

DOC022.52.00730.SEP05

# Supplementary Software LZV 570 Brewery Analysis

# **DR 5000**

User Manual 09/2005 edition<u>1</u>

©Hach Lange GmbH, 2005. All rights reserved. Printed in Germany. ck 09/05 edition 1

| Section 1 General Information                                             | 5  |
|---------------------------------------------------------------------------|----|
| 1.1 Safety Information                                                    | 5  |
| 1.1.1 Use of Hazard Information                                           | 5  |
| 1.2 Installation                                                          | 5  |
| 1.3 Important information about the manual                                | 6  |
| 1.3.1 Chemical and Biological Safety                                      | 6  |
| 1.4 Introduction                                                          | 7  |
| 1.5 Selecting a stored test                                               | 7  |
| 1.6 List of abbreviations                                                 | 7  |
| 1.7 Literature                                                            | 8  |
| Section 2 Working procedures                                              | 9  |
| 2.1 Bitter units (EBC method)                                             | 9  |
| 2.1.1 Procedure for measuring bitter units in beer                        | 10 |
| 2.1.1.1 Executing the test with the sipper module                         | 10 |
| 2.1.2 Procedure for measuring bitter units in wort                        |    |
| 2.1.2.1 Executing the test with the sipper module                         |    |
| 2.2 Total polyphenols (EBC method)                                        |    |
| 2.2.1 Procedure for measuring total polyphenols                           | 13 |
| 2.2.1.1 Executing the test with the sipper module                         |    |
| 2.3 Reducing power (spectrophotometric method)                            | 15 |
| 2.3.1 Procedure for measuring reducing power                              |    |
| 2.3.1.1 Executing the test with the sipper module                         | 17 |
| 2.4 Anthocyanogens (Harris and Ricketts method)                           |    |
| 2.4.1 Procedure for measuring anthocyanogens                              | 19 |
| 2.4.1.1 Executing the test with the sipper module                         | 19 |
| 2.5 Beer colour (spectrophotometric EBC method)                           |    |
| 2.5.1 Procedure for measuring beer colour                                 | 21 |
| 2.5.1.1 Executing the test with the sipper module                         | 21 |
| 2.6 Free amino nitrogen (ninhydrin method based on EBC method)            |    |
| 2.6.1 Procedure for measuring free amino nitrogen (FAN) in light worts    | 24 |
| 2.6.1.1 Executing the test with the sipper module                         | 24 |
| 2.6.2 Procedure for measuring free amino nitrogen (FAN) in light beer     |    |
| 2.6.2.1 Executing the test with the sipper module                         |    |
| 2.6.3 Procedure for measuring free amino nitrogen (FAN) in dark worts     |    |
| 2.6.3.1 Executing the test with the sipper module                         |    |
| 2.6.4 Procedure for measuring free amino nitrogen (FAN) in dark beers     |    |
| 2.6.4.1 Executing the test with the sipper module                         |    |
| 2.7 Steam-volatile phenols                                                |    |
| 2.7.1 Procedure for measuring steam-volatile phenols                      |    |
| 2.7.1.1 Executing the test with the sipper module                         |    |
| 2.8 Photometric iodine sample                                             |    |
| 2.8.1 Procedure for measuring photometric iodine sample                   |    |
| 2.8.1.1 Executing the test with the sipper module                         |    |
| 2.9 Thiobarbituric acid number (TAN)                                      |    |
| 2.9.1 Procedure for measuring thiobarbituric acid number in beer and wort |    |
| 2.9.1.1 Executing the test with the sipper modulei                        |    |
| 2.9.2 Procedure for measuring thiobarbituric acid number in congress wort |    |
| 2.9.2.1 Executing the test with the sipper module                         |    |
| 2.10 ISO- $\alpha$ -acids and $\alpha$ -acids                             |    |
| 2.10.1 FIOCEDUTE TO THE asulting ISO- $\alpha$ -actus and $\alpha$ -actus |    |
| 2. IO. I. I Executing the test with the sipper module                     |    |

## **Table of Contents**

| 2.11 Vicinal diketones (diacetyl, 2,3-pentanedione) | 42 |
|-----------------------------------------------------|----|
| 2.11.1 Procedure for measuring vicinal diketones    | 44 |
| 2.11.1.1 Executing the test with the sipper module  | 44 |
| 2.12 Iron                                           | 45 |
| 2.12.1 Procedure for measuring iron                 | 46 |
| 2.12.1.1 Executing the test with the sipper module  | 47 |
| Section 3 Replacement Parts                         | 49 |
| Section 4 How To Order                              | 51 |

### 1.1 Safety Information

Before you install the software, you should read this manual thoroughly. Take note of all information labelled "Danger" or "Note".

Besides the instructions in this manual, users must comply with the national general safety and accident prevention regulations of the country in which the instrument is used.

#### 1.1.1 Use of Hazard Information

#### DANGER

Indicates a potentially or imminently hazardous situation which, if not avoided, could result in death or serious injury.

*Important Note:* Information that the user needs to take into account when handling the instrument.

Note: Additional operating information for the user.

## 1.2 Installation

- 1. Touch Instrument Update in the "System Check" menu.
- 2. Plug the USB memory stick into the USB socket (type A) of the DR 5000.
- 3. Confirm by touching OK.
- **4.** The connection is established automatically and the software is updated.

Touch **OK** to return to the "System Check" menu.

## **1.3 Important information about the manual**

#### Copyright

The copyright to this User Manual remains with the manufacturer.

The manual contains instructions and notes that may not be fully or partially

- duplicated
- disseminated
- used without authorization for competitive purposes or

communicated in any other way.

### 1.3.1 Chemical and Biological Safety

#### DANGER

Handling chemical samples, standards and reagents can be dangerous. Users of this product are advised to familiarize themselves with safety procedures and the correct use of chemicals, and to carefully read all relevant Material Safety Data Sheets.

During the analysis of the sample it may be necessary to use toxic, readily flammable or corrosive chemicals.

- The user must observe all cautionary information printed on the original solution containers and safety data sheet prior to their use.
- All waste solutions must be disposed in accordance with local and national law.

## 1.4 Introduction

The LZV 570 Supplementary Software for Brewery Analysis is a collection of all spectrophotometric applications that are of relevance for brewery analysis. The working instructions are taken from the MEBAK manuals. Most of the procedures are from the 4th edition, 2002. For many analyses, the sipper module can be used to carry out the tests more conveniently.

## 1.5 Selecting a stored test

| Main Menu                       |   |                |                     |  |
|---------------------------------|---|----------------|---------------------|--|
| Stored Programs                 |   |                |                     |  |
| User Programs Favorite Programs |   |                |                     |  |
| Single Wavelength               |   | Multi          | - Wavelength        |  |
| Wavelength Scan                 |   | Ti             | me Course           |  |
|                                 |   |                |                     |  |
| System<br>Checks                | đ | Recall<br>Data | Instrument<br>Setup |  |

## 1.6 List of abbreviations

- 1. Select **Stored Programs** in the "Main Menu". An alphabetically sorted list of all available tests is displayed.
- 2. Select a test by touching the corresponding line.

Note: Use the scroll bar to run quickly through the list.

**Note:** If you already know the number of the desired test, touch **Select by Number**. Use the alphanumeric keypad to enter the test number and confirm your input by touching **OK**.

3. Touch Start to start the test program.

#### **General information**

Unless otherwise indicated, reagents should be analytical grade. Unless otherwise indicated, solutions are aqueous.

| dist. H <sub>2</sub> O | distilled or demineralised water |
|------------------------|----------------------------------|
| sec                    | seconds                          |
| min                    | minutes                          |
| h                      | hours                            |
| SD                     | standard deviation               |
| r                      | reproducibility                  |
| R                      | comparability                    |
| V <sub>c</sub>         | variation coefficient            |

## 1.7 Literature

#### MEBAK

Brautechnische Analysenmethoden (Analysis methods for the brewing industry)

Collected methods of the Mitteleuropäischen Brautechnischen Analysenkommision (Central European commission for brewery analysis) (MEBAK)

Published by the Chairman, Dr. Heinrich Pfenninger

Publishing house of the MEBAK

D-85350 Freising-Weihenstephan

4th Edition, 2002

## 2.1 Bitter units (EBC method)

#### Principle

The bitter substances, mainly iso-a-acids, are extracted from the acidified sample with iso-octane and the concentration in the extract is determined with a spectrophotometer.

Fields of application Beer, worts

# Measuring range 20–60 BU

#### Accessories

- Centrifuge tubes with solvent-tight stoppers (35 ml)
- Glass beads
- Shaker
- Centrifuge (3000 rpm)
- Spectrophotometer (275 nm)
- 10 mm rectangular cuvette (QS grade)

#### Reagents

- Hydrochloric acid, 6N
- Iso-octane (2,2,4-trimethylpentane), spectroscopically pure (absorbance measured in 10 mm rectangular cuvette (QS grade) at 275 nm against H<sub>2</sub>O < 0.010) (for example Uvasol)</li>

#### Sample preparation

- Clarify wort and cloudy beer by centrifuging at 3000 rpm for 15 min (do not filter sample).
- 2. Expel carbon dioxide from sample without losing any foam.
- Bring the sample to 20°C and pipette 10 ml (5 ml wort + 5 ml dist. H<sub>2</sub>O) into a centrifuge tube.
- Add 0.5 ml 6N hydrochloric acid, 20 ml iso-octane and 3 glass beads.
- Close centrifuge tube and shake mechanically for 15 min at 20°C.
- 6. Centrifuge for 3 min at 3000 rpm.
- Measure the absorbance of the iso-octane extract in a 10 mm rectangular cuvette at 275 nm against iso-octane of the same quality (blank value).

