

Real Time System Term Project

Pre-Programmed Course Navigator

Marty Peltz

Using the LCPXpresso 1343 microcontroller

ECE 3510

Due: 12/12/2011

Abstract

 The Real Time system being produced for my project is a pre-programmed vehicle that

is designed to run a laid out course. The Vehicle itself is driven by two separate motors

controlling the two front wheels. These wheels are powered by a battery and regulated by the

LPCXpresso board. The LPCXpresso board controls a relay for each motor so the motor can be

switched on and off. The vehicle turns by throttling the motors to allow one to move faster

than the other. A constant 6 Volts is supplied to the motors but the relays will allow for pulsing

of the power output. The program is designed to run a pre-programmed course using the

output commands with delays in the programming. This allows each separate program the

ability to run a predesigned course.

Introduction

 A Real Time System can be defined as: the study of hardware and software systems that

are subject to a "real-time constraint". The Real Time system I'm implementing requires a

combination of hardware and software working together to complete a physical task. This task

is navigating a course, the software controls the motors through a relay system. Using Output

commands with time delays the motors can be controlled together or separately. The system

design is generally straightforward the program is downloaded and executed from the

LPCXpresso board containing an ARM Cortex processor. The board itself has the required

components to compile and assemble the program in use with the given motors, combined

physical circuit and the power source. The very basic of code as all code for microprocessors

will be in binary format. The binary data to enter the microprocessor is translated from a more

user friendly format: ARM assembly language. Assembly language is more accurate in runtime,

however C is a more general language to use for coding. The programming in code C is used for

simplification and time. As in the real world most programming is done in a high level language

(like C) then for performance purposes it is rewritten in the simpler format Assembly language.

My program requires accuracy and timing to work correctly so editing in Assembly Language is

useful. Editing the program in Assembly allows for the executed programming to be done

accurately and in a timely manner. The primary coding is done on a computer through

LPCXpresso code_red, this is a development tool for the Cortex and ARM devices. The program

will compile and execute ARM Assembly code as well as High level languages. This tool allows

for design, implementation and testing of the program created for the physical system. The

code is downloaded onto the LPCXpresso board via a USB connection, then it can be

implemented and execute the program. The debugging and testing is all done via code_red

software, however trial and error can be done my running the program to execute the physical

application. Each process takes time and need to be refined to create a appropriate model that

fulfills its purpose as an Real Time System.

Reference Model Description

 The basic design of my project includes the LPCXpresso board two identical electric

motors and a power source. Along with these initial components a button is added to power on

and off the device. Since the microcontroller has a output voltage of around 1 Volt, relays are

used. The relay is connected to the output from the microcontroller and the 6V power source.

When the microcontroller activates the relay, the 6 Volts from the power source is passed to

the motor. There are a total of 3 wheels two at the front being controlled by the two motors,

then a smaller rear wheel to support the car. This seems the best design so the rear wheel has

the smallest possible effect on the front wheels. The car is made out of a sheet metal

(lightweight material) to reduce friction and other factors. The motors and the power source

are connected to the LPCXpresso board, through downloaded code the ARM processor

initializes and execute a maze traversal using specific given data. The initial data is done

through trial and error so it is known what it takes for the vehicle to perform a specific

movement. The programming is done using the development tool code_red using a PC.

Debugging and testing is completed and it is installed onto the LPCXpresso board for trials and

eventually completion.

 This project relies on timing and accuracy to perform its task in maze traversal. This Real

Time system would be classified to have a Hard Deadline. This is due to the fact that if the

vehicle does not correctly navigate the course due to a possible timing error or otherwise it will

vastly effect the outcome. Even if the vehicle is off by a small amount the course navigation

could be impossible. This requires the program to be precise and to account for any variable

that could affect the deadline.

