TMCM Java -- PFD version

Labs and Applets for
The Most Complex Machine

March 2000
(Software updated June 2004)

This PDF file contains material from the web site at

http://math.hws.edu/TM CM/javal.

The PDF version can be read and printed using Adobe Acrobat Reader. It
is provided mainly to allow easy printing of material from the web site.

Most of the original Web pages that are reproduced here contained Java
applets. In this PDF version, the places where the applets should appear
are marked with a note stating that Javais not available.

David Eck
Department of Mathematics and Computer Science
Hobart and William Smith Colleges
Geneva, NY 14456 USA

Email: eck@hws.edu
WWW: http://math.hws.edu/eck/

http://math.hws.edu/TMCM/java/pdf_cover.html [6/25/2004 11:48:26 AM]

http://math.hws.edu/TMCM/java/
mailto:eck@hws.edu
http://math.hws.edu/eck/

TMCM Labs and Software

YET DF
T

THEMosT
(OMPLEX MACHINE

r

Labs and Applets for
The Most Complex Machine

(David Eck, May 1998, March 2000, and June 2004)

ON THISPAGE YOU'LL FIND aset of lab worksheets and Java applets that are

meant to help people learn about computer science. They were written for use with

my introductory computer science textbook, but they can also be used independently of that text. The labs and applets are
free for personal use. In addition, the applets can be freely used for non-commercial purposes, including courses that do
not use my textbook. | ask that teachers use the labs as an official part of a course only if they adopt my textbook for that
course (but | will consider giving permission for other uses). Again, the applets -- including the informational page about
each applet at the bottom of this page -- are free for any non-commercial use, including use in any course.

Note about softwar e updatein June 2004: The Java applets were written using the original version of Java. While they
have generally continued to work with more recent Java releases, a few incompatibilities have crept in. | June 2004, | fixed
the known problems, so that the appl ets should now work with all versions of Java (at least for the time being). | have also
taken the opportunity to repackage the applets in "executable jar files' that can be run as stand-al one applications, outside
of aweb browser. See the download page for more information.

The text for which | wrote the applets and labsis The Most Complex Machine: A Survey of Computers and Computing. It
isan introductory survey of abig chunk of computer science. Y ou can learn more about it at its home page,
http://math.hws.edu/TM CM .html. For more information about me (David Eck) and my other projects, see my home page

at http://math.hws.edu/eck/index.html. Y ou can send me email at eck@hws.edu.

Later on this page, after the labs, you'll find links to more general information about each of the seven applets that are used
in the labs. For some of the applets, a set of tutorial examplesisincluded. Y ou don't need to read this material to do the
labs, since the lab worksheets include instructions for using the applets.

The labs and applets are available for downloading. So is sour ce code for the applets. The applets are also available as
Java applications, which can be run without a Web browser. For more details, see the "downloading and information
page.” You'l also find information there about how to use the applets on your own Web pages.

The Labs

Introductory Lab: The Web, Java, and DataReps.

Thislab is mainly an introduction to the use of the World Wide Web and to the idea of Java
applets. A simple applet, DataReps, serves as an example of an applet. It aso servesto
demonstrate how several different types of data are represented in a computer.

xLogicCircuitsLab 1. Logic Circuits.

Exploreslogic circuits created out of AND, OR and NOT gates. The relationship between

http://math.hws.edu/TMCM/javal/index.html (1 of 4) [6/25/2004 11:48:41 AM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu
http://math.hws.edu/TMCM/java/source/

TMCM Labs and Software
circuits and Boolean algebrais also covered.

xL ogicCircuits Lab 2: Memory Cir cuits.

Shows how circuits that contain feedback 1oops can be used as memory circuits, and how a
RAM (random access memory) can be constructed and used.

xComputer Lab 1. Introduction to xComputer.

Introduces the xComputer, a ssmple model computer, and investigates how it operatesin a
fetch-and-execute cycle to carry out machine language instructions stored in its memory.

xComputer Lab 2: Assembly L anguage Programming.

Covers assembly language programming for the xComputer, including labels and indirect
addressing.

xComputer Lab 3: Subroutines.

Introduces the idea of a subroutine and shows how subroutines can be implemented "by
hand" in the assembly language of xComputer, even though that language does not offer
direct support for subroutines.

xTuringMachine Lab: Introduction to Turing Machines.

Thislab is meant to illustrate the basic operation of Turing machines and to show that even
the extremely simple operations performed by Turing machines are sufficient for performing
complex computations.

Publishing on the Web.

This lab will cover some of the basics of Web publishing, concentrating on the "Composer"
utility in Netscape Communicator. Thislab is not closely related to The Most Complex
Machine, and it does not use any applets. However, it does sort of fit in with the theme of
"real computers’ and their impact on society, which is covered in Chapter 5 of the text.
(Thislab is somewhat specific to Hobart and William Smith Colleges.)

xTurtleLab 1. Introduction to Programming.

Coversthe basics of the xTurtle programming language, including loops, if statements,
variables, and built-in turtle graphics commands.

xTurtleLab 2: Thinking about Programs.

Investigates how preconditions and postconditions can be used to help develop working
programs that perform complex tasks. Also introduces the idea of subroutines.

XTurtle Lab 3: Subroutines and Recursion.

Continues with subroutines in general and recursive subroutinesin particular. Recursion is
used to produce nifty pictures.

xSortLab Lab: Sorting and the Analysis of Algorithms.

Uses the xSortL ab applet to investigate severa different algorithms for sorting lists of
numbers.

xTurtleLab 4. Multiprocessing.

http://math.hws.edu/TMCM/javal/index.html (2 of 4) [6/25/2004 11:48:41 AM]

TMCM Labs and Software

Shows how multiprocessing can be used to divide alarge problem into several subtasks that
can be executed in parallel. Some examples of communication between parallel processes
are also given.

xModelsLab 1. Two-D Graphicsand Animation.

Introduces a scene-description language for creating still images and multi-frame
animations. Shows how hierarchical, geometric models are used in computer graphics. In
thislab, only two-dimensional images are covered.

xModelsLab 2: Adding the Third Dimension.

Extends the ideas covered in the previous lab to three dimensions. Also covers "lathing" and
"extrusion," two operations for producing three-dimensional objects.

The Applets

DataReps

A small applet that shows how the same 32 bits stored in the memory of a computer can
represent different things, depending on how they are interpreted. It isrelated to material
covered in Chapter 1, Section 1 of The Most Complex Machine.

xL ogicCir cuits

Lets you create simulated logic circuits, like those discussed in Chapter 2, by dragging AND
gates, OR gates, and other components onto a circuit board and drawing connections
between them. Y ou can turn the inputs of your circuits on and off, to see how the circuits
behave.

xComputer

An implementation of the model computer developed in Chapter 3. Y ou can write assembly
language programs for that computer and watch as the computer executes them step-by-step.

xTuringMachine

Lets you create Turing machines and watch as they move back and forth along a "tape,”
reading and modifying its contents. Turing machines are covered in Chapter 4.

XTurtle

L ets you write and execute programs written in the xTurtle programming language, which is
used as an example in Chapters 6, 7, and 10.

xSortL ab

L ets you watch several sorting algorithms in action and measure their performance. This
applet isrelated to material on the analysis of algorithms that is covered in Chapter 9.

xM odels

http://math.hws.edu/TMCM/javal/index.html (3 of 4) [6/25/2004 11:48:41 AM]

TMCM Labs and Software

Does geometric modeling and computer animation, as discussed in Chapter 11. Y ou can
write "scene descriptions' and then "render" the resulting images or animations as wireframe
models.

David Eck (eck@hws.edu)

Labs last updated 28 May 1998
Page design updated 23 March 2000
Software updated June 2004

http://math.hws.edu/TMCM/javal/index.html (4 of 4) [6/25/2004 11:48:41 AM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

TMCM Java -- Downloading and Info

TMCM Labs and Applets
Downloading and Information Page

This page contains links for downloading a set of 1abs and applets that were written by David Eck for use
with hisintroductory computer science textbook, The Most Complex Machine. The labs and applets are
also available on line at http://math.hws.edu/TMCM/javal. Information about using this material isin the
READMVE files for the downloads, which are also available below for reading on line.

In addition to the archives, a"pdf" version of the labs and applet information is available, at the bottom of
this page.

Note that many of the downloads are available in two formats: ZIP archives (with file names ending in .zip)
and TAR.GZ archives (with file names ending in .tar.gz). The contents are identical, except that text filesin
ZIP archives are in Windows/DOS format while text filesin TAR.GZ archives arein
Linux/UNIX/MacOSX format. For most purposes, it doesn't matter which archive you use, aslong as you
can unpack it.

ZIP archives can be used directly in Windows XP. In any version of Windows, you can unpack aZIP
archive using WinZip (available from www.winzip.com) or Aladdin Expander (available from

www.aladdinsys.com). Y ou Web browser might already be configured to unpack the archive when you
download it.

In MacOS X, your Web browser should unpack any archive that you download. If not, you can use Stuffit
Expander (available from www.aladdinsys.com). If you are still using MacOS 9.0 or earlier, see the bottom

of this page.

On Linux/UNIX, you should be able to unpack a TAR.GZ archive named archive.tar.gz with the command
tar zxf archive.tar. gz orwiththetwo commandsgunzi p archi ve. tar. gz followed by
tar xf archive.tar.gz. Thisrequiresthat you have gzip software installed.

Download the Entire Web Site

Use one of the following links to download a complete archive of the TMCM Labs and Applets Web site.

Y ou are welcome to post an unmodified copy of this material on your own Web site. Y ou can also useit on
your own computer. However, when you use the applets on your own computer, the applets on the web
pages in this archive will probably not be able to read the example files that they are supposed to read. This
isasecurity feature of applets, but it can be annoying at times. To deal with this problem, you might also
want to download the "Lab and Tutorial Examples" archives below.

http://math.hws.edu/TM CM/java/downl oad/tmcm-java-web-site.zip (for Windows)
http://math.hws.edu/TM CM/java/downl oad/tmcm-java-web-site.tar.gz (for Linux/UNIX)

Y ou can take alook at the README file for this archive. The README file explains in detail how to use
the applets on your own web pages and how to run the applets as stand-al one applications.

http://math.hws.edu/TMCM/java/DownloadingAndinfo.html (1 of 3) [6/25/2004 11:48:57 AM]

http://math.hws.edu/eck/
http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM/java/
http://www.winzip.com/
http://www.aladdinsys.com/
http://www.aladdinsys.com/
http://math.hws.edu/TMCM/java/download/tmcm-java-web-site.zip
http://math.hws.edu/TMCM/java/download/tmcm-java-web-site.tar.gz
http://math.hws.edu/TMCM/java/README.txt

TMCM Java -- Downloading and Info

Applet Jar Files (Software)

The seven applets are packaged as "jar files." These files can be run as standalone applications, and they
can be used for putting the applets on your own web pages. The jar files are part of the complete web
archive that you can download in the previous section of this page. See the README file from that archive
for complete information about how to use them. Y ou can also download individual jar files using the
following links:

DataReps.jar xLogicCircuits.jar xComputer.jar
XTuringMachine.jar XTurtlejar xSortLab.jar
xModels.jar

On some computers, you can run one of these files simply by double-clicking onit. If you have a recent
version of Javafrom Sun Microsystems, you can try commands of the following form on the command line:

java -jar xLogicCrcuits.jar
If you are using Microsoft's version of Javain Internet Explorer in Windows, then you can use the "jview"
command in a command window to run the programs. The command takes a form such as:

jview -cp xLogicCircuits.jar tncm xLogicGircuitsFrane

Here, "tmcm.xLogicCircuitsFrame” is the name of the Java class within the jar file that actually defines the
programs. Similar names are used in the other jar files.

Lab and Tutorial Examples

Here are two archives that make it easy to run the Labs examples and Information/T utorial examples
outside of a Web browser. One advantage of thisis that you will be able to load and save files.

The Labs examples and applets (from the "The Labs" section of the main page):

http://math.hws.edu/TM CM/java/download/ TMCM _Labs.zip (for Windows)
http://math.hws.edu/TM CM/java/download/ TMCM_Labs.tar.gz (for Linux/UNIX)

Y ou can view the README file from the Labs archive for more information.
The Information/Tutorial examples and applets (from the "The Applets" section of the main page):

http://math.hws.edu/TMCM/java/download/ TMCM_Applet Tutorials.zip (for Windows)
http://math.hws.edu/TM CM/java/download TMCM_Applet Tutorials.tar.gz (for Linux/UNIX)

Y ou can view the README file from this archive for more information.

PDF File for Printing

The following PDF file contains copies of all the lab worksheets and applet information pages from
http://math.hws.edu/TM CM/javal. (Except that where an applet should appear on a page, you'll just see a
note that Javais not available.) Thisfile is provided primarily to make it easy to produce print outs. Y ou
can read it using Adobe Acrobat Reader

http://math.hws.edu/TMCM/java/DownloadingAndinfo.html (2 of 3) [6/25/2004 11:48:57 AM]

http://math.hws.edu/TMCM/java/README.txt
http://math.hws.edu/TMCM/java/classes/DataReps.jar
http://math.hws.edu/TMCM/java/classes/xLogicCircuits.jar
http://math.hws.edu/TMCM/java/classes/xComputer.jar
http://math.hws.edu/TMCM/java/classes/xTuringMachine.jar
http://math.hws.edu/TMCM/java/classes/xTurtle.jar
http://math.hws.edu/TMCM/java/classes/xSortLab.jar
http://math.hws.edu/TMCM/java/classes/xModels.jar
http://math.hws.edu/TMCM/java/download/TMCM_Labs.zip
http://math.hws.edu/TMCM/java/download/TMCM_Labs.tar.gz
http://math.hws.edu/TMCM/java/TMCM_Labs_README.txt
http://math.hws.edu/TMCM/java/download/TMCM_Applet_Tutorials.zip
http://math.hws.edu/TMCM/java/download/TMCM_Applet_Tutorials.tar.gz
http://math.hws.edu/TMCM/java/TMCM_Applet_Tutorials_README.txt
http://math.hws.edu/TMCM/java/

TMCM Java -- Downloading and Info
http://math.hws.edu/TM CM/java/downl oad/tmcm-java-web-site.pdf

If you click on the above link, your browser might use a PDF plugin to let you see the contents of the file. If
it does not have the plugin, it should let you download the file. If you do have the plugin and still want to
download thefile, try right-clicking or Control-clicking the link.

Java Source Code

The Java source code for the applets can be browsed on-line and is included in the complete web site

archive that can be downloaded at the top of the page. However, for convenience, you can also download
the source code separately using one of the following links:

http://math.hws.edu/TM CM/java/download/tmecm_source code.zip (for Windows)
http://math.hws.edu/TM CM/java/downl oad/tmcm_source code.tar.gz (for Linux/UNIX)

Y ou can view the README file from this archive. Note that this code was written for version 1.0 of Java
and uses many features that should not appear in modern Java code. It was not written with the intent of
publishing it, and it has amost no comments. | have made the source code avail able because a number of
people have requested it.

For Users of MacOS 9 (or Earlier)

If are till running MacOS 9, or earlier, on an old PowerMac computer, you cannot and will never be able to
use versions of Java newer than version 1.1. The changes that were made to this web site in June 2004 are
irrelevant to you. Y ou might want to use the following Macintosh-format archives of the old version of this
site:

The complete Web site from M ar ch 2000:
http://math.hws.edu/TM CM/java/downl oad/tmcm-java-web-site.sit.hgx (for Macintosh)

The Labsand Tutorials examplesin a single ar chive from March 2000:

http://math.hws.edu/TM CM/java/downl oad/tmcm-java-apps.sit.hgx (for Macintosh)

The Java sour ce code files from Mar ch 2000:

http://math.hws.edu/TM CM/java/downl oad/tmcm-java-source.sit.hgx (for Macintosh)

David Eck (eck@hws.edu), June 2004

http://math.hws.edu/TMCM/java/DownloadingAndinfo.html (3 of 3) [6/25/2004 11:48:57 AM]

http://math.hws.edu/TMCM/java/download/tmcm-java-web-site.pdf
http://math.hws.edu/TMCM/java/source/
http://math.hws.edu/TMCM/java/download/tmcm_source_code.zip
http://math.hws.edu/TMCM/java/download/tmcm_source_code.tar.gz
http://math.hws.edu/TMCM/java/source/README.txt
http://math.hws.edu/TMCM/java/download/tmcm-java-web-site.sit.hqx
http://math.hws.edu/TMCM/java/download/tmcm-java-apps.sit.hqx
http://math.hws.edu/TMCM/java/download/tmcm-java-source.sit.hqx
http://math.hws.edu/eck/
mailto:eck@hws.edu

Introductory Lab

Labs for The Most Complex Machine

Introductory Lab: The Web, Java, and
DataReps

THISISTHE FIRST in aset of lab worksheets meant to be used with the introductory
computer science textbook, The Most Complex Machine. The lab worksheets are written for
use on the World-Wide Web, and they make use of software written in the form of applets.
Applets are computer programs written in a new programming language called Java. All this
Is explained in the lab, which acts as an introduction to the Web and an orientation to the
way applets will be used in the rest of the lab.

As part of the lab, you will use an applet called "DataReps' to help you learn about how
different types of data can be represented using binary numbers. This material isrelated to
Section 1.1 of the text.

(For afull list of labs and applets, see the index page.)

This lab includes the following sections:
o TheWorld-Wide Web

« URL'sand All That
e Searching the Web
o Javaand Applets

o Data Representations

o EXercises

The World-Wide Web

The Internet consists of millions of computers around the world, linked together by a
network so that they -- and their users -- can communicate and interact. In the last few years,
the Internet has become a common part of everyday life for many people. The Internet
provides a number of useful services, including e-mail, USENET news groups, and the
World-Wide Web. This section of the lab is a brief introduction to the Web.

The World-Wide Web, aso known as the WWW or simply as the Web, consists of "pages"
of information stored on computers all around the world. These pages are available to
anyone with a connection to the Internet. They viewed with a\Web browser such as
Netscape or Internet Explorer. A page can contain text, pictures, sounds, three-D graphics,
movies, applets, and even interactive features such asfill-in forms. Most important, a page
can contain links to other pages. When you click on alink, the Web browser will fetch the
page that it refersto and display it to you. So, it's pretty easy to use the Web: just point your

http://math.hws.edu/TMCM/java/labs/DataRepsLab.html (1 of 9) [3/26/2000 12:50:04 PM]

Introductory Lab

mouse at alink, and click! Here, for example, are some links to pages you might want to
visit:

« ABC News, Cable Network News, and the New Y ork Times

« The Whitehouse, the Senate, and the House of Representatives

« The Nation Magazine, for some left-wing political opinion

« Discover, Nature, and Scientific American science magazines
« Sports lllustrated and ESPN

o The Web Museum, featuring great art

« Views of the Solar System

o List of Colleges and Universities

« amazon.com, a place to buy books
« Map Bladt, afree map-drawing utility
« Blue Mountain Arts, where you can send free virtual greeting cards

o Dilbert comics

The Web is huge, and it has information on almost anything you can think of. There are
millions of computers on the Internet. Each of those computers can run a"Web site" and
publish Web pages. No one controls this; no one has to authorize it (at least not yet). In fact,
you can publish your own information on the Web. One of the later |abs will deal with this.

URL's and All That

Every page of information on the Web isidentified by a URL (Uniform Resource Locator).
Other resources, such as pictures and sounds, are also identified by URL's. When you are
viewing a page with aWeb browser, the URL of that page is usually displayed in a box near
the top of the browser's display window. If you know the URL for a page, you can go
directly to that page by entering the URL in that box (and pressing return).

A typical URL is http://math.hws.edu/TM CM/javalindex.html. Thisisthe URL for a page
that describes all the labs and appletsthat | have written for use with The Most Complex
Machine. This URL has severa meaningful parts:

http://math.hws.edu/TMCM/java/labs/DataRepsLab.html (2 of 9) [3/26/2000 12:50:04 PM]

http://www.abcnews.com/
http://www.cnn.com/
http://www.nytimes.com/
http://www.whitehouse.gov/
http://www.senate.gov/
http://www.house.gov/
http://www.thenation.com/
http://www.enews.com/magazines/discover/
http://www.nature.com/
http://www.sciam.com/
http://www.cnnsi.com/
http://Espn.sportszone.com/
http://sunsite.unc.edu/louvre/
http://www.hawastsoc.org/solar/eng/homepage.htm
http://www.clas.ufl.edu/CLAS/american-universities.html
http://www.amazon.com/
http://www.mapblast.com/
http://www.bluemountain.com/
http://www.unitedmedia.com/comics/dilbert/

Introductory Lab
"Protocol” tells the Web browser what method to use to fetch the page.

/ "Domain name"” specifies which computer contains the page.

http://math.hws.edu/TMCM/ java/index.ntml

"Directory” gives the Tocation of the page on the computer.

"File name” is the file that contains the contents of the page.

The HyperText Transfer Protocol (HTTP) is the most common method used for
communication on the Web. Another common protocol is File Transfer Protocol (FTP), an
older method for transferring files from one computer to another. Y ou might also run across
some other protocolsin URL's.

A domain name, such as math.hws.edu, identifies a particular computer on the Internet.
Most of the computers that are used as "servers' of data on the Web have domain names that
begin with "www", such as www.whitehouse.gov. Y ou can often read some information
about a computer from its domain name. The computer named math.hws.edu isin the
Mathematics Department ("math") at Hobart and William Smith Colleges ("hws"), whichis
an educational institution ("edu"). The last part of the domain name, such as"gov" or "edu"
is called the top-level domain. Top-level domainsinclude:

o COM for commercial purposes
« EDU for educational institutions
« GOV for government computers
e MIL for the military

o ORG for other organizations

o NET for certain Internet services

These domains are usually used by computers in the United States. Computers in other
countries generally use two-letter country codes for their top-level domains. For example, a
domain name ending in "it" indicates a computer in Italy, and "ca" is used by Canadian
computers.

Many companies, organizations, and institutions have "home pages' on the Web. If you
know something about domain names, you can often guess the URL used by a given
company, organization, or institution. For example, you might guess that the home page of
the United States Senate is http://www.senate.gov or that the Coca-Cola corporation has a
home page at http://www.cocacola.com. (When you use a URL that omits the directory and
file name, you will usually get the home page, or index page, from the specified computer.)

http://math.hws.edu/TMCM/java/labs/DataRepsLab.html (3 of 9) [3/26/2000 12:50:04 PM]

Introductory Lab

Searching the Web

Because there is so much information on the Web, finding what you want can be a problem.
There are several utilities that can help you to find things on the Web. First of all, there are
"hierarchical indices" that list Web sites according to category. One of the largest of these
indicesis Y ahoo.

Another way to find things on the Web isto use a"search engine." A search engine consists
of an index of millions of Web pages and a program for searching the index. (Theindex is
made by a program that constantly downloads Web pages and adds their contents to the
index. No index can include all the data on the Web because the Web grows so quickly.
Also, some of the datain an index will be out of date because people change or delete their
Web pages.)

To use an index, all you have to do is type some words into a box and click on a button.
(Y ou can do more advanced searches, but most search engines allow you to do ssimple
searchesin thisway.) You'll get back alist of Web pages that contain the words you
entered. Here, for example, isasimple interface to the Alta Vista search engine. To try it,
click in the input box, type some words, and the click the Submit button:

Search the Web

and Display the Results in Standard Form

Submit

There are many search engines, including Alta Vista, WebCrawler, Lycos, Excite, and
Infoseek. You will have to use at least one of these search enginesin order to do some of the

exercises at the end of the lab. To get the most out of a search engine, you should read its
help or instructions page.

Java and Applets

The example of the search engines shows that a Web page can be more than just a passive
collection of links. A Web page can also be interactive. The Alta Vista search engine uses a
type of interaction known as aform (or "fill-in form"). Y ou enter some data in the form and
click on asubmit button. Y our Web browser sends your data to another computer, which
responds to your data by sending a new page for your Web browser to display.

Web pages can also provide other types of interactivity, without involving a second
computer. One of the new technologies on the Web is Java, a programming language that
can be used to write appl ets, which are small programs that run on a Web page. Many Java
applets are more decorative than useful, like this"Moiré" applet:

(Sorry, your browser doesn't do Javal)

(A Moiré pattern isformed by the "interference" between two similar patterns. In this

http://math.hws.edu/TMCM/java/labs/DataRepsLab.html (4 of 9) [3/26/2000 12:50:04 PM]

http://www.yahoo.com/
http://www.altavista.digital.com/
http://www.webcrawler.com/
http://www.lycos.com/
http://www.excite.com/
http://www.infoseek.com/

Introductory Lab

applet, the basic pattern consists of lines radiating out from a command center. There are
two copies of this pattern. Oneis fixed, while the other drifts about.)

Even this decorative applet allows some interaction. If you click-and-drag your mouse on
the Moiré applet, you can control the motion of the pattern. (To "click-and-drag" meansto
press the mouse button and then move the mouse, while holding down the button.) If you
shift-click on the applet, you can stop and restart its motion. (To "shift-click" meansto hold
down the shift key while you click the mouse button.) If you are using a slow computer, you
might want to turn off the Moiré applet, so that it doesn't take computer processing time
away from other things going on on this page.

Each of the labs for The Most Complex Machine uses an applet to help you learn something
about computer science. In order to make it more convenient to use the applets and read the
labs at the same time, the applets are set up to run in separate windows. The lab worksheet
contains a button that you can click to launch the applet. In most of the labs, this button is
close to the beginning of the lab, where it will be easy to find. (The button isitself a small
applet that runs on the Web page.)

In thislab, you will use afairly ssmple applet called "DataReps'. Y ou will use this applet to
learn how the same binary number can be used to represent different types of data. To
launch the applet, click on this button:

(Sorry, your browser doesn't do Javal)

The window that opens when you click this button will probably be marked with some kind
of warning, to aert you to the fact that the window was created by an applet. For example,
on my computer, there isawarning bar like this one along the bottom of windows opened

by applets:

|] Unszigned Java Applet %Window |]

Why the warning? A Java applet is a program that you have downloaded from the Internet.
Whenever you download a program, there is a danger that the program is malicious -- that it
will try to damage your computer or steal information from you. A great deal of attention
has been paid to making Java applets secure, that isto making sure that they can't damage
your computer or access private information stored on your computer. However, nothing
can stop you from entering private information, such as a password, into an applet. The
warning on applet windows is there to stop malicious applets from tricking you into entering
such information. For example, without the warning, the applet might imitate a window
from a program that has alegitimate need for the information.

Data Representations
You'll be using the "DataReps’ applet, which you launched above, in some of the exercises

at the end of the lab. For now, you should read about it and experiment with it to see what it
does.

http://math.hws.edu/TMCM/java/labs/DataRepsLab.html (5 of 9) [3/26/2000 12:50:04 PM]

Introductory Lab

This applet lets you type in adata value. Y ou can select the type of data you want to enter
by clicking on one of the five radio buttons. Just type your data into the input box at the top
of the applet, and press return. Y ou can aso click on the 8-by-4 grid of "big pixels' at the
center of the applet. The applet takes the data you enter, and it converts that datainto a
32-bit binary number. (It hasto do thisin order to storeit!) It then takes that same binary
number and interpretsit in six different ways. The six interpretations are: a binary number,
an integer, a hexadecimal number, areal number, a string of four characters, and an
eight-by-four grid of pixels. You should remember that you see the same string of thirty-two
bitsinterpreted in different ways. Y ou should also remember that the same bit-patterns
could also be interpreted in an endless variety of additional ways: as a bar of music, or the
chemical ingredientsin abar of soap, or your tab at your favorite bar, or....)

Hereis a short explanation of each of the six data displays. Y ou should try entering various
types of valuesin the applet to see how they are represented as binary numbers.

Binary
Thisisthe most direct display of the 32 bit binary number, showing a zero or one to
represent each individual bit. The displayed binary number shows the full 32 bits,

including any leading zeros. The computer stores the zeros, even though you don't
ordinarily include leading zeros when you write a number.

Base-ten Integer

A binary number can be interpreted as a normal positive integer (0, 1, 2, 3, 4,...)
written in the "base ten". Base ten is the usual way of writing numbers, using the
digits O through 9. See Section 1.1 of The Most Complex Machine. With 32 bits, you
can represent 232 different numbers. Usually, you want to use both positive and
negative numbers. The scheme for representing negative numbersis abit strange. It is
explained in Subsection 2.2.3 of the text. Using 32 bits, the integers from
-2147483648 to 2147483647 can be represented.

Hexadecimal

It isdifficult (for humans) to read long strings of zeros and ones. Hexadecimal
numbers are akind of shorthand for writing such strings. A hexadecimal number is
written using the sixteen "hexadecimal digits' 0, 1, 2, 3,4,5,6,7,8,9,A,B, C, D, E,
and F. Each hexadecimal digit stands for four bits. So O represents 0000, 1 represents
0001, 2 represents 0010, ..., E represents 1110, and F represents 1111. We could also
say that the hexadecimal digit A stands for the base-ten number 10 (ten), B stands for
11 (eleven), C standsfor 12, D for 13, E for 14, and F for 15. A hexadecimal number
isreally just a number written in the base sixteen, just as ordinary integers are in the
base ten and binary numbers are in the base two. Y ou should be able to trandate
between hexadecimal and binary by hand. (But of course, you could use the appl et
instead.)

Real Number

Real numbers are numbers that can contain decimal points, like 3.14159 or -234.5, or
12.0. They can also be written using "scientific notation." For example, 2.15el2 isa
way of writing 2.15 times 1012, The representation used in computers for real
numbersis very complicated. And it allows some strange possibilities, such as INF

http://math.hws.edu/TMCM/java/labs/DataRepsLab.html (6 of 9) [3/26/2000 12:50:04 PM]

Introductory Lab

and -INF, which stand for infinity and minusinfinity. There are also NAN's. NAN
stands for "not a number." NAN's are used to represent the results of illegal
operations such as taking a square root of a negative number. Note that the integer 17
and thereal number 17 have completely different representations in the computer,
even though they are the same number mathematically. All-in-al, it's probably best
not to worry about the internal representation of real numbers. | include this data type
here for completeness, since real numbers are so important.

ASCII Text

Characters can be encoded using ASCII code, as explained in Section 1.1 of the text.
Each possible character is assigned a code that is one byte (that is, eight bits) long.
With 32 bits, you can represents 4 charactersin ASCII code. Not every possible byte
represents an ordinary, printable character. The applet shows other bytesin the form
<#n>, where n is the base-ten number corresponding to the byte. For example, the
byte 00000111, which is equivalent to 7 in base ten, is shown as <#7>.

Pixels

At the center of the applet, you will see an 8-by-4 grid of little squares. Each of these
thirty-two squares corresponds to one bit in the binary number. Y ou should think of
these squares as being very big pixels. Each pixel can be either black or white. One
bit specifies the color of one pixel -- O for white or 1 for black. Thisis how two-color
graphical images can be represented by binary numbers. Again, see Section 1.1 of the
text. In the applet, you can change the color of apixel by clicking onit.

Exercises

Exercise 1: For this exercise, your goal isto use a search engine such as Alta Vista or
WebCrawler to find an interesting page on the World Wide Web. Pick atopic that interests

you. Think up some terms related to that topic, and search for pages containing those terms.
Pick out one you find interesting. Don't settle for some boring generic page like ESPN
Sports or Apple Computer Inc! Write a short paragraph saying what your topic was and how
you went about doing the search. Also include the URL for the page that you find.

Exercise 2. Search the Web to find the poem written by the Greek poet Sappho about her
daughter Cleis. How did you go about finding the poem? Where did you find it?

Exercise 3: Starting from one of the links given above, find the radius, in kilometers, of the
planet Jupiter. How did you go about finding it?
Exercise 4. Guess the URL of the home page of each of the following. Explain your
reasoning. (Check the Web to see whether you are right.)

o ThelBM corporation

« TheFBI, an agency of the US government

« Harvard University

o The SPCA, an animal-rights organization

http://math.hws.edu/TMCM/java/labs/DataRepsLab.html (7 of 9) [3/26/2000 12:50:04 PM]

http://www.altavista.digital.com/
http://www.webcrawler.com/

Introductory Lab

Exercise 5: Pick out one or two of the following phrases. Each phraseis afragment of a
reasonably well-known quotation. Search the Web for uses of the phrase. (Use the Alta
Vista advanced search; enter the phrase in quotes into the text-input box. Thiswill not work

with the regualar AltaVista search.) Try to find the complete phrase and the original source
of the phrase. Also, try to find afew interesting variations that people have used on their
Web pages.

« "atruth universally acknowledged"
« "yes, Virginia thereis'
« "on the shoulders of giants®

Exercise 6: In addition to working on some of the above exercises, you should spend some
time "surfing" the World-Wide Web. Write a short essay describing your experiences with
the Web and speculating on its possible impact and importance.

Exercise 7: Usethe "DataReps' applet to find the following. In each case, indicate briefly
what you did with the applet to answer the question.

« Find the ASCII code of the upper case letter X.
« Find the character that has an ASCII code equal to 63.

« What real number has the same binary representation as the hexadecimal number
4228AE147?

« What real number has the same binary representation as the four-letter word "Fred"?
« What binary number represents the base-10 number -3?

Exercise 8. Enter the following base-10 integersinto the "DataReps" applet: 1, 2, 4, 8, 16,
32, 64. Describe the corresponding pixel representation of these numbers. (The pixel
representation is displayed in the center of the applet). What pattern do you see? Why does
this pattern occur? What can you say about the binary representation of these numbers?

Exercise 9: Enter afour-letter word such as"TIME" into the "DataReps" applet. (Select
"ASCII Text" asthe input type, type the word into the applets input box, and press return.)
Consider the pixel representation of the word, which is displayed in the center of the applet.
Play with the pixelsin the third column of pixelsfrom the left. Turn them on and off by
clicking on them, and observe what happens to each letter in the word. What happens? What
does thistell you about the ASCII coding of letters? (What is the meaning of the third bit in
that encoding?)

Exercise 10: Thisfina exercise is meant to be alonger essay question. Y ou should try to
show your understanding of the way datais represented in a computer, and an appreciation
for the fact that meaning depends on context and convention.

It would be legal to input 1000 into the Data Representation Applet as either a binary
number, a base-ten integer, a hexadecimal number, areal number, or as ASCI|I text. In each
case, the input is represented differently -- as adifferent binary number. How isit possible
that five different binary numbers can all represent "1000"? What is going on here? How
can the computer keep all the different meanings straight?

http://math.hws.edu/TMCM/java/labs/DataRepsLab.html (8 of 9) [3/26/2000 12:50:04 PM]

http://www.altavista.digital.com/cgi-bin/query?pg=aq

Introductory Lab

Thisis one of a series of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis also
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/DataRepsLab.html (9 of 9) [3/26/2000 12:50:04 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xLogicCircuits Lab 1

Labs for The Most Complex Machine

xLogicCircuits Lab 1: Logic Circuits

| T ISPOSSIBLE IN THEORY to construct a computer entirely out of transistors (although

In practice, other types of basic components are also used). Of course, in the process of
assembling a computer, individual transistors are first assembled into relatively simple
circuits, which are then assembled into more complex circuits, and so on. Thefirst step in
this processisto build logic gates, which are circuits that compute basic logical operations
such as AND, OR, and NOT. In fact, once AND, OR, and NOT gates are available, a
computer could be assembled entirely from such gates. In thislab you will work with
simulated circuits made up of AND, OR and NOT gates. Y ou will be able to build such
circuits and see how they operate. And you will see how simpler circuits can be combined to
produce more complex circuits.

Thislab covers some of the same material as Chapter 2 in The Most Complex Machine. The
lab is self-contained, but many of the ideas covered here are covered in more depth in the
text, and it would be useful for you to read Chapter 2 before doing the lab.
This lab includes the following sections:

» Logic and Circuits

Building Circuits

Complex Circuits and Subcircuits
Circuits and Arithmetic
o EXercises

The lab uses an applet called "xLogicCircuits." Start the lab by clicking this button to launch
the xL ogicCircuits applet in its own window:

(Sorry, your browser doesn't do Javal)
(For afull list of labs and applets, see the index page.)

Logic and Circuits

A logic gateisasimple circuit with one or two inputs and one output. The inputs and
outputs can be either ON or OFF, and the value of a gate's output is completely determined
by the values of its inputs (with the proviso that when one of the inputsis changed, it takes
some small amount of time for the output to change in response). Each gate does asimple
computation. Circuits that do complex computations can be built by connecting outputs of
some gates to inputs of others. In fact, an entire computer can be built in thisway.

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLabl1.html (1 of 10) [3/26/2000 12:50:06 PM]

xLogicCircuits Lab 1

In the xLogicCircuits applet, circuits are constructed from AND gates, OR gates, and NOT
gates. Each type of gate has a different rule for computing its output value. Circuits are laid
out on acircuit board. Besides gates, the circuit board can contain I nputs, Outputs, and
Tacks. Later, we'll see that circuits can also contain other circuits. All these components can
be interconnected by wires. To the left of the circuit board in the applet is a pallette. The
pallette contains components available to be used on the circuit board. Y ou can't usually see
all the components at once, but there is a scroll bar that allows you to scroll through all the
components on the pallette. The following illustration shows the part of the pallette that
contains the six standard components, along with some comments and a small sample

circuit:
Click here to rotate or MOT gate turns its output ON
d gate into one of [: when its input is OFF, and
four positions. Vvice versa. A NOT gate
NOT Gate reverses its input,
o AMD gate turns its output ONM
:D_ when both of its inputs
are OM. Otherwise, the
Sample circuit using OF Gate output is OFF.
all six !:umpnnents. The o _
power iz on. The output OF !;IEIT.E turns its output ON
at the bottom, one of the :_D" when either of its inputs
inputs, and several wires = is on (or when both are OMD.
arein the ON state. AND Gate
L L
I[nputs can be placed around
- the edges of a circuit to
E provide input values for
* ' Input the circuit as a whole.
Outputs can be placed around
- the edges of a circuit to
represent values computed
Output by the circuit as a whaole.
Tacks are simply connecting
- points for wires, which can
be used to help make your
"Tack" circuits neater.

(One thing you should note: Wires cannot connect to each other except at Tacks. Just
because two wires cross each other on the circuit board does not mean that they are
connected. That is, no signal will propagate from one of the wires to another. Wires can only
carry signals between components such as gates, Tacks, Inputs, and Outputs.)

The applet that you launched above should start up showing a sample circuit called "Basic

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLabl1.html (2 of 10) [3/26/2000 12:50:06 PM]

xLogicCircuits Lab 1

Gates." At the top of the circuit board are an AND gate, an OR gate, and aNOT gate. The
gates are connected to some Inputs and Outputs. A more complicated circuit built from
severa gates occupies the bottom of the circuit board.

To see how the circuit works, you have to turn on the power. Power to the circuit board is
turned on and off using the "Power" checkbox below the circuit board. The power is ON
when the box is checked. Click on the Power checkbox now to turn on the power. (Why
does the wire leading from the NOT gate come on when you do this?) When the power is
on, you have control over the Inputs on the circuit board: you can turn an input ON and OFF
by clicking on it. The circuit does the rest: signals from the Inputs propagate along wires,
through gates and other components, and to the Outputs of the circuit. Try it with the
sample circuit. If you have a problem, make sure the power is on and that you are clicking
on an Input, not an Output.

Y ou should check that the AND, OR, and NOT gates at the top of the circuit board have the
expected behavior when you turn their inputs ON and OFF. Y ou can aso investigate the
circuit in the bottom half of the logic board. Below the circuit board, to the left of the Power
switch, you'll find a pop-up menu that can be used to control the speed at which signals
propagate through the circuit. The speed is ordinarily set to "Fast." Y ou can use the pop-up
menu to change the speed to "Moderate” or "Slow" if you want to watch the circuit in slow
motion. (For the most part, though, you probably want to leave the speed set to Fast.)

Logic gates and logic circuits are associated with mathematical |ogic, which is the study of
the computations that can be done with the logical values true and false and with the logical
operators and, or, and not. This association comes about when we think of ON as
representing true and OFF as representing false. In that case, AND, OR, and NOT gates do
the same computations as the operators and, or, and not.

Mathematical logic uses Boolean algebra, in which the letters A, B, C, and so on, are used to
represent logical values. Letters are combined using the logical operators and, or, and not.
For example,

(A and C) or (B and (not C))

Is an expression of Boolean algebra. As soon asthe letters in an expression are assigned
valuestrue or false, the value of the entire expression can be computed.

Every expression of boolean algebra corresponds to alogic circuit. The letters used in the
expression are represented by the Inputs to the circuit. Each wire in the circuit represents
some part of the expression. A gate takes the values from its input wires and combines them
with the appropriate word -- and, or, or not -- to produce the label on its output wire. The
final output of the whole circuit represents the expression as a whole. For example, consider
the sample circuit from the applet. If the inputs are labeled A and B, then the wiresin the
circuit can be labeled as follows:

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLabl1.html (3 of 10) [3/26/2000 12:50:06 PM]

xLogicCircuits Lab 1

2
(4 AND (NOT)
A —— & AND (NOT B R
NOT B (B AND (NOT Al
e NOT &
. B AND (NOT A)

The circuit as awhole corresponds to the final output expression, (A and (not B)) or (B and
(not A)). Thisexpression in turn serves as a blueprint for the circuit. You can useit asa
guide for building the circuit. The expression given earlier, (A and C) or (B and (not C)),
corresponds to another sample circuit shown in the illustration above -- provided you label
the inputs appropriately.

To sum up, given any expression of Boolean algebra, a circuit can be built to compute that
expression. Conversely, any output of alogic circuit that does not contain a"feedback loop"
can be described by a Boolean algebra expression. Thisis a powerful association that is
useful in understanding and designing logic circuits. (Note: Feedback occurs when the
output of a gate is connected through one or more other components back to an input of the
same gate. Circuits with feedback are not covered in thislab. However, they have important
uses that are covered in the next lab.)

Building Circuits

Y ou can build your own circuits in the xLogicCircuits applet. Click on the "lconify" button
at the bottom of the applet. Thiswill put away the "Basic Gates" circuit, by turning it into an
icon on the pallette. Y ou'll have aclear circuit board to work on. As an exercise, try to make
acopy of the sample circuit shown above, which corresponds to the Boolean expression

(A and C) or (B and (not C)).

To add a component to your circuit, click on the component in the pallette, hold down the
mouse button, and use the mouse to drag the component onto the circuit board. Make sure
you drag it completely onto the board. If you want a gate that is facing in a different
direction, you have to rotate the gate in the pallette befor e you drag it onto the circuit board.

Once some components are on the board, you can draw wires between them using the
mouse. Every wire goes from a source to a destination. To draw awire, move the mouse
over the source, click and hold the mouse button, move the mouse to the destination, and
release the button. Y ou must draw the wire from source to destination, not the reverse. If
you release the mouse button when the wire is not over alegal destination, no wire will be
drawn. When there are two possible destinations in one component -- such as the two inputs
of an AND or OR gate -- make sure that you get the wire connected to the right one.

Circuit Inputs are valid sources for wires. So are Tacks. So are the outputs of gates. Valid
destinations include circuit Outputs, inputs of gates, and Tacks. Y ou can draw as many

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLabl1.html (4 of 10) [3/26/2000 12:50:06 PM]

xLogicCircuits Lab 1

wires as you want from a source, but you can only draw one wire to a destination. (This
makes sense because when the circuit is running, a destination takes its value from the
single wire that leads to it. On the other hand, the value of a source can be sent to any
number of wiresthat lead from it.)

Once a component is on the board, you can still move it to a new position, but you have to
drag it using theright mouse button. Alternatively -- if you have a one-button mouse, for
example -- you can drag a component by holding down the control key asyou first press
the mouse button on it.

Y ou can delete components and wires that you've added by mistake. Just click on the
component or wire to hiliteit. Then click on the "Delete" button at the bottom of the appl et.
The hilited item will be deleted from the circuit board. If you delete a component that has
wires attached, the attached wires will aso be deleted along with the component.

If you delete an item or modify the circuit in some other way, you get one chance to change
your mind. You can click on the "Undo" button to undo one operation. Only the most recent
operation can be undone in this way.

There is one shortcut that you might find useful, if you like using Tacks. You can insert a
Tack into an existing wire by double-clicking on the wire. If you double-click and hold the
mouse down on the second click, you can drag the tack to a different position. (However,
some browsers might not support double-clicks.)

After you build the practice circuit, you can clear the screen, since you won't need that
circuit again in the rest of the lab. However, you'll get more practice building circuitsin the
Exercises at the end of the lab.

Complex Circuits and Subcircuits

In order to have circuits that display structured complexity, it isimportant to be able to build
on previous work when designing new circuits. Once a circuit has been designed and saved,
it should be possible to use that circuit as a component in a more complex circuit. A lot of
the power of xL ogicCircuits comes from the ability to use circuits as components in other
circuits. Circuits used in thisway are called subcircuits. A circuit that has been saved as an
icon in the pallette can simply be dragged into another circuit. (More exactly, a copy of the
circuit is created and is added to the circuit board. The copy is a separate circuit; editing the
original will not change the copy.) This ability to build on previous work is essential for
creating complex circuits.

Y ou can open acircuit from the pallette to see what's inside or to edit it. Just click on the
icon to hiliteit, and then click on the "Enlarge" button. The icon will be removed from the
pallette and the circuit will appear on the circuit board. At the same time, any circuit that
was previously on the circuit board will be iconified and placed on the pallette. Y ou should
also be able to enlarge a circuit just by double-clicking on it. (By the way, you can change
the name of the circuit on the circuit board by editing the text-input box at the top of the
applet. Thisbox contains the name that appears on the iconified circuit.)

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLabl1.html (5 of 10) [3/26/2000 12:50:06 PM]

xLogicCircuits Lab 1

The xLogicCircuits applet should have loaded severa subcircuits for the pallette. One of
these circuitsis called "Two or More". Open this circut now. The circuit has three inputs. It
turnsits output ON whenever at least two of itsinputs are ON. Try it. (Click on the inputs to
turn them ON and OFF -- and don't forget to turn the Power on first.)

Asasimple exercise in building circuits from subcircuits, use the "Two or More" circuit as
part of a"At Most One" circuit. Y ou want to build a circuit with three inputs that will turn
on its output whenever zero or one of itsinputsis on. Notice that thisis just the opposite
behavior from the "Two or More" circuit. That is, "At Most One" is ON whenever "Two or
More" isnot ON. This"logical" description shows that the "At Most One" circuit can be
built from aNOT gate and a copy of the "Two or More" circuit. Begin by re-Iconifying the
"Two or More" circuit, then drag aNOT gate and a copy of "Two or More" onto the empty
circuit board. Add Inputs, Outputs, and wires as appropriate, then test your circuit to make
sure that it works. If you like, you can give it aname and turn it into an icon.

Next, open the "4-Bit Adder" sample circuit. You'll seethat it contains several copies of a
subcircuit called "Adder." It's possible to look inside one of these circuits: Just click on the
adder circuit to hiliteit, and then click the "Enlarge" button. This does not remove the main
circuit from the board -- it just lets you see an enlarged part of it. When you shrink the
subcircuit back down to its original size, the main circuit is still there. In this case, you'll see
that an "Adder" circuit contains two "Half Adder" subcircuits, which you can enlargein
their turn, if you want.

Circuits and Arithmetic

The "4-Bit Adder" circuit is an example of alogic circuit that can work with binary
numbers. Circuits can work with binary numbers as soon as you think of ON as representing
the binary value 1 (one) and OFF as representing the value O (zero). The "4-Bit Adder" can
add two 4-bit binary numbers to give afive digit result. Here are some examples of adding
4-bit binary numbers:

1011 1111 1111 1010 0111 0001
0110 0001 1111 0101 1010 0011
10001 10000 11110 01111 10001 00100

The answer has 5 bits because there can be a carry from the left-most column. Each of the
four "Adder" circuitsin the "4-Bit Adder" handles one of the columnsin the sum. You
should test the "4-Bit Adder"” to see that it gets the right answers for the above sums. The
two four-bit numbers that are to be added are put on the eight Inputs at the top of "4-Bit
Adder". The sum appears on the outputs at the bottom, with the fifth bit -- the final carry --
appearing on the output on the right. Y ou should observe that it takes some time after you
set the inputs for the circuits to perform its computations.

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLabl1.html (6 of 10) [3/26/2000 12:50:06 PM]

xLogicCircuits Lab 1

Exercises

Exercise 1. One of the examplesin thislab was the circuit corresponding to the expression
(A and (not B)) or (B and (not A)).

Thiscircuit isON if exactly one of itsinputsis on. Another way to describe the output isto
say that it isON if "one or the other of the inputsis on, but not both of the inputs are on."
This description corresponds to the Boolean expression

(A or B) and (not ((A and B)).

Build acircuit corresponding to the second expression, and check that it gives the same
output as thefirst circuit for every possible combination of inputs.

Exercise 2: When you checked "every possible combination of inputs' for the circuit in
Exercise 1, how many combinations did you have to check? If you wanted to check that the
"Two or More" example circuit works correctly for every possible combination of inputs,
how many combinations would you have to check? Why? If you wanted to check that the
"4-Bit Adder" givesthe correct answer for each possible set of inputs, how many inputs are
there to check? Why?

Exercise 3:Consider the following three Boolean algebra expressions:
(Aand B and C) or (not B)
(not ((not A) and (not B)))
(not (A or B)) or (A and B)

For each expression, build alogic circuit that computes the value of that expression. Write a
paragraph that explains the method that you apply when you build circuits from expressions.
(One note: To build acircuit for an expression of the form (X and Y and Z), you should
insert some extra parentheses, which don't change the answer. Think of the expression as
(X and Y) and Z), and build the circuit using two AND gates.)

Exercise 4. Given alogic circuit that does not contain any feedback loops, it is possible to
find a Boolean algebra expression that describes each output of that circuit. Open the circuit
called "For Ex. 4", which was one of the sample circuitsin the applet's pallette. This circuit
has four inputs and three outputs. Assuming that the inputs are called A, B, C, and D, find
the expression that corresponds to each of the three outputs. Also write a paragraph that
discusses the procedure that you apply to find the Boolean expression for the output of a
circuit.

Exercise 5: Consider the following input/output table for a circuit with two inputs and one
output. Thetable gives the desired output of the circuit for each possible combination of
inputs.

| Input 1 | Input 2 | Output

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLabl1.html (7 of 10) [3/26/2000 12:50:06 PM]

xLogicCircuits Lab 1

[ON [ON [ON
[ON [OFF [ON
[OFF [ON | OFF
[OFF | OFF | ON

Construct a circuit that displays the specified behavior. Y ou have to build one circuit that
satisfies all four rows of the table. Section 2.1 of The Most Complex Machines gives a
general method for constructing a circuit specified by an input/output table. Y ou can apply
that method, or you can just try to reason logically about what the table says. Write a
paragraph discussing how you found your circuit.

Exercise 6: One of the examplesin thislab was acircuit called "Two or More", which
checks whether at least two of itsinputs are on. Consider the problem of finding a similar
circuit with four inputs. The output should be on if any two (or more) of the inputsareon. A
circuit that does this can be described by the Boolean expression:

(Aand (Bor Cor D)) or (Band (Cor D)) or (Cand D)

Use this expression to construct a"Two or More" circuit with four inputs. Try to understand
where this expression comes from. Why does it make sense? (Hint: Think of two cases, one
case wherethe input A is ON, and the other case where the input A is OFF.) Writea
paragraph explaining this. The form of this expression can be extended to handle circuits
with any number of inputs. Write down alogical expression that describes a circuit with five
Inputs that turns on its output whenever two or more of the inputs are on.

Exercise 7: "The structure of the 4-Bit Adder circuit reflects the structure of the compution
it is designed to perform.” In what sense is this true? What does it mean? How does this
relate to problem-solving in general ?

Exer cise 8: Write a short essay (of several paragraphs) that explains how subcircuits are
used in the construction of complex circuits and why the ability to make and use subcircuits
in thisway is so important.

Exercise 9: Build a"Select” circuit, as shown in thisillustration:

& B
C— Qutput should be equal to & i Cis ON
Select
O— %5257 and should be equal to B if D is ON.
] PAssume Cand Dare not both turned
on at the same time.)

The circuit hastwo inputs, A and B, at the top. It also has two inputs, C and D, on the |€ft,
which serve as control wires. (The only thing that makes an input of a circuit a control wire
Isthat the designer of the circuit saysit is, but in general control wires are thought of as
controlling the circuit in some way.) The control wires determine which of the inputs, A or
B, getsto the output. In order to do this exercise, you should think "logically." That is, try to

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLabl1.html (8 of 10) [3/26/2000 12:50:06 PM]

xLogicCircuits Lab 1

describe the output of the circuit using a Boolean expression involving A, B, C, and D. Then
use that expression as a blueprint for the circuit. Test your circuit and saveit for usein
Exercise 10.

Exercise 10: For this exercise, you should build a"Mini ALU" that can do either addition or
subtraction of four-bit binary numbers. An Arithmetic Logic Unit, or ALU, isthe part of a
computer that does the basic arithmetic and logical computations. It takes two binary
numbers and computes some output. The interesting thing isthat an ALU can perform
several different operations. It has control wiresto tell it which operation to perform. Y ou
will build an ALU that can perform either addition or subtraction of four-bit binary
numbers. It has two control wires. Turning on one of these will make it do an addition;
turning on the other will make it do a subtraction. Y ou should construct the circuit as
specified by thisillustration:

First four-bit Second four-bit
ihput goes here. input goes here.

s

If this "control wire™ is TTYT TYYY

0N, the ALU should addx ot
it two inputs. AL

—
—

LEEREEE!

_) _ \The four-bit answer.
IT this "control wire” is
The fifth output is the carry

aM, the aLU should subtract
from an addition. (For a

its two inputs. - _
subtraction, it should be OFF.)

Now, an interesting thing about an ALU isthat it actually performs all the computations that
it knows how to do. The control wires just control which of the answers get to the outputs of
the ALU. To make your "Mini ALU," you can start with the "4-Bit Adder" and "4-Bit
Minus" circuits, which were provided to you in the applet's palette. (The four-bit subtraction
circuit has only four outputs, since for subtraction the carry bit from the leftmost adder does
not provide any useful information. Y ou don't have to worry about how the Minus circuit
works -- you don't even have to understand how negative numbers are represented in
binary.)

Start by placing a"4-Bit Adder" and a"4-Bit Minus' circuit on an empty circuit board,
along with the eight inputs at the top of the circuit. These can be connected as shown:

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLabl1.html (9 of 10) [3/26/2000 12:50:06 PM]

xLogicCircuits Lab 1

4-Bit adder 4-Bit MhHnus

) + +] I]]]

(Note: To change the size and shape of a subcircuit, click the circuit to hiliteit. When a
circuit ishilited, it is surrounded by arectangle with alittle square handle in each corner.
Y ou can click-and-drag one of these handles to adjust the size of the circuit.)

All you have to do is construct the rest of the circuit so that the control wires can control
whether the answer from the "4-Bit Adder" or the answer from the "4-Bit Minus' gets
through to the Outputs of the ALU. One way to do thisisto use four copies of the " Select”
circuit that you built for Exercise 9.

