

IBC 2606

6U-size CompactPCI[™] Master SBC with Pentium® III / Celeron[™] processor

User's Guide

©Copyright 2004

All Rights Reserved

The information in this document is subject to change without prior notice in order to improve reliability, design, and function, and does not represent commitment on the part of the manufacturer. In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages, or the possibility of such damages, arising out of the use of this information.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

Trademarks

Award is a trademark of Award Software International, Inc.

Fast EtherChannel (FEC) is a trademark of Cisco Systems, Inc. IBM, PS/2, OS/2, and VGA are trademarks of International Business

Machines Corporation. Intel, Pentium, and PRO/100+ are trademarks of Intel Corporation.

Windows is a registered trademark of Microsoft Corporation.

NetWare is a trademark of Novell, Inc.

Symbios is a trademark of Symbios Logic Corporation.

PICMG[™], CompactPCI[™] and the PICMG[™], and CompactPCI[™] logos are trademarks of the PCI Industrial Computers Manufacturers Group.Other product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

CE Notification

The IBC 2606 has passed the CE test for environment specification when shielded cables are used for external wiring. We recommend the use of shielded cables.

Customer Service

Worldwide Headquarters I-Bus Corporation 3350 Scott Blvd, Building 54 Santa Clara CA 95054, USA Tel: +(1) 408 450 7880 Fax: +(1) 408 450 7881 Toll Free: 877-777-IBUS Email: contact.us@ibus.com

European Headquarters I-Bus Unit 6, Chichester Business Park City Fields Way, Tangmere West Sussex, PO20 2LB, UK Tel: +44 (0) 1243 756300 Fax: +44 (0) 1243 756301 Email: contact.uk@ibus.co.uk

France, Italy I-Bus B.P 45 Valbonne 06901 Sophia Antipolis CEDEX France Tel: +33 (0) 493 004 360 Fax: +33 (0) 493 004 369 Email: contact.fr@ibus.com

Contents

1 HAF	RDWARE CONFIGURATION	6
11 IN	ITRODUCTION	7
1.1.1	High Performance Pentium® III Processor	
1.1.2	Compact Mechanical Design	
1.1.3	Complete I/O Functions	7
1.1.4	Meets Industrial Applications Requirements	7
1.2 SI	PECIFICATIONS	8
1.3 F	JNCTIONAL BLOCK DIAGRAM	10
1.4 Ju	JMPERS	11
1.4.1	Jumper Locations	11
1.4.2	Jumper Settings	11
1.4.3	Clear CMOS (JP2)	
1.5 C	ONNECTORS	
1.6 S.	AFETY PRECAUTIONS	
1./ IN	ISTALLING SDRAM (SODIMMS)	l/
1.8 IN	ISTALLING CPU AND HEAT SINK	18
2 CON	INECTING PERIPHERALS	
<u> </u>		20
2.1 II	DE DEVICE (CN10)	20
2.2 V	GA DISPLAY CONNECTOR (CN3)	
2.5 Pi	5/2 KEYBOARD AND MOUSE CONNECTOR (CNS)	20
2.4 SI	ERIAL PORTS (CIVI AND CIV2)	20 21
2.5 E	SB CONNECTOR (CN4)	
2.0 C	ARD INSTALLATION	
2.7 0		·····21
3 ETH	ERNET SOFTWARE CONFIGURATION	
3.1 IN	ITRODUCTION	
4 AGE	PSVGA SETUP	25
1 1101		20
5 AW	ARD BIOS SETUP	
51 4		20
5.1 A	Futaring Satur	20 28
5.1.2	Standard CMOS Sotup	
513	BIOS Features Setup	
514	CHIPSET Features Setup	
515	Power Management Setup	32
516	PNP/PCI Configuration Setup	33
5.1.7	Integrated Peripherals.	
5.1.8	Load Setup Defaults	
5.1.9	Password Setting	
5.1.10	IDE HDD Auto Detection	
5.1.11	Save & Exit Setup	
5.1.12	Exit Without Saving	

	_
	_

B.1. VGA DISPLAY CONNECTOR (CN3)	
B.2. COM1 AND COM2 SERIAL PORTS.	
B.3. KEYBOARD AND MOUSE CONNECTOR (CN5)	
B.4. USB CONNECTOR (CN4)	
B.5. CPU FAN POWER CONNECTOR (CN8)	
B.6. ETHERNET RJ-45 CONNECTORS	40
B.7. COMPACTFLASH SOCKET (CN9)	41
B.8. SYSTEM I/O PORTS	42
B.9. INTERRUPT ASSIGNMENTS	42
B.10. 1ST MB MEMORY MAP	43
B.11. J1 CONNECTOR PIN ASSIGNMENTS	43
B.12. J2 CONNECTOR PIN ASSIGNMENTS	44
B.13. J3 CONNECTOR PIN ASSIGNMENTS	45
B.14. J4 CONNECTOR PIN ASSIGNMENTS FOR IBC 2606	46

Figures

Figure 1-1: IBC 2606 functional block diagram
Figure 1-2: IBC 2606 jumper and connector locations
Figure 1-3: IBC 2606 front panel connector and indicator locations
Figure 1-4: Heat sink installation
Figure 5-1: Setup program initial screen
Figure 5-2: CMOS setup screen
Figure 5-3: BIOS features setup screen
Figure 5-4: CHIPSET features setup screen
Figure 5-5: Power management setup screen
Figure 5-6: PCI configuration screen
Figure 5-7: Integrated peripherals

Tables

Table 1-1: IBC 2606 jumper descriptions
Table 1-2: Clear CMOS
Table 1-3 IBC 2606 connector descriptions
Table 2-1: IBC 2606 serial port default settings
Table B-1: IBC 2606 CRT display connector
Table B-2: IBC 2606 COM1 and com2 serial ports
Table B-3: IBC 2606 keyboard connector
Table B-4: USB connector
Table B-5: IBC 2606 CPU fan power connector
Table B-6: IBC 2606 Ethernet RJ-45 connectors
Table B-7: IBC 2606 CompactFlash socket
Table B-8: System I/O ports
Table B-9: Interrupt assignments
Table B-10:1st MB memory map
Table B-11: J1 connector pin assignments
Table B-12: J2 connector pin assignments
Table B-13: J3 connector pin assignments
Table B-14: J4 connector pin assignments for IBC 2606
Table B-15: J5 connector pin assignments

1 Hardware Configuration

1.1 Introduction

The IBC 2606 is a 6U-size CompactPCI_{TM} all-in-one single board Pentium® III/Celeron_{TM} CPU card which complies with PICMG 2.0 R2.1 CompactPCI_{TM} specifications. Targeting performance-demanding applications like computer telephony and communications, the IBC 2606 accepts up to Pentium® III 850 MHz processors and higher for optimum computing capability. Based on Intel®'s 440BX chipset, the IBC 2606 enhances its performance with 100 MHz front side bus.