 To begin the project the vehicle itself was built first, this allows for direct programming

of the physical system. As well allows for specific designs and programming paths. The point

behind this was mostly for a trial and error method, having the physical system implement and

execute the code showed errors and pitfalls. This will allow me the programmer to alternate

and correct the coding accordingly. With the vehicle being built first and having the known

points to program on the LPCXpresso board the coding was created. The primary code used is

C, this allows for better timing and coding constraints. While Arm Assembly is used for precise

alterations to the code for performance reasons. The code has multiple parts all focusing on

power delivered to the motors. The course contains straits and turns, for the straits both

motors needed to be moving at the same speed over the same amount of time. The motors are

identical but there are irregularities, the code itself has to account for these to be accurate. The

turns have the same issues, however similar to the straits one motor is moving faster than the

other to make the turn. With given data such as the direction of the turn and the angle, the

wheel on the inside of the turns move slower than the outside wheel.

Computer Organization

 The programming uses two general commands; GPIO and Delays, these are

incorporated into methods that are used for specific movements of the vehicle. The general

coding includes loops and methods which allow for a repeated command and movement. The

methods are each separated as a different movement of the vehicle, there are methods for

going strait, turning left and right. These methods are called in a certain order to perform a

maze traversal. With these methods in place a new course can be simply programmed by

calling the required methods. For example: a track that is a circle shape with four 90 degree

turns left and four straits 10 feet long. The program would call the method for a turn 90 degree

left, then it would call a method for moving strait for 10 feet. This process would be repeated

by calling more methods. This allows for simple programming of a new course without rewriting

the entire code.

 A specific method will use two general commands to power and control the motors.

These two commands include the use of the GPIO and the Delay. The GPIO is the use of the

outputs through the microcontroller using related commands. The LPCXpresso 1343 has four

ports and each port has pins that range from 0-11. Out of these pins some are PIO pins, these

can be used as outputs. Two outputs are needed for this project, one for each motor. The code

turns these two outputs on and off to control the motor. In order to have the motor running for

a certain amount of time a delay is used. For example: if the motor is turned on then a delay of

5 seconds is added then the motor is turned off, this means the motor will run for five seconds

straight. These two commands are used in each of the two methods for each motor. Loops also

take an important part in the program. There are no infinite loop except if the course is to be

continually ran but that loop would not be in the methods. The loops use include if, else

statements that run for a certain length of time then stop. These loops are based on a

timeframe to complete a turn. Loops are only used on turns not straights in the methods this is

because the loops are needed to regulate how many pulses the motor takes. The pulsing of the

motor is used to slow the motor on the inside allowing the vehicle to turn. This pulse has to

eventually be stopped to complete a turn. Depending on how fast the pulse is and how long the

pulsing lasts (using the loop) a certain degree turn can be made. Also this controls how steep

the turn is. Using these two factors through trial and error with the physical vehicle shows how

the motors and weight of the vehicle react allowing for accurate measurements.

Language Choice

 The eventually language choice chosen for most of the project was C language, in use

with code_red. C language was chosen over Assembly because it's easier to work with and

saves some time, this allowed me to go back through the code later on to edit it to perform

better with fully functioning code. Code_red was chosen over the MDK ARM development kit

because code_red could be directly connected to the IDE of the Microcontroller. Where MDK

needed a JTAG to compile and upload the code to the flash of the Microcontroller. Using this

allowed for direct upload to test and edit code through a simple process that made things much

easier.

 The choice of C language allowed for simple and exact coding using only a few

commands in use with loops. As explained in the Computer Organization portion above the

code consists of using the GPIO commands with timing delays. Using only these two forms of

commands, the code is simple without any errors. This also makes it accurate and precise, so

programming assembly was not really needed. Code_red code is different than the MDK ARM

code in C, I determined this since I used MDK first. Code_red gave quite a few examples of

coding on the LPCX website. The example code GPIO was the most useful and contained most

of the information needed for programming and controlling the outputs. The source code was

partly gathered from the GPIO program, along with the activation of the Ports and pins so they

can be used. The delay is a simple and general command in most cases identical in all forms of

advanced languages as well as using loop architecture.

Input / Output

 Output is one of the main factors of my project, the output is required to power the

motors and therefore the prominent part of the entire system. The output through the PIO pins

is essential to my project, they are used to control a relay that in turn controls the motors

themselves. The microcontroller itself has a input pin labeled 5Vin. This allows a 5-6 Volt input

to power the Microcontroller and the output rail. Where the microcontroller requires 1.8 Volts

and the Rail is 3.3 Volts. The output is sent to a relay that uses the voltage from the

Microcontroller's rail Voltage to control a switch. This switch is a separate circuit connected to

the power source for the motor. This is used because the voltage of the Microcontroller is not

sufficient to power the motors.