Thisis one of aseries of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis aso
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLabl1.html (10 of 10) [3/26/2000 12:50:06 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xLogicCircuits Lab 2

Labs for The Most Complex Machine

xLogicCircuits Lab 2: Memory Circuits

T HISLAB CONTINUES THE STUDY OF CIRCUITS built from logic gates, which was
begun in the previous lab. That lab showed how circuits can be built to perform arithmetic
and logical computations with binary numbers. Such computations are one of the major
functions of computers. But computers also need at least two other abilities. They need
memory -- the ability to store and retrieve data. And they need control -- the ability to
control what data is stored where, which computations are performed, and in what order. A
program specifies a series of computations to be performed by a computer; the computer
stores program and data in its memory, and the computer executes the program under its
own control, without any further direction from its user or programmer. Y ou already have
some idea how circuits can perform computations. In this lab, you'll see how logic gates can
be used to build memory circuits that can store binary numbers (which are used to represent
both programs and data). As for control functions, they can aso be implemented with gates
and wires. There were some hints of thisin the previous lab, and you'll see morein thislab.
However, the full mystery of how a computer can execute a program all on its own will not
be solved until future labs.

The materia inthislab isalso covered in Sections 2.3 and 3.1 of The Most Complex
Machine. Not everything in the book is repeated here. Asusual, you will find it useful to
read the book before doing the lab. Y ou also definitely need to do the previous lab before

this one.

Thislab includes the following sections:
« Circuits that Remember
o Reqgisters
« Random Access Memory

o EXercises

You'll be using the xLogicCircuits applet in this lab. Start by clicking the button to launch
the applet in its own window:

(Sorry, your browser doesn't do Javal)
(For afull list of labs and applets, see the index page.)

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLab2.html (1 of 9) [3/26/2000 12:50:07 PM]

xLogicCircuits Lab 2

Circuits that Remember

Y ou've seen that a circuit that does not have any feedback |oops simply takes the values
from its inputs and computes an output value based on those inputs. Changing the values on
the input wires will change the output values -- after just a very short delay for the signal to
pass through the circuit. Such circuits have no "memory." The output is computed based on
the current inputs, and anything that happened to the circuit in the past has no effect.

In thislab, we are interested in circuits that have some memory of what happened to them in
the past. That is, the output of the circuit is not based solely on the current inputs. It can also
depend on inputs that were given to the circuit in the past. Memory circuits include feedback
loops. A feedback loop occurs when the output from a gate is connected back to an input of
the same gate -- possibly through one or more other gates. Such aloop alows previous
inputs to affect current outputs. Thisis exactly what we need for memory circuits.

The xLogicCircuits applet is set up to load several examples. Y ou should see three sample
circuits on the circuit board. Each of these is a simple circuit containing a feedback |oop.
Y ou should turn on the power and experiment with these circuits.

Thefirst circuit consists of a NOT gate, with its output connected back to its input. What
happens to this circuit when you turn on the power? Thisis not what | would call a memory
circuit! It showsthat not every circuit that contains a feedback loop can properly be called a
memory circuit. (In fact, building memory circuits is a pretty touchy affair.) However, even
this ssmple example of afeedback loop turns out to be useful and interesting, as you'll seein
some of the exercises at the end of the lab.

The second example on the circuit board is an OR gate whose output is fed back to one of its
inputs:

[nput

"—_“H\: Output
L

The other input to the OR gate is under your control. As soon as you turn this input on, the
feedback loop turns on and the output of the circuit comes on. After that, you can turn the
input off and on as much as you want. The output stays on (until you turn off the power to
the circuit). The circuit "remembers’ that its input has been turned on sometime in the past.
Thisisinteresting, but it would be nice to have away of turning the circuit off. The third
example on the circuit board shows how this can be done:

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLab2.html (2 of 9) [3/26/2000 12:50:07 PM]

xLogicCircuits Lab 2

Turn-it-0M

3 Output
eI D—/_L/

Thiscircuit also contains an OR gate in afeedback loop, but now an AND gate has been
inserted into the loop. If you turn the input labeled "Turn-it-ON" on and then off, the
feedback loop and the output of the circuit will come ON. If you turn the other input, labeled
"Turn-it-OFF," on and then off, the loop and output will go OFF. This circuit remembers
which of itsinputs was most recently turned on and off. Since we want to work with binary
numbers, we think of ON as representing one and OFF as representing zero. We say that we
store one in the circuit by turning the top input on and off, and that we store zero in the
circuit by turning the lower input on and off. The circuit stores the value zero or one. Y ou
can check which valueit is storing just by looking at its output. You can set the value that it
Is storing by manipulating its inputs. This simple memory circuit is the basic building block
for most of what you will seeinthislab.

In the previous lab, you saw that it is often convenient to think of some inputsto a circuit of
as carrying data into the circuit, while other inputs are used to control the circuit. The circuit
itself doesn't really make any distinction between two different types of inputs, but it useful
for designers of circuits to distinguish between data inputs and control inputs depending on
what functions the inputs serve in their circuit design. All the circuits that you see in the rest
of thislab follow the following convention:

« Circuit outputsare on theright edge of the circuit.
« Datainputsareon theleft edge of the circuit.
« Control inputsareon thetop and bottom edges of the circuit.

In the simple memory circuit discussed above, it is not really clear to me whether the two
input wires are data inputs or control inputs. For this reason -- and also because it will fit
better into the design of other circuits -- we will use amodified version of this memory
circuit for the rest of the lab. The basic memory circuit that we will useisin the example
called "1-Bit Mem". You'll find this circuit in the scrolling pallette in the xLogicCircuits
applet. (Remember that you can use the circuits in the pallette as building blocks in other
circuits ssimply by dragging them onto the circuit board. Y ou can also see inside any
iconified circuit; just click on the circuit to hilite it and then click the "Enlarge” button.)

The one-bit memory circuit can store one bit, either zero or one. Y ou won't need to
understand the inside of this circuit, but it important that you understand how it is used. The
circuit has one data input, one control input, and one output. | refer to these as DATA-IN,
LOAD-DATA, and DATA-OUT:

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLab2.html (3 of 9) [3/26/2000 12:50:07 PM]

xLogicCircuits Lab 2

Control input "LOAD-DAT A",
Turn this on and off Lo store
Data input "DATA-TN" a value in the memaory.
Specifies which value,
Zero or one, is to be stored.
\ ! Output "DATA-OUT" represents
- 1-Fit | #—— the value currently stored in
Elemm the memaory circuit

To store avalue in the circuit, turn the DATA-IN wire ON or OFF to represent the value
(ON for one or OFF for zero). Turn LOAD-DATA on and off. (You have to do this slowly
enough to allow the circuit time to react.) When you turn LOAD-DATA on, the value from
DATA-IN will flow into the circuit. When you turn LOAD-DATA off, the valuein the
circuit will be "locked" and cannot change until the next time LOAD-DATA isturned on.
Y ou can always check what value is stored in the circuit by looking at its output wire,
DATA-OUT.

Open the "1-Bit Mem" circuit, turn on the power, and work with it to make sure that you
know how to useit.

Registers

With the basic one-bit memory as a starting point, you can build more complex memory
circuits. Just as you can line up several "Adder" circuitsto get a multibit addition circuit,
you can combine several one-bit memory circuits to get a multibit memory circuit. As one
of the exercises at the end of the lab, you will construct a 4-bit memory circuit. A 4-bit
memory circuit can store a 4-bit binary number. Similarly, you can build memory circuitsto
store 8-bit binary numbers, 16-bit numbers, or any number of bits. Memory circuits of this
type are important components in the central processing unit of a computer. A memory
circuit that is used in the central processing unit to store a binary number is called aregister.
Multibit memory circuits can aso be used in the main memory of a computer. Recall that
main memory contains a sequence of numbered locations. Each location stores a binary
number, so each location can be a simple multibit memory circuit.

For some purposes, a more sophisticated type of multibit memory is needed. As an example,
look at the "Count Reg" circuit, which you will find in the pallette of the xLogicCircuits
applet. Thiscircuit isaregister that countsin binary. Turn its control wire on and off
severa times (allowing, as always, enough time for the circuit to respond). Asyou keep
turning the control wire ON and OFF, the three outputs of the circuit will cycle through the
values 000, 001, 010, 011, 100, 101, 110, 111, and back to 000. (Read the outputs from
bottom to top.) If you convert these binary numbers to decimal numbers, the circuit is
counting from zero to seven. A count register of this sort could be used in a CPU to count
off the steps in a computation, for example.

The count register is made from three "Flip Flop" circuits. It is not important for you to

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLab2.html (4 of 9) [3/26/2000 12:50:07 PM]

xLogicCircuits Lab 2

understand how a flip-flop works, but if you look inside, you'll see that it is made from two
interconnected one-bit memories of the type you have seen above. In fact, aflip-flop isitself
akind one-bit memory, but it can do things that the simpler one-bit memory cannot -- such
as count. The count register isused in one of the exercises at the end of the lab, but mainly it
Is here to show you that registers can be made to do more than just store numbers.

Random Access Memory

A random access memory, or RAM, isamemory circuit that can hold several different
binary numbers. Each binary number is stored in a separate location. The locations are
numbered 0, 1, 2, 3, and so on. The number of alocation is called its address. Every
computer has a RAM, which it uses as a main memory where it stores the data and programs
that it isworking with. A RAM can have any given number of locations. (In atypical
computer, the RAM has several million locations.) The binary numbers that are stored in a
RAM can have any given number of bits. (In atypical modern computer, each location
holds an eight-bit binary number.)

In this section, you'll see how avery smple RAM can be constructed. The RAM you will
look at has only two locations, and each location holds just asingle bit. The exercises at the
end of the lab will investigate how larger and more useful RAM's can be built.

The sample RAM is named "2-Bit RAM". It is one of the sample circuits loaded by the
xLogicCircuits applet. Find it in the applet's pallette and open it. You'll see acircuit with
one data input, two control inputs, and one output:

LOAD-DATA

DATA-OUT

1-Eit
lecode

ADDEESS wire 15 used to select which lTocation
is to be used for storing or reading data.

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLab2.html (5 of 9) [3/26/2000 12:50:07 PM]

xLogicCircuits Lab 2

The ADDRESS wire picks out one of the two locations in the RAM. When the ADDRESS
wire is OFF, one location is used (the location "with address zero"). When the ADDRESS
wireis ON, the other location is used (the location "with address one"). The DATA-OUT
wire shows the contents of the selected location. Turning the LOAD-DATA wire on and off
stores avalue in the selected location. The DATA-IN wire specifies the value that is to be
stored.

For example, suppose you want to store a 1 in location 0. Then you should:
o Turnthe DATA-IN wire ON, representing the value 1.
o Turnthe ADDRESS wire OFF, representing the address of location O.
e Turnthe LOAD-DATA wire ON.
« Wait long enough for the signals to propagate through the circuit.
o Turnthe LOAD-DATA wire OFF.

To read the value stored in location O, all you have to do is turn the ADDRESS wire OFF to
represent the address of the location you want to read. The value stored in location O will
appear on the DATA-OUT wire.

If you want to work with location 1 instead of with location O, all you have to do isturn the
ADDRESS wire ON.

A real RAM should have more than one ADDRESS wire. Every combination of values that
can be put on the ADDRESS wires specifies adifferent address. For example, if there are
three address wires, they can be set to any of the eight combinations OFF-OFF-OFF,
OFF-OFF-ON, OFF-ON-OFF, OFF-ON-ON, ON-OFF-OFF, ON-OFF-ON, ON-ON-OFF,
and ON-ON-ON. These combinations represent the binary numbers 000, 001, 010, 011, 100,
101, 110, and 111. In ordinary decimal notation, they represent 0, 1, 2, 3, 4, 5, 6, and 7. So,
aRAM with three ADDRESS wires can have eight locations, numbered O through 7.
Twenty ADDRESS wires are enough to specify over amillion locations, and thirty
ADDRESS wires can specify over abillion.

Y ou should spend some time understanding how to use the "2-Bit RAM" and how it works.
Each of the two locations in the RAM is a"Guarded 1-Bit Mem" circuit. Thiscircuit is
similar to the basic "1-Bit Mem" circuit that you looked at above, but it has an addition
control input, called the GUARD:

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLab2.html (6 of 9) [3/26/2000 12:50:07 PM]

xLogicCircuits Lab 2

DAaTa-IM, LOAD-DATA, and DATA-OUT wires have
the same functions as in the basic 1-Bit Mem.

Guarded
1 1-Eit [
tem wWhen this GUARD control wire is OFF,
T the output is OFF and the LOAD-DAT &

\ wire has no effect. The GUARD must
be OM to store or read data.

When the GUARD of alocation is ON, that location is selected. When it is selected, it
outputsits stored value on its DATA-OUT wire, and its LOAD-DATA wire can be used to
storeanew valuein it. When the GUARD is OFF, the "Guarded 1-Bit Mem" isinert. It
ignoresits LOAD-DATA wire and leavesits DATA-OUT wire turned OFF.

The "1-Bit Decode" is used to make sure that exactly one of the two locationsiis selected at
any given time. The ADDRESS wireis used as input to the Decode circuit. The Decode
circuit has two outputs. When the ADDRESS wire is OFF, the Decode circuit turns its lower
output ON, and thisin turn selects one of the "Guarded 1-Bit Mem" circuits. When the
ADDRESS wire is ON, the Decode circuit turns its upper output ON, and thisin turn selects
the other "Guarded 1-Bit Mem" circuit. Thus, the Decode circuit decodes the ADDRESS to
decide which location to select.

Finally, the OR gate is necessary so that both locations will be able to send their output to
the DATA-OUT wire of the RAM. Y ou can't connect two wires to one output. Using the OR
gate allows either of the "Guarded 1-Bit Mem" circuits to turn on the output.

Exercises

Exercise 1. A clock in acomputer isacomponent that "ticks" by turning its output wire on
and off. Thisregular ticking can be used as asignal by other components in the computer.
Open the sample circuit "Clock™ in the applet that you launched above. Thisexampleisa
clock that will start ticking (by turning its output on and off) as soon as you turn the power
off. However, you can stop the ticking by turning on the clock's control wire at the top of the
circuit. Turning this control wire off will restart the clock. Write afew paragraphs
explaining exactly how this circuit works. Why does the clock tick? What process does the
clock go through as it turnsits output on, then off, then back on? What is the role of the OR
gate? (Note: The "Tacks' in the feedback 1oop serve to slow the ticking down, because in
this simulated circuit, it takes a bit of time for asignal to propagate from one Tack, along a
wire, to the next Tack. Inarea circuit, the length of the feedback loop could be used to
control how long a signal takes to circle the loop.)

Exercise 2: Thisisacontinuation of Exercise 1. As an example of using the signal from a
clock to drive another component, build a circuit in which the output from a"Clock" circuit
Is connected to the control wire of a"Count Reg" circuit. The circuit you build should have

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLab2.html (7 of 9) [3/26/2000 12:50:07 PM]

xLogicCircuits Lab 2

three outputs, which are connected to the outputs from the Count Register. It should also
have one control input, which is connected to the Clock's control wire. When you turn the
power on, the ticking of the Clock will make the Count Register count, and it will do so as
long as the control wireisturned off. This circuit just counts up to 7 before it goes back to
zero. How would you make a circuit that counts up to 15 before it goes back to zero?

Exercise 3: One of the sample circuits, "1-Bit Mem", is capable of storing a one-bit binary
number. Construct a four-bit memory that can store a four-bit binary number. It can be built
using four copies of "1-Bit Mem". Your circuit should have four DATA-IN wires and four
DATA-OUT wires. However, it should have only one LOAD-DATA control wire. You
want to load datafrom the DATA-IN wiresinto all the "1-Bit Mem" circuits at the same
time. Thiswill be done by turning the single LOAD-DATA wire on and off.

Exercise 4: This continues Exercise 3. Explain in detail how you would store the binary
number 1011 in the four-bit memory that you constructed for Exercise 3. Also, explain
carefully what it means to say that thisvalue is"stored" in the memory.

Exercise 5: This exercise uses the four-bit memory that you built for Exercise 3. One of the
examplesin thislab was a"2-Bit RAM" circuit that can store two one-bit numbers. It stores
one number in each of two locations, and an ADDRESS wire is used to determine which of
the two locations isin use. Suppose that you want to store afour-bit number in each of two
locations. The circuit would be very similar to the "2-Bit RAM™" but it would have four
Inputs and four Outputs. It would still have just one LOAD-DATA control wire and one
ADDRESS wire to select between the two locations. For this exercise, you should build
such acircuit. You can start with your four-bit memory. Useit to build a"Guarded 4-Bit
Mem" modeled on the "Guarded 1-Bit Mem" from the "2-Bit RAM" circuit. Then use two
copies of the "Guarded 4-Bit Mem" to construct a RAM with two locations. Test your
circuit by storing adifferent four-bit number in each location. Explain how you can check
that your circuit has stored the numbers correctly.

Exercise 6: The"2-Bit RAM" sample circuit uses a"1-Bit Decode" circuit. This circuit has
one input and two outputs. It "decodes" its input by turning one of its outputs on when its
input is ON and by turning the other output on if the input is OFF. Similar decoder circuits
with more inputs are also useful. For this exercise, build atwo-bit decoder circuit. Y our
circuit should have two Inputs and four Outputs. The two inputs can have any of the
following pairs of values: 00, 01, 10, or 11. Each of these pairs corresponds to one of the
Outputs. The decoder circuit should turn on a different output for each pair of inputs. That
IS, if the inputs have the value 00 (both OFF), then the circuit should turn on its first Output;
If the Inputs have the value 01, it should turn on its second Output; and so on. So at any
given time, exactly one of the outputs will be ON. (Thisisafairly simple circuit. Begin by
finding a Boolean algebra expression for each of the outputs.)

Exercise 7: Thisisacontinuation of Exercise 6. The two-bit decoder circuit that you built
for Exercise 6 can be used as a component in afour-location RAM. The four locations in the
RAM will be "Guarded 1-Bit Mem" circuits. The RAM will have two ADDRESS wires,
which connect to the two inputs of the decoder. The four outputs from the decoder should
connect to the GUARD wires of the four "Guarded 1-Bit Mem" circuits. This allows the

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLab2.html (8 of 9) [3/26/2000 12:50:07 PM]

xLogicCircuits Lab 2

values on the ADDRESS wires to be used to select one of the four locations. For this
exercise, build such afour-location RAM. (Asin the original "2-Bit RAM" example, each
location should hold just one bit.)

Exercise 8. Based on your work in Exercises 5 and 7, explain how it would, in principle, be
possible to build a RAM containing any given of locations, with any given number of bitsin
each location.

Exercise 9: Write a short essay explaining what you learned in this lab about constructing
complex circuits from subcircuits.

Thisisone of aseries of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis aso
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/xLogicCircuitsLab2.html (9 of 9) [3/26/2000 12:50:07 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xComputer Lab 1

Labs for The Most Complex Machine

xComputer Lab 1: Introduction to xComputer

THIS LAB INTRODUCES the xComputer applet, which simulates a simple model
computer (which is also called xComputer). The model computer is discussed in Chapter 3
of The Most Complex Machine. The xComputer consists of a Central Processing Unit
(CPU) and a main memory that holds 1024 sixteen-bit binary numbers. The CPU contains
an Arithmetic-Logic Unit (ALU) for performing basic arithmetic and logical computations,
It also contains eight registers, which hold binary numbers that are being used directly in the
CPU's computations, a Control circuit, which is responsible for supervising the
computations that the CPU performs, and a clock, which drives the whole operation of the
computer by turning its single output wire on and off.

The xComputer applet that you will use in thislab lets you load programs and datainto the
memory of the simulated xComputer. Y ou can then watch while those programs are
executed, and you can observe how numbers stored in the computer change as a program
runs. The applet displays only the registers and main memory. Y ou have to take the control
circuit, ALU, and clock on faith.

This lab contains basic information about xComputer and its machine language. It
demonstrates how instructions are fetched from memory and executed by the CPU. It will
also explain the features of the xComputer applet and the process of programming the
xComputer. The next lab will cover the programming process in more detail.

You would find it useful to read through Chapter 3 of the text before doing this lab. Chapter
3israther technical, and you might find that you need to work through both this lab and that
chapter before you really understand either of them.

Thislab includes the following sections:
« ThexComputer Applet

o Writing Programs for xComputer
o Controlling Speed and Display Style
o Count and Store

» Exercises
Start by clicking this button to launch the xComputer applet in its own window:
(Sorry, your browser doesn't do Javal)
(For afull list of labs and applets, see the index page.)

http://math.hws.edu/TMCM/java/labs/xComputerLab1.html (1 of 10) [3/26/2000 12:50:09 PM]

xComputer Lab 1

The xComputer Applet

The xComputer applet isdivided into three sections. The right-hand third of the applet
represents the main memory of the smulated computer. This section of the applet shows the
1024 locations in xComputer's memory. These locations are numbered from 0 to 1023. Each
line in the memory shows a location number (in blue) and the value stored in that |ocation.
When the program first starts up, the memory contains only zeros. The scroll bar can be
used to view any part of memory.

The "Control" section of the applet is used to interact with and control the xComputer. For
example, you can use text-input boxes and buttons in the Control section to enter programs
and data into the xComputer's memory. Once a program has been loaded into memory, you
can tell the xComputer to executeit. You'll learn about controlling the xComputer as you
work through the lab.

The "Registers' section of the applet shows the xComputer's eight registers. Remember that
aregister issimply amemory unit in the CPU that holds data being used directly in the
CPU's computations. Each register plays a particular role in the execution of programs by
the CPU. These roles are described in detail in the text and will be illustrated during the
course of thislab, but here for your referenceis abrief summary:

« TheX andY registers hold two sixteen-bit binary numbers that are used as input by
the ALU. For example, when the CPU needs to add two numbers, it must put them
into the X and Y registers so that the ALU can be used to add them.

o The ACregister isthe accumulator. It isthe CPU's "working memory" for its
calculations. When the ALU is used to compute aresult, that result is stored in the
AC. For example, if the numbersinthe X and Y registers are added, then the answer
will appear in the AC. Also, data can be moved from main memory into the AC and
from the AC into main memory.

o The FLAG register stores the "carry-out" bit produced when the ALU adds two binary
numbers. Also, when the ALU performs a shift-left or shift-right operation, the extra
bit that is shifted off the end of the number is stored in the FLAG register.

« The ADDR register specifies alocation in main memory. The CPU often needs to
read values from memory or write values to memory. Only one location in memory is
accessible at any giventime. The ADDR register specifies that location. So, for
example, if the CPU needs to read the value in location 375, it must first store 375
into the ADDR register. (If you turn on the "Autoscroll" checkbox beneath the
memory display, then the memory will automatically be scrolled to the location
indicated by the ADDR register every time the value in that register changes.)

« The PC register isthe program counter. The CPU executes a program by fetching
Instructions one-by-one from memory and executing them. (Thisis called the
fetch-and-execute cycle.) The PC specifies the location in memory that holds the next
Instruction to be executed.

« ThelRistheinstruction register. When the CPU fetches a program instruction from
main memory, thisiswhereit putsit. The IR holds that instruction whileit is being
executed.

http://math.hws.edu/TMCM/java/labs/xComputerLab1.html (2 of 10) [3/26/2000 12:50:09 PM]

xComputer Lab 1

« The COUNT register counts off the steps in afetch-and-execute cycle. It takes the
CPU severa steps to fetch and execute an instruction. When COUNT is 1, it does step
1; when COUNT is 2, it does step 2; and so forth. The last step is always to reset
COUNT to O, to get ready to start the next fetch-and-execute cycle. Thisis easier to
understand after you see it in action. Remember that as the COUNT register counts O,
1, 2,..., just one machine language program is being executed.

Y ou will learn how the xComputer works by giving it a short program and watching it
execute that program. A program is a sequence of assembly language instructions. Y ou have
to enter the instructions into the xComputer's memory. But first, make sure that the "addr"
input box in the Control area of the applet contains a zero. The number in this box specifies
the address in memory where the instruction that you type will be stored. Then, type the
following instructions into the "data" input box. Press return after each instruction (or,
equivaently, click the "Datato Memory" button):

| od-c 17
add-c 105
sto 10
hl t

When you press return, an instruction is translated into a machine language instruction and
Is stored in the xComputer's memory. (You'll actually see a number in the memory, rather
than the assembly language instruction that you typed. For example, the instruction "lod-c
17" isrepresented by the number 25617.) Note that when you press return, the number in the
"addr" input box is automatically incremented by one, to get ready for storing the next
instruction that you type in the next memory location.

The first instruction of this program, lod-c 17, tells the xComputer to |oad the constant 17
into the accumulator. The second instruction, add-c 105 tells the computer to add the
constant 105 to whatever number is in the accumulator and to put the result back into the
accumulator. The sto 10 makes the computer copy the contents of the accumulator into
memory location 10. And the final instruction, hit, tells the computer to halt. The net effect
is that the program adds 105 to 17 and stores the answer in location 10. After the program
halts, you can ook in memory at location 10 to find the answer.

Now, how do you make the computer run the program? All the computer ever doesisfetch
instructions from memory and execute them. The value stored in the PC register tells the
computer which memory location to go to to get the next instruction. Before running the
program, you have to make sure that it will begin with the first instruction of the program,
which isin memory location zero. This means that the PC register should contain a zero. If
thisis not the case, you can put a zero into the PC by clicking the "Set PC = 0" button in the
Control section of the applet. (Zero isthe most common starting value for the PC, but if you
want to start at a different location, you can type the address of that location into the "addr"
input box and click the "Addr to PC" button.)

Once you have checked the value of the PC register, you can just click on the "Run" button
to run the program. Y ou should think of this as turning on the xComputer's clock. As soon
asyou do this, the clock stars ticking, the value in the COUNT register starts changing, and

http://math.hws.edu/TMCM/java/labs/xComputerLab1.html (3 of 10) [3/26/2000 12:50:09 PM]

xComputer Lab 1

the fetch-and-execute cycle proceeds. Thiswill continue until the computer executesa HLT
instruction, or until you stop it.

Y ou should Try thisnow. Make sure that the PC contains a zero. Then, click on the "Run”
button. If you have done everything correctly, the program will run. Y ou will see things
happening, although you will probably not really understand them at this point. But you will
notice that the instructions in the program appear one by onein the IR register asthey are
executed. Eventually, the HLT instruction will be executed and the computer will stop
running. The correct answer to the computation, 122, will be in memory location 10. This
gives you the general idea of how programs are executed by xComputer. Your goal in the
rest of the lab is to understand the details.

After running the program once, you should run it again. First, reset the PC to zero. This
time, instead of using the "Run" button, use the "Cycle" button. Clicking on "Cycle" makes
the computer run, but only until the value in the COUNT register is 2. At that point, the
computer has just loaded a new instruction into the IR and is about to execute that
instruction. When you click on "Cycle" again, the computer will execute that instruction and
fetch the next instruction. Thus, the " Cycle" button lets you step through a program one
instruction at atime. Try it! Keep clicking on "Cycle" until you get to the HL T instruction.

Finally, you can run the program one more time, this time with the " Step" button. Clicking
on the "Step" button makes the computer perform a single step in the fetch-and-execute
cycle. You haveto click on it several timesjust to execute one instruction in the program.
Once again, you should reset the PC to zero. Then, click through your program with the
"Step" button until the HLT is executed.

Writing Programs for xComputer

It should be clear that entering along program into xComputer by typing it into the "data"
box would be very tedious and error-prone. If you accidentally leave out one instruction, for
example, you might have to retype most of the program! Fortunately, the xComputer appl et
lets you type a complete program in a separate text-input area and then translate the whole
program at once and store it in xComputer's memory. This has three advantages: Y ou can
edit the program in the window, for example by inserting a new instruction. Y ou can (if the
configuration of your Web browser permitsit) save the program in afile, so that you'll never
have to retype it again. And you can use labelsin your program. Labels are a powerful
programming technique; they are described in the Postscript to Chapter 3 in the text. They
are not covered in thislab, but they will be an important part of the next |ab.

If you want to type anew program, just click on the "New Program" button in the Control
area of the applet. Alternatively, you can select "[New]" from the pop-up menu at the very
top of the applet. The computer display will disappear and will be replaced by a text-input
area when you can type your program. Enter the following program into that text area:

| od-c 1
sto 12
| od 12

http://math.hws.edu/TMCM/java/labs/xComputerLab1.html (4 of 10) [3/26/2000 12:50:09 PM]

xComputer Lab 1

I nc

sto 12

Jjmp 2
This program counts. It starts by putting the number 1 into memory location 12, and then it
adds one to the number in that location over and over, forever. (You'll seethisin actionina
moment.) There are several new instructions here. Lod 12 tells xComputer to copy the
number from memory location 12 into the accumulator. (Note how this differs from lod-c
12, which puts the number 12 itself into the AC, rather than the number stored in memory

location 12.) The inc instruction adds one to the value in the accumulator. And jmp 2isa
jump instruction that sends the computer back to location 2.

After typing this program, click on the "Translate" button that is located below the text area,
on the left end of arow of buttons. If the program contains some error, an error message will
be displayed. If you've typed the program correctly, it will be trandlated into machine
language and stored in the xComputer's memory. The text areawill be replaced by the
computer display, and the computer will be ready to run the program. Click on the "Run"
button to run the program and see how it operates. Y ou can watch as the PC counts off the
instructions in the program. Y ou will see the assembly language instructions themselves as
they are loaded into the IR. And you can observe that the value in memory location 12
changesfrom 1 to 2 to 3to 4 and so on. This program will run forever, if you let it.

Y ou will be working with this little program throughout most of the remainder of the lab.
Y our objectiveisto understand how xComputer operates and to appreciate the
fetch-and-execute cycle.

Controlling Speed and Memory Display Style

Asyou let the counting program run, you can try varying the speed at which the computer
executes instructions by changing the setting on the speed pop-up menu (located just below
the "Run" button. The lower speeds allow you to watch what is happening in more detail.
The higher speeds allow the computer to get more done. At the very highest speed, the
registers are not displayed, so that the computer can run as quickly as possible, without
updating the register display all the time.

When you have had enough of this, stop the program and experiment with the memory
display style pop-up menu, which islocated just above the scrolling memory display. This
menu allows you to select how you would like to view the contents of main memory. (There
isalso asimilar pop-up menu for setting the register display style.) Of course, the actual
contents of memory are binary numbers, but a binary number can mean many things,
depending on how it isinterpreted. When the applet first starts up, it is set to display the
contents of memory as ordinary decimal integersin the range -32768 to 32767. Thisisonly
one possible interpretation of the binary numbers that are stored in memory. Using the
display style pop-up menu, you can select from six different interpretations:

« Thelnstructions display shows the contents of each memory location as an assembly
language instruction. In this display style, you should see the original counting

http://math.hws.edu/TMCM/java/labs/xComputerLab1.html (5 of 10) [3/26/2000 12:50:09 PM]

xComputer Lab 1

program in memory locations O through 5. Most of the other locations contain Add 0,
which just happens to be the assembly language instruction encoded by the 16-bit
binary number 0000000000000000. (Since not every 16-bit binary number
corresponds to a legitimate assembly-language instruction, you might see some funny
thingsin this display style.)

« Thelntegers and Unsigned Ints displays show ordinary decimal integers. The
differenceisthat signed 16-bit integers are in the range -32768 to 32767, while
unsigned 16-bit integers are in the range 0 to 65535. (In either case, there are 216
different possible values -- it's just a question of how they are interpreted. See
Subsection 2.2.3 in the text.)

« TheBinary display shows a 16-bit binary number in each memory location; this
display styleis closest to the actual physical contents of the memory.

« The ASCII display interprets each sixteen-bit number in memory as made up of two
eight-bit ASCII character codes, and shows the two characters. Some eight-bit binary
numbers do not represent visible ASCII characters. These numbers are shown in the
form <#N>, where N is the number, in decimal form. Thus, for example, the 16-bit
binary number 0000000000000000 is shown in ASCII display style as <#0><#0>.

« The Graphicsdisplay isvery different from the others. It shows the entire memory at
once. Each bit in memory -- all 16 times 1024 of them -- is represented by one pixel
on the screen. That pixel iswhiteif the bit is zero and is black if the bit isone. If you
choose the Graphics display now, the memory will be aimost entirely white, except
for afew black dots at the top that represent the program you entered into memory.

Y ou can try out the various memory display styles. You'll be using them in Exercise 1 at the
end of the lab. | should note that when you enter information into Memory using the "data"
input box in the Control area of the applet, you can type the information in several of the
above display styles, aswell asin assembly language. Y ou can, for example, enter ordinary
numbers in the range -32768 to 65535. Y ou can enter a binary number, but you must
precede it by the letter B. For example: B1011010111. Finally, you can enter one or two
ASCII characters, but you must precede them by a quote mark. For example: '#1 or 'A. You
will need to do thisfor Exercise 1.

There is another option in the pop-up menu: "Control Wires'. This display style doesn't
show memory at all. If you select it, the computer's memory display will be replaced by a
list of control wires. These control wires are the key to understanding how the xComputer
works. The basic ideais that turning control wires on and off makes things happen in the
computer. They are turned on and off by a Control Circuit, and they control the operation of
other components of the CPU. Each control wire has a function. Turning that wire on causes
something to happen, such as moving a number from main memory into the AC register or
adding the numbersin the X and Y registers and putting the answer into the AC. Executing
aprogram isjust a matter of turning the right wires on and off in the right sequence.

The "Control Wires" display lets you see what wires are turned on during each step in the
execution of an instruction. Try it with the instruction lod-c 17, by doing the following:
First, enter the instruction "lod-c 17" into some memory location, and set the PC to the

http://math.hws.edu/TMCM/java/labs/xComputerLab1.html (6 of 10) [3/26/2000 12:50:09 PM]

xComputer Lab 1

address of that location. Next, set the display style to "Control Wires'. Then, use the " Step”
button to go through the fetch-and-execute cycle one step at atime. Here's what you will
see.

o First click on the"Step" button: COUNT becomes 1, indicating that the first stepin
the fetch and execute cycle is being performed. The L oad-addr-from-PC control wire
isturned on, and the value in the PC register is copied into the ADDR register. (The
PC register tells which memory location holds the next instruction; that location
number must be copied into the ADDR register so that the computer can read that
instruction from memory.)

« Second click: COUNT becomes 2. The Load-IR-from-Memory control wireis turned
on, and an instruction is copied from memory into the IR. (The ADDR register
determines which instruction isread.) In this case, the instructionis Lod-c 17.

o Third click: COUNT becomes 3. The Increment-PC control wireis turned on, and the
valuein the PC register isincremented by 1. Ordinarily, this prepares the PC for the
next fetch-and-execute cycle. This completes the "fetch” portion of the
fetch-and-execute cycle. The remaining steps in the cycle depend on the particular
instruction that is begin executed (in this case, lod-c 17).

« Fourth click: COUNT becomes 4. The Load-AC-from-IR control wireisturned on.
The data part of the instruction in the IR register, is copied into the accumulator. In
this case, thevalueis 17. Thisisthe only step necessary to execute the lod-c 17
instruction.

o Fifthclick: COUNT becomes 5, but only briefly. The Set-COUNT-to-Zero control
wireisturned on and immediately the value of COUNT isreset to 0. One
fetch-and-execute cycle is over. (On the next click, COUNT would become 1 again,
and the next cycle would begin.

Asyou click on the "Step" button in this exercise, you are actually simulating the role of the
xComputer's clock. Each click has the same effect as one tick of the clock, and you are
driving the computation at your leisure in the same way as the ticking of the clock usually
drives the computer with its regular ticking.

Count and Store

For the last part of the lab, consider the following program, "CountAndStore". This program
should have been automatically |loaded by the xComputer applet, so you won't have to type
itin. Just select it from the pop-up menu at the top of the applet, and click on the " Trand ate"
button to store it in the xComputer's memory. Note that in an xComputer program, anything
that comes after a semicolon on aline is a comment, which is meant for human readers.
Comments are ignored by the computer.

| od-c 1 - Start wwith a 1 in location 12
sto 12

http://math.hws.edu/TMCM/java/labs/xComputerLab1.html (7 of 10) [3/26/2000 12:50:09 PM]

xComputer Lab 1

| od 12 : This instruction is stored in |location 2
I nc

sto 13 - This instruction is stored in |location 4
| od 2 : Add 1 to the number in |ocation 2

I nC

sto 2

| od 4 - Add 1 to the nunber in |ocation 4

I nc

sto 4

jnmp 2 ; Go back to the instruction in |location 2

This program is similar to the simple counting program that you looked at earlier in the lab,
except that the number for the second sto command has been changed, and six new
instructions have been inserted before the jmp command. The instructions "lod 2, inc, sto 2"
add 1 to the number stored in memory location 2. But if you look at what's stored in that
location, you'll find the instruction lod 12, which is part of the program. This seems odd.
What happens when you "add 1" to an instruction?

Remember that machine language instructions are really just numbers. There is no problem
with adding 1 to a number. However, the meaning of the instruction represented by the
number is changed. If you add 1 to the number that encodes "lod 12," the meaning of the
answer is"lod13." If you want to understand exactly why thisistrue, look at the binary
representations of the machine language instructions. (The details are given in Section 3.2 of
the text, if you want to check there.)

Run this program and see what it does. To fully appreciate this program, you should run it at
"Fastest Speed” with the memory display set to "Graphics'. Y ou can watch as the memory is
gradually filled with numbers.

Exercises

Exercise 1. You can use the xComputer to trandate from one type of data to another by
entering it in one form in the "data" input box and viewing it in memory in another form.
Use this method to do the following conversions, and explain briefly how you do each part:

1. Find the ASCII code for the character #. (The ASCII code isthe integer that
represents this ASCII character.)

2. Find the character whose ASCI| codeis 99.
Find the binary representation of -233.

4. Find the unsigned integer that has the same binary representation as the signed integer
-233.

w

http://math.hws.edu/TMCM/java/labs/xComputerLab1.html (8 of 10) [3/26/2000 12:50:09 PM]

xComputer Lab 1
5. Find the unsigned integer that represents the assembly language instruction sto 1023.

6. Now, Add 1 to the number that represents sto 1023 and find the assembly language
instruction represented by the resulting number. Why do you get a completely
different instruction? (Note: Do the addition yourself; you don't have to program the
computer to do it!)

Exercise 2: Inreality, the memory of a computer contains only binary numbers. Machine
language, in particular, consists of binary numbers. Trans ate the counting program, which
Is repeated below, into the binary numbers of machine language, and write a paragraph or
two explaining why computers use binary numbers instead of something more readable.

| od-c 17

sto 12

| od 12

I nc

sto 12

jnp 2
Exer cise 3: Write an assembly language program that computes 34 - 17 + 103 - 12. The
instruction for subtracting a constant from the accumulator is sub-c.

Exercise 4. Earlier in the lab, you were asked to step through the execution of the
instruction lod-c 17, which tells the computer to load the number 17 into the accumulator.
Theinstruction lod 17 tells the computer to copy the contents of memory location 17 into
the accumulator. Use xComputer to watch as this instruction is executed step-by-step, just as
you did above for the lod-c 17. Enter alod 17 instruction into memory location zero, and
reset the PC to zero. Set the display style to "Control Wires'. Then use the "Step" button to
step through the fetch-and-execute cycle as the lod instruction is executed. Write down what
happens during each step. Carefully explain the purpose of each step in the execute phase of
the cycle (steps 4 and later). What differences do you find between the execution of alod-c
instruction and the execution of alod instruction? How can the differences be explained in
terms of what the instructions do?

Exercise 5: Usethe "Step" button to trace the execution of an add-c instruction and of an
add instruction. (See Exercise 4 for detailed instructions about how to do this.) Record the
control wires that are on during each step in the execute part of the fetch and execute cycle,
that is for steps number 4 and later, and carefully explain the purpose of each of those steps.
What differences do you observe between these two instructions? How can the differences
be explained in terms of what the instructions do?

Exercise 6: Carefully explain why the first three steps of the fetch-and-execute cycle are
always the same, and why they have nothing to do with the contents of the instruction
register.

Exercise 7. Modify the first counting program used in thislab so that it will count just from
one to sixteen, stopping when it reaches sixteen. (The program is repeated below.) To do
this, each time through the loop, you need to test whether the number is sixteen. If it is,
jump to aHLT instruction at the end of the program. Testing whether a number is sixteen

http://math.hws.edu/TMCM/java/labs/xComputerLab1.html (9 of 10) [3/26/2000 12:50:09 PM]

xComputer Lab 1

requires two steps. First, subtract 16 from the number, and then test whether the answer is
zero. Use aJMZ instruction to test whether the answer is zero. (Thisislikea JMP
instruction, except that the jump only occurs if the number in the AC is zero.) Write a
paragraph explaining how your program works.

|l od-c 1 ; This is the original counting program

sto 12

| od 12

I nc

sto 12

jm 2

hi t ; Add a halt instruction at the end.
Exercise 8. Describe what is done by the "CountAndStore" program, which you
encountered earlier in the lab. Discuss how it works in some detail. To do agood job on this
exercise, you will have to step through several executions of the loop in the program and
study how it works.

Exercise 9: Discuss what you learn from the "CountAndStore" program about "data" and
"instructions’ and the relationship between them. (The memory of a computer can hold both
data and instructions. How does the computer distinguish between them? Does it?)

Exercise 10: Run the "CountAndStore" program at "Fastest Speed” with the display set to
"Graphics." If you let the program run long enough, it will halt. How is this possible, since
the program contains no HL T instruction? To figure this out, you'll need to do some
detective work after the program ends. Look at what has happened to the program in the
computer's memory. Try to be as explicit and complete with your explanation as possible.
Thisis not an easy question. (Hint: something you did in Exercise 1 turns out to be relevant
here.)

Thisis one of aseries of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercia purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis aso
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/xComputerLab1.html (10 of 10) [3/26/2000 12:50:09 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xComputer Lab 2

Labs for The Most Complex Machine

xComputer Lab 2: Assembly Language
Programming

THE MACHINE LANGUAGE FOR xComputer consists of thirty-one different instructions.

Each instruction performs a very simple task. Nevertheless, very complex programs can be built
up from these instructions. The previous lab introduced the xComputer applet and the basic

xComputer machine language instructions. In this lab, you will learn more about programming
the xComputer. Hopefully, you'll begin to appreciate how complex programs can be composed
from very simple instructions.

Machine language consists of binary numbers, but it would be almost impossible for people to
program if they had to write programs directly in binary. Instead, programmers use assembly
language or high-level language. The programs they write in these languages are translated by
assemblers and compilers into machine language. Y ou'll use a high-level language called
"XTurtle" in later labs. In this lab and the next, you'll use assembly language.

Assembly language is closely related to machine language, but has several features that make it
much easier to use. Y ou've already seen that assembly language uses meaningful instruction
names, such as ADD- C, instead of numerical instruction codes. In thislab, you'll see how
memory locations and data values can also be referred to by name rather than by number. Such
names are called labels. You'll aso learn about afew new machine language instructions, which
use indirect addressing.

The material in thislab is based on Chapter 3 of The Most Complex Machine. Labels are
introduced in the postscript to that chapter.

Thislab includes the following sections:
« Labelsand the Assembler

o Loopsand Decisions

o Indirect Addressing

Dancing Bits
o Exercises

Start by clicking this button to launch the xComputer applet in its own window:
(Sorry, your browser doesn't do Javal)

(For afull list of labs and applets, see the index page.)

http://math.hws.edu/TMCM/java/labs/xComputerLab2.html (1 of 8) [3/26/2000 12:50:10 PM]

http://math.hws.edu/TMCM.html

xComputer Lab 2

Labels and the Assembler

The previous |ab introduced the xComputer applet and the most basic aspects of xComputer's

assembly language. Here is an example repeated from that |ab. This program simply counts
forever by adding 1 to location 12 over and over in an infinite loop:

LOD-C 1
STO 12
LOD 12
| NC
STO 12
JMWP 2

The numbers 12 and 2 in this program are addresses of memory locations. While this short
program is not terribly difficult to understand, it can be extremely tedious and error prone to
keep track of the large number of numerical addresses that would be used by a complex
program. For this reason, assembly language allows you to give names to memory locations, so
that you can refer to the locations with meaningful names rather than meaningless numbers.
Names used in thisway are called |abels.

To give aname to amemory location in an assembly language program, all you have to do is put
the name, followed by a colon, before the contents of the memory location. For example, the line

Loop: LOD 12

in a program would give the name "Loop" to the memory location that containsthe LOD 12
instruction. Elsewhere in the program, you can use the word "L oop" to refer to that location,
instead of using the numerical address. For example, you could jump to that location with the
command JMP Loop.

Memory locations can be use to hold either instructions or data. Labels are useful in both
situations. If "Num" isthe label of alocation that is used to hold data, then it would make sense
to use "Num" in data-manipulation commands such asLOD Num STO Num and ADD Num
Labels for instructions, on the other hand, are mostly used in jump commands.

Hereisaversion of the counting program that uses labels. The name "Loop" is used for the
instruction that begins the loop, and "Count" is used for the location that contains the value of

the counter:

LOD-C 1 ; Set Count equal to 1
STO Count

Loop: LOD Count ; Add 1 to Count
| NC
STO Count
JMP Loop ; Junp back to start of |oop
@z

Count: data ; Location to be used for counting

This example introduces two other features of xComputer's assembly language: "@ and "data’".
The word "data" is used as a place-holder for a memory location that is going to be used by the

http://math.hws.edu/TMCM/java/labs/xComputerLab2.html (2 of 8) [3/26/2000 12:50:10 PM]

xComputer Lab 2

program to contain a data value. When the assembler translates the program into machine
language and loads it into memory, it replaces "data’ with a zero. (Actualy, you could just use a
0 in the program, but "data" is more descriptive of your intentions.) Theline"@L2" is not
translated into machine language. It is a directive to the assembler telling the computer to store
the next item in location 12. In this case, it means that the Count will be stored in location 12.
Without the"@L2", it would be stored in location 6, the next sequential location after the J VP
Loop instruction. If there were additional items after Count, they would be stored in locations
13, 14, and so on -- until the next "@ directive.

This program is one of the sample programs loaded by the xComputer applet that you launched
above. Select the program " SimpleCounter.txt" from the pop-up menu at the top of the
xComputer window. Load it into xComputer's memory by clicking on the "Trandlate”" button.
Onceit isloaded, you can use the "Run," "Step," or "Cycle" button to execute the program. If
you need more information about using the xComputer applet, please see the previous | ab.

Loops and Decisions

Complex programs can be constructed using loops, decisions, and subroutines. All of these
things become easier to use when labels are available. Subroutines will be introduced in the next

lab. In thislab, you will work with loops and decisions.

Loops, of course, are implemented with jump commands, when the computer jumps back to a
previous location in the program. Decisions are implemented with conditional jump instructions
such as JMZ and J MN. When the computer executes one of theses instructions, it decides
whether or not to jump, based on the current circumstances. WWhen the computer encounters the
instruction JMZ Loc, it checks the accumulator register. If the number in the accumulator is
zero, then the computer jumps to location "Loc." Otherwise, the computer ssmply proceeds on to
the next statement following the IMZ. The JMN instruction is similar, except that it checks
whether the number in the accumulator is negative. Another conditional jump instruction, JMF,
teststhe value in the Flag register. It is described in one of the exercises at the end of the lab.

There are two sample programs for you to look at that make effective use of loops and decisions.
Each of these programsis used in one of the exercises at the end of the lab.

The sample program "ThreeNPlusOne.txt" computes a"3N+1 sequence.” (Thisis a problem that
you will see several timesin these labs.) Given a positive integer N, the program applies the
rule: "If N iseven, then replace N by N/2; if N is odd, then replace it by 3N+1." It appliesthis
rule over and over until the number N becomes equal to 1. For example, if the starting value of
N is 7, then the program generates the sequence of values. 7, 22, 11, 34, 17, 52, 26, 13, and so
on.

Run the "ThreeNPlusOne.txt" program. To see the numbers as they are generated, watch
memory location number 17, which contains the successive values of N starting with 7. Y ou will
probably want to bump the speed up to "Fast." Y ou can run the program again with any other
starting value of N. Modify the value of N in the assembly language program, and then reload it
into memory with the "Trandlate" button. (Y ou could also change the number in location 17
directly and then run the program. If you do this, don't forget to click the "Set PC=0" button to

http://math.hws.edu/TMCM/java/labs/xComputerLab2.html (3 of 8) [3/26/2000 12:50:10 PM]

xComputer Lab 2

reset the Program Counter to zero.)

Y ou should also read the program and note how it uses the five labels, "NextN," "Odd," "Even,"
"Done," and "N." (The label "Odd" is defined but is never referred to in the program. It isrealy
just there for human readers.)

Another sample program, "MultiplyByAdding.txt" adds two numbers by adding one of the
numbers to itself over and over. The program is set up to multiply 13 by 7. Read the program
and try it out. Useit to multiply some other pairs of numbers.

Make sure that you understand these programs and the general ideas of loops and decisions. Y ou
will need to understand them to complete the exercises at the end of the lab.

Indirect Addressing

The next sample program is"ListSum.txt." This program illustrates a common type of
processing where the computer processes a sequence of consecutive locations in memory. In
"ListSum.txt", the computer adds up the numbers stored in consecutive locations. It stops when
it getsto alocation that contains a zero. In the exercises, you will write two programs based on
this one. Before doing those exercises, you should read the sample program, run it, and try to
understand how it works.

The "ListSum.txt" program uses indirect addressing to access numbersin the list. Indirect
addressing is used in several assembly language instructions, including LOD- | , STO- |,

ADD- | , and SUB- | . Recall that LOD- C XXX tells the computer to load the number XXX into
the accumulator. LOD XXX, on the other hand, tells the computer to copy the contents of
memory location XXX into the accumulator. Thisis known as direct addressing. In the LOD- |
XXX instruction, XXX is the address of a memory location, but not of the memory location
containing the data. Instead, memory location XXX contains another address, and that address
specifies the location whose contents are to be loaded into the accumulator. For example, if
location 17 contains the number 42, then LOD- | 17 will load the contents of memory location
42 into the accumulator.

Admittedly, thisis confusing, but it turns out to be just what we need to do list processing. In
fact, in that context, its not all that confusing after all. Consider the following program outline:

; Set up

LOD ListStart ; Load Loc with the starting
; | ocation of the |ist.
STO Loc

Loop: LOD-1 Loc

: Process the nunber.

http://math.hws.edu/TMCM/java/labs/xComputerLab2.html (4 of 8) [3/26/2000 12:50:10 PM]

xComputer Lab 2

LOD Loc : Add 1 to Loc.
| NC
STO Loc

JMP Loop ; Return to the start of the | oop.

Loc: dat a : Location of next nunber
; to be processed.

ListStart: 183 ; List of data to be processed.
72
902
164

Thefirsttime LOD- I Loc isexecuted, it loads 183, the first number in the list, into the
accumulator, since the value of Loc is ListStart. After processing the 183, the program adds 1 to
the number in Loc and jumps back to the start of the loop. The value stored in Loc is nhow the
address of the second number in thelist, 72. So now when LOD- | Loc isexecuted, it loads 72
into the accumulator. The next time through the loop, it will load 902, then 164, and so on. So,
each time through the loop a different location is processed, even though the instructions in the
loop don't change.

"Loc" issaid to be a pointer since the value stored in Loc is not really the number we are
interested in. Instead, the value in Loc indicates where to go to find the number we want. It
"points’ to that value. Pointers and indirect addressing are used in various ways, evenin
high-level languages. In the next lab, you'll see how useful indirect addressing can bein ajump
instruction.

Dancing Bits

There is another sample program that 1've provided mostly for your amusement, but also because
watching it run might just give you a better appreciation of what a computer isreally doing asit
computes. Select the sample program " PowersOf Three.txt," from the pop-up menu in the
xComputer Window. Read the comments at the beginning of the file, and then load the program
into xComputer's memory by clicking on the "Trandate" button. Set the display style to
"Graphics' and the run speed to "Fastest," and run the program. Y ou will see the bitsin
xComputer's memory dance as a non-trivial computation is performed.

Exercises

Exercise 1. The sample program "SimpleCounter.txt" is a copy of the program that counts
forever, which was discussed earlier in thislab. Modify this program so that it countsto 16 and

http://math.hws.edu/TMCM/java/labs/xComputerLab2.html (5 of 8) [3/26/2000 12:50:10 PM]

xComputer Lab 2

then halts. (Thiswas also an exercise in the previous |ab, except that in that lab, you didn't use

labels.) Add aHLT statement after the IMP statement. Use the name "Done" as a name for that
statement. Jump to Done when the Count reaches 16.

Exercise 2. Hereisacopy of the"CountAndStore" program that was used in the previous lab.
(A copy was also loaded as one of the sample programs by the xComputer applet on this page.)
Rewrite this program to use labels, instead of numerical addresses, for locations 2 and 4. Do you
think the program is easier to understand with labels?

|l od-c 1 - Start with a 1 in location 12

sto 12

| od 12 : This instruction is stored in |location 2
I nc

sto 13 : This instruction is stored in |ocation 4
| od 2 - Add 1 to the nunber in |ocation 2

I nc

sto 2

| od 4 - Add 1 to the nunber in |ocation 4

I nc

sto 4

jmp 2 ; Go back to the instruction in |ocation 2

Exercise 3: Modify the "ThreeNPlusOne.txt" program so that it counts the number of steps it
takesfor N to become equal to 1. To do this, add another labeled location at the end of the
program. Call it "Count". Change the program so that it starts by storing azero in location
Count. Each time through the loop, it should add 1 to Count. When the program ends, the value
in Count is the number of times the program has gone through the loop. This is aso the number
of steps that were computed in the sequence. How many steps are there in the sequence that
begins with N=7? How about N=27? Be sure to add comments to your program to explain how
Count is being used.

Exercise 4: The assembly language instruction SHR shifts the number in the Accumulator one
bit to the right. That is, each bit in the binary number is moved over one bit-position to the right.
The leftmost bit-position, which would be left empty, isfilled in with azero. The rightmost bit,
which has no other place to go, is placed into the Flag register. A JMF instruction can be used to
test the contents of the Flag register. Suppose XXX isalabel. If the Flag register contains a one,
then JMF XXX causes ajump to location XXX. If the Flag register contains a zero, then JM-
XXX has no effect.

Write a program that counts the number of 1'sin a binary number. When the program begins, the
number should be stored in amemory location labeled Num There should also be a memory
location named Count for counting the number of 1'sin Num The program begins by storing a
zero in Count . It then goesinto aloop that shifts Numone bit to the right. If the number that

http://math.hws.edu/TMCM/java/labs/xComputerLab2.html (6 of 8) [3/26/2000 12:50:10 PM]

xComputer Lab 2

"falls off the end" into the Flag register isa 1, then the program should add 1 to Count . The
loop continues until the value of Numbecomes zero. At that point, Count contains the number
of 1'sthat werein the original number.

Exercise5: Just asit is possible to multiply by adding over and over, it is possible to divide by
subtracting over and over. Suppose you want to know how many times N1 goesinto N2. Start
with N2 and subtract N1 repeatedly until the answer islessthan N1. The number of subtractions
you performed is the number of timesthat N1 goesinto N2. For example, you can compute that
4 goesinto 14 three times by computing 14 - 4- 4 - 4 =2 . (The number 2 that you end up with
here is the remainder when 14 is divided by 4.)

