
Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 1 of 29 -

 Microcontrollers

Errata Sheet
March 30, 2005 / Release 1.1

 Device: SAK-C167CR-L(33)M,
 SAF-C167CR-L(33)M,
 SAB-C167CR-L(33)M

 SAK-C167CR-4R(33)M,
 SAF-C167CR-4R(33)M,
 SAB-C167CR-4R(33)M

 SAK-C167CR-16R(33)M,
 SAF-C167CR-16R(33)M,
 SAB-C167CR-16R(33)M

 SAK-C167SR-L(33)M,
 SAB-C167SR-L(33)M

 SAK-C167CR-LE

 Stepping Code / Marking: ES-HA, HA, HA+

 Package: P-MQFP-144-8 (..C167..-.M),
 P-BGA-176-2 (..C167..-.E)

This Errata Sheet describes the deviations from the current user documentation.
The module oriented classification and numbering system uses an ascending sequence over
several derivatives, including already solved deviations. So gaps inside this enumeration can
occur.

The current documentation is: Data Sheet: C167CR/SR Data Sheet V3.3, 2005-02

User's Manual: C167CR Derivatives User's Manual V3.2,
 2003-05

 Instruction Set Manual V2.0, 2001-03

Note: Devices marked with EES- or ES are engineering samples which may not be
completely tested in all functional and electrical characteristics, therefore they should
be used for evaluation only.

The specific test conditions for EES and ES are documented in a separate Status Sheet.

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 2 of 29 -

Change summary to Errata Sheets Rel. 1.0 for C167CR/SR devices with stepping
code/marking (ES-)HA/HA to this Errata Sheet Rel. 1.1 for C167CR/SR devices with
stepping code/marking (ES-)HA, HA+:

• Step HA+ included
• Version C167CR-LE in P-BGA-176-2 Package included
• Documentation Reference updated:

- Data Sheet: C167CR/SR Data Sheet V3.3, 2005-02
- User's Manual: C167CR Derivatives User's Manual V3.2, 2003-05

• Data Transmission in Slave Mode (SSC.9)
• Edge Selection for Capture Function if CT3 = 1 and CI = 01b or 10b (T5CON.D1,

Documentation Update)
• Write access to registers PWx and PPx while bit PTRx = 0 (PWM.D1, Documentation

Update)

Functional Problems:

ADC.11: Modifications of ADM field while bit ADST = 0

The A/D converter may unintentionally start one auto scan single conversion sequence when the
following sequence of conditions is true:
(1) the A/D converter has finished a fixed channel single conversion of an analog channel n > 0 (i.e.

contents of ADCON.ADCH = n during this conversion)
(2) the A/D converter is idle (i.e. ADBSY = 0)
(3) then the conversion mode in the ADC Mode Selection field ADM is changed to Auto Scan Single

(ADM = 10b) or Continuous (ADM = 11b) mode without setting bit ADST = 1 with the same
instruction

Under these conditions, the A/D converter will unintentionally start one auto scan single conversion
sequence, beginning with channel n-1, down to channel number 0.

In case the channel number ADCH has been changed before or with the same instruction which
selected the auto scan mode, this channel number has no effect on the unintended auto scan
sequence (i.e. it is not used in this auto scan sequence).

Note:
When a conversion is already in progress, and then the configuration in register ADCON is changed,

- the new conversion mode in ADM is evaluated after the current conversion
- the new channel number in ADCH and new status of bit ADST are evaluated after the current

conversion when a conversion in fixed channel conversion mode is in progress, and after the
current conversion sequence (i.e. after conversion of channel 0) when a conversion in an auto
scan mode is in progress.

In this case, it is a specified operational behaviour that channels n-1 .. 0 are converted when ADM is
changed to an auto scan mode while a fixed channel conversion of channel n is in progress (see e.g.
C167CR User's Manual, V3.1, p.17-5)

Workaround:

When an auto scan conversion is to be performed, always start the A/D converter with the same
instruction which sets the configuration in register ADCON.

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 3 of 29 -

SSC.9: Data Transmission in Slave Mode

During data reception in slave mode of the SSC module, sporadically the shift clock supplied by the
external master on pin SCLK may not be properly recognized due to a synchronization problem when
all of the following conditions are true:

(1) the latching edge for the serial data is the falling edge of SCLK (i.e. both bit SSCPO = 1 and bit
SSCPH = 1, or SSCPO = 0 and SSCPH = 0 in register SSCCON), and

(2) the transmit buffer SSCTB of the slave has not been written prior to the start of the reception
(initiated by the master asserting the shift clock SCLK), and

(3) a specific time window (phase delay) is hit by the serial shift clock SCLK in relation to the internal
system clock of the slave. Therefore, this synchronization problem will occur in particular when the
slave device is clocked (on XTAL1) by an external clock generation circuit which is independent
from the clock generation circuit of the master (i.e. slave and master clocks are asynchronous).

When the problem occurs, this results in missing bits in the character received in SSCTB, and in
duplicated bits in the character transmitted on pin MRST of the slave. As a consequence, interrupt
generation in the slave is delayed by the number of missed bits.

Workaround

For systems using the falling edge of SCLK as latching edge (see condition (1) above), always write to
the transmit buffer SSCTB prior to any reception in slave mode of the SSC module. For the second
and all following characters, e.g. write a (dummy) character to SSCTB in the receive interrupt routine,
or use a PEC transfer triggered by the transmit interrupt request to write to SSCTB. In this case, the
critical synchronization path is not used, and the problem will not occur.

CPU.21 BFLDL/BFLDH Instructions after Write Operation to internal IRAM

The result of a BFLDL/BFLDH (=BFLDx) instruction may be incorrect if the following conditions are true
at the same time:

(1) the previous 'instruction' is a PEC transfer which writes to IRAM, or any instruction with result write
back to IRAM (addresses 0F200h..0FDFFh for 3 Kbyte module, 0F600h..0FDFFh for 2 Kbyte
module, or 0FA00h..0FDFFh for 1 Kbyte module). For further restrictions on the destination
address see case (a) or case (b) below.

(2) the BFLDx instruction immediately follows the previous instruction or PEC transfer within the
instruction pipeline ('back-to-back' execution), i.e. decode phase of BFLDx and execute phase of
the previous instruction or PEC transfer coincide. This situation typically occurs during program
execution from internal program memory (ROM/OTP/Flash), or when the instruction queue is full
during program execution from external memory

(3) the 3rd byte of BFLDx (= #mask8 field of BFLDL or #data8 field of BFLDH) and the destination
address of the previous instruction or PEC transfer match in the following way:

(a) value of #mask8 of BFLDL or #data8 of BFLDH = 0Fyh (y = 0..Fh),
and the previous instruction or PEC writes to (the low and/or high byte of) GPR Ry or the
memory address of Ry (determined by the context pointer CP) via any addressing mode.

(b) value of #mask8 of BFLDL or #data8 of BFLDH = 00h..0EFh,
and the lower byte vL of the contents v of the IRAM location or (E)SFR or GPR which is read
by BFLDx is 00h ≤ vL ≤ 7Fh
and the previous instruction or PEC transfer writes to the (low and/or high byte of) the specific
bit-addressable IRAM location 0FD00h + 2 vL (i.e. the 8-bit offset address of the location in the
bit-addressable IRAM area (0FD00h..0FDFFh) equals vL).

When the problem occurs, the actual result (all 16 bits) of the BFLDx instruction is bitwise ORed with
the (byte or word) result of the previous instruction or PEC transfer.

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 4 of 29 -

Notes:

Write operations in the sense of the problem description include implicit write accesses caused by
- auto-increment operations of the PEC source or destination pointers (which are located on

0FCE0h..0FCFEh in IRAM)
- post-increment/pre-decrement operations on GPRs (addressing modes with [R+] or [-R])
- write operations on the system stack (which is located in IRAM).

In case PEC write operations to IRAM locations which match the above criteria (bit-addressable or
active register bank area, PEC pointers not overlapping with register bank area) can be excluded, the
problem will not occur when the instruction preceding BFLDx in the dynamic flow of the program is one
of the following instructions (which do not write to IRAM):

NOP
ATOMIC, EXTx
CALLA/CALLI/JBC/JNBS when branch condition = false
JMPx, JB, JNB
RETx (except RETP)
CMP(B) (except addressing mode with [Rwi+]), BCMP
MULx, DIVx
IDLE, PWRDN, DISWDT, SRVWDT, EINIT, SRST

For implicit IRAM write operations caused by auto-increment operations of the PEC source or
destination pointers, the problem can only occur if the value of #mask8 of BFLDL or #data8 of
BFLDH = 0Fyh (y = 0..Fh), and the range which is covered by the context pointer CP (partially or
completely) overlaps the PEC source and destination pointer area (0FCE0h..0FCFEh), and the
address of the source or destination pointer which is auto-incremented after the PEC transfer is equal
to the address of GPR Ry (included in case 3a).

