CAVIAR

information
society

technologies

Context Aware Vision using Image-based Active Recognition IST- 2001- 37540

Deliverable Report D 34

Software Report on Error Recovery

CAVIAR :

Date :

Author(s) :

Work package :
Document status :
Usage :

Keywords :

Software Report on Error Recovery

21 September 2005

Rémi Emonet

4

Version 1.0

public

Autonomic Software Architectures, Auto-regulation

CAVIAR WorkPackage 4 Deliverable D34

Contents

1 Introduction 1

2 TUser Manual 1
2.1 Main databases into the application 2
2.2 Generalities e e 2
2.3 Acquisition of the scene reference model L. 2
2.4 Acquisition of the error classes L L L 6

3 Software Architecture 6
31 VIEW . . . e 8
3.2 Model e e e 8

CAVIAR WorkPackage 4 Deliverable D34

Abstract

This deliverable document D34 describes the software for error recovery. Theo-
retic aspects and the details about the methods and motivations are to be found in
Report D29. In the introduction, the reader will find a quick preview of the software
structure and its interactions with the existing tracking system.

In section 2, the user interface of this software is described in detail, section 3
presents the software architecture. The technical documentation of the implementa-
tion generated with Javadoc can be found within the source code.

i

CAVIAR WorkPackage 4 Deliverable D34

 Error Monitoring System

Base Error Error
Observation Sequence + . Known? Error
System Detector q Classifier Storer
Erro‘r Error
Commands Repairer Processor

Figure 1: General architecture for error correction. In the implementation, the “Base System” is
the tracking system, an “Observation” is a frame (the set of targets tracked at a given instant),
and a “Sequence” is a sequence of frames over a time window.

1 Introduction

This document describes the piece of software developed for Error Recovery. Motivations,
theoretical discussions and experimental results concerning the method are to be found
into CAVIARreport on Error Recovery (D29). The developed application also allows the
user to easily generate a scene reference model that is used by the error recovery monitor.

Globally the application implements the general architecture proposed in D29 (report
on Error Recovery) which can be summed up by Figure 1. The error correction system
monitors the flow of observations produced by the tracking system. An error detector
is responsible for taking the decision that a sequence of observations is an error. An
error sequence classifier then tries to attach a class label to the sequence. If the sequence
corresponds to a known error class then the repair code associated with this class is called.
If the error class is unknown, the sequence is stored in order to be classified latter.

This software program has been entirely developed in Java and monitors and controls a
tracking system running in C++. The communication between the error recovery system
and the tracking system are done using XML messages transfered through TCP connec-
tions.

Section 2 is a user manual describing how the software program is working and the var-
ious functionalities of the graphical user interface. Details about the software architecture
can be found in section 3.

2 User Manual

This section gives indications about how to use the application and its graphical user inter-
face (GUI). Section 2.3 details functionalites about acquiring the necessary scene reference
model while section 2.4 explains how error examples are acquired and how they can be
affected to existing or new error classes. Sections 2.1 and 2.2 give some basic concept to
understand the sections presented previously.

CAVIAR WorkPackage 4 Deliverable D34

2.1 Main databases into the application
The application is articulated around three main data sets.

e the scene reference model that is composed of a probability density function (an
histogram in this implementation) and two sets of positive and negative examples.
This scene reference model is used to associate a confidence factor to each of the
target observed in the output of the tracking system the error recovery monitor is
connected to;

e the error classes database that contains a set of error classes and associates to each
error class a set of example error sequence for this error class and an error repair
code among a set of possible repair codes;

e the “to classify” database which stores sequences that have been detected as error
but can’t have been affected to an existing error class.

2.2 Generalities

When the error recovery system is first started, it connects to a running tracker or wait
for a tracker to start. The three datasets presented in the previous paragraph are directly
manipulated by the program and can be loaded from and saved to files. At starting time,
the error recovery system possibly loads some files containing the scene reference model,
the error classes database and the “to classify” database (seldom used).

Once started, the application displays the main frame called “Manager” window (Fig-
ure 2). This frame is composed of a report area on the bottom and a set of controls on the
top. The first messages displayed into the report area are the ones concerning the loading
of the data files (“error” just meaning that no file has been found) and initialisation of
the different modules of the system. Then comes the message concerning the connection
attempt to the tracking system.