1.1.1 High Performance Pentium® III Processor

The IBC 2606 accepts an Intel® Pentium® III or CeleronTM processor with the 370-pin FC-PGA package. The Pentium® III processor has on-chip 256 KB and the CeleronTM processor has onchip 128 KB second level cache memory providing high performance with low cost. With the support of a 100 or 66 MHz CPU bus clock. The IBC 2606 can fulfill customer's expectations of high-performance computing capability.

1.1.2 Compact Mechanical Design

The IBC 2606 has many functions on a single board with only one-slot width. A CPU heat sink specially designed for the Pentium_® III processor, enabling the IBC 2606 to operate without a cooling fan on the heat sink. It only needs external cooling air from the chassis fans for ventilation. This enables the IBC 2606 to use a Pentium_® III CPU within a mere 1-slot wide space.

1.1.3 Complete I/O Functions

The IBC 2606 offers all the I/O functions of an industrial computer with the rugged Eurocard form factor. All I/O connectors are available on the front panel, containing two Fast Ethernet interfaces, two serial ports, one USB port, one VGA connector, and one PS/2 keyboard/mouse connector. The front panel also has a reset button and LEDs for power status, HDD operation and Ethernet communication.

The built-in high speed IDE controller provides two separate IDE channels with Ultra DMA/33 mode. The user-defined J3 connector is designed to support up to four IDE devices and two FDDs. These drives can simply be connected to the backplane or to the rear transition board for easy service and maintenance.

1.1.4 Meets Industrial Applications Requirements

The IBC 2606 is designed for use in mission critical applications. It accepts a CompactFlashTM memory card on the rear transition board, thus eliminating the need to use a fragile rotating hard drive. A watchdog timer can automatically reset the system if the system stops due to a program bug or EMI. The two-layer front panel design complies with IEEE 1101.10. Connectors are firmly screwed to the front panel, and the replaceable shielding gasket is attached to the panel edge. This reduces emissions and gives better protection against external interference.

1.2 Specifications

Standard SBC Functions

- CPU: Socket 370 Pentium_® III Coppermine CPU up to 850 MHz Socket 370 Celeron™ CPU up to 566 MHz
- BIOS: Award 2 Mb flash memory
- Chipset: Intel® 440BX Chipset
- Front Side Bus Clock: 100 MHz for Intel® Pentium® III CPU 66 MHz for Celeron™ CPU
- Bus Interface: 32-bit, 33 MHz, PICMG 2.0 compliant
- 2nd level cache: CPU built-in 256 KB (Pentium® III) or 128 KB (Celeron™) on die

• RAM: Two 144-pin SO-DIMM sockets. Support PC-100 SDRAMs with memory capacity up to 512 MB. Support ECC.

• Enhanced IDE interface: Two channels handles up to 4 IDE HDDs or other IDE devices via J3 connector. Supports PIO mode 4 and Ultra DMA/33 mode.

- Floppy disk drive interface: Supports up to two floppy disk drives through the J3 connector
- Serial ports: Two RS-232 ports with 16C550 compatible UARTs
- USB interface: One USB connector with fuse protection. Complies with USB specification 1.0
- Keyboard/mouse connectors: One 6-pin mini-DIN connector on the front panel

• Watchdog timer: Can generate a system reset. Software enabled/disabled. Time interval is from 1 to 63 seconds, jumperless with run-time setup.

PCI-to-PCI Bridge

• Controller chip: One (IBC 2606) Intel® DEC 21150 controller chip, drives up to 7/14 PCI master peripherals

- Drives bus segment through J1 and J2 connectors
- · Supports up to seven bus masters
- Provides seven pairs of GNT# and REQ# signals

10/100Base-TX Ethernet Interface

- Controller chips: Two Intel 82599 Fast Ethernet controller chips
- Dual LAN ports
- 10 Mbps or 100 Mbps auto-switching

AGP VGA Interface

- Controller: Intel C&T 69000
- AGP 1.0 compliant, 66 MHz
- Display memory: On-chip 2 MB SDRAM
- Display Resolution:

Resolution	Number of Colors
640 x 480, 800 x 600, 1024 x 768, 1280 x 1024	256 (8 bits)
640 x 480, 800 x 600, 1024 x 768	65, 536 (16 bits)
640 x 480, 800 x 600	16.8 million (24 bits)
640 x 480, 800 x 600	16.8 million (32 bits)

Optional Rear I/O Board

• For IBC 2606: IBC 2706

Note: Please refer to the IBC 2706 user's manual for more detailed information.

Mechanical and Environmental Specifications

- Operating temperature: $0 \sim 55^{\circ}$ C (32 ~ 131° F), depending on CPU installed
- Storage Temperature: -20 ~ 80° C (-4 ~ 176° F)
- Humidity (operating and storage): 5 ~ 95% (non-condensing)
- Power Consumption: +5 V@ 2.1 A; +3.3 V @ 2.5 A; +12 V @ 640 mA
- Board size: 233.35 x 160 mm (6U size), 1-slot (4 TE) wide
- Weight: 0.8 kg (1.8 lb)
- Shock: 20 G (operating); 50 G (storage/transit)
- Random vibration: 1.5 Grms

1.3 Functional Block Diagram

Figure 1-1: IBC 2606 functional block diagram

1.4 Jumpers

1.4.1 Jumper Locations

The IBC 2606 provides a jumper (JP2) for configuring your board for specific applications other than the default settings.