For system stack write operations, the problem can only occur if the system stack is located in the
bit-addressable portion of IRAM (0FD00h..0FDFFh), or if the system stack can overlap the register
bank area (i.e. the register bank area is located below the system stack, and the distance between the
contents of the context pointer CP and the stack pointer SP is ≤ 20h).

Workaround 1:

When a critical instruction combination or PEC transfer to IRAM can occur, then substitute the BFLDx
instruction by

(a) an equivalent sequence of single bit instructions. This sequence may be included in an
uninteruptable ATOMIC or EXTEND sequence to ensure completion after a defined time.

(b) an equivalent byte- or word MOV or logical instruction.

Note that byte operations to SFRs always clear the non-addressed complementary byte.
Note that protected bits in SFRs are overwritten by MOV or logical instructions.

Workaround 2:

When a critical instruction combination occurs, and PEC write operations to IRAM locations which
match the above criteria (bit-addressable or active register bank area) can be excluded, then
rearrange the BFLDx instruction within the instruction environment such that a non-critical instruction
sequence is generated.

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 5 of 29 -

Workaround 3:

When a critical instruction combination or PEC transfer to IRAM can occur, then
- replace the BFLDx instruction by the instruction sequence

ATOMIC #1
BFLDx

This means e.g. when BFLDx was a branch target before, ATOMIC # 1 is now the new branch
target.

In case the BFLDx instruction is included at position n in an ATOMIC or EXTEND sequence with range
operator #m (n, m = 2..4, n ≤ m), then
- insert (repeat) the corresponding ATOMIC or EXTEND instruction at position n with range operator

#z where z = (m - n) + 1

 Range of original ATOMIC/EXTEND statement
Position of BFLDx
within ATOMIC/
EXT.. sequence

1 2 3 4

1 no problem / no
workaround

no problem / no
workaround

no problem / no
workaround

no problem / no
workaround

2 - - z = 1 z = 2 z = 3
3 - - - - z = 1 z = 2
4 - - - - - - z = 1

- - : case can not occur

Tool Support for Problem CPU.21

The Keil C166 Compiler V3.xx generates BFLD instructions only in the following cases:
- when using the _bfld_ intrinsic function.
- at the beginning of interrupt service routines, when using #pragma disable
- at the end of interrupt service routines, when using the chip bypass directive FIX166.

The C166 Compiler V4.xx uses the BFLD instruction to optimize bit-field struct accesses. Release
C166 V4.10 offers a new directive called FIXBFLD that inserts an ATOMIC #1 instruction before every
BFLD instruction that is not enclosed in an EXTR sequence. Detailed information can be found in the
C166\HLP\RELEASE.TXT of C166 Version 4.10.

The C166 Run-Time Library for C166 V3.xx and V4.xx uses BFLD instructions only in the
START167.A66 file. This part of the code should be not affected by the CPU.21 problem but should be
checked by the software designer.

The RTX166 Full Real-Time Operating system (any version) does not use BFLD instructions.
For RTX166 Tiny, you should rebuild the RTX166 Tiny library with the SET FIXBFLD = 1 directive. This
directive is enabled in the assembler source file RTX166T.A66. After change of this setting rebuild the
RTX166 Tiny library that you are using in your application.

The Tasking support organization provides a v7.0r1 A166 Assembler (build 177) including a check for
problem CPU.21 with optional pec/no_pec feature. This assembler version can also be used to check
code which was generated with previous versions of the Tasking tool chain. A v7.0r1 C166 Compiler
(build 368) offering a workaround for problem CPU.21 is also available from Tasking.

The scan tool aiScan21 analyzes files in hex format plus user-supplied additional information (locator
map file, configuration file), checks whether they may be affected by problem CPU.21, and produces
diagnostic information about potentially critical instruction sequences. This tool is included in AP1628

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 6 of 29 -

'Scanning for Problem CPU.21' which can be found via the link to 16-bit Microcontroller Application
Notes on http://www.infineon.com/c166-family

Direct links to description and software:

http://www.infineon.com/cmc_upload/0/000/018/484/ap162804_ScanningCPU.21.pdf

http://www.infineon.com/cgi/ecrm.dll/ecrm/scripts/public_download.jsp?oid=18468&parent_oid=53087

CPU.22: Z Flag after PUSH and PCALL

The Z flag in the PSW is erroneously set to '1' by PUSH reg or PCALL reg, rel instructions when all of
the following conditions are true:

(a) for PUSH reg instructions:

- the contents of the high byte of the GPR or (E)SFR which is pushed is 00h, and
- the contents of the low byte of the GPR or (E)SFR which is pushed is > 00h, and
- the contents of GPR Rx is odd, where x = 4 msbs of the 8-bit 'reg' address of the pushed GPR

or (E)SFR

Examples:

PUSH R1 (coding: F1 EC): incorrect setting of Z flag if contents of R15 is odd,
 and 00FFh ≥ contents of R1 ≥ 0001h
PUSH DPP3 (coding: 03 EC): incorrect setting of Z flag if contents of R0 is odd,
 and 00FFh ≥ contents of DPP3 ≥ 0001h

(b) for PCALL reg, rel instructions:

- when the contents of the high byte of the GPR or (E)SFR which is pushed is 00h, and
- when the contents of the low byte of the GPR or (E)SFR which is pushed is odd

This may lead to wrong results of instructions following PUSH or PCALL if those instructions explicitly
(e.g. BMOV .. , Z; JB Z, ..; ..) or implicitly (e.g. JMP cc_Z, ..; JMP cc_NET, ..; ..) evaluate the status of
the Z flag before it is newly updated.

Note that some instructions (e.g. CALL, ..) have no effect on the status flags, such that the status of the
Z flag remains incorrect after a PUSH/PCALL instruction until an instruction that correctly updates the
Z flag is executed.

Example:

PUSH R1 ; incorrect setting of Z flag if R15 is odd
CALL proc_xyz ; Z flag remains unchanged (is a parameter for proc_xyz)
...

proc_xyz:
JMP cc_Z,end_xyz ; Z flag evaluated with incorrect setting
...

end_xyz:

Effect on Tools:

The Hightec C166 tools (all versions) don't use the combination of PUSH/PCALL and the evaluation of
the Z flag. Therefore, these tools are not affected.

The code generated by the Keil C166 Compiler evaluates the Z flag only after MOV, CMP, arithmetic,
or logical instructions. It is never evaluated after a PUSH instruction. PCALL instructions are not
generated by the C166 Compiler.

http://www.infineon.com/c166-family
http://www.infineon.com/cmc_upload/0/000/018/484/ap162804_ScanningCPU.21.pdf
http://www.infineon.com/cgi/ecrm.dll/ecrm/scripts/public_download.jsp?oid=18468&parent_oid=53087

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 7 of 29 -

This has been checked with all C166 V3.xx and V4.xx compiler versions. Even the upcoming V5.xx is
not affected by the CPU.22 problem.

The assembler portions of the C166 V3.xx and V4.xx Run-Time Libraries, the RTX166 Full and TX166
Tiny Real Time Operating system do also not contain any evaluation of the Z flag after PUSH or
PCALL.

The TASKING compiler V7.5r2 never generates a PCALL instruction, nor is it used in the libraries. The
PUSH instruction is only used in the entry of an interrupt frame, and sometimes on exit of normal
functions. The zero flag is not a parameter or return value, so this does not give any problems.

Previous versions of TASKING tools: V3.x and higher are not affected, versions before 3.x are most
likely not affected. Contact TASKING when using versions before V3.x.

Since code generated by the C166 compiler versions mentioned before is not affected, analysis and
workarounds are only required for program parts written in assembler, or instruction sequences
inserted via inline assembly.

Workaround (for program parts written in assembler):

Do not evaluate the status of the Z flag generated by a PUSH or PCALL instruction. Instead, insert an
instruction that correctly updates the PSW flags, e.g.

PUSH reg
CMP reg, #0 ; updates PSW flags
 ; note: CMP additionally modifies the C and V flags,

 ; while PUSH or MOV leaves them unaffected
JMPR cc_Z, label_1 ; implicitly tests Z flag

or
PCALL reg, procedure_1
...

procedure_1:
MOV ONES, reg ; updates PSW flags
JMPR cc_NET, label_1 ; implicitly tests flags Z and E

Hints for Detection of Critical Instruction Combinations

Whether or not an instruction following PUSH reg or PCALL reg, rel actually causes a problem
depends on the program context. In most cases, it will be sufficient to just analyze the instruction
following PUSH or PCALL. In case of PCALL, this is the instruction at the call target address.

