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Building Intelligent Tutoring Systems

Abstract

This project’s goal was to improve the ASSISTments intelligent tutoring system’s algebraic

capabilities. We worked towards three main objectives. First, we built support for parsing ex-

pressions and comparing them for algebraic equality. Second, we implemented an interactive

grapher capable of plotting a variety of expressions. Third, we added support for rendering ex-

pressions to well formatted images. Finally, we implemented a basic tutoring systemincluding

sample problems that demonstrate our work, establishing our tools’ usability and integrability.
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the project and for his advice in our selection of tools. We would like to thank everyone at MTA

SZTAKI for their generous hospitality which has made our stay here a most pleasant and enjoy-

able experience. Finally, we would like to express our gratitude for the help provided to us by

the ASSISTments team at WPI both while preparing for this project and during the development

process.

2



Building Intelligent Tutoring Systems CONTENTS

Contents

1 Introduction 7
1.1 Intelligent Tutoring Systems . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 7
1.2 The ASSISTments Project . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 10

1.2.1 Assistance in ASSISTments . . . . . . . . . . . . . . . . . . . . . . .. . 11
1.2.2 Assessment in ASSISTments . . . . . . . . . . . . . . . . . . . . . . .. . 14
1.2.3 Architecture of ASSISTments . . . . . . . . . . . . . . . . . . . . .. . . 18
1.2.4 Content Creation in ASSISTments . . . . . . . . . . . . . . . . . . . .. . 20

2 Problems to Solve 22

3 Methodology 26
3.1 Parsing and Comparison of Algebraic Expressions . . . . . . .. . . . . . . . . . . 28

3.1.1 Analysis of Requirements . . . . . . . . . . . . . . . . . . . . . . . . .. 29
3.1.2 Brief Discussion of Context-Free Grammars . . . . . . . . . . .. . . . . 31
3.1.3 Analysis of Implementation . . . . . . . . . . . . . . . . . . . . . .. . . 33
3.1.4 The Solution’s Design . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39

3.2 Graph an Algebraic Expression . . . . . . . . . . . . . . . . . . . . . .. . . . . . 41
3.2.1 Analysis of Requirements . . . . . . . . . . . . . . . . . . . . . . . . .. 41
3.2.2 Development and Implementation Details . . . . . . . . . . .. . . . . . . 42
3.2.3 The Grapher’s External Interface . . . . . . . . . . . . . . . . .. . . . . . 45
3.2.4 The Grapher’s Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50

3.3 Rendering of Algebraic Expressions . . . . . . . . . . . . . . . . . .. . . . . . . 54

4 Implementation 57
4.1 Parsing and Comparison of Algebraic Expressions . . . . . . .. . . . . . . . . . . 59
4.2 Graphing of Algebraic Expressions . . . . . . . . . . . . . . . . . .. . . . . . . . 60
4.3 Rendering of Algebraic Expressions . . . . . . . . . . . . . . . . . .. . . . . . . 65

5 Demonstration Implementation 67
5.1 Building an ASSISTment in the Demo System . . . . . . . . . . . . . .. . . . . . 67
5.2 Perpendicular Line Demo Problem . . . . . . . . . . . . . . . . . . . .. . . . . . 68
5.3 The Biker Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

6 Tests and Analysis 80
6.1 Traffic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 80
6.2 Analysis of Server load . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 82
6.3 Analysis of the Interface’s Re-usability . . . . . . . . . . . . .. . . . . . . . . . . 84
6.4 Source Code Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85

7 Conclusions 87

8 APPENDIX: Grapher User Manual 93

3



Building Intelligent Tutoring Systems LIST OF FIGURES

List of Figures

1 Screen-shot of the ASSISTments system. . . . . . . . . . . . . . . . .. . . . . . 10
2 Screen-shot of the ASSISTments system: forced scaffolding. . . . . . . . . . . . . 12
3 Screen-shot of the ASSISTments system providing hints. . .. . . . . . . . . . . . 14
4 Screen-shot of the Student-Gradebook Interface . . . . . . . .. . . . . . . . . . . 16
5 Screen-shot of the WEKA Interface . . . . . . . . . . . . . . . . . . . . . .. . . 18
6 Screen-shot of the ASSISTments Builder . . . . . . . . . . . . . . . . .. . . . . 20
7 Screen-shot of the Report Criteria . . . . . . . . . . . . . . . . . . . . . .. . . . 22
8 Screen-shot Showing the Need for an Algebraic Parser . . . . .. . . . . . . . . . 23
9 Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26
10 Parse Expression Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 35
11 Normalized Expression Tree . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 39
12 Plot Segments Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 48
13 Show Coordinates Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 51
14 Find Point Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 52
15 Set Ranges Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
16 Screen-shot of Rendering In-lined Expressions . . . . . . . . .. . . . . . . . . . 56
17 Architecture Of Our Framework . . . . . . . . . . . . . . . . . . . . . . .. . . . 58
18 Communication Process for Parsing and Comparison of Algebraic Expressions . . 59
19 OpenLaszlo Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 62
20 Abstract Diagram Illustrating Usage Of ExternalInterface . . . . . . . . . . . . . . 63
21 Communication Process for Graphing Algebraic Expressions . . . . . . . . . . . . 64
22 Communication Process for Rendering Algebraic Expressions . . . . . . . . . . . 66
23 Preview of Problem Statement . . . . . . . . . . . . . . . . . . . . . . . .. . . . 68
24 Grapher Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
25 Perpendicular Line Demo Problem . . . . . . . . . . . . . . . . . . . . .. . . . . 70
26 Perpendicular Line Problem Hint . . . . . . . . . . . . . . . . . . . . .. . . . . . 72
27 Biker Demo Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
28 Biker Demo Problem Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 76
29 Biker Demo Problem: Change Ranges . . . . . . . . . . . . . . . . . . . . . . .. 77
30 Biker Demo Problem: Find Point . . . . . . . . . . . . . . . . . . . . . . . .. . . 78
31 Octagate Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
32 Grapher Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
33 Screen-shot of the ASSISTments Grapher . . . . . . . . . . . . . . .. . . . . . . 93
34 Enabling Shockwave in IE 6 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 94
35 Insert an Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 95
36 Displaying Your First Graph . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 95
37 ASSISTments Grapher Interface . . . . . . . . . . . . . . . . . . . . . .. . . . . 96
38 Graph Name Insert Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
39 Multiple Graphs on the Same Canvas . . . . . . . . . . . . . . . . . . . . .. . . . 97
40 Graph of First Degree Equation . . . . . . . . . . . . . . . . . . . . . . .. . . . . 98
41 First, Second and Third Degree Equations . . . . . . . . . . . . . .. . . . . . . . 98

4



Building Intelligent Tutoring Systems LIST OF FIGURES

42 Preparing a Line Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 98
43 Drawing a Line Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99
44 Graphing with Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99
45 Different Stroke Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 100
46 Using the Erasable Check Box . . . . . . . . . . . . . . . . . . . . . . . . . . .. 101
47 Displaying Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 101
48 Displaying Toolbox from The Check Box . . . . . . . . . . . . . . . . . . .. . . 102
49 Toolbox Can Only Be Displayed On The Canvas . . . . . . . . . . . . . . . .. . 102
50 How to Resize the Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 103
51 Resizing the Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 103
52 Display a Coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 104
53 Display a Different Coordinate . . . . . . . . . . . . . . . . . . . . . . .. . . . . 104
54 Find Point Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
55 Find Point Tab Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 105
56 Finding a Point on a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 106
57 Trace a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
58 Prepare for Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 107
59 Tracing Steps 1-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 108
60 Tracing Steps 5-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 108
61 The Range Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
62 Zoom Into A Location of the Canvas . . . . . . . . . . . . . . . . . . . . . .. . . 109
63 The Clear Canvas Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
64 Clear a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
65 Trigonometric Warm Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 110
66 Drawing a Sine Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
67 Exploring the Sine Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 111
68 Drawing a Vertical Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 112

5



Building Intelligent Tutoring Systems LIST OF TABLES

List of Tables

1 Ruby Source Code: comparedegrees . . . . . . . . . . . . . . . . . . . . . . . . 30
2 Input Grammar For Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34
3 Class Representations for Algebraic Terms . . . . . . . . . . . . . . .. . . . . . . 34
4 Class Representations for Numeric Values . . . . . . . . . . . . . . . .. . . . . . 35
5 Ruby Source Code: collapsemultiparens . . . . . . . . . . . . . . . . . . . . . . 36
6 Single Expression Normal Form Grammar . . . . . . . . . . . . . . . . .. . . . . 37
7 Comparison Normal Form Grammar . . . . . . . . . . . . . . . . . . . . . . . .. 40

6



Building Intelligent Tutoring Systems 1 INTRODUCTION

1 Introduction

1.1 Intelligent Tutoring Systems

In recent years computers have become increasingly common and powerful, and the tasks assigned

to software programs have grown in number and complexity. They are used to automate paper-

work and record keeping, to perform difficult calculations and simulate environments for research

purposes, and to build and play games of impressive number and variety. It was thus inevitable that

computers would make their appearance on the education front. Educational programs and games

were designed and built to help teach young children and adults alike.

Beginning in the early 1970s, a challenging and innovative new form of computer-based in-

struction was being developed. Researchers hoped to create asystem that would imitate a personal

human tutor by “[engaging] the students in sustained reasoning activity and [interacting] with the

student based on a deep understanding of the student’s behavior” [5].

The benefit that one-on-one tutoring can have on a student’s learning is impressive and widely

acknowledged. Studies have shown that on average tutored students perform at two standard devi-

ations above students taught in a normal classroom setting.This means that “the average tutored

student was above 98% of the students in the control [normal classroom] class” [3]. Tutors guide

students through problems and concepts, and can personalize their teaching style to suite each

child’s individual needs. Children learn in different ways,at different paces, and require different

degrees of guidance when learning new concepts. A tutor can learn a child’s style, and tailor his or

her methods accordingly. He or she can provide immediate andappropriate feedback if a student

is confused, so students’ errors and misunderstandings arecorrected effectively and more quickly

than is likely in a classroom setting where a teacher has twenty to thirty students to keep track of.

Many schools strive to keep classroom sizes as small as possible in order to maximize the amount

of individual attention a teacher can give to each student. Computers will never be able to replace

the distinctly human touch of a tutor, but when built and usedproperly, an educational program
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can prove to be a very helpful teaching tool. Such programs can provide assistance and guidance

to clarify concepts learned in class, teach new information, build simulations to illustrate in-depth

concepts, provide students with the individual feedback that is so helpful for the learning process

but difficult to accomplish in today’s crowded classrooms, and even help teachers in such tasks as

grading homework and assessing a class’ progress. Computersprovide tools that can be used by

students to help them learn, and by teachers to review concepts with their class or to free up some

of their valuable time [4].

Initial research for such an “Intelligent Tutoring System”(ITS) centered around deploying and

improving artificial intelligence (AI) algorithms. For example, the first such program, SCHOLAR [5],

used a natural language dialogue structure to communicate with students. It was capable of both

asking and answering questions, as a human tutor would be. However, the parsing and compre-

hension of natural language proved to be a great enough obstacle that it deterred developers from

the original goal of education. Unfortunately, the early ITSs were evaluated against AI quality

standards and not by any measurement of their educational effectiveness.

However, since the 1990s, ITSs are once again becoming increasingly popular as researchers

try to shift their focus to a point where systems are evaluated by their success in improving stu-

dents’ performance [5], not by the quality of their AI logic.There have been several successful

ITS projects recently. For example, the Pittsburgh Urban Math Project’s (PUMP) Algebra Tutor

(PAT) [22] was developed by the Pittsburgh Advanced Cognitive Tutor Center at Carnegie Mel-

lon University to help students learn to model real-life situations using algebraic representations.

Its curriculum uses activities that draw on a student’s common sense in order to help him or her

develop and understand “formal mathematical strategies.”PAT aims to help students succeed in

algebra and see its relevance in the real world as well as the classroom. In an experiment that com-

pared the performance of students using the PAT system on standardized tests to a comparison set

of students not using it, classes using PAT scored about one standard deviation better on the exams

that were the target of the curriculum, and “their scores were about 100% better than or double
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those of the Comparison classes. The average performance of students who used the PAT system

was significantly higher than the average performance of those who didn’t. These learning gains

appear to occur at no expense to basic skills objectives of standardized tests. In fact, PUMP+PAT

classes scored about 15% better on these tests” [23].

The Andes Physics tutoring system [36] is designed to take over the task of grading physics

homework for a teacher, and replace the traditional tools ofpencil and paper to help students work

through the steps and calculations of a problem. It offers hints, including bottom-out-hints that

tell the student exactly what to do, and provides instant feedback for everything the student enters.

If a step is incorrect because of what is likely a typo or an oversight (e.g. forgetting an entry

box) the system alerts the student. Otherwise correct answers turn green, and incorrect entries

are colored red. The system uses this immediate feedback andmany teaching hints to keep the

student working in the right direction. Using this system toreplace pencil-and-paper homework

may lead to shallower thinking in some cases, as the instant feedback can encourage guessing, but

it is ultimately beneficial, partly because students using the system tend to do more work. Pencil-

and-paper homework is often assigned for practice but not collected or graded, and thus many

students will skip the work. But assignments on the Andes system are automatically graded, and

thus the student cannot skip without penalty.

The web-based intelligent tutoring system Study Island [18] has shown great success in prepar-

ing elementary students for standardized tests. For the 2004-2005 school year, the percentage of

schools in North Carolina using Study Island that met the Annual Yearly Progress (AYP) rose by

11.4%, while the percentage of public schools not using Study Island that met AYP decreased by

13.6% [19].

The ASSISTments [15] web-based intelligent tutoring system tutors eighth and tenth grade

students on concepts needed for the mathematics portion of the Massachusetts Comprehensive

Assessment System exam, and estimates the score they will likely achieve on the exam. The system

combines assistance (for students) with assessment(for teachers)in one comprehensive program.
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Figure 1: Screen-shot of the ASSISTments system.

1.2 The ASSISTments Project

Following the Education Reform Law of 1993, the Massachusetts Comprehensive Assessment

System (MCAS) [29] was implemented. MCAS tests are administered in selected grades to all

public school students in the Commonwealth, and are an important basis of accountability for

schools and districts as well as students.

The ASSISTments system is an effective web-based intelligent tutoring system used in several

schools throughout the Worcester and Boston areas to help prepare students for the math portion

of the MCAS exams. In May of 2004, the ASSISTments system was being used by approximately

200 students “in three different schools from about 13 different classrooms” [31] and has grown

significantly since then.

The mission of the ASSISTment system consists of three majorgoals: to provide tutoring

content to students, to provide teachers with useful reports on students, and to provide teachers

with the tools required for creating their own tutoring content [16].

10
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1.2.1 Assistance in ASSISTments

While the class is using the system, each student is presentedwith a series of questions similar to

those used on the MCAS exams. If the student answers the question correctly, he or she moves

on to the next question. If the answer provided is incorrect,the student is presented with a series

of simpler questions, calledscaffoldingquestions, that break the problem down into simpler sub-

problems, as seen in Figure 1 [31]. The student must completethese scaffolding questions in order

to move on to the next question. They guide the student through a step-by-step process of solving

a given problem, but ask him or her to perform each step and apply each rule him- or herself. This

follows the example of many expert human tutors, who use hints and ask questions in an attempt

to guide students and remind them of existing knowledge, butstill make sure it is the students

who actually do the work, go through the steps, and find a solution. As seen in Figure 2, once the

scaffolding questions are triggered, the solution box in the original question is de-activated, and

the student must work through all of the smaller steps. The student is thus prevented from rushing

through or skipping difficult problems. These scaffolding questions aim to give the student a

clearer and more complete understanding of the concepts used in the question; it forces the student

to work through the entire problem (an example of “learning-by-doing”) and provides a detailed

view of what the question requires, thus also revealing where the student went wrong the first

time [32]. A series of hints is available to the student if he or she is having trouble, and the final

hint provides the correct answer to the question, as shown inFigure 3 [38]. Thus, even if students

use hints to find the solution, they are still guided through the entire problem. As a result, they can

benefit from the problem even if they do not reach its conclusion on their own.

This method of teaching, where the tutor or tutoring system guides a student through a problem

is called “coached practice”. In such a system, the student is engaged in solving a specific problem

and the ITS guides the student to its solution. The coached practice method clearly follows the idea

of “learning-by-doing”, which is a recognized model of cognitive skill acquisition. The student

learns a topic by doing problems and working through them to asolution. Furthermore, the guided
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Figure 2: Screen-shot of the ASSISTments system: forced scaffolding.

student will always reach the solution of a problem and the system will not quit or move on to

another problem prior to receiving the appropriate answers. This has been proven to be beneficial

even if the student does not actively participate in the process of finding the solution and the

guide provides every step. The student is at the very least watching an example of the problem

being solved properly, rather than immediately moving on toanother question with no attempt to

understand the current problem.

