
Map Intelligence Dashboard Client Manual

79

ADVANCED TOPICS

AUTO PILOT MODE

1. Introduction and scope

The Auto Pilot Mode (APM) controls some of the Map Intelligence Tools (which we shall refer to in this topic as

plugins) depending on the document being manipulated by the Dashboard Client. For example, based on the name

of a business intelligence document, a Layer Designer can control:

 what plugins must be excluded;

 what plugins must be deactivated, and

 what plugins must be activated and how.

 An excluded plugin will not even appear in the list of plugins usually visible when the user clicks

the Tools menu button in the Map Intelligence Mapping Viewer.

 Auto Pilot mode requires some programming and access to the Map Intelligence server.

2. External elements of the APM

The default behavior of the Auto Pilot Mode, is defined by the property plugin.automation in the

properties file plugins.common.properties in the directory WEB-INF/properties of a running Map

Intelligence webapp. Here is how it is documented in the properties file:

Indicate whether or not plugin automation settings should be applied to new

incoming requests to the Map Intelligence Server. Acceptable values for this

property are 'true' to enable the plugin automation scheme, while any other

value will disable that scheme. The default value is 'true'.

Map Intelligence Dashboard Client Manual

80

plugin.automation=true

When this property is set to TRUE, after a successful submission of a request from a client the Info Bar of the Map

Intelligence Mapping Viewer in a web browser will show the following Info Bar display.

Fig 54. The Auto Pilot Mode set turned on.

Notice the Auto Pilot Mode icon at the right end of the display. Hovering over it should display a tool-tip

message that tells the user to click it in order to turn OFF the Auto Pilot Mode.

The End User can click on Auto Pilot Mode icon to toggle the Auto Pilot Mode state; i.e. If it was enabled – as is the

case in the figure above– then clicking it will turn the Auto Pilot Mode OFF. When it is OFF, the icon changes to the

following:

Fig 55. The Auto Pilot Mode turned off.

 End Users can toggle this button as many times as they wish. The state of the APM will change

every time in the Browser only. The new state of the APM only be taken into consideration when

an operation is submitted to the Map Intelligence Server.

3. Internal elements of the APM

The behavior of the Auto Pilot Mode is controlled first by a file called plugin-automation.map

and second by a collection of files that have a .pap extension (also called PAP files short for Plugin Automation Profile).

All these files live in WEB-INF/data/profiles/plugin of a running Map Intelligence webapp. The following is an

exhaustive explanation of what these files look like and what they do.

 Please note that all the text in the following documents is case sensitive.

Map Intelligence Dashboard Client Manual

81

The plugin-automation.map file

This file is a global map between document names and (a) the plugins that must be excluded and (b) the list of

profiles that must be considered, when the request submitted from the client hits the Map Intelligence Server. It is

an XML file that looks like:

<?xml version="1.0" encoding="UTF-8"?>

<document-profiles>

 <document-entry name-expression=".*Crimes analysis.*">

 <profile-name>rsn1</profile-name>

 <profile-name>rsn2</profile-name>

 <excluded-plugin>forge.gradient</excluded-plugin>

 </document-entry>

 <document-entry name-expression=".*Property listings.*">

 <profile-name>rsn3</profile-name>

 <excluded-plugin>forge.webServices.mapImage</excluded-plugin>

 </document-entry>

 <document-entry name-expression=".*">

 <profile-name>default</profile-name>

 </document-entry>

</document-profiles>

As you can see the file is the representation of a single document-profiles element which is a collection of

document-entry elements.

Map Intelligence Dashboard Client Manual

82

The document-entry element

Each such element indicates to the Automaton (of the APM) what to do if/when the document's name, in the

submitted request, matches the name indicated in this element.

The name-expression attribute

This attribute is a Regular Expression that the Automaton uses as a Pattern to match the document's name from

the submitted request. For example, the regular expression of the first document-entry element in the

example above means that any document that contains the string “Crimes analysis” anywhere in its name is a

match.

The syntax of this attribute MUST be a valid string that the java.util.regex.Pattern class can understand,

and interpret. Annex A at the end of this section, contains a summary of regular expression constructs that the

Pattern class, and by extension the Automaton, can handle.

