote Menu
	Automating the BLAST Session Protocol
	Fine-Tuning the BLAST Session Protocol
	Packet Size
	Compression Levels

	Filetransfer Security with BLAST Protocol
	Disabling File Overwrites and Remote Commands
	Disabling the /FWD and /STR Switches
	Using the Transfer Password

	FTP
	Using FTP
	Starting an FTP Session
	FTP Filetransfer Menu
	Sending and Receiving Files with FTP
	Sending Files with FTP
	Getting Files with FTP

	Filenames Restrictions with FTP
	Ending an FTP Session
	FTP Commands
	Service Commands
	Access Control Commands
	Transfer Parameter Commands

	Kermit Protocol
	Kermit Filetransfer Menu
	Sending and Receiving Files with Kermit
	Sending Files with Kermit
	Receiving Files with Kermit

	File Transfer Switches with Kermit
	Filenames Restrictions with Kermit
	Kermit Remote Menu

	Xmodem, Ymodem, and Zmodem Protocols
	Command Line Features
	Xmodem Protocol
	Sending Files with Xmodem
	Receiving Files with Xmodem

	Ymodem Protocol
	Sending Files with Ymodem
	Receiving Files with Ymodem

	Zmodem Protocol
	Sending Files with Zmodem
	Receiving Files with Zmodem

	Filenames Restrictions

	Text Transfers
	Introduction
	Uploading Text to a Remote Computer
	Manual Method
	Interactive Automatic Method
	BLASTscript Automatic Method

	Downloading Text from a Remote Computer
	Manual Method
	BLASTscript Automatic Method

	BLAST Editor
	Using BLAST Editor
	Quick Reference
	Cursor Movement and Scrolling
	Inserting and Deleting Text
	Managing Text Blocks
	Searching
	Finding Text
	Finding and Replacing Text

	Quitting BLAST Editor

	Introduction To Scripting
	Starting Out
	Executing BLAST Scripts
	Writing a Script
	About HELLO.SCR
	A Sample Script

	Learn Mode
	Editing the Learn Script
	Polishing the Learn Script
	Writing Your Own Scripts

	BLASTscript Topics
	Scripting Basics
	Programming Style
	Legal and Illegal Expressions
	The Status of @STATUS
	The CALL Command
	Executing in a Loop

	Manipulating Text
	Capturing Text
	Reading and Writing Text Files

	Managing the Screen Display
	Turning Off the Screen
	Displaying Text in the Menu Region
	Displaying Text in the Scrolling Region

	Communicating with Other Programs
	Passing Information to BLAST
	Controlling Other Programs from BLAST

	File Transfers with BLAST Session Protocol
	Getting and Sending Files
	Performing Remote Commands
	Using Transfer Command Files
	Sending Messages
	Special Considerations

	File Transfers with FTP
	File Transfers with Kermit
	Sending Files
	Receiving Files
	Transferring More Than One File

	File Transfers with Xmodem and Xmodem1K
	Sending Files
	Receiving Files
	Transferring More Than One File

	File Transfers with Ymodem and Ymodem G
	Sending Files
	Receiving Files
	Transferring More Than One File

	File Transfers with Zmodem
	Sending Files
	Receiving Files
	Transferring More Than One File

	Using Log Files for Error Checking
	Text Transfers
	Uploading Text
	Downloading Text

	Connecting and Disconnecting
	Introduction
	BLASTscript Libraries
	Modem Control
	Remote System Control
	Creating New Libraries
	The Connection Process in Detail
	The Disconnection Process in Detail
	Sample Modem Script
	Slave Script

	The Index Utility

	BLASTscript Command Reference
	Introduction
	Data Types
	Variables
	Numeric Constants
	Numeric Strings
	Numeric Values
	String Constants
	String Values
	Reserved Variables

	Syntax Rules
	Commands That Set @STATUS
	Setup Reserved Variables and @STATUS
	BLASTscript Statements
	ASCII
	ASK
	CALL
	CLEAR
	CLEOL
	CONNECT
	CURSOR
	DISCONNECT
	DISPLAY
	DROP
	ECHO
	ERRSTR
	FCLOSE
	FILETRANSFER FILE
	FILETRANSFER GET / SEND
	FILETRANSFER LOCAL
	FILETRANSFER MESSAGE
	FILETRANSFER REMOTE
	FLUSH
	FOPENA
	FOPENR
	FOPENW
	FREAD
	FREE
	FREWIND
	FWRITE
	GOTO
	IF
	IF – ELSE
	IF – END
	IF – END / ELSE – END
	LCHDIR
	LDELETE
	LET
	LLIST
	LOAD
	LOCAL SYSTEM
	LOWER
	LPRINT
	LRENAME
	LTYPE
	MENU
	NEW
	PUT
	QUIT
	RAISE
	REMOVE
	REPS
	RETURN
	SAVE
	SELECT
	SET
	SETTRAP
	STRCAT
	STRINX
	STRLEN
	STRTRIM
	TCAPTURE
	TERMINAL
	TSEND
	TTRAP
	TUPLOAD
	UPPER
	WAIT
	WAIT CARRIER
	WAIT IDLE
	WAIT UNTIL
	WERROR
	WRITE