Furthermore, this approach overcomes the technical problems associated with using natural

language dialogues. In non-dialogue based systems, the problem solving environment is usually an

abstracted version of a real situation, where steps towardsthe solution can only be taken from a pre-

defined set of actions, or where the problem’s domain has an underlying formalism that is easier

to parse than natural language (e.g. algebraic expressions). There is no need to try understanding

arbitrary questions from the student; the system only needsto be able to interpret answers. With a
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student’s actions thus restricted, the system developmentcan focus on maximizing its educational

value and on providing appropriate feedback at any stage of the process. Even if the tutor fails to

identify a student’s action, it can still provide support; the guide is aware of the problem’s solution

and the developer can prepare stages that lead to the desiredend result.

In 1993, V.J. Shute analyzed two variations on the feedback provided for students by tutoring

environments. The first variation is called “Rule Application”, in which the tutoring environ-

ment describes both the concept behind the question and the relationships between the variables

used. The second variation is called “Rule Induction”, whichconsists of the tutor pointing out the

relevant variables but requiring students to find the relationships between them [33]. The study

suggested that the student’s learning style and knowledge level should be the main factors influ-

encing the content of the ITS’s provided advice. The advice should be generated based upon what

each student knows, and what information he or she needs to have to properly understand the con-

cepts behind each question. This imitates the ability of a human tutor to provide hints and other

guidance based upon what he or she knows of the student’s existing knowledge and learning style.

However, the same graduated advice technique can also be accomplished by using different lev-

els of advice without the need to model a student’s progress [4]. A proposed framework [4] for

generating advice content, or hints, consists of four stages:

• a reminder of the problem solving goal,

• a description of the current problem state and the desired goal state,

• a description of the rule for moving from the current state tothe desired state,

• a description of the concrete action to take.

Questions in the ASSISTment system contain a series of hintswhich were developed following

similar guidelines, and are available to the student at his or her request. The final hint provides the

correct answer to the question, as shown in Figure 3 [38], thus ensuring the student’s awareness of

the problem’s solution.
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Figure 3: Screen-shot of the ASSISTments system providing hints.

1.2.2 Assessment in ASSISTments

The ASSISTments system is not just a tutoring system. It combines assistance, or tutoring, with

assessment of the student’s performance. By tracking all of astudent’s actions within the system

(which questions were answered correctly on the first try, which required scaffold questions, when

the student asked for hints, how long it took to answer a question, etc.), it can measures a student’s,

or class’, understanding of each subject. Furthermore, thegathered data is used to estimate how

well each will perform on the MCAS exam. All of this information is made available to the

classes’ teachers who are thus able to track their students’progress. The MCAS puts a great deal of

pressure not only on the students but also on the state’s teachers and schools to produce high scores.

Therefore, it is valuable to a teacher to be able to track his or her students’ progress. Measurements

provided by the ASSISTments system can be used to determine what areas need more attention,

14
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where a student is doing well, and where the class needs help.This sort of assessment can consume

vital classroom time that could otherwise be spent furthering the student’s progress.

With the ASSISTments program, the teacher can spend less time evaluating his or her class [31];

the reports from the system will provide him or her with a thorough and accurate evaluation on each

student and on the class as a whole. In addition, the studentsare learning while being assessed.

This means that the time lost on evaluating students throughexams is reduced, instead they are tu-

tored while their progress and knowledge is being assessed.The ASSISTments system will record

if a child gets an item wrong, but will also provide assistance and teach the child by guiding them

to the correct solution. Students also receive immediate feedback this way, so that questions are an-

swered while they are still paramount in the students’ consciousness. This has obvious advantages

over the alternative of standard pen-and-paper evaluations where students do not receive feedback

on the exam until it is graded and passed back. Teachers can spend less class time evaluating

progress, while students can spend more time learning.

As with the actual MCAS tests, each ASSISTment, or question inthe ASSISTments system, is

designed to test the student’s understanding on a few basic concepts. Each ASSISTment involves

at most three specific topics from a list produced by subject-matter experts. When a question is an-

swered correctly, the probability of that student understanding all of these topics increases. When

a student answers incorrectly, each scaffold question presented correlates to one of the specific top-

ics tested in the original question, and the student’s predicted skills are adjusted accordingly [10].

This “dynamic assessment” allows the ASSISTments program,and thus the student’s teacher, to

track each student’s skill levels, as well as which topics heor she needs help on, with much more

accuracy, and also provides a better estimation of the student’s likely performance on the MCAS

exams.

Therefore, an important tool of the ASSISTments system for teachers to quickly assess the

progress of their students is the “Student Grade Book”. Through this tool, the system reveals

information on each student’s performance to the teachers [31]. The picture in Figure 4 shows the
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Figure 4: Screen-shot of the Student-Gradebook Interface

Student Grade Book interface. It provides the teacher with access to information like the “elapsed-

time,” how long the student has spent using the system, the number of hints requested by a student,

his or her predicted MCAS score based on how well he has done on ASSISTments thus far, and his

or her “Performance Level” which indicates how his or her scores compare to the expected average.

From this page teachers can also access a more detailed report on a single student, which will tell

them how the student performed on individual questions (howlong the student took, number of

hints asked for, if the student answered correctly or incorrectly, if the question was the problem’s

main question or a scaffold question, etc.). The Student Grade Book helps teachers observe and

keep track of their students with extensive detail. They cannot only easily see a student’s or class’s

levels of skill or knowledge with as much, or more accuracy asa standard written assessment or

exam would provide. But it can also determine if a student is using the system properly or, for

example, is using the help button excessively.

By using the Student Grade Book tool provided by the ASSISTments system, teachers can, in

part, replace the traditional ”paper-and-pencil” method of evaluating a student’s progress. The tra-

ditional method for estimating a student’s preparedness for standardized exams such as the MCAS
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Tests is to issue practice exams during class, then grade them and possibly review them in class.

This method consumes a great deal of class time that could be more effectively used. The class

is not really learning while they take the practice exams, and students who already understand the

material will not benefit from reviewing it later. The ASSISTment system provides the same infor-

mation as the written practice exams and offers further detail, and the teacher doesn’t have to do

any grading. The students are learning topics that confuse them while they do the problems, and

students with a complete grasp on a topic will not be forced toread hints and do scaffolding prob-

lems, but can instead continue on to the next problem withoutunnecessary and redundant review

that would only bore the student. Thus teachers and studentsboth benefit from the ASSISTment

system’s combination of assistance and assessment.

A major problem faced by Intelligent Tutoring Systems is off-task student behavior, where

students systematically exploit the system behavior to advance through a curriculum without in-

tellectual participation [38]. In the ASSISTments system,this means asking for hints on every

question until the final “bottom-out” hint is reached, and then simply entering the correct answer

without giving any actual thought to the problem. This off-task behavior is called “gaming”. To

detect if a student is gaming, the ASSISTment team developeda set of machine-learned gaming-

detection models which were able to identify this sort of behavior from a student with a certain

accuracy. This was accomplished by recording students’ actions while using the system. The

dataset generated by this observation had 1430 attributes and a boolean target attribute called

’gaming’ [38]. Using twelve different algorithms from the WEKA machine-learning system on

the generated dataset, the team was able to create a decisiontree model which can detect whether

or not a student is gaming with a certain probablity. Figure 5shows the WEKA interface.

The study revealed that on average, students who have less prior knowledge of the respective

topic are more likely to game or cheat the system. This suggests that students are often reading all

of the questions, and are more likely to “game” only if they donot have the required background

knowledge for solving the problem. To prevent gaming, the system logs the number of requested
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Figure 5: Screen-shot of the WEKA Interface

hints and the time spent on a particular problem. An analysisof this information could warn the

teacher of that students are possibly gaming, allowing themto take action in attempt to prevent

further gaming. In addition, a feature was added to the ASSISTments system that shows each

student a record of their activities. Also, if students ask for too many consecutive hints and the

system determines that they are likely to be gaming, an alertpops up that querying the student

whether he or she requires the requested hint in an attempt toprevent the student simply contiously

asking for hints. It was observed that students are less likely to game when they can see that the

system is tracking their actions [38].

1.2.3 Architecture of ASSISTments

“In 2001, the ratio of students to instructional computers with Internet access in public schools was

5.4 to 1, an improvement from the 12.1 to 1 ratio in 1998,” [21]that indicates the increased Internet
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availability for students. This means that more students and teachers will be able to use, and

contribute to, educational programs and tutoring systems that are developed as web applications,

such as the ASSISTments system, in order to facilitate accessibility and usage [35].

Because the ASSISTments system is a web application, it allows for much greater flexibility

than traditional desktop ITS programs. Content can be added by teachers and researchers, not just

highly experienced programmers. The system can be scaled upwith relative ease to include more

material and servers for better performance. Teachers haveeasier, more convenient and complete

access via the “Portal” to the various aspects of the system.Researchers and programmers can

extend the system and add functionality in a central place, without the need to deploy the changes

to each client individually. In addition, its content can beincorporated into other systems with web

access to reach a much broader audience [30].

Currently, the ASSISTments system is a web-based “install-free”application which means that

accessing all of its functionality is possible from any machine with access to the Internet. This pro-

vides for convenient usage and content creation for students and teachers [35], as they can utilize

the system from any computer of their choice that is capable of connecting to the Internet. This

also means that that students or teachers can use the system on a school’s network without needing

to obtain any special access privileges that would be required to install programs on a school’s

network given the basic setup of an Internet node. Also, because the system is “install-free”, net-

work administrators at the schools using this system do not have the additional responsibility of

continously upgrading the application. Moreover, building the ASSISTments system as a web

application not only provided greater flexibility than desktop programs, but also offers more pro-

tection against unforeseen technical or external complications. For example, if a school’s network

crashes, or a computer at the school is stolen or destroyed, students’ records will remain intact

on the ASSISTments team’s servers. This also facilitates the recovery process because it will not

force network administrators to look through different backup versions of their records. Finally, if

the system becomes so widely used that the load on the serversrequires upgraded resources, the
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Figure 6: Screen-shot of the ASSISTments Builder

system can be enhanced centrally.

1.2.4 Content Creation in ASSISTments

Adding content to the system is a reasonably effortless process that does not require programming

experience. Content developers, both teachers and researchers, are provided with the ASSISTment

Builder, the intuitive interface of which is presented in Figure 6. The ASSISTment Builder pro-

vides teachers with the means for constructing questions, or ASSISTments, which they can then

add to a “curriculum” and assign to the students in their class. It contains the interface needed to

build a tree of scaffolding questions, branching from a mainquestion and dependent upon the user’s

input [31]. Each of the scaffolding questions could in turn contain further branches of scaffold-

ing questions and hints, and each could have different widgets for processing the student’s input,

such as radio-buttons, pull-down menus, check-boxes and text-fields. For developers to verify that

their content is being constructed correctly, the Builder also provides users with a ”live preview”

which is updated whenever the content of the ASSISTment is modified. This feature allows the
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author to see how the ASSISTment will appear to a student using the system and working through

a problem. The first scaffolding question is triggered automatically when a user answers the initial

question incorrectly or when when a user presses the ”Hint” button.

To test the efficiency of the ASSISTment Builder a different system was built to log the actions

of the authors. The data obtained by the system suggests thatthe average time needed to build

an entirely new ASSISTment, not including time spent planning the question and creating any

necessary graphics before entering the builder, is approximately 25 minutes [31]. With the use of

the ASSISTment Builder, content can be added simultaneouslyby several teachers and researchers,

from various locations, provided they all have an Internet connection. Thus the Builder enables

intuitive and rapid content development, allowing the system to grow as needed.

The ASSISTment system also provides teachers and researchers with easy access to a broad

range of features via the “Portal.” The Portal grants accessto various capabilities of the system like

online reports, and administration and authoring tools [9]. For example, teachers have the option

of creating a report based on several criteria. A screen-shot displaying this process is shown in

Figure 7. In it we see that teachers can choose a specific classor student for which to generate

a report. Moreover, they can select a time period for the report and various sorting methods for

displaying its content.
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Figure 7: Screen-shot of the Report Criteria

2 Problems to Solve

Currently, the ASSISTments system’s support for dealing with algebra is minimal. Expressions

cannot be evaluated for algebraic equality, making it difficult to fairly judge a student’s input, and

nearly impossible to provide specialized and useful feedback on it. Student text input currently

is evaluated via simple string comparison. This leads most content developers to make any prob-

lems that require an answer more complicated than a simple number be a multiple-choice question.

While this is true to the style of MCAS exams, it means that students can often derive their answer

(at least in part) from the options provided, rather than entirely working it out from the information

in the question. This speaks to the student’s cleverness, but defeats the system’s goal of assessing

his or her understanding of the topics. The system needs a wayto evaluate and compare alge-

braic expressions based upon their mathematical value, notjust the string’s ASCII content. If the

system had a way to parse strings and determine their simplified value, it would be able to show

more flexibility when dealing with students’ input (i.e. 3x+3x is mathematically equivalent to 6x,

but a string comparator will not recognize this and could unjustly conclude that the student was

incorrect). In the picture below we show a similar situationthat clearly illustrates the need for
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Figure 8: Screen-shot Showing the Need for an Algebraic Parser

evaluating and comparing algebraic expression based on their value instead of their ASCII repre-

sentation. In Figure 8, we can see that even though the student entered the correct solution for the

problem, the system evaluated the result as “incorrect” because it cannot “understand” the input.

Such errors could lead to an inaccurate evaluation of a student’s progress and thus send the teacher

in the wrong direction when it comes to class time allocation. The ASSISTments system needs a

tool to parse and compare algebraic expressions in order to maximize its educational potential and

to ensure that students and teachers are receiving accuratefeedback and results.

A problem inherent to comparison of ASCII strings is the fact that there are no common stan-

dards about the usage of white-spaces. Consider the following strings that represent intuitively

equivalent statements, namely the value of the variable x: “x = 1.25” and “x = 1.25”. Clearly,

these two strings are not equal when compared. However, we might use regular expressions or

similar techniques to ignore the use of white-spaces. Another possible cause for misinterpreting

expressions is illustrated in the following situation:x = 1 1/4. Most students and educators

would quickly recognize this statement as being equivalentto the two previous ones, but no or-

dinary string comparison would. While white-spaces seem to be a simple obstacle when parsing

algebraic expressions, both the nature of algebra and the various possible interpretations of ASCII

representations provide for endless ways of writing similar expressions. Consider the following

four strings that a student might enter:
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1. 2x = 3

2. 2∗x = 3

3. x + x = 3

4. x = 3/2, x = 1 1/2, x = 1.5

Clearly the first three equations are equivalent. Only (4) is slightly different, in that it contains

the result of simplifying the previous equations to identify the numeric value of x. These examples

illustrate a further requirement for improving the tutoring capabilities of the current ASSISTments

system: manipulation of algebraic expression according tothe associative, commutative, and dis-

tributive laws.

Also, the current ASSISTments system shows input simply as plain text, not as in the intu-

itive format they would take if the student were to write them, or as they would appear in a math

textbook. It is up to the student to convert a formula betweenproper equation appearance and the

ASCII string required by the system. Enhancing the system with the ability to display formulas

and equations as the student would write them on paper (i.e. with exponents indicated via super-

script instead of carrots, and fraction denominators beingdisplayed actually under the numerators),

would not only be more aesthetically pleasing, but would also aid the student’s progress, i.e. by

making it easier to determine if he or she has entered the formula as intended. Visualization is

an important learning tool, and equation formatting is a part of that. “Representing functions in

multiple ways is critical in student understanding of functions and success in mathematics” [7].

A vital part of learning algebra is understanding graphs. Inacademia, graphs have become an

indispensable tool for helping students to better understand the relationship between two functions

or curves, by offering them a visual representation of a function. Graphs are also indispensable

for students when exploring the mathematical patterns of first, second and third degree equations.

Unfortunately, graphing mathematical expressions can be adifficult skill to acquire especially

when teachers are forced to allocate class time to help students become comfortable with various

graphing tools. Pilot studies with PAT revealed an unexpected difficulty in graphing; it emerged
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that students did not have good heuristics for setting the axes’ scales and bounds dependent on the

size of the values being plotted in each problem [4]. Students must learn to graph formulas, read

graphs, and estimate the formula for a line or curve based upon how it is graphed.

Despite the importance of these skills, the ASSISTments system lacks sufficient support for

graph-related ASSISTments. If a content developer wishes to refer to a graph within a question,

he or she must include an image by uploading it. The system provides no feature for helping

the developer build this graph. He or she must create the graph in an external program, save the

image, and load it into the system while building the ASSISTment. Thus a developer’s ability

to include graphs is dependent upon his or her having access to, and knowing how to use, an

external program capable of producing the graph he or she needs. This is undoubtedly a time-

consuming and tiresome process. Including graphs in ASSISTments would be significantly more

efficient and desirable from the content creator’s end if thesystem provided an internal feature to

assist in the creation of these images. Even when developersdo include images in their questions,

there is no way for a student to manipulate or interact with a graph. The abilities to graphically

visualize a formula, and manipulate or interact with a graph, could be powerful educational tools.