Write a program to compute how many times a number N1 goes into another number N2. Y our
program will be somewhat similar to the sample program "MultiplyByAdding.txt." You still
need aloop, and you still need to count how many times that loop is executed. However, the
set-up before the loop, the action performed in the loop, and the test for ending the loop are
different. Note that to test whether A < B, you can subtract B from A and test whether the result
IS negative. In the language of xComputer, you can use aJMN instruction to test whether a
number is negative.

Exercise 6: The sample program "ListSum.txt" adds up alist of numbers. Modify this program
so that instead of computing the sum of the numbersin thelist, it will find the largest number in
the list. Change the name of the memory location "Sum" to "Max". Asthe program runs, this
memory location will hold the largest number seen so far in the list. When the program ends and
the whole list has been examined, Max will hold the largest number in the entire list. (Y ou can
compare two numbers by subtracting one from the other, and using a JMN instruction to test
whether the answer is negative.)

Exercise 7: Write another list-processing program that makes a copy of alist. Y ou can model
your program on "ListSum.txt." However, instead of adding up the numbersin thelist, it should
copy them to another part of memory. Use alabel named "Copy" to indicate the location in
memory where the copy of the list should begin.

Exercise 8. The "CountAndStore" program in Exercise 1 is a self-modifying program. That is,
the machine language instructions in locations 2 and 4 change as the program is executed.
Another way to write the program would be to use indirect addressing. Use a memory location
labeled "Loc" to keep track of which location the program is currently working on. Use LOD- |
Loc and STO- I Loc toload and store values in that memory location. To move on to the next
consecutive memory location, add oneto Loc.

Exercise 9: Write an essay explaining in detail how indirect addressing is used in the program
you wrote for one of the exercises above (Exercise 5, Exercise 6, or Exercise 7).

Exercise 10: Write an essay explaining how labels are used in assembly language programming
and why they are so important. Give examples of things that can be done with labels that would
be much harder to do without them.

Thisis one of aseries of labs written to be used with The Most Complex Machine: A Survey of Computers and
Computing, an introductory computer science textbook by David Eck. For the most part, the labs are also useful

on their own, and they can be freely used and distributed for private, non-commercial purposes. However, they
should not be used as aformal part of a course unless The Most Complex Machine is also adopted for use in that

http://math.hws.edu/TMCM/java/labs/xComputerLab2.html (7 of 8) [3/26/2000 12:50:10 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html

xComputer Lab 2

course.

--David Eck (eck@hws.edu), Summer 1998

http://math.hws.edu/TMCM/java/labs/xComputerLab2.html (8 of 8) [3/26/2000 12:50:10 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xComputerLab 3

Labs for The Most Complex Machine

xComputerLab 3: Subroutines

A SUBROUTINE ISA SET OF INSTRUCTIONS for performing some task, chunked

together and thought of as aunit. Like loops and decisions, subroutines are useful in the
construction of complex programs. The machine language for xComputer does not provide
direct support for subroutines. But then again, it doesn't really provide direct support for loops
and decisions, which must be implemented by the programmer with jump and conditional jump
instructions. Similarly, it is possible to implement subroutines using jump instructions. They are
not as easy, as neat, or as safe as subroutinesin a high-level language, but they can still be a
useful tool. Furthermore, by working with subroutines on xComputer, you'll get to see some of
the details of how subroutines can be implemented on avery low level. (Y ou should understand,
though, that the machine languages of real computers do provide more support for subroutines
than what is covered here.)

Before doing this lab, you should be very familiar with the xComputer applet and with assembly
language programming for xComputer, as covered in xComputerLab 1 and xComputer Lab 2.

The material in thislab is not covered in The Most Complex Machine.

Thislab includes the following sections:
o There and Back Again

o Parameters and Local Names

o Passing Pointers
Reality Check
o EXercises

Start by clicking this button to launch the xComputer applet in its own window:
(Sorry, your browser doesn't do Javal)

(For afull list of labs and applets, see the index page.)

There and Back Again

The idea of subroutinesis simple enough. A subroutine isjust a sequence of instructions that
performs some specific task. Whenever a program needs to perform that task, it can call the
subroutine to do so. The subroutine only has to be written once, and once it is written, you can
forget about the details of how it works. If the same task needs to be performed in another
program, then it can simply be copied from one program to another using cut-and-paste . So the
work done on writing the subroutine doesn't have to be repeated over and over. The subroutine
can be reused. In fact, real computers have large libraries of subroutines that are available for
use by programs. The complex programs that are used on modern computers would be

http://math.hws.edu/TMCM/java/labs/xComputerLab3.html (1 of 7) [3/26/2000 12:50:11 PM]

xComputerLab 3

extremely difficult to write, if these libraries of pre-written subroutines were not available.

In xComputer's assembly language, "calling" a subroutine means jumping to the first instruction
in the subroutine, using a JIMP instruction. The execution of the subroutine will end with a jump
back to the same point in the program from which the subroutine was called, so that the program
can pick up where it left off before calling the subroutine. Thisis known as returning from the
subroutine. (Other computers provide special commands for calling and returning from
subroutines.)

Thereis more to it than afew jump instructions, though. For one thing, if the subroutineisto be
reusable in ameaningful sense, it must be possible to call the subroutine from many different
placesin aprogram. If thisisthe case, how does the computer know what point in the program
to return to when the subroutine ends? The answer is that the return point has to be recorded
somewhere before the subroutine is called. The address in memory to which the computer is
supposed to return after the subroutine endsis called the return address. Before jumping to the
start of the subroutine, the program must store the return address in a place where the subroutine
can find it. When the subroutine has finished performing its assigned task, it ends with ajump
back to the return address. If, for example, the return address has been stored in a memory
location labeled "Ret Addr ", then the subroutine can finish with the statement:

JWP-1 Ret Addr

In the language of xComputer, JMP- | isan indirect jJump instruction, which uses indirect
addressing. It tells the computer to jump to the location whose addressis stored in Ret Addr . In
this case, that will be the return address for the subroutine.

All of the subroutines that you will work with in thislab use return addresses in the same way. A
memory location in the subroutine is reserved for holding the return address. Before jumping to
the beginning of the subroutine, the program will save the appropriate address in that memory
location. The subroutine ends with an indirect jump instruction to the return address.

Asafirst example, look at the sample program "MultiplyBySeven.txt" This program uses avery
simple subroutine whose task is to multiply a number by seven. The subroutine, which is named
Ti mes7, isat the end of the program. It begins with the lines:

Ret Addr: data : The return address for the subroutine
: nmust be stored in this | ocation
: before thesubroutine is call ed.

Ti mes7: STO numt ; STARTI NG PO NT OF SUBROUTI NE.

Thefirst line reserves a memory location to hold the return address. The "main program,” which
uses the subroutine, stores the return address in this memory location. It then jumps to the
location "Times7", which is where the instructions for the subroutine begin. The last instruction
in the subroutineis"JMP- 1 Ret Addr " which returns control back to the main program.

The return address is not the only item of information that the program has to send to the
subroutine. The task of the subroutine is to multiply a number by seven. The main program has
to tell the subroutine which number to multiply by seven. Thisinformation is said to be a
parameter of the subroutine. Similarly, the subroutine has to get its answer -- the result of
multiplying the parameter value by seven -- back to the main program. This answer is called the

http://math.hws.edu/TMCM/java/labs/xComputerLab3.html (2 of 7) [3/26/2000 12:50:11 PM]

xComputerLab 3

return value of the subroutine. In "MultiplyBySeven.txt," the program puts the parameter value
in the accumulator before calling the subroutine. The subroutine knows to ook for it there.
Before it jumps back to the main program, the subroutine puts its return value in the
accumulator. The main program knows to look for it there. Passing parameter values and return
values back and forth in aregister, such as the accumulator, isavery simple and efficient
method of communication between a subroutine and the rest of a program. In the next section,
we'll ook at other methods of communication.

Y ou should read the "MultiplyBySeven.txt" sample program and be sure you understand it.
Load it into memory with the "Trandate" button and execute it. Y ou might want to execute it by
hand with the "Cycle" button so that you can follow in detail how it works. Modify the program
so that it computes 103* 7 instead of 34* 7. (Would you have thought of multiplying a number by
seven using the method in this subroutine? Of course, a maor point about subroutinesis that
when you are using a subroutine that someone else has written for you, you don't really care so
much how it performsitstask, aslong asit doesit correctly. Y ou use the subroutine as a"black
box.")

Parameters and Local Names

It is not always possible to pass parameter values in registers. In xComputer, for example, there
isonly register (the accumulator) that can be used for parameter-passing. But some subroutines
require two or more parameters. The solution is to use reserved memory locations for the
parameter values, just asis done for the subroutine's return address. Similarly, areturn value
from a subroutine can be placed in areserved memory location rather than in aregister. This
method is alittle more difficult than using registers, but it is also more flexible.

Look at the sample program "MultiplyTwoNumbers.txt." This sample program includes a
subroutine that can multiply any two numbers. The numbers that are to be multiplied are
parameters to the subroutine, and the product of the two numbersisitsreturn value. The
memory locations labeled N1, N2, and Answer are used to hold the two parameter values and
the return value. These locations can be found at the beginning of the subroutine, along with a
memory location to hold the return address. Before it calls the subroutine, the main program
must load the two numbers that it wants to multiply into N1 and N2. When the subroutine ends,
the main program can get the answer by loading the contents of memory location Answer You
should read the program, try it out, and make sure that you understand all this. The program
contains alist of detailed instructions for using the subroutine. (Note that you don't have to
understand the method that the subroutine uses for multiplying the numbers. In fact, it'safairly
complex procedure.)

By the way, when you read the "Multiply" subroutine, you'll notice that it uses nine different
labeled memory locations. Five of these--r et _addr, N1, N2, Answer ,andMul ti ply --
are used for communication with the main program. The other four are part of the interna
working of the subroutine. Ideally, the main program wouldn't have to know about them at all,
because the main program is only interested in the task performed by the subroutine, not in its
internal workings. These labels are called |ocal names, since they are meant to be used only
"locally" inside the subroutine. Unfortunately, in the simple assembly language of xCompuiter, it
is not possible to actually "hide" these names from the main program, and you have to be careful

http://math.hws.edu/TMCM/java/labs/xComputerLab3.html (3 of 7) [3/26/2000 12:50:11 PM]

xComputerLab 3

not to use the same name for a different purpose in the main program. In my sample subroutines,
| have tried to use local names that are not likely to occur elsewhere in the program, such as

| oop_mand done_m In real programming languages, local names are actually invisible to the
rest of the program, so there is no possibility of a conflict.

Passing Pointers

The final sample program, "ListSumSubroutine.txt," illustrates one more aspect of parameter
passing. The subroutine in this example is meant to add up an entire list of numbers. Thereisno
l[imit placed on the number of itemsin thelist. How isit possible to pass a potentially limitless
number of parameters to the subroutine?

The solution is that the numbersin the list are not passed to the subroutine at all! Instead, the
main program tells the subroutine where in memory to look for thelist. Thereis only one
parameter: the address of the starting location of the list. This addressis said to be a pointer to
thelist.

In the "ListSumSubroutine.txt" example, the main program stores a pointer to the list in the
memory location labeled "ListStart." The subroutine then accesses the numbersin thelist using
indirect addressing (inaLOD- | instruction). Thisis a nice example that demonstrates once
again the usefulness of pointers and indirect addressing.

Reality Check

It's actually kind of crazy to try to write subroutines for xComputer. The limited variety of
machine language instructions for xComputer makesit very hard to express the idea of a
subroutine in that language. Not surprisingly, real computers have special-purpose machine
language instructions for working with subroutines.

The first thing that a machine language needsisapair of instructions for calling a subroutine
and for returning from a subroutine. These instructions might be called jump-to-subroutine and
return-from-subroutine. The jump-to-subroutine instruction would automatically save areturn
address and then jump to the starting point of the subroutine. The computer could figure out the
return address on its own -- instead of leaving it up to the programmer -- by looking at the value
in the Program Counter register. (The Program Counter holds the address of the next instruction
after the one that is currently being executed, and that's exactly the point that the subroutine
should jump back to.) The return-from-subroutine instruction would get the return address that
was previously saved by jump-to-subroutine and jump back to that address. These two
instructions would make it unnecessary for a programmer to even think about return addresses.

Real computers also have a more systematic way of dealing with parameters. An area of
memory called the stack is used to hold the parameters for all subroutines. In fact, the stack also
holds return addresses and data values used internally by subroutines. The stack isjust alist of
values. When a subroutine is called, the parameters and return address for the subroutine are
added to the end of the list. When the subroutine ends, the return address and parameters are
removed from the stack. The jump-to-subroutine instruction stores the return address on the
stack, and return-from-subroutine removes it from the stack when it's time for the subroutine to

http://math.hws.edu/TMCM/java/labs/xComputerLab3.html (4 of 7) [3/26/2000 12:50:11 PM]

xComputerLab 3

end. Typically, acomputer has aregister called the Stack Pointer to keep track of how big the
stack currently is. And machine language typically includes instructions called push and pop to
add items from the stack and to remove items from the end of the stack.

When one subroutine calls another, all the data for the second subroutine is ssimply added to the
stack, on "top" of the datathat is already there. When the second subroutine ends, its datais
removed from the stack, but the data for the first subroutineis still there so that the first
subroutine can simply pick up where it left off. The whole system is really rather elegant.

Maybe it's not so crazy to write a few subroutines for xComputer after all, since doing
everything by hand can help you understand what really goes on when a subroutine is called.
And it can also help you appreciate the elegance of more sophisticated computers and
programming languages.

Exercises

Exercise 1: The main program in the "MultiplyTwoNumbers.txt" sample program is as follows:

| od-c 13 ; Set up to call the subroutine with
sto N1 ; N1 = 13, N2 = 56, and ret_addr = back.
| od-c 56
sto N2
| od- ¢ back
sto ret _addr
jmp Multiply ; Call the subroutine.
back: | od Answer ; When the subroutine ends, it returns

; control to this |location, and the

; product of N1 and N2 is in Answer.

; This LCOD instruction puts the answer
; in the accurul at or.

hl t ; Term nate the program
; by halting the conputer.

Carefully explain each instruction in this program. Explain exactly what each of thefirst 8
instructions has to do with calling the subroutine.

Exercise 2: Write amain program that usesthe Mul t i pl y subroutinein
"MultiplyTwoNumbers.txt" to compute the product 5 * 23 * 17. Do not modify the subroutine.
The main program should call the subroutine twice.

Exercise 3: Write a subroutine to add three numbers. (Thisis apretty silly thing to do, but the
point is to demonstrate that you understand the basic concepts involved.) Y our subroutine
should have three parameters and a return value (the three numbers to be added and their sum).
Write amain program that uses your subroutine to add 17, 42, and 105. Y our program will be
very similar to the sample program "MultiplyTwoNumbers.txt." Make sure to include comments
in your program!

http://math.hws.edu/TMCM/java/labs/xComputerLab3.html (5 of 7) [3/26/2000 12:50:11 PM]

xComputerLab 3

Exercise 4. Read the Reality Check section above. Why can't you express the
jump-to-subroutine and return-from-subroutine operations in the language of xComputer? What
do these instructions need to do that can't be expressed in that language? What sort of
maodifications would have to be made to xComputer to add them to xComputer's machine
language?

Exercise 5: The sample program "ListSumSubroutine.txt" uses a subroutine to add up alist of
numbers. Suppose you would like to multiply the numbers instead. To do this, copy the
multiplication subroutine from the "MultiplyTwoNumbers.txt" sample program, and paste it
onto the end of "ListSumSubroutine.txt." Modify the Li st Sumsubroutine so that instead of
adding two numbers, it usesthe Mul t i pl y subroutine to multiply. Y ou have to replace the
instruction "add Sunt with several instructions that set up acall tothe Mul ti pl y subroutine.
And you'll need to make up areturn address |label for the subroutine to jump back to. Once
you've made this modification, the program will compute the product 1* 2* 3* 4* 5* 6* 7 instead of
the sum 1+2+3+4+5+6+7. (Y ou might want to change the name of the subroutine from

Li st Sumto Li st Mul , and change the name of the memory location Sumto Pr oduct . This
will require that you also change the names in the main program.)

Exercise 6: The sample file "PrimesAndRemainders.txt" defines two subroutines. One of the
subroutines can be used to find the remainder when one integer is divided into another. The
other subroutine can be used to determine whether a number is prime. The file does not contain a
main program. If you want to use one or both of the subroutines, you can add a main program at
the beginning of thefile.

Y ou should read the comments on the two subroutines to find out how to use them. Then write
two programs that use the subroutines. The first program should use the "Remainder" subroutine
to compute the remainder when 609 is divided by 81. The second program should use the
"PrimeTest" subroutine to determine whether or not 51 is prime. Note that you do not have to
understand how the subroutines work. Y ou just need to know how to call them and pass the
proper parameters to them.

Exercise 7: Thisexercise, like the previous one, involves writing a main program for the
"PrimesAndRemainders.txt" example. However, this exercise is much more challenging. Write a
main program that makes alist of prime numbers. The program should use the "PrimeTest"
subroutine to test whether each of the numbers 2, 3, 4, 5, 6, and so on, is prime. Each number
that is found to be prime should be added to alist. Y ou can write a program that runsin an
infinite loop.

Use alocation named "p" to store the number that you are checking. Start by storingaZ2inp. In
aloop, you should call PrimeTest to see whether p isprime. If p is prime, then add it to the list.
In any case, you should then add 1 to p and jump back to the start of the loop to test the next
value of p.

Making alist of primes means storing primes in consecutive memory locations. Use alocation
named "l i st " to point to the end of thelist. That is, thevalue of | i st isthelocation where
you want to store the next prime that you find. Let's say that you want the list of primesto begin
at location 50. At the beginning of the program, you should storea50inl i st . When you find a
prime number, you can add it to the end of thelist withaSTO- I | i st command. Then you
should add 1 to the value of list to get ready for the next number.

http://math.hws.edu/TMCM/java/labs/xComputerLab3.html (6 of 7) [3/26/2000 12:50:11 PM]

xComputerLab 3

If you run your program at high speed, you can watch it store the numbers 2, 3, 5, 7, 11, 13, and
SO on in memory. Y ou might want to watch the program in graphics mode so that you can watch
the activity in the main program and in the two subroutines.

Exercise 8: Write a short essay discussing how subroutines can make it easier to design and
write complex programs. (Y our answer should show that you understand that they can do more
than save you typing!) In your essay, use some of the work you did in this lab for examples.

Thisis one of aseries of labs written to be used with The Most Complex Machine: A Survey of Computers and
Computing, an introductory computer science textbook by David Eck. For the most part, the labs are also useful

on their own, and they can be freely used and distributed for private, non-commercial purposes. However, they
should not be used as aformal part of a course unless The Most Complex Machine is also adopted for use in that
course.

--David Eck (eck@hws.edu), Summer 1998

http://math.hws.edu/TMCM/java/labs/xComputerLab3.html (7 of 7) [3/26/2000 12:50:11 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xTuringMachine Lab

Labs for The Most Complex Machine

xTuringMachine Lab: Introduction to Turing
Machines

TU RING MACHINES are extremely simple calculating devices. A Turning machine

remembers only one number, called its state. It moves back and forth along an infinite tape,
scanning and writing symbols and changing its state. Its action at a given step in the
calculation is based on only two factors: its current state number and the symbol that it is
currently scanning on the tape. It continues in thisway until it enters a special state called
the halt state. In spite of their ssimplicity, Turing machines can perform any calculation that
can be performed by any computer. In fact, certain individual Turing machines, called
universal Turing machines, can actually execute arbitrary programs, just as a computer can.
Y ou won't see any universal Turing machinesin thislab, but you will experiment with
Turing machines that can perform non-trivial calculations.

Turing machines are covered in Chapter 4 of The Most Complex Machine. Although the lab
Is mostly self-contained, it would be useful for you to have some familiarity with Turing
machines before beginning the lab. Especially important is the idea that a Turing machineis
described by atable of rules that specify what action the machine will take for each
combination of state and scanned symbol. The action takes the form of writing a new (or the
same) symbol to the current square, moving either left or right on the tape, and entering a
new (or the same) state.

Thislab includes the following sections:
Using the Applet

A More Interesting Machine

Making New Machines

e Binary Arithmetic

e EXxercises

In this lab, you will work with an applet called xTuringMachine. Start by clicking this
button to launch the applet in its own window:

(Sorry, your browser doesn't do Javal!)

(For afull list of labs and applets, see the index page.)

http://math.hws.edu/TMCM/java/labs/xTuringMachineLab.html (1 of 9) [3/26/2000 12:50:12 PM]

xTuringMachine Lab

Using the Applet

The xTuringMachine applet can simulate Turing machines with up to twenty-five states.
The states are numbered from 0 to 24. There is also the specia halt state, which is denoted
by "h". The Turing machinesin this applet are restricted to using the following symbols: the
letters x, vy, and z; the binary digits 0 and 1; the dollar sign, $; and the blank space (often
written as #). We often think of the machines as working with "binary numbers' made up of
O'sand 1'sor with "words' made up of x's, y's, and z's. But remember that the meaning of a
symbol has no effect on any calculation performed by a Turing machine; all the machine
doesisfollow itsrules.

At the very top of the xTuringMachine applet is a pop-up menu that you can use to select
from among the machines that the applet knows about. The applet is set up to load severa
sample machines when it starts up. (Later, you'll see how to construct new machines from
scratch.) You'll work with the first of these sample machines, "ChangeO1toXY," to help you
learn how to use the applet.

Just below the pop-up menu is the Turing machine itself and its tape:
The Turing rmachine itself moves back and forth

along the tape. The number that the machine displays
15 1ts currents state, which can change as it computes.

12

x|y z |z [0D]|1 |% £ ly |z 1 (0 |z

e

The tape is an infinite sequence of cells.
Each cell contains a symbol {possibly blank).

Below the machine, on the left, isa set of controls. Use the "Run" and " Step"buttons to
control the computation of the machine. If you click on the " Step” button, the Turing
machine will perform one step in its computation. If you click on "Run," the machine will
compute until you stop it or until it enters the halt state. Y ou can control the speed of a
running machine with the Speed pop-up menu, which is just above the run button. (Y ou
might want to stick with the " Step" button at first, so that you can follow each step of the
computation in detail.)

To do one step in its computation, the Turing machine considers the state that it isin and
the symbol that it isreading in the cell whereit islocated. Based on thisinformation, it
will (1) write anew symbol in the current cell; (2) move one cell to the left or to the right;
and (3) change to anew state. (Note, however, that the "new symbol” that the machine
writes can actually be the same as the old symbol, and that the "new state" can be the same
asthe old state.) The machine bases its action on the table of rules that is shown in the lower

http://math.hws.edu/TMCM/java/labs/xTuringMachineLab.html (2 of 9) [3/26/2000 12:50:12 PM]

xTuringMachine Lab

right part of the applet.

For example, look at the table of rules for the sample machine, "ChangeO1toXY." Thefirst
row of the table says"If the machineisin state 0 and if the symbol in the current square is#
(that is, a blank), then the machine will write a# in the square, move one square to the right,
and changeto state 0." All the rules for a Turing machine are of this general form. Note that
in this case, the symbol it writes in the square is the same as the symbol that was already
there; thisisjust afancy way of saying that it doesn't change the contents of the square.
Similarly when the machine "changes to state 0" in this case, it doesn't really change its
state; its new state is actually same state that it was already in.

Step through the computation of the "Change01toXY" machine until it entersits halt state.
The machine moves along the tape changing any 0 it findsto an x and changing any 1 to ay.
What makes it halt? What would happen if there were no $ on the tape? And, by the way,
what happens when the machine encounters the edge of the applet window? Y ou should also
try running the machine with the "Run" button.

Note that when a Turing machine halts, it displays an "h" asits current state, and the " Step"
button changes to "Reset." Clicking "Reset" will reset the state to zero, so the machine will
be ready to start a new computation. By convention, a Turing machine always begins its
computation in state zero.

Before you go on to the rest of the lab, there are afew more things you should know aboui.
First, you can use the mouse to drag the Turing machine to a new position on itstape. Y ou
can also drag the tape. If you want to drag the tape and the machine together, use the right

mouse button instead of the left button, or hold down the Control key as you begin to drag.

Second, and more important, you should know how to change the state of the machine and
the contents of its tape. Y ou can click on the Turing machineto hiliteit. You'll see abright
blue-green outline, and the blue rectangle below the machine will display a " palette”
showing the possible states of the machine. To change the state of the machine, you can
either type the state or use the mouse to click on the state in the palette. Editing the tapeis
similar. Click on any cell to hiliteit. The palette displays the symbols that the cell can
contain. Y ou can type asymbol or click on it in the palette. When you do this, the hilite will
move to the next cell on the tape. This makesit easy to type a string of symbols onto the

tape.

Syrnbols: # 3 0 1 ¥ 1 z [# = blank)

The "input palette” for symbols.

R 1 % S T 9 11 1% 15 17 19 21 23
Satess 5 o 4 5 & 10 12 14 16 18 20 2z 24

The "input palette” for states.

Try making a new input tape for the "Change01toXY" machine. Move the machine to the
beginning of the input. Make sure that the machine isin state 0. Then run the machine on

http://math.hws.edu/TMCM/java/labs/xTuringMachineLab.html (3 of 9) [3/26/2000 12:50:12 PM]

xTuringMachine Lab

your new input.

A More Interesting Machine

As another example, select the sample machine "FindDoubleX" from the pop-up menu at
the top of the applet. The purpose of this machine isto move to the right along its tape, until
it finds two x'sin arow; it then halts on the leftmost of those two x's. The machine you
looked at in the previous section had only a single numbered state, state 0. The
"FindDoubleX™ machine has two states, number O and number 1. Asthis machine runs, you
will see it changing between these two states. Try it! Use the " Step" button to step through
the computation.

Although its states are completely meaningless to the machine, from our human point of
view we can assign a kind of meaning to each state. In state O, this machineis "moving to
the right searching for an x." In state 1, it "has found one x and needs to check the next
square to see whether there is another x there." In state 1, after checking the next square, it
haltsif it finds an x there and returns to state O if not.

One might say that the state number counts the number of x'sin arow that the machine has
encountered. In state O it has encountered zero x'sin arow; in state 1, it has encountered one
X inarow. You will need to understand thisin order to do one of the exercises at the end of
the lab. You will aso need to know about editing the rule table. Thisis covered in the next
section of the lab.

The complete table of rulesfor the "FindDoubleX" machine looks like this:

In State Reading Write Mive Mesw State
0 x A F 1
0 other same F 0
1 x A L h
1 other same F 0

The entries other under "Reading" and same under "Write" need some explanation. The
word "other" is used hereto indicate a default rule. Thisruleis used when the machineisin
the state specified in the "In State" column, and no other rule applies. For example, suppose
that the "FindDoubleX" machineisin state O. If it happens to be reading an x, it will follow
the first rule in the table, which tellsit to write an x, move right, and change to state 1.
However, if it isin state O and reads any other symbol, then it will apply the second rulein
the table. The word "same" under the "Write" column in that rule tells the machine to write
the same character that it read. Without this default rule, the machine would need six
separate rulesto tell it what to do when it isin state O and it reads one of the symbolsy, z, O,
1, $, or blank.

For an example of a more complex word-processing Turing machine, you can try out the

http://math.hws.edu/TMCM/java/labs/xTuringMachineLab.html (4 of 9) [3/26/2000 12:50:12 PM]

xTuringMachine Lab

sample machine called "CopyXY Z." This machine will make a copy of astring of x's, y's,
and z's. Try it out!

Making New Machines

In this part of the lab, you will learn how to construct new machines in the xTuringMachine
applet. To begin anew machine, select "[New]" from the pop-up menu at the top of the
applet. Thiswill give you an empty rule table that you can fill in to define the machine you
want.

The xTuringMachine applet does not allow you to simply typein arule. Instead, it has
procedures for adding a new rule to the table and for modifying rules that are already in the
table. The type of editing that you can do is similar to what you already know about setting
the Turing machine's state and changing the contents of its tape.

New rules are added to the rule table using the "Rule Maker" that islocated just above the
table of rules. The Rule Maker has a set of five boxes where you create the rule and a"Make
Rule" button that you can click to add the rule to the table:

5 other Same F] [Make Bule]

Y ou can edit any of the five itemsin the Rule Maker. Just click on the item that you want to
change. Theitem will be hilited. In the above picture, the second item, "other," is hilited.
The blue rectangular palette will display the values that you can legally put in the hilited
spot. You can either type the value you want or click on it in the palette. (Note that "other"
Is represented in the palette by a"*". If you want to enter the value "other," you have to type
* or click on it.) Once you've set up the rule you want in the Rule Maker, you can either
click the "Make Rule" button or press the Return key to add it to the table of rules. The rule
has no effect on the Turing machine until you add it to the table.

A newly added rule will be displayed in thetable in red. The rule shown in red is selected.
Y ou can delete the selected rule from the table by clicking on the "Delete Rule" button. Y ou
can select any rulein thetable by clicking on therule.

Once arule has been added to the table, you can edit the last three columnsin the rule. Click
on the item you want to change, and edit it in the usual way. Note that the last three columns
of the table specify the action that the Turing machine will take when it isin the specified
state and reading the specified symbol. Y ou are only alowed to change the action part of the
rule, onceit isin the table. Often, the easiest way to create a table of rulesisto quickly
create a bunch of rules without worrying about the action specified in each rule. Y ou can
then edit the action parts of all therulesin the table.

There are lots of things in the xTuringMachine applet that you can edit. Y ou can use the
arrow keys and the tab key to move among the various editable items. Often, thisis quicker
than using the mouse.

http://math.hws.edu/TMCM/java/labs/xTuringMachineLab.html (5 of 9) [3/26/2000 12:50:12 PM]

xTuringMachine Lab

Y ou will notice that sometimes the "Make Rule" button changesinto a"Replace" button.
Thiswill happen whenever the first two itemsin the Rule Maker match the first two itemsin
an existing rule. If you click on the "Replace" button, the rule in the Rule Maker will replace
the rulein the table.

Before you do the exercises at the end of the lab, you should get some practice at creating
and editing atable of rules. Here is atable of rules for a Turing machine that "Nudges" a
string of x's, y's and z's one square to the left. The machine must be started on the leftmost
symbol in the string, and it will only work if there are a couple of blank squares surrounding

the string:
In State Feading Write Maove Mew State
0 # g L 5
0 % g L 1
0 1 g L 2
0 2 g L 3
1 # ¥ R 4
2 #] R 4
3 # 2 R 4
4 # g R 0
5 # g L £
£ # g R h
& other same L &

Y ou should make a copy of this machine by adding each of the above rules to the applet's
rule table. Begin by selecting "[New]" from the pop-up menu at the top of the applet, if you
haven't done so already. Y ou should also type an input string of x's, y's, and z's onto the
Turing machine's tape, and move the machine to the leftmost symbol in the input. Then you
can start making the rules, one-by-one, and adding them to the table. When you are all done,
you should have a machine that will perform as advertized.

One more feature of the applet deserves to be mentioned here: Suppose that you click the
"Step" or "Run" button, and the Turing machine finds itself in a situation that is not covered
by any rulein the ruletable. In this case, the machine will stop and will display the message
"No Rule Defined!" It will also set up the Rule Maker with the its current state and the
symbol that it isreading, so that it is all set for defining the missing rule. It's possible to
define a machine using this feature. Start with an empty table of rules. Click "Step." The
machine will protest. Y ou can define the rule, and click " Step" again. Y ou can proceed in
thisway until the whole rule table has been defined. However, you have to be careful to
make sure that you have in fact covered all the situations that might arise.

http://math.hws.edu/TMCM/java/labs/xTuringMachineLab.html (6 of 9) [3/26/2000 12:50:12 PM]

xTuringMachine Lab

Binary Arithmetic

The operations of incrementing (adding one to) or decrementing (subtracting one from) a
binary number are simple enough to be done easily by Turing machines.

The algorithm for adding one can be described as follows: If the digit on the tape is a zero,
then simply change that digit to aone. If the digit isaone, changeit to a zero, move left, and
apply the same procedure at that position. (Thisislike "carrying" a one to the next column.)
Finally, to add one to a blank space, simply change that blank to a one. (This can occur
when aoneis carried beyond the leftmost digit of the number; the blank should be treated
just like azero.) For example, 110 2+1 2=111 2, 1011 2+1 2=1100 2, and

11 2+1 2=100 2.

The sample Turing machine "Increment” is a simple Turing machine for incrementing a
binary number (This same machine can be found in Figure 4.2 of The Most Complex
Machine.) The"Increment" machine should be started on the rightmost digit of abinary
number. It will add one to the number, and then it will halt on the rightmost digit of the
answer. Try it out! Every time you click the "Run" button, the machine will add one to the
number on its tape.

With somewhat more work, it is possible to make a Turing machine that adds two binary
numbers. The sample machine "AddBinaryNumbers' does thisin the ordinary way, by
adding corresponding digits in the numbers one-by-one, starting at the right and working
left. The numbers to be added must be next to each other on the tape, and they must be
separated by a single blank space. The machine must be started on the right end of the
second number. Try running this machine on the sample input, and then try giving it several
other pairs of numbersto add. Note that as the machine adds the second number to the first,
it replaces O's and 1's with x'sand y's. When it finishes, it erases the second number from the
tape and changes all the x'sand y's back to O'sand 1's.

The final sample machine, "MultiplyByAdding," multiplies two binary numbers. It does not
do this by the usual multiplication algorithm. Two numbers can be multiplied by repeatedly
adding the first number to itself. The second number tells how many times the addition isto
be performed. The "MultiplyByAdding" machine works in thisway. Each time it adds the
first number to itself, it subtracts one from the second number. When the second number
reaches zero, the process is finished. At that point, the machine erases the two original input
numbers. The number remaining on the tape at the end of this processis the product of the
two inputs. Y ou won't have to understand this machine in detail, but it's interesting to see
how arelatively complex computation can be performed by a Turing machine.

Exercises

Exercise 1. Create a Turing machine that will moveto the right until it findsa$. Then it
will erase everything on the tape between that $ and the next $ to the right. It will halt when
it getsto the second $. The $'s themselves should not be erased. Y ou can do thiswith a
fairly ssmple machine that uses only two states, 0 and 1. (Note that if the machineis started

http://math.hws.edu/TMCM/java/labs/xTuringMachineLab.html (7 of 9) [3/26/2000 12:50:12 PM]

xTuringMachine Lab

on atape that does not contain two $'s to the right of the machine's starting position, then the
machine will never halt.)

Exercise 2: One of the examplesin the lab is a Turing machine called "FindDoubleX." This
machine moves to the right until it comes to two x'sin arow. Then it halts on the first of the
two x's. Create a new machine that will move to the right until it findsthree x'sin arow. It
should halt when it finds a group of three consecutive x's. (Ideally, it should move back to
the first of the three x's and halt there.)

Exercise 3: This exercise assumes that you have done Exercise 2. Given any sequence of
X's, y's, and z's, describe how you could construct a machine that will move to the right until
it finds the given sequence. For example, if the sequence is xyzzyx, it should move to the
right until it has found the symbolsx, y, z, z, y, and x in consecutive squares, and then it
should halt. What is the minimum number of states that such a machine would need
(assuming that you don't care which square it halts on)? Why?

Exercise 4: Construct a Turing machine to do the following: Assume that the machineis
started on atape that contains nothing but a string of $'s. The machine is started on the left
end of this string. The purpose of the machineisto multiply the length of the string by 3.
For example, if it is started on a string of seven $'s, it should halt with twenty-one $'s on the
tape. If it is started on a string that contains just one $, it should halt with three $'s on the
tape. Here is one way that the machine might operate: Change one of the $'sto an x, then go
to the end of the string and write two more x's. Go back and process the next $ in the same
way. Continue until al the $'s have been processed. Then change al the x'sto $'s.

Exercise 5: Construct a Turing machine to do the following: Assume that the machineis
started on atape that contains nothing but a string of $'s. The machine is started on the | eft
end of this string. The purpose of the machine isto divide the length of the string by 3.
(Throw away any extrafractional part, so that 17 divided by 3 would be 5). For example, if
the machine is started on a string of twenty-one $'s, it should halt with seven $'s on the tape.
If it is started with ten $'s on the tape, it should halt with three $'son the tape. And if itis
started with five $'s on the tape, then it should halt with one $ on the tape.

Exercise 6: Modify the sample machine "Increment” so that instead of halting after it adds
oneto itsinput, it entersinto state 0. (All you have to do is change the "New State" in one
rule from h to 0.) With this modification, you have a counting machine. It will continue to
add one to the number on the tape over and over, aslong asyou let it. Run the counting
machine at "Fastest" speed, and time how long it takes to count from 0 up to 27000000000
(in binary). The number 1000000000 has nine zeros and so is equivalent to 29, or 512, in
base 10. Based on your answer, compute approximately how long the machine would take
to count from O to 2000000000000000, that is from 0 to 215, Explain how you computed
your answer and why the method that you used is valid.

Exercise 7. Construct a Turing machine to do the following: Assume that the tape contains
a binary number, and that the machine is started on the right-hand end of the number. The
machine should write a string of $'s, where the number of $'sis given by the binary number
that was initially on the tape. For example, if the number on the tape was 10110, which is 22

http://math.hws.edu/TMCM/java/labs/xTuringMachineLab.html (8 of 9) [3/26/2000 12:50:12 PM]

xTuringMachine Lab

in binary, then the machine should halt with a string of twenty-two $'s on the tape. In order
to construct this machine, you will have to understand something of how the sample
machine "MultiplyByAdding" works. In that machine, the problem was to repeat the
addition operation a specified number if times. In this exercise, the problem is to repeat the
operation "add a $ to the string" a specified number of times.

Exer cise 8: Construct a Turing machine to do the following: Assume that the machineis
started on a tape that contains nothing but a sequence of x's and y's. (The machine must
work for any such sequence.) The machine is started on the left end of this sequence. The
purpose of the machine isto separate the x's from the y's. For example, given the input
XXYXYyxyxXx, it will change the tape to read xxxxxxyyyy. The output string does not have to
be in the same place on the tape as the input string, but it should be the only thing on the
tape when the machine halts. There are many ways to make such a machine.

Exercise 9: Write adescription of the algorithm that is used by the sample machine
"AddBinaryNumbers' to add two binary numbers on itstape. Y our object isto express an
understanding of the process used. A description that is on too high alevel -- such as "It
adds the numbers digit-by-digit from the right" -- doesn't really explain the process. A very
low-level description doesn't provide any understanding of the goals or purpose of the
actions taken.

Exercise 10: The Turing machines you worked with in thislab can use only the symbols $,
0,1, X, Y, z, and blank. But thisis an arbitrary limitation imposed by the xTuringMachine
applet. In fact, a Turing machine could be built to use any finite number of different
symbols. But no matter how many symbols a Turing Machine might use, the same
computation could be done by a machine that uses only the symbols O, 1, and blank. Why is
thistrue? (Think about the way datais represented in areal computer.) If thisisthe case,
then, why bother with Turing Machines that use more than the minimum number of
symbols?

Exercise 11: | have claimed that Turing machines can do any computation that can be done
by any computer. What is your reaction to this claim? Do you believe it? What evidenceis
there to support this claim? What reasons might someone have for doubting it? Write a short
essay discussing your answers to these questions.

Exercise 12: Write a short essay comparing Turing machines as computational devices with
the model computer, xComputer, that you worked with in previous labs.

Thisis one of a series of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis also
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/xTuringMachineLab.html (9 of 9) [3/26/2000 12:50:12 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

Web Publishing with Netscape Composer

Labs for The Most Complex Machine

Web Publishing Lab:
Creating Web Pages with Netscape Composer

THIS LAB ISA BREAK FROM THE USUAL run of Java applets and exercises. Y ou've used Web

pages in the previous labs. In thislab, you'll learn something about how Web pages are created, and you
will publish a page of your own on the Web.

Note: Parts of thislab are specific to studentsin CPSC 100, Fall 1997, at Hobart and William Smith

Colleges. The entire lab assumes that you are working with Netscape Communicator, version 4.0 (or,
presumably, later), which includes a component called Netscape Composer for creating Web pages. The
use of HTML in email, as described in the last section of the lab, is possible in Netscape Communicator
for Windows but might not be available in versions of Netscape that run on other platforms. Other details
will be different on other platforms as well.

The only exercise for thislab is to produce a Web page. Y our page should include headlines, lists, links,
colors, graphics, and at least one table. Y ou might want to create a personal home page with information
about yourself. Y ou might make a page with information on some selected topic. Or you might want to
be more creative: maybe awork of Web-based art?

The lab includes the following sections:
e WhatisHTML?
« Netscape Configuration
o Making Your First Page
« Publishing Y our Page
o Adding Some Frills
e HTML Email

What is HTML?

The pages that are displayed by a Web browser program such as Netscape are written in a special
language called HTML, or HyperText Markup Language. (The word hypertext refers to documents that
can contain links to other documents;, the use of such linksis the most distinctive feature of HTML and of
the Web.) An HTML document is a plain text file. It contains the text that you see on the page, along
with special commands called tags that tell the browser how to display the text and what else to put on
the page besides text. For example, text can be displayed in bold face by enclosing it between the tags
 and . If you want the words "Thisis important” to appear in bold face on the page, like this:

Thisisimportant
then you would put
This is inportant

into your HTML document. Similarly, alink to David Eck's home page, which has a URL of
http://math.hws.edu/eck/, could appear in an HTML document as

http://math.hws.edu/TMCM/java/labs/WebPublishingLab.html (1 of 7) [3/26/2000 12:50:13 PM]

http://math.hws.edu/cs100.html

Web Publishing with Netscape Composer

Eck' s Hone Page
and this would appear in a Web browser asthe link

Eck's Home Page

Y ou can see the HTML source code for any Web page. Most Web browsers have a command that will
display the HTML source of the page that you are currently viewing. In Netscape, you can use the "Page
Source" command under the "View" menu. Try this command now, to see the sour ce for this page!

HTML started out afew years ago as arelatively simple and easy-to-use language. Astime has gone by
and as newer versions of HTML have been introduced, it has become much more cluttered and
complicated. This has made it possible to produce fancier Web pages, but it has made it more difficult for
ordinary people to produce state-of-the-art pages just by typing in afew HTML commands. Fortunately,
however, it has become possible for people to produce Web pages without knowing any HTML at all!
Programs have been written that allow you to create Web pagesin aWY SIWY G ("What You Seels
What Y ou Get") environment. These programs are very similar to word-processing programs, and in fact
you will find that many word-processors now include HTML authoring capabilities.

Netscape Communicator 4.0 includes an HTML authoring component called "Composer.” With
Composer, you can create Web pages without ever seeing any HTML codes. They will still be therein
the background, of course, and you can use the "View Page Source" command to see them if you want.
Composer is not a complete tool for HTML authoring -- it does not give you access to many of HTML's
advanced features. However, it islikely to be perfectly adequate for most peopl€'s needs, and it isagood
place for anyone to start.

Netscape Configuration

Y ou can use Composer to create a Web page, and you can view that page on your own computer.
However, in that case, you'll be the only one in the world who can see it. Suppose you want to publish
your page, so that it can be seen by any of the tens of millions of uses of the Web? In that case, you have
to place your page on a\Web server -- acomputer that is connected to the Internet and that is running a
program that letsit "serve" Web pages to other computers on the Net. If your computer is permanently
connected to the Internet, you might be able to run your own personal Web server. Otherwise, you can
still hope to find afriendly Web server where you can locate your pages.

For students at Hobart and William Smith Colleges, there are several Web servers where you can publish
your Web pages. The official Web pages of the Colleges are on a server called www.hws.edu. If you
want to be serious about maintaining a presence on the Web, you should get an account on this server and
publish your Web pages there. (See the Computer Services page for information.) Y ou can also set up
Web pagesin your email account on the campus VAX, hws3.hws.edu. (I am not going to have you use
this account for thislab -- as | would have liked -- because | can't get Netscape Composer to work
properly with the VAX's somewhat out-of-fashion VM S operating system.)

However, for thislab, | have set up a special account for you to use on one of the computers belonging to
the Department of Mathematics and Computer Science. The name of the machine is escher.hws.edu.

Y our account on this machine will be deleted at the end of the Fall term, so if you want to keep your Web
pages around, please talk to me about moving them to another machine before the end of the term.

Y ou will have to configure Netscape Composer so that it knows about this account. To do this, choose
the "Preferences’ command from the "Edit" menu. A dialog box will appear. From the list on the | eft
edge of thisdialog box, choose the item "Publish,” which islisted under "Composer.” (Y ou might have to

http://math.hws.edu/TMCM/java/labs/WebPublishingLab.html (2 of 7) [3/26/2000 12:50:13 PM]

http://math.hws.edu/eck/
http://www.hws.edu/
http://www.hws.edu/ADM/computing/index.html

Web Publishing with Netscape Composer

click on asmall plus sign or triangle next to the word "Composer" in order to see "Publish.") In the
Publish dialog box, make sure that the two boxes under "Links and Images" are checked. Then, fill in the
following information under "Default Publishing Information™, substituting your own username for
"username”:

Publish to (FTP or HTTP):
ftp://usernane@scher. hws. edu/ export/ hone/ user nane/ www/
Browse to (HTTP): http://escher. hws. edu/ ~user nane/

Then click the OK button. Thiswill allow Netscape Composer to find your account on escher.hws.edu, so
that it can "upload” your pages into that account. Y ou will need the password for the account later, when
you have a page ready to go.

Note: Netscape Communicator includes an on-line help facility that has lots of information about
Composer and HTML, aswell as about all of Communicator's other features. To access this information,
choose "Help Contents" from the "Help" menu. To get information about Composer in particular, select
the link to "Creating and Editing Web Pages" in the help window that appears.

Making Your First Page

There are several ways to start up Netscape Composer:
o From Netscape's "File" menu, select the "New" submenu, and then select "Blank Page”;
« Click on the small Composer icon in the bottom right corner of a Netscape browser window;
« Select "Page Composer" from the Netscape menu.

Use any one of these methods to open awindow where you can create your page. There will be alarge
area where you can type your page and several toolbars along the top of the window. One toolbar is used
to set the style of the text you type. Y ou can have italic text, big text, colored text, centered text, and so
on. The other toolbar is used to add HTML features such as graphics, links, and tables to the page. (The
toolbar commands are also available in "Insert" and "Format" menus, in case you prefer using menus.)

Click to add a hypertext
link,or justdragalink
from another page.

The Composer Toolbars: fdd & table to the page.

i ; Click toadd an image, Check spelling
;;:dpuitﬂ;s;ag;i? E,;Sr.u:jedhm Click Preview to see your ar just drag an image of the text on
page in a browser wWindow. from another page. the page.

server account.

-

! Mew Open Save Publsh Preview Cot Copy Faste Prnt Find Link Target Image H. Line Table Spelling
| |Heading 1 =] |variatlewidth =] |2a] Dzl A A4 A #2 =
L

Increase ar
decrease
indentation of
zelected text,

B

-

il
kL
il
|||||||

Select cormmon text
styles: bold, italic,
underTined, ar plain.

Paragraph-stule pap-up.
Select Heading 1, 2,0r 3
for headlines. {Heading 1

is biggest.) For mostother Text-size pop-up.
Durposes, leave it set leaveitsetat 12 Color pop-up, l"ﬁe thefeht'ﬁt'jt;'sd Chonse Tefto s ustified
" o for most text, lse for setting text H Create DU E_ E . . . J !
at "Mormal ™. . : . calor oF numbered Tists right-justified, ar
smaller or larger : of items. centered text.

sizes for effect.

| suggest that you start by typing some text for your page. Start with a headline for the page, on aline by
itself. Press return a couple of times, and type in a paragraph or two of introductory text. (Aswith a
word-processor, you should press return only at the end of a paragraph; lines within a paragraph will be

http://math.hws.edu/TMCM/java/labs/WebPublishingLab.html (3 of 7) [3/26/2000 12:50:13 PM]

Web Publishing with Netscape Composer

wrapped automatically to fit in the window where the page is displayed.) Once you've gotten some text
on the page, you can go back and add formatting.

First of al, you should try changing the color of the text and of the page background. To do this, you
need to access a "Page Properties' dialog box. Click on the page with the right mouse button. A pop-up
menu will appear. Choose "Page Properties’ from the pop-up menu. (Note that on a Macintosh, you can
click-and-hold the mouse button to get the same pop-up menu.) This dialog box has several panels. You
should be looking at a panel called "Colors and Background".

This dialog box has several "panels”. Click onone
of these three "tabs™ to select the panel you want.

General Colorz and Background | MET& Tags |

Page Properties

— Page Colors
o Elgse viewer's browser colors [Mo colors saved in pagef

™ |Jze custom colorz [Save colors in page)

| Hommal Text Normal text

-l Link Text Link text

I | :ctive Link Text Active [selected] link
-l Follawed Link Texst Followed [visited] link

[1| Background [Background image averrides thiz colar.]

Color Schemes: |Metzcape Default Colors j

If you dan't want to uze the default browser colors
Cwhich can wary from browser to browser), select
a color scheme from the pop-up menu or click on
"lUze custom colars™ and click onany of the five
color boxes to change that color,

Each page has five associated colors: one for the page background, one for regular text, and three
different colorsthat are used to display links. Y ou can select the colors for your page from the "Color
Scheme" pop-up menu. (Alternatively, you can set each color individually.)

Now, make some changes to the text. If you have a page heading on the first line of text, hiliteit, and
then select "Heading 1" from the pop-up menu at the left end of the toolbar. Center the heading by
selecting centered text from the pop-up menu at the right end. Y ou might also use the color pop-up menu
in the toolbar to change the color of the heading. Y ou can make similar changes to any text on your page.

Dividing lines can help to organize a page. Add one to your page by clicking on the "H. Line" button.
Once the line appears on your page, you can drag its edges to change its size, and you can right-click on it
to get a pop-up dialog with various options.

To make a hypertext link on your page, use the "Link" button in the toolbar. Y ou will get a dialog box
where you can type in the URL of the page to which you want to link. Y ou can also enter the text of the
link that you want to appear on the page. (Alternatively, you could hilite the link text before clicking the

http://math.hws.edu/TMCM/java/labs/WebPublishingLab.html (4 of 7) [3/26/2000 12:50:13 PM]

Web Publishing with Netscape Composer

Link button.) Remember that an easy way to get the URL for a page is to go to that page in the Netscape
browser and then Cut-and-Paste the URL from the L ocation box at the top of the browser window. Once
the link is created on the page, you can right-click on it to get a pop-up dialog with various options.

Y ou should play with the basic tools mentioned in this section until you get your page into reasonable
shape. As afinal step, you will probably want to run a spell-checker on your page by clicking on the
"Spelling" button in the toolbar. Y ou will then be ready to publish your page.

Publishing Your Page

To publish a page that you have created in Netscape Composer, click on the "Publish” button in the
toolbar. Thiswill bring up adialog box that looks something like this:

Publish: File: ///Untitled |

Fage Title: I'W'elc:l:ume ko my pagel e.q. "My web Page"

HTHL Filename: |index bt £.0. "mypage: htm™

HTTF ar FTF Location to publizh bo;

ftp: A fezcher bz edudexport/homeusernanme e/ j
User name: uzernanne Use Default Location |
Baszward: [T Save password

The Location and Username should already be filled in with the configuration information that you
entered earlier. Y ou can fill in the password for your account, or you can leave it blank. If you leave it
blank, Netscape will ask you for it later. If you are working with a newly created page, then the Page
Titleand HTML Filename boxes will be blank. Y ou should fill in these two boxes. Ordinarily, the HTML
Filename for your "home page" should be index.html. The Page Title can be anything you want -- thisis
the title that will appear in the title bar of a browser window when the page is viewed.

Once you have set up al thisinformation, click the OK button, and Netscape will attempt to send your
page to the Web server. If it succeeds, you will be able to view the page in aregular browser window
(and so will anyone else on the Internet who knowsits URL).

Once your page has been published, you can continue to make changes in the Composer window. For
those changes to take effect, you will have to have to upload the page again by clicking on the Publish
button.

If you want to return to edit your Web page at alater time, all you haveto do is start up Netscape again,
load your page into the browser window, and then choose "Edit Page" from the "File" menu. This will
open a Composer window that you can use to edit the page and publish the new version. (In fact, you can
do thiswith any Web page that you would like to use as a starting point for a page of your own.)

Adding Some Frills

After you get the hang of using Composer, you will want to try out some other HTML features. Y ou will
certainly want to add some graphics images to your page. Thisis very easy to do in Composer, since you
can drag images from another page into the page you are creating. |'ve made a page of sample images that

http://math.hws.edu/TMCM/java/labs/WebPublishingLab.html (5 of 7) [3/26/2000 12:50:13 PM]

http://escher.hws.edu/~eck/sampleImages.html

Web Publishing with Netscape Composer

you can use. Y ou can get images from any page in the same way (athough you should, of course, try to
be careful about copyright issues). Y ou can aso drag images from one place to another on the page you
are creating.

When you drag an image into your Web page, it will appear wherever the blinking cursor is currently
located. Web browsers treat images much like big characters, and you can have an image in the middle of
aparagraph. You can even include an image in alink; someone viewing the page will be able to follow
the link by clicking on the image. There are several options for image placement and other image
properties. To see adialog box containing these options, just click on the image with the right mouse
button.

When you publish your page, the images on the page will be uploaded to the server along with the page
itself. Each imageis stored in itsown individua file, not in the file that containsthe HTML source. The
HTML source filejust contains the name of the imagefile.

Y ou can organize items on your page by using lists and tables. Lists are fairly smple. A list consists of a
sequence of indented items. Generally, the items are short, often consisting of asingle line. Each itemis
preceded by a marker, such as a bullet or anumber. An easy way to make alist isto type al the items,
pressing return after each one. Then hilite the items and click on one of the two list-creation buttonsin
the toolbar.

Tables are more complicated. A table is made up of rows and columns. By default, tables are surrounded
by athin border. The table can have a different background color from the rest of the page, and in fact
each row and each individual cell can have its own background color. Y ou can set one cell to span
severa rows and/or several columns. In thisway, you can make sophisticated layouts, and there are il
more options that | have not even mentioned here.

To insert atable into your page, click the "Table" button in the toolbar. You will see a dialog box that
allows you to set several options such as the background color and the number of rows and columns. Y ou
might want to set some of this, but you can always go back and change the table's properties later. When
you click the Insert button, atable is added to your page.

To typeinto acell, click in the cell to move the blinking cursor into it. Y ou can edit the text in tables, just
like you would any text. Y ou can also drag an image into a cell. Y ou can move the cursor from one cell
to the next by pressing the tab key. If the cursor islocated in the bottom right cell when you press the tab
key, then anew row of cellswill be added to the table.

Asyou must by now be able to guess, you can set the table's properties by right-clicking on the table. The
pop-up menu that appears when you do this also contains commands for adding arow or adding a column
to the table. If you select "Table Info" from this menu, you will get adialog box with three panels, one for
setting Table Properties, one for setting Row Properties, and one for setting Cell Properties. Y ou can use
the Row Properties panel, for example, to set the background color for an entire row. Have some fun
playing with al the options!

As afinishing touch, you might want to add an email link to your page. The URL for such an email link
contains an email address. Someone who views the page can send an email message to that address by
clicking on the link (assuming, of course, that they have properly configured their browser for email).
Here, for example, is an email link to me:

Send me mail!