- Support Tool for Analysis of Hex Files

For complex software projects, where a large number of assembler source (or list) files would have to
be analyzed, Infineon provides a tool aiScan22 which scans hex files for critical instruction sequences
and outputs diagnostic information. This tool is available as part of the Application Note ap1679
'Scanning for Problem CPU.22' which can be found via the link to 16-bit Microcontroller Application
Notes on http://www.infineon.com/c166-family

Direct links to documentation and software :
http://www.infineon.com/cmc_upload/documents/040/841/ap1679_v1.1_2002_05_scanning_cpu22.pdf

http://www.infineon.com/cgi/ecrm.dll/ecrm/scripts/public_download.jsp?oid=40840&parent_oid=-8137

http://www.infineon.com/c166-family
http://www.infineon.com/cmc_upload/documents/040/841/ap1679_v1.1_2002_05_scanning_cpu22.pdf
http://www.infineon.com/cgi/ecrm.dll/ecrm/scripts/public_download.jsp?oid=40840&parent_oid=-8137

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 8 of 29 -

- Individual Analysis of Assembler Source Code

With respect to problem CPU.22, all instructions of the C166 instruction set can be classified into the
following groups:

• Arithmetic/logic/data movement instructions as successors of PUSH/PCALL (correctly) modify

the condition flags in the PSW according to the result of the operation.

- These instructions may only cause a problem if the PSW is a source or source/destination
operand:

ADD/B, ADDC/B, CMP/B, CMPD1/2, CMPI1/2, SUB/B, SUBC/B
AND/B, OR/B, XOR/B
ASHR
MOV/B, MOVBZ/MOVBS
SCXT
PUSH, PCALL ; analysis must be repeated for successor of PUSH/PCALL

• The following instructions (most of them with immediate or register (Rx) addressing modes) can
never cause a problem when they are successors of PUSH/PCALL:

CPL/B, NEG/B
DIV/U, DIVL/U, MUL/U
SHL/SHR, ROL/ROR, PRIOR
POP
RETI ; updates complete PSW with stacked value
RETP ; updates condition flags
PWRDN ; program restarts after reset
SRST ; program restarts

• Conditional branch instructions which may evaluate the Z flag as successors of PUSH/PCALL:
JB/JNB Z, rel ; directly evaluates Z flag
CALLA/CALLI, JMPA/JMPI/JMPR with the following condition codes

 cc_Z, cc_EQ, cc_NZ, cc_NE
 cc_ULE, cc_UGT, cc_SLE, cc_SGT
 cc_NET

- For these branch conditions, the branch may be performed in the wrong way.

- For other branch conditions, the branch target as well as the linear successor of the branch
instruction must be analyzed (since these branch instruction don't modify the PSW flags).

• For instructions that have no effect on the condition flags and that don't evaluate the Z flag,

the instruction that follows this instruction must be analyzed. These instructions are

NOP
ATOMIC, EXTxx
DISWDT, EINIT, IDLE, SRVWDT
CALLR, CALLS, JMPS ; branch target must be analyzed
RET, RETS ; return target must be analyzed (value pushed by PUSH/PCALL = return IP,
 ; Z flag contains information whether intra-segment target address = 0000h or not)
TRAP ; both trap target and linear successor must be analyzed, since Z flag may be

 ; incorrect in PSW on stack as well as in PSW at entry of trap routine

• For bit modification instructions, the problem may only occur if a source bit is the Z flag, and/or
the destination bit is in the PSW, but not the Z flag. These instructions are:

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 9 of 29 -

BMOV/BMOVN
BAND/BOR/BXOR
BCMP
BFLDH
BFLDL ; problem only if bit 3 of @@ mask = 0, i.e. if Z is not selected
BCLR/BSET ; problem only if operand is not Z flag
JBC/JNBS ; wrong branch if operand is Z flag

PWRDN.1: Execution of PWRDN Instruction while pin NMI# = high

When instruction PWRDN is executed while pin NMI# is at a high level, power down mode should not
be entered, and the PWRDN instruction should be ignored. However, under the conditions described
below, the PWRDN instruction may not be ignored, and no further instructions are fetched from
external memory, i.e. the CPU is in a quasi-idle state. This problem will only occur in the following
situations:
a) the instructions following the PWRDN instruction are located in external memory, and a multiplexed

bus configuration with memory tristate waitstate (bit MTTCx = 0) is used, or
b) the instruction preceding the PWRDN instruction writes to external memory or an XPeripheral

(XRAM, CAN), and the instructions following the PWRDN instruction are located in external
memory. In this case, the problem will occur for any bus configuration.

Note: the on-chip peripherals are still working correctly, in particular the Watchdog Timer will reset the
device upon an overflow. Interrupts and PEC transfers, however, can not be processed. In case NMI#
is asserted low while the device is in this quasi-idle state, power down mode is entered.

Workaround:

Ensure that no instruction which writes to external memory or an XPeripheral precedes the PWRDN
instruction, otherwise insert e.g. a NOP instruction in front of PWRDN. When a multiplexed bus with
memory tristate waitstate is used, the PWRDN instruction should be executed out of internal RAM or
XRAM.

BUS.17: Spikes on CS# Lines after access with RDCS# and/or WRCS#

Spikes of about 5 ns width (measured at VOH = 0.9 Vcc) from Vcc down to Vss (worst case, typically
about 0.8 Vcc (4.0 V @ Vcc = 5.0V)) may occur on Port 6 lines configured as CS# signals (in default
configuration as ‘latched chip selects, SYSCON.6/CSCFG = 0). The spikes occur on one CSx# line at
a time for the first external bus access which is performed via a specific BUSCONx/ADDRSELx
register pair (x=1..4) or via BUSCON0 (x=0) when the following two conditions are met:

1. the previous bus cycle was performed in a non-multiplexed bus mode without tristate waitstate
via a different BUSCONy/ADDRSELy register pair (y=1..4, y≠x) or BUSCON0 (y=0, y≠x) and

2. the previous bus cycle was a read cycle with RDCSy# (bit BUSCONy.CSRENy = 1) or a write
cycle with WRCS# (bit BUSCONy.CSWENy = 1).

The position of the spikes is at the beginning of the new bus cycle which is performed via CSx#,
synchronous with the rising edge of ALE and synchronous with the rising edge of RD#/WR# of the
previous bus cycle.

Potential effects on applications:

- when CS# lines are used as CE# signals for external memories, typically no problems are
expected, since the spikes occur after the rising edge of the RD# or WR# signal.

- when CS# lines configured as RDCS# and/or WRCS# are used e.g. as OE# signals for external
devices or as clock input for shift registers, problems may occur (temporary bus contention for
read cycles, unexpected shift operations, etc.). When CS# lines configured as WRCS# are used as

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 10 of 29 -

WE# signals for external devices, no problems are expected, since a tristate waitstate should be
used anyway due to the negative address hold time after WRCS# (t55) without tristate WS.

Workarounds:
1. Use a memory tristate WS (i.e. leave bit BUSCONy.5 = 0) in all active BUSCON registers where

RD/WR-CS# is used (i.e. bit BUSCONy.CSRENy = 1 and/or bit BUSCONy.CSWENy = 1), or

2. Use Address-CS# instead of RD/WR-CS# (i.e. leave bits BUSCONy[15:14] = 00b) for all
BUSCONy registers where a non-multiplexed bus without tristate WS is configured (i.e. bit
BUSCONy.5 = 1).

BUS.18: PEC Transfers after JMPR instruction

Problems may occur when a PEC transfer immediately follows a taken JMPR instruction when the
following sequence of 4 conditions is met (labels refer to following examples):

1. in an instruction sequence which represents a loop, a jump instruction (Label_B) which is capable
of loading the jump cache (JMPR, JMPA, JB/JNB/JBC/JNBS) is taken

2. the target of this jump instruction directly is a JMPR instruction (Label_C) which is also taken and
whose target is at address A (Label_A)

3. a PEC transfer occurs immediately after this JMPR instruction (Label_C)
4. in the following program flow, the JMPR instruction (Label_C) is taken a second time, and no other

JMPR, JMPA, JB/JNB/JBC/JNBS or instruction which has branched to a different code segment
(JMPS/CALLS) or interrupt has been processed in the meantime (i.e. the condition for a jump
cache hit for the JMPR instruction (Label_C) is true)

In this case, when the JMPR instruction (Label_C) is taken for the second time (as described in
condition 4 above), and the 2 words stored in the jump cache (word address A and A+2) have been
processed, the word at address A+2 is erroneously fetched and executed instead of the word at
address A+4.

Note: the problem does not occur when
- the jump instruction (Label_C) is a JMPA instruction
- the program sequence is executed from internal ROM/Flash

Example1:

Label_A: instruction x ; Begin of Loop
 instruction x+1

.....
Label_B: JMP Label_C ; JMP may be any of the following jump instructions:

 JMPR cc_zz, JMPA cc_zz, JB/JNB/JBC/JNBS
 ; jump must be taken in loop iteration n

 ; jump must not be taken in loop iteration n+1

Label_C: JMPR cc_xx, Label_A ; End of Loop
 ; instruction must be JMPR (single word instruction)
 ; jump must be taken in loop iteration n and n+1
 ; PEC transfer must occur in loop iteration n

Example2:

Label_A: instruction x ; Begin of Loop1
 instruction x+1

.....