### Results

Bitter units (BU) without any decimal places

#### Accuracy

 $V_{cr} = \pm 2.4\%$  $V_{cR} = \pm 6.5\%$ 

#### Standard values

Beer: 10–40 BU, depending on type and origin Wort: 20–60 BU, depending on beer and utilisation of bitter substances

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002, Volume II, pp 114ff

### 2.1.1 Procedure for measuring bitter units in beer

| Stored Programs         |                            |            |            |          |
|-------------------------|----------------------------|------------|------------|----------|
| 30                      | 30 Benzotriazole 16.0 mg/L |            | 6.0 mg/L 🔒 |          |
| 241 Bitter units 300 BE |                            | 300 BE     |            |          |
| 801                     | Bitter u                   | inits beer |            | 40.0     |
| 803                     | Bitter u                   | inits wort |            | 60.0     |
| 40                      | 40 Boron 14.0 mg/L         |            |            | 4.0 mg/L |
| 45                      | Boron LR 1.50 mg/L         |            | .50 mg/L   |          |
| 50                      | 50 Bromine 4.50 mg/L       |            | .50 mg/L   |          |
| 55                      | 5 Bromine AV 4.50 mg/L     |            |            |          |
| 395                     | 395 CD 2 6.00 g/l          |            |            | 6.00 g/l |
| 395                     | 95 CD 3 9.00 g/l 🎽         |            | 9.00 g/l 🎽 |          |
|                         | 12000                      | Select by  | Program    |          |
| Ca                      | ncel                       | Number     | Options    | Start    |

|  | 1. | Prepare samples | as described in the | working procedure. |
|--|----|-----------------|---------------------|--------------------|
|--|----|-----------------|---------------------|--------------------|

- 2. Select Stored Programs in the "Main Menu". Select test number 801.
- **3.** Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch **Zero**.
- Insert the sample cuvette containing the prepared iso-octane into the cell compartment and close the cell compartment. Touch **Read**. The result is displayed.

| 801 Bitter (        | units beer              | UV-VIS 🔆 | 275 nm |
|---------------------|-------------------------|----------|--------|
| 2                   | 3.9                     | BU beer  |        |
| 23-SEP-2005<br>Exit | 12:14:42<br><b>Zero</b> | Read     |        |

**Note:** Analysis of additional samples: Repeat working procedure from point 4.

#### 2.1.1.1 Executing the test with the sipper module

## 2.1.2 Procedure for measuring bitter units in wort

| Stored Programs |                           |                     |                    |          |  |
|-----------------|---------------------------|---------------------|--------------------|----------|--|
| 806             | 806 Beer color 20.0 EBC   |                     |                    |          |  |
| 30              | Benzot                    | riazole             | 1                  | 6.0 mg/L |  |
| 241             | Bitter u                  | inits               |                    | 300 BE   |  |
| 801             | Bitter u                  | inits beer          |                    | 60.0     |  |
| 803             | D3 Bitter units wort 60.0 |                     |                    |          |  |
| 40              | 40 Boron 14.0 mg/L        |                     |                    |          |  |
| 45              | 45 Boron LR 1.50 mg/L     |                     | .50 mg/L           |          |  |
| 50              | 50 Bromine 4.50 mg/L      |                     |                    |          |  |
| 55              | 55 Bromine AV             |                     | 4.50 mg/L          |          |  |
| 395             | CD 2                      |                     | 6.00 g/l 🎽         |          |  |
| Ca              | ncel                      | Select by<br>Number | Program<br>Options | Start    |  |

- 1. Prepare samples as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 803.
- **3.** Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch **Zero**.
- Insert the sample cuvette containing the prepared iso-octane into the cell compartment and close the cell compartment. Touch Read. The result is displayed.

**Note:** Analysis of additional samples: Repeat working procedure from point 4.

| 803 Bitter  | units wort | UV-VIS ¦ڳ | 275 nm  |
|-------------|------------|-----------|---------|
| 4           | 7.8        | BU wort   |         |
| 23-SEP-2005 | 12:15:25   |           | Ō       |
| Exit        | Zero       | Read      | Options |

#### 2.1.2.1 Executing the test with the sipper module

## 2.2 Total polyphenols (EBC method)

#### Principle

Polyphenols react with iron(III) ions in an alkaline solution to form coloured iron complexes; the resulting brown colour is measured with a spectrophotometer.

Fields of application Beer, worts

Measuring range 0–800 mg/l

#### Accessories

- Centrifuge
- Spectrophotometer (600 nm)
- 10 mm rectangular cuvette (OS grade)

#### Reagents

- Carboxymethylcellulose-ethylenediaminetetracetic acid solution (CMC-EDTA-Na):
  - a. Weigh out **10** g CMC (low viscosity) and **2** g EDTA-Na.
  - b. Dissolve these substances in about 500 ml H<sub>2</sub>O while stirring. When they are completely dissolved, fill up to 1 l with H<sub>2</sub>O. If necessary, clarify by centrifuging.
- Ammonium iron(III) citrate (3.5%):
  - **a.** Dissolve **3.5 g** ammonium iron(III) citrate, green (16% Fe), in  $H_2O$  and make up to **100 mI**. The solution must be completely clear. It remains stable for about 1 week.
  - **b.** Ammonia, dilute: Dilute **1 part** concentrated ammonia (d = 0.91) with **2 parts**  $H_2O$ .

#### Sample preparation

- 1. Shake beer to expel carbon dioxide.
- 2. Clarify cloudy wort or beers by centrifuging.
- **3.** Mix **10 ml** test solution and **8 ml** CMC-EDTA solution thoroughly in a 25 ml measuring flask.
- 4. Add 0.5 ml iron(III) solution and mix thoroughly.
- 5. Add 0.5 ml dilute ammonia solution and mix thoroughly.
- **6.** Make up to **25 ml** with  $H_2O$  and mix.
- 7. Wait **10 min**, then measure the absorbance in a 10 mm rectangular cuvette at **600 nm** against a blank sample.

#### 8. Blank value

- a. Introduce 10 ml sample (expel carbon dioxide from beer by shaking; clarify turbid wort or beer by centrifuging) into a 25 ml measuring flask.
- b. Add 8 ml CMC-EDTA solution and mix thoroughly.
- c. Add 0.5 ml dilute ammonia solution and mix thoroughly.
- **d.** Make up to **25 ml** with  $H_2O$  and mix again.

Note: Mix thoroughly after adding each individual solution

#### Result

The result is expressed in mg/l without any decimal places.

#### Accuracy

 $SD = \pm 9$ 

#### **Standard values**

Beer: 150-200 mg/l

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002, Volume II, pp 107ff

### 2.2.1 Procedure for measuring total polyphenols

| Stored Programs    |                       |                     |                    |          |
|--------------------|-----------------------|---------------------|--------------------|----------|
| 802 T              | Total polyphenols     |                     | 800 mg/l 💭         |          |
| 909 T              | otal-K                | jeldahl-N I         | 10.0 mg/l —        |          |
| 909 T              | otal-K                | jeldahl-N II        | ć                  | 200 mg/l |
| 909 T              | otal-K                | jeldahl-N III       | 20                 | 000 mg/l |
| 746 T              | Turbidity             |                     | idity 400 FAU      |          |
| 746 T              | 6 Turbidity Trace     |                     | 50.0 FAU           |          |
| 815 V              | 815 Vicinal diketones |                     | 1.00 mg/kg         |          |
| 242 V              | 242 Vicinal diketones |                     | 0.500 mg/kg        |          |
| 770 Volatile Acids |                       | 2800 mg/L           |                    |          |
| 780 Z              | inc                   |                     | 3.00 mg/L 🎽        |          |
| Canc               | el                    | Select by<br>Number | Program<br>Options | Start    |

| 1. | Prepare samples and blank value solutions as described in the |
|----|---------------------------------------------------------------|
|    | working procedure.                                            |

- 2. Select **Stored Programs** in the "Main Menu". Select test number **802**.
- **3.** Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch **Zero**.
- Insert the sample cuvette containing the prepared sample into the cell compartment and close the cell compartment. Touch Read. The result is displayed.

**Note:** Analysis of additional samples: Repeat working procedure from point 3. In other words, each sample has to have its own specific blank value solution.

| 802 Total p | olyphenols | UV-VIS 🔆        | 600 nm  |
|-------------|------------|-----------------|---------|
| 4           | 9.5        | mg/l<br>Phenols |         |
| 23-SEP-2005 | 12:16:49   |                 | Ö       |
| Exit        | Zero       | Read            | Options |

### 2.2.1.1 Executing the test with the sipper module

## 2.3 Reducing power (spectrophotometric method)

Reducing power is a measure of the rapidly reducible substances present in beer. Reductones are found in relatively small amounts in beer, but are of considerable significance for the chemicophysical and biological stability of beer, as well as the long-term constancy of its taste.

#### Principle

Reductones reduce a certain amount of Tillmann's reagent (2,6-dichlorphenol-indophenol sodium, DPI) within a given period of time. The decolouration of the reagent is measured with a spectrophotometer and calculated.