	BLASTscript Reserved Variables
	@7BITCHN
	@ACKFREQ
	@ANSIAUTOWRAP
	@ANSILEVEL
	@APROTO
	@ARGn
	@ATTKEY
	@AUTOGROUND
	@AUTOLFIN
	@AUTOLFOUT
	@BAUDRATE
	@BLASTDIR
	@CHARDLY
	@COMMPORT
	@COMP_LVL
	@CONNTIMO
	@CONTIMO
	@CTS
	@D/S_BITS
	@DATE
	@DATEFORMAT
	@DCD
	@DCDLOSS
	@DGCURSTYPE
	@DGDATABITS
	@DGPRTMODE
	@DGPRTWIND
	@EFERROR
	@EFLOG
	@EFLOGGING
	@ELAPTIME
	@EMULATE
	@ENABLEFS
	@ENABLERCMD
	@FILTER
	@FULLSCR
	@GROUND
	@HOTKEY
	@HPBLKTERM
	@HPDESTRBS
	@HPFLDSEP
	@HPINHDC2
	@HPINHHNDSHK
	@HPINHWRAP
	@HPLINEPAGE
	@HPSTARTCOL
	@HPTERMID
	@INACTIMO
	@KBCHECK
	@KDELAYOS
	@KEYBOARD
	@KEYFILE
	@KFILETYP
	@KFNAMCONV
	@KREOPKT
	@KRETRY
	@KRPADCH
	@KRPADDNG
	@KRPKTLEN
	@KRSOPKT
	@KRTIMEOUT
	@KSAVEINC
	@KSEOPKT
	@KSPADCH
	@KSPADDNG
	@KSPKTLEN
	@KSSOPKT
	@KSTIMEOUT
	@KWARNING
	@LAUNCHST
	@LINEDLY
	@LOCECHO
	@LOGDATEFORMAT
	@LOGFILE
	@LOGTIMEFORMAT
	@LOGTIMO
	@MAXMEM
	@MODEM
	@NETSERVICE
	@NUMDISC
	@ONERROR
	@ORGANS
	@PAKTSZ
	@PARITY
	@PASSWORD
	@PHONENO
	@PROMPTCH
	@PROTOCOL
	@PULSEDIAL
	@RBTOT
	@RBYTES
	@RCOMP_LEV
	@RETRAN
	@RFAILURE
	@RLINEQ
	@RLQ
	@RNAME
	@ROPTIONS
	@RPACK
	@RPTOT
	@RRET
	@RSIZE
	@RSTART
	@RSTATUS
	@RSUCCESS
	@RTIME
	@RTSCTS
	@SBTOT
	@SBYTES
	@SCOMP_LEV
	@SCRFILE
	@SCRIPTERR
	@SCRLREG
	@SETUPDIR
	@SFAILURE
	@SLINEQ
	@SLQ
	@SNAME
	@SOPTIONS
	@SPACK
	@SPTOT
	@SRET
	@SRTOT
	@SSIZE
	@SSTART
	@SSTATUS
	@SSUCESS
	@STATUS
	@STATUSLN
	@STIME
	@SYSDESC
	@SYSTYPE
	@TIME
	@TIMEFORMAT
	@TRANSTAT
	@TRPASSWD
	@TTIME
	@USERID
	@USERIF
	@VERSION
	@VT8BIT
	@VTANSBACK
	@VTAUTOWRAP
	@VTCLRSCRN
	@VTCOMPRESSED
	@VTCURSOR
	@VTCURSTYPE
	@VTDISP132
	@VTHSCROLL
	@VTHSCROLLN
	@VTINTL
	@VTKEYPAD
	@VTNEWLINE
	@VTPRINT
	@VTPRINTPAGE
	@VTRESET
	@VTSTATUSLN
	@VTTEXTCURS
	@VTUSERCHAR
	@VTUSERKEYS
	@WDWSIZ
	@WT4ECHO
	@WY25LINE
	@WYANSBACK
	@WYAUTOPAGE
	@WYAUTOSCROLL
	@WYAUTOWRAP
	@WYBLOCKEND
	@WYCOMMODE
	@WYCOMPRESSED
	@WYCURSTYPE
	@WYDISP80
	@WYDSPCURSOR
	@WYENTER
	@WYEXPNDMEM
	@WYPAGELEN
	@WYPERSONALITY
	@WYRETURN
	@WYSCROLLINC
	@WYSEWORD
	@WYWRITEPROT
	@XLOG
	@XLTFILE
	@XONXOFF
	@ZMAUTODOWN
	@ZMBLKLN
	@ZMCONVR
	@ZMCONVS
	@ZMCRC
	@ZMCTLESCR
	@ZMCTLESCS
	@ZMEXIST
	@ZMFRMLEN
	@ZMMANAGR
	@ZMMANAGS
	@ZMRESUME
	@ZMWINDOW