 A good tutorial on using regular expressions in Java can be found at:

http://www.regular-expressions.info/java.html.

The profile-name element

Each of these elements shall denote the name of a PAP file (a file with a .pap extension in the folder WEB-

INF/data/profiles/plugin of a running Map Intelligence webapp).

The excluded-plugin element

Each of these elements denotes the unique identifier of a plugin that will be excluded from the user's session. As

mentioned earlier, an excluded plugin will not even appear in the list of plugins displayed when the user clicks on

the Tools menu button in the Mapping Viewer.

Business rules applicable to the plugin-automation.map file

 There MUST be one and only one such file in a running Map Intelligence webapp.

 The Automaton will respect the order of the document-entry elements in the map file. It will

not process the second element before processing the first one and so on.

 The APM Automaton will select the first document-entry element that has a name-expression

regular expression matching the document's name in the request. Using the same

http://www.regular-expressions.info/java.html

Map Intelligence Dashboard Client Manual

83

example as above, for a document named “Monthly_Crimes analysis_2.1.4,” the APM Automaton

will select the first document-entry in the list.

 The APM Automaton ensures that an excluded plugin is not visible in the list of plugins in the

current session. The list of available plugins, visible when the user clicks the Tools button of the

Mapping Viewer does not contain the name of an excluded plugin. For example, if the first (in the

list) document-entry is processed, the Point Gradient plugin's name does not appear (as given

in the image below) in the list of available plugins.

Fig 56. The Tools menu list with the Point Gradient tool excluded.

The PAP files

The Plugin Automation Profile, or Profile, or PAP file, is an XML file that tells the Automaton when and what to do

with regard to one or more Map Intelligence plugins. Here is an example of a PAP file:

<?xml version="1.0" encoding="UTF-8"?>

<automation-profile>

 <activation-condition><![CDATA[

 #view.getMapName() == 'nsw.mdf'

Map Intelligence Dashboard Client Manual

84

 && #view.getZoom() >= 3.0

 && #view.getZoom() <= 4.0

]]></activation-condition>

 <plugin-setting plugin-id="forge.contour">

 <parameter-setting name="forge.contour.point.layer.option.list"

 value="literal:Oracle Crimes"/>

 <parameter-setting name="contour.point.layer.column.options_Oracle Crimes"

 value="literal:VALUE"/>

 </plugin-setting>

 <plugin-setting plugin-id="forge.voronoi">

 <parameter-setting name="forge.voronoi.point.layer.option.list"

 value="literal:Police Stations"/>

 <parameter-setting name="forge.voronoi.opacity"

 value="literal:80"/>

 </plugin-setting>

 <plugin-setting plugin-id="forge.webServices.mapImage">

 <parameter-setting name="forge.webServices.mapImage.data.source"

 value="literal:Streets"/>

Map Intelligence Dashboard Client Manual

85

 <parameter-setting name="forge.webServices.mapImage.data.source_Streets.child"

 value="literal:MDS.Streets.AS (4)"/>

 </plugin-setting>

</automation-profile>

As you can see there is always a single automation-profile element in such a file.

The activation-condition element

This element (or more correctly its contents) is a representation of a boolean expression which the Automaton will

evaluate, at run-time, to decide whether, or not, to apply the rest of the profile; i.e. Deactivate or activate the

plugin.

The expression itself is written in OGNL (Object Graph Navigation Language) –an expression language for getting

and setting properties of Java objects.

 A comprehensive Language Guide (for the version used in the current

implementation of the APM) is available at

http://www.ognl.org/2.6.7/Documentation/html/LanguageGuide/.

The current implementation of the APM offers the writer of such expressions access to two of the core Map

Intelligence Server top-level objects: the View and the ParameterMap.

References to the View object are made using the syntax #view while references to the ParameterMap instance

are made using the syntax #params. Having access to those objects means that the writer of an activation-

condition can refer to all the public methods available on these objects.