#### Measuring range

0–100

#### Accessories

- Spectrophotometer (520 nm)
- 10 mm rectangular cuvette (OS grade)
- Stopwatch
- Water-jet pump

#### Reagents

- 2,6-Dichlorphenol-indophenol (0.005M) (DPI solution, molecular weight of the sodium salt 290.08):
  - a. Weigh approx. 100 mg DPI into a beaker, add approx.
    25 ml H<sub>2</sub>O, and dissolve by heating to about 60°C.
  - **b.** Allow to cool, then rinse into a 50 ml measuring flask, make up to **50 ml** and pass through a tinstrip filter.
  - c. Introduce **10 ml** filtrate, **1 g** KI and 2 ml  $H_2SO_4$  (1+6) into a 150 ml Erlenmeyer flask, titrate with 0.01N sodium thiosulphate solution until a colour change occurs against starch paste.
  - **d.** Added volume (ml) x 14.5 = mg indicator in 100 ml.
  - e. Dilute remaining filtrate so that 100 ml contain 145 mg.
  - f. The solution remains stable for about 1 week if kept at +4°C in brown bottles filled to the brim.
- Phosphate-citrate buffer (pH 4.35):
- Dissolve 31.60 g disodium hydrogen phosphate (Na<sub>2</sub>HPO<sub>4</sub> x 12 H<sub>2</sub>O) and 11.75 g citric acid (C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> x H<sub>2</sub>O) in H<sub>2</sub>O and dilute to 1 I.

#### Sample preparation

1. Heat the beer to **20°C** and expel carbon dioxide under a vacuum (water-jet pump).

- After the carbon dioxide has been expelled, pipette 10 ml beer into a test tube with a glass stopper, then tilt the tube slightly and add 0.25 ml 0.005M DPI solution.
- **3.** Close the test tube **immediately** and invert it **twice** to mix the contents, starting the stopwatch after the first inversion.
- Immediately fill a 10 mm rectangular cuvette with the mixture.
  60 sec after adding the reagent, measure the absorbance at
  520 nm against a blank value solution (decarbonated beer without added reagent).

#### Results

The results are expressed as the proportion of the sample (in %) that was reduced by 10 ml beer in 60 sec.

#### Accuracy

 $V_{cr} = \pm 1\%$ 

#### Standard values

> 60 very good50–60 good45–50 satisfactory< 45 poor</li>

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002 Volume II, pp 104ff

### 2.3.1 Procedure for measuring reducing power

| Stored Programs         |                |                    |            |            |  |
|-------------------------|----------------|--------------------|------------|------------|--|
| 804                     | Reduci         | ng power           |            | 100        |  |
| 640                     | Seleniu        | IW                 | 1          | .00 mg/L   |  |
| 656                     | Silica H       | IR                 | 1          | .00 mg/L   |  |
| 651                     | Silica L       | R                  | 1.6        | 00 mg/L    |  |
| 645                     | Silica U       | JLR                | 1          | 1000 µg/L  |  |
| 028                     | Silicon        |                    | 0.8        | 0.800 mg/l |  |
| 660                     | Silver         |                    | 0.700 mg/L |            |  |
| 809                     | Steam          | Volat. Phenols     | ; 20.      | 20.0 mg/kg |  |
| 680                     | Sulfate        |                    |            | 70 mg/L    |  |
| 685                     | 685 Sulfate AV |                    |            | 70 mg/L 🍈  |  |
| Cancel Select by Number |                | Program<br>Options | Start      |            |  |

- 1. Prepare samples as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 804.
- **3.** Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch **Zero**.
- 4. Insert the sample cuvette containing the prepared sample into the cell compartment and close the cell compartment. After 60 sec touch **Read**. The result is displayed.



**Note:** Analysis of additional samples: Repeat working procedure from point 3. In other words, each sample has to have its own specific blank value solution.

### 2.3.1.1 Executing the test with the sipper module

Information about the installation, module configurations and sample introduction of the sipper module can be found in the user manual of the DR 5000 Spectrophotometer (15.3.3. Installation Sipper Module, page 133).

## 2.4 Anthocyanogens (Harris and Ricketts method)

Anthocyanogens (leucoanthocyanidins) are phenolic compounds, which are transformed into red anthocyanidins by hot hydrochloric acid. The amount and degree of condensation or polymerisation of these compounds influence the formation of colloidal turbidities in beer. Stabilisation measures with PVPP correlate with a reduction in the anthocyanogen content.

#### **Principle**

The anthocyanogens are adsorbed on polyamide. The adsorbate is dissolved in butanol and hydrochloric acid and heated. A red solution is formed, whose intensity is measured with a photometer.

#### **Fields of application**

Beer, worts

#### Measuring range

0-100 mg/l

#### Accessories

- Shaker
- Centrifuge
- Mixing cylinder with ground-glass stopper (50 ml)
- Frit (1 G4)
- Suction flask
- Test tubes with ground-glass stoppers (30 ml, graduations to 25 ml)
- Vacuum pump
- Spectrophotometer (550 nm)
- 10 mm rectangular cuvette (OS grade)

#### Reagents

- MN polyamide SC 6
- **Solution 1**: n-butanol/37% hydrochloric acid 5+1 (V/V).
- Solution 2: Dissolve 120 mg iron(II) sulphate (FeSO<sub>4</sub> x 7 H<sub>2</sub>O) in 100 ml solution 1.

#### Sample preparation

- 1. Centrifuge worts and young beers for 10 min at 3000 rpm.
- 2. Pipette 5 ml beer or wort and 5 ml dist. H<sub>2</sub>O into a 50 ml mixing cylinder.
- **3.** Pipette **10 ml** distilled water (blank value) into a 50 ml mixing cylinder
- 4. Use **10 ml** dist. water to rinse **0.5 g** polyamide powder into each mixing cylinder.
- 5. Shake the two mixing cylinders mechanically for 40 min.
- 6. Filter each suspension through a 1 G4 frit, rinsing twice with about 20 ml H<sub>2</sub>O.
- 7. Suction-dry the frits and polyamide powder. Use a spatula to transfer each residue to a test tube, rinsing the final traces into each test tube with **15 ml** of solution 1.
- Add 0.5 ml of solution 2 and heat both test tubes for 30 min in a bath of boiling water (stir well with a glass rod for the first 5 min).
- **9.** Remove the glass rod, rinse with a little of solution 1, bring the test tubes to 20°C and make each one up to 25 ml with solution 1.
- Measure the absorbance of the solution in a 10 mm rectangular cuvette at 550 nm against a similarly treated blank value solution (10 ml dist. water instead of beer).

#### Results

The result is expressed in mg/l, without decimal places.

#### Accuracy

r = 9

#### **Standard values**

50–70 mg/l depending on the raw materials and technical measures; correspondingly lower after stabilisation with PVPP.

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002 Volume II, pp 109ff

## 2.4.1 Procedure for measuring anthocyanogens

| Stored Programs |                                |            |    |            |  |  |
|-----------------|--------------------------------|------------|----|------------|--|--|
| 805             | Anthoc                         | yanogens   |    | 100 mg/l 📃 |  |  |
| 20              | Barium                         | I          | 1  | .00 mg/L   |  |  |
| 806             | Beer c                         | olor       | 2  | 20.0 EBC   |  |  |
| 30              | Benzot                         | riazole    | 1  | 6.0 mg/L   |  |  |
| 241             | Bitter units 300 BE            |            |    | 300 BE     |  |  |
| 801             | Bitter u                       | inits beer |    | 60.0       |  |  |
| 803             | Bitter units wort 60.0         |            |    | 60.0       |  |  |
| 40              | Boron                          |            | 14 | 4.0 mg/L   |  |  |
| 45              | Boron                          | LR         | 1  | .50 mg/L   |  |  |
| 50              | 0 Bromine 4.50 mg/L 🎽          |            |    | .50 mg/L 🎽 |  |  |
| Ca              | Cancel Select by Program Start |            |    | Start      |  |  |

- 1. Prepare samples as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 805.
- **3.** Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch **Zero**.
- Insert the sample cuvette containing the prepared sample into the cell compartment and close the cell compartment. Touch Read. The result is displayed.

*Note:* Analysis of additional samples: Repeat working procedure from point 4.

| 805 Anthoo  | cyanogens | UV-VIS ¦Ö   | 550 nm  |
|-------------|-----------|-------------|---------|
| 1           | 0.8       | mg/l<br>ATC |         |
| 23-SEP-2005 | 12:37:44  |             | Ō       |
| Exit        | Zero      | Read        | Options |

#### 2.4.1.1 Executing the test with the sipper module

## 2.5 Beer colour (spectrophotometric EBC method)

#### Principle

This method is designed to eliminate subjective effects attributable to the human eye as well as differences in the colour impression when the beer samples are compared with the colour card. This method is an official reference method.

The absorbance is measured in a 10 mm rectangular cuvette at a wavelength of exactly 430 nm. The colour in EBC units is obtained by converting with a suitable factor.

#### **Fields of application**

Plant wort, beer, liquid malt substitutes of all kinds.

#### Measuring range

0–20 units

#### Accessories

- Spectrophotometer (430 nm ± 0.5 nm)
- 10 mm rectangular cuvettes (OS grade)

#### Sample preparation

- **1.** Dilute the sample so that the absorbance is within the linearity range of the spectrophotometer.
- Filter the sample through a membrane filter. Filtration is not necessary if the turbidity of the diluted sample is less than 1 EBC turbidity unit.
- **3.** If necessary, clarify the sample by adding 0.1% kieselguhr and filtering before the membrane filtration is carried out.
- **4.** Measure the absorbance (A) at **430 nm** against dist. water (blank value).

#### Results

The results are expressed in EBC units to 2 significant decimal places.

#### Interferences

A spectrometric absorbance curve does not reflect the colour impression of the human eye, because light of the same intensity does not have a uniform effect on the eye in different parts of the spectrum. In addition the absorbance curves at 430 nm are very steep, so slight measurement errors may occur. Moreover, there are differences when light beers are compared with diluted dark beers.