However, the current ASSISTments system has no sufficient support for such features. Extending

the algebraic capabilities of the ASSISTments system by allowing questions to include well-drawn,

interactive graphs that students can manipulate and use to draw their own graphs could have a major

positive impact on the educational value of the student’s experience with the system.
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Figure 9: Development Process

3 Methodology

The three main objectives of our development were the following:

1. Parsing and comparison of algebraic expressions

2. Graphing of algebraic expressions

3. Rendering of algebraic expressions

Before approaching these main goals of our project, our team agreed on a development process,

which is discussed below.

Our development style generally followed the Test-Driven Model for software development,

which required us to develop test cases before writing actual code. Our main reason for choosing

this style of software development was the short time frame for our project. The Test-Driven

development model allowed us to ensure that all code writtenserved and worked properly. We

believe that the design of our implementation is mainly based on the feature requirements and

that the chosen development process allowed us to cut down possible coding overhead caused by

implementation of unnecessary features. On the other hand,the design is Object-Oriented, making

it extensible and modular.
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Our development process consisted of eight phases. Figure 9shows an abstracted diagram of

this process. In the remainder of this section we will explain each stage of our development process

in detail. Our development process was iterative and circular at the same time. We first approached

subproblems of our main objectives and followed a common procedure that is represented by the

circular section of the diagram for solving the problem.

The first step of the process, the “Initial Planning”, represents the Pre-Qualifying Project phase

of our project which preceded our work in Budapest. In this stage, we conducted preliminary

research on ITS systems and agreed on the general project methodology. Also during this step, we

also wrote an initial project proposal and created our first prototypes to test possible tools. This

part of the development process ensured that all team members understood the requirements of

the project and agreed with the choice of tools. With our background research and our project

proposal completed, we were able to move to the second step ofour development process, the

“Requirements.”

A major part of our Requirements phase consisted of identifying the features that our system

should support and figuring out under what constraints they would have to operate. This phase

also helped us ensure that our team was well synchronized andthat dependencies between features

were handled correctly. By analyzing the the main requirements and identifying what subproblem

they consisted of we created our own set of requirements thathelped us accomplish the main goals

of the project. We were thus able to assign tasks to differentteam members so that each of us could

work individually, increasing the efficiency and synchronization of our team.

The next step of our development process, “Analysis and TestCases”, consisted of confirm-

ing that the requirements built in the previous stage were helpful for accomplishing the main re-

quirements of the project. Additionally, we created test cases that identified our requirements for

features. The test cases were designed to target specific features.

The “Prototyping” step of our development process was aimedat illustrating whether our

choice for tools was appropriate and was sufficient for implementing the previously identified
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requirements. The use of prototypes in our project enforcedan incremental software development

approach. To facilitate the release of our prototypes and gather feedback, we created a website

where we posted our prototypes, making them accessible to others. These frequent updates and

releases enabled us to constantly verify the status of our project.

The “Implementation” stage centered around the realization of chosen feature requirements. In

this phase we also used pair-programming in order to ensure the quality of our code and similarly

maintain a common level of understanding of the code base. The new features were then verified

in the “Testing” phase.

During the Testing phase we ran our implementations againstthe previously designed test

cases. Additionally, we looked for potential integration problems that could hinder the incorpo-

ration of our system into the current ASSISTments system. Toensure the compatibility of our

implementation with the current tutoring system, we used a Ruby on Rails [14] server to test our

server-side applications not only locally but also on a different setup that was in use by the AS-

SISTments system’s team. The testing phase served as the preparation for the “Evaluation” phase.

To enable remote evaluation of our software we made use of ourwebsite by providing pro-

totypes online. We also used web-conferencing tools such asSkype and WebDialog’s Unyte to

communicate with Professor Heffernan who was at WPI while we worked at Sztaki in Budapest.

This step was usually performed once a week and its main purpose was to gather feedback on the

current status of our project. Once a prototype made it to theEvaluation phase, we made sure that

it had complete and comprehensive documentation and that itcould easily be integrated into the

ASSISTments system.

3.1 Parsing and Comparison of Algebraic Expressions

The first objective of our project was to remedy a major lack offunctionality in the current AS-

SISTments system: comparison of student answers and teachers’ solutions based on their algebraic

equality instead of their string equality. Adding the capability of comparing algebraic expressions
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has obvious advantages and leads to improved tutoring abilities of the system. It also provides for

a more convenient problem creation process, as a teacher need not try to anticipate what possible

answers a student might submit but can simply rely on the system to recognize equality. This

renders the requirement of anticipating multiple solutionstrings unneccessary.

3.1.1 Analysis of Requirements

In addition to fulfilling the main objective, we decided to provide an extensible framework that

one could use to implement functionality for transforming or comparing algebraic expressions for

custom needs. To this end, we decomposed the functionality of our product into modular functions

that can be reused by any application that supports calls to Ruby methods. For example, in a tutor-

ing environment the need for appropriate feedback is obvious. For this one might require enhanced

features for the analysis of a possibly wrong answer in orderto offer the student helpful advice.

Our system allows not only the use of the equality testing functionality, but can also be extended to

compare expressions based on other factors, such as the occurrences of terms with equal degrees.

This type of comparison might help to indicate that a studentmisunderstood the use of a coefficient

and the tutor could provide fitting feedback to the wrong answer, therewith improving the student’s

experience with the system. An implementation of a functionthat compares expressions based on

their degrees is part of our framework and can be taken as an example for extending the original

requirements to our system. One can observer that adding such functionality is relatively effortless

from the function’s implementation (Table 1).

In order to properly fulfill the requirements for features involved in comparing algebraic ex-

pressions for equality, we determined three main steps to take for processing the ASCII represen-

tations of an answer and solution expression. These were used for making design decisions for our

implementation, and can be summarized as follows:

1. Parsing of algebraic expressions

2. Transformation to a well defined normal form
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1 def comparedegrees(a, b)

2

3 normalizedexprs = eliminatefractions(a,b)

4

5 a degrees = getdegreecoefficientsmapping(normalizedexprs[0])

6 b degrees = getdegreecoefficientsmapping(normalizedexprs[1])

7

8 if a degrees.size == bdegrees

9 a degrees.each{ |degree,coefficient|

10 if !b degrees[degree]

11 return nil

12 end

13 }

14 else

15 return nil

16 end

17

18 return true

19 end

Table 1: Ruby Source Code: comparedegrees

3. Comparison of two expressions based on their normal forms

We decided to approach these three phases as a whole, but iteratively. This means that we

advanced by completing prototypes that would support a limited input grammar, but would be

able to parse, transform and compare a supported expressionappropriately. After running our

previously devised test-suite and making sure that the process was implemented correctly, we

planned on extending the input grammar and devised appropriate test cases. After deciding upon

the next extension to the accepted input, we planned the required changes to the system. After

implementing this additional support, we ran the new set of test cases we had designed when

planning the extension, as well as the test-suite from the previous stage in order to fully ensure the

correctness of our additions.

We used a set of context-free grammars to define the set of algebraic expressions that our parser

supports as input. Similarly, we also defined the normal formthat would be the basis for compar-
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ison of algebraic expressions as a context-free grammar. Using well-defined grammars to define

the capabilities of our framework helped us to write test cases before implementing functionality,

following the test-driven software development paradigm.More importantly however, grammars

allow for a universal definition of required input and outputand therewith provide for reusability

to individual features of our framework.

3.1.2 Brief Discussion of Context-Free Grammars

We chose a formal grammar for documentation purposes, in order to clearly define the required

input to our framework’s tools and document their output forfuture reuse. The structure of an

algebraic expression lead us to use a context-free grammar,a well understood tool for defining a

set of strings that are accepted or produced by an application. A formal context-free grammarG is

commonly denoted as a four-tuple,G = 〈Vn,Vt ,S,P〉, where:

• Vn is a finite set of non-terminal symbols,

• Vt is a finite set of terminal symbols,

• S∈Vn is a unique start symbol ,

• P is a finite set of production rules,

such that everyp ∈ P is of the formN → w whereN ∈ Vn andw = a0a1a2 . . .ai for 0 ≤ i

anda j ∈ Vn ∪Vt for 0 ≤ j ≤ i. Furthermore, the language of the grammar,L = L(G) is the

set of strings that can be derived fromS by applying rules inP such that for allα ∈ L we have

α = b0b1b2 . . .bk for 0≤ k andbm∈Vt for 0≤ m≤ k. We chose to denote the respective grammars

by listing the production rules inP.

Context-free grammars (CFGs) are “Type-2” grammars within the Chomsky containment hi-

erarchy for formal grammars and their respective languages. This means the languages that can
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be expressed by context-free grammars are equivalent to those that can be recognized by non-

deterministic pushdown automata. A non-deterministic pushdown automata, or NDPA, has a stack

for storing a potentially infinite amount of information in alast-in-first-out fashion. At each step

a NDPA pops a symbol off the stack and can push a symbols onto the stack, read the next symbol

in the input string, and change state. CFG languages are contained in the set of languages that are

produced by “Type-1” (equivalent to the languages expressible by context-sensitive grammars) and

“Type-0” grammars (equivalent in expressibility to unrestricted grammars). The set of languages

that can be derived from regular grammars (“Type-3”) is contained within the set of languages that

are expressible through context-free grammars.

Context-free grammars provide a formal technique to clearlydefine the requirements for the

input to our framework as well as the output, the normalized form of an expression. More specif-

ically, the language of the given context-free grammar is precisely the set of input or output ex-

pressions that are taken in or produced by our framework. Theset of terminals consists of the

supported variable string, algebraic operations and representations of numerical values.

Using a context-free grammar improves our system’s expand-ability, as it is widely understood

by computer scientists and, and is a common and accepted way to document the capabilities of a

parsing application. Furthermore, it is worth noting that as context-free grammars are an estab-

lished tool in the field of computer science, there exists a variety of optimized tools that use them.

For example, tools called parser generators have been created that can be used to produce a parser

from a given context-free grammar. For example, the application “Coco/R(uby)” generates “LL”

parsers in Ruby. The “LL” denotes a top-down parser that proceeds from the left to the right end

of the string (similar to the parser that is a part of our implementation), constructing what is called

the “left-most” derivation of the given word. One produces aleft-most derivation by continuously

replacing the non-terminal that is closest to the left end ofthe string until only terminals remain.

The existence and popularity of these applications furtheremphasizes the usefulness of employing

such formal tools to describe our system’s capabilities.
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3.1.3 Analysis of Implementation

Before implementing the parser that would process the ASCII representation of an algebraic ex-

pression, we devised the grammar for the desired input. As mentioned in the previous section, we

approached the problem by iteratively adding to the supported grammar; the grammar that the cur-

rent implementation supports can be found in Table 2. The grammar contains the basic algebraic

operations of addition, subtraction, multiplication and division. Furthermore, we included support

for exponentiation where the exponents are limited to non-negative integers, and for grouping ex-

pressions by a set of parentheses. The supported expressions are limited to one variable (according

to the grammar in Table [?] this variable is calledx, however, the implementation is modular and

allows for choosing a custom string for the used variable). The parser supports three main numer-

ical formats: integers, decimal numbers and improper fractions. Additionally, the parser ignores

white-spaces by removing them from the input string, exceptfor the use of improper fractions,

which are delimited for internal recognition. Furthermore, we process the string before the parsing

starts in order to insert missing multiplication operators. This allows for the ASCII representation

to be more intuitive to the student and eliminates a possiblesource of confusion. For example, the

following string contains terms that are commonly recognized as products and also supported by

our parser: “(23x−3x3)(−x)”

Our implementation of the parser proceeds by pattern matching for algebraic terms in the given

string recursively in order of algebraic precedence. This means that the string is processed sim-

ilarly to a possible production using the given “Input Grammar”in Table 2. For example, the

expression 3x+x2 is first split into the summands 3x andx2. Then the first summand is split into

the multiplicands 3 andx while the second is identified as base and exponent and split up accord-

ingly. Following this procedure, the parser pattern matches a string until it identifies a “leaf” (or

terminal), in our case either a numerical value or the used variable.

After defining the desired input grammar, we designed the elements required for its internal

representation. We decided to use an object-based tree thatwould facilitate a convenient traversal
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〈Exp〉→+〈Snd〉〈Exp〉|-〈Snd〉〈Exp〉|+〈Snd〉|-〈Snd〉|〈Snd〉
〈Snd〉→*〈Mult〉〈Snd〉|〈Mult〉〈Snd〉|〈Mult〉
〈Mult〉→〈Base〉ˆ〈Int〉|〈Mult〉ˆ〈Int〉|〈Base〉
〈Base〉→x|(〈Exp〉)|〈Numeric〉|〈Int〉 〈Numeric〉〈Numeric〉
〈Numeric〉→〈Int〉|〈Int〉.〈Int〉|.〈Int〉
〈Int〉→〈Int〉〈Int〉|1|2|3|4|5|6|7|8|9|0

Table 2: Input Grammar For Parser

and transformation of the expression tree produced. Therefore, the created structure is an object-

based tree, where there is an internally defined class for each operation, the variable or numerical

values. This allows for immediate and clear identification of the nodes, and also isolates the func-

tionality that applies to certain operations by containingit inside the class definition. Therefore,

our internal representation reflects the mathematical structure of the expression, grouping nodes

by their corresponding algebraic operations or isolating them as the number or variable that they

represent. The names of the current set of class definitions with their corresponding algebraic

equivalent terms are listed in Table 3. Additionally, Table4 contains the set of class names for rep-

resenting numerical values. The API for our implementation, which can be found on the project’s

website [12], contains a comprehensive documentation of the classes and their member methods.

Internal Object Name Algebraic Term
SummandNode Sum

MultiplicantNode Product
FractionNode Divisor
ParenNode Expression grouped by parentheses

NegatedNode Negation of an expression
ExpNode Exponentiation

NumericNode Numeric values
VarLeaf The variable

Table 3: Class Representations for Algebraic Terms
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Class Name Numerical Type
IntLeaf Integer

FloatLeaf Decimal Number
NumericFractionLeaf Rational Number
TripleFractionLeaf Improper Fractions

Table 4: Class Representations for Numeric Values

For each iteration of pattern matching, after the parser identifies an operation or terminal ex-

pression (number or variable), it instantiates and populates a class representing the identified term.

Thus, the expression tree is generated recursively, according to the precedence of the algebraic op-

erations. The corresponding tree is intuitive with respectto the algebraic expression and therewith

should be reasonably integrable and adaptable to custom requirements for the tree’s nodes’ pur-

pose. Figure 10 shows the object tree that the parser would generate for the algebraic expression

“x5− (2x+23)/x”.

SummandNode
hhhhhhhhhh

((((((((((

ExpNode
H

HH

©
©©

VarLeaf

x

IntLeaf

5

NegatedNode

MultiplicantNode
XXXXXX

»»»»»»

SummandNode
P

P
PP

³
³

³³

MultiplicantNode
H

HH

©
©©

IntLeaf

2

VarLeaf

x

IntLeaf

23

FractionNode
H

HH

©
©©

IntLeaf

1

VarLeaf

x

Figure 10: Parse Expression Tree

By arranging the nodes in order of precedence and grouping them by operations such as ad-

dition and multiplication, we achieve an expression tree that facilitates manipulation according

to algebraic laws. The structure is advantageous when compared to other representations such
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as a binary tree structure that at first glance seem reasonable considering that the subset of alge-

braic expression supported by our framework contains only unary and binary algebraic operations.

Grouping terms of the same level of precedence in the algebraic hierarchy considerably simplifies

the traversal of tree and transformation to the desired normal form.

Our framework provides methods that allow for a depth-first traversal of the object tree, visiting

only desired nodes and modifying them based on given predicates. These functions provide easy

extensibility of our framework’s capabilities. For example, eliminating redundant grouping of

parentheses (i.e. “((2∗ x))”) in the expression tree can be achieved via this feature. The internal

solution is given in Table 5. The API provided with the implementation of our framework provides

an extensive explanation of the methods used.

1 def collapsemultiparens(node)

2

3 p = Proc.new{ |parennode|

4 if parennode.child.class == ParenNode

5 parennode.child

6 else

7 parennode

8 end

9 }

10

11 return treewalker(node,ParenNode,p)

12 end

Table 5: Ruby Source Code: collapsemultiparens

After the expression was successfully parsed and the internal object-tree representing the al-

gebraic terms is constructed, the tree is transformed to conform the “Single Expression Normal

Form” that is given in Table 6. The underlying principle of this normal form is the grouping of

terms by their polynomial degree. This facilitates the comparison process, as it allows terms to be

compared according to their degrees and the corresponding coefficients. However, the coefficients

possibly contain divisors (FractionNode) that also contain polynomial expressions. Each of the
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FractionNodes (their denominator) is reduced into the single expression normal form in order to

facilitate later transformation into the normal form that is used to test two expressions for equality.

