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(ABSTRACT)

With the advent of the Global Position System (GPS), we now have the ability to

determine absolute position anywhere on the globe. Although GPS systems work well in

open environments with no overhead obstructions, they are subject to large unavoidable

errors when the reception from some of the satellites is blocked. This occurs frequently in

urban environments, such as downtown New York City. GPS systems require at least

four satellites visible to maintain a good position ‘fix’. Tall buildings and tunnels often

block several, if not all, of the satellites. Additionally, due to Selective Availability (SA),

where small amounts of error are intentionally introduced, GPS errors can typically range

up to 100 ft or more. This thesis proposes several methods for improving the position

estimation capabilities of a system by incorporating other sensor and data technologies,

including Kalman filtered inertial navigation systems, rule-based and fuzzy-based sensor

fusion techniques, and a unique map-matching algorithm.
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Chapter 1
Introduction

1.1 Motivation

For several years, Global Positioning Satellites have orbited the Earth to provide

absolute positioning on land, on sea, and in the air. Millions of GPS receivers are in use

around the planet, in applications ranging from remote desert research to underwater

cartography to simple recreation. Whatever the application, the main function of the GPS

receiver remains constant: to obtain absolute position measurements anywhere on the

globe. One major hurdle to GPS inherent in its method of operation is blockage of

satellite reception. Tall buildings, bridges, high mountains, and common foliage overhead

can block satellite reception.

An alternative to GPS navigation is an inertial navigation system (INS). INS is the

application of sensors such as gyroscopes and accelerometers to maintain relative

position information. However, inertial navigation has its drawbacks. Over a substantial

amount of time, INS errors tend to accumulate unbounded and result in position estimates

that deviate from the actual position. For these reasons, methods have been devised

which fuse the GPS position measurements and inertial navigation measurements to

provide a best estimate of position at any given time.

The purpose of this thesis is to examine various possible solutions for this system

and to present the methods by which one might implement such a system. Multiple

sensor configurations are presented, along with the issues relating to each. Additionally, a

detailed explanation of the Kalman filtering and rule-based sensor fusion is given. PC-

based software programming for actually implementing the system is discussed in detail,

as well.

1.2 Scope and Structure of Thesis

Chapter 2 provides a survey of current literature related to the topics of inertial

navigation systems and algorithms, GPS systems, and other methods of sensor fusion in

similar applications.
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Chapter 3 covers all of the hardware that was used in this sensor fusion project.

This includes the test vehicle, the data acquisition hardware, and the means by which the

acquisition hardware was interfaced to the vehicle hardware. Additionally, an explanation

of some of the software commands that are specific to the selected hardware is presented.

Chapter 4 provides a comprehensive list of various sensors and sensor

configurations that may be used in a sensor fusion application similar to the one

presented in this thesis. The dynamic equations that govern the system for each basic

configuration are also covered.

Chapter 5 approaches the more advanced subject of filtering the inertial sensor

outputs by means of a Kalman filter. The specific filter for the configuration used in this

project is presented, which may easily be modified for other configurations. Also, the

details about the rule-based sensor fusion process, and the reasoning behind it, is given.

Several methods for sensor fusion parameter optimization are presented, along with a

novel map-matching algorithm.

Chapter 6 covers the implementation of the entire application in software. This

covers details regarding development in both a DOS and Windows 95 programming

environment under C++. This chapter gets into the specifics of programming a real-time

application under DOS, such as interrupt driven communications and timing, as well as

some Windows graphical user interface (GUI) design considerations.

Chapter 7 presents the results of the project, based on test runs in Blacksburg,

Virginia, and New York, New York.

We present conclusions of this project in Chapter 8, along with potential avenues

of continued research.



3

Chapter 2
Literature Survey

Before the main topic of this thesis is presented, we first present the reader with a

brief summary of information that we collected from various sources including books,

conference papers and other theses. Presented first is information relating to systems and

algorithms using INS only. Then, we summarize work relating to GPS/INS sensor fusion,

in particular. Lastly, we present several developed systems that perform GPS/INS fusion.

2.1 Inertial Navigation

Billur Barshan and Hugh F. Durrant-Whyte (1995) utilize a system consisting of

three gyroscopes, a tri-axial accelerometer and two tilt sensors to perform inertial

navigation. They focus on careful and detailed error modeling to obtain a position drift

rate of 1-8 cm/s, depending on the frequency of acceleration changes. This, like any

system requires additional information from some absolute position-sensing mechanism

to overcome long-term errors. However, they show that a low-cost inertial sensing system

can be used to provide valuable orientation and position information particularly for

outdoor mobile robot applications.

A. Svensson and J. Holst (1995) have simulated a variety of filter configurations

for the purpose of submarine navigation based on several inertial sensors. They had the

most success with a complex fourteen state Extended Kalman Filter (EKF), which used

eight states to describe the motion of the submarine and six to describe the measurement

system.

Kirill Mostov (1996) used a hybrid least-mean-squares (LMS)/Kalman filter for

the purpose of maintaining stability in a system where inaccuracies in the model would

otherwise cause instability. This was done by using the Kalman filter to remove noise

from the system and using the LMS to compute the weight functions, which could be

translated into the Kalman gain values in an iterative fashion.
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2.2 GPS/INS Fusion

Allison N. Ramjattan and Paul A. Cross (1995) use only a gyroscope and an odometer

encoder, along with a GPS receiver, to produce a fused output. They have used this

system in the streets on central London, and have demonstrated the improved position

estimate obtained from fusing data from only a few sensor inputs. They evaluated the

effectiveness of their system based on the system output’s deviation from the ‘true’ path,

which was obtained by digitizing the path from an overhead map.

Ren Da and Ching-Fang Lin (1995) use the State Chi-Square Test and the ARTMAP

Neural Network to perform failure diagnosis in a GPS/INS integrated navigation system.

They tested their system by means of computer simulation and demonstrated the

detection of soft-failures by the tests.

2.3 Contribution of This Work

Several different types of systems have been used to generate an enhanced

position estimate based on data from multiple sensors. As is the case with all systems that

use inertial sensors only, those systems that were mentioned in section 2.1 are limited to

provide only relative position and heading information from some arbitrary starting point.

The work of Ramjattan and Cross (1995) is actually very similar to the work that has

been done for this thesis. However, this thesis goes further than to provide information

only about how to fuse inertial and GPS data to produce an enhanced output. This thesis

examines several options for methods of fusing the inertial and GPS data such that other

researchers can use this work as a starting point in their research. In addition, a unique

map-matching algorithm is presented that can be used to further enhance system output in

areas where the roadways are known. Map matching is a technique that has been around

for a long time, but has not been exploited fully in many navigation systems. However,

with today’s portable computers and complete maps on a single compact disc, map

matching can be used more for real-time position estimation purposes.
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Chapter 3
Hardware Description

The hardware chosen for this project consists of several main components. These

are: the test vehicle itself, inertial and dead-reckoning sensors, a data acquisition board, a

GPS receiver, and a laptop computer. All of these components are fairly common and

inexpensive. Each of these hardware sub-systems will be covered in detail. In addition,

some of the software issues specific to the hardware will be discussed.

3.1 Test Vehicle

The test vehicle for our experiments was a 1997 Ford Taurus 4-door sedan. No

special equipment was installed on the vehicle before the research. During the course of

our work, however, several items were added to aid in data collection. We mounted a

small black-and-white charge-coupled device (CCD) camera behind the rear-view mirror

such that it could view the road and surroundings directly ahead, but would not distract

the driver. In addition, we placed a small microphone on the underside of the sun visor

with a switch on the upper-left portion of the dash, so that the driver could record his

voice when desired. The outputs of both of these devices were fed under trim pieces of

the vehicle and into the trunk, where they input into a VHS videocassette recorder. Also,

we added a simple 12-volt DC to 110-volt AC voltage inverter, so that we could operate

the VCR and laptop computer for extended periods of time.

Figure 3.1 – 1997 Ford Taurus test vehicle
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3.2 Dead-Reckoning Sensors

In order to collect odometry data from the vehicle, we wanted to obtain a direct

measurement of distance that the vehicle had traveled. Rather than attaching an additional

encoder somewhere on the drive train, we used data outputs that Ford has already

provided. The method we tried was simply to use the output from the odometer directly.

The output from this connection needed to be conditioned before it was input into the

data acquisition board. We added a simple circuit that railed the voltage from 0 to 5 volts

when it crossed a voltage threshold. This method worked well when the vehicle was

moving sufficiently fast, but generally did not work below speeds of a few miles-per-

hour. This is because of the nature of the technology that the sensor is based upon. The

signal is produced as a magnetic field rotates (at sufficient speed) near a coil of wire,

inducing a current in that wire. Because of the type of sensor used to produce the signal,

it does not work well at low speeds. It was decided that this was inadequate for our

purposes, so we chose another method of odometry collection.

The second method provided better results while also being easier to implement in

the vehicle. We used a signal from the anti-lock brake (ABS) on the rear-left wheel of the

test vehicle. The anti-lock braking system uses a more accurate sensor for detecting

wheel rotation (as compared to the odometer) which outputs a series of digital pulses.

These pulses can be ‘picked off’ a wire that is part of the system and input directly into a

data acquisition pulse counter. In our vehicle, a wire directly under the left rear seat

carries this signal, so it was simply a matter of splicing our leads into the wires already

provided. This is shown in Figure 3.3. This signal was already well suited for input into

Figure 3.2 – Signal conditioning board

+12 Volt

power

input

+5 Volt

regulator

Odometer signal

conditioning circuit
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our data acquisition board, and the output was accurate even for low speeds. Each pulse

from the ABS sensor indicates approximately 1/26th of a meter traveled or 0.03846

meters/pulse. This number can change slightly on a daily basis, due to changes in tire

pressure or road conditions.

Another sensor attached directly to the hardware of the vehicle was a pull-string

potentiometer wrapped around the steering column, located under the dash in front of the

driver. This provided a direct measurement of the angle of the steering wheel, which

corresponds directly to the angle of the vehicle’s front tires. The potentiometer was used

as a simple voltage divider with 5 volts on the input, and the output signal going into the

data acquisition board. We mounted the sensor such that when the steering wheel was

turned all-the-way to the right it output 1.2 volts, and when the wheel was turned all-the-

way to the left it output 4.5 volts. The full scale of 0 to 5 volts was not used because this

would require the potentiometer to be mounted such that it was pulled to each extent of

operation during use. This could potentially wear down the sensor and even break it if it

were over-extended by a small amount repeatedly. The mounted potentiometer is shown

in Figure 3.4.

Figure 3.3 - ABS sensor connection (found under the left rear seat)

ABS sensor
signal
connection
into existing
cables
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3.3 Inertial Sensors

We used two types of inertial sensors on this project: gyroscopes and

accelerometers. Both types have been in use for navigation applications for several years.

Recent advances in gyroscope technology in particular have allowed smaller, cheaper and

more accurate gyroscopes to be offered, making INS solutions more practical.

Two different gyroscopes were mounted on the sensor board initially, for

purposes of evaluating the performance of each. One of them broke shortly into the

project (thereby failing its test) and we will not discuss it further. The gyroscope that we

relied on exclusively was the Murata Gyrostar.

The Gyrostar is a vibratory piezoelectric rate sensor, which refers to the main

internal component of the gyroscope that allows it to determine angular velocity. It

operates on the Coriolis principle that means that a linear motion within a rotational

framework will have some force that is perpendicular to that linear motion (Miyazaki,

1994). This simply means that, in the case of automobile navigation, the gyroscope is

designed to measure the force perpendicular to the vehicle’s forward motion, which is

proportional to angular velocity. The Gyrostar is capable of a measurement range of

roughly ±80 deg/sec and has a linearity 0.5% full scale, which is sufficient for automobile

applications (“Gyrostar,” 1994).

The accelerometer that we used in the project is the Single Chip Accelerometer

with Signal Conditioning. The ADXL05 has an adjustable measurement range from ±1g

Figure 3.4 - Mounted steering potentiometer

Potentiometer

Pull-string

Cable to data
acquisition
hardware

String around
steering column

Steering
column
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to ±5g and an adjustable output scale from 200 mV/g to 1 V/g. The entire sensor is

encased in a single 10-pin TO-100 case, and requires only a small circuit to set the

adjustable range and scale and to filter the output as desired (“+/-1g to +/-5g Single

Chip,” 1996). For our purposes, we wish to reduce high-frequency output (such as that

due to vibration) and use only the lower frequency output (such as that due to inertial

effects of turning and acceleration). This is accomplished by using the manufacturer

recommended DC-coupled connection, which has a frequency response from dc (0 Hz) to

1000Hz and measures +/- 2g full scale. In this application, sensor data is collected at

100Hz, so filtering out frequencies above 1000Hz removes high frequency signal

components which cannot be removed in software. The sensor outputs approximately 2 to

5 mg (thousandths of a gravity) of noise in the frequency range, which must be removed

during sensor filtering.

Two accelerometers were employed on our sensor board: One that measured

longitudinal acceleration, and one that measured lateral acceleration. The accelerometers’

relative orientations are shown in Figure 3.5.

From this data, we can integrate to find relative speed and heading. This is

discussed in more detail in the chapter on system modeling. An example plot of the

inertial sensor outputs for a 10-second time frame is shown in Figure 3.6.

Measures acceleration
in the y direction
(longitudinal)

Measures acceleration
in the x direction
(lateral)

ADXL

05

ADXL

05

Figure 3.5 - Diagram of accelerometer orientations on sensor board
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3.4 Data Acquisition Board

The data acquisition board we used on this project was a Iotech DaqBook 100. It

is a small box that sits outside the PC, and attaches to the PC via a parallel cable. All of

our sensor inputs are connected into the three connectors on the back of the DaqBook –

one analog I/O, one digital I/O, and one pulse/frequency/high-speed digital input. Our

two gyroscopes (even though one was

not operational), two accelerometers

and steering potentiometer all input to

the analog I/O port. The single distance

encoder output (we used either the

odometer input or the ABS input at any

one time) fed into the pulse digital

input. The DaqBook analog inputs canFigure 3.7 – Close-up picture of the DaqBook
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be set to operate in differential or single-ended mode. This means that analog signals can

be measured based on the potential between the single pin’s input and the DaqBook’s

ground (single-ended) or the signals can be measured based on the potential between

adjacent pins (differential). In addition, the board can be set to measure analog inputs as

unipolar or bipolar. In unipolar mode, input voltages from 0 to +10 volts can be applied,

and in bipolar mode, input voltages of up to 5 volts in magnitude in either polarity can be

applied. Each of the analog pins we set to operate in differential, unipolar mode.

When the DaqBook is connected to a standard parallel port, it supports up to 170

Kbytes/sec of bi-directional communication. We are sampling data at 100 Hz in this

project, and each sample is 14 bytes of data, resulting in 11.2 Kbytes/sec of data

transferred. Any commands sent to the board must also be considered, but we can see that

the board can easily handle the data rate we desire. More about the data samples will be

presented in the software chapter of this thesis. (DaqBook, 1994)

The data acquisition board can be used in several different modes, but we

essentially used only two: polled output, and timed output. In DOS based programming,

we are less encumbered by delays introduced by the operating system (OS) on I/O

operations, such as parallel port reads and writes. For this reason, we are able to use

polled output from the DaqBook, which is substantially easier to implement. A 100 Hz

loop is implemented using interrupt based timing in the host computer, and in each loop

we send a request and receive a response with negligible delay. When programming

under Windows 95, which is not truly a real-time OS, we found that we could not use the

simple polled-response method that worked with DOS. After a little work, we found that

the DaqBook could be set to automatically sample data at a specified rate. This rate is

maintained by internal timing circuitry, so our program did not need to initiate each

sample. The program merely ‘grabbed’ the data sample from the parallel port at the

appropriate time. More details about the implementation in the programs are presented in

the chapter on software.
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3.5 GPS Receiver

Perhaps the single most important piece of hardware in this system is the GPS

receiver. The output from the receiver is the only way we have any notion of our absolute

position on the globe. For information regarding some basic GPS fundamentals, refer to

Appendix C.

The GPS receiver used in this project was a Motorola VP Oncore 6-channel

receiver. This version of the Oncore receiver communicates serially via a transistor-

transistor logic (TTL) interface with the host computer at 9600 baud. The receiver has the

capability to perform differential GPS (DGPS) given the appropriate input from a source

such as a Coast Guard DGPS station. We did not use this feature since it required

additional hardware, a Coast Guard beacon receiver, and because differential correction

signals are not available everywhere.

We used the GPS receiver in a very simple manner. The receiver can be set such

that it automatically sends its complete message once every second. It is then the job of

the host computer to detect the message and interpret it correctly. From this data, we

know our current position, time, and status information for the receiver. The receiver is

capable of receiving and processing dozens of user commands, but for our purposes, the

automatic once-per-second output is adequate. For more information about the Motorola

Binary Format messages, refer to Appendix C. When processing the sensor data, we

would like to know whether the GPS data being returned is likely to be ‘good’ or not. A

simply method of determining this is based on the status information returned from the

Figure 3.8 – Motorola VP Oncore GPS Receiver (from Motorola Oncore User’s Guide)
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receiver with each data message. The GPS receiver returns a status byte with the

following information:

Bit 7: Position propagate mode
Bit 6: Poor geometry (DOP > 20)
Bit 5: 3D fix
Bit 4: Altitude hold (2D fix)
Bit 3: Acquiring satellites/position hold
Bit 2: Differential
Bit 1: Insufficient visible satellites (<3)
Bit 0: Bad almanac

A given GPS sample is considered ‘bad’ if any of bits 0, 1, or 6 is set or if either

of bits 4 and 5 is not set. That is, the almanac data (information about the location of the

GPS satellites in space) must be accurate and a sufficient number of satellites must be

visible (3 or more). Also, the receiver must have both a 2D and a 3D fix (location

estimate) to be considered ‘good’. Checking the status byte does not guarantee that the

data returned from the receiver is accurate, but it does quickly eliminate many bad GPS

data points from consideration.

The gyroscopes, accelerometers, DaqBook, and GPS receiver all are mounted

securely on a single piece of aluminum in the trunk of the test vehicle, shown in Figure

3.9.

Figure 3.9 - The entire data collection assembly

Data
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3.6 Host Computer

The computer we used for data collection was a Fujitsu Pentium 133 with 16

megabytes RAM running Windows 95 – a typical laptop computer. During operation, the

only external connections required were to the GPS receiver, which used a serial port,

and to the DaqBook, which used the parallel port. Using a laptop made the data collection

easy. By using long serial and parallel cables from the trunk to the front seat, the operator

could sit in the passenger seat and watch all of the data collection take place in real-time.

This proved very useful in the few occasions when something would happen, such as a

cable coming loose, because we could detect and correct this problem immediately, rather

than waste time on a bad data collection.
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Chapter 4
Modeling and Sensor Fusion Algorithms

In order to produce a good filtering algorithm with which to work, we must start

with accurate dynamical models describing the system. This chapter covers many

alternatives and groups of alternatives, such as various sensor choices, that may be

presented to the designer of a similar navigation system. For each alternative, we will

present the dynamical equations that relate it to the system’s state variables. In addition,

we will discuss the viability of actually implementing the given alternative in a system.

4.1 System Variables

Regardless of which sensor configuration we choose the desired output is the

same. At a minimum, we want the best possible estimation of our current position at all

times. Additionally, we may desire such information as speed, heading and acceleration.

A simple dynamic model of the vehicle is shown in Figure 4.1.

4.2 Sensor Types

At a bare minimum, we desire lateral and longitudinal information about our

vehicle. Thus, we need both lateral sensors and longitudinal sensors. This section reviews

x

y

θ

φ

  l

Figure 4.1 – Simple 2D dynamic model of vehicle
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a variety of dead-reckoning sensor types, and the information that they can provide to a

navigation system.

4.2.1 Distance Encoders

Distance encoders are very useful for automobile navigation because they are

digital in nature. A single rotation of the shaft on which an encoder is mounted produces

a fixed number of pulses, which can easily be counted. By keeping a running count of all

of the encoder pulses, a navigation algorithm can know exactly what total distance has

been traversed. A first derivative results in (roughly) instantaneous speed, and a second

derivative results in (roughly) instantaneous acceleration. However, since we typically

are interested in vehicle position, which is a function of distance from the starting point,

the exact distance output from the encoder is very useful.

A small drawback to using some encoders is the inability to determine direction

from the output. Many encoders, however, have two sensors that output signals 90o out of

phase from each other. These output signals could be used to determine both speed and

direction. These types of encoders are known as quadrature encoders. Quadrature

encoders can be used to determine speed and direction from the two sensor outputs by

examining the relative phase of each of the outputs.

Figure 4.2 – A typical small quadrature encoder
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As was noted in the chapter on hardware, the signal output reliability can affect

the overall acceptability of the encoder as a distance measured. In the case of this project,

the signal running to the odometer was initially used as a distance encoder substitute.

This proved unsuitable because of the unreliability of the signal at low speeds. We then

switched to using the output from the anti-lock braking system, which produces a digital

signal like that of a normal encoder (non-quadrature). We could therefore determine

speed of travel with a high amount of accuracy.

4.2.2 Tachometers

Tachometers differ from encoders in that they provide a direct measure of speed

instead of distance. A tachometer typically outputs a voltage level that is proportional to

speed of the shaft on which it is mounted. In an automobile, this shaft must be located on

the drive side of the transmission (as opposed to the engine side). This is because a shaft

on the drive side of the transmission will always be spinning at a rate proportional to the

speed of the vehicle.

Tachometers are generally cheaper than encoders are, but they also have

drawbacks that are more significant. Because a tachometer outputs a voltage level, the

navigation scheme (and subsequent filtering algorithm) must take into account the

possibility of variations in offset and magnitude due to slight differences in

manufacturing from unit to unit. Additionally, environmental changes can alter the

operating parameters of such a device somewhat. In addition, to get distance from a

tachometer output, the algorithm must integrate the signal over time. This causes the

small errors in the output signal to accumulate.

A

B

A

B

Direction 1: Rising edge of channel

A leads rising edge of channel B

Direction 2: Rising edge of channel

B leads rising edge of channel A

Figure 4.3 – Obtaining direction from quadrature encoder outputs
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4.2.3 Accelerometers

Accelerometers can be used for both speed and heading estimation.

Accelerometers provide a direct measurement of acceleration, or force, in one direction.

An accelerometer typically measures the acceleration of the car due to forces acting on

the car. Ideally, by using only the two accelerometers, one may determine 2-dimensional

position at any given time.

However, several problems arise when trying to do this. Accelerometers usually

measure more than what we actually want to measure. The output signal is composed of a

zero-frequency (DC) component, a low-frequency component and a high-frequency

component. The zero-frequency component of the output signal is due to any offset in the

signal which is intended in the design of the accelerometer signal plus an offset due to

any slight misalignment in mounting or tilt of the vehicle. The high-frequency component

is due to vibrations in the vehicle, which is undesired in the signal. Fortunately, passive

analog filtering can usually take out the high-frequency component, once a cut-off

frequency has been determined. The zero-frequency component must be taken care of in

the navigation algorithm as a center point of the accelerometer. In the ideal case, we want

only the component of the signal that is due to the movement of the vehicle on the road.

Another consideration in using accelerometers is that for determining heading,

one must first know angular velocity. Acceleration normal (perpendicular) to the

direction of motion relates speed and angular velocity. Thus, speed must be known to

determine angular velocity and heading.

There are a couple substantial benefits to using accelerometers, however. First,

accelerometers can be purchased in a single chip package, making them very small and

cheap. Second, accelerometers are capable of measuring distance without any

attachments to the vehicle itself. In the design of a self-contained INS package, with no

external encoder or tachometer attachment, accelerometers are the only choice.

4.2.4 Tilt Sensors

Tilt sensors are used to measure the pitch or roll of a vehicle. Pitch and roll data

may or may not be useful, depending on the intended application. For example, if we are

concerned that the vehicle may traverse severe inclines while driving, then we may need
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to use tilt information to compensate for accelerometer errors. Suppose we have one of

the following exaggerated cases:

In Figure 4.4a, the vehicle is shown with a severe side tilt, due to a tilted road

surface. In this case, an onboard accelerometer will read a significant side-to-side

acceleration, indicating that the vehicle is continuously turning in one direction.

Similarly, in Figure 4.4b, the vehicle is shown with a forward tilt, due to a sloped road

surface. In such a situation, an accelerometer would read a continuous acceleration as if

the vehicle were continually decelerating.

In either case, the accelerometer readings are misleading about the vehicle’s

motion because of an inclined road surface. An additional sensor, such as a tilt sensor can

be used to indicate if a given force is due to acceleration of the vehicle in a particular

direction, or if it is due to a tilt in the vehicle body.