To illustrate, the example above will be interpreted by the Automaton as follows:

if the return value of the getMapName() method, invoked on the View object, is equal to the string

literal “nsw.mdf,” AND the return value of the getZoom() method, invoked on the same View object, is

between 3.0 and 4.0 inclusive, then return TRUE, otherwise return FALSE.

http://www.ognl.org/2.6.7/Documentation/html/LanguageGuide/

Map Intelligence Dashboard Client Manual

86

The plugin-setting element

Every such element tells the Automaton which plugin to activate (when the activation-condition evaluates

to TRUE) and how to setup that plugin for it to do what it is supposed to do.

The plugin-id attribute

This attribute contains the unique identifier of the Map Intelligence plugin/tool to automate.

The parameter-setting element

Each such element tells the Automaton, for the plugin identified by the plugin-id attribute, what plugin parameter

to set and what value to set it to.

The name attribute

The value of this attribute is a plugin-specific property name.

The value attribute

The value of this attribute is a plugin specific value represented as a Java string. A prefix at the beginning of this

string will tell the Automaton how to consider the rest. Possible values of the prefix are:

 literal:

to mean that what follows should be passed as is to the plugin's property,

 ognl:

to mean that what follows should be evaluated as an OGNL expression, and the result (as a string) should

be passed to the plugin's property.

Annex B at the end of this section, lists all programmable plugins and the names of their settable parameters.

Conflict resolution and automation algorithm

As mentioned earlier, once a document-entry element is selected (because its name-expression matched the

document's name) the Automaton will consider all the PAPs referenced by the profile-name elements found in

this document-entry element. It was also mentioned earlier that when processing a profile, the Automaton will

activate a plugin if the profile's activation-condition evaluates to TRUE, and will deactivate it if the same condition

evaluates to FALSE. But what happens if the same plugin (a) is referenced in two profiles, and (b) in one profile the

Map Intelligence Dashboard Client Manual

87

activation condition evaluates to FALSE while it evaluates to TRUE in the other? Will the plugin be activated or

deactivated?

Furthermore, what if the same plugin is referenced in two profiles that belong to the same document-entry? Both

profiles have their activation condition evaluate to TRUE, but one profile sets a parameter with one value, while the

other sets the same parameter to another value. Which value will that parameter ultimately have: the one in the

first profile or the second one?

These two cases describe the possible type of conflicts that may arise from the scheme we described so far.

To activate or not to activate... that is the question

The APM Automaton will guarantee that a plugin that is activated by one Profile will not be deactivated by another

when both profiles are referenced in one document-entry element. It does so by keeping track of two lists:

pluginsAlreadyActivated and pluginsToDeactivate. When a plugin is to be activated, it is first removed from the

pluginsToDeactivate list (if it is already there) and then added to the list of pluginsAlreadyActivated after it is

effectively activated. On the other hand, if a plugin is to be deactivated, the Automaton will check if it is not already

present in the pluginsAlreadyActivated. Only when it is not there, will it get added to the pluginsToDeactivate list.

After processing all the Profiles, the Automaton then deactivates all the plugins that are left in the

pluginsToDeactivate list.

Plugin parameter values and evaluation order

The Automaton will guarantee that it will process the automation profiles in the order they are given in the

document-entry element it picks for a document. It is then left to the writer of the automation profiles to (a)

encode the plugins and their desired parameter values in as many profiles she wants, and (b) order those profiles in

a way that ensures predictability of the outcome.

Furthermore, the Automaton will not overwrite plugin parameters that have not been set in a profile thus allowing

a user to change their values in the GUI without fear of them being over-ridden by the profile.

Rules of thumb to improve predictability

The following is a list of some rules of thumb that a profile writer can adopt and follow in order to predict the

outcome of plugin automation.

1. When writing document-entry elements, specify as much as possible the full document

name.

2. Order your document-entry elements from the SPECIFIC to the GENERAL; i.e. Put those with fully

Map Intelligence Dashboard Client Manual

88

named documents before those which have a regular expression pattern. Furthermore, put the

ones with fewer regular expression constructs before the ones with more constructs.

3. Try describing the plugins in separate automation profiles: i.e. reduce the number of plugins

referred to in PAP files. You can ultimately dedicate one profile per plugin.