〈Expr〉→〈SummandNode〉
〈SummandNode〉→+〈MultiplicantNode〉〈SummandNode〉|+〈MultiplicantNode〉
〈MultiplicantNode〉→〈ParenNode〉*〈ExpNode〉
〈ExpNode〉→〈VarLeaf〉ˆ〈IntLeaf〉
〈ParenNode〉→〈CoefficientsSummandNode〉
〈CoefficientsSummandNode〉→+〈NumericNode〉|+〈CoefficientMultiplicantNode〉
〈CoefficientMultiplicantNode〉→〈NumericNode〉*〈FractionNode〉
〈FractionNode〉→1/〈Expr〉
〈NumericNode〉→〈NegatedNode〉|〈Numeric〉
〈NegatedNode〉→-〈Numeric〉
〈Numeric〉→〈IntLeaf〉|〈FloatLeaf〉|〈NumericFractionLeaf〉|〈TripleFractionLeaf〉
〈FloatLeaf〉→〈Dec〉
〈IntLeaf〉→〈Int〉
〈NumericFractionLeaf〉→〈Int〉/〈Int〉|〈Dec〉/〈Int〉|〈Int〉/〈Dec〉|〈Dec〉/〈Dec〉
〈TripleFractionLeaf〉→〈Int〉+〈Int〉/〈Int〉|〈Int〉+〈Dec〉/〈Int〉|〈Int〉+〈Int〉/〈Dec〉|〈Int〉+〈Dec〉/〈Dec〉
〈Int〉→〈Int〉〈Int〉|1|2|3|4|5|6|7|8|9|0
〈Dec〉→〈Int〉.〈Int〉|.〈Int〉

Table 6: Single Expression Normal Form Grammar

For the manipulation process, our framework contains a collection of methods that implement

singular operations on the expression tree. This follows the practice of decomposing functionality

into modules, isolating responsibility for certain operations. This isolation reduces the impact

of changes to these modules and therewith lowers the framework’s vulnerability to modifications.

Furthermore, it also allows for the partial reuse of our functionality when extending our framework.

The main steps of the transformation process can be summarized in the following list of operations:

1. Eliminating exponentiation with base other than the variable “x” by expanding to a product

or collapsing in case of a numeric base.
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2. Eliminate parentheses from expression according via thealgebraic distributive law.

3. Transform negation into product, if negated expression is not numerical.

4. Combine multiple divisors in one product, by substitutingthem with a divisor that consists

of their product.

5. Group terms by polynomial degree

6. Combine numerical coefficients of all terms

It is worth noting that the implemented operations aim to maintain the form closest to the

normal form when manipulating an expression, for example when expanding expressions that are

grouped by parentheses. This means, for example, that at no point would an operation add an

exponentiation with a base other than a variable (VarLeaf ) after the corresponding “expanding”

operation has been performed. For this reason, the framework distinguishes between parsed ex-

pressions and already processed expressions. This means that transforming a parsed expression

into a normal form is more expensive than transforming already processed expressions. This as-

sumption is formalized in the API by the requirement that theinput has been passed through a

subset of operations. The framework’s implementation “protects” such assumptions by condition-

als which raise anAssertionError that is specific to our framework if they are violated. Figure11

illustrates an example for the single expression normal form of the expression “(x+ 1)2−1” as

the framework would produce it. The normal form can be seen asa sum of products, where the

products contain as one multiplicand the variable exponentiated to the degree of the term, and the

other multiplicand the sum of coefficients of the polynomialterm.

However, the single expression normal form is inappropriate for the comparison of two ex-

pressions. In order to support the correct comparison of polynomial fractions, the expressions are

considered as a pair and their fractions are eliminated by multiplication. This means that each side

is multiplied with the greatest common denominator of the other side until all fractions have been
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Figure 11: Normalized Expression Tree

eliminated. The greatest common denominator is simply the product of the fractions that occur

as coefficients. It is worth noting that the polynomial expression’s degree, and possibly the num-

ber of summands, will increase after this procedure, as onlynon-numeric divisors will remain as

a FractionNode in the single expression normal form. This might lead to expensive operations

when a divisor contains a considerable amount of summands. After the fractions are cancelled out,

both expressions conform to the “Comparison Normal Form” given in Table 7. The two expres-

sions can now be compared based on the degrees of the occurring terms and their corresponding

numerical coefficients.

3.1.4 The Solution’s Design

The nature of the programming language used, Ruby, allowed usto take advantage of both object

oriented and functional programming styles. We decided to use an object-based structure to rep-

resent the expression tree, because the representation is subject to frequent changes and traversals.

By using classes to represent operations as part of the structure, we can isolate the specific node

functionality in a class definition. Using objects to represent algebraic operations allows us to im-

plement functionality specific to a certain operation in an isolated location and similarly facilitates

the identification of an algebraic operation while traversing the expression tree.
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〈Expr〉→〈SummandNode〉
〈SummandNode〉→+〈MultiplicantNode〉〈SummandNode〉|+〈MultiplicantNode〉
〈MultiplicantNode〉→〈ParenNode〉*〈ExpNode〉
〈ExpNode〉→〈VarLeaf〉ˆ〈IntLeaf〉
〈ParenNode〉→〈CoefficientsSummandNode〉
〈CoefficientsSummandNode〉→+〈NumericNode〉
〈NumericNode〉→〈NegatedNode〉|〈Numeric〉
〈NegatedNode〉→-〈Numeric〉
〈Numeric〉→〈IntLeaf〉|〈FloatLeaf〉|〈NumericFractionLeaf〉|〈TripleFractionLeaf〉
〈FloatLeaf〉→〈Dec〉
〈IntLeaf〉→〈Int〉
〈NumericFractionLeaf〉→〈Int〉/〈Int〉|〈Dec〉/〈Int〉|〈Int〉/〈Dec〉|〈Dec〉/〈Dec〉
〈TripleFractionLeaf〉→〈Int〉+〈Int〉/〈Int〉|〈Int〉+〈Dec〉/〈Int〉|〈Int〉+〈Int〉/〈Dec〉|〈Int〉+〈Dec〉/〈Dec〉
〈Int〉→〈Int〉〈Int〉|1|2|3|4|5|6|7|8|9|0
〈Dec〉→〈Int〉.〈Int〉|.〈Int〉

Table 7: Comparison Normal Form Grammar

Furthermore, our implementation follows commonly accepted coding practices such as “De-

sign Patterns” to improve modularity and extensibility. For example, the “Factory Pattern” was

used to hide the internal representation of numerical values. This is achieved by a common inter-

face to a numeric value object and a central “factory” that returns the correct object for a given

numeric input. This allows us to support a variety of numerical notations (i.e. integers, decimals,

triple fractions, rationals, etc) and change their internal representation without impact on the other

parts of the framework.

The operations that are performed on the expression tree in order to transform it, were decom-

posed into individual functions in order to be able to use them in custom order and reuse them

from other Ruby compliant code. Therewith we tried to facilitate the use of our functionality in the

future version of the ASSISTments system, which will be based on the Ruby on Rails framework.

Furthermore, to improve the integrability of our framework, the provided methods and class defi-
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nitions are well documented in the framework’s API. The API is available online, on the project’s

website. It was produced with the commonly used RDoc [34] toolthat produces documentation

based on comments in the source code in HTML format.

3.2 Graph an Algebraic Expression

3.2.1 Analysis of Requirements

Our project’s second objective was to build a grapher that could be incorporated into the ASSIST-

ments system. The grapher would allow content developers toinclude graphs in their questions

without needing to create and save images using some external program and then load them into

the ASSISTments system. The system would have an internal feature that allows developers to

generate and customize a graph for inclusion in a question. This would save a great deal of time

and effort for the developers, and in many cases speed up the process of generating ASSISTments

by eliminating the need for an outside tool. The grapher would not just be a tool for the devel-

opers, however. It would be a powerful interactive tool for students as well. If an ASSISTment

includes a grapher, the student will be able to use it to graphhis or her own functions and to gain

detailed information about all the lines plotted on the grapher. With this feature the ASSISTments

system will be able to offer students a much more powerful andeducationally valuable tool than

the standard image that developers were previously able to include.

The grapher had a few very important requirements at the start of the project, based upon

the likely needs of the ASSISTments system. It must, obviously, draw a graph efficiently and

accurately. It would need to understand a large variety of expressions so that neither teachers nor

students would have to worry that their function would be misinterpreted or rejected. If possible,

users should not be required to install additional plug-insfor their browser in order to use the tool,

and it must run on three major browsers: Internet Explorer [6], Mozilla Firefox [27], and Safari [1].

Page refreshes must be avoided, and if server request is necessary the program should make use
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of AJAX functionality to only reload the necessary areas of the page. The grapher should be able

to draw in various colors to help distinguish old graphs fromnew, or a teacher’s graphs from a

student’s. It must be flexible enough to serve the needs of a great variety of question types. Finally,

the ASSISTments team must be able to incorporate the grapherinto their system.

Our first task in developing this interactive graphing tool was to come up with a set of features

that should be included, and to decide what the grapher should be capable of. For this we examined

several existing graphing tools as well as existing ASSISTments that included graphs. It was

suggested from the beginning that the grapher should be ableto draw in various colors. The

graphing tools in the Texas Instruments [17] TI-83 and TI-89calculators became our models for

graphing style and capability. We also concluded that a toolfor tracing a graph, like that available

in these calculators, would be very helpful for the student.Labeling numbers and units on the axes

could be essential to many ASSISTment questions. Highlighting points where two curves intersect

could be valuable to many questions. It was also deemed likely that a teacher or content developer

would like to only show the student a certain segment of a graph for some questions. A variety of

such features was compiled into a list and prioritized according to importance and difficulty.

3.2.2 Development and Implementation Details

We began work on the grapher by building a basic prototype to help us work out essential func-

tionality and integration issues. The prototype tested communication between our various tools.

Our prototype verified that an SWF object created through OpenLaszlo and included in an HTML

page via anobject tag could successfully communicate with JavaScript embedded in the HTML

page, or included in the page from an external file. The prototype also verified that we would be

able to utilize AJAX functionality in this page. Our group then continued to use this prototype to

test our process for drawing graphs. We drew axes, then addedarrows and tic marks. We com-

puted and drew basic graphs. We worked out how to change the scale, or ranges, of the grapher

and redraw the axes accordingly. New features were added andold code was altered as needed.
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However, through all this testing, code was added haphazardly to the program with thought only

to functionality and not style or good programming practices. When we had arrived at what would

be our final implementation we restructured the grapher program to incorporate Object-Oriented

programming principles and techniques. Our program becamesignificantly more logical and mod-

ular. Using JavaScript’s support for Object-Oriented programming we built three classes, each of

which is responsible for its own data and functionality: theGrapher class, the Graph class, and the

Trace class.

The first and central module is the Grapher class. There will only ever be one Grapher object

for a given grapher. This class stores the canvas height and width, dimensions that indicate the size

of the Grapher object on the web page. The Grapher class also keeps track of values indicating the

scale of the graph(s) to be drawn on it, namely the minimum andmaximum x and y values, and

their scaling factors. Also, so that we do not continually recompute a necessary value so often,

the Grapher class contains variables with the screen coordinates of the graph’s origin. The object

maintains an array containing the x-coordinate of each pixel across the canvas (not the screen

coordinate, but the ’actual’ value, the value that is represented to the user by that location on the

graph). Finally, the Grapher object maintains a list of all graphs currently drawn on it, and holds

the current trace object. An object of the Grapher class alsocontains a great deal of functionality.

The Grapher is responsible for building new graphs as they are input to the system, and for drawing

them. It contains all functionality needed should a user desire to change the scale or appearance of

the grapher itself.

Naturally the next module is the Graph class. A Graph object keeps track of all information

needed for its rendering. It contains all the traits chosen by the user: color, line width, erase-ability,

name, and the mathematical expression that is being graphed. The Graph class also maintains an

array containing the y-value of the curve for each x-value stored in the Grapher. These values are

necessary for when the graph is actually drawn onto the canvas. Having a Graph class provided

a data structure in which to store all information about a graph, which allowed us to remember
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the graph’s values so they would not need to be recomputed as long as the graph’s scale remained

unchanged. It also meant that these traits could be specific to a graph, not global to the grapher,

and thus the Grapher could maintain several Graphs each withdifferent properties. Thus the ap-

pearance of our grapher, or at least it’s drawings, became more flexible. The ability to access

any attribute of multiple Graphs (as many as are drawn on the screen), makes it possible to add

countless new features that would have been exceedingly more complicated and inefficient without

this object-oriented design. For example, because the Grapher contains all of its Graphs, and each

graph contains all of its properties, it is a simple matter, when the Grapher’s scale is changed, to

recompute each Graph’s y-values and redraw them. Thus the user is able to “zoom in” or “zoom

out” without having to remember and re-enter all of his or hergraphs.

In addition to standard graphs, the grapher can also draw segments of a curve or line; a feature

that would be useful if a teacher wished to highlight only a certain part of a graph. To implement

this we added two more attributes to the Graph class: a minimum and maximum x value. If the

Graph object is a full curve or line, then these attributes will be equal to the grapher’s minimum

and maximum x value. If the object represents a segment, thenthe values for these attributes will

be set by the user when the object is created.

The need for our third class became evident when we wanted thegrapher to have a tracing

feature. The Trace module takes as input a Graph object and builds a Trace object based upon the

y values stored in that Graph, and the x values stored in the Grapher. The Trace object constructor

iterates through each value in the Graph’s array of y-values, and each value that is a valid number

and represents a coordinate that would actually appear on the grapher is converted to canvas coor-

dinates and added to another array, and the x-value from the Grapher’s array that pairs with that

y-value to form the coordinates for a point on the Graph’s curve is likewise converted to canvas

coordinates and stored in another array in the Trace object.When the user traces a graph, a view

containing a small circle is moved so that the circle is centered over the coordinate point formed

by getting values from these two arrays with the same index. Thus, in addition to these two arrays
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the object has an attribute that indicates the current indexof the Trace object, or how far along the

visible curve (and thus how far through the arrays) the user has traced. The user has the option to

select a “trace interval” indicating how many pixels along the x-axis the trace view should jump for

each trace request (or click of the trace button). The value selected can be changed at any time, and

is stored as a global within the program that is referenced inorder to compute each of the values

required for the trace animation.

This object-oriented design approach meant very organizeddata management. Having sepa-

rate, distinct classes, each with their own clearly defined roles to play, created a very clean and

intuitive view of how the grapher should work and how data andpieces of functionality should

be managed. Clearly, the Grapher should handle general functionality, such as keeping track of

graphs and updating the grapher’s scale. The obvious place to keep track of all the graphs being

displayed by the grapher is in the Grapher object itself. Each Graph, Grapher, and Trace object

would hold all important information about itself. Our system thus became much more flexible

and maintainable and extendable. With an intuitive object-oriented design, the process of adding

new features was drastically simplified as there was very little question as to where responsibil-

ity should lie, how data should be retrieved, or where it should be stored. Employing iterative

development, adding content one small functional bit at a time, and improving features gradually

ensured that we could keep our program simple and intuitive,and made troubleshooting easier, as

there were a very limited number of places the cause of any given problem could lie.

3.2.3 The Grapher’s External Interface

Through an external user interface, the user (a content developer for the ASSISTments system)

sets several important values for the grapher. This user chooses the initial range of the grapher.

By default, the x and y values of the grapher will range from negative fifteen to positive fifteen. If

the developer desires different bounds he or she will enter them when the grapher is created. The

values in the Grapher object will be updated accordingly, and all other values (such as the scaling
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factors, and the location of the graph’s origin on the canvas) will be recalculated based upon this.

The grapher includes a feature that will draw a pale grey gridin the background of the grapher.

This is a simple grid similar to what appears on graphing paper, but can be very helpful when

locating a point on the graph or estimating values along a curve. The lines extend the full length

or width of the canvas and coincide with the tic marks on the axes, meaning they represent whole

number intervals. The external user interface gives the developer the option of displaying this grid

on the grapher or leaving the background blank. Similarly the developer can choose not to display

the axes of a graph. If the developer does not want a student tobe concerned with the values of

a curve but only the shape of it, he or she can turn off the axes and even the grid so the student

will see the expressions rendered on the grapher. By default both the grid and the axes are visible,

but the developer can easily change this. The external interface also allows the developer to set

labels for the x and y axes. By default, the axes are simply labeled X and Y respectively, but the

developer may wish to give the labels values that have some meaning in the ASSISTment being

developed.

OpenLaszlo provides us with the ability to pre-load data into the grapher. Thus the developer is

able to enter settings that will determine how the grapher will look when displayed to the student

attempting the ASSISTment. In addition, the developer can supply values for a Graph object that

will similarly be pre-loaded and appear when the ASSISTmentbeing built is run and the grapher

first loaded on the page.

The most significant of the Grapher’s features is the abilityto draw a graph. Through a user

interface the user (student or teacher) provides various attributes of the desired graph and the

grapher builds a Graph object with these attributes, storesthe object in its array of graphs, and

draws the appropriate curve on the canvas. One attribute theuser provides the graph with is a

name. This is a simple string that is stored within the Graph object and used to identify the Graph

when the user is selecting a curve to trace. While the implementation is not currently available,

a feature could be added to the grapher that would display this name on the grapher to identify a
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curve. If a name is not provided it will by default be set to “Graph“x”” where x is the order in

which the graph was added, or the Graph object’s index in the Grapher object’s array of graphs.