Table 1-1 lists the jumper function. Figure 1-2 illustrates the jumper location. Read this section carefully before changing the jump setting on your IBC 2606 card.

Table 1-1: IBC 2606 jumper descriptions

Number	Function
JP2	Clear CMOS

1.4.2 Jumper Settings

This section tells how to set the jumpers to configure your card. It gives the card default configuration and your options for each jumper. After you set the jumpers and install the card, you will also need to run the BIOS Setup program (discussed in Chapter 6) to configure the serial port addresses, floppy/hard disk drive types and system operating parameters. Connections, such as hard disk cables, appear in Chapter 2.

For the locations of each jumper, see the board layout diagram depicted earlier in this chapter.

You configure your card to match the needs of your application by setting jumpers. A jumper is the simplest kind of electric switch. It consists of two metal pins and a small metal cap (often protected by a plastic cover) that slides over the pins to connect them. To "close" a jumper you connect the pins with the cap. To "open" a jumper you remove the cap. Sometimes a jumper will have three pins, labeled 1, 2 and 3. In this case you connect either pins 1 and 2 or 2 and 3.

The jumper settings are schematically depicted in this manual as follows:

You may find a pair of needle-nose pliers useful for setting the jumpers.

If you have any doubts about the best hardware configuration for your application, contact your local distributor or sales representative before you make any changes.

1.4.3 Clear CMOS (JP2)

This jumper is used to erase CMOS data and reset system BIOS information. Follow the procedures below to clear the CMOS.

1. Turn off the system.

- 2. Close jumper JP2 (2-3) for about 3 seconds.
- 3. Close jumper JP2 (1-2).
- 4. Turn on the system. The BIOS is reset to its default setting.

Table	1-2.	Clear	CMOS
i ubic		oicui	01000

CMOS	JP2
Clear	1 2 3
Normal (default	1 22

1.5 Connectors

On board connectors link to external devices such as hard disk drives, keyboards, or flooy drives, etc. Table 1-3 lists the function of each connector and Figure 1-2 and Figure 1-3 illustrate each connector location. Chapter 2 gives instructions for connecting external devices to your card.

Number	Function
CN1	COM1
CN2	COM2
CN3	VGA connector
CN4	USB connector
CN5	PS/2 Keyboard and mouse connector
CN6	Ethernet connector 2
CN7	Ethernet connector 1
CN8	CPU fan power connector
CN9	CompactFlash socket (optional)
CN10	IDE connector
CPU1	Socket 370 for CPU
DIM1	SODIMM socket 1
DIM2	SODIMM socket 2
J1/J2	Primary CompactPCIm bus
J3	Rear I/O transition
J4	(IBC 2606) Rear I/O transition
LED1	HDD LED and Power LED
SW1	Reset switch

Table 1-3 IBC 2606 connector descriptions

Please refer to Appendix B for pin assignments

Figure 1-2: IBC 2606 jumper and connector locations

Figure 1-3: IBC 2606 front panel connector and indicator locations

1.6 Safety Precautions

Follow these simple precautions to protect yourself from harm and the products from damage.

1. To avoid electric shock, always disconnect the power from your PC chassis before you work on it. Don't touch any components on the CPU card or other cards while the PC is on.

2. Disconnect power before making any configuration changes. The sudden rush of power as you connect a jumper or install a card may damage sensitive electronic components.

3. Always ground yourself to remove any static charge before you touch your CPU card. Be particularly careful not to touch the chip connectors. Modern integrated electronic devices, especially CPUs and memory chips, are extremely sensitive to static electric discharges and fields. Keep the card in its antistatic packaging when it is not installed in the PC, and place it on a static dissipative mat when you are working with it. Wear a grounding wrist strap for continuous protection.

1.7 Installing SDRAM (SODIMMs)

The IBC 2606 provides two 144-pin SODIMM sockets. Each socket accepts either 16, 32, 64, 128 or 256 MB SDRAM. The sockets can be filled in any combination with SODIMMs of any size, giving a total memory capacity between 16 and 512 MB. If only one SODIMM module is required, it can be installed in either SODIMM socket.

Since the IBC 2606 can operate at 66 or 100 MHz, we recommend using PC100-compliant SODIMMs.

To enable the chipset's Error Checking and Correction (ECC) function, please use SODIMMs which support the ECC function.

The procedure for installing SODIMMs appears below. Please follow these steps carefully.

1. Ensure that all power supplies to the system are switched Off.

2. Install the SODIMM module. Install the SODIMM so that its gold pins point down into the SODIMM socket.

3. Slip the SODIMM into the socket at a 45 degree angle and carefully fit the bottom of the card against the connectors.

4. Gently push the SODIMM into the socket until the clips on the ends of the SODIMM sockets snap into place.

5. Check to ensure that the SODIMM is correctly seated and all connector contacts touch. The SODIMM should not move around in its socket.

NOTE: The SODIMM modules can only fit into sockets one way, in accordance with the keyed notches along the bottom edge of the modules. Their gold pins must point down into the SODIMM socket.

1.8 Installing CPU and Heat Sink

The IBC 2606 accepts Intel® socket 370 Pentium® III Cuppermine CPU or Intel® socket 370 Celeron™ CPU. In order to meet critical environmental conditions and the physical space of the IBC 2606 a heat sink was used to fulfill both needs.

Please refer to Figure 1-4 for an illustration of the heat sink used for the IBC 2606.

Because the thickness of the Pentium_® III and Celeron™ CPU are different, a samll aluminum plate along with the heat sink when installed with a Pentium_® III CPU. The small aluminum plate is default fastened on the heat sink in the factory. If users would like to use a Celeron™ CPU on the IBC 2606, please remove the small aluminum plate from the heat sink.

