

How to Implement Multi-way Active/Active Replication – SIMPLY Page 1

How to Implement Multi-way Active/Active Replication – SIMPLY

The easiest way to ensure data is always up to date in a 24x7 environment is to use a single global

database. This approach works well if your application does not use frequent database interactions, and

some latency is expected, for example because the application is browser-based. An internet store is a

typical example of such an application in a 24x7 environment.

A single global database does not work well if your application requires frequent database interactions,

especially if application interaction heavily impacts user productivity. In that case it makes more sense

to have a local database – for example per region – so that users can always have low-latency access to

the database. If users then still need access to all available data, you end up with an active/active

replication environment to synchronize changes across multiple independent databases.

This paper discusses considerations for an active/active replication environment, as well as how to

implement such an environment using the data replication product HVR – High Volume Replicator.

Figure 1 shows the example used throughout this paper: a 6-way active/active environment with one

active database on every continent except Antarctica.

Figure 1. 6-way active/active replication across the world

Active/Active/Active/Active/active replication considerationsactive replication considerationsactive replication considerationsactive replication considerations
An active/active replication environment can always introduce data-level conflicts that you will have to

deal with. However there are a number of potential conflicts that you can avoid by preparing the

application for active/active replication.

How to Implement Multi-way Active/Active Replication – SIMPLY Page 2

Primary and unique keys

OLTP applications often use a unique sequence value to populate a primary key. In a multi-way

active/active scenario there are different options to avoid potential conflicts caused by duplicate

sequence values:

- Use composite keys, using a unique database identifier as part of the key to ensure there never

will be conflicts between rows created in different databases. Such a change may have a

significant impact on the application if today there are single-column keys in place.

- Add a unique site-prefix/suffix to every key. If keys are numeric today using a numeric prefix or

suffix can work. Such a change may impact key generation in the application, and can have an

impact on the way unique indexes are distributed which may impact data lookup timing.

- Start with a unique sequential number on every site and increment sequence values by at least

the number of sites in the active/active configuration. In the example with 6 databases on every

content North-America could start with 1, South-America with 2, etc. and simply increment

sequence values by 6. This approach may again impact index distribution if not all sites are

generating rows at the same rate which can impact data lookup timing.

Unique keys in your application may have similar considerations, but in some cases you know you may

end up with conflicts that you will have to deal with.

Triggers

Many applications use database triggers to populate column values or even entire rows in tables. In

most replication environments triggers fire when the application performs a change, but they don’t fire

when the replication process applies a change. In a multi-way active/active replication scenario that is

no different.

If you never want the replication to fire triggers then you may be able to take advantage of a database

capability to disable triggers per session, but not every database exposes such an option to external

replication products. As an alternative you may have to modify all triggers to ensure they don’t fire

during replication, for example because replication is run by a dedicated database user that is not used

otherwise.

Truncate operations

Truncate operations are uncommon in an OLTP system, but they do sometimes occur. A truncate

operation is a DDL statement that only logs the execution of the statement in the transaction log and

not the data that was affected by the statement. In a multi-way active/active replication environment a

user may be entering data into a table in one database while the table is truncated in another database.

This scenario can lead to data inconsistencies with some databases containing fewer records than

others. Watch out for truncate operations in your application, and if they do occur ensure you

understand how these propagate to the various databases.

Cascade deletes

A cascade delete or nullify on delete operation in a replication environment is similar to a database

trigger: the application probably relies on the cascade operation to proceed, but replication should not

perform the cascade delete since the delete/update of child records is captured separately. You may

have to work around cascade deletes by implementing triggers instead (that also take replication into

How to Implement Multi-way Active/Active Replication – SIMPLY Page 3

account). Depending on the database technology you use you may be forced to then disable constraints

or use deferred constraints that perform constraint checking at commit time rather than as rows are

being manipulated since the parent delete record likely comes first in sequential order.

Unavoidable conflicts

Fundamentally in an active/active environment that is kept in sync using asynchronous replication

technology there may always be conflicts. In the example from Figure 1 there is no database locking to

prevent a user from changing a row in the North American database while another user is changing the

same data in the African database (there may always be application logic that forces segregation of

changes to the data). When these changes are propagated to all environments all databases should be

in sync, and one of the users should be notified that their change was not processed successfully.

Likewise there are unavoidable conflicts with deletes and updates that a typical application will have to

deal with in an active/active scenario.

Introducing HVR Introducing HVR Introducing HVR Introducing HVR –––– High Volume ReplicatorHigh Volume ReplicatorHigh Volume ReplicatorHigh Volume Replicator
HVR – High Volume Replicator – is a technology that captures transactions with very low latency and

little overhead directly out of the transaction logs of commonly used relational databases. Transaction

data is compressed before moved over the wire through a central hub into one or more target systems.