Figure 4.5 – A typical liquid-filled tilt sensor

Figure 4.4a - Vehicle with side tilt Figure 4.4b - Vehicle with front tilt
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4.2.5 Gyroscopes

Gyroscopes have advanced significantly in the last several years, and are a

favorite for inertial navigation systems. Gyroscopes, like accelerometers, require no

signal attachments directly to the vehicle. Unlike accelerometers, however, gyroscopes

always output a signal proportional to angular velocity, independent of the speed of the

vehicle. In the case of using an accelerometer, speed was needed to determine angular

velocity. This meant that any error in the speed measurement would be magnified in the

overall position estimate. This problem does not occur when using gyroscopes.

Some problems are apparent with gyroscopes, like other INS devices. Changes in

temperature or humidity can cause the operating parameters of a gyroscope to change

slightly, which will introduce heading and position errors over time. This can be

corrected somewhat by use of adaptive parameter estimation, which will be covered in

the chapter on advanced algorithm development.

4.2.6 Steering Position

Steering position information is useful because it provides us with a direct

measurement of a physical condition of the vehicle. We assume that a measurement of

steering shaft position is directly proportional to the front tire angle of the vehicle. This,

in turn, provides a way to calculate angular velocity given the speed of the vehicle. As

with accelerometers, because the angular velocity calculation depends on vehicle speed,

errors in the speed measurement are magnified in the final position estimate.

There are several other drawbacks to using a steering shaft measurement, despite

it initially seeming to be a good alternative. First, like a distance encoder or tachometer, a

steering measurement device, such as a potentiometer, must be mounted to the shaft of

the steering wheel. This mounting process is generally not trivial and must be calibrated

and adjusted for each particular vehicle. Additionally, in using a measurement of the

front wheel angle to calculate angular velocity, we must know the length of the vehicle.

Using a steering shaft measurement requires substantial calibration for the vehicle on

which it is used. However, decent results can be obtained from a steering measurement

when it is properly used.
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4.3 Sensor Configurations

For this project, several sensor configurations were considered when designing

the filtering algorithm. Four different configurations are presented here, chosen mainly

because they each include a subset of the sensors with which we began the project. Any

of the configurations may be modified easily to include additional sensors.

Note that every configuration has a GPS receiver, because it is our only means of

absolute positioning. The only difference, then, is amongst the variety of dead-reckoning

sensors that were chosen for the particular configuration. In this section, we are focusing

on the configurations of sensors, rather than the sensors themselves. Thus, for modeling

purposes, we will assume that every sensor has accurate, noiseless signal outputs.

4.3.1 Configuration 1

GPS Receiver, Steering Position, and Odometer

In this configuration, the odometer signal is a series of pulses, where each pulse

represents some fixed distance covered. Thus, the odometer provides us with a direct

measurement of distance covered. Either an absolute encoder or a potentiometer can

measure the steering position. In this case, the position of the front wheels is of interest,

so we assume a bicycle model where the front and rear wheels are each considered a

single wheel at the midpoint of the two axles. Let the state of the vehicle be represented

by ( x , y , θ , φ , v ). x  and y  give the location of the rear axle midpoint, θ  gives the

angle of the vehicle body with the horizontal, φ  gives the steering angle with respect to

the vehicle’s body, and v  is the forward velocity of the rear wheels of the vehicle. (See

Figure 4.1)

GPS Receiver Steering Position Odometer

Sensor Fusion System

Figure 4.6 – Configuration 1 block diagram
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The dynamic equations for this vehicle model are:
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where α  is the odometer measurement (in ticks) and METERS_PER_TICK is a

conversion factor which changes ticks to meters. The value of METERS_PER_TICK

depends on the number of ticks per wheel revolution and the circumference of the wheel,

which may change, but we will assume to be a constant. We must use the discrete form of

these equations to implement them in a processor. The discrete form of the above

equations is:
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Here, T is the sample time (0.01 seconds, in our case) and k is the discrete time

step index.
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4.3.2 Configuration 2

GPS Receiver, Gyroscope, and Odometer

Our second configuration involved using a gyroscope for heading information

instead of using a steering measurement. This simplifies the model somewhat, because

we can essentially model the vehicle as a point. This is because a gyroscope provides a

direct measurement of angular velocity (θ& ), so we can ignore the front wheels and the

length of the vehicle. The dynamic equations for this model are:
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where 1U  is the gyroscope measurement in degrees/second of angular change. The

discrete form of the dynamic equations is:
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Note that the value of θ  at time k+1 is dependent upon the current measurement

and the previous value of θ . This means that θ  must be initialized at some point to a

know value.

GPS Receiver Gyroscope Odometer

Sensor Fusion System

Figure 4.7 – Configuration 2 block diagram
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4.3.3 Configuration 3

GPS Receiver, Gyroscope, and Accelerometer

The third configuration considered involves the use of an accelerometer for

acceleration measurement, which can be used to determine relative speed and distance,

and a gyroscope again for heading information. The dynamic equations for this

configuration are shown here:
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where 1U  is again the gyroscope measurement in degrees/second and 2U  is the

accelerometer reading in meters/second2. The discrete form of these equations is shown

here:
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GPS Receiver Gyroscope Accelerometer

Sensor Fusion System

Figure 4.8 – Configuration 3 block diagram
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As in configuration 3, this configuration has θ  dependent on the measurement

and the previous value of θ . The value of v  is calculated in a similar manner in this case.

Thus, both θ  and v  must be initialized to known values at some point.

4.3.4 Configuration 4

GPS Receiver, Gyroscope, and Two Orthogonal Accelerometers

This configuration is the only one in which redundant sensor data is present. The

gyroscope and one of the accelerometers both provide heading information in the model.

The dynamic equations that relate the measurements to the system variables are shown

here:
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Where 1U  is the gyroscope measurement in degrees/second, 2U  is the first

accelerometer reading in meters/second2, and 3U  is the second accelerometer reading in

g. The discrete form of these equations is shown here:

GPS Receiver Gyroscope 2 Accelerometers

Sensor Fusion System

Figure 4.9 – Configuration 4 block diagram
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4.3.5 Configuration Choice

In our project, based on the quality of the available sensors, we chose to use the

second configuration. In the test we performed, we found that the best performance was

obtained by using only the gyroscope and the odometer. Depending on the application or

available sensors, a different configuration can be chosen.
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Chapter 5
Algorithm Extensions

When designing the overall fusion algorithm, we must take into consideration the

multi-rate sensor collection, and design our algorithm appropriately. That is, we need to

fuse inertial and GPS data, when we are sampling our inertial sensors at 100 Hz and

receiving GPS data at 1 Hz. Here, the term ‘fusion’ is refers generally to the process of

combining two sets of data to produce a better output. Sensor fusion can be accomplished

with a filter, or it can be done by weighting each set of data based on a set of rules or

fuzzy logic. We considered a couple different methods for fusing these sets of data. For

example, we could extrapolate GPS data at 100 Hz based on previous GPS data trends

and perform sensor fusion at 100 Hz. Conversely, we could perform sensor fusion of GPS

and inertial data at 1 Hz (whenever GPS data is received) and rely on inertial data alone

to carry us between GPS samples. It is the second method we chose to implement,

primarily because we felt the simpler approach was better and fusion at 1 Hz would be

adequate for our purposes.

This chapter will cover the general approach of our algorithm, as well as a

description of our Kalman filter for inertial reckoning. Then we describe two methods of

determining the sensor fusion weights – a simple rule-based method, and a more robust

fuzzy logic-based method. Then a simple method for map-matching is described which

may be implemented if accurate latitude/longitude road data is available for a region.

5.1 General Approach

There are two basic types of methods for integration of GPS and INS data in a

system. These are tightly coupled and loosely coupled. Internal to the GPS receiver, a set

of pseudorange measurements is obtained for position estimation. A pseudorange is a

distance estimate from the GPS receiver to one satellite before being error corrected. The

straightforward (and most optimal) approach for integrating GPS with an INS is to

directly utilize GPS pseudorange measurements from the GPS receiver to correct INS

error growth with a specially designed Kalman filter that models the INS errors and the
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GPS measurement geometry. This is a tightly coupled integration technique, a block

diagram of which is shown in Figure 5.1. With a loosely coupled integration, the GPS

pseudorange measurements are preprocessed by a Kalman filter internal to the GPS

receiver, which produces "GPS derived" geographic position and velocity as the receiver

outputs. (Weiss, 1996) The block diagram for a loosely coupled integration is shown in

Figure 5.2. Because the Motorola Oncore GPS receiver has a built in Kalman filter and

outputs the "GPS derived" position and velocity outputs, we use the loosely coupled

configuration in our experiments.

A simple block diagram of our implemented algorithm is shown in Figure 5.3.

Inertial data
collection at
100 Hz

GPS data
collection at 1
Hz

Sensor fusion at
1 Hz

System output

Inertial sensor
input

GPS sensor
input

GPS
Receiver

INS

INS/GPS
Kalman
Filter

Pseudorange and

Deltarange

Inertial

Reference Data

System Nav

Output

Figure 5.1 – Tightly coupled GPS/INS System

GPS
Receiver
Front End

INS/GPS
Fusion

Inertial

Reference Data

System Nav

Output

INS

INS/GPS
Kalman
Filter

GPS Receiver

Pseudorange and

Deltarange

INS
Processing
(filtering)

Figure 5.2 – Loosely coupled GPS/INS System

Figure 5.3 – Basic sensor fusion algorithm flow
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We perform inertial navigation filtering at 100 Hz, then fuse the inertial data with

the GPS data at 1 Hz. That is, our Kalman filtered state vector is not directly dependent

on the GPS receiver output. Instead, we use some sort of fusion algorithm to combine the

output from the Kalman filtered inertial data and the GPS data. Inertial/GPS sensor fusion

amounts to dynamically determining weights with which we combine the position

determined by the INS data and the position output from the GPS receiver. Thus, we

would like to determine the best values for POSΨ  and HEADΨ  for the weightings of GPS

position and heading, respectively. In our case, we do not determine a value to fuse GPS

and INS velocities, because we assume that the INS velocity is the best measurement

available to the system.

After determining the weights, we fuse the inertial and GPS data using the

following equations:

INSHEADGPSHEADest

INSPOSGPSPOSest

INSPOSGPSPOSest

HeadingHeadingHeading

LongLongLong

LatLatLat

)1(

)1(

)1(

Ψ−+Ψ=
Ψ−+Ψ=

Ψ−+Ψ=

where estLat , estLong , and estHeading  are the estimated latitude, longitude, and heading,

respectively. Note that these weights will be 1 when initializing the system and they with

be 0 when GPS data is bad. When the GPS data is good, the weights will lie somewhere

in the range [0,1].

5.2 Geodetic to Ground Conversion

In order to relate the geodetic

coordinates (latitude and longitude) to

local ground coordinates (X and Y in

meters), a conversion equation is

required. The reason that this relation is

needed is so that the data obtained from

the GPS receiver, which is in geodetic

coordinates (latitude and longitude), can

be processed along with data obtained
Figure 5.4 – Cross-section view of elliptical Earth
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from the odometer and inertial sensors, which is most easily converted into relative X and

Y meters. Given a particular location on the surface of the Earth, we would like to know

how many meters of north-south or east-west travel correspond to how many degrees of

latitude or longitude, respectively. Note that, assuming the Earth to be a perfect ellipsoid

with a fixed equatorial radius ae and eccentricity e, these conversion rates are dependent

only upon the current latitude measurement φ .

The conversion rates that were used in our software and algorithms were taken

from calculations performed by Gene Felis, Electronics Engineer, NUWC Div Keyport,

in 1976. He based his calculations on the elliptical world model with geodetic latitude as

presented on pages 26-29 of Methods of Orbit Determination by P. R. Escobal (1965).

The formula derivations are rather complex and have been included in Appendix B of this

thesis. The end results of the derivations are shown here:

The constant C1, which is the number of meters north to south corresponding to

the change of 1 degree in latitude, is calculated as follows:
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The constant C2, which is the number of meters east corresponding to a change of

1 degree of longitude, is calculated as:
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ae is the equatorial radius of the earth ≈ 6,378,150 meters

e is the eccentricity of the elliptical cross section of the earth ≈ 0.08181333

φ  is the geodetic latitude of the observer (the vehicle)

To summarize, assume that the vehicle is on the surface of the Earth at latitude φ.

Then, we have the following two conversion rates to convert meters to milliseconds of

latitude and longitude (and vice versa):
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5.3 Kalman filter for INS

We use a Kalman filter in this project only to determine the (relative) position

output from the inertial sensors. The internal details of the Kalman filter are not the focus

of this thesis. For Kalman filtering background, we refer the reader to An Introduction to

Kalman Filtering with Applications (Miller and Leskiw, 1987). We are primarily

interested in the parameters that affect the performance of the filter. Sensor inputs are

typically converted into meaningful values such as meters, degrees/sec, etc. The

parameters that are used for these conversions are subject to errors and require correction

for effective filtering operation.

A Kalman filter can be used to produce the optimal state estimate of a system

given a set of measurements and relationships between the measurements and the state

vector. It can be applied when the relationship between the state vector and the

measurement vector can be written as:
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where X(k) is the state vector at time step k and Y(k) is the measurement vector at time

step k. A(k) is the state transfer matrix and C is the observation matrix. w and v are zero

mean, white gaussian noise variables.

In our project, we use an eight state Kalman filter. The two values in the

measurement vector are velocity from the ABS wheel encoder and angular velocity from

a gyroscope. The state vector, X, and the measurement vector, Y, are shown here:
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where x and y are the longitude and latitude position estimates, respectively. θ is the

current vehicle heading estimate and ∆O is the current vehicle velocity estimate. O stands

for odometer, so ∆O represents a change in odometer value (distance), which is velocity.

We are using two measurement values – velocity based on a wheel encoder output

(∆O) and angular velocity based on a gyroscope output (θ). The encoder tick/meters-per-

second conversion factor is a parameter which may be affected by tire pressure, sensor

error, etc. The gyroscope output/angular velocity conversion requires both a center point

(the sensor output value which indicates zero angular velocity) and a conversion ratio (a

number which converts millivolts of sensor output to degrees/sec). These values vary as

the physical properties of the gyroscope change due to environmental changes. The

methods by which we make these adjustments will be covered in section 5.6.

Each time that new inertial data is received in the system (at approximately

100Hz) the Kalman filter is run to produce an optimal state estimate given the

measurement information. During each iteration, updating the filter is accomplished in

four main steps. These are:

- Prediction of covariance matrix of states

( ) ( ) ( ) ( ) QkAkPkAkP T +−−−= 1111

- Calculation of Kalman gain matrix
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- Update of the state estimation
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- Update of covariance matrix of states

( ) ( ) ( ) ( )kCPkKkPkP 11 −=

where P1(k) is the predicted error covariance matrix at time k, K(k) is the Kalman gain

matrix at time k, and P(k) is the updated error covariance matrix at time k. R is the

measurement noise matrix, which contains the expected covariance of the measurement

data. Q is the state noise matrix, which contains the expected covariance of the state

matrix values. Essentially, R is a measure of confidence in the measurements and Q is a

measure of confidence in the state estimate. That is, if an extremely precise instrument
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were being used to quantify a particular measurement variable, the corresponding value

in the measurement noise matrix, R, would be very low. Conversely, if a very noisy

instrument were being used, the corresponding value in R would be very high.

In our particular application of the Kalman filter, we used the following matrices

for the state transfer matrix, A(k), and the observation matrix, C:

( )
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Based on our collected data, we were able to determine appropriate values for the

measurement noise matrix, R, and the state noise matrix, Q. The values in R were

obtained by finding the variance in the measurement data that was collected. Likewise,

the values in Q were obtained by finding the variance in the state variable data that was

collected and processed. We have assumed that the state variables and measurement

variables are uncorrelated, which is why there are only diagonal terms in R and Q.









=

00251.00

0618.2
R
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Before the recursive Kalman filter can operate, we first needed to initialize it

appropriately. This consisted of assigning an initial state vector X(0) and an initial state

covariance matrix P(0). The covariance matrix is initialized to be the same as the state

noise matrix, Q. The initial state vector must be initialized with some data values that

represent absolute measurements, such as position and heading. These data could be

known and placed into the state vector in advance (if the vehicle’s starting point is know,

for example) or the data could be obtained during run time and placed in the matrix

before the filter begins operation. In our case, we chose to obtain the data during run time

because we did not know our exact starting point. This initial information (initial latitude,

longitude and heading) was obtained from the GPS received once it had gotten an initial

position fix.

5.4 Rule-based fusion of INS and GPS

Rule-based sensor fusion refers to the integration of Kalman filtered INS data and

the raw GPS position and heading information based on a set of rules, thresholds, and

weights. These rules are designed to compensate for errors in the GPS data, such as drift

and multi-path, while still using the GPS data in an effective manner to update our

position estimate.

For example, we found that when the vehicle is stopped, the GPS receiver tends to

drift around unpredictably and widely vary the heading value, while remaining close to

the current position. If we were doing simple weighting of GPS and INS data, our
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position estimate would follow the GPS output around and end up with a completely

wrong heading value. Thus we added a rule:

If we are nearly stopped (based on GPS or INS velocity) we completely ignore the

GPS heading value, that is, we set HEADΨ  equal to zero.

Another simple rule is this:

If the GPS data is ‘bad’ (too far from current position, too few satellites, bad fix,

etc.) then we set POSΨ  and HEADΨ  equal to 0, effectively running on inertial navigation

only.

However, we must allow for the unlikely event that we have made an error such

that we think the GPS data is bad when it is actually good. Thus:

If GPS has had a good satellite fix for a long time, but we have assumed it to be

bad, we must have made a mistake, so we set POSΨ  and HEADΨ  equal to 1.

The phrase ‘a long time’ refers to an amount of time that must be determined by

experimentation with the system. Obviously, these rules may vary depending on the

internal operations of a particular GPS receiver, and parameters must be altered

appropriately.

A brief summary of the rules which we found useful, and why they were included,

is shown below. The phrases GPS Good and GPS Bad indicate only whether the GPS

data should be considered good or bad based on the status information from the receiver

itself. This depends on number of satellites in view, signal strength, etc.

If GPS is good and we have not initialized our position estimate, then initialize

the estimated position and heading equal to the GPS position and heading.

Note that this might result in an initial position that is not very accurate due to

GPS problems. We assume that the filtering algorithm will correct this in a short amount

of time.

Otherwise, if GPS is good, the GPS position is close to the current position

estimate, and the GPS velocity is over a specified minimum, then we do a weighted sum

of the current estimate and the GPS position and heading.

In general, we want this to be the rule that is always executed, indicating that the

current estimate and the GPS positions agree. The GPS velocity is required to have a



36

minimum value because the position output from the GPS receiver tends to drift

backwards when the vehicle is not moving.

If GPS has been good for an amount of time, but the GPS position has been too

far from our estimated position to fuse the data, we extend the position threshold a small

amount and check again.

This rule is to cover the unlikely event that our estimated position has been

thrown off for some reason. Although it is not very likely, it is possible for our estimate

to get out of position just far enough so that the estimate and the GPS positions are

separated by a distance too great to consider valid. In this case, we detect that the GPS

data has been ‘good’ for a significant amount of time, so we assume that our estimate is

off and converge our estimate to the GPS position.

If GPS has been good for a very long time, but the GPS position has drifted much

too far from the estimate position to fuse in either of the above cases, we reinitialize the

estimate position to the GPS position.

In this case, we assume that some serious (but temporary) failure has occurred in

the GPS receiver or the sensors such to cause our estimate to diverge so far from the true

position that we can not fuse data. Thus, we decide to simply reinitialize our estimate

with the GPS data and start the fusion process over again. After adding the previous rules

to our algorithm, this rule never was executed in our sample data. It is possible, however,

that this event would occur so this last-resort rule should be in place.

Note that all of the rules use terms such as ‘very long time’, ‘close’, and ‘too far’.

These values must be determined by experimentation and tweaking of parameters until

the system obtains satisfactory results. In a rule-based system, such as the one described

above, problems arise relating to the use of hard limits in place of terms such as ‘close’

and ‘too far’. If the data just barely crosses from one set, such as ‘close’, into another set,

such as ‘far’, the behavior of the fusion process can suddenly jump. Another alternative,

which replaces hard thresholds with ‘fuzzy’ thresholds, is the use of fuzzy logic for the

fusion process. We describe a fuzzy logic system for sensor fusion in the following

section.
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5.5 Fuzzy fusion of INS and GPS

As mentioned in the previous section, problems can arise from using ‘hard’ (or

‘crisp’) thresholds to define boundaries between data sets such as ‘close’ and ‘far’.

Instead, the use of fuzzy logic specifically allows for the ambiguity of these data set

boundaries in its operation. Fuzzy logic allows a system to respond with a mixture of

behaviors depending on the membership of the input data in various fuzzy sets. Also,

rather than using a very complex set of nested if-then-else statements, we can perform

sensor fusion in a more structured and easily understood manner.

Consider the case involving the distance between the current position estimate

and the GPS position, as described in the rules listed in section 5.3. Using rule based

fusion, when the distance is ‘small’, we assume the GPS position is accurate and we fuse

the data appropriately. However, when the distance is ‘large’ we assume the GPS

receiver is suffering from some significant amount of error and we ignore it completely.

In general this works, but there may be cases when valid GPS data is considered to be far

from the current estimate position and is ignored.

If we use fuzzy logic, however, this will not happen. Suppose we use a simple

membership function as shown here:

Threshold
Value

Sensor data errors
cause the system to
fail to fuse GPS and
INS data

GPS and inertial
data continue to
diverge from the
point of error

Distance

Time

Distance

1

0

Close Far

Figure 5.6 – Fuzzy membership functions for distance
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Then, the system will make decisions based on the membership of a crisp data

value in a fuzzy set. In this case, the fuzzy sets are defined to be Close and Far. Suppose

that we have a distance value, d1. The membership of d1 in the sets Close and Far can be

determined as shown in Figure 5.7. (Jang et al, 1997; Rao, 1995)

Now suppose we also have fuzzy sets Fast and Slow, which are sets based on the

speed value from the GPS receiver. Then we now have a set of fuzzy rules, such as:

If Distance is Close and Speed is Fast then POSΨ  is Large

This states that if the GPS distance is close to our estimated position, and the GPS

receiver measures a significant vehicle speed, then we assume that the GPS data is ‘good’

and set the GPS position weight to a large value. Likewise, we may have the following

fuzzy rule:

If Distance is Far and Speed is Slow then POSΨ  is Small

This statement is essentially the converse of the previous rule. That is, if the GPS

distance is far from our estimate position and the GPS receiver measures a low vehicle

speed, then we assume the GPS data is ‘bad’ and set the GPS position weight to a small

value. Several more variables must be added to make the system robust, however. For

example, a variable counting the length of time that POSΨ  has been small is needed to

determine if our estimate is in error.

Once all of the variables have been fuzzified, they must then be processed and

defuzzified. A common method of processing fuzzy data is simply to use the MIN

function. That is, the combination (fuzzy AND) of two or more membership values is the

Distance

1

0

Close Far

d1

Membership of d1 to fuzzy

set Far: ( ) 65.01 ≈dFARµ

Membership of d1 to fuzzy set

Close: ( ) 35.01 ≈dCLOSEµ

Figure 5.7 – ‘Fuzzification’ of a crisp data value
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minimum of the values. Consider the above example where ( ) 65.01 =dFARµ  and

( ) 35.01 =dCLOSEµ . In addition, suppose that the fuzzification of the current vehicle speed

s1 resulted in ( ) 55.01 =sFASTµ  and ( ) 50.01 =sSLOWµ .  Consider the previously mentioned

rule:

 If Distance is Close and Speed is Fast then POSΨ  is Large.

When processing this rule, we consider the membership values of each of the

conditionals to determine the output. In this case, where ( ) 35.01 =dCLOSEµ  and

( ) 55.01 =sFASTµ the output for the rule is the minimum of the two membership functions,

resulting in a value of 0.35. The value 0.35 represents this rule’s effect on making POSΨ

to be ‘Large’. Similarly, consider the rule:

If Distance is Far and Speed is Slow then POSΨ  is Small

Because ( ) 65.01 =dFARµ  and ( ) 50.01 =sSLOWµ , the output for this rule is 0.50. In

this case, the value of 0.50 represents this rule’s effect on making POSΨ  to be ‘Small’.

One can easily see that given these two rules and these membership values, the fuzzy

output is going to be more ‘Small’ than it is ‘Large’.

Once the outputs from all such rules have been computed, they must be combined

and then defuzzified. One method that is commonly used for defuzzification is the

centroid method. Consider the simple membership function for POSΨ  shown below:

If there were multiple rules that produced a value for SMALLµ  these would need to

be combined at this point using a fuzzy OR operation. In this method of fuzzy processing

and defuzzification, the fuzzy OR operation is implemented simply by finding the

maximum of all membership values being combined. In this example, however, there is

only one rule contributing a SMALLµ  and only one rule contributing a LARGEµ .

1

1

0
0

POSψ

( ) 50.02 =RuleSMALLµ

( ) 35.01 =RuleLARGEµ

Small Large

Figure 5.8 – Output membership function for position weighting value
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Combining the value for SMALLµ  and the value for LARGEµ  to produce an output

membership function for 
POSψ  is done by truncating each of the membership sets at the

corresponding membership value, and merging the sets into a single fuzzy output set.