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 11 of 29 -

Label_C: JMPR cc_xx, Label_A ; End of Loop1, Begin of Loop2
 ; instruction must be JMPR (single word instruction)
 ; jump not taken in loop iteration n-1, i.e. Loop2 is entered
 ; jump must be taken in loop iteration n and n+1
 ; PEC transfer must occur in loop iteration n

.....
Label_B: JMP Label_C ; End of Loop2

 ; JMP may be any of the following jump instructions:
 JMPR cc_zz, JMPA cc_zz, JB/JNB/JBC/JNBS

 ; jump taken in loop iteration n-1

A code sequence with the basic structure of Example1 was generated e.g. by a compiler for
comparison of double words (long variables).

Workarounds:
1. use a JMPA instruction instead of a JMPR instruction when this instruction can be the direct target

of a preceding JMPR, JMPA, JB/JNB/JBC/JNBS instruction, or

2. insert another instruction (e.g. NOP) as branch target when a JMPR instruction would be the direct
target of a preceding JMPR, JMPA, JB/JNB/JBC/JNBS instruction, or

3. change the loop structure such that instead of jumping from Label_B to Label_C and then to
Label_A, the jump from Label_B directly goes to Label_A.

Notes on compilers (as reported by compiler manufacturers):

In the Hightec compiler beginning with version Gcc 2.7.2.1 for SAB C16x – V3.1 Rel. 1.1, patchlevel 5,
a switch –m bus18 is implemented as workaround for this problem. In addition, optimization has to be
set at least to level 1 with –u1.

The Keil C compiler versions ≥ V4.02 - in combination with directive FIXPEC when OPTIMIZE(7) is
selected -, and version 3.12o, including the associated run time libraries, do not generate or use
instruction sequences where a JMPR instruction can be the target of another jump instruction, i.e. the
conditions for this problem do not occur.

With other versions, the problem may occur e.g. in nested for/while loops, when the inner loop looks as
follows:

Example i):

while (..) {
while (variable == constant) {

<last statement is a modification of variable value>

 }
 } ...

Example ii):

for (..) {
for (; variable < 100; variable++) {

 ..
 }
 }

The critical JMPR-JMPR sequence does not occur when a for loop is used with constant initialization, e.g..

while (...)
for (variable = 0; variable < 100; variable++) {

 ..
 }
 }

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 12 of 29 -

Recommendation: use V4.03 (or higher), or V3.12o, or insert nop () in nested loops e.g. as follows:

void test(int i, int k) {
while (k) {

nop ();
while (i) {
i--;

 };
k--;

 };
}

In the TASKING C166 Software Development Tools, the code sequence related to problem BUS.18
can be generated in Assembly. The problem can also be reproduced in C-language by using a
particular sequence of GOTOs.

With V6.0r3, TASKING tested all the Libraries, C-startup code and the extensive set of internal test-
suite sources and the BUS.18 related code sequence appeared to be NOT GENERATED.

To prevent introduction of this erroneous code sequence, the TASKING Assembler V6.0r3 has been
extended with the CHECKBUS18 control which generates a WARNING in the case the described code
sequence appears. When called from within EDE, the Assembler control CHECKBUS18 is
automatically 'activated'.

BUS.19: Unlatched Chip Selects at Entry into Hold Mode

Unlike in standard (latched) configuration, the chip select lines in unlatched configuration
(SYSCON.CSCFG = 1) are not driven high for 1 TCL after HLDA# is driven low, but start to float when
HLDA# is driven low.

OWD.1: Function of Bit OWDDIS/SYSCON.4

The status of bit OWDDIS/SSYCON.4 has no effect on the oscillator watchdog, i.e. the oscillator
watchdog can not be disabled or enabled by bit OWDDIS. The oscillator watchdog can only be
disabled by a low level on pin OWE (84). An internal pull-up holds this pin high in case it is left
unconnected, thus enabling the oscillator watchdog in direct drive or prescaler mode.

X9: Read Access to XPERs in Visible Mode

The data of a read access to an XBUS-Peripheral (XRAM, CAN) in Visible Mode is not driven to the
external bus. PORT0 is tristated during such read accesses.

Note that in Visible Mode PORT1 will drive the address for an access to an XBUS-Peripheral, even
when only a multiplexed external bus is enabled.

CAN.7 Unexpected remote frame transmission

The on-chip CAN module may send an unexpected remote frame with the identifier=0, when a pending
transmit request of a message object is disabled by software.

Detailed Description

There are three possibilities to disable a pending transmit request of a message object (n=1..14):

• Set CPUUPDn element
• Reset TXRQn element
• Reset MSGVALn element

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 13 of 29 -

Either of these actions will prevent further transmissions of message object n.

The symptom described above occurs when the CPU accesses CPUUPD, TXRQ or MSGVAL, while
the pending transmit request of the corresponding message object is transferred to the CAN state
machine (just before start of frame transmission). At this particular time the transmit request is
transferred to the CAN state machine before the CPU prevents transmission. In this case the transmit
request is still accepted from the CAN state machine. However the transfer of the identifier, the data
length code and the data of the corresponding message object is prevented. Then the pre-charge
values of the internal “hidden buffer” are transmitted instead, this causes a remote frame transmission
with identifier=0 (11 bit) and data length code=0.
This behavior occurs only when the transmit request of message object n is pending and the transmit
requests of other message objects are not active (single transmit request).
If this remote frame loses arbitration (to a data frame with identifier=0) or if it is disturbed by an error
frame, it is not retransmitted.

Effects to other CAN nodes in the network

The effect leads to delays of other pending messages in the CAN network due to the high priority of the
Remote Frame. Furthermore the unexpected remote frame can trigger other data frames depending on
the CAN node’s configuration.

Workarounds

1. The behavior can be avoided if a message object is not updated by software when a transmission
of the corresponding message object is pending (TXRQ element is set) and the CAN module is
active (INIT = 0). If a re-transmission of a message (e.g. after lost arbitration or after the
occurrence of an error frame) needs to be cancelled, the TXRQ element should be cleared by
software as soon as NEWDAT is reset from the CAN module.

2. The nodes in the CAN system ignore the remote frame with the identifier=0 and no data frame is
triggered by this remote frame.

CAN.9: Contents of Message Objects and Mask of Last Message Registers after
Reset

After any reset, the contents of the CAN Message Objects 1..15 (MCR, UAR, LAR, MCFG, Data[0:7])
and the Mask of Last Message Registers (LMLM, UMLM) may be undefined instead of unchanged
(reset value 'X' instead of 'U').

This problem depends on temperature and the length of the reset, and differs from device to device.
The problem is more likely (but not restricted) to occur at high temperature and for long hardware
resets (> 100 ms).

Workaround:

Re-initialize the CAN module after each reset.

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 14 of 29 -

Application Hints

Note on Interrupt Register behaviour of the CAN module
Due to the internal state machine of the CAN module, a specific delay has to be considered between
resetting INTPND and reading the updated value of INTID. See Application Note AP29024 "Interrupt
Register behaviour of the CAN module" which can be found via the link to 16-bit Microcontroller
Application Notes on http://www.infineon.com/c166-family

Direct Link:
http://www.infineon.com/cgi/ecrm.dll/ecrm/scripts/public_download.jsp?oid=10178&parent_oid=53087

Handling of the SSC Busy Flag (SSCBSY)

In master mode of the High-Speed Synchronous Serial Interface (SSC), when register SSCTB has
been written, flag SSCBSY is set to '1' when the baud rate generator generates the next internal clock
pulse. The maximum delay between the time SSCTB has been written and flag SSCBSY=1 is up to 1/2
bit time. SSCBSY is cleared 1/2 bit time after the last latching edge.

When polling flag SSCBSY after SSCTB has been written, SSCBSY may not yet be set to '1' when it is
tested for the first time (in particular at lower baud rates). Therefore, e.g. the following alternative
methods are recommended:

1. test flag SSCRIR (receive interrupt request) instead of SSCBSY (in case the receive interrupt

request is not serviced by CPU interrupt or PEC), e.g.
loop: BCLR SSCRIR ;clear receive interrupt request flag
 MOV SSCTB, #xyz ;send character
wait_tx_complete:

JNB SSCRIR, wait_tx_complete ;test SSCRIR
JB SSCBSY, wait_tx_complete ;test SSCBSY to achieve original

timing(SSCRIR may be set 1/2 bit
time before SSCBSY is cleared)

2. use a software semaphore bit which is set when SSCTB is written and is cleared in the SSC
receive interrupt routine

Oscillator Watchdog and Prescaler Mode

The OWD replaces the missing oscillator clock signal with the PLL clock (base frequency).