Figure 1-4: Heat sink installation

Software support

The IBC 2606 comes with a utility CD-ROM disc, which includes drivers and utility programs of Ethernet and SVGA interfaces.

The 440BX chipset may not be recognized by some old-versioned Windows 95. Please visit Intel's website to download the required files:

http://developer.intel.com/design/chipsets/drivers/inf_update.htm

2 Connecting Peripherals

2.1 IDE Device (CN10)

The IBC 2606 provides two IDE (Integrated Device Electronics) channels via the J3 connector to the rear transition board (IBC 2706 for IBC 2606). Four IDE drives can be connected to the IBC 2606 through the rear transition board.

Users can connect two IDE drives to each IDE channel. If two drives are installed on one channel, remember to set one as the master and the other one as the slave. You may do this by setting the jumpers on the drives. Refer to the documentation that came with your drive for more information. A jumper diagram usually appears on the top side of a hard disk drive.

Warning:	Plug the other end of the cable into the drive with pin 1 on the cable corresponding to pin 1 on the drive. Improper connection will damage the drive.
Note:	We don't recommend connection to the following Seagate brand IDE HDD models: ST 31276A, ST31720A, ST 32531A, ST 33240A or ST 34340A

2.2 VGA Display Connector (CN3)

The IBC 2606 provides an VGA chipset built-in display for high performance application. The IBC 2606's CN3 is a DB-15 connector for VGA monitor input. Pin assignments for the VGA display are detailed in Appendix B.

2.3 PS/2 Keyboard and Mouse Connector (CN5)

The IBC 2606 provides a 6-pin mini-DIN connector (CN5) on the front panel for connection of PS/2 keyboard and PS/2 mouse. The IBC 2606 comes with a cable to convert from the single 6-pin mini-DIN connector to a double PS/2 keyboard connector and PS/2 mouse connector. Since these two connectors are identical, please follow the icons on the cable to plug the keyboard and the mouse into their correct connectors.

2.4 Serial Ports (CN1 and CN2)

The IBC 2606 offers two serial ports: COM1 and COM2, both in RS-232. These ports allow users to connect to serial devices (a mouse, printers, etc.) or a communication network.

You can select the address for each port (For example, 3F8H [COM1], 2F8H [COM2]) or disable it, using the BIOS Advanced Setup program, covered in Chapter 5.

Different devices implement the RS-232 standard in different ways. If you are having problems with a serial device, be sure to check the pin assignments for the connector.

The IRQ and address range for both ports are fixed. However, if you wish to disable the port or change these parameters later, you can do this in the system BIOS setup. The table below shows the settings for

the IBC 2606 board's ports:

Table 2-1: IBC 2606 serial port default settings

Port	Address	Default
COM1	3F8, 3E8	3F8/IRQ4
COM2	2F8, 2E8	2F8/IRQ3

2.5 Ethernet Configuration (CN6 and CN7)

The IBC 2606 is equipped with dual high performance 32-bit PCI-bus Fast Ethernet interfaces which are fully compliant with IEEE 802.3u 10/100Base-TX specifications. It is supported by all major network operating systems and is 100% Novell NE-2000 compatible. Two on-board RJ-45 jacks provide convenient connection to the network.

The medium type can be configured via the software program included on the utility CD-ROM disc. (See Chapter 3 for detailed information.)

2.6 USB Connector (CN4)

The IBC 2606 provides one USB (Universal Serial Bus) interface on the front panel. The USB interface gives complete plug and play, hot attach/detach for up to 127 external devices. The IBC 2606 USB interface complies with USB specification rev. 1.0 and is fuse protected.

The USB interface can be disabled in the system BIOS setup. The USB controller default is "Enabled" but the USB keyboard support default is "Disabled".

2.7 Card Installation

The CompactPCI connectors are firm and rigid, and require careful handling while plugging and unplugging. Improper installation of a card can easily damage the backplane of the chassis.

The inject/eject handles of IBC 2606 help you install and remove the card easily and safely. Follow the procedure below to install the IBC 2606 into a chassis:

To install a card:

1. Hold the card vertically. Be sure that the card is pointing in the correct direction. The components of the card should be pointing to the right-hand side.

2. Pull out both handles to unlock it.

Caution: Keep your fingers away from the hinge to prevent your fingers from getting pinched.

3. Insert the card into the chassis by sliding the upper and lower edges of the card into the card guides.

4. Push the card into the slot gently by sliding the card along the card guide until the handles meet the rectangular holes of the cross rails.

Note: If the card is correctly positioned and has been slid all the way into the chassis, the handle should match the rectangular holes. If not, remove the card from the card guide and repeat step 3 again. Do not try to install a card by forcing it into the chassis.

5. Pull the upper handle down and lift the lower handle up to push the card into place.

6. Secure the card by pushing in the red handle to lock it into place.

Figure 2-1: Installing the card into the chassis

To remove a card:

1. Unscrew the screws on the front panel.

2. Lift the upper handle up and press the lower handle down to release the card from the backplane.

3. Slide the card out.

3 Ethernet Software Configuration

3.1 Introduction

The IBC 2606 has two on-board high-performance fast Ethernet interfaces which comply with IEEE 802.3/802.3u for 10Base-T and 100 Base-TX data rates.

The module uses two Intel® 82559 fast Ethernet controllers with integrated PHY and is compatible with the Intel® PRO/100+ Server and Client Adapter. The dual Ethernet channel design provides several options for increasing throughput and fault tolerance when running Windows NT 4.0 or NetWare 4.1x and newer versions of these, includes:

• Adapter Fault Tolerance (AFT) - provides automatic redundancy for your Ethernet channel. If the primary channel fails, the secondary takes over.

• Adaptive Load Balancing (ALB) - creates a team of 2 channels to increase transmission throughput. Also includes AFT and ALB. This function works with any 100BASE-TX switch.

• Fast EtherChannel (FEC) - creates a team of 2 to 4 channels to increase transmission and reception throughput. Also includes AFT. This function requires a Cisco switch with FEC capability.

The IBC 2606 comes with drivers for a wide variety of networks and operating systems. The IBC 2606 is an excellent choice for operation in standalone and harsh industrial environments.