4. Organise your PAP files that refer to the same plugin, in exclusive conditions: i.e. reduce the

occurrences where two profiles will have their activation-condition evaluated to TRUE but which

set the plugin's parameter(s) differently.

5. Set as few plugin parameters as possible. In other words DO NOT SET ALL THE PLUGIN's

PARAMETERS unless the default values provided by the plugin do not suit your needs. This is

because a plugin parameter that is not set in an automation profile can be changed by the user

(from the GUI) , without it being over-written by the Automaton.

Map Intelligence Dashboard Client Manual

89

Annex A: Summary of regular-expression constructs

Construct Matches

Characters

x The character x

\\ The backslash character

\0n The character with octal value 0n (0 <= n <= 7)

\0nn The character with octal value 0nn (0 <= n <= 7)

\0mnn The character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7)

\xhh The character with hexadecimal value 0xhh

\uhhhh The character with hexadecimal value 0xhhhh

\t The tab character ('\u0009')

\n The newline (line feed) character ('\u000A')

\r The carriage-return character ('\u000D')

\f The form-feed character ('\u000C')

\a The alert (bell) character ('\u0007')

\e The escape character ('\u001B')

\cx The control character corresponding to x

Character classes

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)

[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z](subtraction)

Predefined character classes

. Any character (may or may not match line terminators)

\d A digit: [0-9]

\D A non-digit: [^0-9]

\s A whitespace character: [\t\n\x0B\f\r]

\S A non-whitespace character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: [^\w]

POSIX character classes (US-ASCII only)

\p{Lower} A lower-case alphabetic character: [a-z]

\p{Upper} An upper-case alphabetic character:[A-Z]

\p{ASCII} All ASCII:[\x00-\x7F]

\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]

\p{Digit} A decimal digit: [0-9]

\p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]

Map Intelligence Dashboard Client Manual

90

\p{Punct} Punctuation: One of !”#$%&’()*+,-./:;?@[\]^_`{|}~

\p{Graph} A visible character: [\p{Alnum}\p{Punct}]

\p{Print} A printable character: [\p{Graph}\x20]

\p{Blank} A space or a tab: [\t]

\p{Cntrl} A control character: [\x00-\x1F\x7F]

\p{Xdigit} A hexadecimal digit: [0-9a-fA-F]

\p{Space} A whitespace character: [\t\n\x0B\f\r]

Construct Matches

java.lang.Character classes (simple java character type)

\p{javaLowerCase} Equivalent to java.lang.Character.isLowerCase()

\p{javaUpperCase} Equivalent to java.lang.Character.isUpperCase()

\p{javaWhitespace} Equivalent to java.lang.Character.isWhitespace()

\p{javaMirrored} Equivalent to java.lang.Character.isMirrored()

Classes for Unicode blocks and categories

\p{InGreek} A character in the Greek block (simple block)

\p{Lu} An uppercase letter (simple category)

\p{Sc} A currency symbol

\P{InGreek} Any character except one in the Greek block (negation)

[\p{L}&&[^\p{Lu}]] Any letter except an uppercase letter (subtraction)

Boundary matchers

^ The beginning of a line

$ The end of a line

\b A word boundary

\B A non-word boundary

\A The beginning of the input

\G The end of the previous match

\Z The end of the input but for the final terminator, if any

\z The end of the input

Greedy quantifiers

X? X, once or not at all

X* X, zero or more times

X+ X+ X, one or more times

X{n} X, exactly n times

X{n,} X, at least n times

X{n,m} X, at least n but not more than m times

Reluctant quantifiers

Map Intelligence Dashboard Client Manual

91

X?? X, once or not at all

X*? X, zero or more times

X+? X, one or more times

X{n}? X, exactly n times

X{n,}? X, at least n times

X{n,m}? X, at least n but not more than m times

Possessive quantifiers

X?+ X, once or not at all

X*+ X, zero or more times

X++ X, one or more times

X{n}+ X, exactly n times

X{n,}+ X, at least n times

X{n,m}+ X, at least n but not more than m times

Logical operators

XY X followed by Y

X|Y Either X or Y

(X) X, as a capturing group

Construct Matches

Back references

\n Whatever the nth capturing group matched

Quotation

\ Nothing, but quotes the following character

\Q Nothing, but quotes all characters until \E

\E Nothing, but ends quoting started by \Q

Special constructs (non-capturing)