The “Manager” window allows the user to save the scene reference model and the error
classes database using buttons (9). To lighten the GUI, the never-used button allowing the
user to save the “to classify” database has been commented out in the source code. One
can put this button back into the GUI if needed. The user can use button (8) to pop a new
window up. This window shows in real time the output of the tracker: at any instant, an
ellipse and an id for each target (Figure 3). To keep the cpu footprint of the error recovery
monitor as low as possible, the current image is not displayed under the ellipses.

Using the “Manager” window, the user can also set the threshold that is used by the
“Error Detector” to decide whether a sequence is a potential error. This threshold can be
configured using (1).

2.3 Acquisition of the scene reference model

One of the functionality proposed by the application is to assist the user in the acquisition
of a scene reference model. By the way, when the application is started for the first time

CAVIAR

WorkPackage 4

Deliverable D34

.0

¥ | @generate bads update opt. th. save model
H kKeep classified ° rebuild cl. \ save error db
—@ sedq. editor _’classas manager ; view output

18

iyt

Loading Model ... done

Initialising ToClassifyDE ... done
Initialising Error Classes Manager ... error
Initialising Error Classifier ... done
Initialising Error Detector ... done
Initialising Critical module ... done
Connecting to the Yisual Tracker ... done
Error threshold set 1o 1. Q00000

Figure 2: The Manager Window

CAVIAR WorkPackage 4 Deliverable D34

& output Viewer) 0O®

,Eu_nnecliun ok

Figure 3: The Output Viewer showing two targets

CAVIAR WorkPackage 4 Deliverable D34

for a given video camera, the scene reference model is completely empty unless we load a
predefined scene model (that can for example be available from a ground truth labeling).
The initial empty model systematically associate to each target a confidence factor of 0
and as a conclusion each observed sequence (a time window of the tracker output) will be
considered as unknown and stored as an error sequence “to classify”.

To process the stored “to classify” sequences, the button (3) of the “Manager” window
pops up the “ToClassify Manager” window shown in Figure 4. This window is used both
for the scene reference model acquisition and for the error classes creation and refinement.
This window can be two modes (“waiting” or “editing”) both shown in Figure 4.

The right panel (1) of the “ToClassify Manager” window is dedicated to the visualisation
and edition of the current sequence (if any is picked). If no sequence is picked, the user
can pick one (if any present in the database) using the button (2).

When in “editing” mode, the right panel (1) displays an extract (a subsequence) from
the picked sequence. The user can control the starting frame of the extract and the number
of frames in the extract using the keyboard: left and right arrows to choose the starting
frame, up and down arrow to tune the length of the extract; shift and control modifier can
also be used to navigate faster in the sequence. Dragging the mouse, the user can defined
a rectangle in the right panel:

e if the user dragged the mouse with the right button then at each frame of the sequence
being in the currently displayed extract, all the target having their center into the
selection rectangle are removed from the sequence. This can be used when we want
to remove some false targets outputted by the tracking system.

e if the user dragged the mouse with the right button then at each frame of the sequence
being in the currently displayed extract, all the target having their center into the
selection rectangle are merged. This can be used when we want to correct a false
split from the tracking system.

The user can do various actions on the picked sequence. Some general ones are those
triggered by buttons (4) and (5) which respectively drops the picked sequence and puts
the sequence back into the “to classify” database. When an action is done on the picked
sequence, the sequence is discarded unless the keep checkbox (3) is checked. When a
sequence is discarded (an action is done and (3) is unchecked), the system picks another
sequence (if available) if the auto pick checkbox (2) is checked else it switches to “waiting”
mode. At any time, the user can use the clear button (C) to empty the “to classify”
database. As picked sequences are not in the “to classify” database, the possibly picked
sequence stays so.

To build the scene reference model, the user can use buttons (6) and (7). The scene ref-
erence model is composed of an histogram approximating the probability density function
of what a normal tracker output is and two sets of positive and negative output examples.
The two sets are used in the normalisation process described in D29. Button (6) adds
all the targets from the picked sequence to the histogram while buttons (7) add all these
targets into the set of positive (+) or negative examples (-). Use cases of the application

bt

CAVIAR WorkPackage 4 Deliverable D34

have shown that when the user wants to add some targets to the positive examples, he
also wants to add them in the histogram: to optimise the usability of the GUI, the “Put
In Model+” not only adds the targets of the sequence to the positive examples but also to
the histogram.