- In direct drive mode the PLL base frequency is used directly (fcpu = 2...5 MHz).

- In prescaler mode the PLL base frequency is divided by 2 (fcpu = 1...2.5 MHz).

PLL lock after temporary clock failure

When the PLL is locked and the input clock at XTAL1 is interrupted then the PLL becomes unlocked,
provides the base frequency (2 ... 5 MHz) and the PLL unlock interrupt request flag is set. If the
XTAL1 input clock starts oscillation again then the PLL stays in the PLL base frequency. The CPU
clock source is only switched back to the XTAL1 oscillator clock after a hardware reset. This can be
achieved via a normal hardware reset or via a software reset with enabled bidirectional reset. It is
important that the hardware reset is at least active for 1 ms, after that time the PLL is locked in any
case.

http://www.infineon.com/c166-family
http://www.infineon.com/cgi/ecrm.dll/ecrm/scripts/public_download.jsp?oid=10178&parent_oid=53087

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 15 of 29 -

Note on Early (Unlatched) Chip Select Option

As described in the User's Manuals (e.g. C167CR User's Manual, V3.1, 2000-03, p.9-11), an early
(unlatched) address chip select signal (SYSCON.CSCFG = ‘1’) becomes active together with the
address and BHE (if enabled) and remains active until the end of the current bus cycle. Early address
chip select signals are not latched internally and may toggle intermediately while the address is
changing.

These effects may also occur on CSx# lines which are configured as RDCSx# and/or WRCSx# signals
(BUSCONx.CSRENx = 1 and/or CSWENx = 1).

The position of these transitions (spikes) is at the beginning of an external bus cycle or an internal
XBUS cycle, indicated by the rising edge of signal ALE. The width of these transitions is ~ 5 ns
(measured at a reference level of 2.0 V with Vdd = 5.0 V). The falling edge of the spike occurs in the
same relation to RD#, WR#/WRH#/WRL# and to other CS# signals as if it was an address chip select
signal with early chip select option.

When CS# lines configured as RDCS# and/or WRCS# are used e.g. as output enable (OE#) signals
for external devices or as clock input for shift registers, problems might occur (temporary bus
contention during data float times (may be solved by tristate wait state), unexpected shift operations,
etc.). When CS# lines configured as WRCS# are used as write enable (WE#) signals for external
devices or FIFOs, internal locations may be overwritten with undefined data.

When CS# lines are used as chip enable (CE#) signals for external memories, usually no problems are
expected, since the falling edge of the spikes has the same characteristics as the falling edge of an
access with a regular early (unlatched) address CS# signal. At this time, the memory control signals
RD#, WR# (WRH#/WRL#) are on their inactive (high levels).

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 16 of 29 -

Deviations from Electrical- and Timing Specification:

The following table lists the deviations of the DC/AC characteristics from the specification in the
C167CR/SR Data Sheet V3.3, 2005-02:

Problem Parameter Symbol Limit Values Unit Test
short name min. max. Condition

DC.IALEL.1 ALE inactive current IALEL - 30
instead
of 40

µA VOUT = VOLmax

DC.tc8.5 CLKOUT rise time tc8 - 5
instead
of 4

ns

DC.tc9.5 CLKOUT fall time tc9 - 5
instead
of 4

ns

350 - mV -40 °C DC.HYS.350 Input Hysteresis
(Special Threshold)

HYS

400 - mV 125 °C

AC.PLL.1 PLL base frequency - 2...6 MHz
instead of

2...5 MHz

MHz (see User’s
Manual, chapter
Clock Generation
– PLL Operation)

- A/D Converter Characteristics:

ADCC.2.3: ADC Overload Current

During exceptional conditions in the application system an overload current IOV can occur on the analog
inputs of the A/D converter when VAIN > Vdd or VAIN < Vss. For this case, the following conditions are
specified in the Data Sheet:

 IOVmax = | ±5 mA |
The specified total unadjusted error TUEmax = | ±2 LSB | is only guaranteed if overload conditions
occur on maximum 2 not selected analog input pins and the absolute sum of input overload currents
on all analog input pins does not exceed 10 mA. (It is also allowed to distribute the overload to more
than 2 not selected analog input pins).

Due to an internal problem, the specified TUE value is only met for a positive overload current 0 mA ≤
IOV ≤ +5 mA (all currents flowing into the microcontroller are defined as positive and all currents flowing
out of it are defined as negative).

If the exceptional conditions in the application system cause a negative overload current, then the
maximum TUE can be exceeded (depending on value of IOV and RAREF):

Problem Description in Detail:

1. Overload Current at analog Channel ANn (n ∈ 1 ... 11) and Influence to VAREF

If an overload current IOV occurs on analog input channel ANn, then an additional current IAREF
(crosstalk current) is caused at pin VAREF.
Depending on RAREF, the internal resistance of the reference voltage, the crosstalk current IAREF at

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 17 of 29 -

pin VAREF can cause an additional unadjusted error AUE to all other analog channels.
In case RAREF ≤ 490 Ohm [RAREF ≤ ((LSB/2) / (IOVmax * ovf-3)] the maximum possible additional error
to all other channels is smaller than 0.5 LSB with the condition of IOVmax = | ±5 mA| at ANn.

Relation between IAREF and IOV at ANn: IAREF = ovf-3 * IOVn (n ∈ 1 ... 11)

Note: The influence to the reference voltage VAREF caused by IOVn (shift of VAREF) is maximum for

VAINn = VAREF and the influence is minimum for VAINn = 0V (n ∈ 1... 11). The condition RAREF ≤
490 Ohm and 0.5 LSB is calculated for the worst case at VAINn = VAREF.

2. Values of ovf-3

Parameter Symbol Min Max
Overload factor-3 ovf-3 - 0.001 0

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 18 of 29 -

History List C167CR-LM (since device step BA)

Functional
Problem

Short Description Fixed in
step

ADC.11 Modifications of ADM field while bit ADST = 0

SSC.9 Data Transmission in Slave Mode (steps ≥ FA only)
BUS.17 Spikes on CS# lines after access with RDCS# and/or WRCS# (not in BE and

earlier steps)

BUS.18 PEC transfers after JMPR

BUS.19 Unlatched Chip Selects at Entry into Hold Mode (not in BE and earlier steps)

OWD.1 Function of Bit OWDDIS/SYSCON.4 (not in BE and earlier steps)

PWRDN.1 Execution of PWRDN Instruction while pin NMI# = high

X9 Read Access to XPERs in Visible Mode

CAN.7 Unexpected Remote Frame Transmission
CAN.9 Contents of Message Objects and Mask of Last Message Registers after

Reset

CPU.21 BFLDL/H Instructions after Write Operation to internal IRAM

CPU.22 Z Flag after PUSH and PCALL

ADC.8 CC31/ADC Interference BE

ADC.10 Start of Standard Conversion at End of Injected Conversion CB

CPU.8 Jump instruction in EXTEND sequence BE

CPU.9 PEC Transfers during instruction execution from Internal RAM CB

CPU.11 Stack Underflow during Restart of Interrupted Multiply BE

CPU.17 Arithmetic Overflow by DIVLU instruction (EES-)FA

RST.1 System Configuration via P0L.0 during Software/Watchdog Timer Reset CB

SSC.8 Data Transmission in Slave Mode (Step EES-FA only) ES-FA

X10 P0H I/O conflict during XPER access and external 8-bit Non-multiplexed bus BE
X12 P0H spikes after XPER write access and external 8-bit Non-multiplexed bus

(Step BE until step DB only)
(EES-)FA

PINS.1 OUTPUT Signal Rise Time (DA-step only) (EES-)FA

AC/DC
Deviation

Short Description Fixed in
step

DC.IALEL.1 ALE inactive current 30 µA (steps ≥ FA only)

AC.PLL.1 PLL base frequency max 6 MHz (GA-, GA-T-, JA-, HA-steps only)

AC.PLL.2 PLL base frequency 8 MHz (GA-, GA-T-, JA-steps with date code ≥ 0114)

DC.tc8.5 CLKOUT rise time (steps ≥ GA only)

DC.tc9.5 CLKOUT fall time (steps ≥ GA only)

DC.HYS.350 Input Hysteresis (Special Threshold) (step HA only)

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 19 of 29 -

ADCC.2.3 ADC Overload Current (steps ≥ FA only)