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002 Volume II, pp 88ff

### 2.5.1 Procedure for measuring beer colour

| Stored Programs                |                         |                    |             |              |  |
|--------------------------------|-------------------------|--------------------|-------------|--------------|--|
| 10                             | Alumin                  | um Alumin.         | 0.8         | 0.800 mg/L 🔒 |  |
| 9                              | Alumin                  | um ECR             | 0.2         | 250 mg/L     |  |
| 805                            | Anthoc                  | yanogens           |             | 100 mg/l     |  |
| 20                             | Barium 100 mg/L         |                    |             |              |  |
| 806                            | Beer color 60.0 units   |                    |             |              |  |
| 30                             | Benzotriazole 16.0 mg/L |                    |             | 6.0 mg/L     |  |
| 241                            | Bitter units 300 BE     |                    |             | 300 BE       |  |
| 801                            | Bitter u                | inits beer         |             | 40.0         |  |
| 803                            | Bitter u                | inits wort         |             | 60.0         |  |
| 40                             | Boron                   |                    | 14.0 mg/L 🎽 |              |  |
| Cancel Select by P<br>Number C |                         | Program<br>Options | Start       |              |  |

- 1. Prepare samples as described in the working procedure.
- 2. Select **Stored Programs** in the "Main Menu". Select test number **806**.
- 3. Insert blank value cuvette (distilled water) into the cell compartment. Close the cell compartment. Touch **Zero**.
- Insert the sample cuvette containing the prepared sample into the cell compartment and close the cell compartment. Touch Read. The result is displayed.

*Note:* Analysis of additional samples: Repeat working procedure from point 4.

| 806 Beer c  | olor     | vis-☆        | 430 nm  |
|-------------|----------|--------------|---------|
| 1           | 3.6      | units<br>EBC |         |
| 28-SEP-2005 | 14:21:36 |              | Ö       |
| Exit        | Zero     | Read         | Options |

#### 2.5.1.1 Executing the test with the sipper module

## 2.6 Free amino nitrogen (ninhydrin method based on EBC method)

#### Principle

The test solution is heated with ninhydrin at pH 6.7 and the resulting colour is measured at 570 nm. The method covers amino acids, ammonia and also the terminal alpha-amino groups of peptides and proteins. Proline is partially detected at the wavelength used. The method is not specific for alpha-amino-nitrogen, because gamma-amino butyric acid, which occurs in worts, also reacts with ninhydrin to produce a colour.

#### Fields of application Beer, worts

#### Measuring range 0–400 mg/l

#### Accessories

- Test tubes with ground-glass stoppers (16 x 150 mm)
- Variable pipette (1.0–5.0 ml) (BBP 065)
- Pipette tips for pipette (BBP 068)
- Water bath suitable for boiling water
- Water bath (20°C)
- Spectrophotometer (570 nm)
- 10 mm rectangular cuvette (OS grade)

#### Reagents

- Colour reagent: Dissolve 10.0 g disodium hydrogen phosphate (Na<sub>2</sub>HPO<sub>4</sub> x 12 H<sub>2</sub>O), 6.0 g potassium dihydrogen phosphate (KH<sub>2</sub>PO<sub>4</sub>), 0.5 g ninhydrin and 0.3 g fructose in H<sub>2</sub>O and make up to 100 ml. This solution remains stable for 2 weeks in a dark bottle. The pH must be 6.6–6.8.
- Dilution solution: Dissolve 2 g potassium iodate in 600 ml H<sub>2</sub>O and add 400 ml 96% ethanol
- Stock solution: Dissolve 107.2 mg glycine in 100 ml H<sub>2</sub>O. Keep this stock solution at 0°C.
- **Standard solution**: Make up **1 ml** stock solution to **100 ml** with H<sub>2</sub>O. This standard solution contains 2 mg/l amino-nitrogen.

#### Sample preparation

- 1. Dilute wort 100-fold, beer 50-fold (1–3 mg/l amino-nitrogen)
- **2.** Analyse sample, standard solution and blank value solution three times.
- Pipette 2 ml of the diluted sample or the standard solution or H<sub>2</sub>O into a test tube.
- 4. Add 1 ml colour reagent and mix.

- **5.** Loosely close test tube with glass stopper to prevent evaporation losses.
- 6. Heat for exactly 16 min in boiling water in a water bath, then cool for 20 min in a water bath at 20°C.
- 7. Add 5 ml dilution solution.
- 8. Measure the absorbance within 30 min in a 10 mm rectangular cuvette at **570 nm** against a blank value solution treated in the same way ( $H_2O$  + colour reagent).

#### 9. Correction for dark worts and beers (perform three times).

- a. Introduce 2 ml of the diluted sample into a test tube.
- **b.** Add **1 ml** H<sub>2</sub>O instead of the colour reagent, then proceed as described above.
- c. Measure against H<sub>2</sub>O after adding 5 ml dilution solution

#### Results

The results are expressed in mg/l without decimal places.

#### Accuracy

r = 17 R = 28

#### **Standard values**

Finished wort (12%): 200–250 mg/l Beer (12%): 100–120 mg/l

About 220–250 mg/l free amino-nitrogen should be present in the original wort to ensure satisfactory primary and secondary fermentation.

#### Interferences

The amino acids are present in very small amounts, so contamination must be avoided at all costs. The carefully cleaned test tubes should only be touched on the outside. Ground-glass stoppers, etc., should be picked up with forceps.

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002 Volume II, pp 62ff

#### Remark

The working procedure described below specifies that the blank value solutions, standard solution and sample should be measured three times without correction when light beer and wort are analysed.

In the case of dark beers, the working procedure specifies that the blank value solution, standard solution, correction and sample should be measured three times.

### 2.6.1 Procedure for measuring free amino nitrogen (FAN) in light worts

| Stored Programs            |                           |             |             |            |  |
|----------------------------|---------------------------|-------------|-------------|------------|--|
| 140                        | Соррен                    | r Bicin, AV | 5.00 mg/L 🔒 |            |  |
| 145                        | Соррен                    | r Porphyrin |             | 210 μg/L   |  |
| 160                        | Cyanid                    | e           | 0.2         | 40 mg/L    |  |
| 817                        | FAN da                    | rk beer     |             | 400 mg/l   |  |
| 816                        | FAN dark wort 400 mg/l    |             |             | 400 mg/l   |  |
| 808                        | FAN light beer            |             | 400 mg/l    |            |  |
| 807                        | FAN light wort            |             |             | 400 mg/l   |  |
| 190                        | Fluorid                   | e           | 2           | .00 mg/L   |  |
| 195                        | Fluorid                   | e AV        | 2           | .00 mg/L   |  |
| 200                        | 0 Formaldehyde 500 µg/L 📩 |             |             | 500 µg/L 🎽 |  |
| Cancel Select by Program S |                           | Start       |             |            |  |

- 1. Prepare three blank value solutions, three standard solutions and three samples as described in the working procedure.
- 2. Select **Stored Programs** in the "Main Menu". Select test number **807**.
- **3.** Insert zero value solution (distilled water) into the cell compartment, close the cover and touch **Zero**.
- Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E1.

**Note:** Repeat the procedure with blank value cuvettes 2 and 3. Display: **E2** and **E3**.

 Insert standard cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E4.

*Note:* Repeat the procedure with standard cuvettes 2 and 3. Display: *E5* and *E6*.

 Insert the sample cuvette with the first prepared sample into the cell compartment. Close the cell compartment. Touch Read. Display: E7.

**Note:** Repeat the procedure with sample cuvettes 2 and 3. Display: **E8** and then, after the final measurement, the result.

7. The FAN result is displayed in mg/l.

**Note:** Analysis of additional samples: Repeat working procedure from point 6.

#### 2.6.1.1 Executing the test with the sipper module

## 2.6.2 Procedure for measuring free amino nitrogen (FAN) in light beer

| Stored Programs |                            |                     |                                     |             |  |  |
|-----------------|----------------------------|---------------------|-------------------------------------|-------------|--|--|
| 140             | Copper                     | r Bicin, AV         | 5                                   | 5.00 mg/L 🔒 |  |  |
| 145             | Copper                     | r Porphyrin         |                                     | 210 μg/L 📖  |  |  |
| 160             | Cyanid                     | e                   | 0.2                                 | 40 mg/L     |  |  |
| 817             | FAN da                     | rk beer             |                                     | 400 mg/l    |  |  |
| 816             | 816 FAN dark wort 400 mg/l |                     |                                     | 400 mg/l    |  |  |
| 808             | 3 FAN light beer 400 mg/l  |                     |                                     | 400 mg/l    |  |  |
| 807             | FAN lig                    | ht wort             |                                     | 400 mg/l    |  |  |
| 190             | Fluorid                    | е                   | 2                                   | .00 mg/L    |  |  |
| 195             | 195 Fluoride AV            |                     | 2                                   | .00 mg/L    |  |  |
| 200             | Formal                     | dehyde              | 500 µg/L 🎽                          |             |  |  |
| Car             | ncel                       | Select by<br>Number | y Program<br>r Options <b>Start</b> |             |  |  |

- 1. Prepare three blank value solutions, three standard solutions and three samples as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 808.
- **3.** Insert zero value solution (distilled water) into the cell compartment, close the cover and touch **Zero**.
- Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E1.

**Note:** Repeat the procedure with blank value cuvettes 2 and 3. Display: **E2** and **E3**.

 Insert standard cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E4.

**Note:** Repeat the procedure with standard cuvettes 2 and 3. Display: **E5** and **E6**.

 Insert the sample cuvette with the first prepared sample into the cell compartment. Close the cell compartment. Touch Read. Display: E7.