This set is the fuzzy output for the variable 
POSψ  based on all of the fuzzy rules in the

system. For example, the above membership function for 
POSψ , based the given values

for SMALLµ  and LARGEµ  would become:

After the fuzzy output of the system has been determined, the only remaining task

is to ‘defuzzify’ the output to produce a crisp number that can be used as a weight to fuse

the inertial and GPS data values. For our project, we chose to perform defuzzification

using the centroid method, which is a method that is very commonly used in fizzy logic

applications. The centroid method involved finding the centroid of the shaded area in

Figure 5.9. The crisp output of the system is actually the x-axis value corresponding to

the centroid of the shaded area.

In our implementation of fuzzy logic for sensor fusion, we chose to keep the set of

variables small and the rules simple. The intention was to explore the possibility of

enhancing fusion performance using fuzzy logic techniques. The fuzzy logic system we

created used three variables as inputs and produced one output. The three inputs were:

1

1

0
0

POSψ

Small Large

Figure 5.9 – Fuzzy output of the system

1

1

0
0

POSψ

Small Large

Figure 5.10 – Centroid representing crisp output of the system

Centroi
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Distance – The distance from the current position estimate to the GPS position

Velocity – The value of the vehicle velocity returned by the GPS receiver

NumNoGood – The number of fusion iterations in which the GPS data has been

determined to be ‘bad’ because it was too far from the current position estimate. (This

variable is used for error recovery in the event that our position estimate becomes

seriously skewed from the actual vehicle position)

The single output of the fuzzy fusion was GPSWeight, the weight of the GPS data

for fusion, which ranges from 0 to 1. (The weighting of the inertial data is 1-GPSWeight).

In our approach to creating fuzzy rules, we chose to simply make fuzzy versions of the

rules that we had determined using rule-based fusion. All of the rules used in our

application are shown here:

if (Distance is SMALL) and (Velocity is FAST) then (GPSWeight is LARGE)

if (Distance is MED) and (Velocity is FAST) then (GPSWeight is MED)

if (Distance is SMALL) and (Velocity is MED) then (GPSWeight is MED)

if (Distance is MED) and (Velocity is MED) then (GPSWeight is SMALL)

if (Distance is SMALL)and (Velocity is SLOW) then (GPSWeight is SMALL)

if (Distance is MED) and (Velocity is SLOW) then (GPSWeight is VERY SMALL)

if (Distance is LARGE) and (NumNoGood is SMALL) then (GPSWeight is VERY SMALL)

if (Distance is LARGE) and (NumNoGood is MED) then (GPSWeight is VERY SMALL)

if (Distance is LARGE) and (NumNoGood is LARGE) then (GPSWeight is VERY LARGE)

5.6 Fusion Parameter Optimization

For an effective and reliable filter implementation, the filter parameters are

equally important as the governing system of equations. Without good filter and fusion

parameters, the system will never be able to operate as expected. Fusion parameters

include values such as those that define the threshold values for the rule-based fusion

implementation and those that define the fuzzy boundaries in the fuzzy fusion

implementation. Appropriate or inappropriate choice of decision parameters will cause

the system to perform better or worse, as measured by some relevant objective or fitness

function. (Chambers, 1995) In the case of our system, the fitness function is a

measurement of how closely the fused system output matches the true vehicle position.

However, since it is nearly impossible to precisely measure the true vehicle position
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during data collection, the fitness function is actually a measurement of how closely the

fused system output is to the road segments on which the vehicle traveled.

There are several choices for possible fitness functions measuring position

estimate deviation from the actual roadway positions. Some of these are:

• Largest perpendicular deviation from road segment throughout entire run

• Average perpendicular deviation from road segments for entire run

• Mean-Square perpendicular deviation from road segments for entire run

We chose the last method, the mean-square deviation from road segments for the

entire run. This fitness function takes into account all of the data points for the entire run

and places more weight on larger error values. That is, one set of parameters may

produce a larger average position error, but it may still be consider ‘more fit’ than another

set of parameters that has more large singular position errors.

Here we examine a few methods by which these parameters may be updated to

produce a more optimal system behavior. These methods include manual optimization,

gradient descent methods, and genetic algorithms.

5.6.1 Manual Optimization

Manual parameter optimization refers to the process of updating the fusion

parameters ‘by hand’. This is the easiest method of optimization to implement (because

there is actually no implementation) but it is also the most tedious method to use for the

update process. This method consists of trying a given set of parameters, evaluating the

results of that set, and then using some method to update a particular parameter.

Typically, the update method involves some sort of intuition about the nature of the

system and the type of error evident in the output. This method is often used to arrive at a

crude starting point for another more precise method, such as those listed below.

5.6.2 Iterative Hill Climbing

The iterative hill-climbing optimization method is an algorithmic implementation

of what manual optimization often involves. Manual optimization has the benefit of

human intuition in choosing parameter values, but the iterative hill-climbing algorithm

has the benefit of being easily implemented on a computer. Thus, the iterative hill-
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climbing method can be run automatically for an extended period of time, producing a

result with relative ease.

In general, the hill-climbing algorithm starts with an initial guess about the

parameter values of the optimum solution. Then, one of the parameters is changed by a

suitably chosen (or guessed) increment. If the evaluation function gets better, we keep

moving in the same direction by the same increment. If the function gets worse, we undo

the last increment and start changing one of the other parameters. This process continues

through all of the coordinates until all the coordinates have been tested. We then halve

the increment amount, reverse its sign, and start again with the newest set of parameters.

The entire process continues until the increments have been halved enough times that the

parameters have been determined with the desired accuracy. (Horst et al., 1995) For

example, supposing we had only two parameter values to optimize, we might end of with

the sequence of parameter values indicated in Figure 5.11 until a suitable goal is

achieved.

5.6.3 Genetic Algorithms

Note that in both the manual and the hill-climbing optimization techniques, the

parameter optimization is easily subject to getting stuck in local maxima (or local minima

when minimizing the fitness function). This is a problem for many optimization

problems, and genetic algorithms have often been used to generate more optimal

solutions than those that may be obtained by standard hill-climbing or gradient-descent

methods.

Figure 5.11 – Iterative hill climbing optimization method
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Genetic algorithms apply the rules of reproduction, gene crossover, and mutation

to ‘pseudo-organisms’ so those organisms can pass beneficial and survival-enhancing

traits to new generations. In our case, the pseudo-organisms would represent sets of

sensor fusion parameters. Just as a real organism’s characteristics are encoded in DNA,

the pseudo-organisms characteristics are encoded in an electronic genotype, which

mimics the DNA of natural life. The electronic genotype is merely a string of bits that

represents a given sequence of sensor fusion parameters.

Just as reproduction, genetic crossover, and mutation alter a natural DNA

sequence, similar operations can be used to alter the electronic genotypes. Additionally,

the production of new genotypes and the elimination of unfit genotypes can be used to

modify the set of genotypes.

Reproduction is the process of producing one ‘child’ genotype as a result of

merging the characteristics of two ‘parent’ genotypes:

Parameter A Parameter B Parameter C Parameter D

Parameter A Parameter B Parameter C Parameter D

Parameter 1A Parameter 2B Parameter 2C Parameter 1D

Parent Genotype 1

Parent Genotype 2

Child Genotype

Figure 5.12 – Electronic genotype representation of parameters

Figure 5.13 – Reproduction of electronic genotypes

Parameter A Parameter B Parameter C Parameter D

Entire

genotype

set

Genotype 1

Genotype 2

Genotype 3

Parameter A Parameter B Parameter C Parameter D

Parameter A Parameter B Parameter C Parameter D
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Genetic crossover is accomplished by crossing the ‘genes’ of two genotypes,

replacing the original two with the altered versions:

Mutation simply involves replacing a genotype with a slightly altered version of

itself. This process induces small variations in a random manner for the purpose of

finding a better parameter set.

By using these genetic algorithm techniques, a more ideal parameter set can be

obtained, at the expense of the additional time required to test numerous parameter sets

that are very ‘unfit’. The genetic algorithm optimization method is not subject to getting

stuck in local minima or maxima, however, it is not guaranteed to ever converge to a

good solution. (Chambers, 1995)

Parameter 1A Parameter 1B Parameter 1C Parameter 1DGenotype 1

Parameter 2A Parameter 2B Parameter 2C Parameter 2DGenotype 2

Parameter 1A Parameter 1B Parameter 2C Parameter 2DGenotype 1

Parameter 2A Parameter 2B Parameter 1C Parameter 1DGenotype 2

Before:

After:

Parameter 1A Parameter 1B Parameter 1C Parameter 1DGenotype 1

Parameter 1A Parameter 1’B Parameter 2C Parameter 2DGenotype 1

Before:

After:

Figure 5.14 – Genetic crossover of electronic genotypes

Figure 5.15 – Genetic mutation of electronic genotypes
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5.7 Map Matching

Although the fuzzy fusion of GPS and INS data results in very accurate position

estimates in most environments, we are often interested in the performance of the system

in an urban environment such as downtown New York City. In this type of environment,

the GPS signal is often blocked or significant errors are introduced such that even the

most robust of filtering algorithms will output an inaccurate position. In addition, the

need for accurate position estimates is even greater in a city environment due to the close

proximity of adjacent roads. Thus, we introduce a method of increasing the ability of the

system by using prior knowledge of a given area.

Map matching is simply a method of using stored information about a region to

improve the ability of a position estimation system to handle errors. Essentially, a known

map reduces the possible space that a vehicle could occupy, assuming that the vehicle is

actually on or near a road. Additionally, by knowing the exact locations of intersections,

we can determine if a turn detected by GPS or INS sensors is ‘legal’. Simply stated, we

use knowledge of a region’s roads to confine the position and motion of our vehicle.

There are only a few situations that need to be handled by our algorithm. These

situations are: startup/initialization, position between intersections (Figure 5.16), position

near intersection and no turn detected (Figure 5.17), position near intersection and turn

detected (Figure 5.18), and error/re-initialization. The two cases where an initialization is

required (which should be very rare) are the only cases where a search to find the nearest

road is required. In these cases, our algorithm needs to determine what our starting point

is. This generally involves an exhaustive search of every road in the database, in order to

find the road of minimum perpendicular distance to our current position. There are some

shortcuts that can be used, but this is still a relatively time consuming process. In general,

we want our map-matching algorithm to operate without doing any time consuming

processing.

Performing map matching after a valid starting position is known does not need to

involve a search of all possible roads. We only have to handle three situations if a valid

position is already known – the vehicle could be on a road between intersections, or near

an intersection when no turn is detected, or near an intersection when a turn is detected.
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Distance

Heading

Turn
Detected

Distance

Heading

Figure 5.16 – Vehicle heading versus distance between intersections

Figure 5.17 – Vehicle heading versus distance when traveling straight through an intersection

Figure 5.18 – Vehicle heading versus distance when turning in an intersection

Heading

Distance
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To allow for efficient traversal of the roadways, the map must be stored in a

particular format in memory. The format developed for this project uses a linked mesh of

nodes in memory. Each node represents a specific intersection and contains latitude and

longitude information about the intersection. Additionally, each node points to every

adjacent node to which there is a connecting roadway. Each node can be represented in

computer memory by the following structure:

typedef struct _Intersection
{

int NumConnections; // number of adjacent intersections
_Intersection **Connections; // pointers to adjacent intersections
int LatitudeMsec, LongitudeMsec; // lat/long of this intersection

} Intersection;

Where LatitudeMsec and LongitudeMsec represent the position of the

intersection in milliseconds (1 msec longitude equals approximately 1.15 inches at the

equator). Connections points to a list of pointers to adjacent nodes, of length

NumConnections. Upon initialization of the map structure, Connections can be

treated simply as an array of pointers to other nodes.

For general navigation, after the initial position is known, maintaining a position

estimate is simply a matter of traversing the linked mesh of nodes. For example, suppose

node A is connected to nodes B, C, and D (shown in Figure 5.19 below). Then if we

estimate our current position to be near node A, then we know that we only need to

consider movement towards nodes B, C, and D.

A

D
B

C

Figure 5.19 – Mesh of nodes (intersections) map representation
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Given that the algorithm needs to consider only the adjacent intersections, the

problem is reduced to that of choosing the correct one. Suppose that we are traveling

from intersection C through intersection A and on to intersection B. The vehicle’s

position estimate can be maintained from intersection C to intersection A using any

combination of the previously mentioned techniques, utilizing inertial and dead-

reckoning sensors, and GPS data where available.

As the vehicle moves near intersection A, the algorithm begins to consider which

of the adjacent nodes will be visited next. The vehicle’s position estimate from

intersection C to intersection A is performed by inertial, dead-reckoning and GPS sensors.

These sensors may be prone to drift errors, such that there is an ambiguous region, of

radius rar, near intersection A. In this ambiguous region, the map-matching algorithm is

not able to determine on which road segment the vehicle is currently moving. The value

for rar is determined by the expected drift in the position estimate between the most

distant adjacent nodes in the given map. For example, if the expected drift in position

estimate is 4% of the distance traveled, and the most distant adjacent nodes in the map

are .1 miles apart, than the ambiguous region should have a radius slightly larger than 4%

of .1 miles, or .004 miles (roughly 21 feet).

Figure 5.20 – Vehicle traveling through ambiguous region surrounding an intersection

A

D
B

C

Ambiguous
region,
radius rar
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When the vehicle moves into the imaginary circle surrounding an intersection, the

algorithm does not know on which road segment the vehicle is moving, but rather it is

able to estimate a probability that the vehicle is on any given road segment. The

probability that the vehicle is on a given road segment can be determined based on how

close the vehicle is to the road segment, relative to how close it is to every other road

segment. If the current position of the vehicle is requested, then the algorithm would

return the position of the vehicle projected onto the road segment with the highest

probability. However, a position estimate for the vehicle is always maintained

independent of the road segments while in the ambiguous region. Upon exiting the

region, the algorithm would then consider the vehicle to be on the segment with the

highest probability at that time instant.

Suppose the vehicle traveled along the path indicated by the heavy dashed line in

Figure 5.21. The position estimate of the vehicle as determined without using map

matching is indicated by the dotted line. Notice that near intersection A the position

estimate drifts towards intersection D, while the vehicle actually moves on to intersection

B. This drift may be due to GPS blockage, sensor errors, etc. In this case, the map-

matched position estimate would be correctly projected along the line segment from C to

A. Near intersection A, the position estimate would briefly snap to the road segment

joining intersections A and D. However, the algorithm would correct this mistake as the

vehicle moves away from node A, and the position estimate would then correctly snap to

the road segment connecting intesections A and B.

A

D
B

C Position estimate
independent of
map-matching

Actual vehicle
motion path

Figure 5.21 – Error reduction using ambiguous region in map-matching algorithm
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Chapter 6
Software Design

This chapter presents the software development for the sensor fusion project.

Without proceeding through all of the intermediate problems and corrections that

occurred throughout the development cycle, we will demonstrate how the data was

collected and processed and why the code was written the way it was. First, we will

present the overall structure and data flow of the software. Then, we will cover both

DOS-based and Windows-based programming, with the various considerations for each

type of programming.

6.1 Software Structure and Data Flow

The general data flow in the software should closely resemble the flow in the

filtering algorithm. Therefore, if we are filtering at both 100 Hz and 1 Hz, our software

should reflect this in its design. The core of the filtering algorithm flow is shown here:

We desire some more functionality in the software than simple collecting and

processing on-line. For example, we desire the ability to dump all of the collected data to

the PC’s hard drive for later analysis. Similarly, we desire the ability to read the collected

data from the hard drive and run our program just as if the collection were happening in

real-time. In addition, we want several methods of viewing the output from the software,

such as real-time viewing of the raw GPS data, as well as the filtered position data for

comparison. These additions complicate our software design, as shown in Figure 6.1.

Inertial data
collection at
100 Hz

GPS data
collection at 1
Hz

Sensor fusion at
1 Hz

System output

Inertial sensor
input

GPS sensor
input

Figure 6.1 – Basic block diagram of sensor fusion algorithm
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Although great effort was spent in making both the DOS and Windows programs

capable of all tasks, each operating system is more suited for either real-time data

collection or post-collection analysis. DOS does not use the graphical user interface

(GUI) that Windows uses, and it does not directly support multi-tasking, so system

resources are used on one application exclusively. In addition, DOS gives the

programmer easier access to low-level functionality of the system, such as

communications ports and direct VGA screen output. This makes DOS much more suited

to real-time applications, because we can use the system in a much ‘leaner’ manner by

telling the system exactly what to do and when to do it. Conversely, Windows provides

high-level abstractions of the system, providing the programmer with many useful

functions at the cost of a large a amount of overhead. In addition, Windows ‘protects’

direct access to low-level system devices, such as communications ports, making them

more difficult and time-consuming to work with. For these reasons, Windows is more

suited for post-collection analysis and visualization of the data. Either system can do both

collection and analysis, but DOS is better at real-time collection, and Windows is better

at graphical visualization. Thus, this is how we primarily used the software – we

collected data with the DOS software, and did post-collection analysis with the Windows

software.

6.2 DOS Software Development

For those who have never had the good fortune to do some old-fashioned low-

level DOS programming, this section may prove quite interesting. We wish to present the

methods by which a DOS program can be made to collect, process, and display sensor

Inertial data
collection at
100 Hz

GPS data
collection at 1
Hz

Sensor fusion at
1 Hz

OutputInertial sensor
input

GPS sensor
input

Hard
Drive

Hard
Drive

Figure 6.2 – Block diagram of algorithm with alternate input and output locations
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data in exactly the manner we desire. We need to make special allowances for a few parts

of our program. We wish to collect sensor data at precisely 100 Hz and to collect GPS

data at precisely 1 Hz.

After some thought, we realize that the GPS data should not be ‘collected’ at 1

Hz, but instead we want to ‘listen’ at the serial communications port (com port) for the

GPS data. This is because the GPS receiver is sending data to the PC whenever it wants

to, essentially making it an asynchronous process to our program. For this reason, we

cannot have our program wait on the com port, because we never know how long we will

be waiting. Instead, we would like to ignore the com port, and only service it when new

data arrives. Thus, we make use of interrupts. Even if we ignore the com port completely,

we are faced with one serious problem. How do we make sure that the main

collection/processing loop of the program takes place at exactly 100 Hz? Again,

interrupts come to the rescue. The following section covers the implementation of an

interrupt driven program in DOS. All programming was done using Borland C++ version

4.5. However, most of the code presented here can be used with other 16-bit compilers

with little or no modification.

6.2.1 Programmable Interval Timer

This section covers details regarding the implementation of a very precise method

of timing the main loop of our DOS-based program. We explain some nitty-gritty details

here, not to be read by the faint-of-heart. Note: the following discussion is based on

information that is several years old. The actual chip-level implementation may be

different in modern PCs, but they still function in accordance with this discussion.

Every PC has, on its motherboard, an Intel 8253 Programmable Interval Timer

(PIT). The PIT chip has three channels, each of which is responsible for a different task.

Channel 0 is responsible for updating the system clock. It is usually programmed to

generate about 18.2 ‘ticks’ a second. Interrupt 8, which is serviced by the PC, is

generated for every tick. Typically, the operating system services the interrupt in order to

maintain the current time-of-day estimate. Channel 1 controls DRAM memory

refreshing. DRAM memory requires periodic refreshing to prevent information loss, for

which this channel is responsible. Channel 2 is connected to the PC speaker and is
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typically used to generate a square wave so a continuous tone is heard. (Brey, 1987;

Roden, 1992; Mazidi and Mazidi, 1995)

The channel of interest for us is channel 0, the channel used to update the system

timer. As mentioned above, channel 0 is typically set to tick at roughly 18.2 Hz – much

slower than our desired 100 Hz. Therefore, we must reprogram the PIT chip to generate

ticks at 100 Hz. The following four statements are all that are required to set the PIT chip

frequency:

counter=(long)PIT_FREQ/frequency; // calculate new counter value
outp(0x43,0x34); // send command to set new value to the PIT
outp(0x40,counter%256); // send low byte of new counter value
outp(0x40,counter/256); // send high byte of new counter value

counter is the value which is loaded into the PIT chip and serves as a divisor of the

PIT frequency, which is 1234DD hex, or 1193181 decimal. We desire a frequency of

100 Hz, so counter is 11931 decimal, or 2E9B hex. (The function outp(portid,

value) simply outputs the byte value to the hardware port portid)

Yet another problem arises when we do this. If we reprogram the PIT chip to

generate interrupts at 100 Hz and then make our own interrupt service routine (ISR) to

handle the interrupts, we will prevent the system timer from being updated. This is

resolved by calling the system timer interrupt manually, at roughly 18.2 Hz. The

following code segment shows our entire timer ISR. Note that we do not do any data

collection, screen writes, or file I/O in the ISR. We only increment a number, set a flag,

and call the system timer routine, if necessary. This is because interrupt service routines

should be kept short and simple whenever possible to avoid problems.

void __interrupt __far Handler(void){
hsec++; /* increment global 100th second count */
new_sense=1;   /* 100th second elapsed, set global flag */
clock_ticks+=counter;
if(clock_ticks>=0x10000L){ /* roughly 1/18.2 sec has elapsed */

clock_ticks-=0x10000L;
(*BIOSTimerHandler)(); /* call the system timer handler */

}
else outp(0x20,0x20); /* clear interrupt and continue */

}

The keywords __interrupt and __far tell the compiler explicitly how to handle

the function. The keyword __interrupt tells the compiler that this function is meant to

be called as an ISR, because the compiler must add special assembly calls to properly
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return from an ISR. The keyword __far tells the compiler that this function may be

called from outside of the current code segment. These keywords are specific to Borland

C++ version 4.5, and may need to be changed for other compilers.

Following are the code segments that initialize and clean up the system timer ISR,

along with the global declaration for the variable BIOSTimerHandler, which is a pointer

to hold the address of the system timer ISR. SetTimer is called at the beginning of the

program to setup the PIT chip and new timer ISR jump vector, and CleanUpTimer is

called to reset the PIT chip and old timer ISR jump vector. A jump vector refers to a

place in memory that holds the address of an ISR. Every time any interrupt is generated,

the system looks at a predefined place in memory to find the address of the ISR, or jump

vector.

#define TIMERINTR 0x08 /* timer interrupt jump vector location */
#define PIT_FREQ 0x1234DDL /* frequency of PIT chip */

void __interrupt(__far *BIOSTimerHandler)(void);  /* old timer ISR pointer */

void SetTimer(void interrupt(__far *TimerHandler)(void), int frequency){
 clock_ticks=0; /* initialize clock counter */
 counter=(long)PIT_FREQ/frequency; /* determine PIT divisor */
 BIOSTimerHandler=getvect(TIMERINTR); /* get address of old timer handler */
 setvect(TIMERINTR,TimerHandler); /* set 100 Hz timer handler jump vector */
 outp(0x43,0x34); /* set PIT chip frequency */
 outp(0x40,counter%256); /* output low byte of counter value */
 outp(0x40,counter/256); /* output high byte of counter value */
}

void CleanUpTimer(void){
 outp(0x43,0x34); /* reset PIT chip frequency */
 /* outputting 0x0000 to the PIT chip sets the maximum counter value of 0x10000 */
 outp(0x40,0x00); /* send low byte of counter value */
 outp(0x40,0x00); /* send high byte of counter value */
 setvect(TIMERINTR,BIOSTimerHandler); /* set old timer handler jump vector */
}

The following table contains a list of many of the important system interrupts that

can be called, as listed in Programmer’s Problem Solver (Jourdain, 1992).
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Vector Function Vector Function
00h Divide by zero error 14h Com port driver
01h Processor single step 15h Network & miscellaneous services
02h Nonmaskable interrupt 16h Keyboard buffer access
03h Processor break point 17h Printer access
04h Processor overflow 18h ROM BASIC
05h Print screen 19h System restart
06h Unused 1Ah Timer & real-time clock access
07h Unused 1Bh Ctrl-Break handler
08h Timer (time-of-day count) 1Ch User defined timer tick routine
09h Keyboard 1Dh Video parameter table
0Ah Reserved 1Eh Disk parameter table
0Bh COM2 1Fh Graphics character table
0Ch COM1 20h Program terminate
0Dh Hard disk drive controller 21h DOS functions
0Eh Diskette drive controller 22h Terminate vector
0Fh Printer controller 23h Ctrl-C vector
10h Video driver 24h Critical-error vector
11h Equipment configuration check 25h Absolute disk sector read
12h Memory size check 26h Absolute disk sector write
13h Disk I/O (PC/XT) 27h Terminate and stay resident

6.2.2 Com Port Interrupt Programming

Activating the ISR for com port programming is quite similar to activating the

ISR for the system timer. The functions SetCom1 and CleanUpCom1 are analogous to

SetTimer and CleanUpTimer, described in the section above. These functions are

shown here:

#define COM1INTR 0x0C /* com port ISR jump vector number */
#define GPS_PORT_DATA 0x3F8 /* port where data arrives */
#define GPS_PORT_STATUS 0x3FD /* line status register */
#define GPS_PORT_INTR 0x3F9 /* interrupt enable register */
#define GPS_PORT_CONT 0x3FC /* modem control register */

void SetCom1(void interrupt(__far *ComHandler)(void)){
  BIOSCom1Handler=getvect(COM1INTR); /* get old com ISR handler */
  setvect(COM1INTR,ComHandler); /* set new com ISR handler */
  gps_port_intr_set=inportb(GPS_PORT_INTR); /* get initial port settings */
  outportb(GPS_PORT_CONT,11); /* assert DTR and RTS signals */
  outportb(GPS_PORT_INTR,1); /* set to interrupt on data received */
  inportb(GPS_PORT_DATA); /* clear any pending data on com port */
  outp(0x21,inportb(0x21)&0xEF);
}

void CleanUpCom1(void){
  outportb(GPS_PORT_INTR,gps_port_intr_set); /* return initial port settings */
  setvect(COM1INTR,BIOSCom1Handler); /* set old com ISR handler */
}
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Note that SetCom1 does more than just set the jump vector for the ISR. It also

must do some setup specifically for the com port. Most importantly, it sets the com port

to generate an interrupt (which is then handled by our ISR) whenever a data byte has

arrived on the port. Likewise, the ISR for the com port must do more than set a flag. At

any given time, our program is unaware of where we are in the message from the GPS

receiver. For this reason, the interrupt handler must be able to synchronize itself with the

GPS message.