The URL for thislink is"mailto:eck@hws.edu”, where "eck@hws.edu" is my email address. Substitute
your own email addressin your own email link.

http://math.hws.edu/TMCM/java/labs/WebPublishingLab.html (6 of 7) [3/26/2000 12:50:13 PM]

mailto:eck@hws.edu

Web Publishing with Netscape Composer

HTML Email

Now that you have learned something about creating HTML pages, you might be interested to know that
if you use Netscape Communicator for email, then you can send and receive email messages written in
HTML. When you compose an email message in one of Netscape's email windows, you can use the full
range of HTML composition tools. Y ou can also drag images and links onto your page, just as can when
you are creating a Web page.

When you send the message, you have the option of sending it in HTML format only or in a combination
form that includes both HTML and plain text versions of the message. If the recipient of the message
reads it with Netscape, they will see the message just as you created it, with colors, active links, graphics,
and whatever else you put on the page. Unfortunately, recipients who don't use Netscape will only see the
plain text version or the nasty HTML source code.

Before you can experiment with using Netscape for Email, you will have to configureiit. | have a page on
using Netscape Email, if you are interested.

--David Eck (eck@hws.edu), October 1997

http://math.hws.edu/TMCM/java/labs/WebPublishingLab.html (7 of 7) [3/26/2000 12:50:13 PM]

http://math.hws.edu/TMCM/f97/email/AboutEmail.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xTurtle Lab 1

Labs for The Most Complex Machine

XTurtle Lab 1: Introduction to Programming

THIS LAB isan introduction to a high-level programming language called xTurtle. This
language was created to be used with The Most Complex Machine, but it isin the
mainstream of high-level languages, along with Pascal, Adaand C. It incorporates some
ideas common to all these languages, such as variables, assignment statements, loops, if
statements and subroutines. (Y ou should find that you are already familiar with the basic
Ideas because of your work in previous labs.) The xTurtle language also contains
special-purpose commands for doing turtle graphics. These commands can be used to draw
pictures on the computer screen. In thislab, you will learn about the basic xTurtle
commands, about loops and if statements, and about variables. Future labs will cover
programming in more detail, including the use of subroutines.

Thislab covers some of the same material as Chapter 6 of The Most Complex Machine. The
lab is meant as a self-contained introduction to this material, but it would still be useful to
read Chapter 6 before doing the lab.

This lab includes the following sections:
« Basic xTurtle Commands

o Color
o Writing xTurtle Programs

e Interacting with the User

« Exercises
Start by clicking this button to launch xTurtle in its own window:
(Sorry, your browser doesn't do Javal!)

(For afull list of labs and applets, see the index page.)

Basic xTurtle Commands

When the xTurtle applet first starts up, it displays a white drawing area on the left, with a
strip of controls on theright. Thereisa"turtle" in the center of the drawing area, represented
asasmall black triangle. The turtle has a position and a heading. Its heading is the direction
it isfacing, given as a number of degrees between -180 and 180. The turtle has a heading of
zero when it is facing to the right, a heading of 90 when it is facing upwards towards the top
of the screen, and a heading of -90 when it is facing downwards. Its position is given by two
numbers: an xcoord, or horizontal coordinate, and a ycoord, or vertical coordinate.

http://math.hws.edu/TMCM/java/labs/xTurtleLabl1.html (1 of 10) [3/26/2000 12:50:15 PM]

http://math.hws.edu/TMCM.html

xTurtle Lab 1

The drawing area of the applet includes a twenty-by-twenty square in which the turtle can
move and draw. This square has horizontal coordinates from -10 on the left to 10 on the
right, and it has vertical coordinates from -10 at the bottom to 10 at the top. Because the
drawing areais unlikely to be exactly square, the coordinates for the entire drawing area
probably extend beyond the range -10 to 10 in either the horizontal or vertical direction.

The turtle starts out in the center of the screen -- at the point (0,0) -- facing to the right. It
can obey commands such as "forward(5)," which tellsit to move forward five units, and
"turn(120)," which tellsit to rotate in place through an angle of 120 degrees. (It turns
counterclockwise if the number of degreesin positive and clockwise if the number of
degreesis negative.) The number in parentheses is called a parameter for the command; you
can substitute any number you want. The parameter in a"forward" command tells the turtle
how far to move forward, while the parameter in the "turn" command tells it how many
degreesto turn.

The turtle can draw aline asit moves. Y ou can think of it as dragging a pen that draws as
the turtle moves. The command "PenUp" tells the turtle to "raise the pen." While the pen is
raised, the turtle will move without drawing anything. The command "PenDown" tells the
turtle to lower the pen again.

Just below the drawing area of the applet are atext-input box and a button labeled "Do It".
Y ou can type commands for the turtle in the text-input box. When you press return or click
onthe"Do It" button, the turtle will carry out the command or commands that you typed.
Y ou can type in several commands at once, or you can type in one command at atime,
pressing return after each command. Note also that after acommand is executed, the
contents of the text-input box are hilited, so that as soon as you start typing, the previous
command will be erased and replaced with what you type. And finally, note that you can
change the speed at which the turtle follows a sequence of commands by changing the
setting of the Speed pop-up menu, which is one of the controlslocated to the right of the
drawing area. (The speed isinitially set to "Fast".)

As an exercise, you should try to make the turtle draw two separate, parallel lines, like this:

If you make a mistake, you can use the command "clear" to clear the screen and the
command "home" to return the turtle to its original position and orientation (at the center of
the screen, facing right).

The turtle can execute a number of other commands, in addition to forward, turn, PenUp,
PenDown, clear, and home. Here are afew more basic commands. In thislist, x and y are
parameters. Y ou can replace a parameter with a number when you use the command.

« back(x) tellsthe turtle to back up x units, that is, to move x unitsin the direction
oppositeto its current heading. For example, back(3) tells the turtle to back up three
units. Negative numbers are allowed as parameters for both forward and back.

http://math.hws.edu/TMCM/java/labs/xTurtleLabl.html (2 of 10) [3/26/2000 12:50:15 PM]

xTurtle Lab 1

Back(x) is provided only as a convenient shorthand for forward(-x).

» face(x) makesthe turtle turn to a heading of x degrees from heading zero. For
example, face(90) points the turtle straight up, face(-90) pointsit straight down, and
face(180) pointsit to the left. Note the distinction between turn and face: turn
specifies a change in direction from the current heading, while face specifies a new
heading without any reference to whatever the old direction might have been.

o moveTo(x,y) tellsthe turtle to move from wherever it happens to be, to the point with
coordinatesx and y.

« move(x,y) isrelated to moveTo(x,y) in the same way that turn(x) is related to face(x).
That is, while moveTo(x,y) says "move from the current location, whatever it is, to
the point with coordinates (x,y)," move(x,y) says "move x units horizontally and y
units vertically from the current location." Note that these commands do not depend
upon or change the heading of the turtle.

« circle(x) drawsacircle of radius x. Y ou should think of the turtle moving in acircle
starting from its current position and returning to that position at the end. Note that
the turtle position is on the circle. If x is positive, the turtle curvesto its left asit
draws the circle, and the center of the circleisx unitsto the left of the original turtle
position. If x is negative, the turtle curves to the right, and the center of the circleisto
the right of the original position.

« arc(x,y) draws part of acircle of radiusx. A full circle would be 360 degrees; arc(x,y)
draws an arc of y degrees. Aswith circle(x), the turtle curvesto the left if X is positive
and to theright if x is negative. If y is negative then the turtle will "back up" along an
arc. Note that the turtle changes position and heading as it draws.

o HideTurtle and ShowTurtle make the turtle (the small black triangle) invisible and
visible. The turtle can still draw whileit isinvisible. (Thereis a check-box labeled
"No Turtles' in the control strip to the right of the drawing area. When thisbox is
checked, the turtle will aways beinvisible, regar dless of whether the program uses
any HideTurtle or ShowTurtle commands.)

Draw some pictures using these basic commands. Here are afew things you can try, for
example:

« circle(7) circle(b) circle(3) circle(1)

o arc(5,90) arc(-5,-90) arc(5,90) arc(-5,-90)

« forward(5) turn(120) forward(5) turn(120) forward(5)
» forward(7) turn(90) forward(5) back(10)

Color

Unlessyou tell it to do otherwise, the turtle will draw everything in red. However, you can
tell it to change its drawing color to any other color. The turtle understands the following
basic color commands: red, blue, green, cyan, magenta, yellow, black, white, and gray.
After it executes one of these commands, it will draw in the specified color until it comes to

http://math.hws.edu/TMCM/java/labs/xTurtleLab1.html (3 of 10) [3/26/2000 12:50:15 PM]

xTurtle Lab 1

another color-change command. For example, the following sequence of commands will
draw atriangle with each side in adifferent color:

green forward(5) turn(120)
blue forward(5) turn(120)
cyan forward(5) turn(120)

Besides these basic color commands, there are two commands that can be used to specify
any drawing color that the computer is capable of displaying. The commands are rgh(x,y,z)
and hsb(x,y,z), where x, y, and z are parameters that can have any value in the range 0.0 to
1.0. To understand these commands, you need to know something about color. (But you can
safely skip the details, if you want.)

Any color can be specified as some combination of the primary colors, red, green, and blue.
In the command rgb(x,y,z), the parameters x, y, and z specify the amount of red, green, and
blue in the color. For example, avalue of zero for x indicates that the color isto contain no
red at all, and avalue of one for x means that the color contains the maximum possible
amount of red. So, rgh(0,0,0) represents black, rgb(1,0,0) represents bright red, and
rgh(0.5,0,0) is adarker red. Some other examples: rgb(0.8,0.8,0.8) isavery light gray,
rgh(1,0.6,0.6) is pink, and rgb(0,0.4,0.4) is a dark blue-green.

The command hsb(x,y,z) uses an aternative method of specifying a color. In this command,
X, Y, and z represent hue, saturation, and brightness. The hue isthe basic color: As x ranges
from zero to one, the hue ranges through the spectrum from red through orange, yellow,
green blue, violet, and back to red. The meaning of the brightness parameter is pretty clear,
with avalue of one representing the brightest color of a given shade. The saturation can be
thought of as follows. A saturation value of one gives the purest possible version of acolor.
Decreasing the saturation from one towards zero is like mixing paint of that color with gray
paint of equal brightness. The basic color remains the same, but it becomes "diluted.”

You'll find some examples of using the rgb and hsb commands later in the | ab.

Writing xTurtle Programs

The power of acomputer comes from its ability to execute programs. The xTurtle appl et
allows you to write and run programs. Programs can include all the basic commands
described above. They can also include loops, decisions, subroutines, and other features.

The applet can be configured to load one or more programs when it starts up. The applet that
you launched with the button above should have |loaded several sample programs that you

will usein thislab. You can aso write new programs from scratch. Y ou can select among
the programs that the applet knows about using the pop-up menu at the very top of the
applet. Y ou can begin anew program by clicking on the "New Program" button, or by
choosing "[New]" from the pop-up menu. (There are also buttons for loading programs from
files and for saving programs to files, however, the configuration of your Web browser
might prevent these buttons from functioning.)

One of the sample programs for thislab is called "Necklace". Select this program from the

http://math.hws.edu/TMCM/java/labs/xTurtleLabl.html (4 of 10) [3/26/2000 12:50:15 PM]

xTurtle Lab 1

pop-up menu at the top of the xTurtle applet. This program contains an example of aloop.
The program itself reads:

PenUp
noveTo(O, - 5)
PenDown
LOOP
arc(5, 20)
circle(-0.5)
EXIT IF heading = 0
END LOOP

In addition to these commands, the program contains alot of comments. A comment is
anything enclosed between braces, { and } . Comments are meant for human readers of the
program and are completely ignored by the computer. Y ou should read the comments on the
sample program to help you understand what it does and how it works.

In an xTurtle program, aloop consists of the word |oop, then a sequence of instructions,
then the words end loop. One of the instructions must be an exit statement, which gives a
condition for ending the loop. In the sample program, the statement "exit if heading = 0"
includes the condition "heading = 0. Since the heading is the direction that the turtleis
facing, this condition is true when the turtle is facing in the direction zero (that is, directly
towards the right).

When aloop is executed, the computer will execute the statements in the loop repeatedly.
Each time the exit statement is executed, the computer tests the condition specified by that
statement. If the condition is satisfied, the computer jJumps out of the loop. (Ordinarily, after
exiting from aloop, the computer jumps to the statement that follows the end loop. In this
example, there is no further statement after the loop, so the program ends when the loop
ends.)

To run aprogram in the xTurtle program, select it from the pop-up menu if necessary, so it
isvisible on the screen. Then click on the "Run Program™ button. If there are no errorsin the
program, the computer will switch back to the drawing area and execute the program. Y ou
can control the rate of execution with the speed pop-up menu. Y ou can pause the execution
with the "Pause" button, and you can terminate it permanently with the "Stop" button. After
the program has been executed, you can run it again by clicking the "Run Program" button.
Note that every time you run a program, the turtle starts out in itsinitial configuration: at the
center of the drawing area, facing right, with the pen down, and with the drawing color set
to red.

Run the Necklace program, and try to understand how it works. As another example, click
on the "New Program" button and then type in and run the following program. (Instead of
typing it, you might want to be clever and use cut-and-paste.)
DECLARE hue
hue := 0
LOOP
hsb(hue, 1, 1)

http://math.hws.edu/TMCM/java/labs/xTurtleLabl.html (5 of 10) [3/26/2000 12:50:15 PM]

xTurtle Lab 1

forwar d(5)

back(5)

t urn(360/ 100)

hue := hue + 0.01

exit if hue =1
END LOOP

This program uses a variable named "hue". (Y ou can use any names you want for variables,
aslong as you avoid words that already have a special meaning, such as"loop" and "if".) A
variable isjust amemory location which has been give a name and which can be used to
storeavalue. In xTurtle, you give a name to a memory location with a declare statement.
Once you have declared avariable, you can store avaluein it with an assignment statement,
which has the form

<vari abl e-nane> := <val ue>

The operator ;= is called the assignment operator. It tells the computer to calculate the value
on the right and to store it into the variable on the left. The value on the right can be given as
anumber, as another variable, or as a mathematical formula. For example:

hue := hue + 0.01

X =17
newAnount : = ol dAnount
cost :=length * wdth * costPer Squar eFoot

Next, we turn to an example that introduces the if statement. Thisis the sample program
"RandomWalk", which should already be loaded into the xTurtle applet. Select the
"Randomwalk" program from the pop-up menu and run the program several times. This
program makes the turtle do a "random walk" in which it repeatedly moves in arandomly
chosen direction. Read the program and the comments on it, and try to understand how it
works.

In particular, look at the if statement in the Random Walk program. An if statement is used
to decide among alternative courses of action. An if statement begins with the word if and
ends with the words end if. (The"end if" hereis not a separate command; it ismerely a
required syntactic marker to mark the end of the if statement. It isvery different from an
"exit if" statement, and you should try not to confuse them.) The exact rules for using if
statements are rather complicated, and are covered in The Most Complex Machineand in
the detailed on-line information about xTurtle. However, you should be able to get the basic

idea by looking at the example in the sample program.

Interacting with the User

Any real programming language needs to provide some way for a program to communicate
with the person who is using the program. The xTurtle programming language provides only
minimal support for input and output, but what it provides is enough for a program to have a
simple dialog with the user.

http://math.hws.edu/TMCM/java/labs/xTurtleLabl.html (6 of 10) [3/26/2000 12:50:15 PM]

xTurtle Lab 1

There are two commands for output (sending information from the computer to the user),
and one command for input (getting information from the user into the computer). All of
these commands use strings. A string is sequences of characters enclosed in quotes, such as:
"Hel | 0" . The command

DrawText (" Hel 1 0")

will print the string Hel | o in the drawing area at the current turtle position. (Note that the
guotes are not of the string that is displayed. The quotes are just there in the program to tell
the computer that thisisastring.)

The command
Tel | User ("Hel | 0")

will display {\tt Hello} in alittle green-colored box in the center of the display area. There
will also be abutton labeled "OK". The user reads the string and then clicks on the OK
button to get rid of the box. The TellUser command has no permanent effect on the picture
in the drawing area.

Finally, there is the more complicated input command, AskUser. This command allows the
user to enter a number; the number entered by the user will be stored in avariable. The
variable must, of course, be declared before it can be used in this command. For example,
assuming that a variable named "betAmount" has been declared, the command

AskUser ("How nmuch do you want to bet?", bet Anount)

will display abox containing the string "How much do you want to bet?' along with a
text-input box where the user can enter aresponse. The number entered by the user will be
stored in the variable betAmount, and the program can then use that number by referring to
the variable.

All of the input/output commands have a nice feature that alows you to include the value of
avariablein astring. If astring includes the special character #, then that # must be
followed by the name of avariable. When the string is displayed, the # and the name will be
replaced by the value of the variable. For example, if betAmount and winnings are variables
with the values 25 and 75, then

Tel | User (" You bet #bet Anbunt dollars; you win $#w nnings.")
would display the string: You bet 25 dollars; you win $75.

All of thisisillustrated in the sample program "I nputOutputExample”. Y ou should select
this program from the pop-up menu, read it, run it, and try to understand it.

Exercises
Exercise 1. Find a sequence of xTurtle commands to draw each of the following: a square

with acircleinsideit; apair of paralel lines connected by half-circles at each end; aplus
sign. The pictures should look something like this:

http://math.hws.edu/TMCM/java/labs/xTurtleLabl.html (7 of 10) [3/26/2000 12:50:15 PM]

xTurtle Lab 1

1+

Exercise 2: Find a sequence of xTurtle commands that will draw your initials. Draw each
initial in adifferent color.

Exercise 3: For this exercise, experiment with the "Necklace" sample program. The original
program draws alarge circle of radius 5, made up of a sequence of 20-degree arcs. Between
each pair of arcs, another small circle is added as decoration. Y ou can try changing the size
of the arcsin the large circle. For example, change the "20" to "3" and you'll get a
decoration every 3 degrees instead of every 20 degrees. Y ou could also change the radiusin
the arc command. Y ou can try using a different decoration. For example, try changing
circle(-0.5) to forward(5) back(5). Y ou could be more creative. Try using atriangle or a
sguare as decoration. (Whatever commands you use to draw the decoration, you should be
sure that they return the turtle to the same position and heading as when it starts.) Try to find
the prettiest variation on the "necklace" theme that you can find.

Exercise 4: The following program was used as an example earlier in the lab. It draws 100
lines radiating out from a central point. Each lineis drawn with a different "hue,”, and the
colors of the lines range throughout the entire spectrum.

DECLARE hue
hue := 0
LOOP
hsb(hue, 1, 1)
forward(5)
back(5)
t urn(360/ 100)
hue := hue + 0.01
exit if hue =1
END LOCOP

How would you modify this program so that, instead of changing the hue from onelineto
the next, you change the saturation instead? What does the resulting picture look like? (Try
it and find out!)

Exercise 5: The word random can be used in a program to represent a random value in the
range from 0.0 to 1.0. (Random is actually a function with no parameters, but it actslike a
variable that has a different value each time it is used.) What happensif you substitute the
command rgb(random,random,random) for the command hsb(hue,1,1) in the program from
Exercise 4? Why? Explain carefully what the modified program does.

Exercise 6: Modify the "RandomWalk" sample program so that each line is a different,
randomly chosen color.

Exercise 7: In the "RandomWalk" sample program, the computer chooses one of the four
directions 0, 90, -90 and 180 at random. Modify the program so that it chooses one of the

http://math.hws.edu/TMCM/java/labs/xTurtleLabl.html (8 of 10) [3/26/2000 12:50:15 PM]

xTurtle Lab 1

three directions 0, 120 and -120 instead. It should have an equal chance of choosing any of
these directions. Make sure that you test your program!

Exercise 8: Write a program that can draw a square in any of three different colors. It
should let the user of the program decide which color to use. Ask the user to "Enter O for
red, 1 for blue, and 2 for green." If the user enters an invalid response, you should display an
error message instead of a square.

Exercise 9: With what you have learned in this lab, you can write a simple guessing game
program (which will use none of the graphical capabilities of xTurtle). Write a program in
which the computer chooses a random integer between 1 and 100, and the user tries to guess
the number. Each time the user makes a guess, the computer should (honestly) tell the user
"Sorry, your guess istoo high,” "Sorry, your guessistoo low" or "Y ou got it." Although this
program does something completely different from the random walk sample program,
neverthelessit issimilar in genera outline. In particular, you will use an if statement inside
aloop. Use aloop to alow for repeated guesses. The loop will end when the user guesses
correctly. Your program can begin the following three lines, before the loop:

DECLARE answer
DECLARE guess
answer : = random nt (100)

Y our program should include comments. Like the sample programs, it should use
Indentation to show the structure of the program. (The "Indent" button can be used to
automatically indent a program; this feature is a'so useful for finding certain types of errors
in aprogram, such asamissing end if.)

Exercise 10: This exercise assumes that you have completed Exercise 9 successfully.
Improve the program from that exercise so that after each game, it will give the user the
option of playing again. You will need to add another loop to the program, containing the
loop that already exists. You will also need to know a new command. The YesOrNo
command can be used to ask the user a yes-or-no question. Specifically, the command

YesOrNo("Do you want to play another gane?", response)

will ask the user the given question. It will store azero in the variable response if the user
answers no and will store aonein that variable if the user answers yes. The outer loop
should continue until the value of the response is zero.

Exercise 11: You have probably already discovered that the computer can display error
messages if you try to run a program that contains an error. Errors that the computer can
find before actually running the program are called syntax errors. The following program
contains several syntax errors. Find each error and explain what iswrong in each case. (You
can type in the program and let the computer find the errors.)
DECLARE | engt h
| ength = 8
LOOP
forward | ength
t urn(90)

http://math.hws.edu/TMCM/java/labs/xTurtleLab1.html (9 of 10) [3/26/2000 12:50:15 PM]

xTurtle Lab 1

|l ength := length - 1
EXIT IF length equals O
END LOOP

Some errors can only be found when a program is running. For example, what error occurs
when the following programis run? (Typeit in and find out!)

DECLARE sum count

sum:= 0

count := 0

LOOP
sum : = sum + 1/ count
count := count + 1
EXIT IF count = 10

END LOOP

Dr awText (" The sumis #sum™)

Thereisathird -- and much worse -- type of error, which occurs when the program gives an
incorrect result but the computer gives you no warning of the fact that the answer iswrong.
Give an example of such an error. Explain why the computer cannot detect such
"wrong-answer errors."

Exercise 12: This exercise assumes that you are familiar with the "xComputer" model
computer, which is used in some other labs. Write a short essay comparing the assembly
language of xComputer with the high-level programming language, xTurtle. For example,
you could: compare the way loops are constructed in each language; compare labelsin
assembly language to variables in xTurtle; and compare the way computations are done in
assembly language with the way they are done by assignment statementsin xTurtle.

Thisis one of aseries of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis aso
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/xTurtleLabl.html (10 of 10) [3/26/2000 12:50:15 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xTurtle Info

XxTurtle Info

The xTurtle Applet lets you program in a simple programming language, which is also called

xTurtle. This page contains descriptions of the language and of the applet. Thisisarather long
file -- about 42K. Also available on separate pages are some tutorial examples.

| invented the xTurtle programming language to use as an example in The Most Complex
Machine, abook that surveysthe field of computer science. Since programming is only one of
the topics in the book, | wanted a reasonably simple language, but one that would have the
major features of atypical programming language. (By "typical" here, | really mean
"Algol-like" or "Pascal-like", for those of you who know what that means.) These features
include variables, assignment statements, loops, if statements, recursive subroutines, and even
some multitasking. However, xTurtle does not include objects or data structures of any type.

The xTurtle applet is based on asimilar program that | wrote for Macintosh computers. That
program was one of several that | wrote for use with The Most Complex Machine. All the
Macintosh programs are available for downloading. | am in the process of porting all the
Macintosh programs to Java.

The xTurtle Applet

This section isameant as a brief user manual for the xTurtle applet. The next sectionisa
description of the programming language.

When the xTurtle applet first starts, it displays alarge white graphics area, with a black,
triangular "turtle" in the center. Thisturtle can move around in the graphics area. Usually, it
draws aline asit moves. The turtle can respond to a number of commands, such as forward(5),
which tells the turtle to move forward 5 units, and turn(45), which tells the turtle to rotate
counterclockwise through an angle of 45 degrees. The turtle draws red lines, unless you tell it
to use adifferent color.

The position of the turtleis given by a pair of coordinates, (x,y). Values of x and y between -10
and 10 are guaranteed to be visible in the graphics area. (Since the graphics areais not exactly
square, the actual range of visible values can be larger in one direction.) The turtle can move
outside the visible region, and will just keep drawing happily, even though you can't see what
it's doing. The command home moves the turtle back to the center of the screen.

Below the graphics areais an input-box where you can type in commands for the turtle. When
you press return, the turtle will carry out the commands or tell you that there was an error in
your input. Clicking on the button named "Do It!" is equivalent to pressing return. If an error
message is displayed, you can make it go away by clicking onit. It will also go away the next
time you press return or click the "Do It!" button.

There are no restrictions on what you can type in the command-input box. Y ou can even put a
whole subroutine definition there. However, for anything that takes more than afew words,
you'll want to write a program. If you want to create a new program, click on the "New

http://math.hws.edu/TMCM/java/xTurtle/info.html (1 of 13) [3/26/2000 12:50:17 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM/DownloadingInfo.html

xTurtle Info

Program" button, at the top-right corner of the applet. The graphics areawill be replaced by a
text-input area where you can type your program. To run the program, just click on the "Run
Program” command. If the program is correct, it will be compiled and executed. If thereisan
error, you'll get an error message. Again, you can make the error message go away, if you
want, by clicking on it. (If there is an error, the computer will move the blinking cursor to the
position in the program where it noticed the error. The browser should scroll the text, if
necessary, to show the cursor. Unfortunately, not all browsers do this.)

Once the program has finished executing, you can run it again by clicking the "Run Program”
button again. Before running a program, the computer always clears the screen and restores the
turtleto itsinitial state (at the point (0,0), facing right, with pen down, and drawing color set to
red). If you've just run a program that defines subroutines or variables, you can use them in any
commands that you type into the command-input box. However, they will be cleared out of
memory if you run another program.

At thetop left corner of the applet is a pop-up menu that you can use to switch among the
graphics display and any of the programs that the applet knows about. This includes programs
you write, but it can also include programs that the applet loads automatically when it starts up.
(If you know about <applet> tags: Applet parameters can be used to specify URLSs of programs
to be loaded when the appl et starts up. However, | don't want to go into the details here.) This
pop-up menu includes an entry for the graphics display. It aso includes a special item called
"[New]". Selecting "[New]" is equivalent to clicking the "New Program™ button.

Finally, here is some information about each of the other buttons and other widgets that appear
on the right-hand edge of the applet:

» Pause/Resume Button: This button is active while a program is running. Click it to pause
the program. The name changes to "Resume”, and you can then click on it to restart the
program.

« Stop Button: This button is active while a program is running or paused. Click on it to
stop the program permanently.

« Clear Button: If the graphics areais displayed, this button will clear it and restore the
turtle to its starting point. If aprogram is displayed, it will erase it. (Thereisno way to
undo thisl)

« Indent Button: This button is available when a program is displayed. It will indent the
lines of the program to show the program'’s structure.

« Load Button: Click on this button to load an xTurtle program from atext file on your
hard drive. Note that thisislikely to fail because of security restrictions on applets.

« Save Button: Click on this button to save the program to afile on your hard drive. Note
that thisis likely to fail because of security restrictions on applets.

o Speed Pop-up Menu: This menu, which isoriginally set to "Fast", controls the speed at
which the turtle draws. (A delay isinserted after each turtle motion such as drawing a
line, drawing acircle, or turning.)

« No Turtles Checkbox: When this box is checked, the little black triangular turtles are
invisible. (By the way, this can speed up a program significantly, especially ina
multitasking program where there are alot of turtles.)

o Lock Step Checkbox: Thisbox only has an effect on multitasking programs. When it is

http://math.hws.edu/TMCM/java/xTurtle/info.html (2 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

unchecked, each turtle gets to execute a small random number of commands before
control passes to the next turtle. When the box is checked, multiple turtles get to execute
commands in strict alternation, one after the other. This often looks nicer, but the
random version is amore realistic ssmulation of multitasking.

One thing that the applet doesn't have isthe ability to print. This should be in afuture version
(although with the same security restrictions as loading and saving files).

The xTurtle Language

What follows is somewhat informal, but complete, specification of the xTurtle programming
language, as implemented in the xTurtle applet. For many purposes, you might find the
tutorial examples more useful. Y ou might want to look at them first, in any case.

Program Structure

A program can contain comments. A comment begins with { and ends with } . Comments can
be nested. Comments are for human readers only. They are ignored when the program is run.

The layout of a program on the page isignored. Y ou can have more than one command on a
line, and you can split commands over several lines. Y ou can't have spaces in the middle of
words. (The command PenUp, for example, cannot be written as "Pen Up".) No distinction is
made between upper and lower case letters. (So you can write PenUp, penUp, penup, or even
PeNUp, and they will al mean the same to the computer.

A program consists of a sequence of one or more of the following: statements, variable
declarations, subroutine declarations, function declarations. Subroutine and function
declarations cannot be nested inside one ancther. (To provide for mutual recursion among
subroutines and functions, they can be "predeclared.” Thiswill be covered below.) The
program is executed from beginning to end. Declarations are much like statements in that you
can think of them as being executed. That is, you can't use a variable, subroutine, or function
until it has been declared.

I dentifiers and Reserved Words

Certain words are reserved for special purposes in the xTurtle language. Reserved words
cannot be used as names for variables, subroutines, and functions. Note that since upper and
lower case are equivalent, reserving the word "declare” also reserved "DECLARE", "Declare’,
and so on. Reserved words in xTurtle include:

« Built-in subroutine names (listed below)

« Built-in function names (listed below)

« Predefined read-only variables (listed below)
« Logical operators: and, or, and not

» Reserved words for declarations: declare, import, end, endfunction, endsub, function,
predeclare, ref, and sub

» Reserved words for control statements: else, end, endif, endgrab, endloop, exit, exitif,
exitunless, grab, if, or, orif, loop, return, then, and unless

http://math.hws.edu/TMCM/java/xTurtle/info.html (3 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

(Combined words like "endif" and "endfunction” are redundant, since they can all be written
equivalently as two words: For example, "end if". Probably, it was a mistake to include these
combinations in the language, but there they are. | will not mention them again; instead, | will
always use two separate words.)

Variable names, subroutine names, and function names are collectively known as identifiers.

Y ou can make up your own names for the variables and routines that you declare, aslong as
you don't use reserved words and as long as you don't try to reuse a name in the same program.
Identifiers must begin with aletter. They can contain letters, digitsfrom 0 to 9, and the
underscore character (). They cannot contain spaces or other white space. They can be of any
length.

Variables and Expressions

Before a variable can be used, it must be declared. Thisis done using a variable declaration,
which consists of the reserved word, declare, followed by the names of one or more variables
that are being declared. Variables in the list should be separated by commas. For example:

DECLARE | nt er est Rat e
DECLARE x, y, row, columm

Variable declarations cannot be nested inside other statements, such as loops. They can occur
In subroutines and functions (where they are used to create "local variables," as discussed
below).

In xTurtle, the value of avariable must be areal number such as 42, 3.14159, -1, or 12.3e-12.
The last example used scientific notation, which islegal in an xTurtle program. (The notation
12.3e-12 means 12.3 times 10 raised to the power -12. Very large and small numbers are
written using scientific notation.) When avariable isfirst declared, it has a special value called
"not-a-number” It isillegal to use such avaue in acomputation, and doing so will result in an
error that will crash your program.

Variables and numbers can be used in mathematical expressions such as (1 + InterestRate) *
Principal. Expressions can include the usual arithmetic operators plus (+), minus (-), times (*),
divide (/), and exponentiation (*). Expressions can also include built-in functions and user
defined function. For example: sin(2* angle+30). Parentheses are always required around the
arguments of afunction. (In the case of afunction that takes no argument, a set of empty
parentheses is optional.) The predefined functions are:

o Theusual trigonometric functions: sin(x), cos(x), tan(x), sec(x), csc(x), cot(x). The
arguments for these functions are measured in degrees.

« Some inverse trigonometric functions. arcsin(x), arctan(x), arccos(x).

» The exponential function exp(x), meaning ex.

o Thenatura logarithm In(x).

« The square root function sgrt(x).

« The absolute value function abs(x).

« Thefunction round(x), which rounds its argument to the nearest integer.

« The function trunc(x), which truncates its argument by dropping any digits that follow

http://math.hws.edu/TMCM/java/xTurtle/info.html (4 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

the decimal point.

« A random integer function, randomint(x), which returns arandom integer in the range
from 1 to x, inclusive.
« A random real number function, random() (or just random without the parentheses),

which returns a random number in the range from 0.0 to 1.0, including 0.0 but not
including 1.0.

Note that the names of these predefined functions are reserved words.

There are afew reserved words in xTurtle that act like pre-defined read-only variables. These
read-only variables contain information about the current state of the turtle. Y ou can inspect
the values of these variables, but you can't use assignment statements to change their values.
The read-only variables are:

o forkNumber -- used to distinguish among multiple turtles when doing multitasking, as
described below.

« heading -- the direction in which the turtle is facing, given in degrees between -180 and
180, where an angle of zero means that the turtle is facing to the right and positive
angles are measured counterclockwise.

« isDrawing -- hasavalue of 1 or O, depending on whether the turtle's pen is down or up.
If the pen is up, the turtle doesn't draw when it moves.

 isVisible-- hasavalue of 1 or O, depending on whether or not the turtle has been hidden
with aHideTurtle command.

« Xcoord -- gives the current x coordinate of the turtle.
« Yycoord -- gives the current y coordinate of the turtle.

Assignment Statements

The value of avariable can be changed by using an assignment statement. An assignment
statement takes the form

<vari abl e> : = <expressi on>

where<var i abl e> isany declared variable (or the name of a parameter in a user-defined
subroutine or function) and <expr essi on> can be anumber, avariable, or any expression
created using operators and functions, as described above. Here are some example assignment
statements:

Rate := 0.7

y 1= 3*x"2 - 2*x + 1

count := count + 1

r := exp(theta)

Built-in Subroutines

The xTurtle language includes many predefined subroutines. Most of the predefined
subroutines are turtle graphics commands which move or turn the turtle or affect its state. Two
predefined subroutines related to multitasking, Fork(n) and KillProcess, are discussed later.
The others built-in subroutines are:

http://math.hws.edu/TMCM/java/xTurtle/info.html (5 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

forward(x) -- movesthe turtle forward by a distance x along the direction in which itis
currently facing. (If x is negative, the turtle actually moves backward.) Whether it draws
aline, and what color that lineis, depends on the current state of the turtle. (This same
proviso applies to all the commands that move the turtle, and | will not repest it.)

back(x)-- moves the turtle backwards by a distance x along the direction in which it is
currently facing. (If X is negative, the turtle actually moves forward.)

moveTo(X,y) -- moves the turtle from its current position to the point with coordinates
(X.y)-

move(dx,dy) -- moves the turtle from its current position to a point that is dx units away
horizontally and dy units away vertically.

turn(dA) -- rotates the turtle from its current heading through an angle of dA degrees. If
dA is positive, the rotation is counterclockwise; if dA is negative, the angleis clockwise.

face(A) -- rotates the turtle to a heading of A degrees from the zero position. (In the zero
position, the turtle faces to theright.)

Circle(r) -- draws acircle of radius r. The current turtle position is on the circumference
of the circle. The turtle's heading is tangent to the circle. If r is positive, the circlelies on
the turtle's left. If r is negative, the turtle lies on the turtl€'s right. The effect of Circle(r)
Is exactly the same as the effect of Arc(r,360). Note that the turtle's position and heading
do not change.

Arc(r,A) -- Draws an arc of acircle of radiusr. The arc subtends an angle of A. The arc
starts at the current position and heading of the turtle. The turtle ends up at the other end
of thearc. If r and A are both positive, then the turtle curves forward and towards its | eft.
If r is negative and A is positive, the turtle curves forward and towards its right.
Negative angles move the turtle backwards.

PenUp and PenDown -- used to raise and lower the turtle's pen. If the penisup, it does
not draw anything. This affects all the movement commands described above.

HideTurtle and ShowTurtle -- HideTurtle makes the turtle invisible. ShowTurtle makes
it visible again. It continues to draw whileit isinvisible, provided its pen is down. (If the
applet's"No Turtle" checkbox is checked, the turtle will not be seen, no matter what is
done with HideTurtle and ShowTurtle.)

Halt -- Halts the program.

Commands for changing the drawing color to one of eleven named colors: red, green,
blue, cyan, yellow, magenta, black, darkGray, gray, lightGray, and white.

rgb(x,y,z) -- Changes the drawing color, using an RGB color specification. The
parameters x, y, and z must be in the range 0.0 to 1.0. They specify the amount of red,
green, and blue, respectively, in the desired color. A value of 1.0 represents the
maximum possible amount of a color. For example, rgb(0,0,0) is black, rgb(1,1,1) is
white, and rgb(1,0.5,0.5) is pink.

hsb(x,y,z) -- Changes the drawing color using an HSB specification. The parameters X,
y, and z must be in the range 0.0 to 1.0. They specify the hue, saturation, and brightness
respectively, of the desired color. Setting y and z equal to 1 gives bright, saturated
colors. Asx ranges from 0 to 1, the resulting hues cover the entire spectrum.

[nput/Output

http://math.hws.edu/TMCM/java/xTurtle/info.html (6 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

The input/output commands in XTurtle are pretty rudimentary. However, it is possible to
display messages to the user and to read numbers input by the user. There are four built-in
subroutines for doing such input and output. These subroutines are specia in that they use
strings. A string is a sequence of characters to be displayed to the user. (A string cannot
include an end-of-line.) For example, the command

Tel |l User("Hello World!'")

will display the characters
Hel l o Worl d!

to the user. Note that in the program, the string is enclosed in double quotes, but that the quote
characters are not part of the string that is displayed to the user. There are rules for converting
the string in the program to the string to be displayed to the user: To display a quote character
to the user, you have to use two quote charactersin the string in the program. For example,

Tell User ("1 said, ""Stop!""")

will display
| said "Stop!"

The value of avariable can be included in the displayed string. To do this, you have to include
a# character followed by the variable name in the string in the program. This works for
declared variables as well as for the predefined read-only variables. For example,

Tel | User ("The turtle is at (#xcoord, #ycoord).")

will tell the user the current position of the turtle. That is, when the string is displayed, the
value of xcoord will be substituted for #xcoord in the string, and similarly for ycoord. (If you
want to display an actual # character, you have to write it as ## in the program.)

The TellUser command pops up a box to display its string. The user must click on an OK
button to dismiss this box, and the program waits for the user to do so. The display is not
changed.

Thereisaso acommand for displaying a string in the graphics display area. This DrawText
command writes the string at the current turtle position in the current drawing color. The string
isdrawn even if the turtle's pen is currently up. After drawing the string, the turtle movesto a
point just below its original position, so that the output of successive DrawText commands will
line up neatly one under the other. DrawText has one parameter specifying the string to be
drawn. For example,

DrawText ("Hell o World!'")

There are commands for doing input: AskUser and Y esOrNo. Each of these input commands
has two parameters. The first parameter is a string to be displayed to the user. Thisstring is
meant to prompt the user for aresponse. The second parameter is the name of avariable where
the user's response isto be stored. For AskUser, the use can type in any real number asa
response. For YesOrNo, the user is given the choice of responding yes or no. If the user says
yes, the value 1 is stored in the variable; if the user says no, the value O is stored. For both of
these commands, the computer pops up a box to display the string and get the user's response.
The program waits until the user responds. The display is not changed. Here are some

http://math.hws.edu/TMCM/java/xTurtle/info.html (7 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

examples of using these two subroutines:

AskUser ("What is the interest rate?", rate)
AskUser ("Enter a nunber |ess than #max", x)
YesOrNo(" Do you want to play again?", response)

Note that the strings used in these commands can include the values of variables, just like the
stringsin TellUser and DrawText.

L ogical Expressions

L OOP statements and | F statements (described below) use logical expressions to test whether
or not some specified condition istrue. A logical expression is aformulathat can be either true
or false. Basic logical expressions are formed by comparing numerical values using the
relational operators =, <, >, <=, >=, and <>. (The last three of these mean "is less than or equal
to", "is greater than or equal to", and " is not equal to", respectively.)

Basic logica expressions can be combined into more complex expressions using the logical
operators and, or, and not. (These can also be written as single characters: &, |, and ~.)

In the absence of parenthethes, the precedence ordering for operators in xTurtle, from highest
to lowest, is:

NOT

AND

OR

rel ati onal operators
N

* and /

+ and -

L OOP Statement

To repeat a sequence of statementsin xTurtle, use a LOOP statement, which consists of the
reserved word |oop, followed by the statements to be repeated, followed by end loop. One of
the statements in the loop must be some sort of EXIT statement, which causes the loop to
terminate (either unconditionally or conditionally) and transfers control to the statement that
follows the loop. Statements can be nested. An EXIT statement always exits from the
innermost enclosing loop. There are three forms of the EXIT statement:

EXIT
EXIT I F <conditi on>
EXI T UNLESS <conditi on>

The plain EXIT statement exits the loop unconditionally, and would ordinarily be used inside
an |F statement that is nested inside the loop. In the other two forms of the EXIT statement, the
<condi ti on>isalogical expression, as defined above. An EXIT IF statement exitsits loop
If its condition istrue; an EXIT UNLESS statement exitsitsloop if its condition is false.

Here are two simple example programs that use loops:

DECLARE ct DECLARE | engt h

http://math.hws.edu/TMCM/java/xTurtle/info.html (8 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

ct :=0

LOOP
forward(1)
turn(45)
ct :=ct +1
EXITIF ct =8

END LOOP

| F Statement

LOOP
EXITIF 1=2 { |oop forever! }
l ength := 7*random
{ 0 <=length <7}
hsb(random 1, 1)
f orward(| engt h)
back(| engt h)
face(360*random
END LOOP

An |F statement is used to choose one of several alternative courses of actions. An |F statement

aways starts with atest of the form

| F <condi ti on> THEN

and ends with
END | F

The end if is not an independent statement. It ssmply marks the end of the |F statement.
Between the if and the end if, there are lots of options. Here are some examples that exhibit
the options, with comments that explain what they mean:

IFd>= 0 THEN { Sinple choice:
do the follow ng statenents or skip them}

rl .= (-b - sqgrt(d))/(2*a)
r2z .= (-b + sqgrt(d))/(2*a)
END | F
IF n/2 =
n:=n/2 {
ELSE {
n .= 3*n+l {
END | F
| F grade > 90 THEN {
Tel | User("Grade is A") {
OR I F grade > 80 THEN {
Tel | User("Grade is B") {
OR IF grade > 70 THEN {
Tell User("Grade is C') {
OR | F grade > 60 THEN {
Tel |l User("Grade is D') {
ELSE {
Tel | User("Grade is F'") {

trunc(n/2) THEN { Branch: if condition is true, do the }

statenents between THEN and ELSE; }
if the condition is false, do the }
statenents between ELSE and END | F }

Mul tiway Branch: Each condition

Is tested in turn. As soon as one is
found that is true, the statenents
follow ng that condition's THEN are
executed, and then the conputer junps
out of the IF statenment to whatever
statenment follows the END IF. |f

none of the conditions are true,

t hen the statenents between ELSE and
END | F are executed. The ELSE part is

e e o M) o)) o d)

http://math.hws.edu/TMCM/java/xTurtle/info.html (9 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

END | F optional. If it is absent and if all
the conditions are fal se, then none
of the statenents within the IF

statenent are execut ed.

[t Wanten Wanten Wanten

User-defined Subroutines

The xTurtle language has built-in subroutines like PenUp and moveTo(x,y). It is possible to
define new subroutines in a program. A subroutine has a name and, optionally, alist of
parameters. Once a subroutine has been defined, it can be called by giving its name and -- if it
has a parameter list -- alist of values to be used for its parameters. A subroutine consists of a
list of statements and variable declarations. When the subroutine is called, all the statements
within the subroutine are executed.

Variables declared within a subroutine are called "local variables® for that subroutine. They are
not visible from outside the subroutine and are deleted from memory when the subroutine

ends. Variables that are not defined within a subroutine are called "global variables." A
subroutine does not have automatic access to global variables. However, it is possible to give a
subroutine access to global variables by explicitly "importing” them into the subroutine. Thisis
done with an IMPORT statement, which consists of the reserved word import followed by the
names of one or more previously declared global variables (separated by commas). IMPORT
statements can only occur inside subroutine and function definitions.

A subroutine definition starts with the word sub, followed by the subroutine name, followed
optionally by alist of parameters. The parameter list isjust alist of parameter names, separated
by commas. A parameter name can be optionally preceded by the reserved word ref, which
indicates that the parameter is to be passed by reference. (Thisis discussed below.) The word
sub, the subroutine name, and the parameter list make up the "subroutine header." Following
the header come the statements that make up the subroutine. Finally, end sub is used to mark
the end of the subroutine. Here are two sample subroutines:

SUB pol ygon(N, si de) SUB Updat eAnount (ref anount)
DECLARE count | MPORT | nterestRate
count := 0 DECLARE i nt er est
LOOP I nterest :=
forward(side) | nterest Rate * anount
turn(360/ N) anount := anount + interest
count := count + 1 END SUB
EXIT IF count = N
END LOOP
END SUB

When a subroutine is called, one parameter value must be provided for each parameter listed in
the subroutine definition. The parameter values in the subroutine call statement are called
"actual parameters." Parameters can be passed by value or by reference, as indicated by the
absence or presence of the reserved word ref in the subroutine definition. When a parameter is
passed by reference, the subroutine can change the value of an actual parameter that is
provided to it when the subroutine is called. (The actual parameter for aref parameter must be

http://math.hws.edu/TMCM/java/xTurtle/info.html (10 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

aname; it cannot be a constant or a complex expression.) Thisisillustrated by the
UpdateAmount example given above.

Itis possibleto exit from a subroutine at any point by using a RETURN statement, which
consists smply of the word return. RETURN statements can only occur in subroutines. When
the computer executes a RETURN statement, it exits immediately from the subroutine.

A subroutine can call itself. Thisiscalled "recursion.” It is also possible for one subroutine to
call another which in turn calls the first subroutine. Longer loops of subroutine calls are
possible. Thisis called "mutual recursion.” Because subroutines must be declared before they
are used, a specia syntax isrequired to make mutually recursive subroutines possible. One of
the subroutines must be "predeclared”. Thisis done by giving the reserved word predeclare,
followed by the subroutine heading. The rest of the subroutine is omitted. Predeclaring a
subroutine allows it to be called by other subroutines. A full definition of the predeclared
subroutine must be given later in the program. The full definition includes another copy of the
subroutine header.

User-defined Functions

A function is very similar to a subroutine, except that it computes and returns avalue. A
function in xTurtle is defined in the same way as a subroutine, with the word function
substituted for the word sub. The only other difference in the definition is that a function must
include a RETURN statement that specifies the value to be returned by the subroutine. A
RETURN statement in afunction takes the form

return <val ue>

where <val ue> isaconstant, variable, or formula specifying the value to be returned. Here
are two sample functions:

FUNCTI ON Next N(num) FUNCTI ON Updat eAnount (anount)
| F num 2 = round(n/2) THEN | MPORT Rat e
return nunt 2 DECLARE | nt er est
ELSE Interest := anmount * Rate
return 3 * num+ 1 DECLARE newAnobunt
END | F newAnount := anpunt + |nterest
END FUNCTI ON return newAnount
END FUNCTI ON

User-defined functions are used in the same way as built-in functions such as sin(x). Functions
can have ref parameters, they can be recursive, and they can be predeclared.

Multitasking

In"parallel processing," several processes are going on at the same time. "Multitasking” isa
way of simulating parallel processing by giving alittle bit of execution time to one process,
then alittle bit to another process, and so on. Multitasking can be done in xTurtle by using the
fork statement. Fork is a subroutine that takes a single parameter, specifying the number of
processes to be created. This number must be between 1 and 100. Conceptually, the command
fork(N) splitsaturtle into N different turtles. Each of the turtles then proceeds to execute the
following statements independently. Any variables that exist before the fork are shared by all

http://math.hws.edu/TMCM/java/xTurtle/info.html (11 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

the turtles. However, if avariable declaration statement occurs after the fork, each turtle will
create its own copy of the variable.

Each process created in afork command continues executing until either: it reaches the end of
the program, or it executes a KillProcess command, or it finishes the subroutine or functionin
which the fork command ocurred. Note how forks in subroutines are handled: Any processes
that are created inside the subroutine end before the subroutine returns. When the subroutine
returns, only the original process that called the subroutine is still running.

In fact, the command fork(N) actually creates N "child processes.” The origina parent process
goesto sleep until al the child processes have ended. Then the original parent awakens. The
state of the turtle in the awakened parent processis the same as it was before the child
processes were created. That is, the turtle still has the same heading, position, visibility, pen
state, and drawing color asit did at the moment when the fork statement was executed. If the
fork command occurred inside a subroutine, the subroutine does not return until all the child
processes have ended, and then it is actually the original parent process that returns. (The same
sort of thing happensif you use afork command in the xTurtle applet's command-input box.)

The processes that are created by afork command are identical, except for one thing: Each
process has a different value for the read-only variable forkNumber. The fork numbers for the
processes created by the command fork(N) range from 1 to N. The different values for
forkNumber allow the different processes to do different things. Note that it is certainly
possible to have two or more forksin arow. A process only remembers the fork number from
the most recent fork command that it has executed.

Grab Statement

After afork command has been executed, the processes that it creates can communicate by
setting or checking the values of shared variables (variables that were declared before the fork
command). Thisform of communication has the problem of "mutual exclusion" -- making sure
that only one process at a time has access to the shared variable. It is up to the programmer to
enforce mutual exclusion. In xTurtle, this can be done using the grab statement, which takes
the form

GRAB <vari abl e> THEN
{ any statenments -- except fork, exit, return }

END GRAB

The<vari abl e>inaGRAB statement must be aglobal variable. If you want to use a
GRAB statement inside a subroutine, you will have to use an imported global variable. The
point hereisthat only one process at atimeisallowed to grab a given variable. If a process
tries to grab avariable and another process has aready grabbed it, then the second process has
to wait until the first process exits from its GRAB statement.

Thereisavariation of the grab statement that has an EL SE part. (I have never found it actually
useful.) It has the form:

GRAB <vari abl e> THEN
{ sone statenents }

http://math.hws.edu/TMCM/java/xTurtle/info.html (12 of 13) [3/26/2000 12:50:17 PM]

xTurtle Info

ELSE
{ nore statenents }
END GRAB

In this case, if the GRAB fails, the computer does not wait. Instead, it executes the EL SE part
of the grab statement. The EL SE part can include fork, exit, and return statement.

David Eck (eck@hws.edu), June 1997

http://math.hws.edu/TMCM/java/xTurtle/info.html (13 of 13) [3/26/2000 12:50:18 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xTurtle Lab 2

Labs for The Most Complex Machine

XTurtle Lab 2: Thinking about Programs

THISLAB CONTINUES THE STUDY of programming, which was begun in the previous
lab. The emphasis here is on how a complex program can be developed to perform a
specified task. An organized approach to programming is necessary for all but the most
simple programs. Complex tasks can be broken down into simpler tasks, and complex
programs can be built up out of simple components. The problem is how to determine what
components are needed and how to piece them together.

Before beginning this lab, it would be useful to be familiar with the material in Chapter 6 of
The Most Complex Machine, especialy Section 6.3. In particular, this lab uses the ideas of
preconditions and postconditions. This lab also uses the "nested squares example from
Section 6.3. You'll aso find an introduction to subroutines in this lab. Subroutines are
covered in Chapter 7 of the text.

This lab includes the following sections:
« Preconditions

o Postconditions

« Subroutines
» Exercises
Start by clicking this button to launch xTurtle in its own window:
(Sorry, your browser doesn't do Javal)

(For afull list of labs and applets, see the index page.)

Preconditions

The xTurtle applet that you have launched should have loaded a sample program called
"NestedSquares'. Select this program using the pop-up menu at the top of the applet. Read
the program and the comments, and run the program by clicking on the "Run Program"
button. For this example, and for much of the lab, | suggest that you use the speed pop-up
menu to reduce the speed at which programs ar e executed, so that you will better
understand what is going on.

As explained in the text, the key to getting this program correct was making sure that the

preconditions for drawing each square were set up properly. A precondition is something

that must be true at a certain point in a program, if the program to continue correctly from
that point.

http://math.hws.edu/TMCM/java/labs/xTurtleLab2.html (1 of 7) [3/26/2000 12:50:19 PM]

xTurtle Lab 2

The following picture, taken directly from Figure 6.9 in the text, shows the correctly drawn
squares and the results of five incorrect attempts to draw them. For each of the incorrect
versions, the error can be traced to the fact that one or more preconditions was not met in the
program that produced that picture:

a) b)

dy [ju

1 O

In the "NestedSquares' program, there are severa statements near the end of the loop that
are responsible for making sure that the required preconditions are met. Y ou should try to
understand why each of these statementsis required. Y ou will work with this examplein
Exercise 1 at the end of the lab.

Postconditions

Preconditions are things that must be true at a given point in a program for that program to
continue correctly. A postcondition is something that is actually true at a given point in the
program, because of what has been done by the program so far. A common way for
programmers to think about programsisto ask, "At this point in the program, do the
postconditions from what comes before match up with the preconditions for what is done
next." In addition, the effect of a program as a whole can be thought of as a set of one or
more postcondition for the entire program. The postconditions of a program are things that
are true after the program has been executed. That is, they are things that are accomplished
by the program. For an xTurtle program, the postconditions of the program include the
picture that has been drawn on the screen.

The following picture shows asimple "staircase" with 5 steps and another staircase, with 4
steps, leaning at a 30 degree angle:

http://math.hws.edu/TMCM/java/labs/xTurtleLab2.html (2 of 7) [3/26/2000 12:50:19 PM]

xTurtle Lab 2

Suppose that you want a program to draw such staircases. Let's say that the number of steps
in the staircase will be input by the user. Y ou will have to use aloop to draw the steps, since
when you are writing the program, you don't know how many steps there will be. Each
execution of the loop will draw one of the staircase's steps. Before drawing each step, the
turtle must be facing in the right direction; this is a precondition. After drawing the step, the
turtle has changed direction; thisis a postcondition. Y ou have to include commands that will
provide "splicing” from the actual postcondition to the desired precondition. After the loop,
you will still have to draw the two long sides of the staircase. To get them into the correct
positions and orientations, you will have to think about the postconditions that hold after
the loop has been executed and how they match up with the preconditions for drawing the
lines. Exercise 5 at the end of the lab asks you to write this program.

Subroutines

A subroutineis-- more or less -- asmall program made into a black box and given a name.
Some subroutines, such as forward and PenUp are predefined; others are written by a
programmer as part of alarger program. Subroutines are an essential tool for organizing
complex tasks.