The “Manager” frame also give some control on the scene reference model. Appart from
saving it using button (9), the user can trigger the reevaluation of the optimal threshold
of the model with button (7) (this optimal threshold is used in the normalisation process).
As explained in D29 it can be difficult to obtain a lot of negative output examples and the
user can generate some ones: when button (5) is clicked, the system uniformly generates
some negative examples until the numbers of negative and positive examples become equal.

2.4 Acquisition of the error classes

The creation of the error classes can be done using the “ToClassify Manager” window.
Using button (9) the user can create a new error class and affect the currently picked
sequence to it. The user can also decide to add the currently picked sequence to any of the
existing error classes using one of the buttons (8): there one such button for each existing
class.

As the creation of the classifier can take some time, the classifier is not automatically
rebuild at each addition of new example. The user can trigger the rebuild process from the
“Manager” window using button (6). When the error detector detects an error, the error
classifier tries to affect it to a known class. If it fails to do so, the sequence is stored in the
“to classify” database; if it manages to classify, the repair code associated to the class is
executed and the error sequence is discarded unless the checkbox (3) is checked. In such a
case, the repair code is executed and the sequence is added to the “to classify” database.

The user can open the “Classes Manager” window using the button (4) from the “Man-
ager” window. The “Classes Manager” window shown in Figure 5 is used to view and
change the repair code associated to each error class. For each existing error class, a select
allows the user to choose which repair codes (among the set of hand coded repair codes)
is associated to the class and information about the class are given: the index of the class,
its name and the number of examples that were collected for this class. On the bottom is
also shown the number of “to classify” sequences on a button that pops the “ToClassify
Manager” up.

3 Software Architecture

This section gives a general overview of the software architecture designed for the error
recovery monitoring system. Full details of the developed classes can be found in the
javadoc (generated from annotated sources).

The development of the application is done following a Model View Controller (MVC)
pattern: the main principle is to minimise the coupling between the graphical user interface

CAVIAR WorkPackage 4 Deliverable D34

@ ToClassify Manager) 0O™m
Pick

[] auto pick

[] keep
Discard J

Put Back

Put Iri Model |

Put In Model+ | Pick
Put In Model- |

Putin 0 |

Putin 1 |

Put In Mew Class

Clear

P9

keep

@ Discard
@ Put Back

Put In Model ‘

Put In Model+
Put In Model-

Put in O
[—
Putin 1

AN

K

3%

;

@ Put In New Class

Clear

Figure 4: On top the “ToClassify Manager” in waiting mode: just waiting for the user to
pick a sequence. On bottom the “ToClassify Manager” in editing mode: the sequence is
visualised and can be modified.

CAVIAR WorkPackage 4 Deliverable D34

E_(Classes Manager) O™

Kill errored - 0 Class-0 (1 "

1|
Kill errored w | 1:Class-1 (9 ||

-1: Unclassified elements ()

Figure 5: The Classes Manager Window with two classes

from the underlying model and in particular it removes all dependencies of the model to
the GUI. Section 3.2 presents the model developed for the error recovery system.

3.1 View

The GUI is coded in Java Swing. The best documentation for a GUI is the user manual
together with the source code. No particular widgets have been design for this application.
The Independence of the model is mainly realised through the use of listener (Observer
design pattern).

3.2 Model

A global and simplified overview of the package relations into the application can be found
in Figure 6. Tool packages have been removed from this diagram to improve readability.

The first part of the model is the data structures presented in D29 that are used to
represent the tracker output: TrackerTarget, TrackerFrame, TrackerSequence, TrackerHis-
tory. Figure 8 shows an UML diagram with these classes. The PersistentObject interface
is implemented by all the classes that can be stored or loaded from file.