Synchronization is accomplished by finding a known sequence of characters in

the message, then orienting the rest of the message by this sequence. We implement this

by means of input states. Initially, we are in state 0 waiting for the first character in the

sequence, which is a @ character. Once we get the character, we advance to state 1, where

we again wait for a @ character. Then we wait for a B in the same way. If the sequence

fails to match the expected @@B at any point, we return to state 0. After the start sequence

has been detected, we assume that we are synchronized with the GPS receiver and collect

the remainder of the fixed-length message. Once the entire message has been collected,

we set a flag indicating that the main program should interpret the message. The state

diagram for the com input is shown in Figure 6.3.

Note that the sequence detection and message gathering must be done in the com

port ISR, instead of simply setting a flag each time a character is received and having the

main program handle it. This is because our main program is running at 100 Hz due to

the timer interrupt, while we receive data bytes at nearly 10 times that rate. However, the

com port input is in bursts of 68 characters at 1 Hz. This means that our program has time

1 2 3 4

(c==’@’) i=1

(c!=’@’) i=0

(c!=’@’)

i=0
(c==’@’) i=2 (c==’B’) i=3

(c!=’B’) i=0

(i < 68)

i++

(i == 68) set ‘done’ flag

i=0

Figure 6.3 – Serial com state diagram for GPS data input
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to run at least one 100 Hz loop and interpret the received message before the next

message is begun.

Despite this long discussion of the ISR, the actual implementation is quite simple.

The com port ISR code is shown here:

void __interrupt __far Com1Handler(void){
  gps_char=inportb(GPS_PORT_DATA); /* retrieve data from com port */
  if(!new_gps){
    switch(gps_report_idx){ /* depending on what state we’re in... */
    case 0:
    case 1: /* waiting for message beginning (@@) */
      if(gps_char=='@'){
        gps_report[gps_report_idx]='@';
        gps_report_idx++;
      }
      break;
    case 2: /* waiting for ‘B’ character */
      if(gps_char!='B') gps_report_idx=0;
      else{
        gps_report[gps_report_idx]='B';
        gps_report_idx++;
      }
      break;
    default: /* waiting for remainder of message */
      gps_report[gps_report_idx]=gps_char;
      gps_report_idx++;
      break;
    }
    if(gps_report_idx==68){ /* if message complete... */
      gps_report_idx=0; /* reset message index for next message */
      new_gps=1; /* set flag to indicate complete message */
    }
  }
  outp(0x20,0x20); /* clear interrupt */
}

6.2.3 VGA Output

In the interest of keeping the software as simple and fast as possible, while still

providing some graphical feedback, we used the video mode known as Mode 13. Many

older DOS based video games use Mode 13 because it is very simple and easy to

implement on any PC. We implemented a very low-level pixel plot routine, and from it

built routines to plot lines, boxes, and text. This section will cover only the basics of

Mode 13 operation.

Mode 13 is a 320x200 resolution graphics video mode which every graphics card

supports. Video memory for this mode is represented as a single contiguous segment of

memory starting at location A0000 hex. Each pixel is a single byte in the array, so the

entire screen is 64000 (320x200) bytes in size. Colors are produced by maintaining a

palette of 256 color values. The palette is a series of 256 three-byte triplets defining the
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red, green, and blue components for each entry. Thus, the mode is capable of representing

16.8 million (2563) different colors, but only 256 at a time. (Mazidi and Mazidi, 1995)

Initializing the video mode to Mode 13 is very simple. We need only to put the

value 13 hex into the ax CPU register and generate the BIOS interrupt 10 hex. This is

shown in the function set_vga:

void set_vga(void){
asm{

pusha // store the A register so we don’t mess it up
mov ax,0x0013 // load 0x13 into the A register (VGA mode)
int 0x10 // call the BIOS interrupt to set mode 0x13
popa // restore the A register

}
}

Resetting the mode to the text mode, which we are used to, is just as simple. We

just put 03 hex into the ax register and generate the same interrupt. This is shown in the

function set_text:

void set_text(void){
asm{

pusha // store the A register so we don’t mess it up
mov ax,0x0003 // load 0x03 into the A register (text mode)
int 0x10 // call the BIOS interrupt to set mode 0x03
popa // restore the A register

}
}

After the mode has been initialized, plotting a pixel is as simple as writing the

color byte to the appropriate position in memory. The video memory array starts at the

upper-left corner of the screen, runs across the screen line-by-line, and ends at the lower-

right corner of the screen. (LaMothe et al., 1994)

So we orient our coordinate system such that the x-axis starts on the left and

points right, while our y-axis starts at the top and points down. Thus, if we want to plot a

point at the position (x,y), we simply write to the array at offset [y*320 + x]. The

Figure 6.4 – VGA screen memory orientation

Increasing X index

Increasing Y

index

……
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routine blit_bit plots a pixel of value color to the screen at position (x,y). A

pointer to the screen memory is passed in vscreen, which is always A0000 hex. A

common way to calculate the offset into the array is to use bit-shifts, rather than a

multiplication. Note that y*320 is equal to y*256+y*64, which may also be written as

y<<8+y<<6. The rationale for this is that two bit-shifts and an addition are faster than a

multiplication. The code for blit_bit is shown here:

/* draw a single colored pixel into the video memory at location vscreen */
void blit_bit(int x, int y, unsigned int color, unsigned char far *vscreen)
{

vscreen[(y<<8)+(y<<6)+x]=color; /* set pixel color value in memory */
}

Based on this simple function for setting a pixel value in video memory, we can

easily make functions that efficiently draw horizontal or vertical lines into video memory.

/* draw a colored horizontal line into the video memory location vscreen */
void h_line(int x1,int x2,int y,unsigned int color,unsigned char far *vscreen){

_fmemset((char*)(vscreen+((y<<8)+(y<<6))+x1),color,x2-x1+1);
}

/* draw a colored vertical line into the video memory location vscreen */
void v_line(int y1,int y2,int x,unsigned int color,unsigned char far *vscreen){

unsigned int line_offset;
int index;
line_offset=((y1<<8)+(y1<<6))+x; /* pixel location in memory */
for(index=0;index<=(y2-y1);index++){ /* for each row in the line */

vscreen[line_offset]=color; /* set pixel value in memory */
line_offset+=320; /* increment to next line */

}
}

Drawing lines with arbitrary slopes in an efficient manner is a little more

complicated. As with the bit_blit function, we would like our line-drawing function to

make no multiplies or divides, for efficiency purposes. To accomplish this, we use a line-

drawing technique known as Bresenham’s Algorithm (Abrash, 1997).

/* draw a colored line from point p1 to p2 into video memory location vscreen */
void line(int x1,int y1,int x2,int y2,

unsigned int color,unsigned char far *vscreen){
 int i,d1x,d1y,d2x,d2y,u,s,v,m,n;
 u=x2-x1; /* overall ‘run’ of the line */
 v=y2-y1; /* overall ‘rise’ of the line */
 d1x=sgn(u); /* line top-to-bottom or bottom-to-top */
 d1y=sgn(v); /* line left-to-right or right-to-left */
 d2x=sgn(u); /* line top-to-bottom or bottom-to-top */
 d2y=0;
 m=abs(u);
 n=abs(v);
 if(m<=n){ /* if |slope| < 1 */
  d2x=0;
  d2y=sgn(v);
  m=abs(v);
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  n=abs(u);
 }
 s=m/2;
 for(i=0;i<(m+1);i++){
  /* plot single pixel on the screen (only if within screen bounds) */
  if(y1>=0 && y1<=199 && x1>=0 && x1 <= 319) vscreen[(y1<<8)+(y1<<6)+x1]=color;
  s += n;
  /* increment to next pixel location */
  if(s>=m){

s -= m;
x1 += d1x;
y1 += d1y;

  }
  else{

x1 += d2x;
y1 += d2y;

  }
 }
}

6.2.4 Data Visualization

By building several functions based on the simple blit_bit function, we are

able to produce a somewhat crude, but useful, graphical interface for our program. We

output some status information, such as BIOS time, running time, and file name, as well

as the sensor outputs and much of the GPS message in graphical form. If we properly

define a viewing window in latitude/longitude milliseconds, we can view the raw GPS

message position output in real-time. We can see the number of satellites visible, the

signal strengths, the GPS position, etc. This allows us to be immediately aware of an

error, such as loss of satellite fix, so that we can try to find the source of the problem. A

screen shot of the data acquisition program, Maplog, is shown below in Figure 6.5. An

overlay of the raw collected GPS data onto a map of Blacksburg, VA is shown in Figure

6.6.
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Figure 6.5 – Maplog data acquisition program showing plot of GPS data

Figure 6.6 – Collected raw GPS data overlaid onto map of Blacksburg, VA
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6.3 Windows Software Development

After we developed the DOS based program, we desired a better way to do post-

processing and visualization of the data. We chose the Windows 95 platform because of

the native graphical user interface (GUI) and multi-threading capabilities. Also, by using

a programming application such as Microsoft Visual C++, creating an application’s

structure and interface is relatively simple. In this chapter, we will cover some of the

basics of Windows 95 (Win95) programming, with particular emphasis on multi-

threading and utilizing the GUI for data visualization. In addition, the multimedia timer

and serial communications, which apply to a data-collection system, will be covered in

detail. All programming was done with Microsoft Visual C++ 5.0 (MSVC) and utilizes

the Microsoft Foundation Class (MFC), so any examples shown may be specific to this

programming environment.

6.3.1 Multi-Threading

An important difference between DOS-based and Win95-based programming is

the native support of multi-threading under Win95. Multi-threading is the ability of the

operating system to run two pieces of code simultaneously. In most PC systems, the

central processing unit (CPU) is not capable of running two pieces of code at exactly the

same time. Instead, the operating system performs time slicing, where CPU time is

divided up and each section of code (sometimes called a thread or process, depending on

the context) is given a portion of the CPU’s time. Thus, each thread thinks it has the

whole machine to itself, when it is really sharing the CPU time with several other threads

or processes. There are many details of multi-threading that occur on the operating

system level, such as virtual address spaces and register swapping, that are beyond the

scope of this thesis and therefore will not be discussed.

Multi-threading not only allows other applications to run on a system at the same

time our application is running, but it also allows us to use multiple threads within a

single application. In Win95 programming, it is quite common to use a single user-

interface thread and a worker thread. The main purpose of this is to allow the worker

thread to function even while the user-interface thread is busy. (Bennett et al, 1997) For

example, whenever a window is ‘dragged’ across the screen, the thread that controls that
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window ‘blocks’ until the window is released. Of course, the thread does not halt

execution; it is instead busily executing the code responsible for dragging the window.

However, this means that the thread is not able to do anything else while the window is

being moved. In many applications, such as a simple word processor, this is not a

problem; the program only does anything in response to a user action anyway. If we are

doing real-time I/O or processing, however, we do not want our processing thread to halt

when the user does something. Hence, we separate the tasks into the user-interface

portion, and the data collecting and processing portions. Thus, when the user manipulates

the user-interface, the processing thread can continue as if it had complete control of the

CPU.

6.3.2 Multimedia Timer and Real-time I/O

There are two methods of generating timed function calls in Win95. One method

involves using a simple message handler provided by the MFC. The CWnd class provides

a function called OnTimer(), which can be used by the programmer to generate

function calls at fixed intervals. Many MFC classes inherit the CWnd class, including

windows, dialog boxes, buttons and many more. This makes it very easy and convenient

to make use of this timing capability. However, after working with this timing method for

quite a while, we found that it when set to run at 1 Hz, it actually runs slightly slower

than 1 Hz. It runs even slower as the desired frequency is increased. Since we wanted to

run at 100 Hz, this problem was unacceptable. Attempting to run at 100 Hz resulted in

running at a mere 17 Hz! Although this timer is simple to implement, we turned to

something a little more satisfactory – the multimedia timer.

The multimedia timer is not as simple to use as the CWnd timer is, but it provides

higher accuracy at much higher speeds. The multimedia timer uses a separate thread to

generate timed function calls in the application. The handling of the thread is done

internal to the multimedia function calls, but the programmer must properly set-up and

shut-down the timer, using the multimedia functions timeSetEvent() and

timeKillEvent(), respectively. Also, the multimedia library, mmsystem.lib,

must be linked into the application and the header file, mmsystem.h, included in the

source code. Despite the additional trouble, the multimedia timer can generate function
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calls at a steady 100 Hz, so we were able to capture data at the desired sampling rate. (For

more information about the multimedia timer functions, see ‘timeSetEvent’ in the MSVC

help files)

6.3.3 Serial Communications

For one used to serial communications in a DOS environment, serial

communications under Windows 95 is a very tricky thing. The designers of Windows 95

have managed to abstract serial I/O to be a form of file I/O, where the serial port is a sort

of file. A very simple explanation of the process is as follows: When properly set up,

Windows 95 maintains input and output serial buffers. From the application

programmer’s point-of-view, writing to the serial port is easy. As long as we do not

overrun the output buffer, we can send any amount of data to the port (abstracted as a

file-write process) at any point in the program. Serial input, however, occurs

asynchronously to the program. That is, data is received at unknown times and at

unknown rates.

In Win95, unlike DOS, the program does not need to be alerted every time a byte

is received on the serial port. Low level handlers in the operating system fill the input

buffers with a limited amount of data automatically. Our program is then alerted at some

point, and we read some or all of the data from the input buffer (abstracted as a file read).

Because an unknown amount of data is arriving and our program may have to wait an

indeterminate amount of time for a read or write operation, we make use of a mode of I/O

known as overlapped I/O. In this mode, operations that take a long time will return with a

specific error code indicating that the operation is incomplete. If our program wants to

read data from the com port, we use overlapped I/O, rather than waiting for that amount

of data to arrive at the port. This allows the program to continue executing while an I/O

operation is completing.

Implementing overlapped I/O is very complex, and the details of implementation

are beyond the scope of this thesis. In order to get overlapped I/O working well, we

ended up converting some of Microsoft’s example code to suit our purpose. It would

have been very difficult otherwise. If you are trying to figure out overlapped I/O for
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Windows 95/NT, we suggest referring to the Microsoft examples or our code in the

appendix to this thesis.

6.3.4 File I/O

File I/O under Win95 using the MFC is very similar to old-fashioned C-style

library functions such as fread and fwrite. Using the CFile class from the MFC

provides the member functions Read and Write for performing binary file reads and

writes, almost exactly like fread and fwrite. The problem for us occurred when we

tried to take data collected from our DOS program and read it into our Win95 program.

The problem has to do the packing alignment for our data structures. Packing alignment

refers to the alignment of structure data members in memory. Under the DOS

programming environment, compilers typically pack data members on the 1-byte (one-

byte) boundary. Under a 32-bit OS, such as Win95 or UNIX, compilers typically pack

data members on the 4-byte boundary. For example, note the following structure:

struct mystructure
{

char a;
long b;

};

Using a typical DOS compiler, this structure would occupy five bytes of memory

– 1 byte for the character and 4 for the long integer. Using a Win95 compiler, however,

this structure would occupy eight bytes – 4 for the character and 4 for the long integer.

The character itself is only one of the four memory bytes, but the compiler decided to

position the 32-bit long integer evenly on a 4-byte chunk of memory.

Usually, a programmer does not notice this difference when porting code from a

16-bit to a 32-bit platform. In this case however, a problem was introduced because of the

cross-use of data files written on one platform and read on the other. When we wrote the

data structures to disk, we would call a command such as:

fwrite(&mydata, sizeof(mystructure), 1, myfile);

where mydata is of type mystructure and myfile is a file stream pointer. Then we

would like to read the data in the Win95 program using a function call like:

myfile.Read(&mydata, sizeof(mystructure));
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where myfile is an instantiation of the class CFile. Since the sizeof() operator returns

the number of actual bytes of memory consumed by the structure, we would write 5

bytes, and read 8 bytes. In addition, the alignment within the structure would be off, and

the data would be garbage.

The solution to all of this turned out to be quite simple. Using a preprocessor

directive called #pragma pack, we are able to force MSVC to pack the structures to the

1-byte boundary. The usage is as follows:

#pragma pack(push, identifier, 1)
typedef struct _mystructure
{

char a;
int b;

} mystructure;
#pragma pack(pop, identifier)

where identifier is any unique identifier so that the push and pop statements can be

matched. This causes the compiler to pack only the mystructure structure to the 1-byte

boundary, allowing us to read older files with no substantial code modification.

6.3.5 Filter Implementation

The actual implementation of the filter in the program was done using a set of

matrix functions built on standard ANSI C routines, which were taken primarily from

Numerical Recipes in C (Press et al., 1988). We used ANSI C to aid in portability in case

the need should ever arise to use the software on another platform. For example, one

application may involve using the filter in a DSP or embedded microprocessor in a

portable system, which would most likely require ANSI C language compliance to

compile.

6.3.6 Data Visualization

Data visualization refers to the ability to view the data streams going into and out

of the program. In this case, we would like to be able to see the raw input data as it is

processed, which includes the sensor values and GPS data values. Relevant GPS data

includes the current unfiltered latitude and longitude, heading, velocity, time and the
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number of satellites locked. The simple graphical display for this data is shown in Figure

6.7.

The raw sensor values include the measurement values for the steering

potentiometer, both accelerometers and both gyroscopes. A screen shot of this display

window is in Figure 6.8.

As with the DOS data collection program, we would like to be able to see the

latitude and longitude plotted on some sort of display graphically. Additionally, we

Figure 6.7 – GPS information view of post-processing application

Figure 6.8 – Sensor data view of post-processing application
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would like to see both the raw GPS input position and the filtered output position

estimate from the system. All of this data is shown in a separate window, which can be

resized as desired. Additionally, the post processing program can read in a file which

defines the road segments as discussed in the map-matching section of this thesis, and it

can display these road segments, over which the vehicle position is plotted. Although

difficult to distinguish in printed form, both the collected raw GPS data and the filtered

output position are plotted simultaneously for comparison. A screen capture of this

window is shown in Figure 6.9.

Figure 6.9 – Graphical output showing raw GPS data, filtered output and current map
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Chapter 7
Results

The results for this project have been very promising. We have shown that with a

system using only a few inexpensive inertial sensors along with a common GPS receiver,

we are able to produce a much better position estimate output than is output from the

GPS receiver alone. This is true both for areas of good GPS coverage, where the inertial

data augments the position estimate capabilities, and for areas of bad or intermittent GPS

coverage, where the inertial data serves as the only means of position estimation for a

period of time. For this project, the improvement that was shown was primarily

qualitative. That is, due to the difficult nature of doing so, precise methods of quantifying

relative performance were not developed. However, the intent of this project was to show

that integrated inertial and GPS data can produce a significantly better system output than

GPS alone. Some methods for precisely evaluating the system output performance are

presented in the following chapter, and methods for fine-tuning system parameters were

presented in the chapter on algorithm extensions.

As shown in Figure 7.1, the system has been demonstrated to be able to

compensate for complete and partial GPS losses for over 1 full city block. The worst

problems arose when the GPS signal was considered to be ‘good’ by our simple validity

test, when it was actually significantly off the correct position. This could happen as a

result of multi-path errors, or some other error that is not easily detectable. This problem

can be addressed by either improving the validity test for the GPS data, or by fine-tuning

the sensor fusion parameters.
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Figure 7.1 shows one instance where the sensor fusion algorithm worked very

well to compensate for a total GPS signal loss. The white line on the upper-left image

indicates that path that was taken during one data collection run. The upper-right image is

a screenshot of the map output view of the post-processing application, which shows

where the GPS signal is completely lost and the sensor fusion algorithm switches to dead-

reckoning using only inertial data. (Note that this is difficult to see in printed form

because the colors become indistinguishable.) In addition, when the GPS signal is

reestablished, the current position estimate and the GPS output data are integrated in a

smooth transition. The lower left and right images are snapshots from the onboard VCR

while entering the tunnel and inside the tunnel, respectively.

Tunnel results

in GPS

blockage –

invalid or no

GPS output for

Figure 7.1 – Sensor fusion system corrects for loss of GPS signal in tunnel
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Chapter 8
Conclusions/Further Research

8.1 Further Research

The results from this project are encouraging and show that these techniques do

work to improve position estimates in urban environments. However, there is much room

for improvement in the overall techniques, as well as the particular implementation

discussed. Some of these suggested improvements will be discussed here.

In order to evaluate the proposed system more precisely, improvements must be

made in the area of output analysis. For this project, output analysis was done primarily

by visual inspection and comparison of the generated outputs. To effectively fine tune the

system and optimize the numerous fusion parameters, a more precise evaluation system

must be implemented. This is not an easy task, because it requires knowledge of the

desired output, to which the actual system output must be compared.

Performing this analysis task could be aided by the use of the map-matching

techniques discussed earlier in this thesis. However, evaluating the output from the map-

matching system would still require the beforehand knowledge of the actual path

traversed by the vehicle. Ideally, the process of evaluating the entire system would

proceed as follows:

1 – Generate a intersection/road segment based map for a well known region,

such as downtown New York City, as discussed in the map-matching section of

this thesis. This could be done using a GIS package such as ArcInfo or Etak.

Alternately, this map could be generated by collecting ‘near perfect’ GPS data on

the roadway. This is usually done by collecting samples in one location over a

long period of time and averaging the data.

2 – Collect a large amount of inertial sensor and GPS data within that region

3 – Store the list of road segments traversed (or the list of intersections traversed)

while collecting the GPS and inertial sensor data
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4 – Post process the GPS and inertial sensor data using only the Kalman filter and

sensor fusion algorithms, as discussed earlier in this thesis. Compare the fused

output with the ideal output from the stored list of road segments. Use this

information to fine-tune the sensor filtering and fusion parameters to produce a

good output. The iterative hill-climbing or genetic algorithm methods could be

implemented to automate the process of parameter optimization.

5 – Post process the GPS and inertial sensor data, producing a map-matched

output from the system. The output from the system can be evaluated by

comparing the percentage of correctly traversed intersections on the map with the

list of actual intersections traversed. This system of evaluation can be used to

fine-tune the map-matching algorithm to generate a reliable output based on the

map-matched position estimate. If the output from the GPS/inertial sensor fusion

portion of the system has a large amount of error, it may be required to manually

reset the position estimate occasionally.

6 – After both the sensor fusion and the map-matching parts of the system have

been optimized, the system could be set to evaluate its own performance during

runtime. Assuming that the map-matched output is correct for some time interval

while the output from the sensor fusion subsystem indicates that some sort of

inertial drift is occurring, this information could be used to dynamically adjust

filtering and fusion parameters to account for this drift. Such drift is known to

occur as vibrations or temperature changes alter some sensor characteristics.

For this project, a small amount of the road segment/intersection map for

downtown New York City was generated manually, using data from a Geographic

Information System (GIS) software package. This was a very tedious and time-

consuming process, which could be automated in future work. One of two options could

be used to make the process much easier and more general in future use. The first option

is to write a program that interfaces into a GIS database and outputs the intersection/road-

segment format map for the map-matching program to read. The second option is to

incorporate the capability to read the GIS database directly into the sensor fusion/map-
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matching program. The second option is the more desirable one, as it is more generalized

and can be made to work any place in the world by simply using a different GIS database.

Another area of improvement for the project is the required hardware for the

sensor collection and integration. This project used a variety of sensors, a large data

acquisition board, and a laptop computer. For this type of solution to be viable in a

consumer-type product, unneeded sensors should be removed along with the expensive

data acquisition board. The laptop computer could also be replaced with a cheaper

embedded system, provided a way to enter data into the system and to remove data from

the system.