**Note:** Repeat the procedure with sample cuvettes 2 and 3. Display: **E8** and then, after the final measurement, the result.

| 808 FAN lig | jht beer | UV-VIS ·℃   | 570 nm  |
|-------------|----------|-------------|---------|
| 1           | 81       | mg/l<br>FAN |         |
| 23-SEP-2005 | 12:41:37 |             | Ō       |
| Exit        | Zero     | Read        | Options |

7. The FAN result is displayed in mg/l.

**Note:** Analysis of additional samples: Repeat working procedure from point 6.

#### 2.6.2.1 Executing the test with the sipper module

### 2.6.3 Procedure for measuring free amino nitrogen (FAN) in dark worts

| Stored Programs |                     |                     |                          |            |  |  |
|-----------------|---------------------|---------------------|--------------------------|------------|--|--|
| 817             | FAN da              | rk beer             | 4                        | 400 mg/l 🔒 |  |  |
| 816             | FAN da              | rk wort             | -                        | 400 mg/l   |  |  |
| 808             | FAN lig             | ht beer             | 4                        | 400 mg/l   |  |  |
| 807             | FAN lig             | ht wort             | 4                        | 400 mg/l   |  |  |
| 190             | 190 Fluoride 2.00 m |                     |                          | .00 mg/L   |  |  |
| 195             | Fluorid             | e AV                | 2.                       | 2.00 mg/L  |  |  |
| 200             | Formal              | dehyde              | ļ                        | 500 µg/L   |  |  |
| 325             | Formal              | dehyde Trace        | 1                        | 1.00 mg/l  |  |  |
| 220             | Hardne              | ss Ca               | 4.                       | .00 mg/L   |  |  |
| 225             | Hardne              | ss Mg               | 4.00 mg/L 👗              |            |  |  |
| Cai             | ncel                | Select by<br>Number | Program<br>Options Start |            |  |  |

- **1.** Prepare three blank value solutions, three standard solutions and three samples as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 816.
- **3.** Insert zero value solution (distilled water) into the cell compartment, close the cover and touch **Zero**.
- Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E1.

**Note:** Repeat the procedure with blank value cuvettes 2 and 3. Display: **E2** and **E3**.

 Insert standard cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E4.

*Note:* Repeat the procedure with standard cuvettes 2 and 3. Display: *E5* and *E6*.

 Insert correction cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E7.

**Note:** Repeat the procedure with correction cuvettes 2 and 3. Display: **E8** and **E9**.

 Insert the sample cuvette with the first prepared sample into the cell compartment. Close the cell compartment. Touch Read. Display: E10.

**Note:** Repeat the procedure with sample cuvettes 2 and 3. Display: **E11** and then, after the final measurement, the result.



8. The FAN result is displayed in mg/l.

**Note:** Analysis of additional samples: Repeat working procedure from point 7.

#### 2.6.3.1 Executing the test with the sipper module

Information about the installation, module configurations and sample introduction of the sipper module can be found in the user manual of the DR 5000 Spectrophotometer (15.3.3. Installation Sipper Module, page 133).

### 2.6.4 Procedure for measuring free amino nitrogen (FAN) in dark beers

| Stored Programs                                 |                         |             |          |            |  |  |
|-------------------------------------------------|-------------------------|-------------|----------|------------|--|--|
| 140                                             | Соррен                  | r Bicin, AV | 5.       | .00 mg/L 🔒 |  |  |
| 145                                             | Соррен                  | r Porphyrin |          | 210 µg/L   |  |  |
| 160                                             | Cyanid                  | e           | 0.2      | 40 mg/L    |  |  |
| 817                                             | FAN dark beer 400 mg/l  |             |          | 400 mg/l   |  |  |
| 816                                             | FAN dark wort 400 mg/l. |             |          | 400 mg/l   |  |  |
| 808                                             | FAN lig                 | ht beer     | 400 mg/l |            |  |  |
| 807                                             | FAN lig                 | ht wort     | 4        | 400 mg/l   |  |  |
| 190                                             | Fluorid                 | e           | 2.       | .00 mg/L   |  |  |
| 195                                             | Fluorid                 | e AV        | 2.       | .00 mg/L   |  |  |
| 200                                             | Formaldehyde 500 µg/L   |             |          | 500 µg/L 📩 |  |  |
| Cancel Select by Program<br>Number Options Star |                         | Start       |          |            |  |  |

- **1.** Prepare three blank value solutions, three standard solutions and three samples as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 817.
- **3.** Insert zero value solution (distilled water) into the cell compartment, close the cover and touch **Zero**.
- Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E1.

**Note:** Repeat the procedure with blank value cuvettes 2 and 3. Display: **E2** and **E3**.

 Insert standard cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E4.

*Note:* Repeat the procedure with standard cuvettes 2 and 3. Display: *E5* and *E6*.

 Insert correction cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E7.

*Note:* Repeat the procedure with correction cuvettes 2 and 3. Display: *E8* and *E9*.

 Insert the sample cuvette with the first prepared sample into the cell compartment. Close the cell compartment. Touch Read. Display: E10.

**Note:** Repeat the procedure with sample cuvettes 2 and 3. Display: **E11** and then, after the final measurement, the result.

## Working procedures



8. The FAN result is displayed in mg/l.

*Note:* Analysis of additional samples: Repeat working procedure from point 7.

#### 2.6.4.1 Executing the test with the sipper module

## 2.7 Steam-volatile phenols

The degree of fumigation of whisky malts is determined by analysing steam-volatile phenols. In the beer industry, small amounts of smoke-dried malts are used to produce "Rauchbiere" (smoked beers), a speciality of Franconia. Technical problems during kilning can impart a smoky taste to malts that are intended for the production of normal beers. This taste is carried through into the finished product, resulting in complaints from consumers.

Besides organoleptic checks, spectrophotometric determination of the steam-volatile phenols has proved to be the best method of identifying malt batches that will impart the undesirable smoky taste, and of determining the extent to which tank beer and beer that has gone through the filling stage is affected.

#### Principle

The phenol fraction obtained with steam reacts in an alkaline environment with 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminophenazone) and the oxidising agent potassium hexacyanoferrate(III) to form a colour substance, which can be measured with a spectrophotometer after being extracted with chloroform.

**Fields of application** 

Malt, beer

Measuring range

0-20 mg/kg

#### Remarks

Wheat beers cannot be analysed by this method, because the activity of the top-fermenting yeast results in the presence of a considerable amount of steam-volatile phenols, which do not, however, impart a smoky taste.

#### Accessories

- DLFU mill (aperture 1 mm)
- Steam distillation unit
- Separating funnels (1 I)
- Spectrophotometer (460 nm)
- 40 mm rectangular cuvette (OS grade)

#### Reagents

- Chloroform, ultrapure
- Silicone antifoam emulsion
- Phosphoric acid, conc. (d = 1.71)
- Copper sulphate, CuSO<sub>4</sub> x 5 H<sub>2</sub>O (10%)
- Ammonium chloride (5%)
- 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (2%): prepare freshly each day

- Potassium hexacyanoferrate(III), K<sub>3</sub>[Fe(CN)<sub>6</sub>], 8%: prepare freshly each day
- Phenol standard solution: Dissolve 1,000 g phenol in H<sub>2</sub>O giving 1000 ml (1ml = 1mg). The solution must be clear and colourless. Use this solution to prepare dilutions with which to obtain the calibration curve between 0.02 and 0.1 mg/l when needed.
- Ammonia, dilute (1+4): Dilute 1 part conc. ammonia (d = 0.91) with 4 parts H<sub>2</sub>O.

#### Sample preparation

- 1. Steam distillation
  - a. Introduce **50 g** coarse malt and **500 ml**  $H_2O$  (for beer analyses 300 ml) into a distillation flask.
  - b. Add 3 ml copper sulphate solution.
  - c. Add phosphoric acid until the pH is less than 4.
  - d. Add silicone antifoam emulsion.
  - e. Carry out steam distillation until 300 ml have been obtained.

#### 2. Colour reaction

- Add 10 ml ammonium chloride solution to all of the distillate (or correspondingly less in the case of genuine smoke-dried malts or whisky malts, for example 100 ml). To prepare a blank value solution, use 300 ml H<sub>2</sub>O instead of the distillate and add 10 ml ammonium chloride solution.
- b. Shake.
- **c.** Adjust the pH of the distillate and blank value solution to  $10.2 \pm 0.1$  by adding ammonia.
- d. Transfer to 1 I separating funnels.
- e. Add **3 ml** 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one and **3 ml** potassium hexacyanoferrate(III) to each funnel.
- f. Shake.
- g. Leave to stand for 3 min.
- Extract by adding 10 ml chloroform to each funnel and shaking each funnel 3 times (1 min).
- i. Wait 10 min for phase separation to occur.
- **j.** Filter the chloroform extracts through a paper filter into 25 ml measuring flasks.
- k. Rinse the filters with a little chloroform.
- I. Fill each flask up to the mark with chloroform.

**m.** Measure the chloroform extract (prepared distillate) in a 40 mm rectangular cuvette at **460 nm** against a blank value solution obtained by following the above procedure but using 300 ml  $H_2O$  instead of the distillate.

#### 3. Calibration values

**a.** Carry out steam distillation on phenol standard solutions with concentrations between 0.02 and 0.1 mg/l (use 300 ml), then proceed as described above.

#### Results

The results are expressed in mg/kg to two decimal places (or in mg/l in the case of beer)

#### Accuracy

Vc = ± 5% (repeat error)

#### **Required values**

Malts: < 0.2 mg/kg: no smoky taste to be expected. Beers: < 0.03 mg/l: negligible effect in most cases. The intensity of the smoky taste is partly dependent on the composition of the beer. The specified lower limit therefore only applies with reservations.