Most subroutines have parameters such as the 9 in forward(9) or the 30 in turn(30).
Parameters allow subroutines to receive information from the rest of the program or to send
information back. Suppose that we want to turn the staircase program described above into a
subroutine. Then it would no longer make sense to get the input from the user, since that
would greatly limit the generality of the subroutine. Instead, the number of steps would
probably be provided as a parameter. From the "point of view of the subroutine," the
parameter is like input coming from "somewhere outside,” just as input from the user comes
from outside the program.

A subroutine definition begins with the word SUB and ends with the word END SUB. Just
after the word SUB comes the name of the subroutine and (optionally) alist of one or more
parameter names. The subroutine name and the parameters form the interface of the
subroutine; everything from there up until the END SUB is the implementation.

The sample program " SpiralsSubroutine” defines a subroutine named spiral. Select this
program from the pop-up menu at the top of the xTurtle applet, and read the program and
comments. When you click the "Run Program” button to run this program, it will look like

http://math.hws.edu/TMCM/java/labs/xTurtleLab2.html (3 of 7) [3/26/2000 12:50:19 PM]

xTurtle Lab 2

nothing has happened! But in fact, the effect of the program isto define the subroutine.
Ordinarily, the computer has no idea what the word "spiral” means, but once the computer
compiles the subroutine definition, it will then understand commands like spiral (61) and
spiral (89). Such commands can be added to the program after the subroutine definition, or
they can be entered into the text-input box below the drawing areain the xTurtle applet. Try
it. Some of the pictures you can make are rather pretty!

Exercises

Exercise 1. Consider each of the pictures b), c), d), and €) in the nested squares illustration,
shown above. For each of these incorrect versions, determine what small change in the
program "NestedSquares' would produce that picture. In each case, it's a question of
removing one or more statements from the correct program, so that one or more of the
required preconditions are not met. In each case, determine which statement to remove and
what precondition or preconditions are unmet in the resulting program.

Exercise 2. Select the sample program "Quadratic" from the pop-up menu at the top of the
xTurtle applet. When you run this program, it will ask you to input three numbers, A, B, and
C. It will then compute and display the solutions to the quadratic equation A*x2 + B*x + C
= 0. If you run the program and enter the values 1, 1, and -1 for A, B, and C, it will work
fine. However, if you enter 1, 1, and 1 asthe values of A, B, and C, the program will crash.
This crash can be traced to the fact that at a certain point in the program, thereisa
precondition that might not be satisfied. If it is not satisfied, an error occurs and the program
crashes. What precondition is not properly checked by the program? (It has something to do
with the square root function. Recall that in some cases, the quadratic equation has no
solutions.) Modify the program so that it does not crash when the input values fail to meet
the precondition. Instead of crashing, the program should display an error message and halt.

Exercise 3: Thisisacontinuation of Exercise 2. The "Quadratic" sample program actually
exhibits another precondition, which isviolated if A equals zero. Where does this
precondition occur in the program, and what exactly is the problem with having A=07?

Exercise 4: Thisisacontinuation of Exercises 2 and 3. Another way to deal with a
precondition isto write aloop that can only end when the precondition is satisfied. Modify
the "Quadratic" program so that the input from the user isread in aloop that can only end if
the user has entered legal valuesfor A, B, and C. After the loop, the program can safely
compute and print the solutions to the equation.

Exercise 5: Write aprogram that can draw staircases, like those shown in the picture above.
The program you write must meet the following requirements:

1. The user will be asked to specify the number of steps.
2. Each step is one unit high and one unit wide.

3. Theorientation of the staircase will depend on the starting orientation of the turtle, as
shown in the second example in the picture. This means that you should draw the
staircase using only forward, back, and turn commands. Do not use face or moveTo.

http://math.hws.edu/TMCM/java/labs/xTurtleLab2.html (4 of 7) [3/26/2000 12:50:19 PM]

xTurtle Lab 2

4. After the staircase is drawn, the position and heading of the turtle will be the same as
they were when the drawing begins. Thisis a postcondition for the program as a
whole.

Start your program with the following three lines:

DECLARE Number O St eps
AskUser ("How many steps?", Nunber O St eps)
DECLARE count

The variable named count should be used as a counting variable in aloop to count the
number of steps that have been drawn. Y ou should think about preconditions and
postconditions as you write the program. Include commentsin your program that discuss
specific preconditions and postconditions for various parts of the program, and explain how
they were used -- or could have been used -- in developing the program. It isabit easier to
write the program if you start drawing the steps at the top of the staircase.

Exercise 6: Convert the program you wrote for Exercise 5 into a subroutine. Start by
removing thefirst two lines of the program, which were given to you in Exercise 5.
Replace them with:

SUB st ai rs(Nunber O St eps)

Add theline
END SUB

at the end of your program. These two steps turn your staircase-drawing program into a
staircase-drawing subroutine. After running the modified program, you will be able to use
commands like stairs(5) to draw a staircase with five steps and turn(30) stairs(4) to draw a
tilted staircase with four steps. To make a more interesting picture, add the following lines at
the end of your modified program, after the definition of the subroutine, and then run the
program:
LOOP
stairs(3)
stairs(5b)
stairs(7)
t ur n(30)
EXIT IF heading = 0
END LOOP

What picture is drawn by one execution of the loop in this program? Why? (Y ou will only
get the correct picture if your solution to Exercise 5 meets the fourth requirement imposed
on the program in that exercise.) What picture is drawn by the program as a whole? Why?

Exercise 7. Here are some questions about the subroutine you wrote for Exercise 6:

« Why doesthe singleline SUB stairs(NumberOf Stairs) replace the first two lines of
the program from Exercise 5? Why does it make sense for the variable,
NumberOfStairs, in the program to become a parameter in the subroutine?

http://math.hws.edu/TMCM/java/labs/xTurtleLab2.html (5 of 7) [3/26/2000 12:50:19 PM]

xTurtle Lab 2

« Inthe subroutine, why don't you ask the user for the number of stepsto draw? Why is
it better to use a parameter?

« Thevariable "count” in the program from Exercise 5 becomes alocal variable in the
subroutine. Why? Why isit alocal variable instead of a parameter?

« What did you learn from Exercise 6 about subroutines and their use in complex
programs?

Exercise 8: Explain carefully why running the sample program " SpiralsSubroutine” does
not produce any output or have any visible effect. What exactly does the program do when it
Is executed? What is the point of it, if it doesn't do anything?

Exercise 9: Write a program that will draw pictures like the following, where the number of
"bumps" isinput by the user. (In this picture, there are seven bumps.) Note that the number
of vertical linesis one more than the number of horizontal lines.

=

Exercise 10: Convert your program from Exercise 9 into a subroutine in which the number
of bumpsis specified by a parameter. How would your subroutine be used to produce a
picture with seven bumps, like the one shown above?

Exercise 11: The contract of a subroutine is defined to be everything you need to know
about a subroutine in order to use it correctly. This includes the name of the subroutine and
itslist of parameters. It also includes specifications of what must be true before the
subroutineis called and what will be true after it finishes execution. These specifications are
the preconditions and the postconditions of the subroutine. In an xTurtle subroutine, the
preconditions and postconditions usually include statements about the position and
orientation of the turtle and about what is drawn on the screen. Here are two square-drawing
subroutines. Describe the contract of each subroutine. Include complete specifications of the
preconditions and postconditions for each subroutine.

SUB square(r, g, b, size) SUB square(Xx,Yy, size)
rgb(r, g, b) PenUp
forward(size) noveTo(X, Y)
t ur n(90) PenDown
forward(size) nove(si ze, 0)
t urn(90) nove(0, si ze)
forward(size) nove(-size, 0)
t ur n(90) nove(0, - si ze)
forward(size) END SUB
t urn(90)

END SUB

Thisis one of aseries of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis aso

http://math.hws.edu/TMCM/java/labs/xTurtleLab2.html (6 of 7) [3/26/2000 12:50:19 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html

xTurtle Lab 2

adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/xTurtleLab2.html (7 of 7) [3/26/2000 12:50:19 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xTurtle Lab 3

Labs for The Most Complex Machine

XxTurtle Lab 3: Subroutines and Recursion

SUBROUTINES WERE INTRODUCED in the previous lab. Thislab will continue the

study of subroutines. The lab concentrates on the idea of a subroutine as a black box and on
recursive subroutines that call themselves, either directly or indirectly.

Y ou should be familiar with the material from Chapter 7 of The Most Complex Machine,
especially with the material on recursive subroutines from Section 3. The Koch curve and
the binary tree introduced in that section will be used in the lab.
Thislab includes the following sections:

» Black Boxes

o Recursive Trees and Recursive Walks

« Exercises
Start by clicking this button to launch xTurtle in its own window:
(Sorry, your browser doesn't do Javal!)

(For afull list of labs and applets, see the index page.)

Black Boxes

Y ou are familiar with the idea of a subroutine as a black box. When you use predefined
subroutines such as forward and moveT o, you don't need to know exactly how they work.
All you need to understand is how to use them and what they will do. User-defined
subroutines can also be used as black boxes, provided that someone else has written them
for you.

The xTurtle applet that you launched for use in thislab is set up to load a sample program
called "SymmetrySubs' This program contains the definitions of six subroutines for drawing
symmetric pictures. These subroutines are meant to be used in the same way as the usual
drawing subroutines such as forward and circle. For example, one of the subroutines defined
in"SymmetrySubs' is multiForward. This subroutine is similar to the built-in forward
command, except that instead of just drawing one line, it draws eight linesin a symmetrical
pattern. The "SymmetrySubs* program defines the following six subroutines, each of which
draws a symmetric pattern: multiForward, multiBack, multiMoveTo, multiMove,
multiCircle, and multiArc.

To see how thisworks, select the "SymmetrySubs' program from the pop-up menu at the
top of the xTurtle applet, and use the "Run Program™ button to run the program. Nothing

http://math.hws.edu/TMCM/java/labs/xTurtleLab3.html (1 of 6) [3/26/2000 12:50:20 PM]

xTurtle Lab 3

appears on the screen, since al the program does is define some subroutines. However, once
the subroutines are defined, you can use them as commands, just as you would use any of
xTurtle's built-in commands.

As an example, type the following commands into the text-input box below the xTurtle
drawing area, pressing return after you enter each command:

mul ti Arc(5, 40)
t urn(-40)

mul tiforward(3)
mul ticircle(2)

Also try some other commands. If you want to make a more complicated picture, go back to
the " SymmetrySubs' program and add your commands at the end of that program (after the
definitions of all the subroutines). For example, add the following commands to the end of
the program, and then hit the "Run Program” button:

LOOP
mul tiforward(0.5)
face(random nt (360))
EXIT IF 1=2

END LOOP

Y ou will have to end the program with the "Stop" button. (The statement "exit if 1=2" in this
program is afancy way of saying "Never exit.")

In the previous part of the lab, you used several subroutines as black boxes, without having
to understand what went on inside the box. But you should remember that “not having to
know what'sinside" isonly part of the black box story! When you write a subroutine

your self, you are working inside the box. While you are writing the subroutine, you can
concentrate on making it perform the specific task it is designed to do, without worrying for
the moment exactly what role it will play in a complete program. From the point of view of
aprogrammer trying to design a complex program, subroutines are atool for breaking a
complex problem down into smaller, more manageabl e subproblems.

Recursive Trees and Recursive Walks

A recursive subroutine is one that callsitself. A recursive subroutineis a black box that uses
itself as ablack box. Section 7.3 in the text introduces recursive subroutines using the
example of abinary tree. The program for this example isin the Sample program
"BinaryTrees'. Select this program from the pop-up menu at the top of the xTurtle applet
and run it. Nothing will happen, since the file only defines some subroutines. The main
subroutine defined in thefileis called TestTree. If you enter thisinto the text-input box
beneath the drawing area of the applet, you will be asked to specify a complexity level. The
computer will draw atree with the complexity that you specify. Try this, for example, for a
complexity level of 5.

A binary tree of complexity zero is defined to be asingle straight line segment. A binary

http://math.hws.edu/TMCM/java/labs/xTurtleLab3.html (2 of 6) [3/26/2000 12:50:20 PM]

xTurtle Lab 3

tree of complexity greater than zero is defined to consists of a"trunk,” which isjust aline
segment, with two "branches" attached to it. Each of the branchesisabinary tree, whichis
smaller than the compl ete tree and which has smaller complexity than the complete tree.
Thisisarecursive definition because we are saying that a tree contains pieces which are
themselves trees. Because binary trees are defined recursively, they can be drawn by a
recursive subroutine. Y ou should try to understand the definition of the Tree subroutine.

A second example of recursion is contained in the sample program "KochCurves." This
exampleis aso taken from Section 7.3 in The Most Complex Machine. A Koch curveisa
way of getting from one point to another -- with alot of detours. To help you understand
this, run the sample program "KochCurves." After you have run the program, you can use
the command TestK och in the xTurtle applet's text-input box. When you do so, you will be
asked to specify a complexity level for the Koch curve. Y ou should try complexity levels of
0,1,2 3 and 4.

A Koch curve of complexity O is defined to be a straight line segment. A Koch curve of
complexity 1isaline segment with a"bump" or "detour." The complexity-one curveis
made up of four line segments, but you should think of each line segment a Koch curve of
complexity zero. A Koch curve of complexity 2 is obtained from the curve of complexity 1
by adding a detour to each line segment in the curve. Y ou should look at a Koch curve of
complexity 2 as being made up of four smaller pieces, where each pieceis aKoch curve of
complexity 1. More generally, a Koch curve of complexity N is made up of four smaller
Koch curves of complexity N-1. Once again, thisis arecursive definition, and the
subroutine that draws Koch curvesis arecursive subroutine. Try to understand how the
pictures you see are produced by the Koch subroutine.

The "KochCurves' program also defines a subroutine named " Snowflake" which draws
"Koch snowflakes." A Koch snowflake is made by joining three Koch curves together at
their endpoints, producing a symmetric, snowflake-like picture. Try it!

Exercises

Exercise 1. Add the following lines to the end of the "SymmetrySubs' sample program,
after all the subroutines. Run the program a few time, to see what it does. The write a short
essay explaining exactly how the program works and why it produces the pictures that it
does. (Try running this at fastest speed, with the turtle turned off.)

decl are x

Xx :=0

| oop
face(360*random
hsb(x, 1, 1)
mul ti forward(0. 4)
X := x + 0.005
if x > 1 then

Xx :=0

http://math.hws.edu/TMCM/java/labs/xTurtleLab3.html (3 of 6) [3/26/2000 12:50:20 PM]

xTurtle Lab 3

end if
exit if 1 =2
end | oop

Exercise 2. The mathematics used in the subroutines defined in " SymmetrySubs' is not
trivial. How much did you need to know about this mathematics to use the subroutines?
What point about subroutines does this illustrate?

Exercise 3: The Speed pop-up menu in the xTurtle applet works by inserting delays
betweens commands. Since circle is a single command, a complete circle is drawn
instantaneously, no matter what the setting of the speed menu. This disappointed one of my
students, who wanted to be able to watch the circles being drawn. Write a subroutine

SUB Sl owCi rcl e(radi us)

that will draw acircle by drawing 60 arcs, where each arc covers 6 degrees. Then use your
subroutine to (slowly) draw a picture like the following:

Exercise 4. Modify your subroutine from Exercise 3 so that it draws each of the arcs of the
circlein adifferent color. The color of an arc can be set to hsb(hue,1,1). At the beginning,
the value of hue should be zero. After drawing each arc, it should be increased by 1/60.

Exercise 5: A subroutine such as the one you wrote for Exercise 4 can be used in many
different programs. What did you have to know about those programsin order to write the
subroutine? What does thisillustrate about black boxes?

Exercise 6: How many straight line segments are there in a Koch curve of complexity 2?
Y ou can use the TestK och subroutine to draw the curve and them count the line segments.
Y ou could do the same for complexity 3, and maybe for complexity 4. But what about
complexity 10 or 100? There are two many line segments to count. However, it is possible
to predict the number of segments for any complexity, if you think about how Koch curves
are created. The question you should ask yourself is, When the complexity is increased by
one, what happens to the number of line segments? Try to figure out the pattern by looking
at the number of line segmentsin curves of complexity 1, 2, 3, and 4 and by thinking about
what happens as you go from one curveto the next. Try to find aformulathat gives the
number of line segmentsin a Koch curve of any given complexity.

Exercise 7: This exercise asks you to find the number of line segmentsin abinary tree of a

http://math.hws.edu/TMCM/java/labs/xTurtleLab3.html (4 of 6) [3/26/2000 12:50:20 PM]

xTurtle Lab 3

given complexity. It issimilar to the previous exercise, but it's harder to find aformulain
this case. Run the "BinaryTrees' example program, and then use the TestTree subroutine to
draw trees of complexity 0, 1, 2, 3, 4, and 5. For each of these trees, count the number of
straight line segments that it contains. For example, in atree of complexity 1, the number of
line segmentsis 3 -- each branch isasingle line, and the trunk is the third line. Y ou should
try to find aformulathat gives the number of line segments for any given complexity. Y ou
might not be able to find aformulathat gives the number directly, but you should at least be
able to find aformulathat tells how the number of line segments changes as you go from
one complexity level to the next.

One way to approach this problem isfirst to determine how many new lines are added to the
tree when you go from atree of complexity N to one of complexity N+1. Then use that to
figure out the total number of line segments. Another approach isto "think recursively":
Remember that atree of complexity N+1 is made up of atrunk plus two trees of complexity
N.

Exer cise 8: The text notes that you can add randomness to a Koch curve by deciding
randomly whether to detour to the left (using turns of 60, -120 and 60) or to the right (using
turns of -60, 120, and -60 instead). M ake this change to the program "KochCurves' sample
program, and try it out. In the subroutine, you can declare a variable named x (for example)
and set x := RandomInt(2). Use the value of x to decide whether to detour to the left or to
the right. (When you have made the change, the SnowFlake subroutine will produce a
"Koch Island" instead. Try it!)

Exercise 9: Theidea of "detouring” used in making Koch curves can be used to make other
interesting fractal pictures. In a Koch curve, the ideaisto replace astraight line with aline
containing a"triangular detour,” like this:

Suppose that a "square detour" were used instead, looking like this:

http://math.hws.edu/TMCM/java/labs/xTurtleLab3.html (5 of 6) [3/26/2000 12:50:20 PM]

xTurtle Lab 3

What would the resulting picture look like, for higher degrees of complexity? Find out by
rewriting the subroutine Koch to use square detours instead of triangular detours.

Exercise 10: For thisexercise, you will write a recursive subroutine that displays an element
of randomness. The subroutine will be called "mountain”, because it draws pictures that
look a bit like a mountain range. Here are two pictures produced by the subroutine:

Each of these pictures was produced with the commands:
cl ear penUp noveTo(-7,0) penDown nountain(7,0,10)

The command mountain(x,y,c) should move the turtle along a jagged path from its current
position to the point (x,y). The amount of jaggedness is specified by the "complexity,” c. If
the third parameter, c, is zero, then mountain(x,y,c) ssimply draws a straight line from the
current position to (x,y). If ¢ > 0, then mountain(x,y,c) will choose arandom point, (x1,y1),
somewhere between the current position and (X,y). It will draw a"mountain™ of complexity
c-1to the point (x1,y1) and from there it will draw a second mountain curve of complexity
c-1to the point (X,y). The trick is to choose the intermediate point (x1,y1). This can be done
by finding the midpoint between the current position and (x,y), and then moving they
coordinate of that midpoint up or down by a random amount. This computation can be done
asfollows, recalling that the current position of the turtle is given as (xcoord,ycoord):

x1 := (xcoord + x) [2
yl := (ycoord +vy) / 2
yl :=yl + (random- 0.5) * (xcoord - Xx)

Try to put all thistogether into a definition of mountain(x,y,complexity). Remember to
declare x1 and y1 at the beginning of your subroutine.

Thisis one of aseries of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis aso
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/xTurtleLab3.html (6 of 6) [3/26/2000 12:50:20 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xSortLab Lab

Labs for The Most Complex Machine

xSortLab Lab: Sorting and the Analysis of
Algorithms

ONE OF THE MOST COMMON OPERATIONS performed by computersis that of

sorting alist of items. An example of thiswould be sorting alist of names into alphabetical
order. Thislab deals with two natural questions: How can sorting be done? And how can it
be done efficiently?

The second question is one that would be asked in afield of study called the analysis of
algorithms. Recall that an algorithm is an unambiguous, step-by-step procedure for solving a
problem, which is guaranteed to terminate after a finite number of steps. For agiven
problem, there are generally many different algorithms for solving it. Some algorithms are
more efficient than others, in that less time or memory isrequired to execute them. The
analysis of agorithms studies time and memory requirements of algorithms and the way
those requirements depend on the number of items being processed. In thislab, you'll ook

at the time requirements of various sorting algorithms.

In the lab, you will see five remarkably different algorithms for sorting alist. Each
algorithm solves the sorting problem in adifferent way. Y ou will see how each algorithm
works, and you will also see that some sorting algorithms are much more efficient than
others.

Sorting and the analysis of algorithms are discussed as one example in Section 9.3 of The
Most Complex Machine. Some of the material from that section is repeated in this |ab.
However, some background material and motivation is not repeated here, and it would be
worthwhile for you to read Section 9.3 before doing the lab.

Thislab includes the following sections:
« Watching Bubble Sort
o Other Sorting Algorithms
« Using the Timed Sort Mode
o N2 and N*log(N)
« Exercises

You'll be using an applet called xSortLab. Start by clicking this button to launch the appl et
In its own window:

(Sorry, your browser doesn't do Javal!)

(For afull list of labs and applets, see the index page.)

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (1 of 11) [3/26/2000 12:50:21 PM]

xSortLab Lab

Watching Bubble Sort

The xSortL ab applet has two operating modes: "Visual Sort" and "Timed Sort." Thereisa
pop-up menu at the very top of the applet that can be used to select one of these modes. The
pop-up menu also contains an entry for a"Log" which records statistics about sorts that have
been performed by the applet. When the applet first starts up, it isin Visual Sort mode, and
you will use this mode for the first part of the lab. In this mode, you can watch as the appl et
sorts sixteen bars into order of increasing height. Later in the lab, you'll be using the Timed

Sort mode.

The applet can perform five different sorting algorithms: Bubble Sort, Selection Sort,
Insertion Sort, Merge Sort, and QuickSort. When it fist starts up, it is set to use Bubble Sort.
There is a pop-up menu near the upper right corner of the applet that you can use to select
the sorting method that you want to work with. Below the pop-up menu are three buttons
and a checkbox that can be used to control the applet. Click on the "Go" button to let the
applet perform the sort automatically, without further intervention from you. Click on the
"Step" button to perform just one step in the sort. The "Start Again” button lets you start a
new sort, with arandomly arranged set of bars. (The applet will also start a new sort if you
select a new sorting method from the pop-up menu.)

All the sorting algorithms that you will look at use two basic operations. compare two items
to see which islargest, and copy an item from one place to another. Sorting consists of these
two operations performed over and over (plus some "bookkeeping,” such as keeping track of
which step in the sort the computer is currently performing). Sometimes, the program has to
exchange, or swap, two items. It takes three copy operations to perform a swap: First, copy
the first item to a specia location called "Temp." Second, copy the second item into the first
location. And third, copy the item from "Temp" into the first location. Asthe xSortLab
applet performs a sort, it will tell you how may comparison and copy operations it has done
so far. Thisinformation is displayed in the lower right section of the applet.

Y our first task in the lab is to understand Bubble Sort, using the xSortL ab applet that you
launched above. The basic idea of Bubble Sort isto compare two neighboring items and, if
they are in the wrong order, swap them. The computer moves through the list comparing and
swapping. At the end of one pass, the largest item will have "bubbled up” to the last position
in the list. On the second pass, the next-to-largest item moves into next-to-last position, and
so forth. Here is a picture of what the applet will ook like when it is partway through the
sort. I've added some comments to help you understand what you see:

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (2 of 11) [3/26/2000 12:50:22 PM]

xSortLab Lab

wWhenever the applet compares two bars,
it draws magenta-colored boxes around

them. Often, one or both of them will be When a bar is colored black, it
moved soon after the boxes are drawn, isin its final position.
K [Eubble Sort w] Control
&rea.
] Fast
[6o]
1 nll [T—
i 4 5 B ¥ & 9 1011 12 13 14 15 16 [Start &gain]
Comparisons:
&0
Copies: Statistics
I about the
gImp 126 sart that is
in progress.

Fhase 4 next largest item bubbles up to position 13

Iz 1tern @ Bigger than item 9% Yes, o0 swap them.

Bottom message gives the details
of a single step in the sort. {In the
picture, the items have already
been swapped).

Top message gives high-level,
goal-oriented information about
what the applet is doing.

Usethe "Step" and "Go" buttons in the xSortL ab Applet to execute Bubble Sort. Check the
"Fast" checkbox when you want to speed things up. (This option might also help you to get
the broader picture of how the algorithm operates.) Y ou should try stepping slowly through
the algorithm with the " Step" button, reading each message in detail. It will also be useful
for you to watch the algorithm run itself at "Fast" speed. At this speed, the applet only
displays the upper message, which tells you what it is trying to accomplish in each major
phase of the algorithm. In Bubble Sort, each major phase moves one item into its fina
position at the end of thelist.

The learn how the Bubble Sort algorithm works, you will have to pay attention to what you
see and think about it. Y ou have control over the applet. Use your best judgement about how
to proceed. In the exercises at the end of the lab, you will be asked to apply Bubble Sort by
hand. Y ou should make sure you understand it well enough to do this.

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (3 of 11) [3/26/2000 12:50:22 PM]

xSortLab Lab

Other Sorting Algorithms

Y ou can go on to learn about the four other sorting algorithms (or as many of them as you
careto look at). The five sorting algorithms can be divided into two groups. Bubble Sort,
Selection Sort and Insertion Sort are fairly straightforward, but they are relatively inefficient
except for small lists. Merge Sort and QuickSort are more complicated, but also much faster
for large lists. QuickSort is, on average, the fastest. Bubble Sort is the slowest. Bubble Sort
Is often the first -- and sometimes the only -- sorting method that students learn. Here are
brief descriptions of the four remaining agorithms, with some information about what you
see when xSortL ab executes them:

Selection Sort is probably the easiest sorting method to understand. In each major phase of
the algorithm, the next largest item is found and moved into position at the end of thelist. In
the picture below, the four black bars have already been moved into position, and the
algorithm isin the middle of the next phase. It isimportant to remember that the program
can't just "look at all the bars and pick the biggest one" in one step, asyou can. It is
restricted to comparing two items at atime. To find the largest item in alist, the computer
moves through the list one item at atime, keeping track of the largest item it has seen so far.
After looking at all the available items, it knows which isthe largest item overall. It moves
the largest item into the next available spot at the end of the list by swapping it with the item
that is currently occupying that spot. In the picture, during the current phase of the sort, the
computer has looked at items number 1 through 7. An arrow labeled "Max" is pointing to
item number 2, since that is the largest item that the computer has seen so far during this
phase of the sort. The magenta-colored boxes indicate that the computer has just compared
items 2 and 7. The next step will be for it to compare items 2 and 8.

/2r 4 B 7 @ 9 10 11 12 13 14 15 16

bl

In Insertion Sort, the basic ideaisto take a sorted list and to insert a new item into its
proper position in the list. The length of the sorted list grows by one every time a new item
Isinserted. Y ou can start with alist containing just one item. Then you can insert the
remaining items, one at atime, into the list. At the end of this process, all the items have
been sorted. In the picture below, the items that are enclosed in a green box have been sorted
into increasing size. Each mgjor phase of the sort inserts one new item into thislist and
Increases the size of the box by one. The problem is to determine where in the list the new
item should be inserted. Y ou can use the applet to see how it all works.

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (4 of 11) [3/26/2000 12:50:22 PM]

xSortLab Lab

|I|I IIIIIIIIII'
i 2

3 4 5 6 7 8 9 10 11 12 13 14 15 1§

Temp

Merge Sort uses theidea of "merging” two sorted lists into one longer sorted list. To start,
think of single items as being sorted lists of length one. In the first phase of the sort, these
lists of length one are paired off and are merged to form sorted lists of length two. In the
next phase of the sort, the lists of length two are merged to form lists of length four. Then
lists of length four are merged into lists of length eight. This continues until al the items
have been merged into one long sorted list. In the picture below, lists of length four are
being merged into lists of length eight. The two lists that are being merged are in the top
row, enclosed inside a pair of green boxes. The merged list that is being formed isin the
bottom row, surrounded by a bigger green box. In the picture, items 3 and 7 have just been
compared. Since item 7 was smaller, it has been moved to the bottom list.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

QuickSort isthe most complicated of the available sorting methods. The main ideain
QuickSort is an operation called "QuickSortStep,” which works like this: Remove one item
from the list. Then divide the remaining items into two parts. items bigger than the removed
item and items smaller than the removed items. Move all the smaller items to the beginning

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (5 of 11) [3/26/2000 12:50:22 PM]

xSortLab Lab

of the list and al the bigger itemsto the end, leaving agap in the middle. The item that was
removed at the beginning is placed in the gap. Since all the items to the left are smaller and
al theitemsto the right are bigger, the item that was placed into the gap isin its correct,
final position. In the xSortLab applet, the item is colored black to indicate that it will not
move again during the rest of the algorithm. The black item divides the list into two parts,
each of these parts still has to be sorted. This is done by applying QuickSortStep recursively
to each part. The great cleverness of QuickSortStep isin the efficient way in which it
dividesthelist into smaller items and bigger items -- but that is easier seen than described.

The picture below shows QuickSortStep being applied to the original list of sixteen items.
An item has been removed from the list and placed in "Temp." A box encloses items that
have not yet been compared to Temp; as far as the program knows, Temp could end up in
any of the locations enclosed by the box. Items to the left of the box are known to be smaller
than Temp. Items to the right are known to be larger. Each step shrinks the box by one
location, moving an item from that location to the other side of the box if necessary. In the
end, thereis only one location left in the box, and that is where Temp belongs.

4 5 B ¥ & 9 1D 11 12 13 14 15 16

Temp

Using the Timed Sort Mode

Now that you understand how some sorting algorithms work, the next step isto investigate
how efficiently lists of items can be sorted. In this part of the lab, you will use the "Timed
Sort" mode of the xSortL ab applet. Select this mode from the pop-up menu at the very top
of the applet (which you launched above). In the Timed Sort mode, the computer works
behind the scene to sort arrays of randomly generated numbers. An array isjust a numbered
list of items; the size of the array refers to the number of itemsin the list. As the computer
sortsthe arrays, it displays various statistics in the large green areain the center of the
applet. The statistics are updated about twice every second.

At the top of the applet, there is a text-input box where you can type the size of the arrays to
be sorted. There is aso abox where you can type the number of arraysto sort. The
computer will create the number of arrays that you specify. Each array will have the size

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (6 of 11) [3/26/2000 12:50:22 PM]

xSortLab Lab

that you specify. The computer fills al the arrays with random numbers. Then it sorts each
array, one after the other. The reason for using more than one array is that for small arrays,
the time it takes to sort asingle array is atiny fraction of a second. Since xSortLab can't
measure very small time intervals accurately, the only way to get an accurate idea of the
sorting time for small arraysisto sort alot of arrays, measure the time it takes to sort them
al, and divide the total time by the number of arrays. For larger array sizes, using more than
one array is not so important (but it might still give you a more accurate measurement).

At the bottom of the applet, you will see a pop-up menu that can be used to select the sorting
algorithm that isto be applied to the arrays. Thereisaalso a"Start Sorting" button. Once
you have selected the sorting method and set up the size of the arrays and the number of
arrays, click on the "Start Sorting" button to begin. (If you are dealing with a large number
of items, there will be a noticeable timeinterval before the computer starts sorting. The
pause occurs while the computer isfilling the arrays with random numbers.) When you click
the "Start Sorting" button, the name of the button will changeto "Abort." Use the "Abort"
button if you want to terminate the sorting operation before the computer finishes.

The xSortL ab applet displays several different statistics about the sorts its does. For thislab,
you will only need the "Approximate Compute Time." Thisis different from the "Elapsed
Time" because as it is computing the applet allows some time -- about 20% of the time
available -- for other activities, such as redrawing the screen. It isonly the time actually
devoted to sorting that you are interested in. The compute time is approximate because it is
possible for your browser or other programs on your computer to steal time from the applet.
The applet might incorrectly include this time in the compute time it reports. However, if
you are not doing anything else with your computer at the same time that the applet is
sorting, then the reported time should be reasonably accurate. The computer measures time
in units of 1/1000 of a second, and this also limits the accuracy of measurements. In
particular, you should not try to use measurements that are less than, say, 0.1 seconds.
|deally, you should adjust the number of arrays so that the compute timeis at least a couple
of seconds.

Y our task in this part of the lab is to gather timing statistics about each of the five available
sorting methods. Y ou want to measure how long it takes each method to sort arrays of
various sizes. You will need this data for the exercises at the end of the lab, so you should
record the data as you work. For each experiment that you do, record the array size, the
number of arrays, and the compute time that is reported by the applet.

Y ou should apply each method to arrays of at |least the following sizes: 5, 10, 100, and 1000.
In addition, you should apply Merge Sort and QuickSort to arrays of size 10000. Y ou might
also want to try Merge Sort and QuickSort on arrays with 100000 items. And you might try
Bubble Sort, Selection Sort, and Insertion Sort with 10000 items. For the largest array sizes,
it will be good enough to sort asingle array. For the smaller array sizes, you will have to set
the number of arrays to be rather large to get a decent measurement. Don't be afraid to sort
10000, or even 100000, arrays of size 5. Use your judgement. (If the arrays require more
memory than your computer has available, you should just get an error message. However,
this has crashed many systemsthat | tried it on.)

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (7 of 11) [3/26/2000 12:50:22 PM]

xSortLab Lab
N2 and N*log(N)

In the previous section of the lab, you measured the computation times for the five sorting
algorithms on arrays of different sizes. Y ou probably noticed that QuickSort and Merge Sort
are much faster than the other three algorithms, except for very small arrays. Thisfinal
section of the lab gives a more rigorous mathematical form to this observation.

Some sorting algorithms exhibit what is called running time on the order of N squared. They
are also called, more briefly, N2 algorithms. The N here is the number of items being sorted.
To say that an algorithm is of the order of N2 means that the running time of the algorithm
for an array of N itemsis given approximately by K*N2, where K is some constant number.
(The approximation tends to become more exact as N gets bigger.) Different algorithms
have different values for K. Furthermore, if the same algorithm is run on different
computers, each computer will give adifferent value of K. (Saying that K is a"constant"
means that for a given algorithm running on a given computer, there is one value of K that
will work for any array size N.)

Bubble Sort is an example of an N2 algorithm. Y ou should be able to use the data you
collected in the previous section of the lab to calculate a K-value for Bubble Sort running on
your computer. For example, suppose that it took 8.205 seconds to sort 5 arrays of size
1000. Here N, the array size, is1000. Let T be thetime it took to sort one array of size 1000.
T can be computed by dividing the total time, 8.205, by the number of arrays, 5. This gives
T = 1.641 seconds. Now, T is supposed to be given approximately by the formula

T=K*N2
We know that N is 1000 and T is 1.641, so the equation becomes
1.641 = K * 10002
Y ou can solve thisfor K to get
K = 1.641/(10002) = 0.000001641

More generally, avaue for K can be calculated from the formula K = T/(N*N). Of course,
thisis only supposed to be an approximation. But if you repeat the experiment severa times
with different array sizes, and calculate avalue for K from each experiment, you should get
values of K that are fairly close to one another. If this does not happen, then the algorithm
you are looking at is probably not an N2 algorithm. (Remember, though, that there is room
for some "experimental error” because of the difficulty of measuring compute time. Also,
keep in mind that the values calculated for K tend to get more accurate as N increases. A
very small value of N might give a poor approximation for K.)

Not every sorting algorithm is an N2 algorithm. Some of them are N*log(N) algorithms.
This means that the running time of the algorithm is given approximately by K* N*log(N),
where N isthe size of the array and K is a constant. The function log(N) is the |ogarithm of
N. Y ou can compute this function using the "log" button on your calculator. (There are

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (8 of 11) [3/26/2000 12:50:22 PM]

xSortLab Lab

actually many different logarithm functions, and you can use any of them aslong asyou are
consistent. If you use a differernt logarithm function, you'll just get a different value for K.
The log function on your calculator is amost surely the "common™ or "base-10" logarithm,
and that's the one that | will usein thislab.) Y ou don't need to know anything about
logarithms, except that when N islarge, N*log(N) is much smaller than N2. This means that
for large values of N, an N*log(N) algorithm will run much faster than an N2 algorithm.
Based on this, you can probably guess which of the five algorithms are N2 algorithms and
which are N*log(N) algorithms.

Of course, you can use the measurements you made in the previous section of the lab to
compute an approximate value for K. If T isthetimeit takesto sort an array of size N, then
an approximate value for K is given by the formula:

K =T/ (N*log(N))

Y ou will do some calculations of this kind in the exercises below.

Exercises

Exercise 1. Each phase of Insertion Sort inserts an item into its correct location in a sorted
list. Describe in detail how thisinsertion is accomplished. Try to give an algorithm -- an
unambiguous, step-by-step procedure -- for inserting a new item into a sorted list. Y ou can
get the information you need by running the xSortL ab applet and seeing how it performs this
task.

Exercise 2: Suppose that Bubble Sort is applied to the following list of numbers. Show what
the list will look like after each phase in the sort:

7321 1583 66 7 19 18

Exercise 3: Suppose that Selection Sort is applied to the list of numbers given in Exercise 2.
Show what the list will look like after each phase in the sort:

Exercise 4. Suppose that Merge Sort is applied to the following list of numbers. Show what
thelist will look like after each phase in the sort:

732115836671918214458 11918244 39

Exercise 5: Suppose you have alist of names. Y ou could sort the list into alphabetical order
either by first name or by last name. Suppose that the list is already sorted by last name. For

example:
Phil Doe
Jane Doe
Fred Doe
Bill Jones
Jane Jones
Mary Smth

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (9 of 11) [3/26/2000 12:50:22 PM]

xSortLab Lab

Fred Smth
Jane Smth

Now, suppose that you take this list and sort it into alphabetical order by first name. In the
new list, Jane Doe, Jane Jones, and Jane Smith will be grouped together. The question is,
will they bein that order. That is, will people with the same first name still bein
aphabetical order by last name? For some algorithms, the answer is yes. Other algorithms,
however, can mess up the relative order of a group of people with the same first name. A
sorting algorithm that will always preserve the order of people with the same first nameis
said to be stable. Is Selection Sort a stable algorithm? Why or why not? How about Bubble
Sort? Why or why not? (Y ou might want to apple Bubble Sort and Selection Sort to the
above list to see what happens.)

Exercise 6: Consider the data that you collected on the compute time of the five sorting
algorithms. For arrays of size 100, how do the algorithms rank according to speed? How
about for arrays of size 5? The two orderings should be very different. How can this be? If
one algorithm is faster than another for arrays of size 5, why shouldn't it be faster for arrays
of size 1007?

Exercise 7: Selection Sort is an N2 algorithm. Y ou should be able to use data you collected
in thislab to compute the value of K in the equation T = K*N2 for Selection Sort running on
your computer. (Recall that N hereisthe array size and that T isthe time it takes to sort one
array of size N. Also remember that the equation is only approximately true.) Make atable
showing the following information for each array size, N, for which you collected data: The
array size (N); the number of arrays you sorted; the total computation time to sort the arrays;
the computation time for one array (T); and the computed value T/(N*N) whichisan
approximation for K.

Based on the datain your table, what is your best guess for the actual value of K? Explain
your reasoning.

For your convenience, hereis an applet that you can use to do the computation. Enter the
array size, the number of arrays, and the total computation time in the three boxes at the top.
The applet will calculate the computation time per array and the value of T/(N*N). It will do
the calculation when you click the "Compute" button and whenever you press return while
typing in one of the boxes.

(Sorry, your browser doesn't do Javal)

Exercise 8: QuickSort isan N*log(N) sorting algorithm. Y ou should be able to use data you
collected in thislab to compute the value of K in the equation T = K*N*log(N) for
QuickSort running on your computer. Make atable just like you did for Exercise 7, but use
the value of T/(N*log(N)) instead of T/(N*N). Y ou can use the above applet to do the
calculation. Based on the data in your table, what is your best guess for the actual value of
K? Explain your reasoning.

Exercise 9: IsInsertion Sort an N2 or an N*log(N) algorithm. Y ou can probably guess, but
how can you be sure? From the data you collected in the lab, compute both T/(N*N) and

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (10 of 11) [3/26/2000 12:50:22 PM]

xSortLab Lab

T/(N*log(N)) for various values of the array size N. Based on the answers, you should be

able to tell whether Insertion Sort isan N2 or an N*log(N) algorithm. Which isit? Explain
your reasoning. Do the same thing for Merge Sort.

Exercise 10: In Exercise 7, you determined the value of K for selection sort in the equation
T = K*N2. Now that you know the value of K, you can use the equation to predict the
running time T for any array size N -- even for arrays that are two big for you to experiment
with. Use the equation to predict the value of T when N is equal to one billion. (One billion
is 1000000000 or 10°.) Thisis the amount of time that your computer would take to sort one
billion items using Selection Sort. The equation gives T in terms of seconds, but you should
convert your answer to years.

Similarly, you can use the equation T = K*N*log(N) and the value of K that you found in
Exercise 8 to predict the running time T for QuickSort for arrays of any size N. What is the
prediction for the running time of QuickSort on an array of one billion items? Give your
answer in terms of hours,

Comment on the answers to the two parts of this exercise.

Thisis one of aseries of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis aso
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/xSortLabLab.html (11 of 11) [3/26/2000 12:50:22 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xTurtleLab 4

Labs for The Most Complex Machine

XTurtle Lab 4: Multiprocessing

A CENTRAL PROCESSING UNIT EXECUTES A PROGRAM one step at atime,

fetching each instruction from memory and executing it before going on to the next
instruction. In many cases, though, a problem can be broken down into sub-problems that
could be solved at the same time. In parallel processing, several CPUs work simultaneously
on a problem, each one solving a different sub-problem. Thisis one of the mgor techniques
for speeding up the execution of programs.

Even when only one processor is available, it is sometimes natural to break down a program
into parts that can be executed simultaneoudly. M ultitasking can be applied to divide the
single processor's time among the various parts of the program. The program won't be
executed any more quickly, but the use of parallel processing "abstractions' might make the
program easier to write.

In this lab, you will use the multitasking capabilities of the xTurtle programming language.
In this language, it is possible to split (or fork) a processinto several processes that will al
execute simultaneously and independently. Each process will have its own turtle visible on
the screen, so you can actually see what is going on. Although you will be seeing only
simulated parallel processing, it would be at least theoretically possible for each process to
run on its own CPU.

The background material for thislab is covered in Sections 10.1 and 10.2 of The Most
Complex Machine. It would be useful, but not essential, for you to read that material before
working on the lab.

This lab includes the following sections:
o Multiple Turtles

° SChedU“ng
e Shared Variables

e EXxercises

Start by clicking this button to launch xTurtle in its own window:
(Sorry, your browser doesn't do Javal)

(For afull list of labs and applets, see the index page.)

http://math.hws.edu/TMCM/java/labs/xTurtleLab4.html (1 of 7) [3/26/2000 12:50:23 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html

xTurtleLab 4

Multiple Turtles

After launching xTurtle, select the first sample program, "Bugs.txt," from the pop-up menu
at the top of the xTurtle window. Run the program by clicking on the "Run Program”
button. Y ou will see ten turtles wandering around on the screen. Thisisavery smple
program, but it illustrates the basic multiprocessing command in xTurtle, the fork statement.

The statement f or k(10) causes asingle process to split into ten processes. Any
commands in the program that follow the fork statement will be executed by each process
independently and simultaneously. In the Bugs program, each of the ten processes goes into
aloop that sends its turtle on arandom walk, and so you see all ten turtles wandering
aimlessly on the screen. Each turtle follows the same program, but each turtle chooses
different random numbers and so each turtle follows its own random path. The first two
exercises at the end of the lab ask you to add a few modifications to this program.

When a processisforked, all of the processes that are created start out in exactly the same
state, with one small exception. The xTurtle language has a predefined variable named
ForkNumber. Thisis aread-only variable; that is, you can test the value of this variable but
you can't change its value. Each of the processes created by afork statement getsits own
value for ForkNumber. For the first process, the value of ForkNumber is 1, for the second
the value is 2, and so forth. To test this, try executing the following commands. Type them
on asinglelinein the input box at the bottom of the xTurtle window, and then click the "Do
It" button:

fork(5) TellUser("ForkNunber = #For kNunber™")

When the computer executes the TellUser command, it substitutes the actual value of
ForkNumber for "#For kNunber ". Make sure you understand what happens. (Y ou have to
type both commands in the input box on oneline. If you execute ""f or k(5) " by itself, two
processes will be created, but both processes will "die" before you get a chance to typein
the next command.)

In the sample program "Parallel Spectrum.txt”, the ForkNumber is used in the program in
severa calculations. Each process does the same cal culation, but since different processes
have different values for ForkNumber, the result will be different in each process. For
example, "t ur n(4* For kKNunber) " will make Turtle #1 turn 4 degrees, Turtle #2 turn 8
degrees, Turtle #3 turn 12 degrees, and so on.

The sample program "TwoTasks.txt" shows how ForkNumber can be used to make severa
turtles do several completely different tasks. When you run this program, two processes are
created with afork command. Both processes execute an | F statement of the form:

| F ForkNunmber = 1 THEN
{ do one thing }
ELSE
{ do sonething el se }
END | F

http://math.hws.edu/TMCM/java/labs/xTurtleLab4.html (2 of 7) [3/26/2000 12:50:23 PM]

xTurtleLab 4

The first turtle, with a ForkNumber of 1, does one task while the second turtle, with a
ForkNumber of 2, does another, completely different task. Y ou are asked to do something
similar in Exercise 3 at the end of the lab.

Two other sample programs, "Parallel Snowflake.txt" and "Circles.txt," show that a program
can contain more than one fork command. In these programs, the first fork command creates
several processes. Each of these processes then goes on to execute a second fork command.
When this happens, each process splitsinto several processes. Y ou can see this clearly when
you run "Parallel Snowflake.txt," which creates 216 processes with a sequence of three

f or k(6) commands.

The "Circles.txt" sample program illustrates another important fact. It shows how a declare
statement works when it occurs after afork. Every process will execute the declare
statement separately, so that every process will have its own copy of the variable. Thus, the
variable can be assigned different valuesin different processes. Y ou will need to understand
the "Circles.txt" program in order to do exercise 4 at the end of the lab.

On a separate web page, I've provided a set of six sample programs that use xTurtle
multitasking to draw some interesting "tilings" of the plane. These are pictures that would be
more difficult to draw without multitasking. If you like pretty pictures, you might want to
take alook.

Scheduling

The operating system of a multitasking computer isin charge of scheduling all the
processes. That is, it determines which process gets to run next and how long it will be
permitted to run. The CPU, under the control of the operating system, will execute one
process for awhile, then switch to another, then to another, and so forth. In xTurtle, the
scheduling is done by the xTurtle applet, but the objective is to simulate the way things are
done in an actual multitasking computer system.

When you watch the execution of the "Parallel Snowflake.txt" or "Circles.txt" sample
program, you'll see that the processes do not al run at exactly the same speed. Asthe system
switches its attention from one process to another, there is some randomness in the amount
of time that is spent on each process. The xTurtle program is set up to run thisway by
default, sinceit's the way real multitasking systems work.

However, the xTurtle applet has an option to run all the processes at exactly the same rate of
speed. To turn this option on, click on the "Lock Step" checkbox in the bottom right corner
of the xTurtle window. When this box is checked, all the turtles on the screen will movein
"lock step." While this might not be an accurate simulation of multitasking, it can be pretty
to watch. Y ou might want to try executing some of the sample programs with this option
turned on.

http://math.hws.edu/TMCM/java/labs/xTurtleLab4.html (3 of 7) [3/26/2000 12:50:23 PM]

xTurtleLab 4

Shared Variables

In all the examples you have seen so far, the multiple processes are compl etely independent.
The various turtles go about their business without interacting with the other turtlesin any
way. (Thisis not quite true, since the turtles have to share the same screen. Y ou might have
noticed that one turtle will sometimes wipe out the image of another turtle temporarily.)

Things can get more interesting when the processes have to communicate with each other.
In xTurtle, processes communicate through shared variables. When avariable is declared
before afork command, there is only one copy of that variable, which is shared by all the
processes. If any of those processes changes the value of the variable, then all the other
processes can see the new value. Thisisthe only form of communication between processes
that can occur in XTurtle.

Asexplained in The Most Complex Machine, great care must be taken when shared
variables are used for communication, so that one process does not change the value of a
variable while another processis using that value. A process must obtain exclusive access to
ashared variable while it isusing that variable. Thisisthe mutual exclusion problem. In
xTurtle, the grab statement is provided to make mutual exclusion possible. A grab statement
takes the form

GRAB <gl obal vari abl e name> THEN
<st at enent s>
END GRAB

Only one process at atimeis allowed to "grab" a given variable. When a process comesto a
grab statement, the computer checks to see whether another process has already grabbed the
variable. If so, then the second process must wait until the first process releasesits lock on
the variable by finishing the execution of its grab statement. Only then is the second process
allowed to grab the variable and execute the statementsin its own grab statement. (Of
course, this can cause big problemsif a process grabs a variable and doesn't release it. Other
processes that want to grab the variable will never get achanceto run at all.)

The statements inside a grab statement are called a critical region. Aslong as access to
shared variablesis confined to critical regions, processes can use the variables to
communicate in relative safety.

Even with the grab statement, communication among processes can still be very
complicated. A relatively straightforward example can be found in the sample program
"SynchronizedRandomWalk.txt." Select this program from the pop-up menu, read the
comments, and run the program. Y ou will see two turtles executing identical random walks.
One of the turtles selects a random angle to be used in the random walk and recordsit in the
shared variable, angl e. The other turtle reads the value from the shared variable and uses
it. A second shared variable, cont r ol , isused in agrab statement to control accessto
angl e. Exercise 6 asks you to modify this program so that more than two processes are
involved.

http://math.hws.edu/TMCM/java/labs/xTurtleLab4.html (4 of 7) [3/26/2000 12:50:23 PM]

xTurtleLab 4

Another example of shared variablesis given in the sample program
"ThreeNPlusOneMax.txt." Read the comments in the program and run the program. It will
take a few seconds to run, and you won't see anything happening until the end, when the
program reports the value that it has computed. In Exercise 7, you will work with asimilar
example.

The ThreeNPlusOneMax program also illustrates what happens when afork command is
used inside a subroutine: At the end of the subroutine, al the processes are "rejoined” into
one process before the subroutine terminates. After the subroutine finishes, there is only one
processto carry on. The forking is part of the subroutine's black box; it has no effect outside
the subroutine. In the sample program, there is only one process to execute the TellUser
statement at the end of the program.

Exercises

Exercise 1. Modify the sample program "Bugs.txt" so that each bug will leave atrail behind
it as it wanders randomly around on the screen. Each of the trails should be a different color.
The screen should ook something like this after the program has run for awhile:

Exercise 2: In the sample program "Bugs," ten "bugs" wander around on the screen. Redl
bugs, though, are born and die. Add "birth" and "death” to the Bugs program. Add birth by
programming a one-in-twenty-five chance that a bug will split in two, each time it moves.
(Y ou can program a one-in-twenty-five chance by checking whether Randomint(25) is 1.)
Similarly, there should be a 1-in-25 chance that the bug will die.

To program death, you will need to know about another built-in xTurtle command,
KillProcess. When a process executes the command KillProcess, it dies. The turtle for that
process disappears from the screen. (Note that this command differs from Halt. If any
process executes a Halt command, the entire program halts and so all the turtles die.)

Exercise 3: The sample program "TwoGraphs.txt" draws the graphs of two functions, one
after the other. Instead of asingle turtle that draws the graphs one after the other, the
program could use two turtles that draw the graphs at the same time. Modify the program so
that it does this. Y ou only need to do a bit of work on the half-dozen or so lines at the very

http://math.hws.edu/TMCM/java/labs/xTurtleLab4.html (5 of 7) [3/26/2000 12:50:23 PM]

xTurtleLab 4

bottom of the program.

Exercise 4: Write aprogram that uses two fork(9) statements to draw a multiplication table
like this one on the screen:

2 3 4 5 6 7 8 9
4 6 8 10 12 14 16 18
6 9 12 15 18 21 24 27
8 12 16 20 24 28 32 36
15 20 25 30 35 40 45
12 18 24 30 36 42 48 54
14 21 28 35 42 49 56 63
16 24 32 40 48 56 64 72
18 27 36 45 54 63 72 81

©CO~NOOOUITDEWNE
[EEN
o

The entry in row number row and column number col isrow*col. Your program will be
similar in outline to the sample program, "Circles.txt." Y ou'll need to use the DrawText
command to write each number on the screen. Recall that if numis avariable, then the

command DrawText("#num") will output the value of num at the current turtle position.

Exercise 5: A recursive subroutine for drawing binary trees was covered in xTurtle Lab 3.

Binary trees can aso be drawn using multitasking. Each "fork" in the treeis represented by
afork command in the program. Here is a recursive subroutine that uses multitasking to
draw abinary tree:

SUB tree(size, conplexity)
| F conplexity > 0 THEN
forward(sizel/2)
fork(2)
| F For kNunber = 1 THEN
turn(45)
ELSE
turn(-45)
END | F
tree(sizel/2, conplexity - 1)
END I F
END SUB

Implement this subroutine in a program that draws binary trees. Then modify the subroutine
to add some color and an element of randomness. For example, instead of being always
equal to two, the number of branches could be random. Instead of just dividing the size by 2,
you could multiply it by arandom amount. Try to make your program draw "bushes’ that
bear at |east some resemblance to real bushes.

Exercise 6: Modify the sample program " SynchronizedRandomWalk.txt" so that instead of
showing two turtles moving in identical random walks, it shows five turtles moving in

identical random walks. Each of the turtles should start from a different position and should
draw in adifferent color. The hard part of this exercise is passing off the "control" from one

http://math.hws.edu/TMCM/java/labs/xTurtleLab4.html (6 of 7) [3/26/2000 12:50:23 PM]

xTurtleLab 4

turtle to the next. Y ou have to make sure that the control goes through thevalues 1, 2, 3, 4,
5, and then back to 1 so that each turtle will get a chance to move. Just asin the original
program, Turtle #1 should select the random angle. Each of the other four turtles should use
the same angle.

Exercise 7. The Sample program "SumOfSquares.txt”" is afailed attempt to write a program
that computes the value of the sum

12+22+ 32+, +252

Run the program several times. It will give adifferent answer each time. (If you've turned
onthe"Lock Step" checkbox, then you'll get the same answer each time, but it will still be
an incorrect answer.) Use a grab statement to fix the program so that it gives the correct
answer. See the "ThreeNPlusOneM ax.txt" sample program for an example of using agrab
statement for asimilar purpose. Write a short essay explaining carefully what goes wrong
when the grab statement is omitted and how adding the grab statement fixes the problem.

Exercise 8: Design your own parallel processing xTurtle program. Try to make a nice
colorful design, either random or symmetric. Hopefully, it will be fun to watch as multiple
turtles construct the picture.