The user can also select a color for the graph (currently onlyeight color options are provided) and

the desired width of the line in pixels. Both of these attributes are stored in the Graph object upon

creation and will help determine the appearance of the graphwhen it is rendered.

The user building a Graph also determines whether or not it should be erasable. By default,

graphs created by developers are not erasable, or are permanent, and graphs created by students

are erasable. It is almost certain that when a grapher is usedin the ASSISTments tutoring system,

and the ASSISTment’s author would like to present the question to the student with a graph pre-

loaded onto the grapher, he or she would usually like that graph to be always visible to the student.

The student would be able to draw his or her own graphs, and erase them as desired, but the

author’s initial graph should never vanish. Thus we sought to make a graph permanent, so it would

remain on the grapher regardless of how many times a student clicks the “clear” button. This was

a simple matter of adding a boolean “erasable” attribute to agraph object, which corresponds to an

appropriate element in the external user interface. If the graph is set to be erasable, it is removed

from the screen and also the Grapher object when the graph is cleared. Ideally, permanent graphs

would not be removed. However, there is no way to selectivelyerase elements from the canvas

in the OpenLaszlo environment. Therefore even non-erasable curves are removed from the canvas

when it is cleared, but permanent graphs are not removed fromthe Grapher object, and they are

redrawn along with the coordinate system (axes), and any other permanent graphs, on the clean

canvas.

If the user wishes the Graph to be only a segment and not the full length of the line, he or she

will enter separate minimum and maximum x values for the graph. If these values are present when

the Graph is created it will be a segment only drawn between these points, otherwise the values

will be set to the Grapher’s minimum and maximum x values, andthe graph will appear to full

length on the canvas. Figure 12 shows our user interface where the user can enter information on a
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Figure 12: Plot Segments Feature

graph , and the resulting graph. You can see first a full graph was drawn, and then only a segment

of a curve similar to that graph was drawn. The input that formed this segment is presented in the

fields of the interface.

The most important attribute of a Graph is its expression. The user enters a mathematical

expression into the external interface and this is given to the Graph object and used to perform the

calculations that determine what curve is drawn.

In order to draw the graph the user requested, the system mustknow the y-values of the graph

(what its expression evaluates to) at each x-value stored inthe Grapher object. To calculate the y

values for the Graph object, we utilized ASCIIMathCalculator, a JavaScript file created by Peter

Jipsen and available under the GNU General Pubic License [11]. Our team used themathjs()

method from this file to convert the ASCII string representation of the Graph’s expression into a

JavaScript string (i.e.x2 would becomeMath.pow(x,2) . Using regular expressions to replacex

in the JavaScript string with each of the Grapher’s x values in turn, and using theeval() method
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to get a numerical value indicating what the expression evaluates to at each x value, our program

is able to assemble the formula’s y values.

With the y values for a graph thus computed, it is an easy task to convert these values to screen

coordinates based upon the size in pixels of the grapher’s canvas and the provided extents of the

graph’s axes. Before drawing a graph, the Grapher determinesif each value is a valid coordinate.

Simple checks are required to make sure each element in the Graph’s array of y values is not

undefined, and is not Infinity. If the value failed either of these checks it was set toNaN (Not a

Number), which is why a check for!isNaN was unnecessary. If the Graph represents a segment,

then all y values matching x values outside of its desired range were replaced withNaN. To actually

draw a Graph, the Grapher iterates through the array of y-values and if a value is valid, it uses turtle

strings to draw a line from the previous value to the current value’s converted coordinate (and its

accompanying x-coordinate stored in the Grapher). If the graph contains invalid values (now a

simple check forisNaN ), the Grapher will “lift the pen” and wait until it finds another valid value,

then start a new line segment at that location. This method ofdrawing by finding the right height for

each column of pixels in the screen and connecting them couldpotentially lead to jagged curves,

but as two calculated and connected coordinates will never be more than a pixel apart horizontally

the overall appearance is rather smooth. Any method for drawing would have similar results as

screens have square pixels and thus are incapable of displaying truly smooth curves. At first our

system also discarded any y values outside the Grapher’s range, but this resulted in incomplete and

disjointed graphs when a curve increased or decreased rapidly, and a section of the curve began

close to the center of the canvas, because the previous valuewas outside the grapher’s limits and

thus was skipped. If the Graph being rendered is a segment, then all y values that coincide with x

values outside of the segments range desired will be set toNaNand thus passed over when the the

graph is being drawn.

Drawing a graph using these calculations involves converting between the “actual” value of a

point (what the calculator determines it to be), and the screen coordinate of the point (where it will
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be drawn on the canvas). This is a simple matter of multiplying the “actual” value by a scaling

factor, which is computed by dividing the “actual” extents of the graph (twenty in a graph ranging

from negative ten to ten) by the “canvas” dimensions of the graph (500 pixels by default) and then

shifting the result so that it is properly placed relative tothe “actual” origin. For example, in a 500

pixel wide graph ranging from negative ten to ten, the originwould be located in the center, at 250

pixels. But as the screen origin is in fact at (0,0), the pixel in the upper left-hand corner, we must

shift each point in the graph over 250 pixels (and likewise down 250 pixels if the y-axis dimensions

are the same) so that the origin of the graph will appear to be at the center of the grapher where it

belongs, not in the upper left-hand corner of the canvas.

3.2.4 The Grapher’s Toolbox

While external interfaces are used to set initial, pre-loaded values for the grapher and to build

Graph objects and draw their curves, we added a toolbox within the grapher to provide access to

its other features. This toolbox is in an OpenLaszlo window,a simple feature to create via the

OpenLaszlo framework. The toolbox window can be moved and resized, but is only visible within

the grapher object. The student can access the toolbox by clicking anywhere on the canvas, but a

check-box labeled “Toolbox” is provided on the grapher and when clicked this will bring up the

toolbox in its default location. This check-box is useful because clicking the canvas will bring up

the toolbox in its previous location, and if the student accidentally dragged the toolbox off of the

canvas he or she would not be able to retrieve it otherwise.

Within this toolbox window are several collapsible sections, one for each feature the user could

wish to access. The window and the sliding tab elements within it are features of Open Laszlo,

and were easily constructed. The functionality of the features within each section, however, are

largely implemented using JavaScript. The first section of this toolbox displays the coordinates of

a left mouse click. Whenever the user clicks on the canvas thissection will open displaying the x

and y coordinates of the mouse click, relative to the Grapher’s axes as shown in Figure 13 This is
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Figure 13: Show Coordinates Feature

a simple feature whose implementation involved little morethan using built-in OpenLaszlo meth-

ods to retrieve the coordinates of the mouse click, and performing a couple of simple operations

on the numbers to convert them from canvas coordinates to thegraph coordinates that the user

would expect and understand. However, it is very helpful andpedagogically valuable despite its

simplicity. It is very likely that a student will wish to knowthe coordinates of a certain point on a

curve, perhaps the intersection point of two curves, and will get easier and more accurate results by

clicking on the point and viewing the coordinates than by trying to estimate the coordinates based

upon how the point appears to line up with the tic marks on the axes, or the grid if it is available.

The second section of the toolbox is used to highlight a point. Just as students are likely

to want to find the coordinates of a point on the graph, so are they likely to want to find the

location on a graph of a coordinate pair. That is where this feature will be useful. If a student

wishes to see where a certain point is on a graph (perhaps where the student has mathematically

determined two curves will intersect), he or she can simply type the coordinates into the text-
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Figure 14: Find Point Feature

boxes in this section, and a small red square will appear centered over that point. This feature is

illustrated in Figure 15. This was implemented by creating asmall view with a red background

in the OpenLaszlo program. When the user clicks the button labeled “show,” the view’s position

is set to the coordinates provided by the user (after converting them to canvas coordinates), and

it becomes invisible when the student clicks “hide” and remains this way until the student wishes

to have another point highlighted. This feature provides aneasy and accurate way to pinpoint an

exact location that could otherwise be difficult to locate. For example, if the student wishes to see

if a curve crosses the point (0.5, 0.75), with this feature the student can simply type in the values

and will be immediately directed to that exact point. Without this feature, pinpointing any point

whose coordinates involve decimals would be a much greater challenge.

The next section of the toolbox provides easy access to the trace feature. Initially, access to this

feature was provided by buttons directly on the canvas, but as these buttons hid any graph drawn

in those locations it was determined that they took up too much space and must be moved. The
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current incarnation of the trace feature can be seen in Figure 12. The trace feature maintains a

list, accessible via a combo-box, that contains all of the graphs currently on the canvas. The list is

updated every time the graph is cleared or a new curve is drawn. Each Graph is identified by the

name given to it by the user upon creation.

The feature implemented by the Trace module allows studentsto move a pointer along the

graph of a particular function and simultaneously display the coordinates of the current location of

the trace pointer. In this section of the Toolbox is a combo-box labeled “Increment” which allows

the student to select a value (five, ten or fifteen). This valuewill set the increment of the Trace

object, which determines how many pixels along the x-axis itjumps each time the student sends a

request to move the trace pointer. A lower value will show thestudent more detail about the graph,

while a higher number lets the student move the tracer along the graph more quickly.

The usefulness of the tracing feature becomes evident in anyproblem where a student is asked

to identify one or more points along a curve. A student could easily use a grapher for questions that

requires the student to identify, for example, a graph’s y intercept, or the point where two graphs

intersect, or at what x-value a graph has a certain y value. Once the student has deduced the answer

to this type of question, by visually analyzing the graph or by other means, he or she can verify

answers by using the trace feature to follow along the curve until the trace pointer hits a desired

value. Also, if a student isn’t looking for a specific point but merely wishes to see how the values

of a graph change, this tracing tool could be invaluable. By watching the trace pointer travel along

the curve at a steady pace, and reading the coordinates that are displayed at each point, a student

can see exactly how a graph’s values are changing. By providing both visual and numeric data

for the curve, this feature can help students with many different learning styles fully understand a

graph, thus providing an educational tool.

The next section of the toolbox allows students to change thegrapher’s bounds. As demon-

strated in Figure??, by opening this section of the toolbox and entering new values into the text-

boxes provided, a student can change the extents of the graph. Thus the student can zoom in on a
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certain part of a graph, zoom out to see more, or simply shift the focus of the grapher. Whenever

the range of the grapher is changed, the attributes in the Grapher object are given new values, the

x values stored in the grapher are recomputed, and the y values of each Graph object stored in the

Grapher are recomputed, the canvas is cleared, and if the grapher was set to display the axes and

grid they are redrawn to fit the new range, and all Graphs are redrawn to fit the new grapher set-

tings. Redrawing the Graphs in this way would have been nearlyimpossible without the program’s

object-oriented design. Without an object for each graph tomaintain all of its own attributes, keep-

ing track of all necessary values would have been nearly impossible. Giving students access to this

scaling tool provides a range of flexibility that still images would never have been able to accom-

plish. Students can learn by quick and simple practice aboutfinding the best range for a graph.

Content Developers can ask a student to determine the proper range for the graph that displays

the solution to a question, rather than providing an image that already has the proper range set.

Determining proper range for a graph is a skill that many students have difficulty mastering, but

with this added feature our grapher can provide students with extensive practice. Also, the student

receives immediate feedback from our grapher with clear, visual results. Without such a tool, the

student would only be able to get practice in this area by drawing out graphs by hand, which is a

long, slow process that doesn’t always encourage students towards further practice.

The final section of the toolbox contains only a clear button.This button will clear all erasable

graphs on the canvas. If a content developer or a student setshis or her graph to be not erasable,

or permanent, then this button will essentially have no effect on it, but it will clear away all other

graphs on the screen.

3.3 Rendering of Algebraic Expressions

The third main objective for our framework was to provide forgraphical rendering of algebraic

expressions. This could be used to enhance an assistment by displaying an expression in a repre-

sentation that is more intuitive to a student, instead of using an ASCII representation that might
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Figure 15: Set Ranges Feature

lead to unwanted results. In order to identify appropriate requirements for our system, we first

considered under what circumstances a rendered expressionmight be used in the current ASSIST-

ments system. We identified two main uses for rendering algebraic expressions that would improve

the student’s experience with the tutoring system.

The first way to improve the student’s experience is by integrating rendered expressions into a

problem or hint statement. This provides for improved understanding of the problem and prevents

confusion that is due to the representation of the problem statement. The expression is easier

to read for the student and therewith improves the learner’sexperience with the tutoring system.

Therefore, integration within (HTML formatted) text had tobe feasible and could not result in a

broken formatting of the statement.

Second, the rendering can be used to provide immediate feedback for an entered expression.

By previewing a rendered version of an input expression, the system can help the student iden-

tify mistakes based on incorrectly typed ASCII representations. Often the rendered version looks
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Figure 16: Screen-shot of Rendering In-lined Expressions

closer to what the student expects and therewith can help a student to revise his or her answer.

For example, the string “3/4*x” is rendered (and also parsed) as 3
4 ∗ x and not 3

4∗x. Rendering

expressions provides for immediate feedback and eliminates a possible source of confusion.

Our solution to the rendering objective involves two external applications: The CGI program

“Mimetex” [2] and the JavaScript application “ASCIIMathTeXImg” [25]. Both are available under

the GNU Public License [11] (GPL). The ASCIIMathTeXImg application is used to convert an

ASCII representation of an algebraic expression into a validTEX expression. The TEX expression

is sent to the Mimetex program, which then renders an image using the TEX type-setting features

for mathematical expressions.

Figure 16 shows a screen-shot of our solution’s usage in our sample implementation that can

be found on the project’s website [12]. The teacher can enterthe textual statement in a regular

text-box on a website. Based on JavaScript’s event handleronkeyup an immediate preview is

displayed next to the text-box. The preview is a text statement with in-line GIF images for the

rendered algebraic expressions.
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4 Implementation

After identifying the requirements of our project we soughtappropriate tools that would facilitate

our development of the desired applications. We evaluated the tools based on general requirements

imposed by the current setup of the ASSISTments system and bydeveloping prototypes for verify-

ing the capabilities of the chosen tools. We collected the prototypes on our project’s website [12]

and commented on their individual features such that our evaluation process can be traced.

The basic requirements for our implementation were dictated by the current setup of the AS-

SISTments tutor. Our framework had to be compatible with thepresent configuration and our goal

was to avoid imposing additional requirements for the client so as to provide seamless integration.

Therefore, we have built our server-side application usingthe Ruby on Rails framework which

is currently used by the ASSISTments team. For the client-side portion of our project, we used

techniques that are easily deployed and have already been evaluated for performance by the AS-

SISTments team, such as SWF objects and AJAX functionality. Furthermore our project had to be

implemented in such a way as to promote usability and scalability. To this end, we refrained from

interrupting the user interaction with the system by refreshing only necessary objects of the web

page.

The general architecture of the framework for our project isoutlined in Figure 17. We divided

our solution into server- and client-side applications. The parsing and comparison of expressions,

and dynamic rendering of images for representing algebraicexpressions is handled on a server as

part of a Ruby on Rails?? web application. Directly integrating our framework into the setup of

a Ruby on Rails application enforces its integrability into the ASSISTments system. The client’s

browser is used to display the rendered images and the grapher application. It also has to include

the required JavaScript functionality into the web-site’sDOM structure. As most modern browsers

support the displaying of images and provide support for JavaScript, the only additional require-

ment that is imposed on the client’s setup by our framework isthe need for the “Flash Player”
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Figure 17: Architecture Of Our Framework

plug-in. However, the plug-in is supported by almost any modern browser and therefore seems a

reasonable requirement.

We generally followed commonly accepted programming practices. Both our client- and

server-side solutions make use of aspects of the object-oriented paradigm as well as the functional

programming paradigm where appropriate. This was made possible by our choice of languages and

tools. To implement server-side features we used the programming language Ruby. The client-side

functionality was written mainly in JavaScript, and using the OpenLaszlo framework as a devel-

opment environment. Both languages support the above mentioned paradigms. We believe that

through making use of these paradigms, we gain benefits such as extensibility and modularity for

our framework.
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Figure 18: Communication Process for Parsing and Comparison of Algebraic Expressions

4.1 Parsing and Comparison of Algebraic Expressions

The main requirement for our implementation of the parsing and comparison of algebraic expres-

sions is the capacity for seamless integration into a Ruby on Rails web application. Therefore our

choice of language is the scripting language Ruby that is usedfor implementing the Ruby on Rails

framework. Our sample tutoring system implementation (discussed in Section 6.2) demonstrates

the use of our framework’s support for parsing and comparingalgebraic expression in a Ruby

on RailsController by simply including the required Ruby files. Using the functionality in a

controller allowed for requesting a result using AJAX functionality which is also illustrated on our

sample implementation. This fulfills the requirement to ourframework to provide for “interruption-

free” feedback. That is, the result of comparing a student’sinput with a teacher’s answer can be

retrieved and displayed on the HTML website dynamically without reloading the whole document,

therewith improving the student’s experience by eliminating page reloads.
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However, the language Ruby itself also proved to be a correct choice for this part of our project.