#### Literature

MEBAK Brautechnische Analysenmethoden 3rd Edition, Volume I

### 2.7.1 Procedure for measuring steam-volatile phenols

| Stored Programs |                              |                     |                    |            |  |  |
|-----------------|------------------------------|---------------------|--------------------|------------|--|--|
| 656             | Silica H                     | IR                  | 1                  | 100 mg/L 🔒 |  |  |
| 651             | Silica L                     | R                   | 1.6                | 00 mg/L    |  |  |
| 645             | Silica U                     | JLR                 | 1                  | 000 µg/L   |  |  |
| 028             | Silicon                      |                     | 0.8                | 800 mg/l   |  |  |
| 660             | Silver                       |                     | 0.700 mg/L         |            |  |  |
| 809             | Steam Volat. Phenols         |                     | ; 20,              | .0 mg/kg   |  |  |
| 680             | Sulfate                      |                     |                    | 70 mg/L    |  |  |
| 685             | Sulfate                      | AV                  | 70 mg/L            |            |  |  |
| 690             | Sulfide                      |                     |                    | 800 µg/L   |  |  |
| 692             | 2 Sulfite, HPT 430 5.00 mg/L |                     |                    | .00 mg/L 🎽 |  |  |
| Cancel          |                              | Select by<br>Number | Program<br>Options | Start      |  |  |

- 1. Prepare the samples and blank value solution as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 809.
- **3.** Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch **Zero**.
- Insert the sample cuvette containing the prepared sample into the cell compartment and close the cell compartment. Touch Read. The result is displayed.

### Working procedures



**Note:** Analysis of additional samples: Repeat working procedure from point 4.

### 2.7.1.1 Executing the test with the sipper module

Information about the installation, module configurations and sample introduction of the sipper module can be found in the user manual of the DR 5000 Spectrophotometer (15.3.3. Installation Sipper Module, page 133).

## 2.8 Photometric iodine sample

Photometric iodine sample by new method (MEBAK from 1993).

#### Principle

High-molecular dextrins and starches are precipitated by adding ethanol to wort and beer, separated by centrifuging, and dissolved in a phosphate buffer, to which iodine solution is then added. Depending on the molecular weight and the degree of branching of the erythrodextrins and starch, a red to blue colour appears, whose intensity is measured with the help of a photometer.

#### **Fields of application**

Wort, beer (samples whose iodine value is > 0.8 must be diluted.)

#### Measuring range

0-1 iodine value

#### Accessories

- Centrifuge
- Centrifuge tubes with ground-glass stoppers (100–110 ml content)
- Shaker
- Pipettes (0.5 ml, 2 ml, 10 ml, 20 ml, 40 ml)
- Spectrophotometer (578 nm)
- 40 mm rectangular cuvette (OS grade)
- Plastic spatula

#### Reagents

- Ethanol, 95%
- Iodine solution, 1N (stock solution)

- Iodine solution, 0.02N (prepare freshly each day from the stock solution)
- Phosphate buffer solution, 0.1M, pH 3.5: adjust the pH of a 0.1M KH<sub>2</sub>PO<sub>4</sub> solution to 3.5 with 0.1M phosphoric acid

#### Sample preparation

- 1. Pipette **10.0 ml** centrifuged wort, or carbon-dioxide-free beer, into a centrifuge tube.
- 2. Add 40.0 ml ethanol and shake mechanically for 10 min.
- 3. Centrifuge for 5 min at 2500 rpm.
- 4. Carefully decant as much of the clear phase as possible.
- 5. Dissolve residue in **20.0 ml** phosphate buffer solution by shaking mechanically for **10 min**.
- 6. Centrifuge the solution for 5 min at 2500 rpm.
- Pipette 2 ml of the supernatant liquid and 8 ml phosphate buffer solution into a 40 mm rectangular cuvette and measure at 578 nm against phosphate buffer solution.
- 8. Add 0.5 ml 0.02N iodine solution, mix the contents immediately with the plastic spatula, then measure after 30 sec.

#### 9. lodine blank solution

- a. Pipette **10 ml** phosphate buffer solution and **0.5 ml** 0.02N iodine solution into a 40 mm rectangular cuvette and mix.
- **b.** Measure absorbance at **578 nm** against phosphate buffer solution.

#### Results

The results are expressed as absorbance to 2 decimal places.

#### Accuracy

Vcr = ± 3%

#### Standard values

< 0.3 (wort)

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002 Volume II, pp 34ff

### 2.8.1 Procedure for measuring photometric iodine sample

| Stored Programs            |                        |                    |       |            |  |
|----------------------------|------------------------|--------------------|-------|------------|--|
| 810                        | Photom                 | n. iod. sample     |       | 1.00       |  |
| 240                        | Photom                 | n. iod. sample     | 60.0  | Jodwert    |  |
| 905                        | Potassi                | um                 |       | 7.0 mg/L   |  |
| 401                        | QAC                    |                    | ļ     | 5.0 mg/L   |  |
| 250                        | Reduci                 | ng agents          | 1     | 1.00 mg/l  |  |
| 804                        | Reducing power         |                    |       | 100        |  |
| 640                        | Seleniu                | Selenium           |       | .00 mg/L   |  |
| 656                        | Silica H               | IR                 | 1     | 100 mg/L   |  |
| 651                        | Silica L               | R                  | 1.6   | 1.600 mg/L |  |
| 645                        | 5 Silica ULR 1000 µg/L |                    |       | 000 µg/L 🎽 |  |
| Cancel Select by<br>Number |                        | Program<br>Options | Start |            |  |

- 1. Prepare samples and iodine blank solution as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 810.
- 3. Insert cuvette containing phosphate buffer into the cell compartment. Close the cell compartment. Touch **Zero**.
- Insert blank value cuvette containing the prepared iodine blank solution (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E1.
- Insert the sample cuvette containing the prepared sample into the cell compartment. Close the cell compartment. Touch Read. Display: E2.
- Introduce 0.5 ml 0.02N iodine solution into sample cuvette. Mix the contents immediately with plastic spatula, and after 30 sec insert the cuvette into the cell compartment, close the cover and touch Read. The result is displayed.

**Note:** Analysis of additional samples: Repeat working procedure from point 4. The prepared iodine blank solution can be used for the complete series of measurements.



#### 2.8.1.1 Executing the test with the sipper module

## 2.9 Thiobarbituric acid number (TAN)

The thiobarbituric acid number is a sum parameter for the thermal effects on malt and wort. It is a parameter that, apart from 5-hydroxymethylfurfural (HMF), covers a large number of products of the Maillard reaction and other organic compounds.

#### Principle

The test sample reacts with a solution of thiobarbituric acid and acetic acid and the resulting yellow colour is measured with the help of a spectrophotometer.

#### **Fields of application**

Beer, wort, congress wort or malt extract

#### Measuring range

0–100

#### Accessories

- Water bath (70°C)
- Brown test tubes with ground-glass stoppers (20 ml or 25 ml)
- Spectrophotometer (448 nm)
- 10 mm rectangular cuvettes (OS grade)

#### Reagents

- Acetic acid (90%):
  Dilute 225 g 100% acetic acid (glacial acetic acid) with H<sub>2</sub>O to 250 g.
- Thiobarbituric acid (0.02 mol/l): Dissolve 0.288 g 2-thiobarbituric acid (M = 144.15 g/mol) in a 100 ml measuring flask with 90% acetic acid by heating in a water bath. Cool to 20°C then make up to the mark with 90% acetic acid. Prepare freshly each day.
- Kieselguhr

#### Sample preparation

**Note:** The analysis procedure is empirical and should therefore be adhered to exactly.

1. Clarify turbid test solutions by filtration over kieselguhr.

#### 2. Dilution

- Dilute worts and beers 10-fold with H<sub>2</sub>O
- Dilute congress worts 5-fold with H<sub>2</sub>O

#### 3. Blank value

a. Add **5 ml** 90% acetic acid to **10 ml** diluted sample, shake and proceed as for the main value.

#### 4. Main value

- a. Add **5 ml** thiobarbituric acid to **10 ml** diluted sample and shake.
- b. Place in a 70°C water bath for 70 minutes (avoid direct sunlight and ensure that, at most, the temperature in the bath decreases only briefly by 1–2°C when the test tubes are introduced).
- c. When the reaction time has elapsed, cool the test tubes quickly to 20°C (strongly flowing cold water or cooling bath).
- **d.** Measure the yellow colour **immediately** in 10 mm rectangular cuvettes at **448 nm** against H<sub>2</sub>O.

#### Results

Thiobarbituric acid number (TBN); dimensionless number

#### Standard values

Light finished wort < 45 Light cold wort (after wort cooling) < 60

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002 Volume II, pp 35ff

#### 2.9.1 Procedure for measuring thiobarbituric acid number in beer and wort

| Stored Programs |                                |             |         |             |  |
|-----------------|--------------------------------|-------------|---------|-------------|--|
| 054             | Sulphit                        | e           | 5       | 5.00 mg/l 🔒 |  |
| 710             | Surfact                        | ants        | 0.2     | :75 mg/L    |  |
| 630             | Susper                         | nded Solids | 7       | '50 mg/L    |  |
| 811             | TAN be                         | er/wort     |         | 100         |  |
| 812             | TAN c-wort 100                 |             |         | 100         |  |
| 725             | THM Plus                       |             | 600 ppb |             |  |
| 720             | Tannin&Lignin                  |             |         | 9.0 mg/L    |  |
| 730             | Tolyltriazole                  |             | 21      | 0.0 mg/L    |  |
| 802             | Total polyphenols 800 mg/l     |             |         | 300 mg/l    |  |
| 909             | Total-Kjeldahl-N I 10.0 mg/l   |             |         | 0.0 mg/l 🎽  |  |
| Car             | Cancel Select by Program Start |             | Start   |             |  |

- 1. Prepare samples and blank value solution as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 811.
- **3.** Insert zero value cuvette containing distilled water into the cell compartment. Close the cell compartment. Touch **Zero**.
- Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E1.
- Insert the sample cuvette containing the prepared sample into the cell compartment. Close the cell compartment. Touch Read. The result is displayed.