(?:X) X, as a non-capturing group

(?idmsux-idmsux) Nothing, but turns match flags on – off

(?idmsux-idmsux:X) X, as a non-capturing group with the given flags on - off

(?=X) X, via zero-width positive lookahead

(?!X) X, via zero-width negative lookahead

(?<=X) X, via zero-width positive lookbehind

(?<!X) X, via zero-width negative lookbehind

(?>X) X, as an independent, non-capturing group

Map Intelligence Dashboard Client Manual

92

Annex B: Programmable plugins and their parameter names

Contour – forge.contour

 forge.contour.point.layer.option.list: The [Layer] drop-down list. Possible values

include the strings which reference the layers visible in that drop-down list.

 contour.point.layer.column.options_xxx: The [Column] drop-down list, where xxx is the

name of the layer selection from the previous drop-down list; e.g. If “Oracle Crimes” is the name of a

valid layer that the user can select from the Layer dropdown list, then a valid name for the column

property is

contour.point.layer.column.options_Oracle Crimes. Possible values include the

column names of the layer in question.

 forge.contour.unit.option.list: The [Unit] drop-down list. Possible values include the

strings which reference the units in that drop-down list. In the English version of Map Intelligence, this

list consists of the following values: “kilometer”, “meter”, “mile” and “yard”.

 forge.contour.cell.size: The [Cell Size in Units] slider value. Possible values are string

representation of integers ranging from 1 to 1000.

 forge.contour.search.radius: The [Search Radius in Cells] slider value. Possible values are

string representations of integers ranging from 0 to 100.

 forge.contour.level.count: The [Number of Levels] slider value. Possible values are string

representations of integers ranging from 2 to 9.

 forge.contour.logarithmic.scale: The [Logarithmic Scale] checkbox value. Possible values

are “true” (for checked) and “false” (for unchecked).

 forge.contour.area: The [Outline v/s Paint Area] checkbox value. Possible values are “true” (for

checked) and “false” (for unchecked).

 forge.contour.show.labels: The [Show Labels] checkbox value. Possible values are “true” (for

checked) and “false” (for unchecked).

 contour_startColour: The [Color Range Start color] hexadecimal value. Possible values are

“#rrggbb” where the pairs “rr”, “gg” and “bb” are hexadecimal digits in the range 00 to FF. The pairs “rr”,

Map Intelligence Dashboard Client Manual

93

“gg” and “bb” represent the “Red”, “Green” and “Blue” components of the colour respectively.

 contour_endColour: The [Color Range End color] hexadecimal value. Possible values are “#rrggbb”

where the pairs “rr”, “gg” and “bb” are hexadecimal digits in the range 00 to FF. The pairs “rr”, “gg” and

“bb” represent the “Red”, “Green” and “Blue” components of the colour respectively.

 forge.contour.opacity: The [Opacity] slider value. Possible values are string representations of

integers ranging from 1 to 100.

Density Surface – forge.density.surface

 forge.densitySurface.point.layer.option.list: The [Layer] drop-down list. Possible

values include the strings which reference the layers visible in that drop-down list.

 densitySurface.point.layer.column.options_xxx: The [Column] drop-down list, where

xxx is the name of the layer selection from the previous drop-down list; e.g. If “Oracle Crimes” is the

name of a valid layer that the user can select from the Layer drop-down list, then a valid name for the

column property is

densitySurface.point.layer.column.options_Oracle Crimes. Possible values include

the column names of the layer in question.

 forge.density.surface.unit.option.list: The [Unit] drop-down list. Possible values

include the strings which reference the units in that drop-down list. In the English version of Map

Intelligence, this list consists of the following values: “kilometer”, “meter”, “mile” and “yard”.

 forge.density.surface.cell.size: The [Cell Size in Units] slider value. Possible values are

string representation of integers ranging from 1 to 1000.

 forge.density.surface.search.radius: The [Search Radius in Cells] slider value. Possible

values are string representations of integers ranging from 0 to 100.

 forge.density.surface.class.count: The [Number of Classes] slider value. Possible values

are string representations of integers ranging from 2 to 9.

 densitySurface_startColour: The [Color Range Start color] hexadecimal value. Possible values

are “#rrggbb” where the pairs “rr”, “gg” and “bb” are hexadecimal digits in the range 00 to FF. The pairs

“rr”, “gg” and “bb” represent the “Red”, “Green” and “Blue” components of the colour respectively.