Figure #1: A mechanical relay with pins 1-5.

 The only issue I came across while working with the output pins was the Voltage rail.

The rail is rated at 3.3 Volts however actual voltage would not exceed 2 Volts. This was quite a

problem due to the fact that the relay I was using required a minimum of 3 Volts to work. The 3

volts is used to power a inductor that when powered repels a length of wire to form a switch.

Pin 1 and 2 of Figure #1 would be connected to the Microcontrollers output pin and the other

to the ground. Pin 3 would be connected to the power source while Pin 5 is connected to the

motor Vin. Once the inductor is powered the switch would move allowing the power from Pin 3

to move to Pin 5, completing the circuit. However this doesn't work with a Mechanical Relay,

because Mechanical relays do not work below a 3Volt input to the inductor. Where the

Microcontroller supplies 1-2 Volts. This can be solved using a Solid State Relay where the

voltage can be from mV to a high voltage.

Figure #2: A Solid State Relay with pins 1-4.

 The Solid State Relay is used to control a switch for the motor to power on and off, using

an Infrared LED and an adjacent Infrared detector. The Solid State Relay solves the issue of the

microcontrollers output voltage because it will work with 1 Volt or more supplied to the LED.

This Relay in particular activates at 1.1 Volts. Pins 1 and 2 are connected to the Microcontroller

to one of the PIO pins and the other to Ground. Where Pins 3 and 4 are connected to the motor

and the motor's power source. Once the PIO port is activated 1 Volt with power the LED

connecting the switch from the infrared Detector, this will complete the circuit to the motor.

With this circuit the motor is not directly connected to the microcontroller but it is controlled

through the relay by the microcontroller. This circuit is shown in Figure #3 below, there are two

identical circuits in this project one for each motor. To note, the motors are reversed in

connection to the single 6 Volt power source so they move in opposite directions (Left Motor:

Clockwise, Right Motor: Counterclockwise).

Figure #3: Full circuit diagram for the motor control system.

Concurrency

 The relation between the two separate motors is very important, they must execute the

same instructions at the same time to be accurate and effective. The two motors need to be

very similar in movement and timing, this requires equal part programming and the physical

motor themselves to be accurate. The two motors are identical and were found to move at

near perfect speeds. Using the same power source for both motors prevents any fluctuation in

power to the batteries. The code needs to activate and control the motors simultaneously to

navigate a course. The LPCXpresso 1343 is a single core system so exact simultaneous

computations are not possible, however such a small timeframe passes before the next

computation is done. This allows for the motors to work within nano-seconds of each other.

 This is very important due to the fact that if the vehicle is to proceed strait or through a

turn both motors must be powered at the same time. For a strait movement both motors need

to activate at the same time and be stopped at the same time. Simply to do this both PIO pin

activation commands are executed one after another, then the delay is applied. This delay

keeps both pins from being deactivated until the delay time is passed. Once the delay is passed

both PIO pins are shut off one after the other. There is a extremely short timing delay however

it is so minuscule it has little effect. The vehicle turning on the other hand requires one motor

to move continually, while the other pulses power to slow the wheel down. Both motors are

activated and deactivated the same way as going down a straight away. However there is a

slight larger variance in time between the two motors due to the use of a loop. The loop is a

combination of turning the motor off, a short delay, then turning the motor on. That is what

causes the motor to "pulse". Each time the command to turn on and off the motor causes a

larger gap in the timing. Again, the time is so small it is insignificant. This system is not

completely concurrent, however it relies heavily on accuracy and timing to perform its objective

correctly.

Scheduling

 The main design of the coding includes the use of two specific commands using the

GPIO and the delays. To better describe the execution of these commands in the running

system will be shown through a table. This example part of the code will show how the

scheduling works with the code throughout a method. The example will be of the two motors

moving in a straight line. The vertical axis represents time order of operations, while the

horizontal axis represents the transactions in the schedule of the method. Each of the separate

operations take a portion of time to complete.