4 AGP SVGA Setup

The IBC 2606 uses an Intel C&T 69000 chipset as its AGP VGA controller. The VGA controller has an integrated 2 MB SDRAM operating at 83 MHz, and can drive CRT displays with resolutions up to 1024 x 768 at 64 K colors. It supports interlaced and non-interlaced analog monitors (color and monochrome VGA) in highresolution modes while maintaining complete IBM VGA compatibility. Digital monitors (i.e. MDA, CGA, and EGA) are NOT supported. Multiple frequency (multisync) monitors are handled as if they were analog monitors.

5 Award BIOS Setup

5.1 AWARD BIOS Setup

Figure 5-1: Setup program initial screen

Award's BIOS ROM has a built-in Setup program that allows users to modify the basic system configuration. This type of information is stored in battery-backed CMOS so that it retains the Setup information when the power is turned off.

5.1.1 Entering Setup

Turn on the computer and check for the "patch code". If there is a number assigned to the patch code, it means that the BIOS supports your CPU.

If there is no number assigned to the patch code, please contact I-bus's application engineer to obtain an up-to-date patch code file. This will ensure that your CPU's system status is valid.

After ensuring that you have a number assigned to the patch code, press and you will immediately be allowed to enter Setup.

5.1.2 Standard CMOS Setup

Choose the "STANDARD CMOS SETUP" option from the INITIAL SETUP SCREEN Menu, and the screen below will be displayed. This standard setup menu allows users to configure system components such as date, time, hard disk drive, floppy drive, display, and memory.

HARD DISKS	- 11	PE	SIZE	CYLE	READ	PRECOMP	LANDE	SECTOR	RODE
Primary Master Primary Slave Secondary Master Secondary Blave								1	
Drive 8 1 1.449. Drive 8 1 Hone	a.s	in.		Г					
Video : EGR-UGR	-								

Figure 5-2: CMOS setup screen

5.1.3 BIOS Features Setup

The "BIOS FEATURES SETUP" screen will appear after the BIOS FEATURES SETUP item from the CMOS SETUP UTILITY Menu was chosen. This screen allows the user to configure the IBC 2606

according to his particular requirements.

Below are some major items that are provided in the BIOS FEATURES SETUP screen:

HOH PCI/ISE BIOS (2049MBBO) BIOS PENTURES BETUP RVMTP SOFTMARE, INC.			
Utrus Marming Brid GMU Internal Cache Dia Seternal Cashe Dia Seternal Cashe Dia Seternal Cashe Dia Onick Power On Self Test Dia Maick Power On Self Test Dia Maich Power On Self Test Dia Mark Power On Self Test Dia Mark Power On Self Test Dia Sear Up Honiock Status Off Gate R2B Option Typematic Bate Setting Dia Typematic Bate Setting Dia Typematic Bate Setting Dia Typematic Bate (Charoclec) 250	Lind Vides BIOS thadaw : Binchled Sied Counse-CEPTF Shadaw : Binchled Sied Counse-CEPTF Shadaw : Binchled Sied Denne CEPTF Shadaw : Binchled Sign : Sign : Sign : S		
PCI/OGE Palatte Sneep Dis Of Ealast Far IOAM > LAND Non	Find OT2 Fi 2 Balp Fi 2 Ba		

Figure 5-3: BIOS features setup screen

Virus Warning

During and after the system boots up, any attempt to write to the boot sector or partition table of the hard disk drive will halt the system. If this happens, a warning message will be displayed. You can run the

anti-virus program to locate the problem.

If Virus Warning is Disabled, no warning message will appear if anything attempts to access the boot sector or hard disk partition.

CPU Internal Cache/External Cache

Depending on the CPU/chipset design, these options can speed up memory access when enabled.

Quick Power On Self Test

This option speeds up the Power-On Self Test (POST) conducted as soon as the computer is turned on. When enabled, the BIOS shortens or skips some of the items during the test. When disabled, normal POST procedures resume.

Boot Sequence

This function determines the sequence in which the computer will search the drives for the disk operating system (i.e. DOS). The default value is "C, A, SCSI". The following options are available:

A: Computer will boot from the A (floppy) disk drive C: Computer will boot from the C (hard) disk drive CDROM: Computer will boot from the CD-ROM disc drive SCSI: Computer will boot from the SCSI drive D: Computer will boot from the D drive E: Computer will boot from the E drive F: Computer will boot from the F drive LS120: Computer will boot from the LS-120 drive

Boot Up Floppy Seek

During POST, the BIOS will determine if the floppy disk drive installed has 40 or 80 tracks. The 360 KB type has 40 tracks while the 720 KB, 1.2 MB, and 1.44 MB all have 80 tracks.

Enabled	BIOS searches the floppy drive to determine if it has 40 or 80 tracks. Note that BIOS cannot differentiate 720 KB, 1.2 MB, and 1.44 MB type drives as they all have 80 tracks.
Disabled	BIOS will not search for the floppy drive type by track number. Note that there will not be any warning message if the drive installed is 360 KB.

Boot Up NumLock Status

The default is "On".

On	Keypad boots up to number keys.
Off	Keypadboots to arrow keys

Boot Up System Speed

High	Sets the speed to high
Low	Sets the speed to low

IDE HDD Block Mode

Enabled	Enable IDE HDD Block Mode. BIOS will detect the block size of the HDD and send a block command automatically.
Disabled	Disable IDE HDD Block Mode

Gate A20 option

Normal	The A20 signal is controlled by the keyboard controller or chipset hardware
Fast	Default: Fast. The A20 signal is controlled by Port 92 or by a chipset specific method.

Typematic Rate Setting

The typematic rate determines the characters per second accepted by the computer. Typematic Rate setting enables or disables the typematic rate.

Typematic Rate (Char/Sec)

BIOS accepts the following input values (character/second) for Typematic Rate: 6, 8, 10, 12, 15, 20, 24, 30.

Typematic Delay (msec)

When holding down a key, the Typematic Delay is the time interval between the appearance of the first and second characters. The input values (msec) for this category are: 250, 500, 750, 1000.