Ruby’s native support for regular expressions strongly supported our approach to parsing expres-

sions based on well-defined context-free grammars. Additionally, it allowed for iterative addition

to the supported input grammar by simply extending the regular expressions for mathematical

terms. It also facilitated the pre-processing of a string inorder to strip unrequired white-spaces

and identify certain missing multiplication operators or the use of “improper fractions” such as

“3 3/2”. Furthermore, Ruby provides convenient support for object-oriented programming and

therewith facilitates our approach to producing an object-based expression tree. On the other hand,

its support for closures proved to be convenient for the transformation of the object structure and

providing an easily extendable framework.

The abstract diagram in Figure 18 summarizes the communication process for the parsing

and comparison of algebraic expressions. The process is started after a student has entered an

expression as his or her answer. By using JavaScript’sXMLHttpRequest object, the reply is sent

“asynchronously” to the server, more precisely to a controller action of the Ruby on Rails web

application. The controller then retrieves the stored teacher’s solution from the SQL database. It

uses the included parsing and comparison API to test the two strings for equality. The textual

response is rendered and retrieved by theXMLHttpRequest object on the client side. The call-back

that was added for the retrieved response then populates theresult to the HTML DOM, providing

the student with feedback about his or her answer.

4.2 Graphing of Algebraic Expressions

To govern the user’s interaction with the grapher and the internal handling of events, we decided to

use JavaScript. It is a scripting language that implements the ECMAScript language specifications

and therewith provides extensive functionality for handling objects based on events. It can be

easily integrated and embedded into HTML web pages as most modern browsers provide support

for it. As the ASSISTments system is a web application, and our grapher program would be used
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as part of the DOM structure of an HTML page, embedded JavaScript was a natural choice. Also,

actions such as drawing or clearing a graph would be triggered by the user interacting with the

web page. Thus the event driven programming supported by JavaScript was essential. JavaScript

is object based and supports higher-order functions and closures. Therefore, we were able to make

use of both the object-oriented and functional programmingparadigm in our implementation.

OpenLaszlo is an open source platform for developing “Rich Internet Applications”. The plat-

form consists of the LZX programming language and an OpenLaszlo Server application. LZX is an

XML and JavaScript description language similar to XUL (Extensible User Interface Language),

and XAML (Extensible Application Markup Language). The OpenLaszlo server is a Java servlet,

running on an Apache Tomcat server, that compiles LZX applications into executable binaries for

targeted run-time environments. Figure 19 shows an overview of the OpenLaszlo Architecture.

From the two deployment methods shown, our team made use of the “Stand-alone,” also called

“Solo,” deployment method. Our choice of deployment supports integration of the compiled SWF

object without requiring a running OpenLaszlo server in thebackground. This cuts down the traffic

overhead and also reduces the server-side requirements that our framework imposes.

There are several features of the OpenLaszlo platform that motivated our choice to use it for

our project. OpenLaszlo is an open source product and currently has a rapidly expanding com-

munity that provides the required support. The project alsoincludes updated and comprehensive

documentation, along with extensive tutorials and examples. Another factor that made OpenLaszlo

our preferred choice is its debugging capabilities that were especially helpful in the troubleshoot-

ing of JavaScript source code. The framework provides a convenient “debugging console” that

can be compiled into the SWF object for testing purposes when the object is executed through the

OpenLaszlo server. The console can be used to inspect objects and follow the execution process

inside the OpenLaszlo application cleanly. This provides for a more orderly development process,

rather then using ad-hoc techniques to reconstruct the SWF’sexecution by manually setting GUI

elements to display the desired values.
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Figure 19: OpenLaszlo Architecture

Another of OpenLaszlo’s features is the fact that it is platform-independent in that the end-

product is compiled to a SWF object which can be displayed in any browser that supports a plug-in

for Shockwave-Flash objects. This includes most modern browser products such as Microsoft’s

Internet Explorer, Mozilla’s Firefox, and Apple’s Safari.This was an important aspect when con-

sidering possible solutions, as the ASSISTments system needs to provide support for a high number

of clients with possible varying browser preferences.

In addition, the platform has an aesthetically pleasing interface which includes powerful and

helpful GUI components. OpenLaszlo’s extensive drawing capabilities provided for a clear visu-

alization of the graphs. Of special note is the fact that SWF uses vector graphics which provide

for scalability of the canvas to a desired size. Furthermore, the dynamic handling of SWF objects

allowed us to provide immediate information about a graph tothe student, such as by displaying

the coordinates of the current mouse position with respect to the graph’s axes when the student

clicks on the graph.
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Figure 20: Abstract Diagram Illustrating Usage Of ExternalInterface

One feature of OpenLaszlo that is very important to the integrability of our framework is its

support for dynamically loading XML data into an application. This feature of OpenLaszlo allows

for seamless integration into a Ruby on Rails (Rails) web application, as the web framework sup-

ports the convenient conversion of “Model-Data” to XML data[13]. Our implementation makes

use of both OpenLaszlo’s and Rail’s features to load the setupfor a grapher object, and populates

the canvas with stored graph expressions if applicable.

In order to integrate the SWF object into an HTML page, we used Flash’s ExternalInterface

class which is supported not only by the OpenLaszlo framework but also most modern browsers [26]

This class provides for adding call-backs to internal functions to the SWF object in the web-site’s

DOM structure. It similarly allows calls from inside the SWF object to JavaScript functions that

are defined in the enclosing DOM structure. This allowed us toremedy certain shortcomings of

the current version of OpenLaszlo (such as the support for ECMAScript/JavaScript functionality is

limited) [24] by implementing selected features in JavaScript files that can be included in a website

and which the grapher object can make use of through the ExternalInterface.
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Figure 21: Communication Process for Graphing Algebraic Expressions

In order to compute the required values for a user input expression, we are using the func-

tionality provided by the ASCIIMath Scientific Calculator [20]. It takes a string that is an ASCII

representation of an algebraic expression, and converts the occurrences of algebraic operations

to their corresponding JavaScript function invocations. For example the algebraic exponentiation

operation is commonly represented with the “caret” character ˆ in an ASCII representation, while

the corresponding JavaScript function isMath.pow(b,e) whereb ande are the numeric base and

exponent respectively. Therefore the string “5ˆ2” would beconverted to “pow(5,2)” which can be

evaluated with JavaScript’sMath object. Our tool then replaces all occurrences of a variablelike x

with a numerical value. After transforming the string, it then uses JavaScript’seval() to evaluate

the string using JavaScript’sMath object.

One should note that our project is not entirely dependent onthis product, but instead one could

reuse any other product that substitutes the ASCII representation of algebraic operations by their

JavaScript equivalent in a given string. However, using theexisting functionality means that the
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graphing capabilities exceed our initial requirements. The grapher is able to handle trigonometric

as well as the natural logarithmic and exponential functions. Additionally, we were able to focus

on the functionality of our grapher tool instead of the acquisition of numerical values.

Our choice for tools and languages provides for easy integration into any existing web appli-

cation. We believe that the requirement of a browser that supports the “Flash Player 8” (or higher)

plug-in is reasonable and would likely not impose deployment difficulties for the system.

4.3 Rendering of Algebraic Expressions

In order to provide for rendering of algebraic expressions,we sought a solution that could eas-

ily be integrated into the existing ASSISTments system and would not increase the client-side

requirements unnecessarily. This dictated two main requirements:

1. Browser compatibility (without additional plug-ins)

2. Suitable input formatting

The constraint of having to support most graphical browsersruled out solutions that required

an additional plug-in or are only supported on specific products (such as W3C’s recommendations

for MathML [37]). Our solution instead relies on server-side image generation, which is supported

by virtually any modern browser. The image generation is done by querying the CGI-program

“Mimetex” [2] which is available under the GNU General Public License [11] (GPL). The pro-

grams is queried by referencing it in thesrc attribute of an HTMLimg tag and passing a TEX

mathematical expression as an argument. The program returns a GIF image corresponding the

TEX rendering of the expression.

In order to fulfill the second requirement, we chose a markup-like integration, using delim-

iters (backticks) to highlight which substring of a given text should be rendered as an expression.

This provides for seamless integration of algebraic expressions into problem statements. The ex-

pression entered by a content-creator is processed by a JavaScript function that is provided by
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Figure 22: Communication Process for Rendering Algebraic Expressions

the “ASCIIMathTeXImg” [25] script which produces a TEX expression and can be used as input

for Mimetex. Furthermore, because our solution uses JavaScript to process the expressions, and

then dynamically sets the image tag’s “src” attribute, the rendering can be timed using JavaScript’s

event-handlers. This provides a convenient and immediate preview of an algebraic expression. Us-

ing this method of rendering expressions, teachers and students can immediately identify whether

the ASCII string they entered actually corresponds to their desired input.

Our solution provides for straightforward integration into the existing ASSISTments system

and any other website that requires rendering of algebraic expression. Our sample implementa-

tion of a tutoring system exercises the described functionality and demonstrates its benefits. The

example can be used as a guideline for integration but we alsoprovide documentation on our

website [12] on how to include our solution in any arbitrary website.
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5 Demonstration Implementation

To demonstrate the use of our tools and that they could be incorporated into the existing ASSIST-

ments system, we built a “mini-assistment system” that included all of our tools. Questions can

include a grapher, and student answers are parsed and checked against the correct answer provided

by the teacher based upon algebraic equivalence not string comparison, and student input (and

mathematical expressions in a question or hint) is renderedas the student types. With this sample

system, because it is only for demonstration purposes, a question can have a hint or scaffolding

question, which may contain a grapher, but anything more (further hints or scaffolds) must be hard-

coded uniquely for that problem. Questions in this system, therefore, provide less guidance than

the standard ASSISTment system would include, but the questions fully demonstrate the feasibility

and educational value of its features.

5.1 Building an ASSISTment in the Demo System

To build an “ASSISTment” in our mini system, the user enters the system as a teacher, selects

“New Assistment” and is brought to the builder. The developer types in his or her question, with

any mathematical formulae they need to be rendered delimited with backticks. A preview of the

question, including rendered formulae and HTML text formatting, appears beside the text-box

as the developer types. As the next step, the solution to the question is entered, and this is also

rendered as an algebraic formula, in a readable format, again allowing the teacher to verify that the

entered ASCII representation meets the intended expression. Then the developer creates the initial

settings he would like the grapher to have when the question is loaded and seen by the student.

He or she can set a custom range for the grapher, decide whether or not the grid or axes should be

shown, and enter labels for the axes that are appropriate to the grapher. Finally, the content-creator

can enter a custom expression whose graph, or only a segment of the graph are displayed on the

grapher when it is loaded. For such a graph, the developer canchoose a color, line width, and
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Figure 23: Preview of Problem Statement

assign the graph a name, by which it will be identified if the student tries to trace the graph. The

developer can also set the “erasable” setting of each graph,which determines whether or not the

graph will be erased when the student clears the grapher. Previews of the grapher are generated so

that the developer is sure he or she will be showing the student what he or she intended to. This

same procedure is followed then for the ASSISTment’s scaffolding question, and the development

procedure is complete.

5.2 Perpendicular Line Demo Problem

One problem built in our demonstration system is typical of the type of question in which the actual

ASSISTments system could use our features to improve the student’s experience with the tutoring

system. It presents the student with the expression for a line (f (x) = 2x+ 1), properly rendered,
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Figure 24: Grapher Setup

and displays the graph of this line on the grapher’s canvas. It asks the student for the expression

for the function whose graph is perpendicular to this line, and additionally passes through the point

(3,7). This problem could be built with the tools available in the current ASSISTments system,

but the graph would be a simple image, and the student would not be able to interact with it. Any

graphs a student would try to plot while solving the problem would have to be done by hand on

scratch paper, which is a time consuming process. With our system, the student can instantly (and

accurately) draw the graph of a given expression and compareit to the graph presented by the

teacher’s problem statement.

Figure 25 shows the sample problem. Note that when this question was built, the content

developer decided to decrease the bounds of the grapher to range from negative ten to ten on both

axes. The developer is free to decide which “zoom level” bestsuits the problem, how much of the

graph should be shown to help the student focus on what the question requires.
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Figure 25: Perpendicular Line Demo Problem

The first thing a student trying to solve this problem could dois locate the point through which

the line must pass:(3,7). He has several options for doing this. First, he can follow the tic marks

and grid lines from the axes to find the point wherex = 3 andy = 7 meet, and then click on that

point to bring up the toolbox displaying the coordinates which will confirm or negate the findings.

The other, probably easier, method is to bring up the toolboxand enter the coordinates under the

“Find Point” option. A small red square will appear over the point, identifying its location, and will

remain there until the student moves or hides it, so he or she will not have to waste time re-finding

the point every time he looks at the graph. This small step of making the student find the point

has a pedagogical benefit over still images that would just provide the point, because it forces the

student to pay attention to the process of locating a point ona coordinate system, an essential skill
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when working with graphs.

Next, the student will try to find the expression of the line perpendicular to the linef (x) =

2x+ 1. The student will work out an expression and then use the provided grapher to plot the

expression and see if it is indeed perpendicular to the givenline. Perhaps the student makes several

attempts without success, and the graph becomes crowded with many different lines of various

colors and widths. By bringing up the toolbox the student can click the “clear canvas” button and

clear away all previous attempts, leaving only the originalgraph corresponding to the expression

f (x) = 2x+ 1, provided by the content developer who built the ASSISTment. The student finds

a solution and submits an answer, and if it is correct, the problem is completed. If a solution is

incorrect, a scaffolding question appears.

The evaluation of the student’s answer against the teacher’s solution is handled on the server,

but the student will not experience any page reloads and the data is gained through AJAX func-

tionality. The server’s “response” for the entered answer is then populated beneath the text-box

where the student answered the problem indicating whether the student found an expression that is

equivalent to the correct solution.

This scaffolding question guides the student towards the solution by helping the student learn

how to derive the formula for a line perpendicular to a given line. In the actual ASSISTments sys-

tem this question would have more scaffolding questions andhints, reminding the student about

the point-slope form for expressions, helping the student find the y-intercept for the perpendicular

line’s formula, etc. This system, however, is simply a demonstration and thus has only one scaf-

folding question. It presents the student with several simple line formulas and asks for the line

perpendicular to the first one. The student is again providedwith a grapher, this one without any

initial lines given. The student will then graph the formulae given in the statement of the hint.

Without our grapher tool, if the content developer was limited to simple images, the student

would have been provided either with an image of a graph with these four lines drawn and labeled,

or with four different images, each containing one of the lines, and would have been asked to
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Figure 26: Perpendicular Line Problem Hint

find the scaffold’s solution based upon that. This gives the students no freedom to manipulate the

graphs and plot the combinations most helpful to them. With the grapher, the student is free to

graph the lines in any arrangement and color combination he or she pleases. As seen in Figure 26,

the student can graph the first line in one color and the rest inanother color, so it is clear which line

each is being compared against. If the student wishes to see the first line paired alone with each

of the other lines, he can draw the first line and set it to non-erasable, and then graph and clear

each of the other lines in turn. With the grapher, the studentis given the tools, freedom, and ability

to build the visual representations most appropriate for his individual learning style, and to get as
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much information as desired from these graphs.

After seeing the expressions graphed, the student will identify the third expression as being

perpendicular to the first, and will, as suggested in the lastline of the scaffolding question, analyze

the relations between these formulae. Next, the ideal student would realize that two expressions’

graphs are perpendicular if the slope of one is the negated reciprocal of the slope of the other.

Thus the line perpendicular to the one provided in the original question will (as the student can

verify by entering an expression into the first grapher) havethe form f (x) = (−1/2) ∗ x+b. The

student simply needs to findb, or the y-intercept. The actual ASSISTments system would likely

have another scaffolding question to help the student with this, but for the purposes of the demo,

we assume the student will know that he or she simply needs to plug thex andy coordinates of the

point into the expression, which yields 7= (−1/2)∗3+b, and then solve forb. The student finds

the answer to be(−1/2)∗x+8.5, graphs the line to be sure, and then submits the correct answer.

As the student types the answer, it is rendered next to the text entry box in a form that’s easier to

read, so the student can be sure that the expression he or she provides is of the intended form, and

no stray parentheses or mistyped fractions will result in a wrong answer.

Finally, for each of the answers the student submits, the system uses our parsing and compari-

son mechanism to evaluate the student’s expression for equality with the solution provided by the

content developer. This means that even if the student writes a solution in an unexpected way,

the system will still be able to tell whether or not it is correct. The current ASSISTments system

uses string comparison to validate answers, which makes checking algebraic equations difficult.

With our parser, the content developer and student can writetheir solutions in essentially differ-

ent ways, but the student will still be marked correct if the answers are of the same mathematical

value. In this problem, the content developer entered−0.5∗ x+8.5 as the correct solution to the

problem. But with the use of our tools, the student will still be marked correct if(−1/2)∗x+8.5,

−x/2+ 17/5 or 8.5− 0.5x or any other equivalent expression that conforms the parser’s input

grammar was entered. This parsing and comparison provides teachers with much more freedom
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when creating assignments for their classes, because they are not forced to make multiple-choice

answers to questions, trying to anticipate possible answerexpressions of equivalent value.