DC.IALEH.1 ALE active current 1000µA (DA-step only) (EES-)FA

DC.IRWL.1 RD#/WR# active current –600µA (DA-step only) (EES-)FA

DC.IP6L.1 Port 6 active current –600 µA (DA-step only) (EES-)FA

DC.IP0L.1 Port 0 configuration current –110µA (DA-step only) (EES-)FA

AC.t5.1 ALE high time TCL-15ns (DA-step only) (EES-)FA

AC.t12.1 WR#/WRH# low time (with RW-delay) 2TCL-12ns (DA-step only) (EES-)FA

AC.t13.1 WR#/WRH# low time (no RW-delay) 3TCL-12ns (DA-step only) (EES-)FA

AC.t15.1 RD# to valid data in 3TCL-25ns (step BE only) (EES-)FA

AC.t16.1 ALE low to valid data in 3TCL-25ns (step BE only) (EES-)FA

AC.t34.1 CLKOUT rising edge to ALE falling edge 12ns (step BE only) (EES-)FA

AC.t38.2 ALE falling edge to CS# -10ns (step BE only) (EES-)FA

AC.t38.1 ALE falling edge to CS# -7ns (DA-step only) (EES-)FA

AC.t48.1 RDCS#/WRCS# low time (with RW-delay) 2TCL-12ns (DA-step only) (EES-)FA

AC.t49.1 RDCS#/WRCS# low time (no RW-delay) 3TCL-12ns (DA-step only) (EES-)FA

ADCC.2.1 ADC Overload Current (CB-step only) DA

ADCC.2.2 ADC Overload Current (DA- and DB-step only) (EES-)FA

History List C167SR-LM (since device step BA)

Functional
Problem

Short Description Fixed in
step

ADC.11 Modifications of ADM field while bit ADST = 0

SSC.9 Data Transmission in Slave Mode (steps ≥ FA only)
BUS.17 Spikes on CS# lines after access with RDCS# and/or WRCS# (not in BA and

earlier steps)

BUS.18 PEC transfers after JMPR

BUS.19 Unlatched Chip Selects at Entry into Hold Mode (not in BA and earlier steps)

CPU.21 BFLDL/H Instructions after Write Operation to internal IRAM

CPU.22 Z Flag after PUSH and PCALL

OWD.1 Function of Bit OWDDIS/SYSCON.4 (not in BA and earlier steps)

PWRDN.1 Execution of PWRDN Instruction while pin NMI# = high

X9 Read Access to XPERs in Visible Mode

ADC.8 CC31/ADC Interference DA

ADC.10 Start of Standard Conversion at End of Injected Conversion DA

CPU.8 Jump instruction in EXTEND sequence DA

CPU.9 PEC Transfers during instruction execution from Internal RAM DA

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 20 of 29 -

CPU.11 Stack Underflow during Restart of Interrupted Multiply DA

CPU.17 Arithmetic Overflow by DIVLU instruction (ES-)FA

RST.1 System Configuration via P0L.0 during Software/Watchdog Timer Reset DA

X10 P0H I/O conflict during XPER access and external 8-bit Non-multiplexed bus DA
X12 P0H spikes after XPER write access and external 8-bit Non-multiplexed bus

(DA-step only)
(ES-)FA

PINS.1 OUTPUT Signal Rise Time (DA-step only) (ES-)FA

AC/DC
Deviation

Short Description Fixed in
step

DC.IALEL.1 ALE inactive current 30 µA (steps ≥ FA only)

AC.PLL.1 PLL base frequency (GA-, GA-T-, JA-, HA-steps only)

AC.PLL.2 PLL base frequency 8 MHz (GA-, GA-T-, JA-steps with date code ≥ 0114)

DC.tc8.5 CLKOUT rise time (steps ≥ GA only)

DC.tc9.5 CLKOUT fall time (steps ≥ GA only)

DC.HYS.350 Input Hysteresis (Special Threshold) (step HA only)

ADCC.2.3 ADC Overload Current (steps ≥ FA only)

DC.IALEH.1 ALE active current 1000µA (DA-step only) (ES-)FA

DC.IRWL.1 RD#/WR# active current –600µA (DA-step only) (ES-)FA

DC.IP6L.1 Port 6 active current –600 µA (DA-step only) (ES-)FA

DC.IP0L.1 Port 0 configuration current –110µA (DA-step only) (ES-)FA

AC.t5.1 ALE high time TCL-15ns (DA-step only) (ES-)FA

AC.t12.1 WR#/WRH# low time (with RW-delay) 2TCL-12ns (DA-step only) (ES-)FA

AC.t13.1 WR#/WRH# low time (no RW-delay) 3TCL-12ns (DA-step only) (ES-)FA

AC.t38.1 ALE falling edge to CS# -7ns (DA-step only) (ES-)FA

AC.t48.1 RDCS#/WRCS# low time (with RW-delay) 2TCL-12ns (DA-step only) (ES-)FA

AC.t49.1 RDCS#/WRCS# low time (no RW-delay) 3TCL-12ns (DA-step only) (ES-)FA

ADCC.2.2 ADC Overload Current (DA-step only) (ES-)FA

History List C167CR-4RM (since device step AB)

Functional
Problem

Short Description Fixed in
step

ADC.11 Modifications of ADM field while bit ADST = 0

SSC.9 Data Transmission in Slave Mode (steps ≥ FA only)

BUS.17 Spikes on CS# Lines after access with RDCS# and/or WRCS#

BUS.18 PEC Transfers after JMPR Instruction

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 21 of 29 -

BUS.19 Unlatched Chip Selects at Entry into Hold Mode (not in DB- and earlier steps)

CPU.21 BFLDL/H Instructions after Write Operation to internal IRAM

CPU.22 Z Flag after PUSH and PCALL

OWD.1 Function of Bit OWDDIS/SYSCON.4

PWRDN.1 Execution of PWRDN Instruction while pin NMI# = high

X9 Read Access to XPERs in Visible Mode

CAN.7 Unexpected Remote Frame Transmission

CAN.9 Contents of Message Objects and Mask of Last Message Registers after
Reset

CPU.8 Jump instruction in EXTEND sequence AC

CPU.9 PEC Transfers during instruction execution from Internal RAM AC

CPU.11 Stack Underflow during Restart of Interrupted Multiply AC

CPU.16 Data read access with MOVB [Rn], mem instruction to internal ROM (EES-)FA

CPU.17 Arithmetic Overflow by DIVLU instruction (EES-)FA

RST.1 System Configuration via P0L.0 during Software/Watchdog Timer Reset AC

RST.3 Bidirectional Hardware Reset DA

ADC.8 CC31/ADC Interference AC

ADC.10 Start of Standard Conversion at End of Injected Conversion AC

SSC.8 Data Transmission in Slave Mode (Step EES-FA only) ES-FA

X12 P0H spikes after XPER write access and external 8-bit Non-multiplexed bus (EES-)FA

PINS.1 OUTPUT Signal Rise Time (DA-step only) DB

AC/DC
Deviation

Short Description Fixed in
step

DC.IALEL.1 ALE inactive current 30µA (steps ≥ FA only)

AC.PLL.1 PLL base frequency (GA-, GA-T-, JA-, HA-steps only)

AC.PLL.2 PLL base frequency 8 MHz (GA-, GA-T-, JA-steps with date code ≥ 0114)

DC.tc8.5 CLKOUT rise time (steps ≥ GA only)

DC.tc9.5 CLKOUT fall time (steps ≥ GA only)

DC.HYS.350 Input Hysteresis (Special Threshold) (step HA only)

ADCC.2.3 ADC Overload Current (steps ≥ FA only)
DC.VOL.1 Output low voltage (Port0/1/4, ALE, RD#, WR#, ...) test condition 1.6mA

(AC-step only)
DA

DC.IALEH.1 ALE active current 1000µA (EES-)FA

DC.IRWL.1 RD#/WR# active current –600µA (EES-)FA

DC.IP6L.1 Port 6 active current –600 µA (EES-)FA

DC.IP0L.1 Port 0 configuration current –110µA (problem not in AC step) (EES-)FA

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 22 of 29 -

DC.HYS.1 Input Hysteresis 300mV (restriction not effective in production test) -

AC.t5.1 ALE high time TCL-15ns DB

AC.t12.1 WR#/WRH# low time (with RW-delay) 2TCL-12ns (EES-)FA

AC.t13.1 WR#/WRH# low time (no RW-delay) 3TCL-12ns (EES-)FA

AC.t38.1 ALE falling edge to CS# -7ns (EES-)FA

AC.t48.1 RDCS#/WRCS# low time (with RW-delay) 2TCL-12ns (EES-)FA

AC.t49.1 RDCS#/WRCS# low time (no RW-delay) 3TCL-12ns (EES-)FA

ADCC.2.2 ADC Overload Current (EES-)FA

History List C167CR-16RM (since device step AA)

Functional
Problem

Short Description Fixed in
step

ADC.10 Start of Standard Conversion at End of Injected Conversion (EES-)FA

ADC.11 Modifications of ADM field while bit ADST = 0

SSC.9 Data Transmission in Slave Mode (steps ≥ FA only)
BUS.17 Spikes on CS# lines after access with RDCS# and/or WRCS# (steps ≥ FA only)