Security Option

This setting determines whether the system will boot if the password is denied, while limiting access to Setup.

System	The system will not boot, and access to Setup will be denied if the correct password is not entered at the prompt.
Setup	The system will boot, but access to Setup will be denied if the correct password is not entered at the prompt.

Note: To disable security, select PASSWORD SETTING in the main menu. At this point, you will be asked to enter a password. Simply hit the <ENTER> key to disable security. When security is disabled, the system will boot, and you can enter Setup freely.

OS Select for DRAM>64 MB

This setting is for use under the OS/2 operating system.

Video BIOS Shadow

This setting determines whether the video BIOS will be copied to RAM, which is optional according to the chipset design. When enabled, Video Shadow increases the video speed.

C8000 - CFFFF Shadow/DC000-DFFFF Shadow

These settings determine whether optional ROM will be copied to RAM in blocks of 16 KB.

Enabled	Optional shadow is enabled
Disabled	Optional shadow is disabled

5.1.4 CHIPSET Features Setup

Choosing the "CHIPSET FEATURES SETUP" option from the INITIAL SETUP SCREEN Menu causes the screen below to be displayed. This sample screen contains the manufacturer's default values for the IBC 2606.

NOM PCL/ISA BIOS (2019NABO) CHIPTET PERTURES SETUP ANNUE TOPTUNE, THC.			
EDRAM HAE-ts-CAE Delay : 2 SDRAM HAE -ts-CAE Delay : 2 SDRAM HAE Pretharge Time : 7 SDRAM Pretharge Control : Elisabled SDRAM Pretharge Control : Bisabled SHAH Data Integrity Made : New-DEC Eystan BIOC Caebashis : Bisabled Vides NHM Caebashis : Bisabled Vides NHM Caebashis : Bisabled N Bit 1/O Berswery Time : NM Remery Hais As 120 SLAM : Bisabled Farsive Release Selayed Francetion : Bisabled NH Particle Inc. (NB) : 4	Auto Betect DIMP/FCI Cik + Enchled Spread Sprotrum CHI Must/FCI Cluck + Befamlt		
And a share of the standard method and the standard of the standard stand	HIC : Quit fire : Galact Iten F1 : Bolp PL/PD/3/- : Medify F5 : Old Values (Shift)F2 : Celer F7 : Lond Setup Befamits		

Figure 5-4: CHIPSET features setup screen

VGA Shared Memory Size

Shared memory architecture can support 0.5 MB, 1MB, 1.5 MB, 2 MB, 3 MB, 3.5 MB and 4 MB of system memory.

5.1.5 Power Management Setup

The power management setup controls the CPU cards' "green" features. The following screen shows the manufacturer's default values.

NON PCI/ISA BIOS (2069NABD) POWER MANAGEMENT SITUP MONNE SOFTWARE, INC.			
Power Management (PM Cantrol by 49M Uldes Off Methad Uldes Off Mfter Sear Mede Standby Mede HDB Power Dewn	Unerd Define Me Black Screen Dischle Dischle Dischle Dischle	** Reland Glabal Timer Events ** IN013-7,7-151,043 : Disabled Primary INE 0 : Disabled Primary INE 1 : Disabled Secondary IDE 1 : Disabled Secondary IDE 1 : Disabled Secondary IDE 1 : Disabled Replat Pure : Disabled Parollel Purt : Disabled	
		RIC : Quit fire : Releas Item Fi : Belg RU/PD/r/- : Redify FS : Old Unions (Shift)FD : Calme F7 : Lond Setup Defaults	

Figure 5-5: Power management setup screen

Power Management

This option allows you to determine if the values in power management are disabled, userdefined, or predefined.

HDD Power Management

You can choose to turn the HDD off after one of the time intervals listed, or when the system is in Suspend mode. If in a power saving mode, any access to the HDD will wake it up.

Note: The HDD will not power down if the Power Management option is disabled.

IRQ Activity

IRQ can be set independently. Activity on any enabled IRQ will wake up the system.

5.1.6 PNP/PCI Configuration Setup

Figure 5-6: PNP/PCI configuration screen

5.1.7 Integrated Peripherals

ROM PCL/ISB BIOS (2019)0480) INTEGRITED PETITIONELE HUNDED SOFTWARE, INC.			
IDE HID Block Pede : Enchande IDE Frimery Elser Flo : Auto IDE Frimery Elser Flo : Auto IDE Secondary Matter Flo : Auto IDE Frimery Elser HID : Auto IDE Frimery Parter 1994 : Auto IDE Frimery Parter 1994 : Auto IDE Frimery Parter 1994 : Auto On-Chip Frimery Piller IDE Frahled UE Secondary Parter 1994 : Auto On-Chip Frimery Piller IDE Frahled UE Frykened Eugenet : Frahled UE Frykened Eugenet : Trahled Int Frykened FC Constaller : Tobled Onheard Escial Part 1 : 1997 E00 Gehaard Escial Part 2 : 1997 E00	HIC : Guit tive : Balance item FI : Did Values Chit207 : Redif F7 : Did Values Chit207 : Color F7 : Lond Satup Balances		

Figure 5-7: Integrated peripherals

Note: If you enable the IDE HDD block mode, the enhanced IDE driver will be enabled.

5.1.8 Load Setup Defaults

"LOAD SETUP DEFAULTS" loads the values required by the system for maximum performance.

5.1.9 Password Setting

To change, confirm, or disable the password, choose the "PASSWORD SETTING" option form the Setup main menu and press [Enter]. The password can be at most 8 characters long.

Remember, to enable this feature. You must first select the Security Option in the BIOS FEATURES SETUP to be either "Setup" or "System." Pressing [Enter] again without typing any characters can disable the password setting function.

5.1.10 IDE HDD Auto Detection

"IDE HDD AUTO DETECTION" automatically self-detects the hard disk type.