8.2 Conclusion

This project has shown that significant vehicle position estimate results may be

obtained by integrating inertial sensor data and GPS sensor data using relatively simple

sensor fusion techniques. The techniques presented here focus around a loosely coupled

configuration of GPS and inertial navigation sensors, where the ultimate goal was to find

the optimal weighting of the input from each sensor. An eight-state, two-input Kalman

filter running at 100 Hertz was used to estimate the relative position of the vehicle

between consecutive GPS samples. As GPS samples arrived at approximately 1 Hz, one

of several sensor fusion techniques was used to determine the relative weightings for the

GPS and inertial position estimates. This project has demonstrated that good results are

obtainable by using only a few relatively inexpensive inertial sensors and an inexpensive

GPS receiver.
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Appendix A. GPS Basics

A.1 History

The immediate predecessor of today’s modern GPS is the Navy Navigation

Satellite System (NNSS), also called TRANSIT system. This system included six

satellites orbiting at altitudes of about 100 km with nearly circular polar orbits. This

system was developed by the US military to determine the coordinates of vessels and

aircraft. Civilian use of this satellite system was eventually authorized and the system

became widely used worldwide both for navigation and surveying. Some of the early

TRANSIT experiments showed that accuracy of about one meter could be obtained by

occupying a point for several days.

The Global Positioning System (GPS) was developed to replace the TRANSIT

system because of two major shortcomings in the system. Large time gaps in coverage

were the main problem with TRANSIT. Since a satellite would typically pass overhead

every 90 minutes, users had to interpolate their position between passes. The second

problem was its relatively low navigation accuracy. The GPS system was designed to

address these problems, answering the questions “what time, what position, and what

velocity” quickly, accurately and inexpensively anywhere on the globe at any time.

(Hofmann-Wellenhof et al., 1997)

A.2 Overview

The basic principle of GPS relies on the ability to measure distances from several

points in space and performing triangulation based on these distances. A Navstar receiver

anywhere on or near the surface of the Earth picks up the signals from four or more

Navstar satellites. A string of precisely timed binary pulses travels from each satellite to

the receiver, taking about one-eleventh of a second. The receiver estimates the signal

travel time by subtracting the time from its internal clock from the time indicated by the
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satellite when it transmitted the pulse. This signal is then multiplied by the speed of light

to obtain the estimated range to the first satellite.

If the clock in the receiver were perfectly synchronized with the clocks onboard

the satellites, three ranging measurements of this type would be required to obtain an

accurate three-dimensional position estimate. However, most Navstar receivers use

inexpensive quartz crystal oscillators to measure the current time. Consequently, the

receiver actually estimates the pseudo-range (false range) to each Navstar satellite. Since

each range measurement is corrupted by the same timing error in the receiver’s clock,

this error can be removed mathematically with the measurement of a fourth satellite

pseudo-range. In addition to a three-dimensional position estimate, a Navstar receiver can

calculate its velocity and heading, along with the time of day and the date. (Logsdon,

1992)

A.3 System Segments

The Navstar Global Positioning System is typically divided logically into three

main pieces, or segments. These segments are the space segment, the user segment, and

the control segment. The space segment consists of 21 satellites plus 3 active on-orbit

spares arranged in six 55-degree orbit planes 10,898 nautical miles above the earth. The

user segment consists of the hundreds of thousands of Navstar receivers located on the

ground, in the air, and aboard ships, together with a few aboard orbiting satellites. The

user segment is completely passive, that is, the Navstar receivers only detect the signals

emitted from the space segment. Because the Navstar satellites tend to lose track of their

precise position and the exact time, a computer-driven control segment is required to

correct for this subtle drift. The control segment consists of a group of unmanned monitor

stations that track each Navstar satellite, calculating the precise position and timing errors

for the satellite, which transmit to the satellites for error corrections. (Logsdon, 1995)
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A.4 Differential GPS

Differential positioning with GPS, abbreviated DGPS, is a technique for

improving GPS performance where two or more receivers are used. One receiver, usually

at rest, is located at the reference site A with known coordinates and the remote receiver

B is usually roving. The reference or base station calculates pseudorange corrections

(PRC) and range rate corrections (RRC) which are transmitted to the remote receiver in

near real time. The remote receiver applies the corrections to the measured pseudoranges

and performs point positioning with the corrected pseudoranges. The use of the corrected

pseudoranges improves positional accuracy. (Kaplan ed., 1996)
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Appendix B. Geodetic to Ground Conversion

The GPS receiver returns data in the form of geodetic latitude/longitude

coordinates, while the dead-reckoning system returns relative ground coordinates with

units of meters.  Therefore, it is desirable to calculate values C1 and C2 such that:

1 meter = C1 * (1 degree latitude), and

1 meter = C2 * (1 degree longitude)

This allows us to convert the relative meter measurements from the dead-

reckoning system into degrees/minutes/seconds of latitude and longitude so that the data

can be fused with the GPS data. Note that, assuming the Earth to be a perfect ellipsoid

with a fixed equatorial radius ae and eccentricity e, these conversion rates are dependent

only upon the current latitude measurement φ . The first part of the derivation consists of

calculating the coordinates (xc, zc) of a point on the earth’s surface, as indicated on Figure

zc

Equatorial plane
(side view)

xc

ae

β φ

Observer

Circumscribing circle

Elliptical cross section

Figure B.1 – Detailed cross-section view of earth for geodetic to ground conversion
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B.1, and is taken from pages 26-29 from Methods of Orbit Determination by P.R.Escobal

(1965). It is included here as a reference for the reader.

By inspection of Figure B.1, we have the following two relations for xc and zc:

βcosec ax = βsin1 2eaz ec −= (1)

By differentiating each of the equations, we get:

ββdd sinec ax =− ββdd cos1 2eaz ec −= (2)

Therefore, it follows that:
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By multiplying Eq. 4 by 21 e−  and squaring Eq. 5, we get:
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By adding Eq. 6 and Eq. 7 and taking the square root of each side:
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By using equations 4 and 5 with equation 8, we get:
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By combining equations 9 and 10 with equations 1:
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After the rectangular coordinates of the point on the surface of the earth have been

calculated, we are now able to calculate the values C1 and C2. The following calculations

based on the above formulae were performed by Gene Felis, Electronics Engineer,

NUWC Div Keyport, in 1976:

The constant C1 is the derivative of the ellipse at the position (xc,zc):
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Putting equations 15, 16, 17 into equation 14, we get:
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Again, combining equations 20 and 21 into equation 14:
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Substituting equations 19 and 23 into equation 13, we get:

22









+








=

φφφ d
d

d
d

d
d cc zxs

       
( ) ( )

( )322

22222222

sin1

1cos1sin

φ

φφ

e

eaea ee

−

−+−
=

Reducing to:

       
( )

( )2

3
22

2

sin1

1

φe

eae

−

−
= (24)

Equation 24 represents 
φd

ds
in units of ae per radian. To get into meters per

degree of latitude, we use π2 radians °= 360 , which results in the following:
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To obtain the value for C2, we use equation 11 to compute the distance d around

the earth along a line of latitude φ :
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== (26)

Because d represents the distance for a full °360  around the earth, we divide

equation 26 by 360 to get C2:

( )2
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e

ad
C e

−

== (27)

where ae ≈ 6,378,150 meters

e ≈ 0.08181333

For our purposes, we desire C1 and C2 in units of meters per millisecond instead

of meters per degree. Therefore, we simply divide equations 25 and 27 by 3,600,000 to
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convert each from degrees to milliseconds. Substituting the values for ae and e and

converting to meters per millisecond, we have:

( )2

3
2

1

sin0066934.0155720.32

1

φ−

=C (28)

( )2
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2
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φ

φ

−

=C (29)
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Appendix C. Motorola GPS Receiver Messages

What follows is a breakdown of one input command and the resulting response

from the Motorola Oncore GPS receiver, as taken from the Motorola Oncore User’s

Guide (1996).

To set the response message rate of the GPS receiver, the following message is
sent from the user to the GPS receiver:

@@BamC<CR><LF>

m – mode 0 – output response message once (polled)
1 .. 255 – response message output at

indicated rate (continuous)
1 – once per second
2 – once every two seconds
255 – once every 255 seconds

C – checksum

The following response would be sent from the GPS receiver to the user at the
specified rate:

@@Bamdyyhmsffffaaaaoooohhhhmmmmvvhhddtntims
dimsdimsdimsdimsdimsdsC<CR><LF>

Where we can interpret is as follows:
Date:

m – month 1 .. 12
d – day 1 .. 31
yy – year 1980 .. 2079

Time:
h – hours 0 .. 23
m – minutes 0 .. 59
s – seconds 0 .. 60
ffff – fractional seconds 0 .. 999,999,999 (0.0 to 0.999999999)

Position:
aaaa – latitude in msec -324,000,000 .. 324,000,000

(-90o to +90o)
oooo – longitude in msec -648,000,000 .. 648,000,000

(-180o to +180o)
hhhh – height in cm -100,000 .. +1,800,000

(GPS, ref ellipsoid) (-1000.00 to +18,000.00 meters)
mmmm – height in cm -100,000 .. +1,800,000

(MSL ref) (-1000.00 to +18,000.00 meters)
Velocity:

vv – velocity in cm/sec 0 .. 51400 (0 to 514.00 m/sec)
hh – heading 0 .. 3599 (0.0 to 359.9 deg)



88

Geometry:
dd – current DOP 0 .. 999 (0.0 to 99.9 DOP)
t – DOP type 0 – PDOP (in 3D)

1 – HDOP (in 2D)
Satellite visibility and tracking status:

n – num of visible sats 0 .. 12
t – num of satellites tracked 0 .. 8

For each of six receiver channels:
i – satellite ID 0 .. 37
m – channel tracking mode 0 .. 8

0 – Code Search 5 – Message Sync Detect
1 – Code Acquire 6 – Satellite Time Avail
2 – AGC Set 7 – Ephemeris Acquire
3 – Freq Acquire 8 – Avail for Position
4 – Bit Sync Detect

s – signal strength 0 .. 255
(number proportional to signal-to-noise ratio)

d – channel status flag
Each bit represents one of the following:
(msb) Bit 7: Using for position fix

Bit 6: Satellite momentum alert flag
Bit 5: Satellite anti-spoof flag set
Bit 4: Satellite reported unhealthy
Bit 3: Satellite reported inaccurate
Bit 2: Spare
Bit 1: Spare

(lsb) Bit 0: Parity Error
(End of channel dependant data)

s – receiver status message
(msb) Bit 7: Position propagate mode

Bit 6: Poor geometry (DOP > 20)
Bit 5: 3D fix
Bit 4: Altitude hold (2D fix)
Bit 3: Acquiring satellites/position hold
Bit 2: Differential
Bit 1: Insufficient visible satellites (<3)

(lsb) Bit 0: Bad almanac
C - checksum
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Appendix D. Program Listings

D.1 DOS Program Listings

The DOS program that was written for this thesis was used primarily to collect GPS and

sensor data and store it to disk in real-time. This program also used simple VGA graphics output

to display information about GPS readings and sensor values, and to display the current GPS

position graphically on a local area map on the screen. The program could also be used to review

the collected data after it had been collected to disk. The block diagram shown in Figure D.1

shows the basic flow of the software.

Is Timer
Flag set?

Is GPS
Flag set?

-Clear Timer Flag
-Sample DaqBook

-Save samples to disk
-Update screen

Yes

No

-Process GPS data
-Put new data on screen

-Save data to disk

Yes

-Clear Timer Flag
-Clear GPS Flag

-Open Output Files
-Init. VGA output
-Init. Timer ISR

-Init. Com Port ISR
-Init. Com Port

Program Start

Has a key
been pressed?

No

No
Was 's' key
pressed ?

No

Yes

Yes

-Remove Timer ISR
-Remove Com Port ISR

-Close Output Files
-Set Screen to Text Mode

Program Finish

100 Hz Timer ISR

-Set Timer Flag

Time to call
BIOS Timer ISR?

-Call BIOS Timer ISR

Yes

Character
Received

Com Port ISR

-Put new character into
GPS message

Is GPS Message
Complete?

-Set GPS Flag

Interrupt Service Routines
(running asynchronous to main loop)

Yes

Figure D.1 – DOS data collection program software flow
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Listed below is a fragment of the header file maplog.h. This file contains a number of

define statements for I/O port addresses, screen size information, etc. This file also contains the

type declarations for the sensor data that is collected and stored to disk.

Maplog.h
#ifndef _MAPLOG_H
#define _MAPLOG_H

#define PALETTE_MASK 0x3C6 /* video port addr to set mask */
#define PALETTE_REGISTER_RD 0x3C7 /* video port addr to read palette */
#define PALETTE_REGISTER_WR 0x3C8 /* video port addr to write palette */
#define PALETTE_DATA 0x3C9 /* video port addr to send data to */
#define VGA256 0x13 /* VGA screen mode value */
#define TEXT_MODE 0x03 /* Text mode value */
#define CHAR_WIDTH 8 /* Character width (pixels) */
#define CHAR_HEIGHT 8 /* Character height (pixels) */
#define ROM_CHAR_SET_SEG 0xF000 /* Character segment in ROM */
#define ROM_CHAR_SET_OFF 0xFA6E /* Character offset in segment */
#define SCREEN_WIDTH 320 /* Default screen width (pixels) */
#define SCREEN_HEIGHT 200 /* Default screen height (pixels) */

typedef struct RGB_color_typ{ /* structure containing palette color info */
unsigned char red;
unsigned char green;
unsigned char blue;

} RGB_color,*RGB_color_ptr;

typedef struct log_data_st{ /* structure containing inertial sensor info */
unsigned long ticks;

unsigned long odometer_total;
unsigned int gyro1;
unsigned int gyro2;
unsigned int accelf;
unsigned int accelr;

   unsigned int steer;
} T_LOG_DATA;

typedef struct point_st{ /* structure representing a single point */
 long x,y;
} POINT;

typedef struct road_segment_st{ /* structure representing a road segment */
 POINT p1,p2; /*  for map drawing */
 long road;
} ROAD_SEG;

#define GPS_PORT_DATA 0x3F8      /* COM1 I/O character buffer */
#define GPS_PORT_STATUS 0x3FD /* Line status register */
#define GPS_PORT_INTR 0x3F9 /* Interrupt enable register */
#define GPS_PORT_CONT 0x3FC /* Control register */

#define TIMERINTR 0x08 /* Timer ISR jump vector */
#define COM1INTR 0x0C /* Com1 ISR jump vector */
#define PIT_FREQ 0x1234DDL /* Default PIT frequency */

#endif
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Maplog.c

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <bios.h>
#include <dos.h>
#include <mem.h>
#include <conio.h>
#include <alloc.h>
#include <math.h>
#include <string.h>
#include "drgps.h" /* structures for storing GPS info */
#include "daqbook.h" /* functions for accessing the DaqBook */
#include "maplog.h" /* structures and defines for this program */

// #define _NOBOOK          /* define for testing when no daqbook connected */

/* Function prototypes */
void SetTimer(void interrupt(__far *)(void),int);
void SetCom1(void interrupt(__far *)(void));
void CleanUpTimer(void);
void CleanUpCom1(void);
void __interrupt Handler(void);
void __interrupt Com1Handler(void);
void set_pallette(void);
void GrabPallette(unsigned char Pall[256][3]);
void RestorePallette(unsigned char Pall[256][3]);
void Set_Palette_Register(int,RGB_color_ptr);
void h_line(int,int,int,unsigned int,unsigned char far *);
void v_line(int,int,int,unsigned int,unsigned char far *);
void line(int,int,int,int,unsigned int,unsigned char far *);
void map_line(POINT,POINT,unsigned int,unsigned char far *);
void fill_box(int,int,int,int,unsigned int,unsigned char far *);
void set_vga(void);
void set_text(void);
void set_palette(void);
void fill_screen(unsigned int,unsigned char far *);
void blit_char(int,int,char,int,unsigned char far *);
void blit_bit(int,int,unsigned int,unsigned char far*);
void init_daqbook(void);
void _far _pascal daq_error(int error_code);
void pc_set_to_gps(void);
void get_pc_time(void);
void get_odometer_count(void);
void get_user_key(void);
int gps_serial_wait_for_next(void);
int get_gps_data(void);
void clear_gps_serial(void);
void Pos_Status_Data_Decode(unsigned char*,T_POS_CHAN_STATUS*,char);
void draw_map_border(unsigned int,unsigned char far*);
void draw_sensor_border(unsigned int,unsigned char far*);
void draw_gps_border(unsigned int,unsigned char far*);
void draw_guage_border(unsigned int,unsigned char far*);
void draw_sensor_vals(unsigned int,unsigned char far*);
void draw_map(unsigned int,unsigned char far*);
void blit_string(int,int,char*,unsigned int,unsigned char far*);
void draw_strength_border(unsigned int,unsigned char far*);
void draw_strength_vals(unsigned int,unsigned char far*);
void put_box(int,int,int,int,unsigned char*,unsigned char far*);
void get_box(int,int,int,int,unsigned char*,unsigned char far*);
void new_gps_stuff(void);
int sgn(int);
POINT ll_to_screen(POINT);
int in_view(POINT);
void goodbye(int);

/* Global data */
void __interrupt(__far *BIOSTimerHandler)(void);  /* old timer ISR pointer */
void __interrupt(__far *BIOSCom1Handler)(void); /* old com1 ISR pointer */
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volatile long counter, clock_ticks;     /* timer ISR counter variables */
unsigned char far * vscreen;       /* pointer to the video screen in memory */
unsigned char far *rom_char_set;   /* pointer to characters in memory */
FILE *log_file;                    /* output .log file */
FILE *gps_file;                    /* output .gps file */
FILE *map_file; /* input map file */
FILE *cfg_file; /* input configuration file */
FILE *key_file; /* output key press file */
FILE *debug; /* output debug file */
int logging,postview,mapping,running; /* indicator flags for program flow */
volatile int new_sense; /* .01 second elapsed flag */
struct time gps_time; /* time of a GPS capture */
struct time pc_time; /* time of a sensor capture */
unsigned long hour,min,sec,pc_seconds,start_hsec;
volatile unsigned long hsec; /* timer ISR counter variables */
volatile int new_gps; /* new GPS data flag */
unsigned long pct_val,old_pct_val,last_gps_hsec;
unsigned long odometer_total,prev_odometer_total,odometer_sample;
long run_sec,run_min,prev_sec; /* elapsed times for output screen */
volatile char user_key; /* user input key */
T_LOG_DATA log_data; /* sensor input data */
T_LOG_DATA *old_data; /* previous sensor input data */
int curr_old_data;
int old_speed,curr_speed,curr_guage;
char old_sats_tracked; /* number of satellites tracked for screen output */
T_POS_CHAN_STATUS GPS_chan,GPS_chan2; /* processes GPS input data */
unsigned char gps_report[100]; /* GPS raw input data string */
long gps_latitude,gps_longitude; /* GPS lat/long from receiver */
long calc_latitude,calc_longitude; /* lat/long for screen output */
long old_calc_lat,old_calc_long; /* old lat/long for screen output */
unsigned long gps_seconds,gps_hsec;
int old_gps_valid,gps_valid,gps_found;
/* several strings for output to screen */
char rtstr[6],speed_str[5],pct_str[9],tsgps_str[5];
char status_line[41];
char lat_str[15],long_str[15];
int sen_high[5],sen_low[5],sen_val[5];
unsigned int strength[6];
/* several numbers indicating map bounds, position, etc */
long mapullong,mapullat,maplrlong,maplrlat;
int mapposx,mapposy;
/* several temporary variables for various things */
long tlat,tlong;
unsigned long nexttime;
unsigned char cursor_back_box[100];
char map_name[25];
unsigned char stmp[20];
long tempnum[5];
double templong;
char gps_char; /* GPS input character (from com port) */
/* map information */
long num_map_roads,num_map_segments;
char *map_roads;
ROAD_SEG *map_segments;
int quickview; /* flag set to no delay on replay of data */
int novga; /* flag set to not display data graphically */
int tsec_since_gps; /* count of time since last GPS message received */
int gps_report_idx;
unsigned char gps_port_intr_set;

void main(int argc,char *argv[]){
 /* declare and initialize local data */
 char log_file_name[40]; /* file names */
 char gps_file_name[40];
 char key_file_name[40];
 unsigned char OldPallette[256][3]; /* location to store original palette */
 int i;

 /* initialize global data */
 vscreen=(unsigned char far*)0xA0000000L; /* location of video memory */
 rom_char_set=(unsigned char far *)0xF000FA6EL;     /* rom character set */
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 get_pc_time();
 hsec=start_hsec=pc_seconds*100+pc_time.ti_hund; /* initial hsec count */
 new_sense=quickview=mapping=logging=postview=0; /* initialize all flags to false */
 /* initialize all data to default values */
 curr_guage=curr_speed=0;
 mapposx=mapposy=0;
 novga=gps_report_idx=0;
 calc_latitude=calc_longitude=0;
 prev_sec=old_speed=old_gps_valid=-1;
 old_sats_tracked=-1;
 /* initialize output strings appropriately */
 for(i=0;i<4;i++) rtstr[i]=tsgps_str[i]=' ';
 for(i=0;i<8;i++) pct_str[i]=' ';
 rtstr[2]=pct_str[2]=pct_str[5]=':';
 tsgps_str[2]='.';
 rtstr[5]=speed_str[3]=lat_str[10]=long_str[10]=pct_str[8]=tsgps_str[4]=0;
 for(i=0;i<6;i++) strength[i]=0;
 for(i=0;i<5;i++){
  sen_high[i]=5000;
  sen_low[i]=0;
  sen_val[i]=0;
 }
 for(i=0;i<10;i++) lat_str[i]=long_str[i]='0';
 /* initialize map border values */
 mapullong = STMAPULLONG;
 mapullat = STMAPULLAT;
 maplrlong = STMAPLRLONG;
 maplrlat = STMAPLRLAT;
 nexttime = 0;
 log_file = gps_file = map_file = cfg_file = debug = NULL;
 old_data = NULL;
 map_roads=NULL;
 map_segments=NULL;
 debug=fopen("debug.dat","w");   /* extra debug info to file */
 old_data=farmalloc(sizeof(T_LOG_DATA)*OLD_DATA_SIZE);
 if(old_data==NULL){
  printf("Error allocating memory!\n");
  printf("Exiting . . .\n");
  goodbye(0);
 }
 for(i=0;i<OLD_DATA_SIZE;i++) old_data[i]=log_data;  /* init data to 0's */

 /* parse command line */
 for(i=1;i<argc;i++){
  if(!strcmp(argv[i],"-l") || !strcmp(argv[i],"-L")){

if(!postview){
 logging=1; /* logging (data acquisition) mode */
 i++;
 strcpy(log_file_name, argv[i]);
 strcpy(gps_file_name, argv[i]);
 strcpy(key_file_name, argv[i]);
 strcat(log_file_name, ".log");
 strcat(gps_file_name, ".gps");
 strcat(key_file_name, ".key");
 /* open log output file */
 if((log_file = fopen(log_file_name, "wb"))==NULL){
  printf("Error opening log file (%s) for output!\n", log_file_name);
  printf("Exiting . . .\n");
  goodbye(0);
 }
 /* open GPS output file */
 if((gps_file = fopen(gps_file_name, "wb"))==NULL){
  printf("Error opening gps file (%s) for output!\n", gps_file_name);
  printf("Exiting . . .\n");
  goodbye(0);
 }
 /* open key press output file */
 if((key_file = fopen(key_file_name, "wb"))==NULL){
  printf("Error opening key file (%s) for output!\n", key_file_name);
  printf("Exiting . . .\n");
  goodbye(0);
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 }
}
else goodbye(1);

  }
  else if(!strcmp(argv[i],"-p") || !strcmp(argv[i],"-P")){

if(!logging){
 postview=1; /* postview (replay) mode */
 i++;
 strcpy(log_file_name, argv[2]);
 strcpy(gps_file_name, argv[2]);
 strcat(log_file_name, ".log");
 strcat(gps_file_name, ".gps");
 /* open log input file */
 if((log_file = fopen(log_file_name, "rb"))==NULL){
  printf("Error opening log file (%s) for input!\n", log_file_name);
  printf("Exiting . . .\n");
  goodbye(0);
 }
 /* open GPS input file */
 if((gps_file = fopen(gps_file_name, "rb"))==NULL){
  printf("Error opening gps file (%s) for input!\n", gps_file_name);
  printf("Exiting . . .\n");
  goodbye(0);
 }
}
else goodbye(1);

  }
  else if(!strcmp(argv[i],"-m") || !strcmp(argv[i],"-M")){

char mapfilename[20];
i++;
strcpy(mapfilename, argv[i]);
strcat(mapfilename, ".map");
/* open map input file */
if((map_file = fopen(mapfilename, "rb"))==NULL){
 printf("Error opening map file (%s) for input!\n", mapfilename);
 printf("Exiting . . .\n");
 goodbye(0);
}
fread(map_name,24,1,map_file);
fread(&num_map_roads, sizeof(long),1,map_file);
fread(&num_map_segments, sizeof(long),1,map_file);
/* allocate memory for roads and segments */
map_roads = farmalloc(24*num_map_roads);
map_segments = farmalloc(sizeof(ROAD_SEG)*num_map_segments);
if(map_roads == NULL || map_segments == NULL){

printf("Error allocating memory!\n");
printf("Exiting . . .\n");
goodbye(0);