	Data Stream Control and Terminal Emulation
	Introduction
	Data Stream Filtering and Alteration
	Translate File Format
	Creating and Editing a Translate File
	Specifying a Translate File in Your Setup
	International and Graphic Character Sets

	Terminal Emulation
	TTY Emulation
	DEC VT320, VT220, VT100, and VT52 Emulation
	ANSI Emulation
	DG D200, D410, D411, and D461 Emulation
	WYSE50/60, TV920, D80, and ADM3A Emulation
	HP2392 Emulation
	The BLAST HP2392 emulator is functionally equivale...
	IBM3101 Emulation
	Transparent Print/Auxiliary Print

	Keyboard Mapping Utility
	Running BLASTKBD
	Soft Keys
	BLAST Keys
	Hot Keys
	Emulator Maps
	User-Defined Maps
	Keyboard Map Selection in the Setup

	Remote Control
	What Is Remote Control?
	The Host PC
	The Control PC

	Connecting to the Host PC
	Creating a BLAST Setup for BHOST
	Making the Connection and Logging On

	Taking Control
	Online Menu Options
	Transferring Files to and from the Host PC
	Starting Filetransfer Mode
	Transferring Files
	Ending Filetransfer Mode

	Disconnecting from the Host PC
	Using Access Mode
	The Access Menu
	Access Mode Hot Keys

	Using Terminal Mode
	Accessing and Logging Off Terminal Mode
	Escape Sequences

	Modifying BHOST Settings
	SETBHOST
	Session Parameters Window
	Scaling Ratio
	Scan Interval
	Sync Mode
	Special Kbd Handling
	Precision Mouse
	Inactivity T/O
	Timeout Response
	DCD Loss Response
	Host Keyboard
	Host Mouse
	Host Screen
	Host Printer
	Printer(s) Enabled

	Session Command Window

	Error Messages
	Introduction
	BLAST Protocol Functions
	Transfer File Management
	Utility File Management
	Scripting
	Initialization
	Script Processor
	Network

	Key Definition Charts
	BLAST Keys
	Attention Key Sequences
	Hot Keys

	Terminal Emulation Keys
	DEC VT320 and VT220 Keys
	DEC VT100 and VT52 Keys
	ANSI Keys
	Data General D461, D411, D410, D200 Keys
	WYSE60, WYSE50, TV920, D80, and ADM3A Keys
	HP2392 Keys
	IBM3101 Keys

	Troubleshooting
	Installing BLAST
	Starting BLAST
	Going Online
	File Transfer

	The ASCII Character Set
	Autopoll
	The Autopoll Script
	Installing Autopoll
	Starting Autopoll
	The Site File
	Transfer Command File
	Overview of Autopoll Script Actions
	Configuration Example
	The Setup Files
	The Site File
	Transfer Command Files
	Where to Save Autopoll Files
	Starting Autopoll

	Other Files Using the Filename Stub
	Site File
	Stop File
	Banner File
	Long and Short Summary Files

	Tips and Tricks
	Modifying Autopoll
	User-Supplied Scripts
	File I/O with User-Supplied Scripts
	Sample User-Supplied Script

	Configuration Worksheets

	Glossary
	Acknowledgement
	Asynchronous
	BLASTDIR
	BLAST Keys
	BLAST.OPT
	BLAST Protocol
	BLASTscript Programming
	Compression
	CRC-16
	Current Menu
	Data Stream
	Editor
	Emulator
	Flow Control
	FTP
	Full-Duplex
	Half-Duplex
	Host Mode
	Interactive
	Kermit
	Keyboard Mapping
	Launch String
	Local Computer
	Menus
	Modems
	MODEMS.SCR
	Online Help
	OPTDIR
	Packet
	Padding
	Propagation Delay
	Protocol
	Remote Computer
	Retransmission
	Scrolling Region
	Setup
	SETUPDIR
	Simultaneous Bi-Directional Transfer
	Sliding Window
	SoftKeys
	SYSTEMS.SCR
	Terminal Definition File
	Text Capture
	Text Upload
	Throughput
	TMP
	Translation
	Video Suppression
	Xmodem
	Ymodem
	Ymodem G
	Zmodem

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