5.1.11 Save & Exit Setup

If you select this and press the [Enter] key, the values entered in the setup utilities will be recorded in the CMOS memory of the chipset. The microprocessor will check this every time you turn your system on and compare this to what it finds as it checks the system. This record is required for the system to operate.

5.1.12 Exit Without Saving

Selecting this option and pressing the [Enter] key lets you exit the Setup program without recording any new values or changing old ones.

A Programming the Watchdog Timer

To program the watchdog timer, you must write a program which writes a value to I/O port address 443 (hex). This output value represents time interval. The value range is from 01 (hex) to 3F (hex), and the related time interval is 1 sec. to 63 sec.

Data Time Interval

- 01 1 sec.
- 02 2 sec.
- 03 3 sec.
- 04 4 sec.
- •
- •
- •

3F 63 sec.

After data entry, your program must refresh the watchdog timer by rewriting the I/O port 443 (hex) while simultaneously setting it. When you want to disable the watchdog timer, your program should read I/O port 443 (hex).

The following example shows how you might program the watchdog timer in BASIC:

10	REM Watchdog timer example program
20	OUT &H443, data REM Start and restart the watchdog
30	GOSUB 1000 REM Your application task #1,
40	OUT &H443, data REM Reset the timer
50	GOSUB 2000 REM Your application task #2,
60	OUT &H443, data REM Reset the timer
70	X=INP (&H443) REM, Disable the watchdog timer
80	END
1000	REM Subroutine #1, your application task
•	•
•	•
•	•
1070	RETURN
2000	REM Subroutine #2, your application task
•	•
•	•
•	•

2090 RETURN

B Pin Assignments

B.1. VGA Display Connector (CN3)

Table B-1: IBC 2606 CRT display connector

Pin	Signal	Pin	Signal
1	RED	9	VCC
2	GREEN	10	GND
3	BLUE	11	N/C
4	N/C	12	SDA
5	GND	13	HSYNC
6	GND	14	VSYNC
7	GND	15	SCL
8	GND		

B.2. COM1 and COM2 Serial Ports (CN1 and CN2)

Table B-2: IBC 2606 COM1 and com2 serial ports

Pin	COM1	COM2	Signal
	Signal	Pin	-
1	NRLSD1	1	NRLSD2
2	NRX1	2	NRX2
3	NTX1	3	NTX2
4	NDTR1	4	NDTR2
5	GND	5	GND
6	NDSR1	6	NDSR2
7	NRTS1	7	NRTS2
8	NCTS1	8	NCTS2
9	NRI1	9	NRI2

B.3. Keyboard and Mouse Connector (CN5)

Table B-3: IBC 2606	keyboard connector
Pin	Signal
1	KDAT
2	MDAT
3	GND
4	VCC
5	KCLK
6	MCLK

B.4. USB Connector (CN4)

4			1
0	$^{\circ}$	$^{\circ}$	$^{\circ}$

Table B-4: USB connector

Pin	USB
	Signal
1	VCC
2	USBD0-
3	USBD0+
4	GND

B.5. CPU Fan Power Connector (CN8)

C)	1
C		2
0)	3

Table B-5: IBC 2606 CPU fan power connector

Pin	Signal
1	GND
2	+12V
3	N/C

B.6. Ethernet RJ-45 Connectors (CN6 and CN7)

Table B-6: IBC 2606 Ethernet RJ-45 connectors

Pin	Signal
1	TX+
2	TX-
3	RX+
4	N/C
5	N/C
6	RX-
7	N/C
8	N/C

B.7. CompactFlash Socket (CN9)

Pin	Signal	Pin	Signal
1	GND	26	N/C
2	ID3	27	ID11
3	ID4	28	ID12
4	ID5	29	ID13
5	ID6	30	ID14
6	ID7	31	ID15
7	HCS1-	32	HCS3-
8	GND	33	N/C
9	GND	34	HIOR-
10	GND	35	HIOW-
11	GND	36	N/C
12	GND	37	HIRQ
13	VCC	38	VCC
14	GND	39	SANDISK
15	GND	40	N/C
16	GND	41	-HRST1
17	GND	42	HRDY
18	GDA2	43	N/C
19	HDA1	44	N/C
20	HDA0	45	SANLED
21	ID0	46	N/C
22	ID1	47	ID8
23	ID2	48	ID9
24	N/C	49	ID10
25	N/C	50	GND

Table B-7: IBC 2606 CompactFlash socket

B.8. System I/O Ports

Table B-8: System I/O ports	
Addr. range (Hex)	Device
000-01F	DMA controller
020-021	Interrupt controller 1, master
022-023	Chipset address
040-05F	8254 timer
060-06F	8042 (keyboard controller)
070-07F	Real-time clock, non-maskable interrupt (NMI) mask
080-09F	DMA page register
0A0-0BF	Interrupt controller 2
0C0-0DF	DMA controller
0F0-0F8	Math co-processor
1F0-1F7	Fixed disk
2F8-2FF	Serial port 2
3B0-3BB	VGA adapter
3C0-3DF	VGA adapter
3F0-3F5	Diskette controller
3F8-3FF	Serial port 1

B.9. Interrupt Assignments

Interrupt#	
interrupt#	interrupt source
IRQ 0	Interval timer
IRQ 1	Keyboard
IRQ 2	Interrupt from controller 2 (cascade)
IRQ 8	Real-time clock
IRQ 9	VGA
IRQ 10	Available
IRQ 11	Available
IRQ 12	PS/2 mouse
IRQ 13	INT from co-processor
IRQ 14	Fixed disk controller
IRQ 15	Available
IRQ 3	Serial communication port 2
IRQ 4	Serial communication port 1
IRQ 5	Available
IRQ 6	Diskette controller (FDC)
IRQ 7	Available

B.10. 1st MB Memory Map

Addr. range (Hex)	Device
F000h - FFFFh	System ROM
CC00h - EFFFh	Unused
CA00h - CBFFh	Used
C000h - C9FFh	Expansion ROM
B800h - BFFFh	CGA/EGA/VGA text
B000h - B7FFh	Unused
A000h - AFFFh	EGA/VGA graphics
0000h - 9FFFh	Base memory