Exercise 9: Isit really sometimes easier to write a program using parallel processing than to
write a standard program to do the same task? Write a short essay explaining and defending
your opinion.

Thisis one of aseries of |abs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis also
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1998

http://math.hws.edu/TMCM/java/labs/xTurtleLab4.html (7 of 7) [3/26/2000 12:50:23 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

XTurtleLab 4, Tiling Examples

Labs for The Most Complex Machine

Tiling Examples for xTurtle

THE COPY OF xTurtle on this page has six sample programs written by Kevin Mitchell.

Each of these programs uses xTurtle's multitasking abilities to draw atiling of the plane.
After launching xTurtle, choose an example from the pop-up menu at the top of the window
and click the "Run Program” button.

Click this button to launch xTurtle in its own window:

(Sorry, your browser doesn't do Javal)

Back to the Rest of the Lab

http://math.hws.edu/TMCM/java/labs/xTurtleTilingExamples.html [3/26/2000 12:50:24 PM]

http://www.hws.edu/~mitchell

xModels Lab 1

Labs for The Most Complex Machine

XModels Lab 1: Two-D Graphics and
Animation

| MAGES ARE OFTEN CREATED ON COMPUTERS in atwo step process. First, a
geometric model of a sceneis created, then the scene is rendered using realistic coloring and
lighting effects. In thislab and the next, you will use an applet called xModels, which deals
with the model-construction stage of image creation. Thislab covers two-dimensional
scenes, while the next lab moves on to the problem of working with three-dimensional
objects.

Complex geometric models are built up out of simpler components which are scaled, rotated
and positioned in the scene using geometric transformations. Simple geometric shapes like
circlesand lines are used as a starting point in the modeling process. These shapes can be
combined to form more complex figures that can then be combined to form even more
complex scenes.

Scenes constructed from objects in thisway can be used in a natural way to produce
animations. An animation isjust a sequence of frames in which objects move slightly from
one frame to the next. When the frames are quickly displayed one after the other, the viewer
perceives objectsin motion.

In this lab, you will use the xModels appl et to create two-dimensional geometric models and
simple animations. In the process, you will learn about various two-dimensional geometrical
transformations. The lab is based on the material in Section 12.1 of The Most Complex
Machine. Some of the questions at the end of Chapter 12 -- and their answers in the back of
the book -- are also relevant

The lab includes the following sections:
« Introducing xModels

Basic Objects and Basic Transformations

e« Animation
o Defined Objects and Structured Compl exity
o Exercises

Start by clicking this button to launch the xModels applet in its own window:
(Sorry, your browser doesn't do Javal!)

(For afull list of labs and applets, see the index page.)

http://math.hws.edu/TMCM/java/labs/xModelsLabl.html (1 of 10) [3/26/2000 12:50:25 PM]

xModels Lab 1

Introducing xModels

The xModels applet that you launched above is set up to load several sample programs.
Programs for xModels are actually scene descriptions written in a scene description
language. A scene description consists of alist of objects in a scene, together with geometric
transformations to be applied to the objects and attributes that affect the object's appearance.
(In xModels, the only attribute that an object can haveisacolor.) A scene description can
include definitions of objects to be used later, perhaps repeatedly, in the scene. Such object
definitions are very much like subroutines in a programming language. Finally, there are a
few specia-purpose commands in the XM odel s scene description language that can be used
to control such things as the background color and the number of framesin an animation.

When the applet first starts up, you should see a text area containing a scene description
called "Pinwhedl." It describes an animation showing arevolving, colored pinwheel
displayed on a black background. Don't worry for now about the scene description itself.
Your first task isto learn how to get xModels to display the scene.

To see the scene represented by a scene description in xXModels, you have to render it by
clicking the"RENDER!" button below the text area. When you click this button, the applet
first checks the scene description in the text areafor errors. Assuming that no errors are
found, the applet will switch to a"Graphics' panel, where it will display the scene. Try it
now. To the right of the displayed scene isaset of controls. You should familiarize yourself
with the controls. Hereis a brief description of each:

« A message at the top of the column of controls shows the number of the frame that is
currently displayed. An animation consists of a sequence of frames, which are
displayed one after another. The "Pinwhedl" animation has 121 frames, which are
numbered from 0 to 120. (If you get tired of watching this message flash, try clicking
on it with your mouse. This might make it stop, depending on the version of Javathat
you are using.)

o The"New Program" button will give you a blank text area where you can write your
own scene description from scratch. Choosing "[New]" from the pop-up menu at the
very top of the applet will have the same effect.

« The"Show Program™ button will take you back to the scene description that produced
the image or animation displayed on the graphics screen.

« The next four buttons are used to control animations. If the scene description specifies
asingleimage, all four buttons are disabled. The "Go" and "Pause" buttons can be
used to start and stop an animation. If an animation has been paused, then the "Next
Frame" and "Previous Frame" buttons can be used to move though the framesin the
animation, one frame at atime.

« Next, thereis apop-up menu to control the speed at which animations are played
back. The default is 10 frames/second, which should be OK for most purposes. (This
menu represents only arequest for agiven frame rate. The computer might not be
able to display frames as quickly as you request.)

o Findly, thereisapop-up menu that determines what happens when the computer

http://math.hws.edu/TMCM/java/labs/xModelsLabl.html (2 of 10) [3/26/2000 12:50:25 PM]

xModels Lab 1

reaches the end of an animation. In the default setting, "Loop," the computer will
return to the beginning of the animation and replay, and will keep doing this until you
stop it. For many animations, the first frame is the same as the last, and the "L oop"
option produces what 1ooks like continuous motion. The second option in the menu is
"Back-and-Forth," which makes the computer reverse direction at the end of the
animation and play it backwards. The last option, "Once Through" makes the
computer stop when it reaches the end of the animation.

After you have played with the "Pinwheel" animation for a bit, it's time to learn how to write
a scene description of your own.

Basic Objects and Basic Transformations

To begin working with scene descriptions, click on the "New Program™” button, or select
"[New]" from the pop-up menu at the top of the applet. In this section, you will work with
single images. Animating an image will be a simple extension of this.

To add an object to a scene, you just have to add the name of the object to the scene
description. Every time you use the name, you get a new copy of the object. If you give only
the name of the object, it will appear at a default size, position, and orientation. If you want
It to have a different size, position, or orientation, you have to apply one or more
transformations to the object. Thisis done simply by listing the transformations after the
object name. For example, the word "square” will add a square to the scene. It will be a
small square, one unit wide and one unit high, in the center of the scene. (The entire image
aways includes a 20-by-20 unit region, with x-coordinates from -10 to 10 and y-coordinates
from -10 to 10. Since the image might not be exactly square, it can extend farther than this
in one direction or the other.)

To get abigger or smaller square, you can apply a scale transformation. To get a square that
isfive times as large as the default, you have to scale it by afactor of five. Thisis done by
saying square scale 5. Try typing the following scene description into the empty text area.
The render the scene and see what you get:

square
square scale 5

Y ou should see two squares of different sizes. (By the way, if you make some sort of
mistake in the program, an error message will be displayed above the text area. You can
click on the message, if you like, to make it go away.)

Now, using transformations is not the most obvious way of doing things, but it turns out to
be remarkably powerful and even, after some experience, intuitive. In addition to the scaling
transformation, the geometric transformations that you can use are translation and rotation.
Scaling changes an object's size. Translation movesit. Rotation pivots it about the point
(0,0) or about some other specified point. (It isimportant to understand that you don't
actually see the object moving. The applet applies the transformations to determine the size,
position, and orientation of the object before it adds the object to the scene. Y ou only seeit

http://math.hws.edu/TMCM/java/labs/xModelsLabl.html (3 of 10) [3/26/2000 12:50:25 PM]

xModels Lab 1

initsfina position. Later, you'll see how to make an animation in which objects do seem to
move, but even then each individual frame of the animation is constructed as described
here.)

Y ou've seen that the transformation scale 5 magnifies an object by afactor of 5. To shrink
an object, you would use a scaling operation with afactor lessthan 1, asfor examplein
sguare scale 0.5. The scale command can also be used with two numbers. The first number
gives a horizontal scaling factor and the second a vertical scaling factor. For example,
square scale 2,5 specifiesarectangle that is 2 unitswide and 5 unitstall. (By the way, the
commain"2,5" isoptional. The xModels applet ignores commas. Y ou can put them in, if
you like, for human readability.)

The transformation rotate 45 pivots an object through an angle of 45 degreesin a
counterclockwise direction about the point (0,0). A negative angle would rotate the object in
aclockwise direction. It is possible to specify a different pivot point. For example, square
rotate 45 about 0.5,0.5 would pivot the square about its upper right corner, (0.5,0.5), instead
of about (0,0).

The transformation translate 3,7 moves an object 3 units to the right and 7 units up.
Negative numbers can be used to move the object to the left and down. If the trandlate
command is used with just one number, asin trandlate -5, it indicates horizontal movement
to the left or right. For convenience, there are also commands xtranslate and ytranslate for
moving an object horizontally or vertically only. For example, "square ytranslate 5"
produces a square trandlated five units upwards.

Y ou can apply a sequence of transformations to the same object, ssimply by listing them all
after the object's name, in the order in which they are to be applied. For example,

square scale 3 rotate 30 translate 5,5

specifies asquare that is first magnified by afactor of 3, then rotated through 30 degrees,
then translated 5 units horizontally and 5 units vertically. The order in which the
transformations are applied can make a difference. Switching the order can produce a very
different picture.

There are other basic objects besides squares. A circleisacircle of diameter one, centered at
(0,0). A lineisaline of length one that extends from the point (-0.5,0) to (0.5,0). A polygon
can be specified by listing its vertices. For example,

pol ygon 0,0 0,5 3,4

specifies atriangle with vertices at the points (0,0), (0,5) and (3,4). These few simple shapes
are al that you have to work with.

To make things alittle more interesting, you can add color to your scenes. The default
drawing color is black. Y ou can use a col or-change command to change the drawing color.
The drawing color that you specify remainsin effect until it is changed by another
color-change command. (That is, it does not just apply to the next object.) The color-change
commands include the names for the standard colors: red, green, blue, cyan, magenta,

http://math.hws.edu/TMCM/java/labs/xModelsLabl.html (4 of 10) [3/26/2000 12:50:25 PM]

xModels Lab 1

yellow, black, white, and gray. Thereis an rgb command that uses three numbers to specify
the red, blue, and green components of a color. The numbers must be in the range zero to
one. For example, "rgb 0.7 0.7 1.0" represents alight blue color. (Thereis also an hsb
command that lets you specify the hue, saturation, and brightness levels of a color, but |
won't discuss the details here.)

For example, here is a scene description for an image scene that contains several objects of
different colors:

red

square scale 2 translate 5,5

cyan

circle scale 5,2 rotate 30

rgb 0.4 0.2 0.2

square scale 3 rotate 30 translate -5,5
bl ue

polygon 0,0 0,5 3,4 translate -7,-7
magent a

line scale 5 rotate 45 translate 5,-5

Y ou can give your scene a background color with the background command. The word
"background" must be followed by the color you want to use for a background. For
example:

background gray
or
background rgb 1.0 0.8 0.8

The background command should occur at most once in a scene. It will have the same effect
no matter where it occurs.

You'll find a copy of the above scene description, with a pink background, in the sample
program " SimpleObjects’. Y ou can select this example from the pop-up menu at the top of
the applet. Y ou should render the scene to see what it looks like. Y ou should also spend
some time making modifications to the scene. Try changing the color of the objects or the
background. Try changing the numbers for the transformations. Add some new objects and
new transformations. Y ou should try to understand how scenes are constructed from objects,
transformations, and colors.

Animation

Let'sfaceit, static scenes are not all that exciting. Animation makes things get alot more
interesting. To make an animation in xXModels, you just have to do two things to your scene
description: put an animate command at the beginning, and change some of the numbersin
the scene description to number ranges. Here is a simple example, which can aso be found
in the sample scene description, "FirstAnimation”:

http://math.hws.edu/TMCM/java/labs/xModelsLabl.html (5 of 10) [3/26/2000 12:50:25 PM]

xModels Lab 1

ani mte 30
circle scale 1:5

red
polygon -4, -3 4, -3 -5:5, 4

bl ue
square scale 7:15, 1 rotate 0:60

Thefirst line of this scene description is an animate command which specifies that 31
frames will be rendered. (There are 31 frames, not 30, because the number in the animate
command gives the length of the animation, not the number of frames. There are 30
intervals between frames, so there are 31 frames.) The remaining lines are a standard scene
description, except that in some cases number ranges, such as 1.5 or 0:60, appear instead of
single numbers. Where such arange appears, the first value in the range is used in the first
frame, the second value is used in the last frame, and intermediate values are used in
intermediate frames. If arange is used with translate, the object moves during the animation;
iIf it isused with scale, the object grows or shrinks; and if with rotate, the object rotates
through a range of angles.

The "FirstAnimation” example shows a circle that grows from size 1 to size 5 over the
course of the animation. It contains ared polygon in which the x-coordinate of one of the
vertices ranges from -5 to 5. And it has a blue rectangle that both changes size and rotates
during the animation. Try out the example, and make sure you understand it. Try modifying
it and adding to it!

Computer animation uses the idea of key frames. The key frames in an animation are
specified explicitly. Other frames, which bridge the gaps between key frames, are created by
the computer by interpolating between the key frames. The sample animation given above
has just two key frames, one at the beginning and one at the end. In a number range such as
1.5, the first number gives the value for the first key frame, and the second gives the value
for the second key frame. The xModels applet computes intermediate values for the
intermediate frames.

In xModels, you can create animations with more than two key frames. | call such
animations segmented animations. Y ou can specify how many frames there are in each
segment, between the key frames. For example,

animate 15 30 10

specifies that there are four key frames. Therefore, there are three segmentsin the
animation. The first segment contains 15 frames, the second contains 30, and the third
contains 10. The key frames are frames number 0, 15, 45, and 55.

When you use a number range in a segmented animation, you must specify a number for
each of the key frames. For example, you could use the number range 1:3:5:2 in an
animation with three segments and four key frames. (Note that the number of colonsis

http://math.hws.edu/TMCM/java/labs/xModelsLabl.html (6 of 10) [3/26/2000 12:50:25 PM]

xModels Lab 1

aways equal to the number of segments.) The number range 1:3:5:2 specifiesavalue of 1
for the first key frame, 3 for the second, 5 for the third, and 2 for the fourth and final key
frame.

Y ou can leave out some of the numbers in the middle of a number range (aslong as you
don't leave out the colons). For example, the number range 1:::2 provides avalue of 1 for
the first frame and avalue of 2 for the last frame. The computer interpolates smoothly
between these two values for all the intermediate frames.

For example, here is an animation that shows a small square moving along the inside edges
of abig sguare. Y ou might want to type thisin -- or cut-and-pasteit in -- and see how it
works:

animte 15 15 15 15

square scale 12

red

square scale 2 translate -5:5:5:-5:-5 5:5:-5:-5:5

Defined Objects and Structured Complexity

It's along way from simple geometric shapes to complex scenes. As usual, this complexity

Is handled by tackling it level-by-level, with reasonable jumps in complexity from one level
to the next. In the xModels applet, new objects can be defined on one level that can then be
used on higher levels. An object definition takes the form of the word define followed by a
scene description enclosed in square brackets ("[" and "]"). For example:

defi ne wheel |
circle
| i ne
line rotate 60
line rotate 120

]

When a definition like this one occurs in a scene description, it does not immediately add
anything to the overall scene. It just defines the word "wheel" for the computer as a new
type of object made up of the specified parts. Once this definition has been made, a "wheel"
can be used like any other object. Y ou can apply the same transformations to wheels that
apply to other objects. For example:

wheel scale 2 xtranslate -2.5

The word wheel becomes part of the language of xModels, on an equal basis with square
and circle. It can even be used in the definitions of other objects!

The sample program named "Wagon" contains an example in which wheels are defined and
used. Open thefile, read it, and render it to see what it looks like. Note that the wheels on
the wagon rotate. Another example is given in the sample program "Houses,” which you
should also look at.

http://math.hws.edu/TMCM/java/labs/xModelsLabl.html (7 of 10) [3/26/2000 12:50:25 PM]

xModels Lab 1

Exercises

Exercise 1. Write a scene description for astill image that shows five squares of different
colors nested inside one another, like this:

Use any colorsyou like (aslong as you don't use the default color, white, for the
background).

Exercise 2: This exercise builds on the nested squares that you created for Exercise 1. Turn
your scene description into an animation in which each of the five squares rotates about its
center. The sguares should rotate at different speeds. Some of them should rotate clockwise
and some should rotate counterclockwise. (The speed of rotation has to do with the range of
angles through which the object rotates over the course of the animation.)

Exercise 3: Thefirst scene you looked at in this lab was the "Pinwheel" example. The scene
description for this example contains no comments. Explain what each line in this scene
description does.

Exercise 4. Carefully explain the difference between

square scale 5,2 rotate 45
and
square rotate 45 scale 5,2

What image is produced by each command? Why are they different? How does the
computer carry out each command?

Exercise 5: Use two polygons to make alarge letter A, like this:

http://math.hws.edu/TMCM/java/labs/xModelsLabl.html (8 of 10) [3/26/2000 12:50:25 PM]

xModels Lab 1

The triangle inside the top of the A is one polygon. All the other lines form another, larger
polygon.

Exercise 6: This exercise builds on the "Pinwheel" example. Use the definition of the
pinwheel object form that example. Make a"double pinwheel" object consisting of along
rectangular bar with arotating pinwheel at each end. Use your double_pinwheel object in
an animation that shows a double pinwheel rotating about its center. Here are two frames
from such an animation:

Exercise 7: The sample scene description called "Bounce" contains an animation in which a
red circle seems to bounce back and forth between two edges on asquare. Try it. Add a
second circle bouncing between the other two edges. The second circle should be blue. This
can be done by adding two short, ssmple lines at the end scene description (one for the color
and one for the ball). Think about geometric transformations!

Once you have the two bouncing circles inside the square, make the square and the two
circlesinto asingle object by putting them into a"define" command. Make an animation in
which the combination object rotates and changes size.

Exercise 8: Write an essay comparing object definitions in xModels with subroutine

http://math.hws.edu/TMCM/java/labs/xModelsLabl.html (9 of 10) [3/26/2000 12:50:25 PM]

xModels Lab 1

definitions in a programming language such as xTurtle. How are they similar, and how are
the different. (Among other things, you should discuss the fact that object definitionsin
XModels do not have parameters. What are the consequences of this?)

Exercise 9: Write an essay discussing how objects created by the "define" command can be
used to create complex scenes. Why is the ability to define objects so important to dealing
with complexity? (Keep in mind that once an object has been defined, it can be used asa
component in another, more complex object. Y our essay should discuss this fact.)

Exercise 10: Design your own animated scene using xModels. Try to be creative and/or
aesthetic.

Thisisone of a series of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis also
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/xModelsLab1.html (10 of 10) [3/26/2000 12:50:25 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xModels Lab 2

Labs for The Most Complex Machine

XModels Lab 2: Adding the Third Dimension

REAL OBJECTS EXIST in three dimensions, and realistic computer graphics must be able

to deal with three-dimensional objects. In the previous lab, you used the xModels applet to
create two-dimensional scenes and animations. However, the applet can also use
three-dimensional objects and three-dimensional geometric transformations. In thislab, you
will add the third dimension to your work with xModels.

Before starting this lab, you should make sure that you are familiar with using the xModels
applet to write programs and to view scenes. Y ou should understand the basics of the scene
description language, including the use of the define command to create new objects. This
material was covered in the previous lab and is not repeated here.

This lab includes the following sections:
o IntheDirection of Z

o Three-Dimensional Objects and Transformations

o Lathing and Extrusion

o Exercises
Start by clicking this button to launch the xModels applet in its own window:
(Sorry, your browser doesn't do Javal)

(For afull list of labs and applets, see the index page.)

In the Direction of Z

Geometric models can be constructed in three dimensions, aswell asin two. Even for
three-dimensional models, of course, the image still hasto be displayed on a
two-dimensional computer screen, but the model of the scene exists, at least in our
Imagination and the computer's memory, in three dimensions. Once you understand the
basic ideas of geometric modeling in two dimensions, the step up to three dimensionsis not
so hard. Just remember that in addition to the x and y-coordinates that you are used to, there
Is also a z-coordinate.

Think of z as measuring distance in front of the computer screen (or, if z is negative, behind
it). The x-axisis a horizontal line on the computer screen. The y-axisisavertical line on the
screen. The x- and y-axes intersect at a point called the origin, which is at the center of
XxModels display area. The z-axisis aline perpendicular to the screen. Like the other two
axes, the z-axis goes through the origin. The positive direction of the z-axis points at you out

http://math.hws.edu/TMCM/java/labs/xModelsLab2.html (1 of 7) [3/26/2000 12:50:26 PM]

xModels Lab 2

of the screen. Larger positive values are closer to you. Points behind the screen have
negative z-values. Any point in three dimensions has three coordinates, giving its position
with respect to the x, y, and z axes.

In the previous |lab, you worked with two-dimensional objects that lay entirely in the
xy-plane. In this lab, we add a z-coordinate, and you can work with objectsthat lie
anywhere in xyz-space. The image that you see on the screen is obtained by projecting the
three-dimensional objects onto the two dimensional computer screen. By default, objects
appear as they would from the point (0,0,20), which is on the z-axis 20 unitsin front of the
screen. (Any objects or parts of objects that are behind this point are not shown at all.) The
number 20 is called the viewing distance. Y ou can set adifferent viewing distance for a
scene by using the viewDistance command in your scene description. For example, the
command

viewDistance 50

sets the viewing distance to 50. This means that the objects are projected onto the xy-plane
from the point (0,0,50). The viewDistance can only occur once in a scene description, and it
will have the same effect no matter where it occurs.

(This description of viewing distance is somewhat misleading, since xModels will display
the same region of the xy-plane, no matter what the viewing distance. Y ou might expect to
see alarger region of the xy-plane if you "back up," but this doesn't happen. Things will,
however, look more squashed in the z-direction. Objects that actually lie in the xy-plane will
look exactly the same no matter how the viewing distance is set.)

The xModels applet, which you launched above, is set up to load several sample programs.
When it first starts up, it should be displaying a program called "Flaps." Click on the
"RENDER!" button to see what this animation looks like. The object in the animation is
made from eight rectangles, but the rectangles have been rotated out of the xy-plane so that
the object as whole is three-dimensional. To understand the scene description, you'll have to
read the next section of the lab. However, you might want to try adding a viewDistance
command to the scene description. Try several different distance settings. In particular, you
should try viewDistance 5, which places the viewing point inside the object. Try to
understand what you see.

Three-Dimensional Objects and Transformations

The basic building blocs of three-dimensional models in the xModels appl et still include
line, circle, square and polygon, which start out as two-dimensional objects in the xy-plane
but which can be trandlated or rotated out of that plane. (Y ou saw an example of thisin the
"Flaps" program above.)

There are also afew three-dimensional basic objectsin xModels: A cubeisa
one-by-one-by-one unit cube, centered at the point (0,0,0). A coneisacone that just fits
inside the unit cube, and a cylinder isasimilarly-sized cylinder. These objects are pretty
small, but they can of course be scaled. For example, if you want to see what a cone looks

http://math.hws.edu/TMCM/java/labs/xModelsLab2.html (2 of 7) [3/26/2000 12:50:26 PM]

xModels Lab 2

like, try a scene description that contains the command:
cone scale 10

Thereisaso apolygon 3D command, which constructs a polygon from alist of
three-dimensional pointsinstead of two-dimensional points. Later in the lab, you'll see two
other commands, lathe and extrude, which can produce interesting objects.

Just as in two-dimensions, the geometric transformations in three dimensions include
scaling, trandation, and rotation.

The scale command can be used with one, two, or three parameters. With one parameter, as
in scale 5, it magnifies an object equally in all three directions. If three parameters are
given, they specify different scaling factors in each direction. For example,

cube scale 5 0.5 2

makes arectangular solid that is 5 unitslong in the x-direction, 0.5 units high in the
y-direction, and 2 units thick in the z-direction. If a scale has only two parameters, then the
same scaling factor is used in the z-direction asin the y-direction. (Thisversion is provided
mostly for use in two dimensions, where any scaling in the z-direction has no effect in any
case.)

The translate command can also be used with one, two, or three parameters. In its most
genera form, with all three parameters, it specifies motion in al three directions. With one
parameter, it specifies movement in the x-direction only, and with two parameters, it
specifies movement in the x-direction and y-direction only. There is a command ztranslate
for moving an object in the z-direction only. For example, "square ztranslate 5" represents a
square that has been moved 5 units forward out of the screen. (Y ou already saw the

anal ogous commands xtranslate and ytranslate in the previous lab.)

Scaling and tranglation are pretty much the same in three dimensions as in two, but rotation
in three dimensions is another matter. In two dimensions, an object is rotated about a point.
A three-dimensional object must be rotated about aline, like atop spinning about its axis. In
XxModels, there are three rotations commands, for rotation about the x-axis, the y-axis, and
the z-axis, respectively. The commands are called xrotate, yrotate, and zrotate. (The zrotate
command is actually the same as the plain old rotate.)

It is easiest to understand rotation in three dimensions by looking at examples. Enter the
following simple scene description into a new program in xModels, and render it:

ani mate 60
square scale 10 yrotate 0: 360

Y ou will see a square rotating about its vertical axis. Note that the edge of the square that is
farther from you looks shorter, as it should. Try the same scene with the square changed to a
cube. Try using xrotate and zrotate instead of yrotate.

Next, try the following example, which illustrates a trandlation in the z direction followed by
arotation:

http://math.hws.edu/TMCM/java/labs/xModelsLab2.html (3 of 7) [3/26/2000 12:50:26 PM]

xModels Lab 2

ani mate 60
square scale 5 ztranslate 8 yrotate 0: 360

The ztranslate command moves the square 8 units forward towards you. The yrotate
command then sendsiit circling away from you and back. Try using xtranslate instead of
ztranslate. Try xrotate and zrotate in place of yrotate. Make sure that you understand what
you are seeing.

Of course, alot of the power of xModels comes from its ability to construct complex,
hierarchical models using the define command. Y ou can use define to define three
dimensional objects, just asyou used it in two dimensions. Y ou'll work with some defined
objects in the exercises at the end of the lab.

The example program "NestedSquares3D" uses several levels of object definitionsto create
what might be the ultimate "nested squares’ example. Each square rotates on its own, but it
also takes part in the rotation of all the squaresin which it is nested. | find the result visually
interesting, kind of like amobile.

Lathing and Extrusion

Modeling real objects (like cars or faces) in 3D requires that they be approximated with
large numbers of polygons, perhaps hundreds of polygons in one object. Y ou won't want to
do anything so complicated with xModels. But xModels does have two ways of producing
certain types of complicated objects. The methods are called |athing and extrusion. These
are standard operations in three-dimensional graphics. Theideais similar in each case: a
specified figure is copied several times, and the vertices of the copies are connected with
line segments. For lathing, the copies are obtained by rotating the original around the y-axis.
For extrusion, the copies are obtained by translating the original in the z-direction. In
XxModels, the commands for performing lathing and extrusion are lathe and extrude.

The lathe command takes a sequence of pointsin the xy-plane and connects them with line
segments. It then takes the resulting figure and makes several copies of it by rotating it
around the y-axis. The first parameter of the lathe command indicates the number of copies.
Thisisfollowed by alist of the x and y coordinates of the pointsin the xy-plane. Thisis
easier to understand if you see an example. The command "lathe 12 3,3 7,-3" saysthat the
line from the point (3,3) to the point (7,-3) isto be copied 12 times. The copies are evenly
spread out around the y-axis. With 12 copies, they are spaced every 30 degrees. The
endpoints of the 12 lines are then connected, giving an object that looks like alampshade.
To seeit, type in the following scene description:

ani mate 60
|lathe 12 3,3 7,-3
yrotate 0: 360

If you change the 12 to a4, only 4 copies of the line will be made. The resulting object
looks like a truncated pyramid. Y ou could aso try adding another point or two to the end of

http://math.hws.edu/TMCM/java/labs/xModelsLab2.html (4 of 7) [3/26/2000 12:50:26 PM]

xModels Lab 2

the lathe command.

The extrude command is similar to lathe. It also takes a sequence of pointsin the xy-plane,
connects them with line segments, copies the resulting figure a specified number of times,
and then joins the vertices of the copies with more line segments. However in this case, the
copies are translated in the z direction rather than rotated around the y-axis. The copies are
stacked up in front of and behind the screen. Each copy is separated from the next by a
distance of one unit. The simple example "extrude 10 -1,0 1,0" will create aladder-like
object with 10 rungs. (It will lie along the z-axis, so if you want to seeit, you should apply
an xrotate 90 to it.)

The sample program "L atheAndExtrude" contains several examples of lathing and
extrusion. Y ou should read the scene description and render it.

Exercises

Exercise 1. Make an animation showing three cubes of different colors nested inside one

another. One cube should rotate about the x-axis, one about the y-axis, and one about the
z-axis.

Exercise 2: The"Flaps' example program shows an abstract sort of paddle wheel that
rotates about the y-axis. Paddle wheels are supposed to rotate vertically. Modify the "Flaps'
example so that the "wheel" is vertical and rotates about the x-axis. Thisisasmall
modification, if you do it right! Y ou don't have to modify the definitions of the "flap" or the
"paddies’ object.

Exer cise 3: Define an object that consists of alarge cube, ten units on aside, with acircle
on each of its six faces. Each circle should be a different color. Y ou will have to work to get
all the circles properly oriented and positioned. Y ou'll need some commands along the lines
of "circle scale 8 xrotate 90 ytranslate 5". Make an animation that shows the entire object
rotating as awhole.

Exercise 4. Consider the following four animations. (The command "viewDistance infinity"
indicates projection from avery large, effectively infinite distance. Thisisalso called
parallel projection.)
(1) ani mate 60
vi ewDi stance 20 ; Note: This is the default val ue.
cube scale 10 yrotate 0: 360

(2) ani mate 60
vi ewDi st ance 100
cube scale 10 yrotate 0: 360

(3) ani mate 60

viewDi stance infinity
cube scale 10 yrotate 0: 360

http://math.hws.edu/TMCM/java/labs/xModelsLab2.html (5 of 7) [3/26/2000 12:50:26 PM]

xModels Lab 2

(4) ani mte 60
vi ewDi st ance 5
cube scale 10 yrotate 0: 360

Explain what is happening in each animation, and why each animation looks the way it
does. Explain the differences among them.

Exercise 5: Use lathing to create a"goblet" shape, like this one:

Exercise 6: The sample program "Wagon," which was also used in the previous lab, shows
a simple two-dimensional wagon. Convert it into a three dimensional wagon. Use four
wheels. Use a cube instead of a square as the starting point for the body of the wagon. Try
out your wagon in an animation with the command

wagon xtranslate -10:10 yrotate 60 xrotate 15
Y ou should see awagon that looks like it's driving away from you up ahill.

Exercise 7: The picture below shows a"radio telescope" from several different viewpoints.
This telescope is made of two pieces. The base is a cone. Y ou can use a cone object, or you
can make it by lathing a single line segment. The dish of the telescope is not a cone, since
It's cross section is curved. Y ou can make the dish by lathing a curve consisting of severa
line segments connecting (0,0) to (4,2). The dish hasto be rotated and trandlated into
position after it is created. Define a telescope object as described. Then make an animation
that shows three tel escopes rotating back as forth (sweeping the skies for signs of new
galaxies or extraterrestrial life).

http://math.hws.edu/TMCM/java/labs/xModelsLab2.html (6 of 7) [3/26/2000 12:50:26 PM]

xModels Lab 2

Exercise 8: Usethe xModels applet to make a three-dimensional image (not an animation)
of your choice. Y our scene description should include at |east one object definition. Y ou
might, for example, try to make a house, a sailboat, a robot, or a space station.

Exercise 9: Use the xModels applet to make an animation of your choice. Try to be creative
and/or aesthetic.

Exercise 10: Write an essay discussing the differences that you have observed between
two-dimensional and three-dimensional graphics. Why isthree-D graphics harder? What
additional skills do you need in order to work in three dimensions? Is it worth the extra
effort?

Thisisone of a series of labs written to be used with The Most Complex Machine: A Survey of Computers
and Computing, an introductory computer science textbook by David Eck. For the most part, the labs are

also useful on their own, and they can be freely used and distributed for private, non-commercial purposes.
However, they should not be used as aformal part of a course unless The Most Complex Machineis also
adopted for use in that course.

--David Eck (eck@hws.edu), Summer 1997

http://math.hws.edu/TMCM/java/labs/xModelsLab2.html (7 of 7) [3/26/2000 12:50:26 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

Data Representations Applet

Data Representations Applet

What can you do with thirty-two bits? Computers use strings of bits to represent al the
different types of data that they have to work with, so the answer must be that you can do a
lot of different things. A given string of 32 bits can represent all kinds of things, depending
on the context in which it isused. That is, the same bits can encode different things,
depending on how they are interpreted.

This page contains an applet that lets you see different interpretations of the same 32-bit
binary number. The applet lets you type in adata value. Y ou can select the type of data you
want to enter by clicking on one of the five radio buttons. Just type your data into the input
box at the top of the applet, and press return. Y ou can also click on the 8-by-4 grid of "big
pixels' at the center of the applet. The various data representations are described below.

This applet was originally written by David Eck for use with his introductory computer
science textbook The Most Complex Machine. However, it can also be used on its own.

For alist of other applets and for |ab worksheets that use the appl ets, see the index page.

Sorry! Your browser doesn't do Javal

Data Types

The Data Representation Applet shows six different interpretations for the same string of
thirty-two bits. The six interpretations are: a binary number, an integer, a hexadecimal
number, areal number, a string of four characters and an eight-by-four grid of pixels. Here
Is ashort explanation of each of the six data displays.

Binary
Thisisthe most direct display of the 32 bit binary number, showing a zero or one to
represent each individual bit.

Base-ten Integer
A binary number can be interpreted as a normal positive integer (0, 1, 2, 3, 4,...)
written in the "base ten". With 32 bits, you can represent 232 different numbers.
Usually, you want to use both positive and negative numbers. The scheme for
representing negative numbersisabit strange. It is explained in Subsection 2.2.3 of

The Most Complex Machine. Using 32 hits, the integers from -2147483648 to
2147483647 can be represented.

Hexadecimal

It isdifficult (for humans) to read long strings of zeros and ones. Hexadecimal
numbers are akind of shorthand for writing such strings. A hexadecimal number is
written using the sixteen "hexadecimal digits’' 0, 1, 2, 3,4,5,6,7,8,9,A,B, C, D, E,

http://math.hws.edu/TMCM/java/DataReps/index.html (1 of 2) [3/26/2000 12:50:26 PM]

http://math.hws.edu/eck/index.html
http://math.hws.edu/TMCM.html

Data Representations Applet

and F. Each hexadecimal digit stands for four bits. So O represents 0000, 1 represents
0001, 2 represents 0010, ..., E represents 1110, and F represents 1111. We could also
say that in the base ten, the hexadecimal digit A stands for the number 10 (ten), B
standsfor 11 (eleven), C standsfor 12, D for 13, E for 14, and F for 15. A 32-bit
binary number can be expressed as an 8-digit hexadecimal number.

Real Number

Real numbers are numbers that can contain decimal points, like 3.14159 or -234.5, or
12.0. They can also be written using "scientific notation." For example, 2.15e12 isa
way of writing 2.15 times 1012, The representation used in computers for real
numbersis very complicated. And it allows some strange possibilities, such as INF
and -INF, which stand for infinity and minusinfinity. There are also NAN's. NAN
stands for "not a number." NAN's are used to represent the results of illegal
operations such as taking a square root of a negative number. Note that the integer 17
and thereal number 17 have completely different representations in the computer,
even though they are the same number mathematically. | will not describe the
representation of real numbersin detail.

ASCII Text

Characters can be encoded using ASCI| code. Each possible character is assigned a
code that is one byte (that is, eight bits) long. With 32 bits, you can represents 4
charactersin ASCII code. Not every possible byte represents an ordinary, printable
character. The applet shows other bytesin the form <#n>, where n is the base-ten
number corresponding to the byte. For example, the byte 00000111, whichis
equivalent to 7 in base ten, is shown as <#7>.

Pixels

At the center of the applet, you will see an 8-by-4 grid of little squares. Each of these
thirty-two squares corresponds to one byte in the binary number. Y ou should think of
these squares as being very big pixels. Each pixel can be either black or white. One
bit specifies the color of one pixel -- O for white or 1 for black. Thisis how two-color
graphical images can be represented by binary numbers. Again, see Section 1.1 of the
text. In the applet, you can change the color of apixel by clicking onit.

David Eck (eck@hws.edu), June 1997

http://math.hws.edu/TMCM/java/DataReps/index.html (2 of 2) [3/26/2000 12:50:26 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xLogicCircuits Intro

The xLogicCircuits Applet

The applet on this page lets you build simulated logic circuits from AND, OR, and NOT gates and see
how they behave. Thisis not a serious circuit design tool. It's an educational tool for learning the basics
about logic circuits. In particular, only the "logical" behavior is ssmulated, not the electrical components
from which real gates are made. The xLogicCircuits applet is one of several applets written by

David Eck for use with hisintroductory computer science textbook The Most Complex Machine.

(They can also be used independently of the book.) For alist of other applets and for lab worksheets that
use the applets, see the index page.

The applet is set to load some sample circuits. Y ou should see an XOR circuit with two inputs on the | eft,
some gates and wires that compute the exclusive or of the inputs, and an output on theright. (The
definition of XOR isthat the output is ON if one of the inputsis ON and the other is OFF.) Torun a
circuit, you first have to turn the power on, using the "Power" checkbox at the bottom of the applet. Then
you can click on the circuit's inputs to turn them on and off. The signals from the inputs propagate along
the wires through the circuits.

More instructions and more details are given on this page below the applet.

(Javanot available.)

Building Circuits

Y ou can build circuits by dragging components from the scrolling pallette on the left of the
applet. This pallette aways contains at least the six standard components: NOT gate, OR
gate, AND gate, Input, Output, and "Tack." The gates are components that do computations.
An AND gate, for example, has two inputs and one output. It turnsits output on if both of
itsinputs are on. An OR gate aso hastwo inputs. It turnsits output on if either one of its
inputsison (or if both are on). The NOT gate has one input and one output. It turnsits
output on if and only if itsinput is off. Inputs and Outputs can be placed anywhere along the
outer boundary of the circuit. An Input represents an input for the circuit as a whole. When
the power is on, you can turn Inputs on and off manually by clicking on them. An Output
represents a value computed by the circuit. The values of Outputs cannot be set manually. A
"Tack" issimply an attachment point for wires. Y ou might want to use Tacks to help make
your circuits neater.

Once some components have been dragged onto the circuit board, you can draw wires to
connect them. Every wire leads from a source to a destination. To draw awire, you have to
click the mouse fir st on the source. Then hold the mouse button down while you move the
mouse to the destination. When you release the mouse button, the wire will be added to the
circuit. If you release the mouse button when the mouse is not over avalid destination, no
wire will be drawn. Circuit Inputs are valid sources for wires. So are Tacks. So are the
outputs of gates. Valid destinations include circuit Outputs, inputs of gates, and Tacks. You
can draw as many wires as you want from a source, but you can only draw onewireto a

http://math.hws.edu/TMCM/java/xLogicCircuits/index.html (1 of 4) [3/26/2000 12:50:27 PM]

http://math.hws.edu/eck/index.html
http://math.hws.edu/TMCM.html

xLogicCircuits Intro

destination. (This makes sense because when the circuit is running, a destination takes its
value from the single wire that leads to it. On the other hand, the value of a source can be
sent to any number of wires that lead from it.)

When you are drawing wires, you'll notice some helpful visual clues. Sources generally
have a purple sort of color. Destinations are green. A Tack, which can be both a source and
adestination is green until aline has been drawn to that Tack; then the Tack turns purple.
When you are drawing awire and you move the mouse over alegal destination, the
component will be hilited. (A hilited gate is draw in blue, a hilited Output is enclosed in a
blue rectangle, and a hilited Tack is enclosed in a blue circle.) Note that some components,
such as gates, have multiple inputs. When you move the mouse over a component with
several available inputs, the wire will jump to the nearest one. Make sure that you get the
wire attached to the one you want.

The gatesin the pallette can be rotated into four different orientations. Just click on the little
red, curved arrow on the left, above the gate. Once a gate has been dragged onto the circuit
board, it can't be rotated. However, it can be resized. When the gate is hilited, a box appears
around it with small drag handles in each corner. Drag one of these handles to change the
size of agate. (To hilite agate, or any component or wire, just click on it.

Any component on the circuit board can be moved around. Just drag it by holding down the
right mouse button. Alternatively (if you have a one-button mouse, for example) you can
hold down the control key to drag a component.

Whenever awire or component is hilited, you can delete it by clicking on the "Delete”
button. If you delete a component that has some wires attached, those wires will also be
deleted. Thereisan "Undo" button that you can use to get back something that you delete by
mistake. (Note that the "Undo" button can only undo one operation.)

Y ou can edit acircuit even while the power is on.

Subcircuits

In addition to the six standard components, the scrolling component pallette can also contain
circuits that have been built from these basic components and iconified using the applet's
"lconify" button. These iconified circuits can be used as components in building other, more
complex circuits. Y ou can drag them onto the circuit board, just like other components. The
applet on this page should have |oaded three such iconified circuits: "4 Bit Adder,"

"Clock," and "One Bit Mem."

To seeinside an iconified subcircuit, hilite it and then click on the "Enlarge” button. The
circuit will expand to fill the circuit board. (Y ou can aso just double click on the subcircuit.
However, not all browsers respond to double clicks.) When you expand a circuit icon from
the pallette, itsicon is removed from the pallette. The circuit that was on the board
previoudly isiconified and moved to the pallette, unlessit is empty -- in which casg, it is
discarded. Thereisonly one circuit on the board at any given time. Y ou can edit the circuit
whileit is on the circuit board, and the changes you make will be permanent even after you

http://math.hws.edu/TMCM/java/xLogicCircuits/index.html (2 of 4) [3/26/2000 12:50:27 PM]

xLogicCircuits Intro

re-iconify the circuit.

If the circuit on the board containes a subcircuit, you can enlarge that circuit to see what is
inside it. This does not remove the main circuit from the board -- it just lets you see an
enlarged part of it. When you shrink the subcircuit back down to its original size, the main
circuit is still there. For an example, Enlarge the "4 Bit Adder" sample circuit from the
pallette. You'll seethat it contains four copies of asubcircuit called "Adder." If you hilite
one of the "Adder" circuits and Enlarge it, you can see what'sinsideit. You'll also see abig
red message, "Enlarged from 4 Bit Adder," to remind you that what you are looking at isa
part of alarger circuit.

It isimportant to understand that when you drag a subcircuit onto the circuit board, what
you get isacopy of the circuit from the pallette. If you edit the original circuit on the
pallette, it doesn't affect any copies that have been made. If you edit one of the copies, it
doesn't affect the other copies. Note in particular that it's easy to get two circuits that have
the same name but that are different internally. (My advice, of course, isdon't doit!)

By the way, a circuit can have multiple outputs. When you draw awire from a subcircuit to
another component, make sure that the wire starts from the output that you want.

Other Features

The "Clear" button can be used to clear all the components from the circuit board. If several
circuits are stacked up on the board, it only affects the one on top. The Clear button does not
remove circuits from the pallette. (If the circuit you Clear is an enlarged subcircuit that is
part of another circuit, the Clear button does not remove the circuit Inputs and Outputs. This
Is on the theory that they are probably connected to other components in the containing
circuit, and you probably don't want to delete all the connecting wires. However, you can
still delete the Inputs and Outputs individualy, if you insist.) Note: Y ou can use the "Undo"
button to undo a Clear, provided that you do so before you do any other operation.

The"Save' and "Load" buttons are for working with files. (Hoewever, it is likely that your
browser's security policy will prevent you from using them.) The Save command saves the
entire state of the applet, including all the circuitsin the pallette and on the circuit board.
When you Load afile, everything in the applet is thrown away and replaced by the datain
the file. Note that the Load command is undoable. Pressing the Undo button immediately
after loading afile will restore the previous data.

Above the applet you'll also find atext-input box labeled "Title:". Thisis name of the circuit
currently visible on the circuit board. Y ou can change the name by editing the contents of
this text-input box.

At the left of the strip of controls below the applet is a Speed pop-up menu. This menu
affects the speed at which signal's propagate through the circuit. Y ou might want to use the
slower speeds to watch what is happening in more detail. (At the Fast speed, it ispossiblein
some browsers that the circuit will not be drawn correctly. For example, the "Clock" sample
circuit should blink very quickly when the speed is set to Fast, but your browser might not

http://math.hws.edu/TMCM/java/xLogicCircuits/index.html (3 of 4) [3/26/2000 12:50:27 PM]

xLogicCircuits Intro

allow applets to draw to the screen quickly enough to show this.)

Another interface note: Y ou should be able to insert a tack into the middle of an existing
wire by double-clicking on the wire. If you double-click and hold the mouse down on the
second click, you can drag the tack to a different position. (Again, | note that some browsers
might not support double-clicks.)

And one more: It isnot possible to draw awire directly from an output of a gate or circuit to
an input of the same gate or subcircuit. However, there is nothing to stop you from making
loops out of several components, asis donein two of the sample circuits.

About the Sample Circuits

The sample circuits loaded by the applet on this page are all fairly standard examples of
logic circuits. The XOR circuit, which is visible on the circuit board when the applet starts
up, isdiscussed above. The "4 Bit Adder” isacircuit that can be used to add two 4-bit
binary numbers. When the numbers are put on the eight input wires at the top of the circuit,
the sum -- which can have five bits -- appears on the five output wires on the bottom and | eft
of the circuit. (The output on the left isthe "carry" bit.)

The "Clock" circuit has one input and one output. If you turn on the power, it will start
turning its output wire on and off. If you turn on the input, however, the clock will stop
"ticking." It isworthwhile to watch this example with the speed set to Moderate or Slow.
(You can slow down the rate of ticking by inserting more Tacks into the loop. Thisis
because of the way signals are propagated through circuits. The simulated circuitsin this
applet use "discrete time." At each discrete moment of time, each component in a circuit
gets the values from its input wires, and computes values for each of its output wires. Real
circuits don't work thisway. Nevertheless, the logical behavior of most simulated circuitsis
-- with afew exceptions -- the same as the behavior of real circuits.)

The "One Bit Mem" circuit isamemory circuit that remembers the value of one bit. To
store abit (ON or OFF), put the value to be stored on the lower of the two Inputs on the | eft
of the circuit. Turn the upper Input ON; wait awhile, until the circuit settles down; and turn
the upper Input OFF. The value that you've stored will appear on the output wire. This value
will remain stored in the circuit as long as the upper Input is OFF. (If you don't wait long
enough before turning the upper Input OFF, the value will not be properly stored. In fact,
strange things can happen that are different from what would happen in areal, electrical
circuit.)

David Eck (eck@hws.edu), August 1997

http://math.hws.edu/TMCM/java/xLogicCircuits/index.html (4 of 4) [3/26/2000 12:50:27 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xComputer Intro

The xComputer Applet

The applet at the bottom of this page -- assuming that you have a Java-enabled browser -- smulates the
CPU and memory of a model computer called "xComputer." The applet lets you write assembly language
programs for this computer and see how the computer executes them. The applet was written by

David Eck for use with hisintroductory computer science textbook The Most Complex Machine.

However, it can also be used on its own.

The applet below is set up to load some sample programs. These programs contain some basic
instructions for using the applet. Select a program from the pop-up menu at the top of the screen. Read
the comments in the program. Then click on the "Trandate" button to translate the program into machine
language and load it into the computer's memory. Y ou will then be able to run the program or to step
through it one step at atime. The sample programs are also available as plain text files: [1], [2], [3], [4].

Thisisarather technical applet, and you will probably need to read the documentation to understand it.
Documentation is available on the xComputer Info page.

For alist of other applets and for |ab worksheets that use the appl ets, see the index page.

(Javanot available.)

David Eck (eck@hws.edu), June 1997

http://math.hws.edu/TMCM/java/xComputer/index.html [3/26/2000 12:50:27 PM]

http://math.hws.edu/eck/index.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

http://math.hws.edu/TMCM/java/xComputer/samples/TheBasics.txt
; Exanple 1: Basics

; This file contains a fairly sinple programwitten in the

; assenbly | anguage of xConputer. It illustrates a few basic
; assenbly | anguage instructions and the format of assenbly

; language prograns. (Note that a semicolon (;) and anything
; that follows it on aline is a coment.)

; The program conputes the sumof a list of nunbers. The
; list can only contain non-zero nunbers. A zero nmarks

: the end of the list. The list of nunbers is at the end
; of this file. They are actually treated by the conputer
; as part of the program A nunber on a line by itself

; is sinply stored in menory. An instruction, on the

; other hand, is translated into a nunber that represents
; that instruction in machine | anguage. It is that

; nunber that is actually stored in nenory.

; To run a program click the "Transl ate" button that

; appears in the applet below the program The programw || be
; translated into assenbly | anguage and the conputer screen

i Will reappear, with the programin its nenory. The

; program probably appears in the form of nunbers, but you

; can change the way the contents of menory are displayed by

; selecting a view style fromthe pop-up nenu that is

; above the scrolling nmenory displ ay.

; Once the programis in menory, you can run it by clicking

; on the "Run" button. There is a Speed pop-up nenu for

; selecting the speed at which the programruns. Alternatively,
; you can use the "Step" or "Cycle" button to nove through

; the execution of the program manually.

; I'f you want to run the programa second tinme, you should
 first click on the "Set PC=0" button. The PC tells the
; conputer where to find its next instruction. It has

; to be set to zero to point to the start of the program

; Each of the followi ng instructions has a conment that says
: what it does:

lod-c 30 ; Load the constant 30 into the AC register.

sto 25 ; Store the value (30) fromAC into | ocation 25.
lod-c O : Load 0 into the AC

sto 26 : Store the O into | ocation 26.

lod-i 25 ; The value in location 25 is an address of sone

: menory |l ocation. Get the value fromthat
; address and put it into the AC. (The "i"
; i ndicates what is called indirect addressing.)

jme 12 ; If the value in the ACis zero (indicating

; end of the list of nunbers) then junp

: to location 12, where the programwll halt.
add 26 ; Add the nunber in location 26 (the sum of the

; previ ous nunbers) to the AC (which contains
: the next nunber fromthe list).
sto 26 : Put the nunber fromthe ACinto | ocation 26.

http://math.hws.edu/TMCM/java/xComputer/samples/TheBasics.txt (1 of 2) [3/26/2000 12:50:28 PM]

http://math.hws.edu/TMCM/java/xComputer/samples/TheBasics.txt

| od
i nc
sto

j

hi t

@0

26
17
-34
15
12
-23

19
87
11
-73
21

25

25

Load the nunber fromlocation 25 into the AC
Add one to the nunber in the AC
Put the nunmber fromAC into |ocation 25, so
| ocati on 25 now contains the |ocation of the
next nunber in the list.

Junp to location 4, to get the next nunber
fromthe list. NOTE: Locations are nunbered
starting from zero.

This is a halt instruction, which tells the
conputer to stop execution. (It is in
| ocation nunber 12.)

This is a special command that says that the foll ow ng

items are to be stored in nmenory starting "AT" | ocation
nunber 30.
These nunbers will be in nmenory starting at

| ocation 30. The conputer will add them

and | eave the answer in |ocation 26

http://math.hws.edu/TMCM/java/xComputer/samples/TheBasics.txt (2 of 2) [3/26/2000 12:50:28 PM]

http://math.hws.edu/TMCM/java/xComputer/samples/Graphics.txt
; Exanmpl e 2: Graphics

; This is a very sinple programthat is nmeant to denonstrate a
; "Graphics" nenory display. |If you select "G aphics" from
; the pop-up nenu above the scrolling nenory display area of
; the xConputer, the scrolling display will be replaced by

; a rectangle that shows the entire contents of nmenory at

; once. [Each pixel in the rectangle represents one bit

; in menory. The pixel is white if that bit is zero and

; is black if that bit is one. The rectangle is 64 pixels

; Wi de, so each row of dots represents four 16-bit nmenory

; locations. As the conmputer executes a program you can

; watch the dots change as nenory is nodified. This can

; be particularly nice if you set the Speed pop-up nenu

; to "Fastest Speed".

; The programsinply stores the nunbers 1, 2, 3, ... in

; consecutive nenory |locations, starting at |ocation 20.

; To run the program click the "Translate" button | ocated

; below this program Once the conputer reappears, set the

; menory display pop-up nenu to "Graphics". The programwil |
; appear as a few dots at the top of the nenory rectangle.

; Set the run speed to "Fastest Speed" and then click the

; "Run" button. You should see nenory fill up with a

; rather attractive pattern

; (Note: This is a self-nodifying program an ol d-fashi oned
: but cute idea. The commands in |locations 2 and 4 are

; changed as the programruns so that they | oad and store

; into different |ocations each tine they are executed.)

lod-c 1 ; Put the starting number in |ocation 20
sto 20
| od 20 ; Add 1 to the nunber in location 20 and put the
i nc : result into |ocation 21
sto 21
| od 2 ; Modify the instruction in location 2 so it
i nc : | oads fromthe next |ocation
sto 2
| od 4 ; Modify the instruction in location 4 so it
i nc : stores into the next | ocation
sto 4
jmp 2 ; Go back to the "LOD'" instruction in

: | ocati on 2.

http://math.hws.edu/TMCM/java/xComputer/samples/Graphics.txt [3/26/2000 12:50:28 PM]

http://math.hws.edu/TMCM/java/xComputer/samples/Labels.txt
Exanpl e 3: Labels

Many assenbly | anguage instructions refer to
addresses of nenory locations. This could force

you to count instructions in order to find the
address nunber of the location you want to refer to.
Fortunately, there is a way around this: Use |abels
to refer to nmenory | ocations.

A label is just a nanme for a nenory | ocation.
You define a label by witing the nane of the

| abel, followed by a colon (:) followed by

the contents of the menory location. The val ue
of the label is the address of that |ocation.
You can use the | abel anywhere in the program
where you coul d use a nunber. For exanpl e,

the command "JMP start" will junp to the

| ocation with |abel "start"”.

The programin this file uses several |abels,
such as "loop," "doAdd," "NL," and "ANS." Sone
of these | abel refer to instructions, and

sone of themrefer to data. Both of these

uses are very comon.

Note, by the way, that the way this programis
formatted isn't inportant, as long as there is
at nost one instruction or data val ue per |ine.
Al so, you should know that the conputer doesn't
di sti ngui sh between upper and | ower case letters
in instructions or in |abel nanes.

This programmultiplies two nunbers, stored in

| ocations "N1" and "N2". The result is left in

| ocati on nunmber "ANS". (How this works isn't

i mportant, but essentially, it is a |oop that

| ooks at the bits in N1I. Wen a bit is found that
is 1, N2 is added to ANS. In any case, each tine
through the loop, N2 is nultiplied by 2.) For this
to give the correct answer, the answer nust be in
the range of nunbers that can be represented

using 16 bits.