Map Intelligence Dashboard Client Manual

94

 densitySurface_endColour: The [Color Range End color] hexadecimal value. Possible values are

“#rrggbb” where the pairs “rr”, “gg” and “bb” are hexadecimal digits in the range 00 to FF. The pairs “rr”,

“gg” and “bb” represent the “Red”, “Green” and “Blue” components of the colour respectively.

 forge.density.surface.opacity: The [Opacity] slider value. Possible values are string

representations of integers ranging from 1 to 100.

Line Layer Generator - forge.linelayer

 forge.linelayer.source.layer.list: The [Source Layer] drop-down list. Possible values

include the strings which reference the layers visible in that drop-down list.

 forge.linelayer.source.layer.list_xxx.child: The [Column] drop-down list, where xxx

is the name of the layer selection from the previous drop-down list; e.g. If “Agents” is the name of a valid

layer that the user can select from the Source Layer drop-down list, then a valid name for the column

property is

forge.linelayer.source.layer.list_Agents.child. Possible values include the column

names of the layer in question.

 forge.linelayer.dest.layer.list: The [Destination Layer] drop-down list. Possible values

include the strings which reference the layers visible in that drop-down list.

 forge.linelayer.dest.layer.list_xxx.child: The [Column] drop-down list, where xxx is

the name of the layer selection from the previous drop-down list; e.g. If “House Listings” is the name of a

valid layer that the user can select from the Source Layer drop-down list, then a valid name for the

column property is

forge.linelayer.dest.layer.list_House Listings.child. Possible values include the

column names of the layer in question.

 forge.linelayer.thickness: The [Line Thickness] input field. Possible values are string

representation of integers greater than 0.

 forge.linelayer.visible: The [Visible] checkbox value. Possible values are “true” (for checked)

and “false” (for unchecked).

 forge.linelayer.startColour: The [Color Range Start color] hexadecimal value. Possible values

are “#rrggbb” where the pairs “rr”, “gg” and “bb” are hexadecimal digits in the range 00 to FF. The pairs

Map Intelligence Dashboard Client Manual

95

“rr”, “gg” and “bb” represent the “Red”, “Green” and “Blue” components of the colour respectively.

 forge.linelayer.endColour: The [Color Range End color] hexadecimal value. Possible values are

“#rrggbb” where the pairs “rr”, “gg” and “bb” are hexadecimal digits in the range 00 to FF. The pairs “rr”,

“gg” and “bb” represent the “Red”, “Green” and “Blue” components of the colour respectively.

Point Gradient – forge.gradient

 forge.gradient.point.layer.option.list: The [Layer] drop-down list. Possible values

include the strings which reference the layers visible in that drop-down list.

 gradient.point.layer.column.options_xxx: The [Themes] drop-down list, where xxx is the

name of the layer selection from the previous drop-down list.

 forge.gradient.square.size.option.list: The [Reach] drop-down list. Possible values are

“LOW”, “MEDIUM” and “HIGH”.

 forge.gradient.opacity: The [Opacity] slider value. Possible values are string representations of

integers ranging from 1 to 100.

Voronoi – forge.voronoi

 forge.voronoi.point.layer.option.list: The [Layer] drop-down list. Possible values

include the strings which reference the layers visible in that drop-down list.

 forge.voronoi.opacity: The [Opacity] slider value. Possible values are string representations of

integers ranging from 1 to 100.

Web Services Map Image - forge.webServices.mapImage

 forge.webServices.mapImage.data.source: The Service [Type] drop-down list. Possible

values include: “Default”, “Cadastre”, “Census”, “Relief”, “Satellite”, “Streets”, “Terrain”, “Topo”,

“Traffic”, “Weather”, and “Other”.