In addition to relational databases HVR can capture changes out of Salesforce, and HVR supports file-

based replication out of directories or a SharePoint system.

Data is always compressed across the wire using a highly efficient compression scheme, and optionally

the software can be configured to encrypt data as it moves between source and target(s).

HVR is used in multiple use cases:

- Real-time Business Intelligence and reporting offload in which HVR keeps one or more copies of

a source OLTP system in sync in real-time, often in a heterogeneous database environment.

- Cloud integration, in which organizations store some data on-premise and some data lives in the

cloud.

- Multiple types of migrations such as hardware changes, software upgrades, database changes as

well as on-site to cloud migrations.

- High Availability (HA) and Disaster Recovery (DR) implementations, typically over a wide-area

network.

Active/active replication is a special case of a DR implementation in which multiple sites are active

concurrently.

MultiMultiMultiMulti----way way way way Active/Active/Active/Active/Active Replication with HVRActive Replication with HVRActive Replication with HVRActive Replication with HVR
Thanks to HVR’s well thought-through architecture configuring multi-way active replication is

surprisingly simple. Some replication products require careful configuration on every environment but

with HVR the entire setup is created and maintained from a single central environment.

This section provides a step-by-step guide on how to setup an environment for the 6-way active/active

replication example in Figure 1.

How to Implement Multi-way Active/Active Replication – SIMPLY Page 4

Installation and initial configuration

In order to take maximum advantage of HVR’s compression every database system that participates in

the replication must have an installation of the HVR software. One of the installations will be designated

as the hub, and for high availability reasons you should designate at least one alternative location as a

backup hub that can take over the replication in case the primary system fails.

The HVR software is only about 50 MB in size and installs in minutes. Every locations that does not act as

a hub must run the HVR remote listener process on a designated port that must be accessible from

other servers in the environment.

For more information and initial configuration refer to the HVR User Manual.

Setting up the environment

HVR’s Graphical User Interface connects to a database schema in a relational database that is called the

hub (see Figure 2).

Figure 2. HVR GUI connected to a hub.

The first step in setting up the replication is to define the Location Configuration, specifying the

credentials and environment information on the various locations (see Figure 3).

How to Implement Multi-way Active/Active Replication – SIMPLY Page 5

Figure 3. Location definition in HVR.

This must be done for all 6 locations in this example.

Next define a channel. A channel is a logical group of tables that should be replicated together, for

example because there is enforced referential integrity between the tables. A channel often maps all or

a subset of the tables in a schema. In this example we use distapp, Distributed Application, as the

channel (see Figure 4).

Figure 4. Creating a new channel.

The Channel is a logical definition of what tables are replicated and how.

How to Implement Multi-way Active/Active Replication – SIMPLY Page 6

To map the logical definition to physical connection details HVR uses the concept of a Location Group

within the context of a Channel. For a six-way active/active replication implementation effectively only

one Location Group is required, since all databases all play an identical role in the replication (see Figure

5).

Figure 5. New Location Group with all 6 databases as members.

Next identify the tables taking part in the replication. This examples uses the sample SH schema in the

Oracle database. In the channel, right-mouse click Tables and choose Table Select from the pop-up

menu. Select any one of the databases to connect to if all schemas are identical, or simply use the local

database as the starting point.

How to Implement Multi-way Active/Active Replication – SIMPLY Page 7

Figure 6. Select tables to be included in the channel.

Identify which tables should be part of the Channel and click Add (see Figure 6). HVR will retrieve the

table definition including primary/unique key definitions. If there is no key HVR will show a no-key icon

in the list of tables. HVR can deal with tables without keys and avoid duplicate row updates in case there

would be duplicate rows, but heavy update/delete activity on a table with no key or index can seriously

hurt performance.

Next, on the Location Group ACTIVE, define a New Action DbCapture which will apply to all locations in

this group. Enable log-based capture (see Figure 7). There are many additional options that are useful

for specific cases. Please refer to the HVR User Manual to get full details on the various options and

when to use them. This example defines actions at the Location Group level but actions can also be

defined for the entire channel, or for a specific table.

How to Implement Multi-way Active/Active Replication – SIMPLY Page 8

Figure 7. Creating a DbCapture action.

Then create a new DbIntegrate action for the single location group for all tables (see Figure 8).

Figure 8. Creating a DbIntegrate action.

DbIntegrate also has many options that are useful in specific situations. For example ResilientDelete can

be used if there are enabled cascade delete constraints on tables and the errors resulting from the

deletion of rows that were already removed should be ignored.

How to Implement Multi-way Active/Active Replication – SIMPLY Page 9

Finally, add a CollisionDetect action (see Figure 9) to ensure the databases remain in sync even if there

are multiple concurrent operations on the same data in different databases. With CollisionDetect

enabled HVR will automatically keep track of the recent history of changes to ensure the most recent

committed change wins.