5.3 The Biker Problem

With the help of Ṕeter Juh́asz of MTA SZTAKI, our team built a more challenging problem into

our demonstration ASSISTment system. In this problem thereare two bike riders, one (Max) starts

at point(−10,0), traveling straight from left to right, and one (Moritz) at(0,10) traveling from

top to bottom on the coordinate plane. The student is asked tofind the time (after how many units

of time) at which they are closest if Moritz is traveling at twice the speed of Max. The student is

provided with a grapher (initially blank) in order to be ableto graph any formulae they develop

while solving the problem. The grapher’s axes are labeled, indicating to the student that he or

she should find a function to plot the distance between Max andMoritz over time. As few eighth

or tenth grade students know calculus, and the MCAS exams do not test for calculus, the student

would solve this by graphing the parabola and finding the value of the vertex, or minimum. This

type of problem requires the system to have an interactive grapher. As the student is expected to

derive the formula for the parabola, still images would not be helpful, and expecting the student to

graph the parabola by hand on scrap paper is not practical. This demonstrates an important way of

using our tools in order to solve problems of maximizing or minimizing certain functions without

requiring prior knowledge of derivatives and other calculus operations.

Assuming the student does not provide the correct answer on the first try, the system presents

a series of scaffolding questions to guide the student towards the answer. As seen in Figure 28,

the first two scaffolding questions ask the student to derivevalues for the bikers’ positions relative

to time. In the actual ASSISTments system, the student wouldbe provided with hints to guide

him towards the solution, but for demonstration purposes the student must come up with a solution

without hints. Also, the current ASSISTments system would require multiple-choice answers for

these two questions because there is no sure way to know what form the student’s answer will
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Figure 27: Biker Demo Problem

take. The strings “x−10” and “−10+ x” are the same to a student, but not in a character based

string comparison. In this system, the student’s answers tothese questions are parsed and tested

against the provided answer for algebraic and not string equivalence, so neither the content creator

nor the student needs to worry about what exact form the student’s answer should take, as long as

the knowledge conveyed is correct. This fundamentally increases the pedagogical value of the stu-

dent’s experience, because the student cannot infer the answer from the options provided. Provided

the student does not use the bottom-out hint that would be provided by the ASSISTments system,

the student will have to derive the formula, which can require a more complete understanding than

selecting the correct answer from a list of options. Even with the bottom-out hints, forcing the

student to write the expression provides further exposure and makes understanding more likely

than simply selecting the proper radio button would.

When the student has derived the formulas for the two speeds (x−10 for Max and 10−2∗x for

Moritz), our system reveals this assistment’s final scaffolding question. It helps the student derive
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Figure 28: Biker Demo Problem Hints

the distance function’s expression. The assistment pointsout that the lines are perpendicular, thus

forming two sides of a right triangle. The distance between the points on either line at any point

in time, therefore, is the length of the hypotenuse of that triangle, which can be found by using

the Pythagorean Theorem. According to the Pythagorean Theorem, the distance would be equal

to the square root of the sum of the squares of the sides. The question does not reveal this much

detail, but if this problem were to be implemented in the actual ASSISTments system this question

could have hints and perhaps scaffolding questions of its own to help the student discover this

information. The question’s text further points out however, that the task of minimizing the result

of a square root is equivalent to the task of minimizing the radicand, and thus the student is only

asked to do this. The correct answer to this question is(x−10)2 +(10−2x)2, or 5x2−60x+200

if the student chooses to expand the expression’s terms.
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After the student correctly answers the final scaffolding question, a hint appears that tells the

student that he or she needs to graph the formula he has just derived, and then determine the

minimum value of the function from this graph. The student isalso reminded that when graphing

expressions one must consider what ranges should be graphed. If the student tries to graph the

expression with the grapher’s bounds at their initial setting they will not see a result. Once again,

the grapher is forcing the student to learn more than pre-made still images could.

Figure 29: Biker Demo Problem: Change Ranges

The student must consider the proper bounds for the grapher.Logically, as the x values in

the formula represent units of time, and y values on the graphrepresent distance at certain time

points, neither of these can be negative, so the grapher’s x-min and y-min values can be set to 0.

Mathematically, the expression is the sum of squares and thus can have no negative y values. The

student is only interested in the minimum values of the expression, and the expression would be

lowest when the factors it is summing up approach zero. Thus the student should derive that the

graph should be most interesting around the values of 10 and 5, and then perhaps choosing 15 as
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a safe value for the maximum positive value on the X-axis. Thevalue of f (10) is 100, but f (5)

is 25. The student can discard any values greater than 25, perhaps choosing 30 as the maximum

positive value on the Y-axis.

Finding appropriate bounds for a graph is an important skillfor students to learn, as it must be

done whenever graphs are built. Our grapher tool clearly facilitates the acquisition of such a skill

by providing the student with the ability to modify the canvas’ ranges. This skill would be difficult

to practice and test in a system whose only graphs are static images.

After changing the ranges of the axes, the vertex of the graph, the time at which distances

is lowest, becomes clearly visible on the graph. To find this value the student can estimate the

value based upon grid lines and labeled tic marks on the axes,or the graph can be clicked, and the

coordinates viewed as displayed in the grapher’s toolbox.

Figure 30: Biker Demo Problem: Find Point

Another way for the student to find the coordinates of the point is to use the grapher’s Trace

feature, accessible from the toolbox. The student can bringup the “Trace Graph” section of the
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toolbox, choose a graph (listed by the name the student provided when he or she graphed the

expression), click the “Select” button, and then use the “+”and “-” buttons to move the trace point

along the curve until it approximately reaches the parabola’s vertex and displays its coordinates.

To verify that the coordinates are correct, the student can use the “Find Point” feature in the

toolbox to type in his coordinates, and see if the point highlighted by the red box is at the base

of the parabola’s curve. Since the question is asking for thenumber of units of time, which is

measured on the x-axis, the student should submit the x-coordinate of this point, which can then

be identified as the value 6.

79



Building Intelligent Tutoring Systems 6 TESTS AND ANALYSIS

6 Tests and Analysis

We analyzed the implementations of our tools by commonly accepted metrics. The evaluation was

done with mainly our initial requirements in mind. The main design goals, besides fulfilling the

technical requirements, were the integrability of our codeand its modularity. To achieve these

goals, our choice of tools was made after taking into consideration the ASSISTments system’s

current setup, and its future migration to a Ruby on Rails web application. We demonstrated the

integrability and re-usability of our solution mainly via the sample tutoring system implementa-

tion available the project’s website. In addition, we made use of software engineering metrics to

evaluate our application’s performance. Because our framework is to be part of a web application,

the main concerns were download speed and the traffic imposedon the system’s server by our

framework. The load imposed on the server by the usage of our parsing and comparison function-

ality is also of concern when arguing for our framework’s usability and practicality. Therefore our

analysis distinguishes between download size and load imposed on the server. Additionally, we

argue for the re-usability of our framework by analyzing thecustomizability of the user interface.

6.1 Traffic Analysis

In order to analyze the additional traffic imposed on the user’s web connection, we need to identify

the actual total size of the files that need to be downloaded from the server. This consists of the files

needed for client-side execution of our grapher, the JavaScript files needed for rendering algebraic

expressions, and possibly the images that represent rendered expressions.

The biggest part of the required files is the OpenLaszlo application which is embedded in the

website’s DOM structure. The source code of this application adds up to only 40 Kilobytes, but

its compiled version takes up 149 Kilobytes. This compiled version, together with the required

JavaScript files and a basic HTML file sums up to approximately210 Kilobytes. In this value, we

included an estimated size of 55 Kilobytes for the JavaScript files required for the computation of
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graph related data and the rendering of such expressions. The rest is left for the HTML file that

contains the grapher tool, its controls and possibly the assistment’s problem statement and hints to

guide the student to a solution. Additionally, we might include a generous estimate of 40 Kilobytes

for the rendered expressions. The expressions are renderedas gray-scale GIF images, and usually

do not exceed the size of five to eight Kilobytes. It is worth noting that the serving program is

generating the images in the order of milliseconds, therefore, according to the authors’ experience,

generally not imposing a noticeable delay on the rendering of a downloaded website.

A total download size of 240 Kilobytes might impose a considerable constraint for users with

low bandwidth. However, we believe that most educational facilities are able to provide their stu-

dents with a stronger broadband connection which supports connection speeds higher than 256

kilobits per second (kbps), significantly reducing the impact of the imposed overhead. Further-

more, this file need only be loaded once (with the initial pageload) and is afterwards controlled

through JavaScript if necessary. Also, the application requires no additional page loads for acquir-

ing data to populate graphs, as the application is able to load the required XML data autonomously

and dynamically based on arguments given to the object’s tag. Furthermore, the ASSISTments

team is currently expecting actions from an individual student in intervals of twenty seconds on

average. With this in mind, an average page load time of approximately three to five seconds for

rendering the assistment seems reasonable to the authors. We also believe that the usage of an in-

teractive grapher might increase the average time taken foran assistment, as a student’s interaction

with the system might be stimulated by new abilities. However, such a change of behavior strongly

depends on the type of problem that is posed by the assistmentand whether it makes full use of

the grapher’s interactive capabilities. Generalizing such an assumption is thus difficult and should

instead be verified empirically. Nevertheless, it seems possible to argue that the level of interaction

with an assistment could increase with the usage of the grapher tool and thus a longer load time

might seem more reasonable to the student as he or she would not move on to the next assistment

as quickly. Students are likely to be willing to wait longer for a page to load, if they know an
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Figure 31: Octagate Results

appreciable amount time will be spent on that page.

In order to further examine the performance of our tools, mainly that of the grapher appli-

cation, with respect to download and rendering time, we employed the online statistics tool by

Octagate [28] to benchmark the loading time of a sample website. The test website includes the

JavaScript files that are required for the control of the OpenLaszlo application as well as the appli-

cation itself. The results of a representative run can be observed in Figure 31.

Clearly, the statistics do not contain the loading of the OpenLaszlo application. However,

measuring the loading of such an SWF object is difficult as it ispartially dependent on the browser-

specific plug-in that is used to render the application.

It is important to recognize the overhead which is imposed bythe included JavaScript files that

are needed for the string conversion. Therefore, the implementation of such functionality more

specific to our framework could provide a significant enhancement to the user’s experience by

reducing the loading time. This, however, depends on the custom implementation’s file size.

6.2 Analysis of Server load

The implementation for the parsing and comparison of algebraic expressions is handled on the

server. Its performance has a direct impact on the server’s CPU load and therefore should be

reduced as well as possible. However, the severe time constraint on our project has limited our

82



Building Intelligent Tutoring Systems 6 TESTS AND ANALYSIS

analysis of the framework’s implementation to verifying its performance by the used test suite.

The test suite incorporated a large set of test cases that were used mainly to verify the framework’s

functionality. However, we believe them sufficient to draw initial conclusions about the system’s

performance.

Most test cases were handled in a time frame of 80 to 1200 milliseconds. Where the upper

values are mainly due to the increase of terms when expandingproducts of parentheses groups,

sums, or products that are bases for exponentiation with large numbers. The authors experi-

enced such delay only for expressions with reasonably largecorresponding normal forms (e.g.

(x−1)10/(x+2)6). These test suites were run on an author’s personal laptop,using an Intel Pen-

tium M processor with 1.6 Gigahertz and 2048 Kilobytes cachesize. The average runtime of a test

case was approximately 140 milliseconds for expressions whose normal form contains up to 70-

100 terms. We believe that the average of 140 milliseconds isa reasonable time for evaluating two

answer expressions. For this, it is important to note that such requests are handled only on the sub-

mission of an answer. Therefore, using the current ASSISTments team assumption of an average

“interaction time” of 25 seconds between server requests and a 200 milliseconds estimated com-

putation time per comparison request yields that a non-optimized laptop could handle at most 125

students without waiting time. This holds true if the set of students is assumed to start requesting a

comparison in intervals of 200 milliseconds with a “delay” of 25 seconds before a student requests

the next comparison result. This is, however, only an estimation, as it discards the possibility of

queueing the requests, accepting an average load time. Thisis the normal situation for requests

handled by a web server, and we believe that under such circumstances our framework will provide

sufficiently quick responses for multiple classes. Expecting improved serving capabilities with the

ASSISTments system’s setup, we believe that our framework performs with reasonable bounds to

the imposed server load.

One possible improvement to our current setup would be a change to the storage of a teacher’s

solution to a problem. Currently, the solution expression isstored in its ASCII representation and
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has to be parsed and normalized for each comparison request.One could instead store a serialized

copy of the normalized object at the time of the problem’s creation. Our framework facilitates this

process, as the expression tree is an instantiation of a set of Ruby classes. The object would be

normalized to conform to the single expression normal form,therewith reducing the operations

required to transform this expression for comparison (i.e.only the existence of fractions would

require further processing). This would certainly lead to aperformance improvement in the case

of expressions whose normal form is large in size.

6.3 Analysis of the Interface’s Re-usability

An important part of integrating our framework into the ASSISTments system is the customiz-

ability of the interface to our tools. This requires that ourtools can be adjusted to fit the overall

appearance and design decisions of the tutoring system. More specifically, control of the graphing

tool should be adaptable and modular.

We believe that our grapher framework can be reused by, and customized to meet the require-

ments of any web application’s user interface. This is mainly due to the fact that our application

can be controlled through JavaScript. This means that regular HTML elements can be used to

manipulate the grapher. This enables our framework to be controlled by form elements, allowing

for effortless database integration together with the combination with Ruby on Rails’ Model-View-

Controller setup. Figure 32 shows the plain HTML form elements that are used for controlling the

grapher. The fields are used first for acquiring values for controlling the grapher through JavaScript

to preview the desired setup. After submitting the entered data, the information is stored in a Ruby

on Rails model. Therewith, the OpenLaszlo application can query the corresponding controller for

the XML representation of the parameters that a content creator entered the application’s setup.

Furthermore, the OpenLaszlo application offers a plain butpleasing interface that remains

elegant. Therefore, the authors believe that integrating the graphing tool into a website significantly

adds to the user’s experience by adding interactivity. Additionally, we try to demonstrate the
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Figure 32: Grapher Setup

educational value of the implemented features of our graphing tool in Section 6.

6.4 Source Code Metrics

For the acquisition of metrics for the software engineeringperspective, we decided to use Noel

Danjou’s Count [8] tool to analyze our JavaScript files. Usingthis tool, we were able to find

statistics for the source code of our implementations, and also analyzed the files included from

applications external to our project.

The source file of the OpenLaszlo application takes up approximately 42 Kilobytes for about

1200 lines of code, where about 10% are used for commenting purposes and another 15% were

left blank for the readability of the code. The code contains48 function definitions of which

three are used to define “objects.” Additionally the code contains two methods that are part of

the XML structure of the OpenLaszlo application. We have compiled a file that is required for
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the control of the grapher tool through HTML elements. Furthermore, it provides the interface

to the files that are included in order to compute the graph’s values. The file has an approximate

size of 3 Kilobytes and contains 91 lines of code from which 12are used to add comments. The

file currently includes seven function definitions. The “ASCIIMathCalculator.js” file provides the

functionality for transforming an ASCII representation of an algebraic expression into a string that

is evaluable by JavaScript. The size of the file is approximately 6 Kilobytes and has a total of 216

lines of code of which 17 were lines of comments. The file’s functionality is decomposed into

seven methods. The “ASCIIMathML.js” file contains functionality required for the conversion of

the ASCII representation of an algebraic expression. More specifically, the implementation of the

ASCIIMathCalculator.js file requires its availability. It has an approximated size of 41 Kilobytes

and a total of 939 lines of code of which 42 lines were left blank, and 73 were lines to comment

on the source code. The file contains three function definitions.

The parsing and comparison of algebraic expressions on the server-side consists of seven files

that contain Ruby source code. The total of their individual sizes adds up to 72 Kilobytes. They

contain approximately 2300 lines of code, 28% of which contain comments on the implementa-

tion’s details. The API totals seven class definitions together with 129 method definitions.
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7 Conclusions

We believe that our framework provides a useful and helpful improvement to the current ASSIST-

ment system. We provide solutions for all three main objectives and demonstrate their integrability

into the current tutoring system. We strongly believe in thepedagogical value of our developed

tools, but we encountered certain shortcomings of our choice of tools and were strongly constrained

by the time limit to our project. This meant certain setbackswhere we would have preferred to

implement our initial design plan, but instead had to cope with the restrictions at hand.

One of the main source of obstacles during the creation of ourclient-side grapher was our

choice to use the OpenLaszlo framework for development. Thefact that the support for EC-

MAScript functionality is limited [24] forced us to partition our solution for the grapher into two

applications: The SWF object for plotting of graphs on the onehand and the JavaScript functions

that have to be included in order to compute an expression’s values on the other. This was due

to the fact that the OpenLaszlo framework does not support the eval() and only supports parts

of JavaScript’sMath object’s functionality., and does not support the use of regular expressions.

Our initial design intended an individual SWF object that could be included in a website without

any outside requirements such as the JavaScript files. Fortunately, the open-source project Open-

Laszlo is rapidly growing and it’s functionality being improved due to its increasing community.