**Note:** Analysis of additional samples: Repeat working procedure from point 4.

### 2.9.1.1 Executing the test with the sipper modulel

Information about the installation, module configurations and sample introduction of the sipper module can be found in the user manual of the DR 5000 Spectrophotometer (15.3.3. Installation Sipper Module, page 133).

### 2.9.2 Procedure for measuring thiobarbituric acid number in congress wort

| Stored Programs |                              |                    |             |  |  |
|-----------------|------------------------------|--------------------|-------------|--|--|
| 054 Sulph       | ite                          | 5                  | 5.00 mg/l 🔒 |  |  |
| 710 Surfa       | ctants                       | 0.2                | :75 mg/L    |  |  |
| 630 Suspe       | nded Solids                  | 7                  | '50 mg/L    |  |  |
| 811 TAN E       | eer/wort                     |                    | 100         |  |  |
| 812 TAN c       | TAN c-wort 100               |                    |             |  |  |
| 725 THM F       | lus                          |                    | 600 ppb     |  |  |
| 720 Tanni       | n&Lignin                     | 9                  | 9.0 mg/L    |  |  |
| 730 Tolylt      | riazole                      | 20                 | 0.0 mg/L    |  |  |
| 802 Total       | Total polyphenols 800 mg/l   |                    |             |  |  |
| 909 Total-      | Total-Kjeldahl-N I 10.0 mg/l |                    |             |  |  |
| Cancel          | Select by<br>Number          | Program<br>Options | Start       |  |  |

- 1. Prepare samples and blank value solution as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 812.
- **3.** Insert zero value cuvette containing distilled water into the cell compartment. Close the cell compartment. Touch **Zero**.
- Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch Read. Display: E1.
- Insert the sample cuvette containing the prepared sample into the cell compartment. Close the cell compartment. Touch Read. The result is displayed.

**Note:** Analysis of additional samples: Repeat working procedure from point 4.



### 2.9.2.1 Executing the test with the sipper module

## 2.10 Iso- $\alpha$ -acids and $\alpha$ -acids

#### Principle

The bitter substances are extracted from the acidified sample with iso-octane. Certain substances that cause interference are removed by washing the extract with acidified methanol, and the concentrations of iso- $\alpha$ -acids and  $\alpha$ -acids are determined by measuring the absorbance in alkaline methanol at 255 nm and 360 nm.

Fields of application Beer, wort

#### Measuring range

0–60 mg/l

#### Accessories

- Centrifuge tubes with solvent-tight screw tops (100–110 ml content)
- Shaker
- Centrifuge (3000 rpm)
- Spectrophotometer (255 nm and 360 nm)
- 10 mm rectangular cuvettes (QS grade)

#### Reagents

- Hydrochloric acid, 6N
- Iso-octane (2,2,4-trimethylpentane), of spectroscopic purity
- Sodium sulphate, anhydrous
- Methanol
- Hydrochloric acid (4N)
- Sodium hydroxide (6N, carbonate-free)
- Acidic methanol solution: Mix 64 ml methanol and 36 ml 4N hydrochloric acid (prepare freshly each day).
- Alkaline methanol solution: Take 0.2 ml 6N sodium hydroxide and make up to 100 ml with methanol (prepare freshly each day).

#### Sample preparation

- Clarify wort or cloudy beer by centrifuging at 3000 rpm for 15 min (do not filter).
- 2. Expel carbon dioxide from beer without losing any foam.
- **3.** Bring the sample to 20°C, then pipette **50 ml** into a centrifuge tube.
- 4. Add 3 ml 6N hydrochloric acid and 25 ml iso-octane.
- 5. Close the centrifuge tube and shake mechanically for **30 min** at optimal mixing intensity.

- Separate the phases and break the emulsion by centrifuging for 5 min at 3000 rpm.
- 7. Use a pipette to draw off and discard the bottom aqueous phase. Add sodium sulphate to the iso-octane phase until the phase clarifies after being shaken vigorously for a short time.
- 8. Pipette **10 ml** of the iso-octane phase into a 25 ml mixing cylinder.
- **9.** Add **10 ml** acidic methanol solution, and mix the contents of the cylinder by inverting it 100 times
- **10.** Pipette **5 ml** of the supernatant clear iso-octane phase into a 25 ml measuring flask.
- 11. Make up to the mark with alkaline methanol solution and mix.
- **12.** Measure the absorbance of the iso-octane solution at **255 nm** and **360 nm** against a blank value solution.

#### 13. Preparation of the blank value solution

- a. Pipette 5 ml iso-octane into a 25 ml measuring flask.
- **b.** Fill up to the mark with alkaline methanol solution and mix.

#### Results

The result is expressed in mg/l without any decimal places

#### Accuracy

Vcr = ± 5%

#### **Standard values**

Beer: 10–40 mg/l iso- $\alpha$ -acids, depending on type and origin (< 2mg/l a-acids)

Wort: 15–50 mg/l iso- $\alpha$ -acids, depending on the beer and the level of bitter substance utilisation

1–15 mg/l a-acid depending on degree of isomerisation

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002 Volume II, pp 116ff

## 2.10.1 Procedure for measuring iso- $\alpha$ -acids and $\alpha$ -acids

| Stored Programs |                         |                                           |             |            |  |
|-----------------|-------------------------|-------------------------------------------|-------------|------------|--|
| 257             | Iron Fe                 | rrous AV                                  | 3.00 mg/L 🔒 |            |  |
| 270             | Iron TF                 | ντz                                       | 1.8         | 300 mg/L   |  |
| 272             | Iron TF                 | PTZ AV                                    | 1.8         | 300 mg/L   |  |
| 813             | Iso-a-                  | Iso-α- and α-acids                        |             |            |  |
| 280             | Lead Dithizone 300 µg/L |                                           |             | 300 µg/L   |  |
| 283             | Lead LeadTrak           |                                           | 150 µg/L    |            |  |
| 032             | Manganese 10mm          |                                           | 5           | 5.00 mg/l  |  |
| 032             | Manganese 50mm          |                                           | 1           | 1.00 mg/l  |  |
| 295             | Manganese HR            |                                           | 20.0 mg/L   |            |  |
| 290             | Mangai                  | nese LR PAN                               | 0.7         | '00 mg/L 🎽 |  |
| Ca              | ncel                    | Select by Program<br>Number Options Start |             | Start      |  |

- **1.** Prepare samples and blank value solution as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 813.
- Insert blank value cuvette (see sample preparation) into the cell compartmentcell compartment. Close the cell compartment. Touch Zero.
- Insert the sample cuvette containing the prepared sample into the cell compartment. Close the cell compartment. Touch Read. The result is displayed.

**Note:** Analysis of additional samples: Repeat working procedure from point 4. The prepared blank value solution can be used for the complete series of measurements.

| <b>813 Iso-α- and α-acids</b> UV-VIS ☆ 255 nm |        |            |         |  |  |
|-----------------------------------------------|--------|------------|---------|--|--|
| 23.4 m                                        | ng/l I | so-a-acids |         |  |  |
| 18.7 m                                        | ng/l a | -acids     |         |  |  |
|                                               |        |            |         |  |  |
|                                               |        |            |         |  |  |
|                                               |        |            |         |  |  |
|                                               |        |            |         |  |  |
|                                               |        |            |         |  |  |
| 26-SEP-2005 10:45:10                          |        |            |         |  |  |
|                                               |        |            |         |  |  |
| Exit                                          | Zero   | Read       | Options |  |  |

#### 2.10.1.1 Executing the test with the sipper module

## 2.11 Vicinal diketones (diacetyl, 2,3-pentanedione)

The metabolic processes of yeast produce 2-acetolactate and 2-acetohydroxibutyrate during fermentation. These are oxidised to the vicinal diketones diacetyl (2,3-butanedione) and 2,3-pentanedione. Diacetyl can, however, also occur as a characteristic metabolic product of certain microorganisms. When the threshold value is exceeded, the beer acquires an off-flavour.

The photometric determination method is often used in preference to the gas chromatographic method in operational checks, because it can be carried out quickly and without the need for expensive apparatus. Unfortunately it is not capable of differentiating between diacetyl and pentanedione.

#### Principle

The basis of the method is the reaction of diacetyl or 2,3-pentanedione with 1,2-phenylenediamine to form 2,3-dimethylquinoxaline, which exhibits specific absorbance at 335 nm.

Fields of application Beer

Measuring range

0–1 mg/kg

#### Accessories

- Macro version of apparatus for nitrogen determination, with heating jacket (for example from Schott). The accompanying cooler may need to be replaced by a larger one if the distillate is not cooled sufficiently. Other, similar units (for example from Büchi) are equally suitable.
- Spectrophotometer (335 nm)
- 20 mm rectangular cuvettes (QS grade)

#### Reagents

- Hydrochloric acid (4N)
- 1,2-Phenylenediamine (1% in 4N hydrochloric acid). Prepare the solution freshly on the day when it is needed, and keep it is a dark place. 1,2-Phenylenediamine is toxic and allergenic; handle it carefully, and wear gloves while working.
- Antifoam emulsion (free of diketones

#### Sample preparation

- 1. Introduce **100 g** beer, from which the carbon dioxide has not been removed, into a preheated distillation apparatus.
- 2. Add one drop of antifoam emulsion.
- **3.** Regulate the steam supply so that about 25 ml distillate are obtained in 2 min.
- 4. Collect the distillate in 25 ml measuring flasks.

5. Pipette **10 ml** of the mixed distillate into each of two 50 ml Erlenmeyer flasks (main value solution, blank value solution).

#### 6. Blank value solution

• Add 2.5 ml 4N hydrochloric acid.