The program

lod-c O ; Start by putting a zero into "ANS"
st o ANS
loop: lod Nl ; If NL is zero, the process is conplete.
j mz done
shr ; O herwise, shift N1 one bit right.
sto N1
j mf doAdd : If the bit shifted off the end of N1

: was a one, junp to doAdd to add N2
: to the answer.

shift: lod N2 ; Multiply N2 by 2 by shifting it left.
shl
j mz done :If N2 is zero, we are done.

http://math.hws.edu/TMCM/java/xComputer/samples/Labels.txt (1 of 2) [3/26/2000 12:50:28 PM]

http://math.hws.edu/TMCM/java/xComputer/samples/Labels.txt

sto N2
jmp | oop ; Proceed to the next iteration

doAdd: | od N2 : This section adds N2 to ANS before
add ANS ; doi ng the preceding shift operation
st o ANS
jmp shift

done: hit ; Halts the program

@0 ; This says that when the programis | oaded, the
: following itemis to be at location 20. Thus,
: NL will be 20, N2 will be 21, and ANS will be 22.

N1: 13 : The nunber 13 is stored in a | ocation naned "N1".
N2: 56 : 56 is in a location naned "N2". These are the
: nunbers that will be nultiplied; change them

to any val ues you |ike.
ANS: O ; "ANS" is the nane for a nenory | ocation that

: will hold the product of N1 and N2 when
; t he program ends.

http://math.hws.edu/TMCM/java/xComputer/samples/Labels.txt (2 of 2) [3/26/2000 12:50:28 PM]

http://math.hws.edu/TMCM/java/xComputer/samples/Three_N_Plus_One.txt
; Exanpl e 4: 3N+1 sequences

; This file doesn't illustrate anything in particul ar about
; the xConputer. It's just that | really like the 3N+1
; problem

Starting fromany positive integer N, the "3N+1 sequence"
for Nis conputed as follows: |If Nis 1, then stop; the
sequence is conplete. Oherwise, if Nis even then divide
N by 2. Oherwise (if Nis odd), nultiply N by three and
add 1. The question is whether this sequence termn nates
for ALL starting values N. The answer is not known at
this tine.

Thi s program conmput es 3N+1 sequences for various val ues
of N, starting from1l. For each sequence, it counts
the nunber of terns in the sequence. The values are
stored in nmenory in successive nenory | ocations.

Run this at "Fastest" speed, and watch it in graphics
node to see the random | ooki ng series of sequence

| engths that are generated. O watch |ocations

42, 43, and 44 (|l abeled by num N and ct), which are
where all the conputational action takes place.

lod-c 1 ; Let num= 1. "Nun' is the starting
sto num X val ue for the current sequence
lod-c 100 ; 100 is location in nmenory where
sto | oc : first answer is to be stored.
| oopl: | od num ; "Loopl" conputes one sequence; begin by
sto N ; initializing Nto the starting val ue

: for the sequence.

lod-c 1 ; "Q" keeps track of the nunber of terns
sto ct : in the sequence; start counting at 1.
| oop2: lod N ; "Loop2" conputes one termin the sequence.
dec Test if N=1 by subtracting 1 fromit and
j mz next testing if the answer is 0. |If so, this

sequence is conplete; junp to "next" to
get ready for the next sequence.

and-c 1 ; Conpute bitwise logical AND of 1 with N1
j mz odd ; If the answer is 0, Nis odd; junp to
: | ocation "odd" to handl e that case.
|l od N ; Otherwise, Nis even; divide N by 2 by
shr ; shifting it right, and putting the
sto N ; result back into N. Then junp to
jmp count "count" where this termin the sequence
: i s counted.
odd: lod N ; If Nis odd, multiply it by 3 by adding it
add N : it toitself twice. Then add 1.
jnf error If any of these additions produces a
add N : result greater than 65535, the FLAG
jmf error register is set. This indicates an
add-c 1 : error: "Nunber too large for this
jnf error conmputer". Junp to "error" if the
sto N : FLAG i s set.

http://math.hws.edu/TMCM/java/xComputer/samples/Three_N_Plus_One.txt (1 of 2) [3/26/2000 12:50:29 PM]

http://math.hws.edu/TMCM/java/xComputer/samples/Three_N_Plus_One.txt

count: lod ct ; Count this termin the sequence by
i nc : i ncrementing the val ue of ct.
sto ct

jmp loop2 ; Return to start of "loop2" to do the
: next termin the sequence.

next: |od ct ; The 3N+1 sequence for the current starting
sto-i loc ; value, num is conplete. Store the
| od | oc : nunber of terms in the sequence in the
i nc : | ocation given by the value of |oc,
sto | oc : then add 1 to | oc.
| od num ; Also add 1 to numto give the starting
i nc : val ue for the next sequence.

sto num ;
jmp loopl ; Junp to "loopl" to do the next sequence.

error: lod-c O ; Atermin the current sequence has
dec ; exceeded 65535. Store -1 (conputed
sto ct ; as zero mnus one) in ct and junp to
j mp next ; "next" to get ready for the next sequence.
num 0 ; starting value of sequence
ct: 0 ; nhunber of terns in the sequence
N: 0 ; current value of Nin sequence
| oc: 0 ; address where answer is to be stored
5# 0 ; Put 5 extra zeros in nenory, just to |eave space

http://math.hws.edu/TMCM/java/xComputer/samples/Three_N_Plus_One.txt (2 of 2) [3/26/2000 12:50:29 PM]

xComputer Info

xComputer Info

A computer stores programs and datain its main memory (or "RAM"). It has a central
processing unit (or "CPU") that fetches instructions from memory, one-by-one, and executes
each instruction. Thisis called the fetch-and-execute cycle. A single fetch-and-execute cycle
isitself made up of small steps. Each of these little steps performs avery simple operation,
such as copying data from one location inside the CPU to another, adding two numbers, or
moving information between main memory and the CPU. Each step is accomplished by
turning control wires on and off. These control wires are attached to the main memory and to
various components in the CPU. A control circuit turns the control wires on and off, based on
just afew pieces of information, including the instruction that is being executed and the value
of a counter that counts off the little steps of each fetch-and-execute cycle. All the values that
CPU is currently working with are stored in registers, which are small memory units
contained within the CPU. The whole process is driven by a clock. Each time the clock ticks,
one step of afetch-and-execute cycleis performed.

That's avery brief description of the fundamental operation of a computer. With some
extensions, it istrue of all existing computers. The xComputer applet ssmulates this
fundamental operation for a computer with a 1024-location RAM and eight registers. Like
any computer, the xComputer has a certain set of machine language instructions that it
understands. Machine language instructions are actually binary numbers and are not really
meant to be read or written by humans. Programs for the xComputer are therefore usually
written in assembly language. An assembly language program must be trandlated into
machine language before it can be executed by a computer. The assembly language for

xComputer has 31 different instructions, which are listed below.

The xComputer and its assembly language are discussed in detail in Chapter 3 of The Most
Complex Machine. This page does not cover all the details, but it should have enough

information to enable you to use the applet and even to write some assembly language
programs.

The xComputer Applet

The point of the xComputer Applet isto illustrate the step-by-step operation of a computer as
it executes a program. When the applet starts up, it displays three sections: A "Control" area,
aset of "Registers’ and a"Memory." The Memory isascrolling list occupying the right-hand
third of the applet. It displays 1024 memory locations, numbered from O to 1023. Each
location contains a 16-bit binary number that can be interpreted either as data or as a machine
language instruction. The Registers section of the applet shows eight registers that are
components in the xComputer's Central Processing Unit. The registers are explained below.

Finally, the Controls are for interacting with and controlling the xComputer.

The applet has another mode in which it displays a text-input area where you can write and
edit assembly language programs. (Information about the assembly language of xComputer is

http://math.hws.edu/TMCM/java/xComputer/info.html (1 of 8) [3/26/2000 12:50:30 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM.html

xComputer Info

given below.) To start a new assembly language program, just click on the "New Program”
button in the Control area of the applet. Alternatively, choose "[New]" from the pop-up menu
at the very top of the applet. Thereisaso a"Load File" button that can be used to load a
program that has been previously saved to afile; however, you can only do thisif your
browser permits applets to access files. Programs that have been created or |loaded are listed
in the pop-up menu at the top of the applet. Y ou can view any program by selecting it from
this menu. Y ou can return to main computer screen by selecting "Computer” from this menu.

Suppose that you are looking at an assembly language program in programming mode.
Before xComputer can do anything with that program, it must be translated into machine
language and put into xComputer's main memory. When the applet isin programming mode,
thereisa"Trandate" button at the bottom of the applet that will attempt to do this. If an error
isfound in the program, an error message will be displayed. (Y ou can rid of this message by
clicking onit, if you like.) If the program contains no errors, it will be put into xComputer's
memory and the applet will switch to the main computer screen. Y ou can then run the
program or step through it, as described below.

Short programs can also be entered directly into memory from the Control area of the
xComputer screen. Information that you want to put into memory -- instructions or data -- can
be entered into the text-input box labeled "data:”. When you press return or click the "Datato
Memory" button, the datais stored in memory. The location in memory whereit is stored is
specified by a number in the "addr:" text-input box. Y ou can only enter data for one memory
location at atime. Each time you enter data, the number in the "addr" box is automatically
incremented by one. Thislets you store information into successive memory locations simply
by typing values and pressing return after each one.

The question remains, exactly what sort of thing can you enter into main memory? The first
thing you need to understand is that what is really in each memory location is a 16-bit binary
number. Any other form of information must be represented in this form. The same binary
number can represent different values, depending on how it isinterpreted. Y ou can enter
information in the "data" box in any of the following ways:

« Integer -- any whole number in the range -32768 to 32767.

« Unsigned integer -- any whole number in the range from 0 to 65535. (Thus, you can
actually use any number from -32768 to 65535. However, numbers from -32768 to -1
and from 32768 to 65535 are ambiguously represented by the same binary numbers.)

« Assembly language instruction -- any legal assembly language instruction for
xComputer, such as"LOD-C 17". (Seethe list below.)

« ASCII characters -- asingle quote, followed by any typeable character or apair of
characters (except for carriage return). The quote just marks this as ASCII data. For
example: 'DE

« Hexadecimal number -- adollar sign ($) followed by from one to four hexadecimal
digits. For example: $A73D

« Binary number -- aB (upper or lower case) followed by from 1 to 16 zeros and ones.
For example: B110010111010

When you type any of these thingsin the "data" box and press return, it is translated into a

http://math.hws.edu/TMCM/java/xComputer/info.html (2 of 8) [3/26/2000 12:50:30 PM]

xComputer Info

binary number and put into memory at the specified address. (If there is some error in what
you type, you'll get asmall error message above the "addr" box.) So, abinary number in
memory can represent several different things. The xComputer applet allows you to view the
contents of memory in several different forms. Select the view that you want from the pop-up
menu above the memory display. The "Instructions’, "Integers’, "Unsigned Ints’, "Binary",
and "ASCII" display styles correspond to some of the datatypes listed above. (In the ASCII
display style, two characters are shown in each memory location. Non-printing characters are
shown as ASCII code numbers enclosed between < and >. For example, <#17> represents the
character with ASCII code number 17.) The "Graphics' display shows all of memory at once,
as arectangle full of black and white dots. Each dot represents one bit in memory. A black
dot represents a one, and a white dot represents a zero. The rectangle is 64 bits wide, with
each row of dots representing four memory locations of 16 bits each. The "Control Wires'
display style actually doesn't have anything to do with memory at all. I'll discussit below.

For example, here is a short assembly language program that adds the numbers 105 and 17,
stores the answer into memory location 10, and then halts:

| od-c 105
add-c 17
sto 10
hi t

Y ou could enter this program directly into memory by typing the lines, one at atime, into the
"data’ box. Note that what you see in memory depends on the setting of the memory display
style. Y ou might want to try entering this program, and use it as an example as you read the
next section.

Running a Program

A program consists of a series of instructions stored in memory. The computer fetches
instructions one-by-one and executes them. The program counter register (or "PC") tellsthe
computer which address to go to in memory for the next instruction. When you want to run a
program, you should always first check that the value in the PC register is the address of the
location that contains the first instruction of the program. Y ou can set the value in the PC to
zero using the "Set PC=0" button. To set the PC to some other value, type the value into the
"addr" box and then click on the"Addr To PC" button. Thisisimportant. A common,
frustrating mistake when trying to run a program on xComputer is ssmply to forget to tell
xComputer where in memory the program islocated! (Note: If you use the "Trandate" button
in programming mode to put a program into memory, the PC will automatically be set to zero
at the same time. However, after you run the program once, you have to reset the PC
manually if you want to run it again.)

Once you have set the PC, there are three different ways to run the program:

o Click the"Step" button. This performs one of the several small steps that make up each
fetch-and-execute cycle. Y ou haveto click on this between five and ten times,
depending on the instruction, to execute each instruction.

http://math.hws.edu/TMCM/java/xComputer/info.html (3 of 8) [3/26/2000 12:50:30 PM]

xComputer Info

Click the "Cycl€e" button. Thisis meant to perform one complete fetch-and-execute
cycle. More exactly, it performs "step" operations until the value in the COUNT
register istwo. At that point, a new instruction has just been loaded into the IR register.
Clicking the "Cycle" button again will execute that instruction.

Click the "Run" button. This makes the computer execute instructions continually, like
area computer. The "Run" button changes into a " Stop™ button, which you can useto
stop the computer. It will also stop if it executesa HLT instruction. The speed at which
the computer runsis determined by a pop-up menu just below the run button. At the
"Fastest Speed”, the register display isturned off, so the computer can run as quickly
as possible. This speed is especially useful with the "Graphics' memory display.

Registers and Control Wires

The xComputer has eight registers. A register isamemory unit that holds one binary number.
Different registers holds different numbers of bits. Each of the registershasaroleto play in
fetching and executing instructions. Here is a short description of the purpose of each
register:

ADDR register: The address register is a 16-bit register that holds the address of a
location in memory. Whenever datais read from or written to memory, thisisthe
address that is used. (If you turn on the "Autoscroll” checkbox, below the scrolling
memory display, then any time the value in ADDR changes, the memory will be
scrolled to show that address at the bottom of the display.)

PC register: The program counter is a 10-bit register that contains the address in
memory of the next program instruction that is scheduled to be executed. The PC is
ordinarily incremented by 1 during each fetch-and-execute cycle. Its value can be also
be changed by the execution of a jump instruction, which tells the computer to jump to
adifferent location in the program and continue execution from there.

IR register: The instruction register is a 16-bit register that holds a program instruction
whileit is being executed. Thisiswhere an instruction is put when it is fetched from
memory.

COUNT register: Thisis a4-bit register that counts off the stepsin each
fetch-and-execute cycle. At the beginning of each step, its value is incremented by one.
The last step of the cycle resets this register to zero, so that the next cycle can begin.

AC register: The accumulator is a 16-hbit register that holds a number that is being used
in the current calculation. When a number is loaded from memory, it is put in the AC.
When anumber is"added", it is added to the value currently in the AC, and the result
Is put back into the AC. Etc.

FLAG register: Thisisal-bit register that can give extrainformation about a
calculation. For example, when two 16-bit numbers are added, the final "carry" into the
17-th column is stored in the FLAG register. When a shift operation is performed on
the AC, the extrabit that is shifted off the end is placed into the FLAG register.

X and Y registers: These are 16-hit registers that hold numbers that areto be used in a
calculation. For example, when two numbers are to be added, they are placed into X

http://math.hws.edu/TMCM/java/xComputer/info.html (4 of 8) [3/26/2000 12:50:30 PM]

xComputer Info

and Y. (TheY register isalso used as atemporary storage placein afew cases.)

The X and Y registers are connected to the inputs of an Arithmetic-Logic Unit, or "ALU",
which does al the arithmetic and logical calculations in the computer. The outputs of the
ALU are connected to the AC and to the FLAG register. (The ALU is not shown in the
xComputer applet.)

The components of the computer -- including the main memory, the registers, the clock, and
the ALU -- are controlled by turning wires on and off. These wires are connected to various
components of the computer, and they control the operation of those components. It isthese "
control wires' that make the steps of the fetch-and-execute cycle happen. Y ou can see alist
of the control wires in xComputer by selecting the "Control Wire" option from the memory
display pop-up menu. The wires that are currently turned on are shown in red. As a program
Is executed, the wires that are on change during each step of each fetch-and-execute cycle.

Y ou can watch how they change in order to learn how each step is accomplished.

For example, in step #1 of each fetch-and-execute cycle, the control wire named
"Load-ADDR-from_PC" isturned on. This causes the number stored in the PC -- which isthe
location of the instruction that is to be fetched -- to be copied into the ADDR register --
where it sets up the main memory for reading from that location. The purposes of most of the
wires are clear from their names. (The seven wires at the top of the list, starting with
"Select-Add" are connected to the ALU. The ALU can perform severa different calculations.
The Select wires are used to tell it which calculation it should do.)

The Assembly Language of xComputer

An assembly language program is simply away of specifying a sequence of 16-bit binary
numbers to be stored in the computer's memory. As such, it can include any of the data items
described above: Assembly language instructions, numbersin the range -32768 to 65536,
hexadecimal numbers (up to four digits, preceded by $), binary numbers (up to 16 bits,
preceded by B or b), and ASCII characters (one or two characters, preceded by a single left
guote mark).

The legal instructions are listed below. An instruction consists of atwo- or three-character

code, such as LOD, OR, and HLT. Since upper and lower case letters are not distinguished,
these could also be written as lod, or, and hit. In some cases, this instruction code can be
followed by an addressing mode, indicated by "-C" for "constant” addressing mode and by
"-1" for "indirect" addressing mode. The addressing mode indicates how the data for the
instruction isto be used. For example, ADD-C 17 indicates that the constant, 17, isto be
added to the number in the accumulator, while ADD 17 indicates that a number is to be read
from memory location 17 and that number isto be added to the number in the accumulator.

Asyou can see, the data for the instruction simply follows the instruction. It must be on the
same line. Y ou can't split instructions over two lines, and you can't have more than one
instruction on aline. Not all instructions need data. If you provide data for an instruction that
doesn't need it, it islegal, but the data will be ignored when the instruction is executed. The
data for an instruction is a 10-bit binary number. It can be given in any of the following

http://math.hws.edu/TMCM/java/xComputer/info.html (5 of 8) [3/26/2000 12:50:30 PM]

xComputer Info
forms:
« anumber between 0 and 1023,
« abinary number between BO and B1111111111,
« ahexadecima number between $0 and $3FF,
« asingle ASCII character, preceded by aleft single quote mark,
« alabel name.

The last possiblilty -- alabel name -- brings us to a whole new aspect of assembly language.
An assembly language program can contain more than just a sequence of items representing
16-bit numbers. It can contain other things to make programming easier by letting the
computer do more of the work. A label is aname that stands for anumber. A label represents
a 10-bit binary value and can appear anywhere in the program where such a value could be
used, that is, as the data part of an instruction or as a stand-aloneitem on aline by itself.
When the program is trandlated, the label is replaced by the number it represents. A label is
given avalue by using it to label one of the 16-bit items that make up the program. The |abel
name must be followed by a colon (;) and the item that it 1abels. The value of the label isthe
address of the location in memory that contains that item. For example, the following
program adds up al the numbers from 1 to 50:

|l od-c 1 c Initialize nunber to contain 1.
st o nunber
|l od-c O Initialize sumto contain O.
sto sum
next: |lod sum : Add current value of nunber to sum
add nunber
sto sum
| od number : Add one to the val ue of nunber.
I nc
st o nunber
sub-c 51 : Subtract 51 fromthe nunber,
X which is still in AC
j mz done ; If the answer is zero, junp to "done".
j mp next ; Oherwise, junp to "next",
; to continue the conputation.
done: hlt ; Halt.
sum O ; (The zeros are place-holders to reserve
nunber: O ; menory | ocations for sum and nunber.)

In this program, next, done, sum, and number are labels. Next and sum refer to locations that
hold instructions. Sum and number refer to locations that hold data for the program. The
programmer can work with the instructions and data without having to work out the actual
location numbers. (This program also illustrates comments. Anything on aline after a
semicolon (;) is treated as acomment and is ignored by the computer.)

There are afew more things you can do in an assembly language program. A program item
can be preceded by a number followed by a#. Thisis arepetition count and is the same as
typing the item the specified number of times. For example, "25# 17" putsa 17 in each of the

http://math.hws.edu/TMCM/java/xComputer/info.html (6 of 8) [3/26/2000 12:50:30 PM]

xComputer Info

next 25 memory locations. "4# SHL" is equivalent to four SHL instructionsin arow.

Ordinarily, a program is loaded into consecutive memory locations starting at location 0.
However, you can specify where loading is to take place by using the character @ followed
by an address. For example, "@2100" specifies that the next item is to go into memory
location 100. (Items following that one will then go into location 101, 102, etc.) Y ou might
use this feature to put "subroutines" at specific pointsin memory.

Finally, you can store a string of ASCII characters into consecutive memory locations by
using astring. A string isjust a series of characters enclosed between double gquotes, such as
"Hello World!". When the computer encounters a string in a program, it stores the characters
in consecutive memory locations, one per location.

List of Assembly Language Instructions

Hereisacomplete list of the assembly language instructions for xComputer. In thislisting,
"X" isdatafor the instruction; it must trandate into a 10-bit binary number.

o ADD X -- Add the number in memory location X to the AC
o ADD-C X -- Add the number X to the AC

o ADD-I X -- LetY be the contents of memory location X, and add the number in
location Y tothe AC

« SUB X -- Subtract the number in memory location X from the AC
o SUB-C X -- Subtract the number X from the AC

o SUB-I X --Let Y be the contents of memory location X, and subtract the number in
location Y from the AC

o AND X -- Bitwise AND the number in memory location X with the AC
o AND-C X -- Bitwise AND the number X with the AC

e AND-I X -- LetY be the contents of memory location X, and bitwise AND the number
inlocation Y with the AC

e OR X -- Bitwise OR the number in memory location X with the AC
e OR-C X -- Bitwise OR the number X with the AC

o OR-I X LetY bethe contents of memory location X, and bitwise OR the number in
location Y with the AC

o NOT -- Apply abitwise NOT to the AC

e INC--Add1tothe AC

o DEC -- Subtract 1 fromthe AC

e SHL -- Shift the AC left one bit

e SHR -- Shift the AC right one bit

e LOD X -- Load the number in location X into the AC

e« LOD-C X -- Load the number X into the AC

e LOD-I X -- Let Y bethe contents of memory location X, and load the number from

http://math.hws.edu/TMCM/java/xComputer/info.html (7 of 8) [3/26/2000 12:50:30 PM]

xComputer Info

location Y into the AC
STO X -- Store the value in AC into memory location X

STO-I X -- Let Y be the contents of memory location X, and store the valuein AC into
location Y

JMP X -- Jump to location X (that is, store X into the PC, so that the next instruction
will be loaded from X)

JMP-1 X -- Let Y be the contents of memory location X, and jump to location Y
IMZ X -- If thevaluein the AC is zero, then jump to location X

IMZ-1 X -- If thevalueinthe AC is zero, then let Y be the contents of memory
location X, and jump to location Y

JMN X -- If the value in the AC is negative, then jump to location X

JMN-I X --If the valuein the AC is negative, then let Y be the contents of memory
location X, and jump to location Y

JMF X -- If the value in the FLAG register is one, then jump to location X

IJMF-I X -- If the valuein the FLAG register isone, then let Y be the contents of
memory location X, and jump to location Y

HLT -- Halt. That is, stop the xComputer by turning on the Stop-Clock control wire

David Eck (eck@hws.edu),

June 1997; minor editing May 1998

http://math.hws.edu/TMCM/java/xComputer/info.html (8 of 8) [3/26/2000 12:50:30 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

The xTuringMachine Applet

The xTuringMachine Applet

TU RING MACHINES are very simple computational devices. A Turing machine has an

infinitely long tape, divided into cells. Each cell can be blank or can contain a symbol
chosen from some fixed finite list. The Turing machine moves along the tape reading and
writing symbols. It has an internal state, which can be either the halt state or an integer
between zero and some specified maximum value. When a Turing machine enters the halt
state, it stops computing. Although Turing machines are very simple, any computation that
can be done by any computer can also be done by some Turing machine.

The action that a Turing machine takes depends only on its state and on the symbol
displayed in the cell where the machineis currently located. Given this information, the
Turing machine takes three actions: It writes a symbol to the cell (possibly the same one that
is already there); it moves one cell to the left or one cell to the right; and it setsitsinterna
state (possibly to the same state that it is currently in). The Turing machine has a table of
rulesthat tellsit what to do for various combinations of its current state and the symbol it
reads from the current cell.

The xTuringMachine applet is designed to show Turing machinesin action. The Turing
machines that it works with have a maximum of 25 states, and they can only use the
symbols O, 1, X, Y, z, and $. Nevertheless, they can do some non-trivial computations. The
applet is set up to load several sample machines. More information about the applet can be
found below.

This applet was originally written by David Eck for use with his introductory computer
science textbook The Most Complex Machine. However, it can also be used on its own.

For alist of other applets and for lab worksheets that use the applets, see the index page.

Sorry! Y our browser doesn't do Javal

About the Applet

A pop-up menu at the very top of the applet can be used to select machines that were |oaded
by the applet at start-up or that have been created by the user. Selecting "[New]", the first
item in the menu, will create a new, empty machine.

Just below the applet is the machine itself, sitting on an infinite tape. The tape is divided into
cells, and each cell either contains a symbol or is blank. The machine itself sits over one of
the cells and displaysits current state. By convention, the machine starts out in state zero.
Whenitisin the halt state, it displaysan "h". (This area of the screen is aso used to display
messages; the machine will be there when you dismiss the message.)

http://math.hws.edu/TMCM/java/xTuringMachine/index.html (1 of 4) [3/26/2000 12:50:31 PM]

http://math.hws.edu/eck/index.html
http://math.hws.edu/TMCM.html

The xTuringMachine Applet

On the left side of the applet below the machineis a set of controls. The first control isa
pop-up menu that controls the speed of the applet when it computes. The "Run" button
makes the machine start computing; when you click it, it changes into a " Stop" button. The
"Step" button makes the machine perform one step in its computation. The "Clear Tape"
button does just that. The "Delete Rule" button can be used to delete one rule from the rule
table. (It isonly active when arule has been selected. The selected rule is shown in red; you
can select arule by clicking onit.) The"Load File" and "Save" buttons are used to work
with files. Y our browser might not permit you to use them.

The table of rulesisin the lower right section of the applet. Each rule tells the machine what
todoif itisinacertain state and if it reads a certain symbol. The "Move" column tells the
machine which direction to move: "L" for left and "R" for right. Y ou can edit the "Write,"
"Move," and "New State" columns.

The columns labeled "Reading" and "Write" can contain the symbols $, 0, 1, X, y, and z.
They can also contain the character "#", which is used to represent ablank cell. The
"Reading” column might also contain "other”, which represents a default value that means
"any other symbol for which no explicit ruleis given." If the "Reading" column contains
"other", then the "Write" column can contain "same", which tells the machine to write the
same character that it read.

Just above therule tableisa'rule maker" with a"Make Rule" button that can be used to add
new rules to the table. The blue rectangle between the machine and the rule maker isa
"palette” that is used in making and editing rules, changing the contents of the tape, and
changing the current state of the machine. Thisis explained in the next two sections.

When the machine is running at "Moderate" speed or slower, after each step the applet
displays the next applicable rule in the rule maker box -- so you can see why the machine
takes the action it does. If there is no applicable rule in a give situation, the machine will
stop and will display the message "No Rule Defined!" Y ou could then use the rule maker to
make the missing rule.

If the machine moves outside the applet as it is computing, the machine along with its tape
will jerk back about 1/4 of the width of the applet. (By the way, if you somehow lose the
machine off the edge of the applet, clicking the "Run" or "Step" button will make it

reappear.)

Using the Mouse

It is possible to work with the xTuringM achine applet using only the mouse (and completely
avoiding the keyboard). Here's how.

Before you can edit any item, it must be "hilited.” The currently hilited item, if any, is
surrounded by a bright blue-green outline. Y ou can aways hilite an editable item by
clicking on it. Whenever an item is hilted, the palette will display alist of legal values for
that item. (The palette is the blue rectangle just below the machine.) Y ou can choose one of
these values by clicking on it. Y ou can also type the value you want.

http://math.hws.edu/TMCM/java/xTuringMachine/index.html (2 of 4) [3/26/2000 12:50:31 PM]

The xTuringMachine Applet

As long as the Turing machine is not running, you can edit the current state of the machine
and the contents of the tape. Click on the machine or on one of the tape's cells, then select a
value from the palette. When you enter a symbol for the tape, the hilite moves one cell to the
right.

Y ou can edit the "Write", "Move", and "New State" columns of the rule table at any time,
even while the machine is running. Click on the item you want to change, then select avalue
from the palette.

The rule maker is somewhat more complicated. The rule maker lets you set up one rule by
editing any of the five values for that rule. To set up therule, click on any of the valuesin
the rule maker and edit it by selecting one of the valuesin the palette. When theruleis
complete, click on the "Make Rule" button to add it to the rules table. (However, if the"In
State" and "Reading" items in the rule maker are the same as those for an existing rule, the
"Make Rule" button becomes a"Replace” button. When you click it, the rule in the rule
maker will replace the rule in the table.) Everytime you make or replace arule, the rule
maker is automatically updated to show the next consecutive rule, sinceit is at least fairly
likely that that is the rule you want to work on next.

Y ou can use the mouse to drag the Turing machine into a new position on its tape or to drag
the tape to a new position under the machine. If you want to drag them both together, use
the right mouse button or hold down the Control key as you click.

Using the Keyboard

Y ou can use the keyboard to perform any editing task in the xTuringM achine applet. Here's
how.

Pressing the tab key will move the hilite among the three major areas. the machine, the rule
maker, and the rule table. (If thereis no hilited item, pressing the tab key might create a
hilite in the rule maker; if not, you have to use the mouse.) Within one these three major
areas, the up, down, left, and right arrow keys can be used to move the hilite from one item
to another. When the hilite isin the tape or in the rule table, the "home™" and "end" keys can
also be used. Play around to see how they work.

Y ou can always type one of the values displayed in the palette, instead of clicking onit.
Note that a blank can be entered either by pressing the space bar or by typing a#. The
default symbol ("other" in the "Reading" column or "same" in the "Write" column) is
entered by typing a*.

When working in the rule maker, hitting the return key is the same as clicking on the "Make
Rule" (or "Replace") button.

http://math.hws.edu/TMCM/java/xTuringMachine/index.html (3 of 4) [3/26/2000 12:50:31 PM]

The xTuringMachine Applet

The Sample Machines

The applet on this pageis set up to load four sample Turing machines. Here are brief
descriptions:

o CopyXYZ.txt: This machine expects to be started on the left end of a sequence of
symbols containing only Xx's, y's, and z's. It will make a copy of its input, and will halt
on the left end of the copy.

« GatherDollars.txt: This machine should be started on the left end of a string of
symbols. Any of the symbols $, 0, 1, X, y, and z are OK. The machine will move all
the $'s to the left end of the string of symbols, leaving all the other symbolsin the
original order. It halts on the left end of the string.

« CountlnBinary.txt: Expects to be started on the right end of a sequence of zeros and
ones, which isinterpreted as a binary number. The machine adds one to its input, and
repeats this process forever. If started on a blank tape, it will start counting from one.
Run it at "Fastest" speed.

« BinaryAddition.txt: Theinput for this machine should be two binary numbers,
separated by a blank. The machine should be started on the right end of the second
number. It computes the sum of the two binary numbers. The second number is erased
in the process. The first number is replaced by the sum. The machine halts on the
right end of the sum.

David Eck (eck@hws.edu), August 1997

http://math.hws.edu/TMCM/java/xTuringMachine/index.html (4 of 4) [3/26/2000 12:50:31 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xTurtle Intro

The xTurtle Programming Applet

The applet at the bottom of this page -- assuming that you have a Java-enabled browser -- lets you write
and run programs written in the "xTurtle" programming language. This applet was written by David Eck

for use with his introductory computer science textbook The Most Complex Machine. However, it can

also be used on its own. The xTurtle language is designed to be simple enough to learn easily, but
complex enough to teach some important programming concepts.

The applet below is set up to load some sample programs. Use the pop-up menu in the upper left corner
of the applet, and click on the Run Program button to see what it does. Full information is available
about the applet and the xTurtle language on xTurtle Info page. A set of tutorial examplesisalso
available.

For alist of other applets and for lab worksheets that use the applets, see the index page.

(Javanot available.)

David Eck (eck@hws.edu), June 1997

http://math.hws.edu/TMCM/java/xTurtle/index.html [3/26/2000 12:50:31 PM]

http://math.hws.edu/eck/index.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xTurtle Tutorial

XTurtle Tutorial Examples

The xTurtle Applet let's you write and execute programs written in a simple programming
language, also called xTurtle. The applet at the bottom of this page will try to load eight
tutorial examples. To read an example, select it from the pop-up menu at the upper left
corner of the applet. Then to runit, click on the "Run Program” button. For full information
on the applet and the language, see the xTurtle Info page. The eight tutorial files are also

available astext files using the following links: [1], [2], [3], [4], [5], [6], [7], [8].

Warning: This applet seems to stretch or exceed the limits of some browsers.

(Javanot available.)

David Eck (eck@hws.edu), June 1997

http://math.hws.edu/TMCM/java/xTurtle/tutorial.html [3/26/2000 12:50:31 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutoriall_basics.txt
{ XTurtle Tutorial Exanple #1l: Basics.

This file denos sonme of the built-in
commands of the xTurtle | anguage.

First lesson: This is a comment,
since it is enclosed between { and }.
Comments are ignored by the conpute.

Note: |If the scroll bars on this text
area are not active, it's a bug in
your browser. Try resizing the

wi ndow.

}

forward(5) { Mowve turtle forward 5 units,
drawing a line as it goes. }

turn(90) { Rotate turtle 90 degrees,
count er cl ockwi se. }

green { Change drawi ng color to green
Col or nanmes include red, green,
bl ue, cyan, nagenta, yellow,
bl ack, gray. }

forward(2) { Mowve forward 2. }
back(4) { Move backwards 4. }

{ The net result of the precedi ng commands
is to draw a red and green T-shape.
Red is the default draw ng col or.

}

PenUp { Wien pen is up, turtle doesn't
draw anything as it noves. }

MoveTo(-5,3) { Mowve directly to the point
with coordinates (-5,3) }

PenDown { Start drawi ng again. }

rgb(1,0.5,0.5) { Changes drawi ng color to
the color with red, green
bl ue conponents given by
1, 0.5, 0.5. This wll
be sort-of-pink. }

face(0) { Set turtle's heading to O degrees,
nmeani ng face to the right. }

circle(3) { Draw a circle of radius 3.
The circle is drawn to the
left of the turtle's current
position. }

PenUp
MoveTo(-3,-7) { Move again. }
PenDown

Magenta { Change draw ng color to nagenta. }

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutoriall_basics.txt (1 of 2) [3/26/2000 12:50:34 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutoriall_basics.txt

Arc(2,90) { Draw a 90-degree arc of a
radius-2 circle. }

f orwar d(3)

Arc(2,90)

forwar d(3)

Arc(2,90)

forwar d(3)

Arc(2,90)

forward(3) { A box with rounded corners has
been drawn. }

PenUp
MoveTo(5,-5) { Myve again. }
PenDown

black { Draw in black. }
DrawText ("Hello") { Wite the nessage Hello
at current cursor position. }

DrawText ("World!'") { This lines up under
the Hello. }

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutoriall_basics.txt (2 of 2) [3/26/2000 12:50:34 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial2_variables.txt
{ XxTurtle Tutorial Exanple #2: Vari abl es.

A variable is a nane that can be used
to hold a value. Variables nust be
decl ared before they are used. A
vari abl e can be assigned a value with
an assignment statement. Variables
and functions can be used to conpute
val ues from conpl ex expressions

such as 3 * sin(x+3).

}

DECLARE x, v { Allows you to use the
vari abl es naned x and y. }

x := 2 { Assignnent statenent,
puts the value 2 into
into the variable x. }
y := 2*sqrt(x) { Conputes sqrt(2), multiplies it

by 2, and assigns the resulting
value to y. Sqgrt conputes

the square root. There are

ot her predefined functions. }

forward(x) { Variables can be used in conmands. }
turn(-135) { Negative turn rotates the turtle

in a clockw se direction. }
forward(y)
turn(135)
forward(x) { These commands have

drawn a Z-shape. }

DECLARE Rate { Decl ares another vari abl e.
They don't have to be decl ared
at the start of the program
Nanes can be any nunber of
characters. }

Rate := 0.07 { Decimal nunbers are K }

DECLARE noney, interest { Mre variables. }
nmoney : = 1000
interest := Rate * nobney

PenUp
MoveTo(- 8, 8)
PenDown

DrawText ("I nterest on $#nmoney is #interest.")
{ The value of a variable can be incl uded
in a string. Just include the
character #, followed by the nane of
the variable. Wen the string is
actually printed, the value of the
vari able is shown. }

X := random { Assign a randomvalue in the
range 0.0 to 1.0 to x. The
value will be different every

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial2_variables.txt (1 of 2) [3/26/2000 12:50:35 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial2_variables.txt

time the programis run.

Note that x was al ready decl ared,
so | don't have to declare it
again. In fact, it would be

an error to do so. }

y := randomnt (100) { y is assigned a
random i nteger in
the range 1 to 100. }

DrawText ("Here's a random nunber: #x")
DrawText ("Here's a random i nteger: #y")

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial2_variables.txt (2 of 2) [3/26/2000 12:50:35 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial3_io.txt
{ XTurtle Tutorial Exanmple #3: 1/0O

/O or Input/Qutput, refers to
the exchange of information

bet ween a program and the person
using the program Al the
turtle graphi cs commands,

i ncludi ng DrawText, are exanpl es
of output (fromthe conputer

to the user). This file

gi ves exanpl es of several other

| /O commands in xTurtle.

}

Tell User("Hello World!'")
{ This conmand pops up a box
di spl ayi ng the specified
string to the user. The
user nust click on a
di spl ayed OK button before
t he program can conti nue. }

DECLARE anpunt

AskUser ("What is the anmpunt?", anount)

{ This al so pops up a box
di spl aying the string.
There is also an input box
where the user can type in
a nunber. That nunber
is stored as the val ue of
the specified variable.
In this exanple, the nunber
typed by the user is stored
in the variable anmount. }

anount := anount * 1.07
{ Uses the value typed in
by the user in a conputation.
The conputed value is
then stored as the new
val ue of amount. }

Tel | User (" The amount is now #anmount.")
{ Just as in DrawText, strings
can include variables. This
command di splays a string
containing the new val ue of
anount. }

DECLARE resp

YesOr No(" Are you happy?", resp)
{ Displays the string, and
gets a response fromthe user.
Wth this command, the user
can only answer yes oOr no.
If the user says yes, the
value of the variable is
set to 1; if the user says
no, the value is set to 0. }

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial3_io.txt (1 of 2) [3/26/2000 12:50:35 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial3_io.txt

Tel | User ("The recorded answer is #resp")

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial3_io.txt (2 of 2) [3/26/2000 12:50:35 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial4_loop.txt
{ XTurtle Tutorial Exanple #4: Loops

A loop is used to repeat a sequence
of statenents over and over. Some
nmet hod nmust be provided to exit from
the | oop.

In xTurtle, the beginning of a | oop
is marked with LOOP, and the end
is marked with END LOOP

}

LOOP { start of a loop }
forward(4) { draw a line }
back(4) { return to center }
turn(5) { rotate 5 degrees }
EXIT IF heading = 0 { maybe exit }
END LOOP { marks end of |oop }

{ I'n the preceding | oop, the
repeated statenents draw a
line radiating out froma
center point, and then rotate
the turtle. Each tine
t hrough the | oop, the
conmputer asks itself, "Is
heading = 0". If the answer
is yes, then the | oop ends
and the conputer goes on to
the next statenment foll ow ng

the loop. |If the answer is
no, the conputer continues
to execute the | oop. (The

heading is the direction
that the turtle is facing.) }

PenUp
MoveTo(- 2.5, - 6)
PenDown
DECLARE count
count :=0
gray
LOOP
forwar d(5)
t urn(45)
count := count + 1
EXIT IF count = 8
END LOOP

{ In this | oop, the conputer
adds 1 to count each tinme
it goes through the | oop
After it does this 8 tines,
t he value of count will be 8.
At that tinme, the | oop will
end. The net result is that
an 8-sided pol ygon has
been drawn. This is an
exanpl e of a counting |oop. }

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial4_loop.txt (1 of 2) [3/26/2000 12:50:35 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial4_loop.txt

{ As a final exanple, the
foll owi ng exanpl e conput es
the average of 100 randony
chosen nunmbers. You shoul d
expect the average to be close

to 0.5. }
DECLARE total, average
total := 0
count := 0 { This was already declared }
LOOP
total := total + random
count := count + 1
EXIT I F count = 100
END LOOP
average := total / 100
PenUp
MoveTo(- 8, 8)
PenDown
bl ue

DrawText (" The average was #average.")

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial4_loop.txt (2 of 2) [3/26/2000 12:50:35 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial5_if.txt
{ XTurtle Tutorial Exanple #5: |IF

An |F statenent is used to choose
anong several possible courses of
action. The IF statenent bases
its decision on the value of one
or nore |logical expressions. A

| ogi cal expression is sonething
that can be either true or false,
such as "x > 0".

{ Asinmple IF.. THEN. . ELSE nakes a
choi ce between two al ternati ves,
based on whether a condition is
true or false. Here is an exanple: }

DECLARE N, x
N:=randomnt(3) { Nis 1, 2, or 3}
AskUser (" Guess a nunber.", Xx)

IF x = N THEN
Tell User ("That's right!")
ELSE
Tel | User ("Sorry, the nunber was #N')
END | F
{ The first Tell User statenent is
executed if "x = N' is true.
The second is executed if
"x = N' is false. You can have
any nunber of statenents between
THEN and ELSE or between ELSE
and END IF. The "END I F" at
the end is required to mark
the end of the IF statenent.
The ELSE part of the |F statenent
is optional. }

{ There is another version of the
| F statenment that chooses anong
nore than two alternatives. It
uses "OR I F' to make additi onal
tests. The conditions in the
IF and OR | F parts are tested
in order. |If one is found that
is true, than the corresponding
statenents are executed. The
| F statenent then ends, w thout
testing the other conditions.

If an ELSE part is present, it
is executed in the case where
all the conditions are fal se.
Here is an exanple that does
a "randomwal k. " }

LOOP { begin a |l oop; statenents can
be nested, so | can put an
| F statenment inside this |oop. }

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial5_if.txt (1 of 2) [3/26/2000 12:50:36 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial5_if.txt
N:=randomnt(4) { Nis 1, 2, 3, or 4}

IF N=1 THEN
face(0) { This is done in case Nis 1. }
ORIF N =2 THEN
face(90) { This is done in case Nis 2. }
ORIF N =3 THEN
face(180) { This is done in case Nis 3. }
ELSE
face(270) { This is done in any other case,
which in this exanple can only
happen if Nis 4. }
END IF { Marks the end of the IF statenent }

forward(0.5) { Mowves forward a bit in the
direction that has just been
chosen at random }

EXIT IF (xcoord < -9) OR
(xcoord > 9) OR
(ycoord < -9) OR
(ycoord > 9)
{ The loop ends when the turtle noves
outside the x and y coordinates in
the range from-9 to 9 }

END LOOP { marks the end of the |oop }

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial5_if.txt (2 of 2) [3/26/2000 12:50:36 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial6_subroutines.txt

{ XTurtle Tutorial Exanple #6: Subroutines

It is possible to define subroutines
and functions that can be used j ust
|ike built-in subroutines, such as
forward(x), and built-in functions,
such as sqrt(x). A subroutine is
just a list of statenments to be
executed. A function is simlar,
except it returns a value to be

used in further conputation. }

SUB Triangl e { Begin definition of

a subroutine named
"Triangle". }

forwar d(3)

turn(120)

forward(3) { Statenents to define }

turn(120) { what the subroutine }

forward(3) { does. }

turn(120)

END SUB { Marks the end of the subroutine. }

{ Defining this subroutine has not
actually drawn anything. Wen the
subroutine is called by using its
nane as a statenment, the commmands
i nside the subroutine are exeuted. }

Triangle { Call the subroutine to
draw a triangle. }

SUB Square(length) { Define a subroutine

that has a paraneter called
"l ength". A value for the
paraneter will be supplied
when the subroutine is called. }

forward(l ength)

turn(90)

forward(length) { Statenents to define }

turn(90) { what the subroutine }

forward(length) { does. }

turn(90)

forward(l ength)

turn(90)

END SUB { Marks the end of the subroutine. }

PenUp
MoveTo(- 6, - 6)
PenDown

bl ue

Square(5) { Draw a 5-by-5 square }
PenUp MoveTo(-5,-5) PenDown
Square(3) { Draw a 3-by-3 square }
PenUp MoveTo(-4, -4) PenDown
Square(1l) { Draw a 1-by-1 square }

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial6_subroutines.txt (1 of 2) [3/26/2000 12:50:36 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial6_subroutines.txt

FUNCTI ON Ar ea(l engt h, wi dt h)
{ Begin definition of a function
naned "Area", with two paraneters
naned "l ength" and "w dth" }

DECLARE val { This is a local variable,

for use inside this
function only. }

val := length * width { Conpute a value. }

RETURN val { Specify the value to be
returned by the function. }

END FUNCTI ON

DECLARE answer

answer := Area(5,7) { Call the function Area
Wi th paraneter val ues
5 and 7. }

PenUp MoveTo(-7,7) Pendown
green

DrawText ("A 5-by-7 rectangl e has area #answer.")

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial6_subroutines.txt (2 of 2) [3/26/2000 12:50:36 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial7_recursion.txt

{ XTurtle Tutorial Exanple #7: Recursion

A recutsive subroutine or function is
one that calls itself, or that calls
anot her routine that calls it back, and
so on. You can do recursion in xTurtle.
This file denbs two standard exanpl es:
the recursive factorial function and

a recursive tree-drawi ng subroutine.

{ For a positive integer, N,
factorial Nis defined to be
N * factorial (N-1), as |ong
as N>1. If N<=1, then
the answer is given directly
as 1. This definition can
be expressed easily in a
function that calls itself
recursively. }

FUNCTI ON factorial (N)
IF N>1 THEN
return N * factorial (N1)
ELSE
return 1
END | F
END FUNCTI ON

DECLARE N, F
N:=1
PenUp MoveTo(-10,9) PenDown
bl ack
LOOP
EXITIFN>9
F := factorial (N
DrawText ("factorial (#N) = #F")
N:=N+1
END LOOP

{ A "binary tree" mght be defined
as a trunk with two snaller trees
attached to it. This is OK, as
long as we say that the snaller
trees are sinpler than the main
tree. 1In the follow ng subroutine,
the "level" tells how sinple the
tree is. Wen the level gets
down to zero, only a trunk is
drawn, with no attached trees. }

SUB Tree(size, | evel)

IF level < 1 THEN
forward(size)
back(si ze)

ELSE
forward(sizel2)
turn(45)
Tree(sizel 2,1 evel -1)

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial7_recursion.txt (1 of 2) [3/26/2000 12:50:36 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial7_recursion.txt

turn(-90)
Tree(sizel 2,1 evel -1)
turn(45)
back(si zel/ 2)
END | F
END SUB

PenUp MoveTo(5, -8) PenDown
green
face(90)

Tree(15,6) { Draw a "level -6" tree }

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial7_recursion.txt (2 of 2) [3/26/2000 12:50:36 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial8_multitasking.txt
{ XTurtle Tutorial Exanple #8: multitasking

Turtles in xTurtle have the cute ability
to split thenselves into a specified
number of turtles. Each turtle

then goes on to execute the rest of

the program (If the split occurs

i nside a subroutine, all the extra
turtles are gone before the subroutine
returns.) Turtles are split up in this
way with the Fork command}

SUB st ar burst (IineCount)

{ Creates a bunch of lines
radi ating out froma center
point. The nunber of lines
is given by the paraneter.
The lines have random | engt hs
and point in randomdirections.
Because of a limtation on the
Fork command, |ineCount can't
be nmore than 100. }

fork(lineCount) { There are now
lineCount turtles }

face(randont360) { Each turtle faces in
a randomdirection }

forward(randont5) { Each turtle goes
forward by a random
amount . }

{ Al the turtles die before the
subroutine returns. }

END SUB

PenUp MoveTo(5,5) PenDown
St ar bur st (50)

PenUp MoveTo(-5,-5) PenDown
bl ue
St ar Bur st (50)

{ There is a special variable that you
can use to tell the turtles created in
a fork statenent apart. The nane of
the variable is ForkNunber. Each
of the turtles created by a Fork(N)
conmand has a different ForkNunber.
The values are 1, 2, ..., N }

For k(2)
PenUp
| F For kNunber = 1 THEN
MoveTo(-5,5) { One turtle does this. }

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial8_multitasking.txt (1 of 2) [3/26/2000 12:50:37 PM]

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial8_multitasking.txt

green
ELSE
MoveTo(5,-5) { The other turtle does this. }
yel | ow
END | F
PenDown

Fork(60) { Both turtles split; there are now
120 turtles. }

Face(6 * Forknunber) { Because they have
di fferent values for
For kNunmber, the turtles
face in different directions. }

Forward(4) { Every turtle does this. }

http://math.hws.edu/TMCM/java/xTurtle/samples/Tutorial8_multitasking.txt (2 of 2) [3/26/2000 12:50:37 PM]

The xSortLab Applet

The xSortLab Applet

SORTI NG alist of items -- that is, arranging the items into increasing or decreasing order

-- iIsacommon operation. It is also the most common example in the "analysis of
algorithms," which is the study of computational procedures and of the amount of time and
memory that they require. The xSortLab applet knows five different sorting methods. It has
avisual sorting mode, where you can watch as sixteen bars are sorted into increasing order.
And it has atimed mode, where you can measure the time it takes to sort alarge number of
items. The applet is easy to use (but you probably won't quite get the point of it unless you
already know something about sorting). More information about the applet can be found
below.

This applet was originally written by David Eck for use with his introductory computer
science textbook The Most Complex Machine. However, it can also be used on its own.

For alist of other applets and for lab worksheets that use the applets, see the index page.

Sorry! Y our browser doesn't do Javal

Visual Sort Mode

The xSortLab applet can display three different panels. a panel for "Visua Sort," a panel for
"Timed Sort," and a"Log" panel. Thereis a pop-up menu at the top of the applet that can be
used to switch among the three panels. (Note: Changing panels while asort isin progress
will abort the sort.)

The applet startsin "Visual Sort" mode, in which 16 bars are sorted step-by-step using one
of the sorting algorithms Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, or
QuickSort. Below the area where the bars are displayed are two message areas, which
display arunning commentary when a sort isin progress. The lower message area displays a
detailed comment on each step in the sort. The upper area displays more general messages
about major phasesin the sort. (The lower message areais not used when the sort is being
run at "Fast" speed.)

To theright of the barsis a column of controls. Thefirst of these is a pop-up menu, that can
be used to select the sorting method. (Again, doing thisin the middle of a sort will abort the
current sort.) Next comes a checkbox that can be used to determine whether or not the sort is
done at "Fast" speed. When this box is not checked, you get to see a cute animation of
moving bars; also, alonger delay isinserted between steps when you run the sort with the
"G0o" button. The"Go" and "Step" buttons are used for executing a sort. The "Start Again”
button gives you a new, randomized list of 16 bars.

http://math.hws.edu/TMCM/java/xSortLab/index.html (1 of 3) [3/26/2000 12:50:32 PM]

http://math.hws.edu/eck/index.html
http://math.hws.edu/TMCM.html

The xSortLab Applet

Two basic operations are used in sorting: comparing two items to see which is bigger and
copying an item from one place to another. The number of comparisons and the number of
copies used in the current sort are displayed below the controls.

Timed Sort Mode

If you switch to the "Timed Sort" panel, you'll see alarge message area, with some
instructions. This panel is used to obtain statistics about the running times of various
running algorithms. The interesting question is how the running time depends on the number
of items being sorted. There is atext-input box at the top of the panel where you can specify
the size of the array that is to be sorted. Y ou can aso specify the number of arraysto be
sorted. The point isthat a small array takes so little time to sort that the time cannot be
measured accurately. So, you should sort a number of arrays, all of the same size. Y ou can
measure the total time it takes to sort them all. The time required to sort one array can be
obtained by dividing the total time by the number of arrays. Y ou probably want to adjust the
number of arrays so that the total timeisat least a couple of seconds.

Note: Your computer must have enough memory to store all the numbers you want to sort.
(If you are running the applet at all, you probably have enough memory to work with at least
one million items.) If you ask for more numbers than you have room for, you should just a
message telling you that you don't have enough memory. However, most systems that | have
tried this on have crashed. Thisisabug. You are warned. Stick to a reasonable number of
items.

At the bottom of the panel are a pop-up menu that you can use to choose the sort method
and a"Go" button that you can click to start the sort. (This changesto "Abort" whileasort is
in progress.)

When you begin a sort, the first thing the computer doesisto fill up the arrays with random
numbers. If there are alot of numbers, thiswill take a noticeable amount of time. Then, the
computer begins to sort. As the sorting operation proceeds, statistics are displayed about
twice per second. The statistics include the number of comparison and copy operations that
have been performed, the number of arrays that have been sorted so far, the elapsed time
since the computer began sorting, and the approximate compute time that the computer has
devoted to sorting. The compute time is not the same as the elapsed time, since the applet is
doing other things besides sorting (such as redrawing the screen). The applet tries to use
80% of the time for sorting, and to leave 20% for other tasks. The applet can measure the
20% of itstime that it gives away voluntarily, but if other things are going on in your
computer, it might lose some other time that it can't measure. This is why the measured
compute time is approximate. So, you should not try to run atimed sort in the background!
Just sit and watch -- or go get a coffee.

http://math.hws.edu/TMCM/java/xSortLab/index.html (2 of 3) [3/26/2000 12:50:32 PM]

The xSortLab Applet

The Log

Every time a sort completes successfully, statistics about that sort are written to alog. For a
visual sort, the number of copies and the number of comparisons are recorded. For atimed
sort, al the statistics that are displayed in the "Timed Sort" panel are written to the log. Y ou
can view thislog by selecting the "Log" option from the pop-up menu at the top of the

applet.

The Log panel has buttons for clearing the log and for saving it to afile. However, it is
likely that your browser will not permit you to save the log. Unfortunately, the applet has no
provision for printing the log at thistime. Y ou might try using copy-and-paste to copy the
data from the log to another program from which you can copy or print it.

David Eck (eck@hws.edu), August 1997

http://math.hws.edu/TMCM/java/xSortLab/index.html (3 of 3) [3/26/2000 12:50:32 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xModels Intro

The xModels Graphics Applet

The applet at the bottom of this page -- assuming that you have a Java-enabled browser -- let's you write
scene descriptions in a simple language. The applet can display still images and animations described in
this language. Images are displayed as wireframe models. The point is to learn something about
geometric modeling and geometric transformations, which are important in computer graphics. The
applet was written by David Eck for use with his introductory computer science textbook

The Most Complex Machine. However, it can aso be used on its own.