Figure 9. Adding a CollisionDetect action.

These few steps are all that is required to define a six-way active/active environment.

Initializing replication

With the Channel Definition complete use HVR Load to initialize the replication. The Advanced Options

tab shows a number of options that may be selected/deselected in some cases (see Figure 10).

How to Implement Multi-way Active/Active Replication – SIMPLY Page 10

Figure 10. Running HVR Load to initialize the replication.

For example if the channel was active before but then got modified to include more tables then Table

Enrollment and Supplemental Logging have to be created for these tables, but other options can be

deselected. Also note the option to rewind the replication to a point in time. This can be useful if for

example you used a cold database export to initialize the other environment(s) and you wanted to

capture any transactions since then. Please note that if you rewind the replication then all transaction

logs between the point in time to which rewind is set and the current point in time must be accessible to

HVR on the location that is known to the database (for example Oracle keeps this information in a view

(G)V$ARCHIVED_LOG).

For the first initialization of a channel simply use all defaults. Please note that HVR Load may add

supplemental logging to the tables in the channel which requires an exclusive lock on the table. If an

application is actively performing DML on the tables then running HVR Load can take a long time

because it is waiting to acquire the locks.

HVR can be fully instructed from the command line, so almost all interactions with the GUI have a

command-line equivalent. Whenever appropriate HVR will show the command-line equivalent of a GUI

action in the status bar (e.g. see the hvrload command in the status bar in Figure 10).

How to Implement Multi-way Active/Active Replication – SIMPLY Page 11

HVR Load will create two jobs per physical location under the Scheduler node to run the replication: one

for capture, and one for integrate.

Initial load

HVR provides the ability to perform the initial load through an operation called HVR Refresh. Refresh will

simply take all data from one of the databases and load in bulk into one or more targets. Tables are

truncated before data is loaded to ensure data will be in sync.

HVR Refresh can be run when the application is active, and the options under Online Refresh control

how HVR deals with in-flight transactions during the refresh to ensure there are no collisions and post

initial load and once the replication has caught up all systems are in sync (see Figure 11). HVR Refresh

also provides the option to create tables that don’t yet exist, or recreate tables that were modified.

Figure 11. HVR Refresh options.

How to Implement Multi-way Active/Active Replication – SIMPLY Page 12

Use Parallelism for Locations and Parallelism for Tables to limit the amount of time it takes to run the

refresh. Depending on the network speed and the amount of data that must be loaded HVR Refresh can

take a long time. In the GUI HVR will show progress graphically (see Figure 12), and when run through

the command line output is reported on standard out. There is also an option to Schedule Refresh Jobs

in which case output is stored as part of the scheduler logging.

Figure 12. Refresh results in the HVR GUI.

Once Refresh finishes all locations will have table definitions and data as of a recent point in time.

Running the replication

The jobs to start the replication were created by HVR Load (see Figure 13). HVR will report the latency of

data changes which in this case – given the jobs have not run before – is the amount of time elapsed

since HVR Load was completed.

How to Implement Multi-way Active/Active Replication – SIMPLY Page 13

Figure 13. Jobs created by HVR Load.

To start the jobs, simply use the option in the pop-up menu on the Scheduler or the Channel to Trigger

all jobs (see Figure 14). Start the scheduler if it is not running yet.

Figure 14. Trigger all jobs in the scheduler.

If all is well then all jobs should start and depending on the activity in the system since HVR Load

completed the jobs should all catch up quickly and report RUNNING (see Figure 15).

How to Implement Multi-way Active/Active Replication – SIMPLY Page 14

Figure 15. Job status after the system was started.

The system is now active and changes made in any one of the databases will flow to all other databases.

ConclusionConclusionConclusionConclusion
Active/active replication is a relatively complex challenge that requires upfront planning to avoid

unnecessary data conflicts when users change independent databases that must be synchronized. In

addition some replication tools will require configuration per server which makes a multi-way

active/active replication environment exponentially more complex with an increasing number of sites

participating in the replication.

HVR is different. Thanks to its innovative hub architecture the setup of a multi-way active/active

replication environment is surprisingly simple. Post product installation only a few steps have to be

performed to enable the replication. With all systems equal in the environment configuration details are

all defined at the Location Group level, with all active sites being a member of the group.

If you are facing an active/active replication challenge then you should take a look at HVR. Visit the

website at http://www.hvr-software.com for more information or to request a free trial.

Supported sources Supported targets

Oracle, all editions, including Amazon RDS All supported sources
SQL Server, all editions, including Azure Teradata
DB2 on Linux, Unix and Windows Actian Vector (Vectorwise)
Ingres Actian Matrix (ParAccel)
Flat files, including Hadoop Pivotal Greenplum
Sharepoint Pivotal Hawq
 Amazon Redshift