BUS.18 PEC transfers after JMPR

BUS.19 Unlatched Chip Selects at Entry into Hold Mode (not in step AA)

OWD.1 Function of Bit OWDDIS/SYSCON.4 (not in step AA)

CPU.9 PEC Transfers during instruction execution from Internal RAM (EES-)FA

CPU.12 Access to internal ROM with EXTS/EXTSR instructions (EES-)FA

CPU.16 Data read access with MOVB [Rn], mem instruction to internal ROM (EES-)FA

CPU.17 Arithmetic Overflow by DIVLU instruction (EES-)FA

CPU.21 BFLDL/H Instructions after Write Operation to internal IRAM

CPU.22 Z Flag after PUSH and PCALL

PWRDN.1 Execution of PWRDN Instruction while pin NMI# = high

ROM.1 Internal ROM access to locations 28000h ... 2FFFFh (EES-)FA

RST.1 System Configuration via P0L.0 during Software/Watchdog Timer Reset (EES-)FA

SSC.8 Data Transmission in Slave Mode (Step EES-FA only) ES-FA

CAN.7 Unexpected Remote Frame Transmission
CAN.9 Contents of Message Objects and Mask of Last Message Registers after

Reset

X9 Read Access to XPERs in Visible Mode

X12 P0H spikes after XPER write access and external 8-bit Non-multiplexed bus (EES-)FA

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 23 of 29 -

AC/DC
Deviation

Short Description Fixed in
step

DC.IALEL.1 ALE inactive current 30 µA (steps ≥ FA only)

AC.PLL.1 PLL base frequency (GA-, GA-T-, JA-, HA-steps only)

AC.PLL.2 PLL base frequency 8 MHz (GA-, GA-T-, JA-steps with date code ≥ 0114)

DC.tc8.5 CLKOUT rise time (steps ≥ GA only)

DC.tc9.5 CLKOUT fall time (steps ≥ GA only)

DC.HYS.350 Input Hysteresis (Special Threshold) (step HA only)

ADCC.2.3 ADC Overload Current (steps ≥ FA only)

AC.t15.1 RD# to valid data in 3TCL-25ns (EES-)FA

AC.t16.1 ALE low to valid data in 3TCL-25ns (EES-)FA

AC.t34.1 CLKOUT rising edge to ALE falling edge 12ns (EES-)FA

AC.t38.2 ALE falling edge to CS# -10ns (EES-)FA

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 24 of 29 -

Functional Improvements/Documentation Updates
Compared to the BA-step, the following feature enhancements have been implemented in the FA- and
GA- (and all following) steps of the C167CR/SR. They are described in detail in the respective chapters
of the C167CR Derivatives User's Manual V3.2 (2000-05), and are summarized here for easier
reference.

Incremental position sensor interface

For each of the timers T2, T3, T4 of the GPT1 unit, an additional operating mode has been
implemented which allows to interface to incremental position sensors (A, B, Top0). This mode is
selected for a timer Tx via TxM = 110b in register TxCON, x = (2, 3, 4). Optionally, the contents of T5
may be captured into register CAPREL upon an event on T3. This feature is selected via bit CT3 = 1 in
register T5CON.10.

Oscillator Watchdog

The Oscillator Watchdog (OWD) monitors the clock at XTAL1 in direct drive and prescaler mode. In
case of clock failure, the PLL Unlock/OWD Interrupt Request Flag (XP3IR) is set and the internal CPU
clock is supplied with the PLL basic frequency. This feature can be disabled by a low level on pin
Vpp/OWE. Bit OWDDIS/SYSCON.4 allows to disable this feature via software on device steps where
problem OWD.1 is fixed.

Bidirectional Reset

Optionally, an internal watchdog timer or software reset will be indicated on the RSTIN# pin which will
be driven low for the duration of the internal reset sequence. RSTIN# will also be driven low for the
duration of the internal reset sequence when this reset was initiated by an external HW reset signal on
pin RSTIN#.

This option is selectable by software via bit BDRSTEN/SYSCON.3. After reset, the bidirectional reset
option is disabled (BDRSTEN/SYSCON.3 = 0).

Reset Source Indication in Register WDTCON

Besides indication of a watchdog timer reset in bit WDTR in register WDTCON, indication of other
reset sources and types (software reset, long/short hardware reset, etc.) in status flags in the low byte
of register WDTCON is provided. While in previous steps, only reset values 0000h or 0002h could
occur for WDTCON, beginning with the FA-steps further values may occur in the low byte of
WDTCON. Therefore, programs written for previous steps which evaluate the contents of WDTCON
after reset and which explicitly test bit WDTR either via bit instructions or via mask operations will work
identically on the FA- and following steps. However, programs which assume that all other bits in the
low byte of WDTCON except bit WDTR are always '0' (which is true for previous steps) and therefore
e.g. test WDTCON with byte or word operations may work differently on the FA- and following steps.

The following table summarizes the behaviour of the reset source indication flags.

Flag
Event

LHWR
WDTCON.4

SHWR
WDTCON.3

SWR
WDTCON.2

WDTR
WDTCON.1

Long HW Reset 1 1 1 0
Short HW Reset - / * 1 1 0
SRST instruction - / * - / * 1 -
WDT Reset - / * - / * 1 1
EINIT instruction 0 0 0 -
SRVWDT instruction - - - 0
Legend: 1 = flag is set, 0 = flag is cleared, - = flag is not affected,

 * = flag is set when bi-directional reset option is enabled

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 25 of 29 -

XBUS Peripheral Enable Bit XPEN/SYSCON.2 (does not apply to C167SR)

Bit SYSCON.2 has been modified into a general XBUS Peripheral Enable bit, i.e. it controls both the
XRAM and the CAN module.

When bit SYSCON.2 = 0 (default after reset), and an access to an address in the range EF00h ...
EFFFh is made, either an external bus access is performed (if an external bus is enabled), or the
Illegal Bus Trap is entered. In previous versions, the CAN module was accessed in this case. Systems
where bit SYSCON.2 was set to '1' before an access to the CAN module in the address range EF00h
... EFFFh was made will work without problems with all steps of the C167CR.

Clock System

• In total 8 different clock configuration options are selectable during reset on P0H.7..5 (direct drive,
prescaler 0.5, PLL factors 2, 3, 4, 5, 1.5, 2.5). Some options are configured via settings on
P0H.7..5 during reset which would have selected Direct Drive in previous steps (for details, see
Appendix in Errata Sheet V1.x of respective device):

Reset Configuration

P0H.[7:5]
CPU Frequency
fcpu = fxtal * F

Notes

011 fxtal * 1 Direct Drive
010 fxtal * 1.5 1)
001 fxtal / 2 Prescaler Operation, 1)
000 fxtal * 2.5 1)

1) Note: previous steps have selected Direct Drive when P0H.[7:5] = 0XX, i.e. the level on P0H.6 and
P0H.5 during reset was not evaluated.

• In addition, in each of the steps FA-/GA-/GA-T/HA, the internal oscillator circuit (Type_RE) has
been improved and adjusted to the respective technology. The Type_RE oscillator is compatible to
the Type_R oscillator with respect to the size of the components for an external crystal oscillator
circuit. In any case, it is recommended to check the safety factor of the oscillator circuit in the
target system. See Application Note AP2420 'Crystal Oscillator of the C500 and C166
Microcontroller Families' which can be found via the link to 16-bit Microcontroller Application Notes
on http://www.infineon.com/c166-family

Direct link: http://www.infineon.com/cmc_upload/documents/009/746/ap242005.pdf

External Bus Controller

By default, the CS# signals (when used as address CS# signals) are switched nominally 1 TCL after
the address for an external bus access is driven. This ensures a defined transition from active to
inactive state without glitches. Optionally, controlled by bit CSCFG/SYSCON.6 = 1, the leading edge of
the CS# signals may be generated in an unlatched mode, i.e. the CS# signals are directly derived from
the addresses and are switched in the same internal clock phase as the addresses. This allows more
time for the 'chip enable access time' tce of external devices, however, glitches may occur on CS#
lines while the addresses are changing.

Port Driver Control Register

Beginning with the FA-step, the driving capability of the pad drivers can be selected via software in
register PDCR (ESFR address 0F0AAh). Two driving levels (fast edge mode/reduced edge mode) can
be selected for two groups of pins. Bit PDCR.0/BIPEC controls the edge characteristic of Bus Interface
Pins (PORT0/1, port 4, port 6, RD#, WR#, ALE, WRH#/BHE, CLKOUT), while bit PDCR.4/NBPEC
controls Non-Bus Pins (port 2, port 3, port 7, port 8, RSTOUT#, RSTIN# in bidirectional mode). The
reset value '0' selects fast edge mode to ensure compatibility with previous versions and steps.

http://www.infineon.com/c166-family
http://www.infineon.com/cmc_upload/documents/009/746/ap242005.pdf

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 26 of 29 -

Port 5 Digital Input Control via register P5DIDIS

Beginning with the FA-step, the digital input stages on port 5 may be disconnected from pins used as
analog inputs via register P5DIDIS.