}
/* read map roads and segments */
for(i=0;i<num_map_roads;i++){

fread(&map_roads[i*24],24,1,map_file);
}
for(i=0;i<num_map_segments;i++){

fread(&map_segments[i],sizeof(ROAD_SEG),1,map_file);
}
fclose(map_file);
map_file = NULL;
mapping=1;

  }
  else if(!strcmp(argv[i],"-novga") || !strcmp(argv[i],"-NOVGA")){

novga=1; /* disable VGA (graphics) output */
  }
  else if(!strcmp(argv[i],"-c")){

char cfgfilename[20];
char var[20];
int j;
i++;
strcpy(cfgfilename, argv[i]);
strcat(cfgfilename, ".cfg");
/* open configuration input file */
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if((cfg_file = fopen(cfgfilename, "r"))==NULL){
 printf("Error opening configuration file (%s) for input!\n", cfgfilename);
 printf("Exiting . . .\n");
 goodbye(0);
}
/* read configuration parameters */
while(fscanf(cfg_file, "%s",var)!=EOF){
 for(j=0;j<strlen(var);j++) var[j] |= 0x20; /* make lowercase */
 if(!strcmp(var, "mapullong")) fscanf(cfg_file, "%lu", &mapullong);
 else if(!strcmp(var, "mapullat")) fscanf(cfg_file, "%lu", &mapullat);
 else if(!strcmp(var, "maplrlong")) fscanf(cfg_file, "%lu", &maplrlong);
 else if(!strcmp(var, "maplrlat")) fscanf(cfg_file, "%lu", &maplrlat);
 else if(!strcmp(var, "sensor")){
  fscanf(cfg_file, "%d", &j);
  if(j>=0 && j<=5) fscanf(cfg_file, "%d %d", &sen_low[j],&sen_high[j]);
 }
 else fgets(var,20,cfg_file); /* eat remainder of unknown config line */
}
fclose(cfg_file);
cfg_file = NULL;

  }
  else goodbye(1); /* unknown command line parameter -> exit */
 }
 if(!postview && !logging) goodbye(1); /* doing nothing -> exit */
 bioscom(0,0xE3,0);   /* set COM1 to 9600,N,8,1 for GPS receiver */
 if(logging){
  sprintf(status_line, "Waiting: %s - G to go", log_file_name);
  #ifndef _NOBOOK

init_daqbook();            /* initialize DaqBook */
bioscom(0,0xE3,0);   /* set COM1 to 9600,N,8,1 for GPS receiver */
pc_set_to_gps(); /* synchronize trigger times */
get_odometer_count(); /* initialize odometer counter */
daqCtrMultCtrl(DmccLoad,1,1,0,0,0);

  #endif
  odometer_total=prev_odometer_total=0;
 }
 else{
  sprintf(status_line, "Waiting: %s - G to go", log_file_name);
 }

 curr_old_data=0;
 if(!novga){
  set_vga();                      /* switch to vga 320x200 graphics mode */
  GrabPallette(OldPallette);      /* save the old palette */
  set_pallette();                 /* set new palette */

  /* do initial screen setup here */
  draw_map_border(BORDERCOL, vscreen);
  draw_sensor_border(BORDERCOL, vscreen);
  draw_gps_border(BORDERCOL, vscreen);
  draw_guage_border(BORDERCOL, vscreen);
  draw_strength_border(BORDERCOL, vscreen);
  blit_string(STATUSX, STATUSY, status_line, TEXTCOL, vscreen);
  if(mapping) draw_map(BLUE, vscreen);
 }
 else printf("%s\n",status_line);

 SetTimer(Handler,100);        /* set timer interrupt to 100 Hz */
 SetCom1(Com1Handler); /* set com interrupt handler */

 for(user_key=0;user_key!='g' && user_key!='G';get_user_key()); /* wait for ‘G’ */

 /* clear old message string and draw a new one */
 if(!novga) blit_string(STATUSX,STATUSY,status_line,BACKGNDCOL,vscreen);
 if(logging) sprintf(status_line,"Logging: %s - S to stop",log_file_name);
 else sprintf(status_line,"Reading: %s - S to stop",log_file_name);
 if(!novga) blit_string(STATUSX,STATUSY,status_line,TEXTCOL,vscreen);
 else printf("%s\n",status_line);

 /* main loop for data collection */
 running=1;
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 while(running){ /* loop until running == 0 */
  while(!new_sense && !quickview){} /* wait until .01 sec if not quickviewing */
  /* .01 second elapsed - collect new sensor data */
  new_sense=0; /* reset flag */
  if(!start_hsec) start_hsec=hsec;
  if(logging){ /* logging - acquire data from daqbook */

#ifndef _NOBOOK
 get_odometer_count();
 daqAdcRd(0,&(log_data.gyro1),DgainX1);
 daqAdcRd(1,&(log_data.gyro2),DgainX1);
 daqAdcRd(2,&(log_data.accelf),DgainX1);
 daqAdcRd(3,&(log_data.accelr),DgainX1);
 daqAdcRd(4,&(log_data.steer),DgainX1);
#endif
log_data.ticks=hsec;
log_data.odometer_total=odometer_total;

fwrite(&log_data,sizeof(T_LOG_DATA),1,log_file); /* write to file */
  }
  else{ /* post view – read data from file */

if(fread(&log_data,sizeof(T_LOG_DATA),1,log_file)==NULL){
 /* done input from log file - set flags */
 running=0;
}

  }
  if(running){

draw_sensor_vals(BACKGNDCOL,vscreen);  /* draw over old sensor values */
sen_val[0]=log_data.gyro1;
sen_val[1]=log_data.gyro2;
sen_val[2]=log_data.accelf;
sen_val[3]=log_data.accelr;
sen_val[4]=log_data.steer;
draw_sensor_vals(SENSORCOL,vscreen);  /* draw new sensor values */
old_data[curr_old_data]=log_data;  /* store log data in array */
curr_old_data++;
if(curr_old_data==OLD_DATA_SIZE) curr_old_data=0;
curr_speed=  /* estimate speed from delta positions */

(old_data[(curr_old_data+OLD_DATA_SIZE-1)%OLD_DATA_SIZE].odometer_total-
old_data[(curr_old_data+OLD_DATA_SIZE-1-SPEED_DELTA) %OLD_DATA_SIZE].odometer_total)*SPEED_FACT;
  }
  if(logging){

if(new_gps){     /* whole gps report received */
 Pos_Status_Data_Decode(gps_report, &GPS_chan, 0); /* decode GPS message */
 gps_time.ti_hour = GPS_chan.hours;
 gps_time.ti_min = GPS_chan.minutes;
 gps_time.ti_sec = floor(GPS_chan.seconds);
 gps_time.ti_hund = floor(GPS_chan.seconds * 100.0);
 gps_time.ti_hund %= 100;
 hour = gps_time.ti_hour;
 min = gps_time.ti_min;
 sec = gps_time.ti_sec;
 gps_seconds = hour * 3600 + min * 60 + sec;
 gps_hsec = gps_time.ti_hund;
 gps_hsec += gps_seconds * 100;
 gps_valid = 1;                                /* check receiver status */
 if(GPS_chan.rcvr_status & 0x43) gps_valid = 0;
 if(!(GPS_chan.rcvr_status & 0x30)) gps_valid = 0;
 fwrite(&(log_data.ticks),sizeof(unsigned long),1,gps_file);
 last_gps_hsec=log_data.ticks;
 fwrite(&GPS_chan,sizeof(T_POS_CHAN_STATUS),1,gps_file); /* output to file */
 new_gps_stuff();
 new_gps=0;
}

  }
  else{                          /* postview - read GPS data from file */

if(nexttime<=log_data.ticks){ /* synchronize with inertial sensor data */
 if(nexttime){
  GPS_chan=GPS_chan2;
  last_gps_hsec=nexttime;
  gps_latitude=(long)((((abs(GPS_chan.latitude.degrees)*60.0)+

  GPS_chan.latitude.minutes)*60.0+GPS_chan.latitude.seconds)*1000.0);
  gps_longitude=(long)((((abs(GPS_chan.longitude.degrees)*60.0)+
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  GPS_chan.longitude.minutes)*60.0+GPS_chan.longitude.seconds)*1000.0);
  if(GPS_chan.latitude.degrees<0) gps_latitude=0-gps_latitude;
  if(GPS_chan.longitude.degrees<0) gps_longitude=0-gps_longitude;
  gps_valid = 1;
  if(GPS_chan.rcvr_status & 0x43) gps_valid = 0;
  if(!(GPS_chan.rcvr_status & 0x30)) gps_valid = 0;
  new_gps_stuff();
  /* override INS calculations if good GPS */
 }
 fread(&nexttime,sizeof(unsigned long),1,gps_file);
 fread(&GPS_chan2,sizeof(T_POS_CHAN_STATUS),1,gps_file);
}

  }
  /* calculate new long, lat here */
  calc_latitude=gps_latitude;
  calc_longitude=gps_longitude;

  if(!novga){       /* update screen portions at staggered intervals */
if(!(hsec%10) || quickview){
 if(mapposx || mapposy){  /* put box back at mapposx, mapposy */
  put_box(mapposx-2,mapposy-2,CURSBACKBOXWIDTH,CURSBACKBOXHEIGHT,

cursor_back_box,vscreen);
  blit_bit(mapposx,mapposy,RED,vscreen);
 }
 /* recalc mapposx,mapposy */
 if(calc_longitude>=mapullong && calc_longitude<=maplrlong &&

calc_latitude<=mapullat && calc_latitude>=maplrlat){
  POINT p1,p2;
  p1.x=calc_longitude;
  p1.y=calc_latitude;
  p2=ll_to_screen(p1);
  mapposx=(int)p2.x;
  mapposy=(int)p2.y;
 }
 else{
  mapposx=mapposy=0;
 }
 if(mapposx || mapposy){      /* get box at mapposx,mapposy */
  get_box(mapposx-2,mapposy-2,CURSBACKBOXWIDTH,CURSBACKBOXHEIGHT,

  cursor_back_box,vscreen);
  /* draw marker */
  v_line(mapposy-2,mapposy+2,mapposx,MAPPOSCOL,vscreen);
  h_line(mapposx-2,mapposx+2,mapposy,MAPPOSCOL,vscreen);
 }
}
switch((int)(hsec%10)){
case 2: /* time = xxxxx.2 seconds -> update runtime strings */
 run_sec=((hsec-start_hsec)%6000)/100;
 run_min=((hsec-start_hsec)%360000L)/6000;
 if(run_sec!=prev_sec) {
  /* output new time to screen */
  if(prev_sec!=-1) blit_string(RTPOSX,RTPOSY,rtstr,BACKGNDCOL,vscreen);
  rtstr[0]=(char)((run_min%100)/10)+'0';
  rtstr[1]=(char)(run_min%10)+'0';
  rtstr[3]=(char)((run_sec%100)/10)+'0';
  rtstr[4]=(char)(run_sec%10)+'0';
  blit_string(RTPOSX,RTPOSY,rtstr,TEXTCOL,vscreen);
  prev_sec=run_sec;
 }
 break;
case 4: /* time = xxxxx.4 seconds -> update current time string */
 if(logging) pct_val=hsec;
 else pct_val=log_data.ticks;
 if(old_pct_val/100!=pct_val/100){   /* new pc second to print*/
  blit_string(PCTSTRPOSX,PCTSTRPOSY,pct_str,BACKGNDCOL,vscreen);
  pct_str[0]=(char)(pct_val/3600000L)+'0';
  pct_str[1]=(char)((pct_val%3600000L)/360000L)+'0';
  pct_str[3]=(char)((pct_val%360000L)/60000L)+'0';
  pct_str[4]=(char)((pct_val%60000L)/6000)+'0';
  pct_str[6]=(char)((pct_val%6000)/1000)+'0';
  pct_str[7]=(char)((pct_val%1000)/100)+'0';
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  blit_string(PCTSTRPOSX,PCTSTRPOSY,pct_str,TEXTCOL,vscreen);
 }
 blit_string(TSGPSSTRPOSX,TSGPSSTRPOSY,tsgps_str,BACKGNDCOL,vscreen);
 tsec_since_gps=(int)(log_data.ticks-last_gps_hsec)/10;
 tsgps_str[0]=(char)((tsec_since_gps%1000)/100)+'0';
 tsgps_str[1]=(char)((tsec_since_gps%100)/10)+'0';
 tsgps_str[3]=(char)(tsec_since_gps%10)+'0';
 blit_string(TSGPSSTRPOSX,TSGPSSTRPOSY,tsgps_str,TEXTCOL,vscreen);
 break;
case 6: /* time = xxxxx.6 seconds -> update speed string */
 if(old_speed!=curr_speed){
  blit_string(SPDSTRPOSX,SPDSTRPOSY,speed_str,BACKGNDCOL,vscreen);
  old_speed=curr_speed;
  speed_str[0]=((old_speed%1000)/100)+'0';
  speed_str[1]=((old_speed%100)/10)+'0';
  speed_str[2]=(old_speed%10)+'0';
  blit_string(SPDSTRPOSX,SPDSTRPOSY,speed_str,TEXTCOL,vscreen);
 }
 break;
case 8: /* time = xxxxx.8 seconds -> update lat/long strings */
 if(old_calc_long!=calc_longitude || old_calc_lat!=calc_latitude){
  blit_string(LATSTRPOSX,LATSTRPOSY,lat_str,BACKGNDCOL,vscreen);
  blit_string(LONGSTRPOSX,LONGSTRPOSY,long_str,BACKGNDCOL,vscreen);
  tlat=calc_latitude;
  tlong=calc_longitude;
  if(tlat<0){

lat_str[0]='-';
tlat=0-tlat;

  }
  else lat_str[0]='+';
  if(tlong<0){

long_str[0]='-';
tlong=0-tlong;

  }
  else long_str[0]='+';
  for(i=0;i<9;i++){

lat_str[9-i]=(char)(tlat%10)+'0';
long_str[9-i]=(char)(tlong%10)+'0';
tlat=tlat/10;
tlong=tlong/10;

  }
  blit_string(LATSTRPOSX,LATSTRPOSY,lat_str,TEXTCOL,vscreen);
  blit_string(LONGSTRPOSX,LONGSTRPOSY,long_str,TEXTCOL,vscreen);
 }
 break;
default:
 break;
}

  }
  get_user_key();
  switch(user_key){ /* process run-time keypresses */
  case 's': /* stop running */
  case 'S':

running=0;
break;

  case '0': /* select first sensor as current */
curr_guage=0;
draw_guage_border(BORDERCOL,vscreen);
break;

  case '1': /* select second sensor as current */
curr_guage=1;
draw_guage_border(BORDERCOL,vscreen);
break;

  case '2': /* select third sensor as current */
curr_guage=2;
draw_guage_border(BORDERCOL,vscreen);
break; /* select fourth sensor as current */

  case '3':
curr_guage=3;
draw_guage_border(BORDERCOL,vscreen);
break;
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  case '4': /* select fifth sensor as current */
curr_guage=4;
draw_guage_border(BORDERCOL,vscreen);
break;

  case '5': /* select sixth sensor as current */
curr_guage=5;
draw_guage_border(BORDERCOL,vscreen);
break;

  case 'i': /* decrease low range value for current sensor */
if(curr_guage){
 draw_guage_border(BACKGNDCOL,vscreen);
 draw_sensor_vals(BACKGNDCOL,vscreen);
 sen_low[curr_guage-1]-=GUAGE_DELTA;
 if(sen_low[curr_guage-1]<0) sen_low[curr_guage-1]=0;
 draw_guage_border(BORDERCOL,vscreen);
 draw_sensor_vals(SENSORCOL,vscreen);
}
break;

  case 'I': /* increase low range value for current sensor */
if(curr_guage){
 draw_guage_border(BACKGNDCOL,vscreen);
 draw_sensor_vals(BACKGNDCOL,vscreen);
 sen_low[curr_guage-1]+=GUAGE_DELTA;
 if(sen_low[curr_guage-1]>sen_high[curr_guage-1])
  sen_low[curr_guage-1]=sen_high[curr_guage-1]-10;
 draw_guage_border(BORDERCOL,vscreen);
 draw_sensor_vals(SENSORCOL,vscreen);
}
break;

  case 'u': /* decrease high range value for current sensor */
if(curr_guage){
 draw_guage_border(BACKGNDCOL,vscreen);
 draw_sensor_vals(BACKGNDCOL,vscreen);
 sen_high[curr_guage-1]-=GUAGE_DELTA;
 if(sen_high[curr_guage-1]<sen_low[curr_guage-1])
  sen_high[curr_guage-1]=sen_low[curr_guage-1]+10;
 draw_guage_border(BORDERCOL,vscreen);
 draw_sensor_vals(SENSORCOL,vscreen);
}
break;

  case 'U': /* increase high range value for current sensor */
if(curr_guage){
 draw_guage_border(BACKGNDCOL,vscreen);
 draw_sensor_vals(BACKGNDCOL,vscreen);
 sen_high[curr_guage-1]+=GUAGE_DELTA;
 if(sen_high[curr_guage-1]>5000) sen_high[curr_guage-1]=5000;
 draw_guage_border(BORDERCOL,vscreen);
 draw_sensor_vals(SENSORCOL,vscreen);
}
break;

  case 'q': /* toggle quickview mode */
if(postview){
 if(!quickview) quickview=1;
 else quickview=0;
}
break;

  case 't': /* move cursor up */
calc_latitude+=5000L;
break;

  case 'v': /* move cursor down */
calc_latitude-=5000L;
break;

  case 'f': /* move cursor left */
calc_longitude-=5000L;
break;

  case 'g': /* move cursor right */
calc_longitude+=5000L;
break;

  case ' ':  /* put time into key file */
if(logging) fwrite(&(log_data.ticks),sizeof(unsigned long),1,key_file);
break;
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  default: /* no key or invalid key */
break;

  }
 }
 CleanUpTimer();              /* reset timer interrupt to old rate */
 CleanUpCom1(); /* reset com port interrupt ISR */
 fclose(key_file); /* close files */
 fclose(log_file);
 fclose(gps_file);
 log_file=gps_file=key_file=NULL;

 /* output status message */
 if(!novga) blit_string(STATUSX,STATUSY,status_line,BACKGNDCOL,vscreen);
 sprintf(status_line,"Stopped: %s - Q to quit",log_file_name);
 if(!novga) blit_string(STATUSX,STATUSY,status_line,TEXTCOL,vscreen); \
 else printf("%s\n",status_line);

 for(user_key=0;user_key!='q' && user_key!='Q';get_user_key()); /* wait for ‘q’ */

 if(!novga){
  RestorePallette(OldPallette);   /* restore old pallette */
  set_text();                  /* reset to text mode */
 }
 goodbye(0);
}

/* interrupt handler for timer ISR */
void __interrupt __far Handler(void){
 hsec++;
 new_sense=1;   /* 100th second elapsed, set new data flag */
 clock_ticks+=counter;
 if(clock_ticks>=0x10000L){
  clock_ticks-=0x10000L;
  (*BIOSTimerHandler)();
 }
 else outp(0x20,0x20);
}

/* interrupt handler for com port ISR */
void __interrupt __far Com1Handler(void){
 gps_char=inportb(GPS_PORT_DATA);
 if(!new_gps){
  switch(gps_report_idx){
  case 0:
  case 1:

if(gps_char=='@'){
 gps_report[gps_report_idx]='@';
 gps_report_idx++;
}
break;

  case 2:
if(gps_char!='B') gps_report_idx=0;
else{
 gps_report[gps_report_idx]='B';
 gps_report_idx++;
}
break;

  default:
gps_report[gps_report_idx]=gps_char;
gps_report_idx++;
break;

  }
  if(gps_report_idx==68){

gps_report_idx=0;
new_gps=1;

  }
 }
 outp(0x20,0x20);
}

/* set the timer rate and ISR function */



101

void SetTimer(void interrupt(__far *TimerHandler)(void), int frequency){
 clock_ticks=0;
 counter=(long)PIT_FREQ/frequency;
 BIOSTimerHandler=getvect(TIMERINTR);
 setvect(TIMERINTR,TimerHandler);
 outp(0x43,0x34);
 outp(0x40,counter%256);
 outp(0x40,counter/256);
}

/* set the com port mode and ISR function */
void SetCom1(void interrupt(__far *ComHandler)(void)){
 BIOSCom1Handler=getvect(COM1INTR);
 setvect(COM1INTR,ComHandler);
 gps_port_intr_set=inportb(GPS_PORT_INTR);
 outportb(GPS_PORT_CONT,11);
 outportb(GPS_PORT_INTR,1);
 inportb(GPS_PORT_DATA);
 outp(0x21,inportb(0x21)&0xEF);
}

/* reset timer rate and ISR function */
void CleanUpTimer(void){
 outp(0x43,0x34);
 outp(0x40,0x00);
 outp(0x40,0x00);
 setvect(TIMERINTR,BIOSTimerHandler);
}

/* reset com port ISR function */
void CleanUpCom1(void){
 outportb(GPS_PORT_INTR,gps_port_intr_set);
 setvect(COM1INTR,BIOSCom1Handler);
}

/* take the current palette and put it into memory */
void GrabPallette(unsigned char Pall[256][3]) {

int loop1;
for(loop1=0;loop1<256;loop1++){

outp (0x03C7,loop1);
Pall[loop1][0] = inp (0x03C9);
Pall[loop1][1] = inp (0x03C9);
Pall[loop1][2] = inp (0x03C9);

}
}

/* take the palette from memory and make it current */
void RestorePallette(unsigned char Pall[256][3]) {

int loop1;
for(loop1=0; loop1<255; loop1++){

outp(0x03C8,loop1);
outp (0x03C9,Pall[loop1][0]);
outp (0x03C9,Pall[loop1][1]);
outp (0x03C9,Pall[loop1][2]);

}
}

/* set a single palette member */
void Set_Palette_Register(int index,RGB_color_ptr color){

outp(PALETTE_MASK,0xff);
outp(PALETTE_REGISTER_WR,index);
outp(PALETTE_DATA,color->red);
outp(PALETTE_DATA,color->green);
outp(PALETTE_DATA,color->blue);

}

/* draw a colored horizontal line into the video memory location vscreen */
void h_line(int x1,int x2,int y,unsigned int color,unsigned char far *vscreen){

_fmemset((char*)(vscreen+((y<<8)+(y<<6))+x1),color,x2-x1+1);
}
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/* draw a colored vertical line into the video memory location vscreen */
void v_line(int y1,int y2,int x,unsigned int color,unsigned char far *vscreen){

unsigned int line_offset;
int index;
line_offset=((y1<<8)+(y1<<6))+x; /* pixel location in memory */
for(index=0;index<=(y2-y1);index++){ /* for each row in the line */

vscreen[line_offset]=color; /* set pixel value in memory */
line_offset+=320; /* increment to next line */

}
}

/* draw a colored line from point p1 to p2 into video memory location vscreen */
void line(int x1,int y1,int x2,int y2,unsigned int color,unsigned char far *vscreen){
 int i,d1x,d1y,d2x,d2y,u,s,v,m,n;
 u=x2-x1; /* overall ‘run’ of the line */
 v=y2-y1; /* overall ‘rise’ of the line */
 d1x=sgn(u); /* line top-to-bottom or bottom-to-top */
 d1y=sgn(v); /* line left-to-right or right-to-left */
 d2x=sgn(u); /* line top-to-bottom or bottom-to-top */
 d2y=0;
 m=abs(u);
 n=abs(v);
 if(m<=n){ /* if |slope| < 1 */
  d2x=0;
  d2y=sgn(v);
  m=abs(v);
  n=abs(u);
 }
 s=m/2;
 for(i=0;i<(m+1);i++){
  /* plot single pixel on the screen (only if within screen bounds) */
  if(y1>=0 && y1<=199 && x1>=0 && x1 <= 319) vscreen[(y1<<8)+(y1<<6)+x1]=color;
  s += n;
  /* increment to next pixel location */
  if(s>=m){

s -= m;
x1 += d1x;
y1 += d1y;

  }
  else{

x1 += d2x;
y1 += d2y;