#### 7. Main value solution

- Add **0.5 ml** 1,2-phenylenediamine solution, mix and allow to stand in a dark place for **30 min**.
- Then add 2 ml 4N hydrochloric acid.
- 8. Within 20 min, measure the absorbance of the main value solution against the blank value solution at 335 nm in 20 mm rectangular cuvettes.

#### Results

The result is expressed in mg/kg to two decimal places.

#### Accuracy

 $SD = \pm 0.01$ 

#### **Required value**

For light "Vollbier" (beer with a high original gravity) < 0.15 mg/kg.

#### Remarks

If series of analyses are carried out, the apparatus need not be cleaned or rinsed between the individual determinations but can be refilled immediately with beer after it has automatically emptied. After a series of distillations the adhering residues should be removed with sodium hydroxide solution or some other suitable cleaning agent.

Any acetohydroxy acids that are present in beer after the filling stage are oxidised to diketones in the presence of  $O_2$ . Before the actual analysis the beer sample can be thermostated at 70°C for 1.5 hours for the purpose of analysing the total diketone content.

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002 Volume II, pp 134ff

## 2.11.1 Procedure for measuring vicinal diketones

| Stored Programs |                                |               |            |            |  |
|-----------------|--------------------------------|---------------|------------|------------|--|
| 802 T           | otal p                         | olyphenols    | 800 mg/l 🔒 |            |  |
| 909 T           | otal-K                         | jeldahl-N I   | 1          | .0.0 mg/l  |  |
| 909 T           | otal-K                         | jeldahl-N II  |            | 200 mg/l   |  |
| 909 T           | otal-K                         | jeldahl-N III | 21         | 000 mg/l   |  |
| 746 T           | urbidit                        | ty            | 400 FAU    |            |  |
| 746 T           | Turbidity Trace                |               | 50.0 FAU   |            |  |
| 815 V           | Vicinal diketones              |               | 1.00 mg/kg |            |  |
| 242 V           | Vicinal diketones              |               | 0.50       | 10 mg/kg   |  |
| 770 V           | Volatile Acids                 |               | 2800 mg/L  |            |  |
| 780 Z           | Zinc 3.00 mg/L                 |               |            | .00 mg/L 🎽 |  |
| Cano            | Cancel Select by Program Start |               | Start      |            |  |

- 1. Prepare samples and blank value solution as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 815.
- **3.** Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch **Zero**.
- Insert the sample cuvette containing the prepared sample into the cell compartment. Close the cell compartment. Touch Read. The result is displayed.

**Note:** Analysis of additional samples: Repeat working procedure from point 3.

| 815 Vicinal | diketones | UV-VIS ∕Ḉ·   | 335 nm  |
|-------------|-----------|--------------|---------|
| 0.620       |           | mg/kg<br>VDK |         |
| 26-SEP-2005 | 10:45:47  |              | Ö       |
| Exit        | Zero      | Read         | Options |

### 2.11.1.1 Executing the test with the sipper module

## 2.12 Iron

Iron in beer may originate from raw materials, filter aids, apparatus, pipes or cans, or beer foam stabilising agents. Iron has a disadvantageous effect on colloidal stability, taste and the gushing tendency of the beer.

#### Principle

Divalent iron reacts with the disodium salt of 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine-4,4-disulphonic acids (Ferrozin) to form a violet-coloured complex with a very high molar absorbance coefficient. Trivalent iron must be reduced to the divalent form before the determination is carried out. The colour intensity is measured with a spectrophotometer.

#### Measuring range

0–1 mg/l

#### Accessories

- Analytical balance readable to 0.1 mg
- Pipettes (0.1 ml, 2 ml, 5 ml)
- Spectrophotometer (560 nm)
- 40 mm rectangular cuvette (OS grade)

#### Reagents

Prepare all solutions with iron-free H<sub>2</sub>O.

- Buffer solution (pH 4.3): Dissolve **75 g** ammonium acetate and **150 g** conc. acetic acid in about **800 ml** H<sub>2</sub>O, check the pH and make up to 1 l.
- Ferrozin reagent: Dissolve 0.257 g Ferrozin or Ferrospectral in 50 ml buffer (the solution remains stable for 2 weeks).
- Ascorbic acid (2.5%) Prepare freshly each day.
- Hydrochloric acid, conc.
- Iron(III) standard solution for obtaining the calibration curves: Dissolve **863.4 mg** ammonium iron(III) sulphate [NH<sub>4</sub>Fe(SO<sub>4</sub>)<sub>2</sub> x 12 H<sub>2</sub>O] in H<sub>2</sub>O in a 1 I measuring flask. Add **0.1 ml** conc. hydrochloric acid and make up to the mark with H<sub>2</sub>O. Dilute 50 ml of this solution with H<sub>2</sub>O to 1 I to obtain a standard solution containing 5 mg/ml Fe<sup>3+</sup>.

#### Sample preparation

- **1.** Expel carbon dioxide from beer and allow the foam to completely collapse.
- 2. Pipette 40 ml beer, 2 ml Ferrozin reagent and 1 ml ascorbic acid solution into a 50 ml measuring flask.
- 3. Make up to the mark with  $H_2O$ .

- **4.** Prepare a blank value solution in exactly the same way, but without adding the Ferrozin reagent. Prepare a blank value solution for each beer.
- **5.** Measure the absorbance of the solution in a 40 mm rectangular cuvette at **560 nm** against the corresponding blank value solution.

#### Results

The results are expressed in mg/l to three significant places

#### Accuracy

r = 0.008

#### **Required value**

< 0.200 mg/l

#### Literature

MEBAK Brautechnische Analysenmethoden 4th Edition 2002 Volume II, pp 149ff

### 2.12.1 Procedure for measuring iron

| Stored                         | Pro                    | grams       |    |            |  |
|--------------------------------|------------------------|-------------|----|------------|--|
| 025 H                          | ydraz                  | ine         | 2  | .00 mg/l 🔒 |  |
| 232 H                          | ydraz                  | ine AV      | I  | 600 µg/L   |  |
| 058 H                          | ydrog                  | en Peroxide |    | 10.0 g/l   |  |
| 245 Io                         | odine                  |             | 7. | .00 mg/L   |  |
| 246 Io                         | Iodine AV 7.00 mg/L    |             |    | .00 mg/L   |  |
| 818 Ir                         | ron                    |             | 1  | 1.00 mg/l  |  |
| 521 It                         | ron                    |             | 1  | .00 mg/l   |  |
| 021 It                         | ron                    |             | 2  | .00 mg/l   |  |
| 021 Ir                         | Iron 50 mm             |             |    | 250 mg/l   |  |
| 275 Ir                         | Iron FerroMo 1.80 mg/L |             |    | .80 mg/L 🍼 |  |
| Cancel Select by Program Start |                        | Start       |    |            |  |

| 818 Iron    |            | UV-VIS 🖑     | 560 nm  |
|-------------|------------|--------------|---------|
| 0.316       |            | mg/l<br>Iron |         |
| 26-SEP-2005 | 5 10:50:56 |              | Ö       |
| Exit        | Zero       | Read         | Options |

- 1. Prepare samples and blank value solution as described in the working procedure.
- 2. Select Stored Programs in the "Main Menu". Select test number 818.
- **3.** Insert blank value cuvette (see sample preparation) into the cell compartment. Close the cell compartment. Touch **Zero**.
- **4.** Insert the sample cuvette containing the prepared sample into the cell compartment. Close the cell compartment. Touch **Read**. The result is displayed.

**Note:** Analysis of additional samples: Repeat working procedure from point 3.

#### 2.12.1.1 Executing the test with the sipper module

Information about the installation, module configurations and sample introduction of the sipper module can be found in the user manual of the DR 5000 Spectrophotometer (15.3.3. Installation Sipper Module, page 133).

#### Obtaining the calibration curve

The factor 1 = 0.037 is an empirical variable and has to be individually determined from a calibration line. The factor is the gradient of the calibration line.

- Pipette 40 ml beer into each of four 50 ml measuring flasks.
- Pipette respectively **0.40 ml**, **0.80 ml**, **1.60 ml** and **3.20 ml** iron standard solution (5 mg Fe<sup>3+</sup>/ml) into the measuring flasks.
- Add **2 ml** Ferrozin reagent and **1 ml** ascorbic acid solution to each measuring flask.
- Make up to the mark with  $H_2O$ .
- Measure the absorbance of the solution in a 40 mm rectangular cuvette at 560 nm against the corresponding blank value solution.
- Blindwert messen.

Deduct the absorbance of the sample from the absorbance values of the standard solutions.

# Section 3 Replacement Parts

| Description                                                                                     | Cat. No. |
|-------------------------------------------------------------------------------------------------|----------|
| Macro-cuvette (OG grade; path length = 20 mm)                                                   | LZP331   |
| Cuvette set (path length = 1 cm; matched pair)                                                  | 2095100  |
| Cuvette (QS grade; path length =10 mm)                                                          | 2624410  |
| Pour-through cuvette (QS grade; path length = 10 mm; fill height = 10 mm; total height = 40 mm) | LZV510   |

## **Orders/Repair service**

Please contact your representative:

#### HACH LANGE GMBH

Willstätterstraße 11 D-40549 Düsseldorf Tel.: +49 (0)2 11 5288-0 Fax: +49 (0)2 11 5288-143 info@hach-lange.de www.hach-lange.de

#### HACH LANGE LTD

Pacific Way Salford Manchester, M50 1DL Tel. +44 (0)161 8 72 14 87 Fax +44 (0)161 8 487324 info@hach-lange.co.uk www.hach-lange.co.uk

## **Information Required**

- Hach account number (if available)
- Billing address
- Your name and phone number
- Shipping address
- Purchase order number
- Catalog number
- Brief description or model number or series-production number
- Quantity