A/D Converter
Due to correction of the former problem ADC.7, injected conversions will no longer be aborted by the
start of a standard conversion. The following table summarizes the ADC behaviour in this situation for
all possible combinations of conversion requests. Note that a conversion request as discussed in this
context is activated when the respective control bit (ADST or ADCRQ) is toggled from ’0’ to ’1’, i.e. the
bit must have been zero before being set.

Conversion New requested conversion

in progress Standard Injected

Standard Abort running conversion and start
requested new conversion

Complete running conversion,
start requested conversion after that

Injected Complete running conversion,
start requested conversion after that

Complete running conversion,
start requested conversion after that.
Bit ADCRQ will be ’0’ for the second
conversion.

Due to internal improvements, the internal timing of the A/D converter of the FA- and following steps is
slightly different from previous versions, which is reflected in a different way of specifying the ADC.
When ADCON.[15:12] = 0000b (default), the conversion time tc of the A/D converter of the FA- and
following steps is identical to previous steps, while the sample time ts is increased by a factor of 1.33.
For ADCON.[15:12] ≠ 0000b, tc and/or ts may be different from previous steps.

Since the FA-/GA- and HA-steps are produced in a different technology than previous steps, it is
recommended to check the overall ADC accuracy in the target system with respect to the impedance
of the analog signal and the analog reference voltage. This should be done in particular when the FA-
/GA-/HA-steps are operated at a higher frequency than previous steps.

Timing of flag SSCTIR (SSC Transmit Interrupt Request)

In master mode, the timing of SSCTIR depends on the device step as follows:

(a) before step FA, flag SSCTIR is set to ‘1’ synchronous to the shift clock SCLK 1/2 bit time before
the first latching edge (= first shifting clock edge when SSCPH = 0). When SSCTB is written while
the shift register is empty, the maximum delay between the time SSCTB has been written and flag
SSCTIR=1 is up to 1/2 bit time.

(b) beginning with step FA, when SSCTB has been written while the transmit shift register was empty
(and the SSC is enabled), flag SSCTIR is set to ‘1’ directly after completion of the write operation,
independent of the selected baud rate. When the transmit shift register is not empty when SSCTB
was written, SSCTIR is set to '1' after the last latching edge of SCLK (= 1/2 bit time before the first
shifting edge of the next character). See also e.g. C167CR User's Manual V3.1, p. 12-5.

The following diagram shows these relations in an example for a data transfer in master mode with
SSCPO = 0 and SSCPH = 0. It is assumed that the transmit shift register is empty at the time the first
character is written to SSCTB:

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 27 of 29 -

Typically, in interrupt driven systems, no problems are expected from the modified timing of flag
SSCTIR. However, when flag SSCTIR is polled by software in combination with other flags which are
set/cleared at the end or at the beginning of a transfer (e.g. SSCBSY), the modified timing may have
an effect.

Another situation where a different system behaviour may be noticed is the case when only one
character is transferred by the PEC into the transmit buffer register SSCTB. In this case, 2 interrupt
requests from SSCTIR are expected: the 'PEC COUNT = 0' interrupt, and the 'SSCTB empty' interrupt.

- in the FA (and newer) steps, the second interrupt request ('SSCTB empty') is always

systematically generated before the first one ('PEC COUNT = 0') has been acknowledged by the
CPU, such that effectively only one interrupt request is generated for two different events.

- before step FA, when the PEC transfer is performed with sufficient margin to the next clock tick
from the SSC baud rate generator, and no higher priority interrupt request has occurred in the
meantime, the 'PEC COUNT = 0' interrupt will be acknowledged before the 'SSCTB empty'
interrupt request is generated, i.e. two interrupts will occur based on these events. However,
when the PEC transfer takes place relatively close before the next clock tick from the SSC baud
rate generator, or a higher priority interrupt request has occurred while the PEC transfer is
performed, the 'PEC COUNT = 0' interrupt may not be acknowledged before the 'SSCTB empty'
interrupt request is generated, such that effectively only one interrupt request will be generated
for two different events.

In order to achieve a defined and systematic behavior with all device steps, the SSC receive interrupt,
which is generated at the end of a character transmission, may be used instead of the SSC transmit
interrupt.

SCLK

MTSR
Bit 0 Bit 1 Bit n Bit 0

write to SSCTB, first character write to SSCTB, next character

case (b): SSCTIR = 1 in current and future device steps

case (a): SSCTIR = 1 in previous device steps

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 28 of 29 -

Documentation Updates

to C167CR User’s Manual V3.2, 2003-05, p.10-30 ff.:

T5CON.D1 Edge Selection for Capture Function if CT3 = 1 and CI = 01b or 10b

In contrast to the current documentation in the User’s Manuals, the edge selection for the capture
function of the contents of T5 into register CAPREL triggered by transitions on pins T3IN or T3EUD
works as described below. This applies to configurations where bit CT3 = 1 and bit field CI = 01b or CI
= 10b. Other functions are not affected.

Changes to the current documentation are marked in bold italic letters (see description of register
T5CON in chapter ‘GPT2 Auxiliary Timer T5’ of the User’s Manual).

Bit / Bit Field Function

CT3 Timer 3 Capture Trigger Enable
 0 : Capture trigger from pin CAPIN
 1 : Capture trigger from T3 input pins

CI Register CAPREL Capture Trigger Selection (depending on bit CT3)
 0 0 : Capture disabled
 0 1 : Positive transition (rising edge) on CAPIN or
 positive transition (rising edge) on T3IN if T3EUD = 0

 negative transition (falling edge) on T3IN if T3EUD = 1
 positive transition (rising edge) on T3EUD if T3IN = 0
 negative transition (falling edge) on T3EUD if T3IN = 1

 1 0 : Negative transition (falling edge) on CAPIN or
 negative transition (falling edge) on T3IN if T3EUD = 0

positive transition (rising edge) on T3IN if T3EUD = 1
negative transition (falling edge) on T3EUD if T3IN = 0
positive transition (rising edge) on T3EUD if T3IN = 1

 1 1 : Any transition (rising or falling edge) on CAPIN or
 any transition on T3IN or T3EUD

The following table shows (for CT3 = 1) under which conditions a capture trigger is generated for a
transition on T3IN or T3EUD, depending on the level on the respective other input T3EUD or T3IN

T3IN Input T3EUD Input Level on respective
other input
(T3EUD or T3IN)

Rising ↑ Falling ↓ Rising ↑ Falling ↓

High capture if CI = 10 capture if CI = 01 capture if CI = 10 capture if CI = 01
Low capture if CI = 01 capture if CI = 10 capture if CI = 01 capture if CI = 10

In other words, a capture trigger is generated for CI = 01 whenever the two inputs change from the
same to a different logic state. A capture trigger is generated for CI = 10 whenever the two inputs
change from a different to the same logic state. As an equivalent representation, a capture trigger is
generated when the following logic equation is true:

CI Capture if
01 (T3IN XOR T3EUD) = 0→1
10 (T3IN XOR T3EUD) = 1→0

Applications that require a capture event (associated with an interrupt request from register CAPREL)
only for transitions on pin T3IN (independent of the status of pin T3EUD), or only for transitions on pin
T3EUD (independent of the status of pin T3IN), respectively, may use the following configuration:

Microcontroller Division Errata Sheet, C167CR/SR–LM/4RM/16RM, (ES-)HA, HA+ 1.1, Mh - 29 of 29 -

- externally connect pin T3IN to pin CAPIN (or pin T3EUD to pin CAPIN), respectively
- enable the capture trigger from pin CAPIN (bit CT3 = 0), and select the edge type (rising, falling,

any) in bit field CI.

to C167CR User’s Manual V3.2, 2003-05, p.16-16:

PWM.D1 Write access to registers PWx and PPx while bit PTRx = 0

Clearing the timer run bit PTRx stops the associated counter PTx.
The level on the individual PWM channel outputs is controlled by comparators according to the
formula:

PWM output signal = [PTx] ≥ [PWx shadow latch].

While PTRx = 0, the PWx and PPx registers are transparent, i.e. a write to PWx and PPx will directly
update the shadow registers as long as the corresponding timer run bit PTRx = 0.

So whenever software changes registers PTx or PWx, the respective output will reflect the condition
after the change. E.g. loading timer PTx with a value greater than or equal to the value in PWx
immediately sets the respective output, a PTx value below the PWx value clears the respective output.

Product and Test Engineering Group, Munich