Therefore it seems reasonable to assume that with a near in the future release one would be able to

merge the computation of an expression’s values into the grapher source’s code, providing a more

autonomous application.

We developed our applications with extensibility and modularity in mind. We realize that our

applications are no final solutions, but believe that they can be enhanced easily to fit custom needs

for the ASSISTments system. The current setup of our grapherapplication allows for effortless

extension for new features. The time constraint to our project led us to prioritize certain fea-

tures in our design. However, surely new features such as thehighlighting of intersection points
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or the timed animation of a graph could be added in order to improve the student’s experience

with the system. OpenLaszlo’s components provide a rather straight-forward use of a so called

animatorgroup to animate certain elements of the canvas. All graph relateddata (such as the

y-values) is stored conveniently in a “Graph” object for each expression inside the application

and can be used for the animation. The collection of Graph objects that is associated with the

“Grapher” object can also be used for realizing the highlighting of intersecting points by simply

checking for equal Y-values when plotting the graphs and then placing a marker on points with

equivalent coordinates.

Another possible enhancement to the current framework would be an original implementation

of the ASCIIMath Scientific Calculator’s functionality that is used for converting ASCII represen-

tations of algebraic expression into evaluable JavaScriptrepresentations. The solution could be

handled on the server’s side or on the client’s side. We believe that the most appropriate solu-

tion would be implemented as part of the OpenLaszlo application such that the application would

not rely on outside files. But the above mentioned limited support of ECMAScript functionality

currently obstructs this approach.

Our current solution for parsing and comparison of expressions covers polynomials of non-

negative degree, the most commonly used algebraic operations and also polynomial fractions.

However, there remains a more advanced set of operations (such as taking the square root and

trigonometric functions) that is not supported by our current implementation. The time constraint

was our main reason for the limited support of algebraic expression in our parser and comparison

mechanism. However, the framework is well documented and the current support well defined by

the given grammars. Additionally, our current solution is clearly structured and can be reused in

modules. Therefore, we believe that our solution facilitates the extending of support for additional

algebraic operations and can be customized to a tutoring system’s requirements.
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8 APPENDIX: Grapher User Manual

Getting Started with The ASSISTments Grapher

Welcome to ASSISTments Grapher

This web application can be used by teachers and students forcreating and solving math related
problems. The purpose of this manual is to help you quickly get started using The ASSISTments
Grapher and become comfortable with its interface and features. Presented in Figure 33 is the
ASSISTments Grapher application.

Figure 33: Screen-shot of the ASSISTments Grapher

In the left side of Figure 33, we can see the canvas of the ASSISTments Grapher on which
graphs received from the user through the interface, shown on the right side of the canvas, will
be plotted. The following sections will give you an overviewon how to master the interactions
between the interface and the canvas.

Requirements

To use the ASSISTments Grapher you will need a computer with an Internet connection, and
an Internet Browser that supports SWF files, also known as Flashobjects. Most browsers, like
Mozilla Firefox, Internet Explorer Opera and Safari, already have the Flash Player plug-in in-
stalled; however, default settings of the above browsers might have the Shockwave Flash Object
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plug-in disabled. Of course, you cannot use this application in a text browser like Lynx that doesn’t
support graphics.

System Requirements:

• Modem or Internet Connection

• Super VGA(800x600) or higher resolution monitor with 256 colors

• 16 MB of RAM

In the following pages, we will provide the steps required toensure that the Shockwave Flash
Object plug-in is enabled. Please skip them if you already know that the plug-in is enabled for the
browser you are using.

To ensure that Shockwave is enabled in Internet Explorer, open Internet Explorer then go to
Tools, Manage Add-ons.... This will bring up the Manage Add-ons dialog box as presented in
Figure??.

Figure 34: Enabling Shockwave in IE 6

If necessary scroll down until you see the Shockwave Flash Object entry. After you select it,
the Settings section at the bottom of the dialog box becomes active. In there, make sure that the
Enable radio button is checked. If you don’t see the Shockwave Flash Object entry in the Manage
Add-ons dialog box you need to install the Adobe’s Flash Player for your specific platform. The
player can be found at www.adobe.com

If you are having problems viewing Flash objects from websites you visit with browsers like
Mozilla Firefox, Opera or Safari please download the Adobe’s Flash Player from Adobe’s website.
In order for you to use the ASSISTments Grapher your browser must be able to display Flash
Objects.
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Figure 35: Insert an Equation

Drawing Your First Graph

Now that you have ensured you have everything you need, let’sdraw our first graph using the
ASSISTments Grapher. Once you’ve created an account on the ASSISTments website go to the
grapher page shown in Figure 33. To draw a graph, simply type in a formula in the Expression box
like Figure 35 shows.

Figure 36: Displaying Your First Graph

Once you are done just press the Graph button indicated in Figure 36 by the red arrow.
Figure 36 shows the result displayed on the canvas after the Graph button was pressed. For a

more detailed explanation of what type of formulas you couldinsert in the Expression box please
see Section 2.2.
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The ASSISTments Grapher Interface

This section will help you get comfortable with the interface that the ASSISTments Grapher pro-
vides. The ASSISTments Grapher Interface is responsible for gathering information from the user
and sending it to the Flash object or the canvas. This communication provides the application with
the data required for the canvas to get populated. The interface is shown in Figure 37.

Figure 37: ASSISTments Grapher Interface

In the following subsections, we will introduce all of the insert boxes that the ASSISTments
Grapher Interface, shown in Figure 37, provides in an effortto help you understand their purpose
and therefore your input.

Graph Name Insert Box

The Graph Name Insert Box allows you to insert a unique name foreach of your graph. The name
is used by the other side of the application, the canvas, to refer to one particular graph of your
choice. There is no restriction on the type of characters your graph name can have. This is shown
in Figure 38.

Figure 38: Graph Name Insert Box

As we can see in Figure 38, after you insert a name in the Graph Name box you could then select
it from inside the Flash object. The Graph Name box permits you to insert multiple graphs from
the Grapher Interface and then allows you to control them separately on the Canvas. For example,
let’s insert multiple graphs on the same canvas. Figure 39 shows the results after inserting three
more graphs.
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Figure 39: Multiple Graphs on the Same Canvas

Once the canvas gets populated, you could control a particular graph by referencing its name.
A complete description showing the ways in which you could control a particular graph is shown
in section 3, The ASSISTments Grapher Toolbox. As Figure 37 shows our next box in the AS-
SISTments Grapher Interface is the Expression Insert Box.

Expression Insert Box

The Expression Insert Box from the ASSISTments Grapher interface allows you to specify the
equation of the graph to be drawn on the canvas. Figure 40 shows the graph for the equation
f (x) = 2x+2. The ASSISTments Grapher also allows you to insert first, second and third degree
equations in the Expression box as well as logarithmic and exponential functions. We show an
example of this procedure in Figure 41.
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Figure 40: Graph of First Degree Equation Figure 41: First, Second and Third Degree
Equations

From X to X Insert Boxes

The next two insert boxes of the ASSISTments Grapher Interface have to be used together. For
example, let’s say you would like to draw a line segment from point(-3,2) to (3,2). For this, we
need to set up our Expression box with a first degree equation to be able to draw a line. Since we
want our line to intersect the y axis at the point (0,2) and we do not want it to intersect the X axis,
our equation will be f(x) = 2. Let’s first draw this equation sowe can see its result. Figure 42
illustrates this process.

Figure 42: Preparing a Line Segment

Now that we have our line let’s convert it into a line segment.To do this, we need to first clear
our canvas by using the Clear button then we will insert 2 in theExpression box; the x value of
the first point, -3, in the From X box and 3, the x value of our second point in the To X box. Once
you’ve inserted all the values press the Graph Button to draw the segment on the canvas. The result
is shown in Figure 43.
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Figure 43: Drawing a Line Segment

Color Drop Down Menu

The Color Drop Down menu, as you expected, let’s you choose thecolor in which your graph will
get drawn on the canvas. After you have selected a color for your graph, click the Graph button to
have the graph displayed in the selected color.

Figure 44: Graphing with Colors

Figure 44 shows us all the eight colors that are available from the Drop Down Menu. These are
black, red, blue, green, yellow, purple, teal and maroon. Note that you cannot select a color for a
graph that is already displayed on the canvas.
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Line Width Drop Down Menu

The Line Width Drop Down Menu allows you to select the stroke size for your graph. Figure 45
shows various graphs in all the available sizes that the LineWidth Drop Down Menu provides.

From Figure 45, we can see the different stroke sizes with thered arrow pointing at a size 10
stroke. The rest of the displayed graphs from Figure 45 decrement their stroke size by 1 unit;
therefore the last graph has a stroke of size 1.

Figure 45: Different Stroke Sizes

Erasable Check Box

The Erasable Check box from the ASSISTments Grapher Interface allows you to maintain a graph
on the canvas even if the Clear button is pressed. A demonstration of this check box is presented
in Figure 46.

One way to use this feature is in case you would like to draw multiple graphs on the canvas
without having to restart from the beginning in case you drewa graph incorrectly.
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Figure 46: Using the Erasable Check Box

ASSISTments Grapher Toolbox

Displaying The Toolbox

There are two ways in which you could display the ASSISTmentsGrapher Toolbox. One way is to
simply check the Toolbox check-box from the upper left corner of the canvas which is by default
set to unchecked. This process is shown in Figure 47.

Figure 47: Displaying Toolbox

The second way to display the Toolbox is by simply clicking anywhere on the canvas. This
will position the Toolbox at its last used position. This process will be demonstrated in the next
section where you will learn how to move the Toolbox window anywhere on the canvas.
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Moving The Toolbox

To move the ASSISTments Grapher Toolbox to a different location on the canvas, you can use
the traditional click and drag method. To be able to use this method you must ensure that you are
”grabbing” the Toolbox from its title bar as shown in Figure 48.

Figure 48: Displaying Toolbox from The Check Box

Please note that you will only be able to position the Toolboxinside the the canvas. If you try
to move it outside of the canvas, only the part that is on the canvas will be displayed. This is shown
in Figure 49.

Once you have decided on a position for the Toolbox, you can safely close it and then redisplay
it on the same position by using the second method of displaying the Toolbox: clicking anywhere
on the canvas.

Figure 49: Toolbox Can Only Be Displayed On The Canvas
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Figure 50: How to Resize the Toolbox

Resizing The Toolbox

To resize the ASSISTments Grapher Toolbox, you need to position the mouse pointer in the lower
right corner of the Toolbox as shown in Figure 50.

The window can be resized to show only a certain section of your interest. Once you have
chosen a size for the Toolbox, the size will remain the same until you press the refresh button of
your browser. We can see a resized Toolbox in Figure 51

Figure 51: Resizing the Toolbox
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Coordinates Tab

The Coordinates Tab of the Toolbox shows the coordinates of a point on the canvas when the left
mouse button is clicked. Figure 52 shows a demonstration of this process.

Figure 52: Display a Coordinate

If you would like to see the coordinates of a different point just click the canvas at that point.
Also do not forget to move the toolbox if the point you want to reach is under the toolbox. Figure
53 shows this process.

Figure 53: Display a Different Coordinate
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Find Point Tab

The Find Point tab of the ASSISTments Grapher is the second tab after the Coordinates tab. To
expand the Find Point tab just click on the tab as shown in Figure 54.

Figure 54: Find Point Tab

Figure 55: Find Point Tab Widgets

After you’ve expanded the Find Point tab, you will be able to see the contents of this tab. In
here you will find two insert boxes and two buttons as shown in Figure 55. Let’s use this tab to
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find the point with x=0 and y=0 on a parabola. Try to follow the steps provided in Figure??
You can use the Hide button under the Show button to hide the point from the canvas. When

following the steps of Figure 48 do not forget to move the Toolbox window away from the point so
that you can be able to see it. Also, Figure?? shows the graph displayed in Green to better make
the distinction between the axes and the graph; feel free to change the graph color with any of the
eight colors provided by the Color drop down menu. Note, that the point you choose to display
does not have to be on the graph; you could draw a point anywhere on the canvas.

Figure 56: Finding a Point on a Graph

Trace Graph Tab

The Trace Graph tab of the ASSISTments Grapher allows you trace along a particular graph. To
expand the Trace Graph tab, check the Toolbox option, and then click on the Graph Tab to expand
the tab. The Trace Graph tab is presented in Figure 57.
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Figure 57: Trace a Graph

The Trace Graph tab takes some of its input from the ASSISTments Grapher Interface de-
scribed in chapter 2. Figure 58 shows how to prepare your canvas to follow our tracing example.

Figure 58: Prepare for Tracing

Once you have the canvas set up as shown in Figure 58, try to follow the steps of Figure 59 and
Figure 60 in which, we will guide you through the steps of using the tracing feature.
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Figure 59: Tracing Steps 1-4

As seen in Figure 59 you can add multiple graphs to the canvas at any time from the Grapher’s
Interface. The name of the graph will appear in the drop down menu as illustrated in Figure 59.

Figure 60: Tracing Steps 5-6

We can see in Figure 60 that the tracing point moves on the selected graph, displaying the
coordinates of its current location as it moves from one position to the next. In the increments drop
down menu you can select the tracing interval of the tracing point to 5, 10 or 15 pixels.
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Figure 61: The Range Tab Figure 62: Zoom Into A Location of the
Canvas

Range Tab

Under the Tracing tab we have the Range tab which is displayed in Figure 61.
The Range tab allows you to zoom into a particular portion of your graph. We demonstrate this

process in Figure 62. As we can see from Figure 62 the graph of Figure 61 gets drawn in its new
coordinates. To return to the default coordinates just press the Default Ranges button next to Set
New Ranges button.

Clear Canvas Tab

The Clear Canvas tab allows you to clear the canvas from inside the Toolbox window. To display
the Clear Canvas tab just click on the Clear Canvas bar to expand itas shown in Figure 63. To
clear the canvas of the parabola graph just press the Clear Canvas button as shown in Figure 64.
As we can see from Figure 64, as soon as you press the Clear Canvasbutton the parabola graph
disappears from the graph and the canvas gets cleared. Note,that the canvas will not get cleared if
the Erasable option of the ASSISTments Interface is unchecked.
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Figure 63: The Clear Canvas Tab

Figure 64: Clear a Graph

Trigonometry

Trigonometry can be a difficult topic to master without a graphing tool which can allow you to plot
the functions so that you can better visualize the main differences between them.

Figure 65: Trigonometric Warm Up

The ASSISTments Grapher can be such a tool. It will allow you to display multiple trigono-
metric functions on the same canvas so that you can easily seethe differences between them. The
ASSISTments Grapher can be used to achieve this goal and more. It will let you explore these
functions by allowing you to enter different values to be evaluated; you don’t have to limit yourself
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to ”x”. Moreover, you can use any of the Toolbox features presented in Chapter 3 on any trigono-
metric functions presented here. This section will show youwhat type of trigonometric functions
you can use with the ASSISTments Grapher. As a quick trigonometric warm up, see if you can
recognize any of the curves from Figure 65.

Figure 66: Drawing a Sine Curve

The curve drawn in green shows a cosine curve, the sine curve is displayed in yellow and the
tangent curve is displayed in blue. To draw a sine curve just enter ”sin(x)”, without the quotes in
the Expression box of the ASSISTments Interface. Figure 66 shows this process. As Figure 67
shows, the ASSISTments Grapher also recognizes such constants as ”pi”.

Figure 67: Exploring the Sine Curve

You can also use the ASSISTments Grapher to draw a cosine, tangent, secant, Co-secant and a
cotangent curve by typing incos(x) , tan(x) , sec(x) , csc(x) andcot(x) respectively. We will
let you explore the rest of the trigonometric functions on your own.
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What The ASSISTments Grapher Can Not Do

No tool is perfect, and there are several important limitations of this one that a user should be aware
of before utilizing it. One limitation of the ASSISTments Grapher is that, due to the way coordi-
nates are calculated, it cannot accept an expression to drawa vertical line. The implementation is
designed to only handle one point per x value, or per column ofpixels. Truly vertical lines violate
this rule. However, as Figure 68 shows, you can achieve a nearly vertical line along the y-axis by
modifying the slope of a line.

Also, this Grapher cannot handle a function with multiple variables. Expressions can only have
one variable, and it must bex .

Another limitation of this graphing tool concerns the graph’s extents. When setting the min-
imum and maximum x and y values, the Grapher will not accept values less than -99 or greater
than 999. Users may wish to use caution when setting the extents to extreme values, however. The
grid and the tic marks and numbering on the axes are acurate, but always label all odd whole num-
bers. When the extents become too broad, these labels and lines will blend together and become
unreadable.

One additional thing to note is that when drawing expressions such astan(x) , the grapher
will frequently display the curve’s vertical asymptotes. While this may not be ideal, many profes-
sional graphing tools also have this trait, and attempts to eliminate the asymptotes from graher’s
display resulted in other, more serious inaccuracies. In addition, removing asymptotes from the
grapher entirely is also not an ideal solution, because in the case of an ASSISTment question about
asymptotes, one may wish to view a graph displaying them.

Figure 68: Drawing a Vertical Line
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