The second part of the model is composed of all the class hierarchy representing the error
recovery system by itself. As shown in Figure 7, a GlobalManager object is responsible
for the communication between the different modules taking part in the error recovery
process: it feeds the ErrorDetector with the tracker output, then if an error is detected
it uses the ErrorClassifier to assign a class label to the error sequence and then uses the
ErrorClassesManager to do the appropriate action depending on the error label affected
to the sequence. These modules functionalities and requirement are described through
interfaces. All these interfaces are generic (parametrised by one or more types) but the
GlobalManager is concrete and uses instantiations of these generic interfaces. Each module
interface is implemented in some concrete class as shown in Figures 9

CAVIAR WorkPackage 4 Deliverable D34

B histogram | por- | 8 module.outputmodel —

1 module.errordetect

T
|
| impors Tt
| | (!
| ‘ [I
amporte
8 module.errorclass.repaircode) - o] } } 1
module.global ## module.errorclass
otz o) o eme L
(!
| amport
T T T T T T Bl I access
\ \ | [
\ \ ‘ Lo
g | ‘ Lo
| | | dnstantistes | ||
| | | L] e
\ \ ‘ Lo
v | | N
| | I

i module.toclassify L dmeee)
X # module.global.gui 1
e — — — cmpor> | 8 module.editor
Figure 6: Overview of the packages
K rorclassier [e facer
B “L“ - . |
g G : '
B =
B s

Figure 7: The GlobalManager and its managed components

CAVIAR

WorkPackage 4

Deliverable D34

«interface»
B common.PersistentObject

n loadPersistentObject()
n loadPersistentObject()
n savePersistentObject()

\
N\

bW

[&] common.data.TrackerTarget

izl common.data.TrackerFrame

n frameNumber: int

<_ R n timestamp: double

n trackerld: String

n getAsElement()
getTargetsAt()
getTargetsHavingCenterinto()
initFromElement()
loadPersistentObject()
loadPersistentObject()

mergeAllTargets()

E covXX: float

E covXY: float

n covYY: float

n frame: TrackerFrame
E height: float

E id: String

n majorRadius: float
n minorRadius: float

E muX: float
E muyY: float

n normalizedConfidenceFactor: float
n orientation: float
E pdfValue: float

E width: float

savePersistentObject()

*

+ frames

&l common.data.TrackerSequence

n endingTime: double

n errorClass: int

n errorDetected: boolean

E meanAreaVariationEnergy: float
E meanElongation: float

n meanMovementEnergy: float
n meanTargetArea: float

n startingTime: double

n absorb()

buildFloatArray()
buildRandomFloatArray()
getAsElement()
initFromElement()
loadPersistentObject()
loadPersistentObject()
removeFromFrame()
savePersistentObject()

updateProperties()

generatePossibleMailsincludingOppositelnto()
generatePossibleMailsInto()
loadPersistentObject()

loadPersistentObject()

processProcessable()

savePersistentObject()

E common.data.TrackerTargetHistory

\
X targets
< N\
AN
AN
N\
Ei
Ei
a
a
a
a
+ targets

Figure 8: Data structures

n appeared: boolean

n countFrames: int

n disappeared: boolean

n errorDetected: boolean

n meanNormalizedConfidenceFactor: float
n meanProductOfNormalizedConfidenceFactors: float
n productOfNormalizedConfidenceFactors: float
n sumNormalizedConfidenceFactor: float

n targetld: String

representing the tracking system output

10

CAVIAR

WorkPackage 4

Deliverable D34

«interface»

ﬂ module.errordetect.ErrorDetector <DataType,ErrorType>

«interface»

u module.outputmodel.CriticalModule <DataType>

u registerObservation(DataType): ErrorType

n criticise(DataType): float

—
| Elmodule.error i ror
B errorThreshold: float
B minwindowRatio: float
B windowsize: int
ﬂ SimpleErrorDetector(int)
u registerOl (TrackerFrame):
«interface»
B module.errorclass.ErrorClas [module.errorclass.SimpleErrorClassifier
i nocuass: int <+——
u classify(TrackerSequence): int
n classify(ErrorType): int
«interface»
B module.errorclass.ErrorClassesManager <ErrorType>
n addErrorToClass(ErrorType, int)
n addPositiveExample(ErrorType)
B createNewciass(): int
B cetciassexamplesCount(int): int
B octClassName(int): String
n getClassRepairCode(int): RepairCode
n getClassesCount(): int
n getErrorClassindex(ErrorType): int
n getRepairCodes(): Vector
I setClasskepairCode(RepairCode<ErrorType>, int): RepairCode
ror ger <DataType extends PersistentObject>

|
| lﬂmodule.error
|

[[l module.errorclass.SVMErrorClassesManager <DataType extends PersistentObject>

Figure 9: Implementations of the interfaces used by the GlobalManager

11