Table #1: A Table showing the Schedule of the Straight 1 foot Method.

 The table above Table #1 shows the schedule of the Method: Straight 1 foot. The

method name is the basic explanation, where these series of commands make the vehicle move

forward 1 foot (on a hard concrete/wood flat surface). Port2 pin 1 is the left motor control

while Port0 pin 7 is the right motor control. The code itself contains other parts including the

source code, however the only important part for scheduling is the direct commands

dependent on time.

 The first command is GPIOsetdur, this command takes the port, the pin, then the

input/output setting. So for example; GPIOsetdur(PORT2, 1, 1); means port 2 pin 1 is set to an

output. If the last number was set to 0 it would be an input, however that is never used in this

project. As shown in Table #1 this is the first command to activate, this sets port 2 pin 1 and

port 0 pin 7 to outputs.

 The second command is GPIOsetvalue, this command takes the port, the pin then sets

the output to 1. So for example; GPIOsetvalue(PORT2, 1, 1); means port 2 pin 1 is set to high

(1). This sends the rail voltage through the output. So with the complete circuit, Figure #3, it

would activate the relay and in turn activate the motor. The pin will stay high until the same

command is activated and the pin is set to low.

 The third and final command is the delay command. As shown in Table #1 this delay is

used in between setting the output pin to high and low. The delay runs the code through a

certain amount of time, the code will not read the next line until the time is finished. The

command: Delay(1520); is based on microseconds, this means the value 1520 is 1.52 seconds.

Therefore the delay command runs the compiler for 1.52 seconds before it can move on. Once

that timeframe it moves onto the GPIOsetvalue that turns the pin to low. From trial and error it

was determined that 1.52 seconds is how long it takes the vehicle to move 1 foot. If the vehicle

needs to move more than 1 foot, the method only needs to be called again for additional feet.

 The other method of turning is very similar to the Straight 1 foot method, however one

of the two pins will be pulsing the high and low to slow the motor. The same process as Table

#1 is done except a loop is used in place of Time2 that controls only 1 pin. Within this same

Time2 and Time3 the loop uses a delay to pulse the high/low of the pin. After the loop is

complete and a certain time has passed due to multiple delays. Once these delays are done

both pins are set to low like in Time4.

 The important factors of this process require priorities of hard, firm and soft tasks. This

project contains 3 main tasks to prioritize which include; left motor relay control, right motor

relay control, and the program download. The table below shows how I prioritized them as

hard, firm, or soft.

Task Hard/Firm/Soft System

Left Motor Relay
Control Hard

Right Motor Relay
Control Hard

Download Soft

Table #2: Displays Tasks and if they are Hard, Firm or Soft.

 The table above displays the specific tasks used in my programming, and what status

they can take in relation to importance and time. Both the left and right motor relay controls

are defined as a Hard Task due to the fact they are very dependent on a timeframe. If they fail

to succeed then the entire program fails. Since this project requires the vehicle to move in a

precise and accurate manner if the motors are off in turns or movement it will cause

catastrophic errors. The download is the other Task, this is the download of the code to the

flash memory of the microprocessor. This task is important but it has no dependence on time,

which means that it can be edited without causing errors or problems.

Memory Management

 The use of code_red IDE made memory management quite easy, where managing the

memory is not necessary to an extent. The code_red IDE download directly uploads the code to

the flash memory of the microprocessor. This allows for direct debugging to the board for

testing and editing. Memory management doesn't cause an issue with this process because the

flash memory is rewritten when code_red runs the debug. Memory management does come

into play for my program however due to the fact of using methods . The main program calls

the specific methods to perform the task done in the method.

 The methods which hold the code for each specific task or movement can be used with

memory management to simply upload a new method call program. This new program can call

specific preloaded methods allowing the same methods to run multiple different types of

courses. This is one good possibility for managing the memory allocation, however it is not

necessarily needed because new code can be directly downloaded through code_red. It is a

promising idea for an addition to the project if it was to run multiple courses without updating

or altering the code between each course. This is not a necessity of the project however it is

preprogrammed to run a specific course. Therefore memory management doesn't play a large

part other than what the code_red IDE does to format the flash memory on the project board.