  }
 }
}

/* draw a colored line from point p1 to p2 into video memory location vscreen */
void map_line(POINT p1,POINT p2,unsigned int color,unsigned char far *vscreen){
 int i,d1x,d1y,d2x,d2y,u,s,v,m,n,x1,y1,x2,y2;
 x1=(int)p1.x; /* starting x point */
 y1=(int)p1.y; /* starting y point */
 x2=(int)p2.x; /* stopping x point */
 y2=(int)p2.y; /* stopping y point */
 u=x2-x1; /* overall ‘run’ of the line */
 v=y2-y1; /* overall ‘rise’ of the line */
 d1x=sgn(u); /* line top-to-bottom or bottom-to-top */
 d1y=sgn(v); /* line left-to-right or right-to-left */
 d2x=sgn(u); /* line top-to-bottom or bottom-to-top */
 d2y=0;
 m=abs(u);
 n=abs(v);
 if(m<=n){ /* if |slope| < 1 */
  d2x=0;
  d2y=sgn(v);
  m=abs(v);
  n=abs(u);
 }
 s=m/2;
 for(i=0;i<(m+1);i++){
  /* plot single pixel on the screen (only if within map bounds) */
  if(y1 > MBULY && y1 < MBLRY && x1 > MBULX && x1 < MBLRX){
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vscreen[(y1<<8)+(y1<<6)+x1]=color;
  }
  s += n;
  /* increment to next pixel location */
  if(s>=m){

s -= m;
x1 += d1x;
y1 += d1y;

  }
  else{

x1 += d2x;
y1 += d2y;

  }
 }
}

/* return the sign of a */
int sgn(int a){
 if(a>0) return 1;
 if(a<0) return -1;
 return 0;
}

/* draw a solid colored box */
void fill_box(int sx,int sy,int width,int height,unsigned int color,unsigned char far *vscreen){
 int offset,i;
 offset=(sy<<8) + (sy<<6) + sx;
 for(i=sy;i<sy+height;i++){
  _fmemset((char*)(vscreen+offset),color,width);
  offset+=320;
 }
}

/* fill the entire screen with a given color */
void fill_screen(unsigned int color, unsigned char far *vscreen){

int i;
for(i=0;i<200;i++) _fmemset((char*)(vscreen+(i<<8)+(i<<6)),color,320);

}

/* put a single pixel on the screen */
void blit_bit(int x,int y,unsigned int color,unsigned char far *vscreen){
 vscreen[(y<<8)+(y<<6)+x]=color;
}

/* set the screen to vga mode */
void set_vga(void){

asm{
pusha
mov ax,0x0013
int 0x10
popa

}
}

/* set the screen to text mode */
void set_text(void){

asm{
pusha
mov ax,0x0003
int 0x10
popa

}
}

/* setup the palette colors for this application */
void set_pallette(void){

RGB_color color;
color.red=0;
color.green=0;
color.blue=0;
Set_Palette_Register(BLACK,&color);
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color.red=255;
Set_Palette_Register(RED,&color);
color.green=255;
Set_Palette_Register(YELLOW,&color);
color.red=0;
Set_Palette_Register(GREEN,&color);
color.blue=255;
Set_Palette_Register(CYAN,&color);
color.green=0;
Set_Palette_Register(BLUE,&color);
color.red=255;
Set_Palette_Register(MAGENTA,&color);
color.green=255;
Set_Palette_Register(WHITE,&color);

}

/* put a single colored character on the screen an location (xc, yc) */
void blit_char(int xc,int yc,char c,int color,unsigned char far *vscreen){

int offset,x,y;
unsigned char far *work_char;
unsigned char bit_mask=0x80;
work_char=rom_char_set+c*CHAR_HEIGHT; /* get offset position into rom */
offset=(yc<<8)+(yc<<6)+xc; /* get offset position on the screen */
for(y=0;y<CHAR_HEIGHT;y++){

bit_mask=0x80;
for(x=0;x<CHAR_WIDTH;x++){

/* put the character on the screen bit-by-bit */
if((*work_char & bit_mask)) vscreen[offset+x]=(unsigned char)(color);
bit_mask=(bit_mask>>1);

}
offset += SCREEN_WIDTH;
work_char++;

}
}

/* initialize the DaqBook to the desired mode */
void init_daqbook(void){

daqSetErrHandler(daq_error);          /* establish error handler */
daqInit(LPT1, 7);                     /* connect to daqboook */
daqAdcSetTag(0);                      /* disable tagged ADC data */
daqCtrSetMasterMode(1,DcsF5,0,0,0);   /* set counter master mode */
/* string counter 1 and 2 for 32-bit event counting */
daqCtrSetCtrMode(1,DgcNoGating,1,DcsSrc1,0,0,1,0,1,DocInactiveLow);
daqCtrSetCtrMode(2,DgcNoGating,1,0,0,0,1,0,1,DocInactiveLow);
daqCtrSetLoad(1,0);
daqCtrSetLoad(2,0);
daqCtrMultCtrl(DmccLoad, 1, 1, 0, 0, 0);
daqCtrMultCtrl(DmccArm, 1, 1, 0, 0, 0);

}

/* error callback function for the DaqBook functions */
void _far _pascal daq_error(int error_code){

clrscr();
printf("\nError! Program aborted\nDaqBook/100 Error: 0x%x\n",error_code);
farfree(old_data);
exit(1);

}

/* detect GPS receiver and synchronize PC time to it */
void pc_set_to_gps(void){

int i=0;
gps_found=1;
for(i=0;i<5000 && !get_gps_data();i++) delay(1);
if(i<5000) settime(&gps_time);
else{ /* no gps receiver found - do not collect data from it */

gps_found=0;
}

}

/* get the time from the PC BIOS */
void get_pc_time(void){
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gettime(&pc_time);
hour = pc_time.ti_hour;
min = pc_time.ti_min;
sec = pc_time.ti_sec;
pc_seconds = hour * 3600 + min * 60 + sec;

}

/* get the odometer reading from the DaqBook and compute relative distance */
void get_odometer_count(void){

unsigned int count;
unsigned long new_total;
daqCtrMultCtrl(DmccSave, 1, 1, 0, 0, 0);
daqCtrGetHold(2, &count);
new_total = count;
new_total *= 0x10000L;
daqCtrGetHold(1, &count);
new_total += count;
odometer_sample = new_total - odometer_total;
odometer_total = new_total;

}

/* detect a user key press */
void get_user_key(void){

if (!kbhit()){
user_key=0;
return;

}
user_key=getch();

}

/* decode the raw GPS message into useable data */
void Pos_Status_Data_Decode(unsigned char *Status_Message,
T_POS_CHAN_STATUS *pos_chan, char scan_mode){
  UNSIGNED_ONEBYTE i;
  UNSIGNED_ONEBYTE tempchar;
  UNSIGNED_FOURBYTE tempu4byte;
  FOURBYTE temps4byte;
  double degrees, minutes;
  int message_posn = 0;

  /* skip first 4 bytes (@@Ba) */
  message_posn = 4;

  /* read and scale the rest of the data */
  pos_chan->month = Status_Message[message_posn++];
  pos_chan->day   = Status_Message[message_posn++];
  tempchar = Status_Message[message_posn++];
  pos_chan->year = ( tempchar << 8 ) + Status_Message[message_posn++];
  pos_chan->hours    = Status_Message[message_posn++];
  pos_chan->minutes  = Status_Message[message_posn++];
  tempchar   = Status_Message[message_posn++];  /* integer seconds */

  PACK8(    Status_Message[message_posn],
Status_Message[message_posn+1],
Status_Message[message_posn+2],
Status_Message[message_posn+3],
tempu4byte);

  message_posn += 4;
  pos_chan->seconds = (double) tempchar + ( ( (double) tempu4byte ) / 1.0E+9 );
  if (scan_mode != 0) return;    /* do not include position data unless asked */

  PACK8(    Status_Message[message_posn],
Status_Message[message_posn+1],
Status_Message[message_posn+2],
Status_Message[message_posn+3],
temps4byte);

  message_posn += 4;
  gps_latitude = temps4byte;
  degrees = (double) temps4byte * MSECS_TO_DEGREES ;
  pos_chan->latitude.degrees = (TWOBYTE) degrees ;
  if ( degrees < 0 )
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  degrees = fabs ( degrees ) ;
  minutes =  ( degrees - (TWOBYTE) degrees ) * 60.0 ;
  pos_chan->latitude.minutes = (TWOBYTE) ( minutes ) ;
  pos_chan->latitude.seconds = ( minutes - (TWOBYTE) minutes ) * 60.0 ;

  PACK8(    Status_Message[message_posn],
Status_Message[message_posn+1],
Status_Message[message_posn+2],
Status_Message[message_posn+3],
temps4byte);

  message_posn += 4;
  gps_longitude = temps4byte;
  degrees = (double) temps4byte * MSECS_TO_DEGREES ;
  pos_chan->longitude.degrees = (TWOBYTE) degrees ;
  if ( degrees < 0 ) degrees = fabs ( degrees ) ;
  minutes = ( degrees - (TWOBYTE) degrees ) * 60.0 ;
  pos_chan->longitude.minutes = (TWOBYTE) ( minutes ) ;
  pos_chan->longitude.seconds = ( minutes - (TWOBYTE) minutes ) * 60.0 ;
  templong=pos_chan->longitude.seconds+pos_chan->longitude.minutes*60.0+

abs(pos_chan->longitude.degrees)*3600.0;
  gps_longitude=(long)(templong*1000.0);
  if(pos_chan->longitude.degrees<0.0) gps_longitude=0-gps_longitude;

  PACK8(Status_Message[message_posn],
Status_Message[message_posn+1],
Status_Message[message_posn+2],
Status_Message[message_posn+3],
temps4byte);

  message_posn += 4;
  pos_chan->datum_height = (double) temps4byte / 100.0 ;

  PACK8(Status_Message[message_posn],
Status_Message[message_posn+1],
Status_Message[message_posn+2],
Status_Message[message_posn+3],
temps4byte);

  message_posn += 4;
  pos_chan->msl_height = (double) temps4byte / 100.0 ;
  tempchar = Status_Message[message_posn++];
  pos_chan->velocity = (double)((tempchar<<8)+Status_Message[message_posn++])/100.0;
  tempchar = Status_Message[message_posn++];
  pos_chan->heading = (double)((tempchar<<8)+Status_Message[message_posn++])/10.0;
  tempchar = Status_Message[message_posn++];
  pos_chan->current_dop = (double)((tempchar<<8)+Status_Message[message_posn++])/10.0;
  pos_chan->dop_type     = Status_Message[message_posn++];
  pos_chan->visible_sats = Status_Message[message_posn++];
  pos_chan->sats_tracked = Status_Message[message_posn++];
  for (i = 0; i < NUM_CHANNELS; i++) {

 pos_chan->channel[i].svid     = Status_Message[message_posn++];
 pos_chan->channel[i].mode     = Status_Message[message_posn++];
 pos_chan->channel[i].strength = Status_Message[message_posn++];
 pos_chan->channel[i].flags    = Status_Message[message_posn++];

  }
  pos_chan->rcvr_status = Status_Message[message_posn++];

}

/* draw the border lines around the main map view */
void draw_map_border(unsigned int color,unsigned char far *vscreen){
 h_line(MBULX,MBLRX,MBULY,color,vscreen);
 h_line(MBULX,MBLRX,MBLRY,color,vscreen);
 v_line(MBULY,MBLRY,MBULX,color,vscreen);
 v_line(MBULY,MBLRY,MBLRX,color,vscreen);
}

/* draw the border lines around the sensor boxes */
void draw_sensor_border(unsigned int color,unsigned char far *vscreen){
 h_line(SBULX,SBLRX,SBULY,color,vscreen);
 h_line(SBULX,SBLRX,SBLRY,color,vscreen);
 v_line(SBULY,SBLRY,SBULX,color,vscreen);
 v_line(SBULY,SBLRY,SBLRX,color,vscreen);
}
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/* draw the border lines around the GPS info region */
void draw_gps_border(unsigned int color,unsigned char far *vscreen){
 h_line(GBULX,GBLRX,GBULY,color,vscreen);
 h_line(GBULX,GBLRX,GBLRY,color,vscreen);
 v_line(GBULY,GBLRY,GBULX,color,vscreen);
 v_line(GBULY,GBLRY,GBLRX,color,vscreen);
}

/* draw the border around each of the individual sensor boxes */
void draw_guage_border(unsigned int color,unsigned char far *vscreen){
 int i,tcol,ticol;
 if(color==BACKGNDCOL) ticol=BACKGNDCOL;
 else ticol=BROWN;
 for(i=0;i<5;i++){
  if(i==(curr_guage-1) && color!=BACKGNDCOL) tcol=BORDERSELECTCOL;
  else tcol=color;
  h_line(SBULX+SENOFFX+(i*SENSPACE)+1,SBULX+SENOFFX+SENWIDTH+(i*SENSPACE),

SBULY+SENOFFY,tcol,vscreen);
  h_line(SBULX+SENOFFX+(i*SENSPACE)+1,SBULX+SENOFFX+SENWIDTH+(i*SENSPACE),

SBULY+SENOFFY+SENHEIGHT,tcol,vscreen);
  v_line(SBULY+SENOFFY,SBULY+SENOFFY+SENHEIGHT,SBULX+SENOFFX+(i*SENSPACE)+1,

tcol,vscreen);
  v_line(SBULY+SENOFFY,SBULY+SENOFFY+SENHEIGHT,

SBULX+SENOFFX+(i*SENSPACE)+SENWIDTH,tcol,vscreen);
  v_line(SBULY+SENOFFY+(int)(((5000.0-sen_high[i])*SENHEIGHT)/5000.0),

SBULY+SENOFFY+(int)(((5000.0-sen_low[i])*SENHEIGHT)/5000.0),
SBULX+SENOFFX+(i*SENSPACE),ticol,vscreen);

 }
}

/* plot a string to the output window starting at position sx, sy */
void blit_string(int sx,int sy,char* str,unsigned int color,unsigned char far* vscreen){
 int i=0;
 while(str[i]!=0){
  blit_char(sx,sy,str[i],color,vscreen);
  sx+=8;
  i++;
 }
}

/* draw a bar representing one of the sensor values */
void draw_sensor_vals(unsigned int color,unsigned char far *vscreen){
 int i,offset;
 for(i=0;i<5;i++){
  if(sen_val[i]<=sen_high[i] && sen_val[i]>=sen_low[i]){

offset=(int)(((float)(sen_high[i]-sen_val[i])/
 (float)(sen_high[i]-sen_low[i]))*(float)(SENHEIGHT-2))+1;

h_line(SBULX+SENOFFX+(i*SENSPACE)+2,SBULX+SENOFFX+SENWIDTH+(i*SENSPACE)-1,
 SBULY+SENOFFY+offset,color,vscreen);

  }
 }
}

/* draw border around satellite signal strength indicators */
void draw_strength_border(unsigned int color,unsigned char far *vscreen){
 int i;
 for(i=0;i<6;i++){
  h_line(GBULX+STROFFX+(i*STRSPACE),GBULX+STROFFX+STRWIDTH+(i*STRSPACE),

GBULY+STROFFY,color,vscreen);
  h_line(GBULX+STROFFX+(i*STRSPACE),GBULX+STROFFX+STRWIDTH+(i*STRSPACE),

GBULY+STROFFY+STRHEIGHT,color,vscreen);
  v_line(GBULY+STROFFY,GBULY+STROFFY+STRHEIGHT,GBULX+STROFFX+(i*STRSPACE),

color,vscreen);
  v_line(GBULY+STROFFY,GBULY+STROFFY+STRHEIGHT,

GBULX+STROFFX+(i*STRSPACE)+STRWIDTH,color,vscreen);
 }
}

/* draw current satellite strength bar */
void draw_strength_vals(unsigned int color,unsigned char far *vscreen){
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 int i,offset;
 for(i=0;i<6;i++){
   offset=(int)(((float)(STRUPPER-strength[i])/

 (float)(STRUPPER-STRLOWER))*(float)(STRHEIGHT-2))+1;
   h_line(GBULX+STROFFX+(i*STRSPACE)+1,GBULX+STROFFX+STRWIDTH+(i*STRSPACE)-1,

 GBULY+STROFFY+offset,color,vscreen);
 }
}

/* put a bitmap with width, height at position sx, sy */
void put_box(int sx,int sy,int width,int height,unsigned char* box, unsigned char far* vscreen){
 int vsoff,i,j,boxoff;
 boxoff=0;
 vsoff=(sy<<6) + (sy<<8) + sx;
 for(i=0;i<height;i++){
  for(j=0;j<width;j++) vscreen[vsoff+j]=box[boxoff++];
  vsoff+=320;
 }
}

/* get a bitmap with width, height at position sx, sy */
void get_box(int sx,int sy,int width,int height,unsigned char* box, unsigned char far* vscreen){
 int vsoff,i,j,boxoff;
 boxoff=0;
 vsoff=(sy<<6) + (sy<<8) + sx;
 for(i=0;i<height;i++){
  for(j=0;j<width;j++) box[boxoff++]=vscreen[vsoff+j];
  vsoff+=320;
 }
}

/* new GPS data collected – draw new values and indicators on the screen */
void new_gps_stuff(void){
 int i;
 draw_strength_vals(BACKGNDCOL,vscreen);
 for(i=0;i<6;i++) strength[i]=GPS_chan.channel[i].strength;
 draw_strength_vals(YELLOW,vscreen);
 if(old_gps_valid!=gps_valid){
  if(gps_valid) fill_box(GPSVALPOSX,GPSVALPOSY,GPSVALWIDTH,GPSVALHEIGHT,GREEN,vscreen);
  else fill_box(GPSVALPOSX,GPSVALPOSY,GPSVALWIDTH,GPSVALHEIGHT,RED,vscreen);
  old_gps_valid=gps_valid;
 }
 if(old_sats_tracked!=GPS_chan.sats_tracked){
  blit_char(SATTRKPOSX,SATTRKPOSY,old_sats_tracked+'0',BACKGNDCOL,vscreen);
  old_sats_tracked=GPS_chan.sats_tracked;
  blit_char(SATTRKPOSX,SATTRKPOSY,old_sats_tracked+'0',TEXTCOL,vscreen);
 }
}

/* convert a lat/long point to screen coordinates */
POINT ll_to_screen(POINT llp){
 int offx,offy;
 POINT retval;
 offx=(int)(((float)(MBLRX-MBULX)/(float)(maplrlong-mapullong))*(float)(llp.x-mapullong));
 offy=(int)(((float)(MBLRY-MBULY)/(float)(mapullat-maplrlat))*(float)(mapullat-llp.y));
 retval.x=MBULX+offx;
 retval.y=MBULY+offy;
 return retval;
}
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/* return 1 if point p is in the map view, else return 0 */
int in_view(POINT p){
 if(p.x>=mapullong && p.x<=maplrlong &&p.y<=mapullat && p.y>=maplrlat) return 1;
 return 0;
}

/* close all files, free all allocated data, and exit the program */
void goodbye(int usage){
 if(log_file!=NULL) fclose(log_file);
 if(gps_file!=NULL) fclose(gps_file);
 if(map_file!=NULL) fclose(map_file);
 if(cfg_file!=NULL) fclose(cfg_file);
 if(key_file!=NULL) fclose(key_file);
 if(debug!=NULL) fclose(map_file);
 if(old_data!=NULL) farfree(old_data);
 if(map_roads!=NULL) farfree(map_roads);
 if(map_segments!=NULL) farfree(map_segments);
 /* print a little message if usage flag is set */
 if(usage){
  printf("Usage:\n");
  printf("   'maplog {-p/-l} filename [-m mapfile] [-novga]' (no extensions)\n");
  printf("Exiting . . .\n");
 }
 exit(0);
}

/* draw all of the map lines in the map window */
void draw_map(unsigned int color,unsigned char far* vscreen){
 int i;
 for(i=0;i<num_map_segments;i++){
  if(in_view(map_segments[i].p1) || in_view(map_segments[i].p2))

map_line(ll_to_screen(map_segments[i].p1),ll_to_screen(map_segments[i].p2),
color,vscreen);

 }
}
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D.2 Windows Program Listings

The Windows 95/98/NT program that was written for this thesis was used primarily to

process the previously collected data using the implemented filter, and to generate and display

the filtered output. This program used a simple dialog based application structure to view the

data from the GPS and inertial sensors, and displayed the map and processed output in a separate

graphical display window.

The program follows the basic flow as shown in Figure 6.2 on page 43, with the inputs

being from the hard drive (pre-collected data) and the output to the screen. The methods which

operate at 1 Hz and 100 Hz are Filter1Hz and Filter100Hz, respectively. The OnIdle

method is called by Windows and performs the necessary synchronization of Filter1Hz and

Filter100Hz. Listed below are several of these functions that actually did the filtering and

fusion in the program. The program contains a large amount of graphical interface code that is

not relevant to the operation of the filter, and has therefore been omitted from this listing.

// OnIdle is called by Windows when it is not doing anything else
BOOL CPostViewApp::OnIdle(LONG lCount)
{
if(m_pMainPage->m_RunCheckVar) // if running

{
m_RunCount++;
// read next sensor value from file -> time data is global time
if(m_pLogFile->Read(&m_CurrSensorData,sizeof(T_LOG_DATA))

!=sizeof(T_LOG_DATA))
{

m_pMainPage->SetRunState(FALSE);
return TRUE;

}
// first time execution: read GPS value no matter what
if(!m_NextGPSTime)
{

// set the current GPS data to the first GPS data in the file,
//  even if it isn't quite time yet
if(m_pGPSFile->Read(&m_NextGPSTime,sizeof(unsigned int))!=

sizeof(unsigned int))
{

m_pMainPage->SetRunState(FALSE);
return TRUE;

}
m_pGPSFile->Read(&m_NextGPSData,sizeof(T_POS_CHAN_STATUS));
memcpy(&m_CurrGPSData,&m_NextGPSData,sizeof(T_POS_CHAN_STATUS));
m_CurrGPSTime = m_NextGPSTime;
m_GPSLatitude=(int)((m_CurrGPSData.latitude.seconds+

m_CurrGPSData.latitude.minutes*60.0+
abs(m_CurrGPSData.latitude.degrees)*3600.0)*1000.0)*
SGN((m_CurrGPSData.latitude.degrees));

m_GPSLongitude=(int)((m_CurrGPSData.longitude.seconds+
m_CurrGPSData.longitude.minutes*60.0+
abs(m_CurrGPSData.longitude.degrees)*3600.0)*1000.0)*
SGN((m_CurrGPSData.longitude.degrees));

if((m_CurrGPSData.rcvr_status & 0x43) ||



111

!(m_CurrGPSData.rcvr_status & 0x30))
m_GPSGood = FALSE;

else m_GPSGood = TRUE;
m_pGPSPage->m_GoodGPSCheckVar = m_GPSGood;
m_pGPSPage->UpdateContents();

}
// run Filter100Hz (for sensor data) -> update sensor page
if(m_pMainPage->m_HertzEditVar &&

!(m_RunCount%(m_pMainPage->m_HertzEditVar/10)))
m_pSensorPage->UpdateContents();

else if(!(m_RunCount%50)) m_pSensorPage->UpdateContents();

Filter100Hz(); // execute the inertial sensor filter

// if time on sensor>=next GPS time (synchronize GPS and inertial data)
if(m_CurrSensorData.ticks>=m_NextGPSTime)
{

//    copy m_NextGPSData to m_CurrGPSData
memcpy(&m_CurrGPSData,&m_NextGPSData,sizeof(T_POS_CHAN_STATUS));
m_CurrGPSTime = m_NextGPSTime;
//    update m_GPSLatitude, m_GPSLongitude, and m_GPSGood
m_GPSLatitude=(int)((m_CurrGPSData.latitude.seconds+

m_CurrGPSData.latitude.minutes*60.0+
abs(m_CurrGPSData.latitude.degrees)*3600.0)*1000.0)*
SGN((m_CurrGPSData.latitude.degrees));

m_GPSLongitude=(int)((m_CurrGPSData.longitude.seconds+
m_CurrGPSData.longitude.minutes*60.0+
abs(m_CurrGPSData.longitude.degrees)*3600.0)*1000.0)*
SGN((m_CurrGPSData.longitude.degrees));

if((m_CurrGPSData.rcvr_status & 0x43) ||
!(m_CurrGPSData.rcvr_status & 0x30))

m_GPSGood = FALSE;
else m_GPSGood = TRUE;
//    update GPS page (w/ new current GPS data)
m_pGPSPage->m_GoodGPSCheckVar = m_GPSGood;
m_pMapDlg->

PlotRawGPS(CPoint(m_GPSLongitude,m_GPSLatitude),m_GPSGood);
// -> update output window
m_pGPSPage->UpdateContents();
//    Filter1Hz (for GPS data)
if(!m_Fuzzy) Filter1Hz(); // use rule-based fusion
else Fuzzy1Hz(); // use fuzzy fusion
//    read next GPS data into m_NextGPSData
if(m_pGPSFile->Read(&m_NextGPSTime,sizeof(unsigned int))

!=sizeof(unsigned int))
{

m_pMainPage->SetRunState(FALSE);
return TRUE;

}
m_pGPSFile->Read(&m_NextGPSData,sizeof(T_POS_CHAN_STATUS));

}
// sleep to effect a pseudo-accurate timing
if(m_pMainPage->m_HertzEditVar) Sleep(1000/(m_pMainPage->m_HertzEditVar));