Table B-10:1st MB memory map

B.11. J1 connector pin assignments

Pin	Row A	Row B	Row C	Row D	Row E	
25	+5V	REQ64#	N/C	+3V	+5V	
24	AD1	+5V	N/C	AD0	ACK64#	
23	+3V	AD4	AD3	+5V	AD2	
22	AD7	GND	+3V	AD6	AD5	
21	+3V	AD9	AD8	GND	C/BE0#	
20	AD12	GND	N/C	AD11	AD10	
19	N/C	AD15	AD14	GND	AD13	
18	SERR#	GND	+3V	PAR	C/BE1#	
17	+3V	SDONE	SBO#	GND	PERR#	
16	DEVSEL#	GND	N/C	STOP#	LOCK#	
15	+3V	FRAME#	IRDY#	GND	TRDY#	
12-14		KEY AREA				
11	AD18	AD17	AD16	GND	C/BE2#	
10	AD21	GND	+3V	AD20	AD19	
9	C/BE3#	N/C	AD23	GND	AD22	
8	AD26	GND	N/C	AD25	AD24	
7	AD30	AD29	AD28	GND	AD27	
6	REQ#	GND	+3V	CLK	AD31	
5	N/C	N/C	RST#	GND	GNT#	
4	N/C	GND	N/C	INTP	INTS	
3	INTA#	INTB#	INTC#	+5V	INTD#	
2	TCK	+5V	TMS	N/C	TDI	
	. = \ /	NI/O	TDOT#	101/		

#: low active

B.12. J2 connector pin assignments

Pin	Row A	Row B	Row C	Row D	Row E
47	N/C	N/C	N/C	N/C	N/C
46	N/C	GND	N/C	N/C	N/C
45	N/C	N/C	N/C	GND	N/C
44	N/C	GND	N/C	N/C	N/C
43	N/C	N/C	N/C	GND	N/C
42	N/C	GND	PRST#	REQ6#	GNT6
41	N/C	N/C	DEG#	GND	N/C
40	N/C	GND	FAL#	REQ5#	GNT5
39	N/C	N/C	N/C	GND	N/C
38	N/C	GND	N/C	N/C	N/C
37	N/C	N/C	N/C	GND	N/C
36	N/C	GND	N/C	N/C	N/C
35	N/C	N/C	N/C	GND	N/C
34	N/C	GND	N/C	N/C	N/C
33	N/C	N/C	N/C	GND	N/C
32	N/C	GND	N/C	N/C	N/C
31	N/C	N/C	N/C	GND	N/C
30	N/C	GND	N/C	N/C	N/C
29	N/C	N/C	N/C	GND	N/C
28	CLK4	GND	GNT3	REQ4#	GNT4
27	CKL2	CLK3	N/C	GNT2	REQ3#
26	CLK1	GND	REQ1#	GNT1	REQ2#

Table B-12: J2 connector pin assignments

#: low active

B.13. J3 connector pin assignments

Pin	RowA	Row B	Row C	Row D	Row E
19	HDBD3	HDBD6	HDBD10	HDBD2	HD8D14
18	HDBD8	HDBD5	HDBD1	HDBD11	HDBD15
17	HDBD9	HDBD4	HDBD0	HDBD12	HDBD13
16	HDBDRQ	ICSOB#	IIORB#	ICS1B#	HDRDYB
15	DBDRQ	IDACKB#	HDBSA2	HDBIRQ	IIOWB#
14	NRTS1	NDSR1	HDBSA1	GND	HDBSA0
13	NRI1	NCTS1	NTX1	NRX1	NRLSD1
12	ID0	ID2	ID4	ID7	NDTR1
11	ID1	ID3	ID8	ID6	ID12
10	ID5	ID9	ID10	ID11	ID13
9	ID15	ID14	HDRQ#	HCS3#	HIOR#
8	HIRQ	HACK#	+5V	HDA2	HIOW#
7	HLED	GND	HRST1#	HRDY	HCS1#
6	+12V	+5V	GND	HDA0	HDA1
5	+5V	GPIO5	IOCHK#	SMBCLK	SMBDATA
4	KDAT#	KCLK	MDTA	MCLK	GND
3	DSKCHG#	MOA#	STEP#	HEAD#	TRAK0#
2	DSA#	MOB#	RWC#	RDATA#	WP#
1	INDEX#	DSB#	DIR#	WE#	WD#

Table B-13: J3 connector pin assignments

B.14. J4 connector pin assignments for IBC 2606 Table B-14: J4 connector pin assignments for IBC 2606

Pin	Row A	Row B	Row C	Row D	Row E	
25	LAN2TX-	CONTX-	USB-VCC1	USB-VCC0	USBD1+	
24	LANTX+	LANTX+	N/C	USBD1-	USBD0-	
23	N/C	N/C	N/C	N/C	USBD0+	
22	USBRX-	LANRX-	N/C	N/C	COMDTR2	
21	USB2RX+	LANRX+	N/C	GND	COMRTS2	
20	N/C	N/C	N/C	N/C	COMCTS2	
19	N/C	N/C	N/C	N/C	COMTX2	
18	N/C	N/C	N/C	N/C	COMLSD2	
17	N/C	N/C	N/C	N/C	COMDSR2	
16	N/C	N/C	N/C	N/C	COMRI2	
15	N/C	N/C	N/C	N/C	COMRX2	
12-14		KEY AREA				
11	N/C	N/C	N/C	N/C	N/C	
10	N/C	N/C	N/C	N/C	N/C	
9	N/C	N/C	N/C	N/C	N/C	
8	N/C	N/C	N/C	N/C	N/C	
7	N/C	N/C	N/C	N/C	N/C	
6	N/C	N/C	N/C	N/C	N/C	
5	N/C	N/C	N/C	CRT-SCL	N/C	
4	N/C	N/C	N/C	YNC	N/C	
3	N/C	N/C	N/C	CRT-SDA	N/C	
2	BLUE	GREEN	RED	N/C	N/C	
1	N/C	N/C	N/C	N/C	N/C	