Shared Memory

 This project contains shared memory in the form of methods, these methods are not

accessed simultaneously but by a single program that calls each method in order to complete a

maze. Methods are not required to have the maze traversal vehicle to work but allows for a

simple repetition in the code. This repetition allows the program to reuse the code through a

method to create different maze traversals. Methods are really the only use of shared memory

similar to memory management, these methods contain the basic and principle standing of the

code to be used. The methods created for this project includes running a straight path and

turning 90 degrees. Other methods can be added such as different degree turns over longer or

shorter distances. With multiple methods just about any course can be navigated calling the

different methods. Otherwise there is little use in shared memory, the program is good to keep

simple and precise for accuracy concerns.

Operating Systems

 The system used is the LPCXpresso 1343 containing a ARM Cortex-M3 processors, it's a

single core processor with 32KB of flash memory and 8KB of SRAM. The IDE used in conjunction

is LPCXpresso code_red, which directly applies code to the flash memory of the microcontroller.

The debugging process of the code_red runs, tests, and downloads the code. The code operates

initially when the microcontroller is powered on. Using a power source with a switch the

program can be initialized and executed. This process isn't overly complicated unlike the use of

the MDK-ARM IDE where it requires the use of an JTAG.

 Using C code as the basis for executing programming requires startup code to activate

the microprocessor. The startup begins with declaring the default handlers for the program. It

then moves into defining and declaring the specific IRQ handlers for the program. The entry

point for the code is then defined so the microprocessor understands where to search for given

code. The startup then activates the physical pins and ports for input/output uses. Then the

startup defines constructs created by the linker, this indicates where the "data" and "bss"

segments reside in memory. Directly following the "data" segment is the "text" segment.

 With the handlers, pins, ports activated, and the segments in specific areas in the

memory; the startup defines what gets called to the microprocessor. This part of the startup

activates the programs code for running. Also the startup enters the program into a infinite

loop for debugging purposes. The startup is generally the same for all programs with some

irregularities. My program requires no special setups so the general startup is executed then

the application begins. This setup portion is called cr-startup_lpc1343.c it is visible in the given

source code after the bibliography.

 The next portion is initializing the use of the GPIO for my program. This is done by gpio.c

in the project program. This code sets the PIO pins to be used with an interrupt handler so the

pins can be set to high or low. The pins must first be set as generic integers and are all set to

low values. The pins that are to be used are to be set as interrupt sources so the

microcontroller recognizes them. Then the command for GPIOsetdur, and GPIOsetvalue are

initialized using if else statements. This has to be used so the microcontroller can understand

the commands through assembly language with bit positions of each element. With all the

initial setup completed the code written for the maze traversal can be ran.

Results

 The overall project works quite well, the code runs and executes correctly and with the

trial and error and strong link between the code and physical outcome is quite accurate. The

issues that appeared were mechanical related mostly. The weight of the vehicle with the

motors power source causes some irregularities. This project relies on accuracy to successfully

accomplish a maze traversal. Being a physical moving object, many applications of physics come

into play and affect the project in many ways.

 The code itself for the project is simple and very accurate, with the use of trial and error

the accuracy of the maze traversal becomes very precise. Using methods with the code and

having it altered to work with the surface and other physical restrictions allow it to work quite

well in that environment. The vehicle is designed to work on a smooth flat surface and perform

turns and movements on that terrain. After testing and alterations to the code the vehicle

performs flawlessly. The code itself is easy to alter, the timing between delays can be changed

to better suit the lag or run over a desired distance. Also the pulse of a motor can be altered by

changing the delay within the loop. This resulted in accurate movements after trial and error

evaluation.