}
else Sleep(100); // keep from bogging down system in tight loop

return TRUE; // return TRUE so that OnIdle is called again
}
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void CPostViewApp::InitFilter(void)
{

int i,j;
// do anything related to initializing the filter here
// (just to distinguish filter related initialization)

// allocate vectors and matrices
xk = vector(1,8);
xkm1 = vector(1,8);
yk = vector(1,2);
Ak = matrix(1,8,1,8);
Kk = matrix(1,8,1,2);
C = matrix(1,2,1,8);
Pk = matrix(1,8,1,8);
Pk1 = matrix(1,8,1,8);
Pkm1 = matrix(1,8,1,8);
R = matrix(1,2,1,2);
Q = matrix(1,8,1,8);
mtemp1=matrix(1,8,1,8);
mtemp2=matrix(1,8,1,8);
mtemp3=matrix(1,2,1,8);
mtemp4=matrix(1,2,1,2);
mtemp5=matrix(1,2,1,2);
mtemp6=matrix(1,2,1,2);
mtemp7=matrix(1,8,1,2);
mtemp8=matrix(1,2,1,8);
mtemp9=vector(1,2);
mtemp10=vector(1,2);
mtemp11=vector(1,8);
mtemp12=vector(1,8);
mtemp13=matrix(1,8,1,8);
mtemp14=matrix(1,8,1,8);

// fill in intial values for Ak,C,Pkm1,Q,R
// leave xkm1 all 0's until good GPS

// initialize state transition matrix
for(i=1;i<=8;i++) for(j=1;j<=8;j++) Ak[i][j]=Pkm1[i][j]=Q[i][j]=0;
for(i=1;i<=2;i++)
{

for(j=1;j<=2;j++) R[i][j]=0;
for(j=1;j<=8;j++) C[i][j]=0;

}
for(i=1;i<=8;i++) Ak[i][i]=1;
Ak[3][4] = DELTA_TIME;
Ak[3][5] = SQR(DELTA_TIME)/2;
Ak[4][5] = DELTA_TIME;
Ak[6][7] = DELTA_TIME;
Ak[6][8] = SQR(DELTA_TIME)/2;
Ak[7][8] = DELTA_TIME;
// initialize observation matrix
C[1][4] = 1;
C[2][6] = 1;
// initialize variance of initial errors in Pkm1
for(i=1;i<=8;i++) Pkm1[i][i] = 0.02;
// initialize measurement noise matrix (R)
R[1][1] = 2.618;
R[2][2] = 0.00251;
// initialize state noise matrix (Q)
//for(i=1;i<=8;i++) Q[i][i] = 0.05;
Q[1][1] = 7000;
Q[2][2] = 7000;
Q[3][3] = 30;
Q[4][4] = 2;
Q[5][5] = 0.856;
Q[6][6] = 0.0463;
Q[7][7] = 0.0533;
Q[8][8] = 0.0304;

m_CurrHeading = 0;
for(i=0;i<HEADING_FILT_SIZE;i++) m_HeadingFilt[i]=0;
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// initialize variables representing physical constants, conversions, etc
m_fInitGPS = FALSE;
m_fxkValid = FALSE;
m_NextGPSTime = 0;
m_RunCount = 0;
old_odo_total = 0;
m_MvoltPerDegree = 9.5;
m_TicksPerMeter = 27.3;
m_GyroCenter = 3069.0;
m_SteerCenter = 2919.8;
m_GPSVelocityThreshold=2.8;
m_GPSPosWeight=0.04;
m_GPSHeadingWeight=0.6;
m_GPSPosThreshold=(3.0E8);
m_MaxDistPer100 = 0.45;
m_NumGoodNoWeight=0;
odo_zero_count = 0;
m_GPSNoUpdateThresh=30;
m_GPSNoUpdateThresh2=3000;
meters_to_msec_long=meters_to_msec_lat=0;
filter_count=0;

// Initialize fuzzy variables
GPSToCurrDist.SetNumMembers(3);
GPSToCurrDist.SetMemberFunc(SMALL_3,0,0,1.5E7,2.0E7); // SMALL_3
GPSToCurrDist.SetMemberFunc(MED_3,1.0E7,5.0E7,1.0E8,3.5E8); // MED_3
GPSToCurrDist.SetMemberFunc(LARGE_3,2.0E8,3.0E8,10.0E12,10.0E12); // LARGE_3
GPSCurrVelocity.SetNumMembers(3);
GPSCurrVelocity.SetMemberFunc(SLOW_3,0,0,2.0,2.5); // SLOW_3
GPSCurrVelocity.SetMemberFunc(MED_3,2.0,2.5,3.0,3.5); // MED_3
GPSCurrVelocity.SetMemberFunc(FAST_3,2.5,3.0,500.0,500.0); // FAST_3
GPSHeadWeight.SetNumMembers(5);
GPSHeadWeight.SetMemberFunc(ZERO_5,0,0,0.03,0.05); // ZERO_5
GPSHeadWeight.SetMemberFunc(SMALL_5,0.02,0.05,0.25,0.3); // SMALL_5
GPSHeadWeight.SetMemberFunc(MED_5,0.25,0.3,0.4,0.5); // MED_5
GPSHeadWeight.SetMemberFunc(LARGE_5,0.4,0.5,0.8,0.95); // LARGE_5
GPSHeadWeight.SetMemberFunc(ONE_5,0.9,0.95,1,1); // ONE_5
GPSPosWeight.SetNumMembers(5);
GPSPosWeight.SetMemberFunc(ZERO_5,0,0,0.001,0.001); // ZERO_5
GPSPosWeight.SetMemberFunc(SMALL_5,0,0.002,0.015,0.02); // SMALL_5
GPSPosWeight.SetMemberFunc(MED_5,0.015,0.02,0.02,0.03); // MED_5
GPSPosWeight.SetMemberFunc(LARGE_5,0.02,0.03,0.05,0.10); // LARGE_5
GPSPosWeight.SetMemberFunc(ONE_5,0.999,0.999,1,1); // ONE_5
NumNoGood.SetNumMembers(3);
NumNoGood.SetMemberFunc(SMALL_3,0,0,25,35); // SMALL_3
NumNoGood.SetMemberFunc(MED_3,25,35,2500,3500); // MED_3
NumNoGood.SetMemberFunc(LARGE_3,2500,3500,1000000,1000000); // LARGE_3
DistRatio.SetNumMembers(2);
DistRatio.SetMemberFunc(SMALL_2,0,0,1.0,1.5); // SMALL_2
DistRatio.SetMemberFunc(LARGE_2,1.0,1.5,1000000,1000000); // LARGE_2

m_FilterInitialized = TRUE;
}
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void CPostViewApp::StopFilter(void)
{

// free all of the allocated matrices
free_vector(xk,1,8);
free_vector(xkm1,1,8);
free_vector(yk,1,2);
free_matrix(Ak,1,8,1,8);
free_matrix(Kk,1,8,1,2);
free_matrix(C,1,2,1,8);
free_matrix(Pk,1,8,1,8);
free_matrix(Pk1,1,8,1,8);
free_matrix(Pkm1,1,8,1,8);
free_matrix(R,1,2,1,2);
free_matrix(Q,1,8,1,8);
free_matrix(mtemp1,1,8,1,8);
free_matrix(mtemp2,1,8,1,8);
free_matrix(mtemp3,1,2,1,8);
free_matrix(mtemp4,1,2,1,2);
free_matrix(mtemp5,1,2,1,2);
free_matrix(mtemp6,1,2,1,2);
free_matrix(mtemp7,1,8,1,2);
free_matrix(mtemp8,1,2,1,8);
free_vector(mtemp9,1,2);
free_vector(mtemp10,1,2);
free_vector(mtemp11,1,8);
free_vector(mtemp12,1,8);
free_matrix(mtemp13,1,8,1,8);
free_matrix(mtemp14,1,8,1,8);

m_FilterInitialized = FALSE;
}

// Filter1Hz is called to perform the older 'rule-based' sensor fusion when new GPS data
//  is received. Either Filter1Hz or Fuzzy1Hz is called, depending on the user selection
void CPostViewApp::Filter1Hz(void)
{

// we just 'received' new GPS data and wish to use rule-based fusion
//  (roughly 1 Hz)

if(!m_fInitGPS && m_GPSGood)
{

m_fInitGPS = TRUE;
// just got first good GPS value -> initialize position, etc.

//  in state matrix
double newhead = (90.0-m_CurrGPSData.heading);
newhead=fmod(newhead+360.0,360.0);
xkm1[1] = m_GPSLongitude;
xkm1[2] = m_GPSLatitude;
xkm1[3] = newhead;
// calculate local meters -> msec lat/long here
// first, convert latitude msec to radians
double tlat = DEG_TO_RAD(m_GPSLatitude/3600000.0);
double tsin = sin(tlat);
meters_to_msec_long = pow(1-E2*tsin*tsin,0.5)/(0.03083070*cos(tlat));
meters_to_msec_lat = pow(1-E2*tsin*tsin,1.5)/0.030715169;
m_LastGoodGPSLat = xkm1[2];
m_LastGoodGPSLong = xkm1[1];
m_LastGoodGPSDLat = 0;
m_LastGoodGPSDLong = 0;

}
else if(m_GPSGood && m_FuseData)
{

double d1 = m_GPSLongitude-xkm1[1];
double d2 = m_GPSLatitude-xkm1[2];
if((SQR(d1)+SQR(d2))<=(m_GPSPosThreshold))
{

if(m_CurrGPSData.velocity>=(m_GPSVelocityThreshold))
{

// perform median filtering on the GPS heading outputs
//  to eliminate glitches

m_HeadingFilt[m_CurrHeading]=m_CurrGPSData.heading;
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m_CurrHeading = (m_CurrHeading+1)%HEADING_FILT_SIZE;
double SortHeading[HEADING_FILT_SIZE];
for(int i=0;i<HEADING_FILT_SIZE;i++) SortHeading[i] =

m_HeadingFilt[i];
qsort(SortHeading,HEADING_FILT_SIZE,sizeof(double),dcomp);
m_GPSHeading = SortHeading[(HEADING_FILT_SIZE-1)/2];
// weighted sum of GPS position and current position

//  using resultant GPSPosWeight
xkm1[1]=(m_GPSPosWeight*m_GPSLongitude)+((1.0-

(m_GPSPosWeight))*xkm1[1]);
xkm1[2]=(m_GPSPosWeight*m_GPSLatitude)+((1.0-

(m_GPSPosWeight))*xkm1[2]);
double newhead;
// assumed heading and GPS sensor heading are

//  90 degrees out of phase and inverted
double gpshead = (90.0-m_GPSHeading);
while((xkm1[3]-gpshead)>180.0) gpshead+=360.0;
while((gpshead-xkm1[3])>180.0) gpshead-=360.0;
// weighted sum of GPS heading and current heading

//  using resultant GPSHeadingWeight
newhead = m_GPSHeadingWeight*gpshead+(1-

(m_GPSHeadingWeight))*xkm1[3];
xkm1[3] = newhead;

}
m_LastGoodGPSLat = xkm1[2];
m_LastGoodGPSLong = xkm1[1];
m_LastGoodGPSDLat = 0;
m_LastGoodGPSDLong = 0;
m_NumGoodNoWeight=0;

}
else if((++m_NumGoodNoWeight)>m_GPSNoUpdateThresh)
{

// GPS data has been valid for some time, but is far enough
//  away such that is considered inaccurate

double LastGoodGPSGPSDist = SQR(m_GPSLongitude-m_LastGoodGPSLong) +
SQR(m_GPSLatitude-m_LastGoodGPSLat);

double LastGoodGPSOdoDist = SQR(m_LastGoodGPSDLat) +
SQR(m_LastGoodGPSDLong);

if(LastGoodGPSGPSDist<=(1.25*LastGoodGPSOdoDist) ||
m_NumGoodNoWeight>m_GPSNoUpdateThresh2)

{
// we think we messed up... reinitialize position and

//  heading as if new beginning
double newhead = (90.0-m_GPSHeading);
newhead=fmod(newhead+360.0,360.0);
xkm1[1] = m_GPSLongitude;
xkm1[2] = m_GPSLatitude;
xkm1[3] = newhead;
m_NumGoodNoWeight=0;

}
}

}
// else GPS data is invalid, so ignore it altogeter

// plot the filtered position in the output window
if(m_fInitGPS && m_fxkValid) m_pMapDlg->

PlotFiltPos(CPoint(int(xk[1]),int(xk[2])));
}
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// Fuzzy1Hz is called to perform the fuzzy-based sensor fusion when new GPS data
//  is received. Either Filter1Hz or Fuzzy1Hz is called, depending on the user selection
void CPostViewApp::Fuzzy1Hz(void)
{

// we just 'received' new GPS data and wish to 'Fuzzy' fuse GPS and sensor data
//  (roughly 1 Hz)

if(!m_fInitGPS && m_GPSGood)
{

m_fInitGPS = TRUE;
// just got first good GPS value -> initialize position, etc.

//  in state matrix
double newhead = (90.0-m_CurrGPSData.heading);
newhead=fmod(newhead+360.0,360.0);
xkm1[1] = m_GPSLongitude;
xkm1[2] = m_GPSLatitude;
xkm1[3] = newhead;
// calculate local meters -> msec lat/long here
// first, convert latitude msec to radians
double tlat = DEG_TO_RAD(m_GPSLatitude/3600000.0);
double tsin = sin(tlat);
meters_to_msec_long = pow(1-E2*tsin*tsin,0.5)/(0.03083070*cos(tlat));
meters_to_msec_lat = pow(1-E2*tsin*tsin,1.5)/0.030715169;
m_LastGoodGPSLat = xkm1[2];
m_LastGoodGPSLong = xkm1[1];
m_LastGoodGPSDLat = 0;
m_LastGoodGPSDLong = 0;

}
else if(m_GPSGood && m_FuseData)
{

// fuzzy rules
// if (GPSToCurrDist is SMALL) and (GPSCurrVelocity is FAST)

//  then (GPSPosWeight is LARGE)
// if (GPSToCurrDist is MED) and (GPSCurrVelocity is FAST)

//  then (GPSPosWeight is MED)
// if (GPSToCurrDist is SMALL) and (GPSCurrVelocity is MED)

//  then (GPSPosWeight is MED)
// if (GPSToCurrDist is MED) and (GPSCurrVelocity is MED)

//  then (GPSPosWeight is SMALL)
// if (GPSToCurrDist is SMALL) and (GPSCurrVelocity is SLOW)

//  then (GPSPosWeight is SMALL)
// if (GPSToCurrDist is MED) and (GPSCurrVelocity is SLOW)

//  then (GPSPosWeight is ZERO)
// if (GPSToCurrDist is LARGE) and (NumNoGood is SMALL)

//  then (GPSPosWeight is ZERO)
// if (GPSToCurrDist is LARGE) and (NumNoGood is MED)

//  then (GPSPosWeight is ZERO)
// if (GPSToCurrDist is LARGE) and (NumNoGood is LARGE)

//  then (GPSPosWeight is ONE)
// GPSHeadWeight similar to GPSPosWeight, but with

//  different membership values
GPSToCurrDist.SetValue(SQR(m_GPSLongitude-xkm1[1])+

SQR(m_GPSLatitude-xkm1[2]));
GPSCurrVelocity.SetValue(m_CurrGPSData.velocity);
double LastGoodGPSGPSDist = SQR(m_GPSLongitude-m_LastGoodGPSLong) +

SQR(m_GPSLatitude-m_LastGoodGPSLat);
double LastGoodGPSOdoDist = SQR(m_LastGoodGPSDLat) +

SQR(m_LastGoodGPSDLong);
DistRatio.SetValue(LastGoodGPSGPSDist/LastGoodGPSOdoDist);
NumNoGood.SetValue(m_NumGoodNoWeight);
// determine m_GPSHeadingWeight and m_GPSPosWeight based on

//  fuzzy membership values

double memval;
// if (GPSToCurrDist is SMALL) and (GPSCurrVelocity is FAST)

//  then (GPSPosWeight is LARGE)
memval=MIN(GPSToCurrDist.GetMembership(SMALL_3),

GPSCurrVelocity.GetMembership(FAST_3));
GPSPosWeight.SetMembership(LARGE_5,memval);
GPSHeadWeight.SetMembership(LARGE_5,memval);
// if (GPSToCurrDist is MED) and (GPSCurrVelocity is FAST)

//  then (GPSPosWeight is MED)
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// if (GPSToCurrDist is SMALL) and (GPSCurrVelocity is MED)
//  then (GPSPosWeight is MED)

memval=MAX(
MIN(GPSToCurrDist.GetMembership(MED_3),
GPSCurrVelocity.GetMembership(FAST_3)),
MIN(GPSToCurrDist.GetMembership(SMALL_3),
GPSCurrVelocity.GetMembership(MED_3)));

GPSPosWeight.SetMembership(MED_5,memval);
GPSHeadWeight.SetMembership(MED_5,memval);
// if (GPSToCurrDist is MED) and (GPSCurrVelocity is MED)

//  then (GPSPosWeight is SMALL)
// if (GPSToCurrDist is SMALL) and (GPSCurrVelocity is SLOW)
//  then (GPSPosWeight is SMALL)
memval=MAX(
MIN(GPSToCurrDist.GetMembership(MED_3),
GPSCurrVelocity.GetMembership(MED_3)),
MIN(GPSToCurrDist.GetMembership(SMALL_3),
GPSCurrVelocity.GetMembership(SLOW_3)));

GPSPosWeight.SetMembership(SMALL_5,memval);
GPSHeadWeight.SetMembership(SMALL_5,memval);
// if (GPSToCurrDist is MED) and (GPSCurrVelocity is SLOW)

//  then (GPSPosWeight is ZERO)
// if (GPSToCurrDist is LARGE) and (NumNoGood is SMALL)

//  then (GPSPosWeight is ZERO)
// if (GPSToCurrDist is LARGE) and (NumNoGood is MED)

//  then (GPSPosWeight is ZERO)
memval=MAX3(

MIN(GPSToCurrDist.GetMembership(LARGE_3),
NumNoGood.GetMembership(MED_3)),
MIN(GPSToCurrDist.GetMembership(LARGE_3),
NumNoGood.GetMembership(SMALL_3)),

MIN(GPSToCurrDist.GetMembership(MED_3),
GPSCurrVelocity.GetMembership(SLOW_3)));

GPSPosWeight.SetMembership(ZERO_5,memval);
GPSHeadWeight.SetMembership(ZERO_5,memval);
// if (GPSToCurrDist is LARGE) and (NumNoGood is LARGE)

//  then (GPSPosWeight is ONE)
memval=
MIN(GPSToCurrDist.GetMembership(LARGE_3),
NumNoGood.GetMembership(LARGE_3));

GPSPosWeight.SetMembership(ONE_5,memval);
GPSHeadWeight.SetMembership(ONE_5,memval);

// get de-fuzzified output weighting values
m_GPSHeadingWeight = GPSHeadWeight.GetValue();
m_GPSPosWeight = GPSPosWeight.GetValue();

// use threshold to determine if the data was fused significantly
if(m_GPSPosWeight<0.025) m_NumGoodNoWeight++;
else m_NumGoodNoWeight=0;

// perform median filtering on the GPS heading
//  outputs to eliminate glitches

m_HeadingFilt[m_CurrHeading]=m_CurrGPSData.heading;
m_CurrHeading = (m_CurrHeading+1)%HEADING_FILT_SIZE;
double SortHeading[HEADING_FILT_SIZE];
for(int i=0;i<HEADING_FILT_SIZE;i++) SortHeading[i] = m_HeadingFilt[i];
qsort(SortHeading,HEADING_FILT_SIZE,sizeof(double),dcomp);
m_GPSHeading = SortHeading[(HEADING_FILT_SIZE-1)/2];
// weighted sum of GPS position and current position

//  using resultant GPSPosWeight
xkm1[1]=(m_GPSPosWeight*m_GPSLongitude)+((1.0-m_GPSPosWeight)*xkm1[1]);
xkm1[2]=(m_GPSPosWeight*m_GPSLatitude)+((1.0-m_GPSPosWeight)*xkm1[2]);
// assumed heading and GPS sensor heading are 90 degrees

//  out of phase and inverted
double gpshead = (90.0-m_GPSHeading);
// get GPS heading and current heading within 180 degrees

//  and both positive
//  so the average does not suffer from wrap-around errors
while((xkm1[3]-gpshead)>180.0) gpshead+=360.0;
while((gpshead-xkm1[3])>180.0) gpshead-=360.0;
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// weighted sum of GPS heading and current heading
//  using resultant GPSHeadingWeight

xkm1[3] = m_GPSHeadingWeight*gpshead+(1-m_GPSHeadingWeight)*xkm1[3];
}
// else GPS data is invalid, so ignore it altogether

// plot the filtered position in the output window
if(m_fInitGPS && m_fxkValid) m_pMapDlg->

PlotFiltPos(CPoint(int(xk[1]),int(xk[2])));
}

// Filter100Hz is called whenever a new inertial sensor value is
//  acquired. This is independent
//  of the method of GPS/INS fusion being used. This is primarily just a Kalman filter
void CPostViewApp::Filter100Hz(void)
{

// we just 'sampled' our sensors (at 100 Hz)
if(m_fInitGPS)
{

// perform extended kalman filter interation
// -> put measurement variables into yk
//    (yk[1] = dtheta and yk[2] = odo_measure)
double dtheta1 = ((m_GyroCenter-m_CurrSensorData.gyro1)/m_MvoltPerDegree);
double odo_measure = (m_CurrSensorData.odometer_total-

old_odo_total)/m_TicksPerMeter;
if(odo_measure<0 || odo_measure>m_MaxDistPer100) odo_measure=0;
old_odo_total=m_CurrSensorData.odometer_total;
if(odo_measure==0) odo_zero_count++;
else odo_zero_count=0;
if(odo_zero_count>20) m_GyroCenter=

m_GyroCenter*0.98+m_CurrSensorData.gyro1*0.02;
if(ABS(m_CurrSensorData.steer-m_SteerCenter)<50)

dtheta1=dtheta1*ABS(m_CurrSensorData.steer-m_SteerCenter)/100.0;
yk[1] = dtheta1;
yk[2] = odo_measure;

// -> generate system transfer by linearizing non-linear functions (Ak)
Ak[1][6]=cos(DEG_TO_RAD(xkm1[3]))*meters_to_msec_long;
Ak[2][6]=sin(DEG_TO_RAD(xkm1[3]))*meters_to_msec_lat;

m_LastGoodGPSDLat += Ak[2][6]*odo_measure;
m_LastGoodGPSDLong += Ak[1][6]*odo_measure;
// -> generate measurement transfer by linearizing

//  non-linear functions (Ck)
// -> predict error covariance
//       (Pk1 = Ak * Pkm1 * AkT + Q)
mat_mult(Ak,Pkm1,mtemp1,8,8,8);
mat_mult_transpose(mtemp1,Ak,mtemp2,8,8,8);
mat_add(mtemp2,Q,Pk1,8,8);

// -> find Kalman gain based on predicted error covariance
//       (Kk = Pk1 * CT * [C * Pk1 * CT + R]^-1)
mat_mult(C,Pk1,mtemp3,2,8,8);
mat_mult_transpose(mtemp3,C,mtemp4,2,8,2);
mat_add(mtemp4,R,mtemp5,2,2);
mat_inverse(mtemp5,mtemp6,2);
mat_mult_transpose(Pk1,C,mtemp7,8,8,2);
mat_mult(mtemp7,mtemp6,Kk,8,2,2);

// -> estimate state based on old state, and difference
//       between predicted observations and actual observations
//       (xk = Ak * xkm1 + Kk * (yk - C * Ak * xkm1)
mat_mult(C,Ak,mtemp8,2,8,8);
mat_mult_vector(mtemp8,xkm1,mtemp9,2,8);
vec_sub(yk,mtemp9,mtemp10,2);
mat_mult_vector(Kk,mtemp10,mtemp11,8,2);
mat_mult_vector(Ak,xkm1,mtemp12,8,8);
vec_add(mtemp12,mtemp11,xk,8);

// -> get error covariance
//       (Pk = Pk1 - Kk * C * Pk1)
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mat_mult(Kk,C,mtemp13,8,2,8);
mat_mult(mtemp13,Pk1,mtemp14,8,8,8);
mat_sub(Pk1,mtemp14,Pk,8,8);

// -> current state values are in xk
//    (longitude = xk[1] and latitude = xk[2])
if(m_DebugOut)
{

// print a bunch of stuff to a file for debug puposes
char str[150];
int i;
for(i=0;i<8;i++)
{

sprintf(str,"%.5lf ",xk[i+1]);
if(m_DebugFile!=NULL) m_DebugFile->Write(str,strlen(str));

}
sprintf(str,"\n");
if(m_DebugFile!=NULL) m_DebugFile->Write(str,strlen(str));

}

// -> update for next time
//       (xkm1 = xk)
//       (Pkm1 = Pk)
mat_copy(Pk,Pkm1,8,8);
vec_copy(xk,xkm1,8);

filter_count++;

m_fxkValid = TRUE;
}

}
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