Map Intelligence Dashboard Client Manual

96

 forge.webServices.mapImage.data.source_xxx.child: The Data [Source] drop-down

list, where xxx is the name of the Service Type selection from the previous dropdown list; e.g. If

“Satellite” is the name of a valid Service Type that the user can select from the Service Type drop-down

list, then a valid name for this property could be

forge.webServices.mapImage.data.source_Satellite.child.

 forge.webServices.mapImage.opacity: The [Opacity] slider value. Possible values are string

representations of integers ranging from 1 to 100.

Web Services Drive Time - forge.webServices.driveTime

 forge.webServices.driveTime.point.layer.option.list: The [Layer] drop-down list.

Possible values include the strings which reference the layers visible in that dropdown list.

 forge.webServices.driveTime.point.limit: The [Maximum number of points to analyze]

slider value. Possible values are string representations of integers ranging from 1 to 10.

 forge.webServices.driveTime.polygons.per.point: The [Number of polygons / point]

slider value. Possible values are string representations of integers ranging from 1 to 4.

 forge.webServices.driveTime.units.option.list: The [Units] drop-down list. Possible

values include: “Miles”, “Minutes” and “Kilometers”.

 forge.webServices.driveTime.interval: The [Interval] slider value. Possible values are

string representations of integers ranging from 1 to 50.

 forge.webServices.driveTime.inter.polygon.interval: The [Inter-polygon Interval]

slider value. Possible values are string representations of integers ranging from 1 to 15.

 forge.webServices.driveTime.opacity: The [Opacity] slider value. Possible values are string

representations of integers ranging from 1 to 100.

Map Intelligence Dashboard Client Manual

97

Charts On Regions - forge.regionChart

 forge.regionChart.multi.point.layer.option.list: The Region-Relationship [Layer]

drop-down list. Possible values include the strings which reference the layers visible in that drop-down

list.

 regionChart_xxx.point.layer.column.options_yyy: The [Classification column]

dropdown list, where xxx is the name of the Point/Facts Layer of the selected Region-Relationship Layer

from the previous drop-down list and yyy is the name of the column selected from that layer, where

spaces in the names are replaced by underscores; e.g. If “Crimes by Suburb” is the name of a valid

region-relationship layer that the user has selected from the [Layer] drop-down list, and “Crimes” is the

Points/Facts Layer of that region-relationship layer, then the valid name for the corresponding

classification column parameter is

regionChart_Crimes_by_Suburb.point.layer.column.options_Crimes. Possible

values include the column names of the layer in question.

 forge.regionChart.class.count: The [Number of classes] input field. Possible values are string

representations of integers.

 regionChart_xxx.point.layer.aggregation.column.options_yyy: The [Aggregation

column] drop-down list, where xxx is the name of the Point/Facts Layer of the selected Region-

Relationship Layer from the previous drop-down list and yyy is the name of the column selected from

that layer, where spaces in the names are replaced by underscores; e.g. If “Crimes by Suburb” is the

name of a valid regionrelationship layer that the user has selected from the [Layer] drop-down list, and

“Crimes” is the Points/Facts Layer of that region-relationship layer, then a valid name for the aggregation

column parameter is

regionChart_Crimes_by_Suburb.point.layer.aggregation.column.options_Cri

mes. Possible values include the column names of the layer in question.

 forge.regionChart.aggregation.numeric.type.options: The [Aggregation type]

dropdown list. Possible values for the English US variant of Map Intelligence are: “Count”, “Average”,

“Sum”, “Minimum” and “Maximum”.

 forge.regionChart.chart.type.options: The [Type] drop-down list in the [Chart

parameters] section. Possible values for the English US variant of Map Intelligence are: “Bar”, and “Pie”.

 forge.regionChart.chart.count: The [Count] input field in the [Chart parameters] section.

Possible values are string representations of integers.

Map Intelligence Dashboard Client Manual

98

 forge.regionChart.chart.size: The [Size] input field in the [Chart parameters] section.

Possible values are string representations of integers.

 forge.regionChart.opacity: The [Opacity] slider value. Possible values are string

representations of integers ranging from 1 to 100.