 The vehicle was designed to run a single course that is an oval shape that runs 10 feet

long by 5 feet wide. Each turn is 2 feet long with a angle of 90 degrees. The vehicle is made to

run the course counter clockwise. For each turn the right motor is on the outside while the left

is on the inside of the turn. The straight lanes were quite easy to accomplish with timing the

delay just right. The turns were more challenging due to the fact of the motors torque and the

weight of the vehicle. I found to actually stop one wheel from turning caused the vehicle to

stop due to the amount of torque on the right motor (on the outside of the turn). This

prevented the vehicle from taking to tight of turns, however if the inside motor was to pulse, it

would move slower and allows the outside wheel to overtake it. This created a sluggish turn

that proved to be effective to a point. The vehicle was only able to make a loose turn of 90

degrees after about a foot and a half. Since the turn of the oval maze is 2 feet this was not a

problem. With the width of the actual track being 1.5 feet and the car being 8 inches wide, the

vehicle was able to stay within the track the entire way around the oval. Trial and error was

needed to adjust the turns and straits so this was possible. However since the code is written in

methods they were permanently altered to work in the specific conditions. Repeated attempts

at the maze traversal accomplished very similar movements. The project shows an overall

success with minor discrepancies due to small mechanical or symmetrical errors.

Conclusions

 Overall the project worked out quite well, the use of methods help to bring a symmetry

to the code and allow for future additions to be made simply by calling the methods. This

allows for future applications and editing to be simple and strait forward. The only real issues

that presented themselves were mechanical related. The vehicle itself is constructed out of

sheet metal with the motors directly attached. With this program requiring exact and accurate

specifications made it hard building from scratch. Issues came to light when attaching the

motors to the chassis. It was hard to align them correctly and make them symmetric. Also the

rear wheel was not functioning as expected being able to rotate, it was better suited to be

stationary. It's due to the fact of the weight on the rear wheel and if it gets stuck in a sideways

position it affects the movement of the car. The motors used performed well but probably

could of been more powerful. The motors are under a lot of strain due to the weight. This

brought problems to turning especially because if only one wheel was powered it would not

even move due to the immense strain on the one motor.

 The trial and error method worked quite well, it allowed linking the code to physical

issues that may occur. The only other way to cope with such issues would be multiple

calculations related to physics to determine outside problems. Even those calculations couldn't

completely fix the errors. Overall the trial and error allowed for testing of the vehicles

limitations and possibilities. The trials may have been limited to a flat hard surface, but

alterations can be made. If I wanted to run it on a carpeted surface, new methods could be

made and trials be conducted to find how that affects the vehicles movement.

 Overall the project was a good success and future alterations are very possible and

would be easy to manage. With some problems mainly mechanical and physical related it did

have some errors. Being made from scratch it's not too surprising however accuracy can be

hard to obtain without precise machinery to cut holes and drill screws. Unfortunately the

project couldn't be presented fully during is due time. However that was not due to failure of

the project, but a part was missing and also the vehicle didn't have a good test location. The

room was carpeted and the vehicle was made to run on flat smooth surfaces. With further trial

and error a successful maze traversal was completed, repeatedly. This confirms the project is a

success and has completed its task in being a Pre-Programmed Course Navigator

Bibliography
(MLA Format)

Embedded Artists. "GPIO Example Code." Http://ics.nxp.com/lpcxpresso/~LPC1343/. NXP.
 Web. 5 Nov. 2011.
 <http://ics.nxp.com/support/lpcxpresso/zip/examples.lpc13xx.zip>.

Embedded Artists. "Lpcxpresso Lpc1343 Schematic." Http://ics.nxp.com/lpcxpresso/. NXP, 4
 Dec. 2009. Web. 22 Oct. 2011.
 <http://ics.nxp.com/support/documents/microcontrollers/pdf/lpcxpresso.lpc1343.schemat
 ic.pdf>.

NXP. "Getting Started with NXP LPCXpresso." Http://ics.nxp.com/lpcxpresso/. NXP, 14 June
 2011. Web. 12 Sept. 2011.
 <http://www.nxp.com/documents/other/LPCXpresso_Getting_Started_Guide.pdf>.

NXP. "LPC1311/13/42/43 User Manual." Http://ics.nxp.com/lpcxpresso/. NXP, 14 June 2011.
 Web. 12 Sept. 2011.
 <http://ics.nxp.com/support/documents/microcontrollers/pdf/user.manual.lpc13xx.pdf>.

"Photocouplers and Photorelays." Http://www.digikey.com. Toshiba, 2011. Web. 18 Nov. 2011.
 <http://www.semicon.toshiba.co.jp/docs/catalog/en/BCE0034_catalog.pdf>.