The applet below is set up to load some sample programs. Click on the "RENDER" button to see the
Image or animation described by a program. Use the pop-up menu at the top of the applet to select among
the sample programs. Full information is available about the applet and its scene description language on
the xModels Info page. A number of tutorial examples are also available.

(Javanot available.)

David Eck (eck@hws.edu), June 1997

http://math.hws.edu/TMCM/java/xModels/index.html [3/26/2000 12:50:32 PM]

http://math.hws.edu/eck/index.html
http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xModels Info

xModels Info

Computer-generated graphics images are usually constructed in two stages:. modeling
followed by rendering. In the modeling stage, a geometric representation of the objectsin
the scene is constructed. The rendering stage produces the actual images, based on
information in the model.

The xModels Applet lets you describe scenes in a simple scene description language. Scenes

are rendered as wireframe models, a very minimal kind of rendering which shows just the
edges of all the objects in the scene -- even edges that are behind other objects. The main
point of the applet is not to produce fancy images; the point isto learn some of the basic
ideas of geometric modeling.

Thisfile contains fairly complete information about the xModels Applet and about the scene
description language that it uses. Also available on a separate page are some
tutorial examples.

| invented xModels to use as an example in The Most Complex Machine, a book that
surveys the field of computer science. The xModels applet is based on two similar programs
that | wrote for Macintosh computers (one for two-dimensional and one for
three-dimensional graphics). These programs are among several that | wrote for use with
The Most Complex Machine. All the Macintosh programs are available for downloading. |

am in the process of porting all the Macintosh programs to Java.

The xModels Applet

The xModels applet is designed to be easy to use, so the major thing you need to learn about
IS the scene description language, which is discussed below.

The applet has two modes. In its program mode, it displays atext areawhere you can type
and edit scene descriptions. Thereisarow of control buttons along the bottom that can be
used to render the scene, to load a program from afile, to save the current programin afile,
and to clear out al the text from the text area. The applet isin this mode when it first starts
up. You can only switch to graphics mode by rendering alegal program.

If you click the "Render" button, the computer will examine the program contained in the
text areato see whether it isalegal scene description. If the computer finds an error, it will
report it in abox at the top of the text area. (Y ou can make this box go away by clicking on
it, if you like.) If there are no errors, the applet will switch to graphics mode and the scene
will be displayed.

The second mode is a graphics mode in which the applet displays the rendered scene. In this
mode, there is a column of controls along the right edge of the applet. This column contains:

o Frame number label -- shows the currently displayed frame number during an
animation. (If you find this distracting, click oniit.)

http://math.hws.edu/TMCM/java/xModels/info.html (1 of 9) [3/26/2000 12:50:33 PM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/TMCM/DownloadingInfo.html

xModels Info

« New Program button -- takes you back to program mode, with a new blank text area.

« Show Program button -- takes you back to program mode, to the program that
produced the current scene.

« Go button -- used to restart an animation that has been paused.

« Pause button -- stops an animation, and makes the Go, Next Frame, and Previous
Frame buttons available.

« Next Frame button -- goesto the next frame of a paused animation. When the last
frame s reached, it goes back to frame zero.

« Previous Frame button -- goes to the previous frame an animation. When frame zero
Isreached, it goesto the final frame.

» Speed pop-up menu -- selects the desired speed for animation, ranging from one
frame per second to 30 frames per second. However, note that the actual rate can be
less than the selected rate, depending on the complexity of the scene and on your
computer's speed.

« Looping pop-up menu -- Specifies what happens in an animation when the last frame
Isreached. If thismenuis set to "Loop," the animation is repeated starting back at
frame zero. If it is set to "Back-And-Forth," the animation is played backwards, then
forwards again, and so on. If it is set to "Once Through,” the animation is paused
when it reaches the final frame.

At the very top of the applet, there is another pop-up menu. This menu is available in both
programming mode and graphics mode, and you can use it to switch between modes and
among all the programs that the applet knows about. The first item in this pop-up menu is
"Graphics'. When the applet isin programming mode, selecting " Graphics' from the pop-up
menu is exactly the same as clicking on the "RENDER" button. That is, the applet will
check the current program for errors and, if no errors are found, will switch to graphics
mode and display the rendered scene.

The second item in the pop-up menu is"[New]". Choosing this item will let you write a new
program, starting with an empty text area. (Thisis the same as clicking the New button
while in graphics mode.) The new program will have the name "Untitled 1" or "Untitled 2"
or....

The remaining items in the menu are names of programs. Selecting one of these names will
take you directly to that program. If you do this while the program is in graphics mode, it
will switch back to programming mode.

The Scene Description Language

Scenes in xModels are described in terms of three coordinates, X, y, and z. The computer's
screen is the xy-plane, with the origin (0,0) at the center of the graphics display area. The
positive y-axis extends upwards from this point, and the positive x-axis points to the right.
The z-axis points directly out from the screen towards the viewer, so that pointsin front of
the screen have positive z-values, and points behind the screen have negative z-values. This

http://math.hws.edu/TMCM/java/xModels/info.html (2 of 9) [3/26/2000 12:50:33 PM]

xModels Info

Is a standard coordinate system for three-dimensional computer graphics.

The graphics display area includes the square region with -10 < x <10 and -10 <y <10.
Since the display area might not be square, it can actually extend beyond this range in one
direction. Thereis no way to increase or decrease the basic square region that is displayed,
S0 scenes must be sized to fit into thisregion. (It is easy to scale objects up or down in size
to fit.)

The three-dimensional world is projected onto the xy-plane from a point on the positive
z-axis. The z-coordinate of this point is called the viewDistance, and its value can be
specified as part of a scene description. (This name is somewhat deceptive. Since the display
area a\ways shows the same sguare region, objects on the xy-plane don't look smaller as the
viewDistance increases. They just look more squashed in the z-direction.) The viewDistance
can be set to "infinity" to give what is called aparallel projection.

Fundamentally, a scene description for xModelsis alist of objects that appear in the screen,
plus afew special commands. Special commands are used to specify colors, view distance,
and animation parameters. There are afew basic named objects, such as circle and cone.
There is also acommand for defining new named objects. Geometric transformations such
as rotate and scal e can be applied to objects to specify their size, position, and orientation.

Y ou can make complex, hierarchical objects that contain other objects, which can have their
own transformations. Animation is done by letting parameters, such as the scaling factor in a
scale transformation, vary through arange of values as the animation proceeds from frame
to frame. The rest of thisfile gives the details of the scene description language.

| should note that a scene description can contain comments. A comment begins with a
semicolon (;) and continues until the end of the line. For multiline comments, a semicolon is
required on each line. A comment doesn't have to start at the beginning of aline.

Except in the case of comments, xModels doesn't pay attention to ends-of-line. They are
treated just like spaces. Y ou can lay out your program any way you like on the page.

The xModels language is not case-sensitive: Upper and lower case letters are considered to
be equivalent. Names can consist of letters, digits, and the underscore character (). A name
must begin with aletter or with an underscore. Names can be of any length. A word with a
predefined meaning, such as square or animate, cannot be reused as the name of a defined
object.

Numbers can include decimal points and exponential notation. For example: -17, 3.14, .5,
1.2e5. With just afew exceptions, anyplace where a number can appear in a program, a
number range can also appear. Number ranges are used with animation, as described later in
thisfile. Examples of number ranges are 1:10, -1:3:10, and 12::0. (The only places where
number ranges cannot be substituted for numbers are in the animate command and for the
first parameter of the lathe or extrude command.

Asafina preliminary point, | will note that commas can be included in a program to help
make it more readable by humans. However, the computer ignores commas. More
specifically, it treats them exactly the same as spaces.

http://math.hws.edu/TMCM/java/xModels/info.html (3 of 9) [3/26/2000 12:50:33 PM]

xModels Info

Special Commands

The special commands in xModels are animate, viewDistance, background, define, and
various commands for specifying the color to be used for drawing.

If the animate command occurs at all in aprogram, it must be the first word in the program
(not counting any comments the might precede it). This command, which is used to specify
the number of frames in an animation, is defined below.

The viewDistance command specifies the point along the z-axis that is used as the center of
projection. An (x,y,z) point is projected onto the xy-plane by drawing aline from the center
of projection through the point (x,y,z) and finding the (x,y) point where it intersects the
xy-plane. Objects behind the projection point are not displayed. The viewDistance command
must be followed by a parameter that specifies the z-coordinate of the projection point. The
parameter can be any positive number. If the scene is an animation, the parameter can be a
number range. The parameter can also be the word infinity which specifies projection from
infinity. A program can contain at most one viewDistance command. If noneis specified, a
default value of 20 isused. The viewDistance command does not have to come at the
beginning of the program. However, it applies to the entire scene in any case.

The background command is used to specified the background color for the scene. This
command must be followed by a color specification. The color can be specified by one of
the specific color words listed below. It can aso be given using the rgb or hsb color
command. Since rgb and hsb can use number ranges as parameters, the background color
can change from one frame of an animation to the next. The default background color is
white. The background command does not have to appear at the beginning of the program.

The define is used to give a name to an object. Once a named object has been defined, it can
be used in the same way as any of the built-in objects, including in the definitions of other
named objects. The define must be followed by the name of the object, and then by the
specification of the object itself. The object is generally a complex object, enclosed between
[and], but that is not a requirement. Defining an object does not make the object appear in
the scene. To do that, you have to include the object name as part of the scene description.
The following example defines a"whedl" to consist of acircle and three lines:

defi ne wheel |
circle
i ne
line rotate 60
line rotate -60

]

A color can be specified by one of the following color names: red, green, blue, cyan,
magenta, yellow, black, white, gray, lightGray, or darkGray. Color can aso be specified by
the rgb command or the hsb command. The rgb command lets you specify a color by giving
itsred, blue, and green components. It requires three parameters to specify the three values.
The values must be between 0 and 1, inclusive. For example:

rgb 1, 0.5, 0.5 . specifies a pinkish color

http://math.hws.edu/TMCM/java/xModels/info.html (4 of 9) [3/26/2000 12:50:33 PM]

xModels Info

rgb 0:1 00 ; specifies a range of colors
; fromblack to red

The hsb command is similar, except it specifies a color by giving its hue, brightness, and
saturation components. Again, these values must be between 0 and 1. (Y ou can look this up
in a graphics textbook if you don't know what it means.)

When a color command is given, it sets the drawing color to be used for all subsequent
objects, up until the next color change. Color changes inside complex objects, that is
between [and], have no effect past the closing]. The default drawing color is black.

Objects

There are six predefined objects in xModels: line, square, circle, cube, cone, and cylinder.
These objects are sized so that each object just fits inside a 1-by-1-by-1 cube, centered at the
origin. The line object stretches along the x-axis from (-0.5,0) to (0.5,0). The square object
has vertices at (-0.5,-0.5), (0.5,-0.5), (0.5,0.5), and (-0.5,0.5). The circle has center (0,0) and
radius 0.5. The cone is oriented to point upwards along the y-axis. The cylinder also hasa
vertical orientation. To include one of these objects, just list its name in the scene
description. Usually, the name will be followed by atransformation that affects the size,
position, and orientation of the object.

There are also four commands for creating an object out of alist of points. These commands
are polygon, polygon_3d, lathe, and extrude. The polygon command takes alist of
parameters that specify a sequence of (x,y) points. The polygon consists of these points
joined by lines. Note that there must be an even number of parameters, since there are two
parameters per point. For example, the following command creates a triangle:

polygon 0,0 4,0 2,2

It's legal to have a polygon command with just two points. In that case, it specifiesaline.
The polygon-3d is similar, except that it takes alist of (x,y,z) points.

The lathe command takes alist of (X,y) points, joins those points with line segments, and
then rotates the resulting curve about the y-axis to obtain a three-dimensional object. The
original curveisactually copied several times, at different angles of rotation. These copies
are then joined with further line segments. The number of copies must be specified as the
first parameter to the lathe command. The remaining parameters specify the (x,y) points. For
example, the following command makes four rotated copies of the line segment from (0,5)
to (3,0) and then connects them with lines to produce a pyramid:

lathe 4 0,5 3,0

It islegal to have alathe command with just one point. The result will be aregular n-sided
polygon lying in the xz-plane.

The extrude command is similar to lathe in that it makes several copies of acurve that liesin
the xy-plane, and it then joins those copies with lines. However, extrude makes the copies
by translating the original curve along the z-axis. Each copy is separated from the next by
one unit along the z-axis. The z-values are centered about 0. for example, for extrude 2, the

http://math.hws.edu/TMCM/java/xModels/info.html (5 of 9) [3/26/2000 12:50:33 PM]

xModels Info

two z-values are -0.5 and 0.5.

Besides all these basic objects, you can make complex objects. A complex object isalist of
items enclosed between aleft bracket, [, and aright bracket,]. It can include objects and
color specifications. Each object in a complex object can be followed by its own set of
transformations, as described below. The objects can include basic objects, named objects
created with the define command, and nested complex objects. Because of this ability to
nest complex objectsinside other complex objects, xModelsis said to use hierarchical
models.

Transformations

Any object can be followed by alist of one or more transformations that affect the size,
position, and orientation of that object. Thisincludes complex objects. Any transformation
applied to a complex object is applied to that object asawhole. If an object inside a
complex object hasits own transformations, they are applied first, followed by the overall
transformation of the object as awhole.

A transformation consists of aword specifying the type of transformation, followed by one
or more parameters. For example, the command rotate 30 specifies that the object isto be
rotated through an angle of 30 degrees about the z-axis. Some transformations take a
variable number of parameters. For example, scale 3 will magnify the object by a factor of
3inall directions, while scale 2,6,0.5 will scale it by factors of 2 in the x-direction, 6 in the
y-direction, and 0.5 in the z-direction.

When an object isfollowed by severa transformations, they are applied in the order given.
For examplein,

square xtranslate 5 rotate 30

the square isfirst trandated 5 units in the positive x-direction, and is then rotated by 30
degrees about the origin. Putting the transformations in the opposite order:

square rotate 30 xtranslate 5
gives adifferent result, since the square isfirst rotated and then translated.

Hereisalist of the transformations used in xXModels, where A, B, C, D, E, F, and G are
numbers (or, in the case of an animation, number ranges):

» scale A B C-- Scales by factorsof A inthex direction, B inthey direction, and Cin
the z direction. Scaling by afractional amount makes an object smaller. Scaling by a
negative amount reflects the object through the corresponding coordinate plane. The
scaling is centered at the origin; al other points move away from or towards the
origin.

o scaleA B --sameas"scaleA B B".

o scadeA --sameas”scale A A A".

o XscaeA --sameas"scaeA 11"; scalesin x-direction only.

o yscaeA --sameas"scael A 1"; scalesin y-direction only.

o 7zscaleA --sameas"scalel 1 A"; scalesin z-direction only.

http://math.hws.edu/TMCM/java/xModels/info.html (6 of 9) [3/26/2000 12:50:33 PM]

xModels Info

translate A B C -- Moves each point (x,y,z) to (x+A,y+B,z+C). The effect isto move
the object A unitsin the x-direction, B unitsin the y-direction, and C unitsin the
z-direction.

translate A B -- same as "translate A B 0".

translate A -- same as "trandlate A 0 0".

xtranslate A -- same as "trandate A 0 0"; moves an object A unitsin the x-direction.
ytranslate A -- same as "translate 0 A 0"; moves an object A unitsin the y-direction.
ztranslate A -- same as "translate 0 0 A"; moves an object A unitsin the z-direction.

xrotate A -- Rotates everything though an angle of A degrees about the x-axis. The
x-axisisfixed, and everything else pivots around it. The direction to use for positive
anglesis determined by the "right-hand rule": Point the thumb of your right hand in
the direction of the positive axis, and the fingers of your right hand will curl in the
direction of a positive angle.

yrotate A -- Rotates everything though an angle of A degrees about the y-axis.
zrotate A -- Rotates everything though an angle of A degrees about the z-axis.

rotate A -- same as "zrotate A". In the xy-plane, thislooks like a rotation about the
origin, with positive angles representing counterclockwise rotation and negative
angles, clockwise rotation.

rotate A about B C -- Rotate through an angle of A degrees about the line that starts at
the point (B,C,0) and extends in the same direction as the positive z-axis. In the
Xy-plane, thisisjust rotation about the point (B,C).

rotate A about line B C D -- Rotate by an angle of A degrees about the line that goes
from the origin, (0,0,0), to the point (B,C,D). (The two words "about line" can also be
written as a single word "aboutline".) If (B,C,D) = (0,0,0), nothing happens.

rotate A about line B C D E F G -- Rotate by an angle of A degrees about the line that
goes from the point (B,C,D) to the point (E,F,G).

xSkew A -- Thisisthe transformation which moves (x,y,z) to (x+Ay,y,z). Lines that
were perpendicular to the xz-plane are tilted (or "skewed") to the left or right.

ySkew A -- Thisis the transformation which moves (x,y,z) to (x,y+Ax,z).

xyShear A B -- Thisis the transformation which moves (x,y,z) to (x+Az,y+Bz,z).
Lines perpendicular to the xy-plane are skewed. (I have not included a complete set of
skew/shear transformations, because | don't expect them to be used much.)

Note that although xModels is a 3-dimensional graphics program, you can restrict yourself
to two dimensionsif you want. The names and semantics of the transformations were
chosen so that all the two-dimensional transformations are available with reasonable names.
This explains the otherwise odd rotate A about B C, for example.

It isimportant to understand what a list of transformation does to an object. All the
transformations are applied to the object before it is displayed. So, square scale 2 5isjust a
way of specifying a 2-by-5 rectangle, and circle translate 5 is just a way of specifying a
circle centered at the point (5,0). Y ou don't actually see the object moving or changing
shape. For that, you have to use an animation and specify arange of values for the

http://math.hws.edu/TMCM/java/xModels/info.html (7 of 9) [3/26/2000 12:50:33 PM]

xModels Info

transformation. In that case, each frame of the animation gets its own transformation to
specify the shape or position of the object in that frame. The object can change from one
frame to the next, because a different transformation is used in each frame.

Animation

An animation isjust a sequence of frames. Each frame contains a separate image. If the
images don't change too much from one frame to the next, the viewer will perceive
continuous motion as the frames are played back in rapid succession.

In xXModels, a scene description that starts with the command animate N, where N isa
positive number, is an animation with N+1 frames. The frames are numbered from O to N.
(Y ou should think of N as the number of intervals between frames.) Then, to get any kind of
motion or change in the animation, you need to make some quantity change from frame to
frame. Thisis done by using number range in place of a number. A number range consists of
astarting value, followed by a colon, followed by afinal value. In each frame of the
animation, the number range represents a different value. For example, in an 11-frame
animation, the number range 0:5 represents O in frame 0, 0.5in frame 1, 1 in frame 2,... and
5inframe 11. Thus, the scene description:

ani mte 10
circle scale 0:5

shows acircle that grows from asize of O in thefirst frameto asize of 5in the last frame.
And

ani mate 30
square scale 5 rotate 0:90

shows a 5-by-5 square pivoting through a 90-degree turn about the origin. Note that the
value 5 in this example is the same in each frame. Y ou don't need to use a number range for
each value in an animation -- only for the values that you actually want to change during the
animation.

By adding additional parameters to the animate command, you can make "segmented
animations.". For example, the command animate 30 50 specifies an animation with two
segments. The first segment has 31 frames, and the second segment has 51. The final frame
of the first segment is also the first frame of the second segment, so there are 81 framesin
al. (Remember that the numbers 30 and 50 actually specify the intervals between frames.)
An animation can contain any number of segments. The first frame of the animation, the last
frame, and any frame that is on the boundary between two segments are called key frames.

A number range used in a segmented animation must specify avalue for each of the key
frames. Thus, it must have exactly as many colons as there are segments in the animation.
For example, the number range 10:5:7 could be used in a two-segment animation. During
the first segment, the value ranges from 10 to 5, and during the second segment, it ranges
from 5 to 7. The number range 0:0:10 has the constant value 0 throughout the first segment,
and then its value ranges from 0O to 10 during the second segment. Sometimes, you want a
guantity that changes at a constant rate during the whole animation, rather than at different
rates in different segments. The notation for doing thisisto use two or more colonsin arow,

http://math.hws.edu/TMCM/java/xModels/info.html (8 of 9) [3/26/2000 12:50:33 PM]

xModels Info

with no numbers between. For example, 0::10 represents a quantity that varies evenly from
0 to 10 across both segments of a two-segment animation.

David Eck (eck@hws.edu), June 1997

http://math.hws.edu/TMCM/java/xModels/info.html (9 of 9) [3/26/2000 12:50:33 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

xModels Tutorial

XModels Tutorial Examples

The xModels Applet displays wireframe models of still images and animations which are
specified in a simple scene description language. The applet at the bottom of this page will
try to load six tutorial examples. To read an example, select it from the pop-up menu at top
of the applet. Then, to see the image it produces, click on the "RENDER" button or select
"Graphics' from the pop-up menu. For full information on the applet and the language, see
the xModels Info page. The six tutorial files are also directly available as text files using the

following links: [1], [2], [3], [4], [5], [6],

(Javanot available.)

David Eck (eck@hws.edu), June 1997

http://math.hws.edu/TMCM/java/xModels/tutorial.html [3/26/2000 12:50:34 PM]

http://math.hws.edu/eck/index.html
mailto:eck@hws.edu

http://math.hws.edu/TMCM/java/xModels/samples/Tutoriall_Basics.txt

: xModel s Tutorial 1: Basic |deas

; A programwitten in the xMddels scene description

; language is basically a list of the objects in the

; scene, with "transformations" that say how t he objects
; are sized, oriented, and placed. There are a few

; other things that can occur in progranms. This

; program contai ns exanpl es of the basic objects

: and sone of the transfornations that can be used

; in a program It also shows how to use col or

; A semicolon, like the one at the left is the beginning
; of a "comment" which is ignored by the conputer. A
: comrent ends at the end of the |ine.

square ; A square is one type of basic object.
; Putting its nanme in the scene description
; adds a square to the inage. A basic square
; is arather small square at the center of
; the inmage.

square scale 3 ; This is ANOTHER square in the sane
; image. The transformation "scale 3" placed
; after an object causes that object to be
; magnified by a factor of 3. Every point in
; the object is noved away fromthe originto
; three tinmes its original distance. Since
; the basic square was centered at the origin,
; a scaled square is also centered at the
;origin.

red ; The command "red" tells the conputer to draw the
; following objects, up to the next col or change
; inred. Qher color comands include green,
; blue, cyan, magenta, yellow, black, white, and gray.
; (It is also possible to specify "RG@" colors
: and "HSB" colors. See the full docunentation for
; details.)

circle translate 6 6 ; A "circle" is a small circle
: at the center of the screen, but the "transl ate"
: transformation is used here to nove it over 6
; units and up 6 units fromits original position.
; This will showin the imge as a small, red
; circle centered at the point (6,6).

circle scale 5 translate -6 6 ; Transformati ons can
; be conbined. The circle is FIRST scal ed by
; a factor of 5, and then the resulting object
; is nmoved 6 units to the left and 6 units up.
: The result is a circle of dianeter 5 centered
; at the point (-6,6). The drawing color is
: still red for this circle,

blue ; Color changes to blue for follow ng objects
square scale 5 ; Start with a square,
rotate 30 ; rotate it 30 degrees about the origin,

translate 6 -6 ; then nove it 6 units over and 6 down.
; (Note that you don't have to list all the

http://math.hws.edu/TMCM/java/xModels/samples/Tutoriall_Basics.txt (1 of 2) [3/26/2000 12:50:37 PM]

http://math.hws.edu/TMCM/java/xModels/samples/Tutoriall_Basics.txt
; transfornmations on one |line.)

square scale 6 2 ; A scale command can al so have two or
translate -5 -5 ; three paraneters. "scale 2 6" nagnifies
; by a factor of 6 horizontally and
; 2 vertically. Scaling a square in
; this way gives a rectangle.

green

cube scale 4 translate 5 0 ; A 1-by-1-by-1 cube is
; magnified by a factor of 4 and transl ated
; 5units to the right,

cone scale 4 translate -5 0 ; The cone shows up
; bunits to the left of its default position
; at the origin.

magenta ; A bright purple-ish color

cyllnder scale 4 translate 0 5 ; The cyIinder
; shows up 5 units above the origin

line scale 6 translate 0 -7 ; Finally, a hunble |ine.
; The basic line is one unit |long, extending along
; the x-axis from(-0.5,0) to (0.5,0).
; Here, it is scaled to a length of 6 and noved
: down 7 units.

; You can render this scene by clicking on the "RENDER"

; button. You should be able to find all the objects

; listed above in the picture. The colors will help

; you identify them The 3-di nensional objects wll

; look sort-of distorted because they are being projected
; onto the screen fromthe point (0,0,20). The near side
; of the cube, for exanple, |ooks bigger than the far

; side (as it should, really).

http://math.hws.edu/TMCM/java/xModels/samples/Tutoriall_Basics.txt (2 of 2) [3/26/2000 12:50:37 PM]

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial2_Animation.txt
: XxModel s Tutorial 2: Aninmation

; Moving images are nore interesting than still inages.

; An animated inage is displayed on the conputer screen

; by showi ng a sequence of "frames" in rapid succession

; wWith small changes fromone frame to the next. In

; xModel s, a nunber range such as 1:5 is used to specify

; a value that changes fromfranme to frame in the ani mation
: For 1:5, the value is 1 in the first frane and is 5 in

: the last frane. Between the first and | ast frane, the

; val ue changes by the same anmount in each frame. This

: file defines an animation for xModel s.

animate 60 ; An ani mated scene MJST begin with the
; word animate, followed by a specification of
: the nunber of franmes in the anination. Here,
: there will be 61 franes, nunbered fromO to 60.

background yell ow ; The "background" command is used to
; specify a background col or for the scene.
i (Used here just for fun.)

square scale 1:5 rotate 0:90 ; Specifies a different
; square in each scene. The first square has
. size 1 and is not rotated at all. The
; second square is a little bigger and is
; rotated a bit (by 1.5 degrees, to be exact).
; The last square will be 5 units |arge and
; rotated through an angle of 90 degrees.

circle scale 1:5 5:1 translate 6 6 ; This starts out
; as a 5-by-1 ellipse and ends up as a 1-by-5
; ellipse. The translate command noves it
; to the upper right corner of the display area.

bl ue
cube scale 2 translate -6:6 -7 ; The cube npbves
; along the bottom of the screen, fromthe
; point (-6,7) to (6,7).
line scale 4 ; Afour-units long line
rotate 0:180 ; rotate fromO to 180 degrees.
translate 0 7 ; The rotating line is noved 7 units
; upwards. (Note: this line is blue.)
red
line scale 4 ; Afour-units long line
translate 0 7 ; is nmoved seven units upwards
rotate 0:180 ; and fromthere rotates through

; 180 degrees about the origin. (Note
: that the order in which the

; transformations are applied nakes a
; big difference. (This line is red.)

; (When you render this animtion, note how the inmage of
; the cube changes as it nobves.)

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial2_Animation.txt [3/26/2000 12:50:37 PM]

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial3_3D.txt
: XxModel s Tutorial 3: Three-di nensi onal Scenes.

; The two previous tutorials included three-dinensional
; Objects, but the transformations that were applied

; only affected two di nensions. Transformations can,
:in fact affect all three dinensions. This file

: discusses three-di nensional transformati ons and

: has nore i nformati on about transformations.

animate 60 ; This will be a 61-franme ani mation

circle scale 8 : The "transl ate" command can take three
translate 0 0 6 ; paraneters, giving changes in x,y and z.
yrotate 0: 360 : Atranslation of 6 units in the z

: direction noves the circle forward

: six units towards the viewer. Fromthat
; position, it is rotated 360 degrees

; around the y-axis. This sends it

; towards the right and away fromthe

; viewer, then all the way around the

; axis and back to its original position.

red

square xscale 5 : "xscale 3" is short for "scale 3 1 1".
ytranslate 8 ; This neans "translate 0 8 0". Sinilarly,
xrotate 0:360; there are commands: yscal e, zscal e,

: xtranslate, ztranslate, xrotate, and

; zrotate. zrotate is actually the sane

; as the rotate command, since it just

; rotates everything around the z-axis,

; which points out of the screen towards the
; user. This rectangle starts at the top

: of the screen and rotates around the

© X-axis.

bl ue

cube scale 2 translate -12:12 2:-2 -6:6
; A small blue cube noves from (-12,2,-6) to (12,-2,6).

green

cylinder scale 5 rotate 0:360 about line 1 1 0
; The cylinder rotates about the line that extends
; from(0,0,0) to (1,1,0). The "rotate about Iine"
; command |lets you rotate objects about |ines other
: than the coordi nate axes.

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial3_3D.txt [3/26/2000 12:50:38 PM]

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial4_ComplexObijects.txt
; xModel s Tutorial 4: Conplex Cbjects

; The real power of xMddels (what there is of it) conmes from
; fact that it is a "hierarchical" nodeling | anguage. You

; can conbi ne several objects into one conpl ex object,

: which can then be treated as a unit. Transformations

; applied to a conplex object apply to the object as a

; whole. A conplex object can even include other conpl ex

; Objects. It is also possible to define a nane to

; represent a conplex object. Then the nane can be

; used in the scene, just as if it were one of the

; predefined objects such as "square" and "cone".

animate 60 ; This will be a 60-franme ani mati on
[; A conplex object begins with a "[" and ends with "]".
square scale 4 ; Transformations can be applied to the

; objects inside a conpl ex object.

[; Conpl ex objects can be nested inside other objects.
circle translate 5
circle translate -5
] rotate 45:-45 ; The rotation conmand applies to the
; entire conplex object, consisting of
: two circles.

red ; A conplex object can contain col or commands
; in addition to objects

line scale 8 rotate 90 xtranslate -4:4

] scale 0.5:1.2 ; The entire conplex object grows from
: half of its basic size to 1.2 tines
; that size.

; Note: At this point, the drawing color is black

; The col or change | NSI DE t he object has no

: ef fect outside. (On the other hand, a col or

; change made BEFORE t he object does "l eak into"
; a conpl ex object.

define wheel [; Begin the defintino of an object named "wheel"
circle
i ne . A wheel contains a circle and three
line rotate 60 ; lines, which act as spokes.
line rotate -60
] : The end of the definition

; "Wheel " has been defined, but no wheel has been put into

: the scene. Now we add two wheels with different

; colors, sizes, and rotation speeds to the scene:

wheel scale 2 rotate 0:;360 xtranslate -8 ; This one is bl ack
green

wheel scale 4 rotate 0:-180 xtranslate 8

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial4_ComplexObjects.txt (1 of 2) [3/26/2000 12:50:38 PM]

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial4_ComplexObijects.txt

A defined object can be used inside the definition
of anot her object.

defi ne wagon [
red
square scale 4 2
bl ue
wheel scale 2 rotate 0:-720 translate -2 -1
wheel scale 2 rotate 0:-720 translate 2 -1

]

wagon ytranslate -8 ; A wagon across the bottom of
xtransl ate -10: 10 : t he screen

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial4_ComplexObjects.txt (2 of 2) [3/26/2000 12:50:38 PM]

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial5_PolygonsEtc.txt
; xModel s Tutorial 6: Polygons, Lathing and Extrusion

; xModel s has a "pol ygon" for creating pol ygon objects.

; The pol ygon command takes a list of (x,y) points and

; connects themwith |line segnents. An exanple is given bel ow.
; Mbdeling real objects (like cars or faces) in 3D requires

; that they be approximated with | arge nunbers of polygons,

; perhaps thousands of polygons per object. You won't want

; to do anything so conplicated with xMddels-3D. But it

; does have two ways of producing fairly conplicated, but also
; fairly regular, objects. The nethods are called | athing

; and extrusion. The idea is to take a figure consisting

; of a connected sequence of line segnents in the xy-plane.

; Sonme specified nunber of copies of this figure are made and
; then nore line segnments are added to join the copies.

ani mate 30

; In lathing, the copies are made by rotating the original
; figure about the y-axis. The command for doing | athing
cis "lathe":

lathe 8 0,5 1,1 3,0 1,-1 0,-5 ; The first paraneter is the nunber of
; copies; then cones the list of points.
yrotate 0:45 ; You can apply transformations
; to lathed objects.

; Conpare the figure produced by the above to the pol ygon
; made with the sanme points:

polygon 0,5 1,1 3,0 1,-1 0,-5
xtranslate 6 ; Mowve it over so you can see it.

The extra vertical line from(0,-5) back to (0,5), which
is added to close the polygon, is not used in the |athing
operation. The remaining sides formthe figure that is
rotated about the y-axis by the | athe command.

; Here are nore exanpl es:
red

lathe 12 1,2 2,-2 ; Lathing a single line, to nake a "l anp shade".
xrotate 0:360 ; Tunble it about the x-axis
xtranslate -7

bl ue

lathe 4 2 1:-1 3 0 4 0 ; You can use nunber ranges
translate -4 7 : in the point list!

Extrusion is not quite so interesting as lathing. In
extrusion, the copies of the original figure are nade

by translating the original in the z-direction, instead
of by rotating it. The copies are spaced one unit apart,
al t hough you can change that, of course, by scaling
inthe z direction. The extruded figure extends

equal ly far behind the xy-plane as it does in front

of it. The command for doing extrusion is "extrude".

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial5_PolygonsEtc.txt (1 of 2) [3/26/2000 12:50:38 PM]

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial5_PolygonsEtc.txt
; Here, for exanple, is a 3D "E":

cyan
extrude 2 ; The nunber of copies.
0,0 0,53,53,41,41,3 ; The list of points.
2,32,21,21,13,13,00,0
translate -7.5,-9.5,0

; And here is an exanple that rotates so you can see
it better:

magent a
extrude 5 -2,-2 0,2 2,-2 ; Extrude 5 copies of an inverted "V

yrotate -30: 30
translate 3 -6.5

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial5_PolygonsEtc.txt (2 of 2) [3/26/2000 12:50:38 PM]

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial6_Segments.txt
; Tutorial 6: Segnents

; An ani mati on can have "segnents." For exanple, the command
; "animate 30 50" creates an animation with a segnent that

; contains 31 franes, followed by a segnment that contains

; 51 frames. The segnents are "spliced" together because

; the final frane of the first segnent is the sane as

; the first frane of the second segnent. This file defines

; an animation with four segnents.

ani mate 90 90 90 90

define flap [
square scale 5 3
xtranslate 5

]

define paddles [
hsb 0 1 1 ; Gves a color by hue, saturation, brightness.
flap yrotate 0:0:0:0: 360
hsb 0.125 1 1
flap yrotate 0:45:45:45: 360 ; Eight flaps rotate
hsb 0.25 1 1 into position during
flap yrotate 0:90:90: 90: 360 the first segnent of
hsb 0.375 1 1 the ani mation. After
flap yrotate 0:135:135:135: 360 that, the y-rotation of
hsb 0.5 1 1 each flap renains
flap yrotate 0:180:180: 180: 360 constant for the next
hsb 0.625 1 1 two segnents. Then
flap yrotate 0:225:225:225: 360 all the flaps rotate back
hsb 0.75 1 1 to their origina
flap yrotate 0:270:270: 270: 360 positions.
hsb 0.875 1 1
flap yrotate 0:305: 305: 305: 360

background bl ack

paddl es

yrotate 0:0:360: 720: 720

xrotate 15:15:15:375: 375

The entire paddl es object rotates around the y-axis
during each of the second and third segnents. |In the
third segnent, the object is ALSO rotating about the
x-axis. (There is an extra, constant 15 degree rotation
about the x-axis to make the object easiest to view

http://math.hws.edu/TMCM/java/xModels/samples/Tutorial6_Segments.txt [3/26/2000 12:50:39 PM]

http://math.hws.edu/TMCM/java/tmcm-java-web-site-README..txt

README file for the tntcmjava-web-site archive March 2000

The tntcmjava directory in this archive contains Wb pages and
appl ets that are also available on line at:

htt p:// mat h. hws. edu/ eck/ TMCM j ava/

The Web pages include sone | ab worksheets that were witten to
be used with my introductory conputer science textbook, The Most
Compl ex Machine. They can also be used on their own. There are
al so sonme information/tutorial pages for each applet. The

main Wb page is index.htm, and it includes Iinks to all the

ot her pages.

If you would |ike to use any of the material in this archive
for comercial purposes, please contact nme for perm ssion.
Contact information is given bel ow

The applets can be freely used for any non-comrercial purpose.

The | ab worksheets can be used for any private, non-conmerci al

pur pose, but | ask that they not be used as an official part of

a course unless ny textbook is adopted for that course. (However,
I will consider nmaking exceptions to this.)

You are wel conme to post the entire, unnodified contents of
this archive on your own Wb server

You are al so welcone to create non-conmercial Wb pages that

use the applets. |If you do this, you night want to create
your own sanple input files for the applets. To do that, you
will probably want to downl oad the stand-al one application

version of the applets. That version is in an archive naned
tnmcm j ava- apps which is available through a link at the
address: http://math. hws. edu/ TMCM newj ava/ Downl oadi ngAndI nf o. ht i

USI NG THE APPLETS ON YOUR OMN WEB PAGES:

To use one of the applets on a Web page, that page nmust have
access to the conpiled Java program for that applet. You can
find these prograns in the directory naned "cl asses" inside the
tnmcmjava directory. The classes are in ".zip" files. There is
one zip file for each applet: DataReps.zip, xConputer.zip,
xLogicCircuits.zip, and so on. To use one of the applets

on a Wb page, you can copy the corresponding zip file into

the same directory as the HIM. source file for your Wb page.
The HTM. source file will have an <applet> tag to |oad the
applet. This applet tag nust refer to the zip file and to

the applet class. For exanple, the applet class for the
xLogicCircuits applet is "tncm xLogi cCircuitsApplet.class”

An <applet> tag for using this applet has the form

<p align=center>

<appl et archive="xLogicCircuits.zip"
code="t ntm xLogi cCircui t sAppl et. cl ass”
hei ght =380 wi dt h=500>

</ appl et >

http://math.hws.edu/TMCM/java/tmcm-java-web-site-README.txt (1 of 3) [3/26/2000 12:50:02 PM]

http://math.hws.edu/TMCM/java/tmcm-java-web-site-README..txt
</ p>

The cl asses for the other applets are nanmed simlarly:

t rtm Dat aRepsAppl et. cl ass, tntm xConput er Appl et. cl ass, and

so on. In addition to these applets, which appear right on

the web page, there are "launcher" versions of the applets.

In the launcher version, only a button appears on the Wb

page. Wien the user clicks the button, the applet is opened

in a separate window. The names for the | auncher versions

are tncm Dat aRepsLauncher. cl ass, tncm xLogi cCircui tsLauncher. cl ass
and so on. For exanple, to use the | auncher version of
xLogicCircuits, you could use the <applet> tag

<p align=center>

<appl et archive="xLogicCircuits.zip"
code="t nmcm xLogi cCir cui t sLauncher. cl ass"
wi dt h=180 hei ght =30>

</ appl et >

</ p>

Some of the applets can load sanple input files. Such files
can be created using the "Save" button of one of the applets.
However, this button will generally not be functional when you
are running the applet in a Wb browser. |If you want to use
the "Save" button, get the application version of the applets,
nmenti oned above. (O, if you have the Java Devel opnent Kit,
try running the applet with the appl etvi ewer command.)

To be used by an applet, a sanple input file should be in the
same directory as the HIM. source file for the Wb page that
contains the applet. The nanmes of the sanple input files nust
be specified as "parans" in the <applet> tag. For exanple, the
xLogicCircuits applet can read one sanple file. The file

is specified in a paramnanmed "LOAD'. For exanple, if

you want xLogicCircuits to load a sanple file naned
"SanpleCircuits.txt", use the applet tag:

<p align=center>
<appl et archive="xLogicCircuits.zip"
code="t ntm xLogi cCircui t sAppl et. cl ass”
hei ght =380 wi dt h=500>
<param nanme = "LOAD' value = "SanpleCrcuits.txt">
</ appl et >
</ p>

The param nanme, "LOAD', nust be given in uppercase letters, as
shown. Param nanes are case-sensitive. You can also use an
input file with the launcher version of the applet:

<p align=center>
<appl et archive="xLogicCircuits.zip"
code="t ntm xLogi cCi r cui t sLauncher. cl ass"
wi dt h=180 hei ght =30>
<par am nanme="LOAD' val ue="SanmpleC rcuits.txt">
</ appl et >
</ p>

The xConput er, xTuringMachine, xTurtle, and xMbdels applets can
| oad several sanple files. The files nust be specified using
the param nanes "URL", "URL1", "URL2", and so on. You have to
be careful to use the right nanmes, w thout any om ssions.

http://math.hws.edu/TMCM/java/tmcm-java-web-site-README.txt (2 of 3) [3/26/2000 12:50:02 PM]

http://math.hws.edu/TMCM/java/tmcm-java-web-site-README..txt

(If there is no URL2, for exanple, the applet won't even check for
URL3.) For exanple, to use four sanple input files with the

| auncher version of the xConputer applet, you could use the

foll owing tag on your web page.

<appl et archi ve="xConput er. zi p"
code="t nrtm xConput er Launcher . cl ass"
wi dt h=150 hei ght =30>
<par am name="URL" val ue="Si npl eCounter.txt">
<par am name="URL1" val ue="Mil ti pl yByAddi ng. txt">
<par am name="URL2" val ue="ThreeNPl usOne. txt">
<par am nanme="URL3" val ue="Li st Sumtxt">
</ appl et >

The preceding tags assune that the zip files and sanple input
files are in the sane directory with the HTM. source file of

the Wb page. It's possible to put themin other directories.

If the zip file is not inthe directory with the HTML file, then
you nmust specify a codebase in the applet tag. The codebase

in an <applet>tag is the directory that contains the conpil ed
Java code for the applet. It is specified relative to the
directory that contains the Wb page. For exanpl e:

<p align=center>
<appl et codebase="../classes/" archive="xLogicCircuits.zip"
code="t ntm xLogi cCir cui t sLauncher. cl ass"
wi dt h=180 hei ght =30>
<par am nanme="LOAD' val ue="SanpleCircuit.txt">
</ appl et >
</ p>

Here, the codebase directory is found by going up to the directory
that contains the Wb page (specified as "../") and then | ooking

in that directory for a directory naned "classes/". (I've found
that the "/" at the end of the directory nane is necessary, at |east
for some browsers.)

It's a good idea to have just one copy of a .zip file, even if you
are going to use the applet on several Wb pages. Then, if the
user visits several of those pages, the Wb browser will only have
to downl oad one zip file. That's why | put all the zip files

in one "classes" directory on ny own site.

You can al so have sanple input files in a different directory
fromthe Wb page. Just include the directory nane in the

nane of the input file. For exanple, "sanples/SanpleCircuits.txt"
or "../nmodels/FirstMdel.txt". The name should be given relative
to the directory that contains the Wb page.

Davi d Eck

Departnent of Mathenatics and Conputer Science
Hobart and WIliam Smith Col | eges

Geneva, NY 14456 USA

Email: eck@ws. edu

WAN htt p:// mat h. hws. edu/ eck/

http://math.hws.edu/TMCM/java/tmcm-java-web-site-README.txt (3 of 3) [3/26/2000 12:50:02 PM]

http://math.hws.edu/TMCM/java/tmcm-java-apps-README.txt

README file for the tntcmjava-apps archive March 2000

This archive contains Java applets and sanple input files for the

appl ets. The applets are neant to help teach sone of the basic concepts
of conmputer science. They were witten for use with nmy textbook, The Most
Compl ex Machi ne, but they can al so be used i ndependently of the book.

For nore information, see: http://mth. hws. edu/ TMCM j ava/

(If you want to understand the applets, you will have to | ook at

the material at this address.)

The material in this archive can be freely redistributed and used for
non- conmer ci al pur poses.

Several Java "applications" are included here that will let you run the
appl ets without a Web browser. One big advantage of doing this is that
you will be able to save and load files. For exanple, you could create
sanple files to use with the applets on your own Wb pages. There are

three applications. One sinply nakes the appl ets avail able, w thout

| oadi ng any sanple files. Another |oads the applets with the sanple

data files used in the | abs worksheets fromhttp://math. hws. edu/ TMCM j ava/ .
The third application | oads the applets with the sanple files and

tutorial exanples fromthe applet informati on pages at the sane address.

(The idea for the latter two applications is that you could read the

Wb material in a Wb browser at the sane tinme that you run the applets
using the applications. This will let you use files with the applets.

When an applet is run in a Wb browser, it probably won't be able to

save and load files. |If you' ve downl oaded the |abs and tutorials

for use on your own conputer, you can view themin a Wb browser,

but in that case, the applets in the Wb browser will be even nore limted.
They probably won't even be able to load the sanple files that are

used in the labs and tutorials!)

All the sanple files are included in this archive. They have nanes

that end with ".txt", and they are really just plain text files that

you can read with a text editor, if you want. | knowit's nmessy to have
all these files in one directory, but | couldn't find a way to get the
applets to work reliably with the sanple files, unless the files are

in the sanme directory with the applets.

The appl ets thenselves are contained in the file tntcmjar. This is

a "Java archive file". In addition to the applets, this file contains
the three applications described above. The nanes of these applications
are "tncm Apps", "tncm Labs", and "tncm Tutorials". (The funny nanes

ari se because the applications are in the Java "package" naned tncm)

When you run one of these applications, a windowwll pop up. The w ndow
contains several buttons. Cick on a button to |aunch one of the applets.
For the applications tncm Labs and tncm Tutorials, the applets will

| oad the appropriate sanple files. For tncm Apps, the applets do not

| oad any files. You can nove tntmjar to another |location and still

use it to run tncm Apps. However, if you want to run tnctm Labs or

tnmcm Tutorials, the tntcmjar file nust be in the sane directory as

the sanmple files.

To run the applications, you need the tntmjar file plus sone additional
Java software. Here are specific instructions for various platforns:

http://math.hws.edu/TMCM/java/tmcm-java-apps-README.txt (1 of 3) [3/26/2000 12:50:02 PM]

http://math.hws.edu/TMCM/java/tmcm-java-apps-README.txt
For W ndows:

If you have Mcrosoft Internet Explorer with Java support, then
you should be able to use the "jview' comand in a DOS Wndow. To run
the applications in tncmjar, open a DOS wi ndow and change to the
tnmcm j ava-apps directory. This is the directory that you got when
you unzi pped this archive. (Tip: Open a directory wi ndow for this
directory. Then select the "Run" command fromthe Start nenu and

enter "comand" in the dialog box that pops up. This will open a
DOS wi ndow, already set to use tncmjava-apps as its working directory.)
You have to tell jviewto put tntmjar on its "classpath". This

is done by adding the option "-cp tntmjar" to the conmand. So, the
commands for running the three applications are:

jview -cp tncmjar tncm Apps
jview -cp tncmjar tncm Labs
jview -cp tncmjar tncm Tutorials

Alternatively, if you have the JDK (Java Devel opnent Kit) installed on
your conputer, you can use the JDK' s "java" command to run the
applications. This is sinmlar to the jview conmand, but unfortunately,
you al so have to specify the |ocation of the standard system cl asses.
These are contained in a file named "cl asses. zip" in one of the JDK
directories. You need the full path nane of this file, such as
C\jdkl.1.8\lib\classes.zip. (This is the correct nanme if you using
version 1.1.8 of the jdk and did the default installation. For other
versions of the jdk, only the nunbers should be different.) Once you've
found this file, the commands for running the applications are:

java -classpath tncmjar; C\jdkl.1.8\lib\classes.zip tncm Apps
java -classpath tnecmjar; C\jdkl.1.8\lib\classes.zip tncm Labs
java -classpath tncmjar;C\jdkl.1.8\lib\classes.zip tncm Tutorials

You can downl oad the JDK for Wndows from Sun M crosystenis Wb
site at: http://java. sun. com products/jdk/ 1.1/

For Maci nt osh:

You need to have the MRJ (Macintosh Runtine for Java) installed on
your Macintosh in order to run the applications in tncmjar. This mght
have been installed with your original system |f not, it can be
downl caded from http://ww. appl e. cont j ava/ (I think you will need
version 2.1.4 or higher, but | haven't tried it with earlier versions.)

The Maci ntosh version of the tntmjava-apps archive includes
three doubl e-clickabl e applications. Double-click the program named
"Run TMCM Appl ets” to run tntcm Apps. You can nove this programto
anot her location, as long as you include a copy of the tntmjar file
in the sanme directory. The other two prograns need both tncmjar and
all the sanple files. Double-click the program naned
"Run Wth Lab Exanpl es" to run tncm Labs, and doubl e-click the
program naned "Run Wth Tutorial Exanples" to run tncm Tutorials

For Liunx and UN X

If you have the JDK (Java Devel opnent Kit) installed on
your conputer, you can use the JDK' s "java" command to run the
applications. The JDK is included in npost Linux
di stributions, although it night not have been installed by
default. JDK for Solaris can be downl oaded fromthe Sun

http://math.hws.edu/TMCM/java/tmcm-java-apps-README.txt (2 of 3) [3/26/2000 12:50:02 PM]

http://math.hws.edu/TMCM/java/tmcm-java-apps-README.txt

Websi t e, http://java. sun. com products/jdk/ 1.1/
For other versions of UNIX. .. you're on your own.

To use the java command with tntcmjar, you will need to know
the location of the standard system classes. These are contained in
a file named "classes.zip" in the "lib" subdirectory of the JDK
installation. You need the full path nane of this file. On ny
SuUSE Linux system this is /fusr/lib/javal/lib/classes.zip. |If you
have trouble finding it on your system try using the comand
"type java" to find out the full path nane of the java conmand.
The java command is in the "bin" subdirectory of the JDK installation.
Once you've found the classes.zip file, you can use the follow ng
commands to run the applications. Substitute the appropriate
pat hname for my "/usr/lib/javal/lib/classes. zip":

java -classpath tncmjar:/usr/lib/javal/lib/classes.zip tntm Apps
java -classpath tncmjar:/usr/lib/javal/lib/classes.zip tnctm Labs
java -classpath tncmjar:/usr/lib/javal/lib/classes.zip tncm Tutorials

(If you plan to use these commands often, | woul d suggest making a
shell script or an alias.)

Davi d Eck

Departnent of ©Mathenmatics and Conputer Science
Hobart and WIliam Smith Col | eges

Geneva, NY 14456 USA

Email: eck@ws. edu

WA htt p:// mat h. hws. edu/ eck/

http://math.hws.edu/TMCM/java/tmcm-java-apps-README.txt (3 of 3) [3/26/2000 12:50:02 PM]

http://math.hws.edu/TMCM/java/tmcm-java-source-README .txt

README file for the tncmjava-source archive Mar ch, 2000

This archive contains the source code for a set of Java appl ets.
The applets were witten for use with a textbook, The Mst Conpl ex
Machi ne, by David Eck. They are nmeant to help teach sone basic
concepts of conputer science. For nore information about the

appl ets and for a set of |ab worksheets that use the applets,

see: http://mat h. hws. edu/ TMCM j ava/

*** NOTE *** This source code was not originally witten with
the intent of making it public. There are very few comments in
the code. Sone parts of the code are a bit strange because they
were translated from Pascal prograns. So, take the code for
what it's worth..

The source code is contained in the directory naned "tncni.

Al'l the classes for the applets belong to the package naned
"tnmcd and to its sub-packages. The sub-packages correspond
to subdirectories in the tntmdirectory.

The applets were witten in Java 1.0, so they use nmany
deprecat ed nmet hods whose use is discouraged in Java 1.1 and
|ater. Wen the source code is conpiled, you m ght get
war ni ng nessages about deprecated nethods. There will also
be MANY warni ng nmessages to the effect that a class should
not be used outside the file where it is defined, unless the
nane of the class agrees with the nane of the file where

it is defined. (The devel opment systemthat | used when |
wote the applets didn't enforce this rule.) This could
cause a problemif you try to conpile the files one at a
time, but it's OK as long you conpile all the files

in a directory at the sane tinme (or conpile themin the
right order). The warning nessages are not errors and

will not stop the files from being conpil ed.

The code can be conpiled with the "javac" command from

the JDK (Java Devel oprment Kit). To use this conmmand with

cl asses that are defined in the tncm package or one of

its sub-packages, you nust be in the directory that contains
the tntcmdirectory, and you have to specify the full path
tothe file or files you want to conpile. For exanple,

to conpile all the files in the package tntm xSortLab

you woul d say

javac tncnf xSortLab/*.java in Linux or UNI X
or
javac tncm xSortLab*.java in a DOS command wi ndow.
For conveni ence, | have included script files that will conpile
all the classes in the tntcmfile. For Linux/UNIX, there is
a shell script named "conpile.sh". For DOS/ W ndows, there
is a DOS batch file named "conpile.bat". These scripts
will also build a .jar archive containing all the conpiled

class files. You can get nore information by reading the
script files thensel ves.

(Note for Macintosh users: Theoretically, it should be possible

to conpile the files using Apple's SDK for Java, but | have not
been able to make it work. The applets were originally witten

http://math.hws.edu/TMCM/java/tmcm-java-source-README.txt (1 of 2) [3/26/2000 12:50:03 PM]

http://math.hws.edu/TMCM/java/tmcm-java-source-README .txt
wi th CodeWarrior for Macintosh.)

Davi d Eck

Departnent of ©Mathenmatics and Conputer Science
Hobart and WIliam Smith Col | eges

Geneva, NY 14456 USA

Email: eck@ws. edu

WAN htt p:// mat h. hws. edu/ eck/

http://math.hws.edu/TMCM/java/tmcm-java-source-README.txt (2 of 2) [3/26/2000 12:50:03 PM]

	TMCM Java -- PFD version
	TMCM Labs and Software
	Downloading Info
	TMCM Lab Worksheets
	Introductory Lab
	xLogicCircuits Lab 1
	xLogicCircuits Lab 2
	xComputer Lab 1
	xComputer Lab 2
	xComputerLab 3
	xTuringMachine Lab
	Web Publishing with Netscape Composer
	xTurtle Lab 1
	xTurtle Info
	xTurtle Lab 2
	xTurtle Lab 3
	xSortLab Lab
	xTurtleLab 4
	xTurtleLab 4, Tiling Examples
	xModels Lab 1
	xModels Lab 2

	Applet Info and Tutorials
	Data Representations Applet
	xLogicCircuits Intro
	xComputer Intro
	TheBasics.txt
	Graphics.txt
	Labels.txt
	Three_N_Plus_One.txt

	xComputer Info
	The xTuringMachine Applet
	xTurtle Intro
	xTurtle Tutorial
	Tutorial1_xTurtleBasics.txt
	Tutorial2_variables.txt
	Tutorial3_io.txt
	Tutorial4_loop.txt
	Tutorial5_if.txt
	Tutorial6_subroutines.txt
	Tutorial7_recursion.txt
	Tutorial8_multitasking.txt

	The xSortLab Applet
	xModels Intro
	xModels Info
	xModels Tutorial
	Tutorial1_xModelsBasics.txt
	Tutorial2_Animation.txt
	Tutorial3_3D.txt
	Tutorial4_ComplexObjects.txt
	Tutorial5_PolygonsEtc.txt
	Tutorial6_Segments.txt

	GBLFJFHKLCLODGHNMHBOFHGMFIDOELDA:
	form1:
	x:
	f1: q
	f2: [web]
	f3: [.]
	f4:

	f5:

