
TimeFlies – A Tool for Time Tracking

Jörg Bullmann <jb@heilancoo.net>

November , 

User Manual and Reference
TimeFlies .



Contents

 What is TimeFlies About? 

 Tutorial by Example 
. Recording Time . 
. Keeping Notes in the Log . 
. Time Summaries . 
. Logging Activities . 
. Work Package Breakdown . 

 Reference 
. Command Line Syntax . 

.. Show Work Packages . 
.. Calculate Work Packages 
.. Tally Days . 
.. Check Days . 
.. Filters . 
.. Output Indentation . 

. File Syntax . 
.. Source Comments and Persistent Comments 
.. Time and Date Formats 
.. Work Packages . 
.. Day blocks . 
.. Activities . 
.. Time off Work . 
.. Sickness . 
.. Block Sickness (Several Days) 
.. Leave . 
.. Block Leave (Several Days) 
.. Public Holidays . 
.. Required Work Hours . 
.. Importing Files . 



 What is TimeFlies About?

Do you want to account for the time you spend at work? What project or work
package have you been working on? Do you want to keep track of the hours you
work? How much leave have you got le for this year?

Do you keep a daily work journal containing things you did, problems you
solved, some kind of to do list?

Do you want to make an estimate of effort for a project or work package?
Would you like to break down those things into smaller items and possibly break
down those again too?

TimeFlies can help you with this – and this is how: you keep a journal of what
you do using TimeFlies’ hopefully not too overbearing markup syntax. TimeFlies
can later distill from your journal files what you did when, howmuch you worked
and on which projects.

TimeFlies assumes you can tell what you are doing on a daily basis and it
relies on you entering sound data for what you do during the day. It offers a
light weight syntax for this. It does not, however, have fine grained time keeping
functionality such as stop watch like features some other time keepers have. In
that sense TimeFlies is targeted at a slightly higher level of time tracking. Maybe
call it macro level time tracking instead of micro level time tracking?

 Tutorial by Example

In this section we will look at a number of use cases. All TimeFlies data is kept in
plain text files. So all your data is always easily accessible to you and the format
itself is quite human-readable. Moreover it can easily be version controlled.

. Recording Time

To record your work time keep a work log file with day lines specifying the dates
and in and out times telling when you arrived at work and when you le. e
times can be given in decimals or in hours and minutes:

 day 2012-09-19 8:30 17:15
 day 2012-09-18 8.75 17.75
 day 2012-09-17 8 18

Do you need to account for breaks you are taking? Use off instructions to
state periods of time in a day ofwork duringwhich youwere not actuallyworking:

 day 2012-09-19 8.5 17.25, off 0.5
 day 2012-09-18 8.75 17.75, off 0.75
 day 2012-09-17 8 18, off 0.5, off 0.25



is last file is equivalent to the following:
 day 2012-09-19 8.5 17.25
 off 0.5
 day 2012-09-18 8.75 17.75
 off 0.75
 day 2012-09-17 8 18
 off 0.5
 off 0.25

Above example illustrates the notion of a day-block: a day-block extends from
one day-keyword to the next and everything inside this day block is part of that
day.

e days in the file do not need to be listed chronologically. You could e.g. list
the days in reverse order so that the present is always at the top of the file.

If you want to mask out part of your log temporarily you can use the # source
comment marker. TimeFlies ignores the # and everything following it until the end
of line. It works just the same as e.g. a Python comment.

 day 2012-09-19 8.5 17.25
 off 0.5

 # day 2012-09-18 8.75 17.75
 # off 0.75

 day 2012-09-17 8 18
 off 0.5
 off 0.25

. Keeping Notes in the Log

Do you want to keep notes about your work in the same place as you keep the
time information? Use log comment lines like in this file:

 day 2012-09-19 8.5 17.25
 ; updated regression tests
 off 0.5
 ; fixed build scripts

 day 2012-09-18 8.75 17.75
 ; wrote unit test to reproduce problem report 2012-0098
 ; fixed problem report 2012-0098
 off 0.75

 ; added HTML output option to object dumper
 ; discussed implications of Java 1.7 rollout

 day 2012-09-17 8 18
 ; weekly team meeting
 off 0.5
 ; monthly quality task force
 off 0.25
 ; code review: server side includes



A log comment line starts with a semicolon and one or more space charac-
ters. All text following these characters until the end of the line (or until a #
source comment marker) with trailing spaces removed constitute the recorded
log comment.

Nowwhat can you do with such a file? Assume the above work log file’s name
is work-log.fly, then option -t tells TimeFlies to calculate your work times.

 > timeflies -t work-log.fly
 Time at work overview (all):
 when worked leave sick balance
 2012-09-17 Mon: 9.25 ----.-- ----.-- 1.25
 2012-09-18 Tue: 8.25 ----.-- ----.-- 0.25
 2012-09-19 Wed: 8.25 ----.-- ----.-- 0.25
 week 2012-38: 25.75 ----.-- ----.-- 1.75
 month 2012-09: 25.75 ----.-- ----.-- 1.75
 total: 25.75 ----.-- ----.-- 1.75

 when worked leave sick balance

To include the log comments in this output, use the -C option:

 > timeflies -t -C work-log.fly
 Time at work overview (all):
 when worked leave sick balance
 2012-09-17 Mon: 9.25 ----.-- ----.-- 1.25
 ; weekly team meeting
 ; monthly quality task force
 ; code review: server side includes
 2012-09-18 Tue: 8.25 ----.-- ----.-- 0.25
 ; wrote unit test to reproduce problem report 2012-0098

 ; fixed problem report 2012-0098
 ; added HTML output option to object dumper
 ; discussed implications of Java 1.7 rollout
 2012-09-19 Wed: 8.25 ----.-- ----.-- 0.25
 ; updated regression tests
 ; fixed build scripts
 week 2012-38: 25.75 ----.-- ----.-- 1.75
 month 2012-09: 25.75 ----.-- ----.-- 1.75
 total: 25.75 ----.-- ----.-- 1.75
 when worked leave sick balance

. Time Summaries

Here’s a longer example where you can see the use of weekly and montly sum-
maries. Also a few days of annual leave and sickness are inserted using the leave-
days and sick instructions.

 day 2012-08-23 8.5 17.25, off 0.5
 day 2012-08-24 8.75 17.75, off 0.75
 day 2012-08-27 8.5 17.25, off 0.5
 day 2012-08-28 8.75 17.75, off 0.75
 day 2012-08-29 8 18, off 0.5, off 0.25



 leave-days 2012-08-30 2012-09-04; Hiking
 day 2012-09-05 8.75 17.75, off 0.75
 day 2012-09-06 8 18, off 0.5, off 0.25
 day 2012-09-07 8.5 17.25, off 0.5

 day 2012-09-10 8.75 17.75, off 0.75
 day 2012-09-11, sick 8; Broken arm
 day 2012-09-12, sick 8; Broken leg
 day 2012-09-13 8.5 17.25, off 0.5
 day 2012-09-14 8 18, off 0.5, off 0.25
 day 2012-09-17 8 18, off 0.5, off 0.25
 day 2012-09-18 8.5 17.25, off 0.5

Use option -f week to get an overview of weekly work time balances.

 > timeflies -t -f week work-log.fly
 Time at work overview (week):
 when worked leave sick balance
 week 2012-34: 16.50 ----.-- ----.-- 0.50
 week 2012-35: 25.75 16.00 ----.-- 1.75
 week 2012-36: 25.75 16.00 ----.-- 1.75
 week 2012-37: 25.75 ----.-- 16.00 1.75
 week 2012-38: 17.50 ----.-- ----.-- 1.50
 total: 111.25 32.00 16.00 7.25

 when worked leave sick balance

Or have both weekly and monthly balances shown.

 > timeflies -t -f week,month work-log.fly
 Time at work overview (week, month):
 when worked leave sick balance
 week 2012-34: 16.50 ----.-- ----.-- 0.50
 month 2012-08: 42.25 16.00 ----.-- 2.25
 week 2012-35: 25.75 16.00 ----.-- 1.75
 week 2012-36: 25.75 16.00 ----.-- 1.75
 week 2012-37: 25.75 ----.-- 16.00 1.75
 week 2012-38: 17.50 ----.-- ----.-- 1.50

 month 2012-09: 69.00 16.00 16.00 5.00
 total: 111.25 32.00 16.00 7.25
 when worked leave sick balance

Maybe you only want to look at one month with daily details? Note the com-
ments that have been associated with the leave and the sick days in the input file
show up in the respective daily output lines.

 > timeflies -t -f 2012-09 work-log.fly
 Time at work overview (2012-09):
 when worked leave sick balance
 week 2012-35: ----.-- ----.-- ----.-- ----.--
 2012-09-03 Mon: ----.-- 8.00 ----.-- ----.-- Hiking
 2012-09-04 Tue: ----.-- 8.00 ----.-- ----.-- Hiking
 2012-09-05 Wed: 8.25 ----.-- ----.-- 0.25
 2012-09-06 Thu: 9.25 ----.-- ----.-- 1.25
 2012-09-07 Fri: 8.25 ----.-- ----.-- 0.25



 week 2012-36: 25.75 16.00 ----.-- 1.75
 2012-09-10 Mon: 8.25 ----.-- ----.-- 0.25
 2012-09-11 Tue: ----.-- ----.-- 8.00 ----.-- Broken arm
 2012-09-12 Wed: ----.-- ----.-- 8.00 ----.-- Broken leg
 2012-09-13 Thu: 8.25 ----.-- ----.-- 0.25
 2012-09-14 Fri: 9.25 ----.-- ----.-- 1.25
 week 2012-37: 25.75 ----.-- 16.00 1.75
 2012-09-17 Mon: 9.25 ----.-- ----.-- 1.25
 2012-09-18 Tue: 8.25 ----.-- ----.-- 0.25
 week 2012-38: 17.50 ----.-- ----.-- 1.50
 month 2012-09: 69.00 16.00 16.00 5.00
 total: 69.00 16.00 16.00 5.00
 when worked leave sick balance

You only need weekly totals in that one month?

 > timeflies -t -f week,2012-09 work-log.fly
 Time at work overview (week, 2012-09):
 when worked leave sick balance
 week 2012-35: ----.-- ----.-- ----.-- ----.--
 week 2012-36: 25.75 16.00 ----.-- 1.75
 week 2012-37: 25.75 ----.-- 16.00 1.75
 week 2012-38: 17.50 ----.-- ----.-- 1.50
 total: 69.00 16.00 16.00 5.00
 when worked leave sick balance

. Logging Activities

Log comments are a good way to keep track of things you don’t want to forget
and have accessible and also aligned with your work time line. Log comments
have no work effort assigned to them, though. So you cannot use them in any
way for calculations of effort spent.

You use work packages and activities to connect the time you work with the
work packages you work on: first, you define your work packages, then you use
activity lines in the day blocks instead of log comment lines.

A work package definition is a line starting with the keyword work-package
(or its abbreviation wp) followed by a work package name.

An activity line starts with a single dash character - followed by one or more
spaces. is is followed by a work package id and a duration. is is optionally
followed by a semicolon and some activity comment.

See below the converted example work log file.

 wp regression-tests
 wp meetings
 wp quality-task-force
 wp problem-reports
 wp development
 wp other




 day 2012-09-19 8.5 17.25
 - regression-tests 4; updated

 off 0.5
 - other 3.5; fixed build scripts

 day 2012-09-18 8.75 17.75
 - problem-reports 2; wrote unit test to reproduce problem report 2012-0098
 - problem-reports 2.5; fixed problem report 2012-0098
 off 0.75
 - development 3; added HTML output option to object dumper
 - other 1; discussed implications of Java 1.7 rollout

 day 2012-09-17 8 18
 - meetings 2.0; weekly team meeting
 off 0.5
 - quality-task-force 6
 off 0.25
 - other 1.25; code review: server side includes

Option -w tells TimeFlies to calculate the times you have been working on the
different work packages:

 > timeflies -w work-log.fly
 Work package summary (all):
 25.25 : ALL
 4.00 : regression-tests
 2.00 : meetings
 6.00 : quality-task-force
 4.50 : problem-reports
 3.00 : development
 5.75 : other

To also show the activities contributing to the different work packages, use
option -a:

 > timeflies -w -a work-log.fly
 Work package summary (all):
 25.25 : ALL
 4.00 : regression-tests
 - 2012-09-19 4.0; updated
 2.00 : meetings
 - 2012-09-17 2.0; weekly team meeting
 6.00 : quality-task-force
 - 2012-09-17 6.0

 4.50 : problem-reports
 - 2012-09-18 2.0; wrote unit test to reproduce problem report 2012-0098
 - 2012-09-18 2.5; fixed problem report 2012-0098
 3.00 : development
 - 2012-09-18 3.0; added HTML output option to object dumper
 5.75 : other
 - 2012-09-17 1.25; code review: server side includes
 - 2012-09-18 1.0; discussed implications of Java 1.7 rollout
 - 2012-09-19 3.5; fixed build scripts



To check whether you have allocated all your working time to work packages,
use option -c:

 > timeflies -c work-log.fly
 Day check (all):
 2012-09-18 Tue: worked 8.25, allocated 8.50, delta 0.25
 2012-09-19 Wed: worked 8.25, allocated 7.50, delta -0.75
 2 problems detected.

is shows that on two days the time at work and the time worked on work
packages are differing.

. Work Paage Breakdown

In the previous section, work packages have been defined as simple, atomic, named
items. A work package can be subdivided and refined hierarchically. See the fol-
lowing example.

 wp md; MightyDigester: digests inputs of all sorts
 in; read supported input formats
 xml
 json
 dottxt; dotted text format
 binary
 proc; processing modules
 stats; processing statistics
 phase-1; rough break-down

 phase-2; particle recombination
 phase-3; regrouping and amalgamation
 out; write supported output formats
 xml
 json
 text
 binary
 mmi
 gui
 cmdline

e items in this work package hierarchy can be referred to in activity lines
as dot-delimited work package path names.

Following, a piece of work log for the above project.

 day 2012-07-01 8 17, off 1
 - md.in.xml 4; updated to new XSD
 - md.out.xml 3; updated to new XSD
 - md.mmi.cmdline 1; XML options
 day 2012-07-02 8 17, off 1
 - md.in.json 5; first minimal implementation
 - md.proc.stats 1.5; line counting
 - md.mmi.cmdline 1.5; statistics options
 day 2012-07-03 8 17, off 1



 - md.in.xml 4; adapted includes
 - md.out.xml 3; normalised host node structure
 - md.out.text 0.5; don’t use TAB any more
 - md.mmi.cmdline 0.5; text and xml options

Assume file prj-mighty-digester.fly contains the work package defintions
and the work log itself is kept in work-log.fly. e work package summary can
be calculated with option -w (which was also used in the previous example).

 > timeflies -w prj-mighty-digester.fly work-log.fly
 Work package summary (all):
 24.00 : ALL
 24.00 : md; MightyDigester: digests inputs of all sorts
 13.00 : in; read supported input formats
 8.00 : xml
 5.00 : json
 1.50 : proc; processing modules
 1.50 : stats; processing statistics

 6.50 : out; write supported output formats
 6.00 : xml
 0.50 : text
 3.00 : mmi
 3.00 : cmdline

And here the same with activities shown.

 > timeflies -w -a prj-mighty-digester.fly work-log.fly
 Work package summary (all):
 24.00 : ALL
 24.00 : md; MightyDigester: digests inputs of all sorts
 13.00 : in; read supported input formats
 8.00 : xml
 - 2012-07-01 4.0; updated to new XSD
 - 2012-07-03 4.0; adapted includes
 5.00 : json

 - 2012-07-02 5.0; first minimal implementation
 1.50 : proc; processing modules
 1.50 : stats; processing statistics
 - 2012-07-02 1.5; line counting
 6.50 : out; write supported output formats
 6.00 : xml
 - 2012-07-01 3.0; updated to new XSD
 - 2012-07-03 3.0; normalised host node structure
 0.50 : text
 - 2012-07-03 0.5; don’t use TAB any more
 3.00 : mmi
 3.00 : cmdline
 - 2012-07-01 1.0; XML options
 - 2012-07-02 1.5; statistics options
 - 2012-07-03 0.5; text and xml options



 Reference

. Command Line Syntax

is section explains all of TimeFlies’ command line options and arguments. Dif-
ferent combinations of these allow you to run consistency checks on the given
input files or to generate the output reports from them.

.. Show Work Paages

…

.. Calculate Work Paages

…

.. Tally Days

…

.. Che Days

Use command line option -c or --check to check the plausibility of the entered
work log data for each day in the input. e check will flag the following prob-
lems:

Activities vs. Work Time If you use work packages and activities to break down
your daily work, for each day the sum of all your activities will be compared to
your given time at work. ere should be no difference.

Leave and SiTimes vs. RequiredWork Time If you have declaredmore leave
or sick time for a day than the required working hours of that day, this will be
flagged.

.. Filters

Filters are used with TimeFlies to restrict the processing or output generation. e
command line option for filters is -f or --filterMultiple filters can be combined
in form of a comma separated list.

Examples:
 > timeflies -c -f 2012-08 work-log.fly # check August 2012
 > timeflies -t -f 2012-08,week work-log.fly # tally days for August 2012
 # with weekly summaries



Time Filters Without any time filter, all given input is processed.
To limit processing to certain time periods, use a time filter. Amonth filter is of

the form <YYYY>-<MM> and limits processing to the specified month. A time range
filter is of the form <YYYY>-<MM>-<DD>..<YYYY>-<MM>-<DD> and limits processing
to the given time range. e time range extends from the beginning of the first
given day to the end of the last given day.

Summary Filters Time at work overviews generated using the -t (or --tally-
days) option can include daily, weekly and monthly summary records. If no sum-
mary filter keyword is given, then all three are assumed per default.

Use a summary filter of day, week or month (or any combination) to reduce the
generated output. If at least one of those summary filters is given, TimeFlies will
only generate output for the given filter or filters.

Examples:

 > timeflies -t -f 2012-08,week work-log.fly # tally days for August 2012
 # with weekly summaries
 > timeflies -t -f week,month work-log.fly # tally days for all input with
 # weekly and monthly summaries

.. Output Indentation

When generating output of work package hierarchies per default each hierarchy
level is indented by  space characters. To change that indentation use option
-i <num> or --indent <num>.

. File Syntax

is section describs the TimeFlies input file syntax and explains of the associated
semantics.

.. Source Comments and Persistent Comments

TimeFlies knows two kinds of comments: source comments and persistent com-
ments.

Source Comments ese are marked by a hash sign (#) and extend from it to
the end of the line. TimeFlies ignores these comments and treats them as if they
did not exist.



Persistent Comments ese are marked by a semicolon (;) and extend to the
end of the line (or a possibly following source comment in that line). A persistent
comment is processed and will show up in the generated output. E.g. comments
on leave or sick days will show up in the time at work output summaries. Com-
ments on activities or work packages can show up in the work package outputs.

.. Time and Date Formats

Times and time durations can generally be given in [h]h:mm format or in decimals.
Examples would be 8:30 or 8.5. Times use the -h-system. So : p.m. would
therefore have to be wrien as either 17:15 or 17.25.

Dates must generally be wrien in yyyy-mm-dd format.

.. Work Paages

Syntax: work-package <wpid> [; <comment>]. e keyword work-package can
be abbreviated as wp.

e fully qualified work package id wpid is a dot-delimited sequence of simple
work package ids (tokens consisting of alphanumeric characters). It resembles a
path from the root of the work package hierarchy. In an compound id a.b the id b
appearing directly to the right of ameans that work package b is an immediate sub
work package of a. Work package hierarchies can therefore be given as sequences
of work package definitions.

Alternatively (and more concise) a work package hierarchy can be given as
hierarchically indented text (similar to Python indentation rules). In this case full
work package ids are not necessary and simple ones suffice.

Illustrating this, the follwing example:

 wp pro; project of some sort
 wp pro.aaa; part aaa
 wp pro.bbb; part bbb
 wp pro.bbb.xxx; detail xxx
 wp pro.bbb.yyy; detail yyy
 wp pro.ccc; part ccc

is equivalent to:

 wp pro; project of some sort
 aaa; part aaa
 bbb; part bbb
 xxx; detail xxx
 yyy; detail yyy
 ccc; part ccc



is concise form of work package definition can also be applied partially. So
the following is another form, equivalent to the above two:

 wp pro; project of some sort
 aaa; part aaa
 bbb; part bbb
 ccc; part ccc
 wp pro.bbb
 xxx; detail xxx
 yyy; detail yyy

When defining a work package hierarchy using indentation, you must take
care to not mix tab and space characters. I recommend using space characters
exclusively. ey are displayed the same way, no maer what tool you use to edit
or view your files. If you really cannot stop yourself, TimeFlies will let you use tab
characters. Never mix tabs and spaces, however, TimeFlies will not accept this.

To illustrate this tab/space subject maer, the following examples show these
normally non-printable characters.

. A good example, exclusively using space characters:

 wp␣pro
 ␣␣␣␣aaa
 ␣␣␣␣bbb
 ␣␣␣␣␣␣␣␣xxx
 ␣␣␣␣␣␣␣␣yyy
 ␣␣␣␣ccc

. An acceptable example, exclusively using tab characters:

 wp␣pro
 −⟩|aaa
 −⟩|bbb
 −⟩| −⟩|xxx
 −⟩| −⟩|yyy
 −⟩|ccc

. A mildly annoying example where the first work package hierarchy uses
spaces and the second one uses tabs:

 wp␣pro1
 ␣␣␣␣sub1
 ␣␣␣␣sub2
 ␣␣␣␣␣␣␣␣sub2a
 ␣␣␣␣␣␣␣␣sub2b
 ␣␣␣␣sub3

 wp␣pro2
 −⟩|aaa



 −⟩|bbb
 −⟩| −⟩|xxx
 −⟩| −⟩|yyy
 −⟩|ccc

. A bad example, rejected by TimeFlies. In line  both spaces and a tab char-
acter are used:

 wp␣pro
 ␣␣␣␣aaa
 ␣␣␣␣bbb
 ␣␣␣␣ −⟩|xxx
 ␣␣␣␣␣␣␣␣yyy
 ␣␣␣␣ccc


is is what TimeFlies has to say about it:

 > timeflies bad-wp-def.fly
 bad-wp-def.fly:4: ERROR : indentation contains both spaces and tabs
 1 error.

. Another bad example that TimeFlies will reject. Lines  through to  are
indented with spaces, line  and  use tabs:

 wp␣pro
 ␣␣␣␣aaa
 ␣␣␣␣bbb
 ␣␣␣␣␣␣␣␣xxx
 −⟩| −⟩|yyy
 −⟩|ccc


And TimeFlies says:

 > timeflies bad-wp-def.fly
 bad-wp-def.fly:5: ERROR : work package indentation error
 bad-wp-def.fly:6: ERROR : work package indentation error
 2 errors.

.. Day blos

Syntax: day <date> [<in> <out>]
A day block starts with a the keyword day followed by the day’s date and

optionally the arrival and leaving times at work which, when given, define the
day’s working period. Either both times must be given or none at all. If they are
not given, no time at work is assumed for that day. is is used e.g. for leave days
or sick days. A day block ends at the next day keyword, i.e. at the beginning of a
new day block.



.. Activities

Syntax: - <wpid> <time> [; <comment>]
An activity is a period of time spent working on a work package. An activity

must appear in a day block. e work package id <wpid> must be a valid fully
qualified work package id, i.e. a matching work package must have been defined
before.

An activity can only appear in a day block.

.. Time off Work

Syntax: off <time> [; <comment>]
Declare times off work in a day block, yet inside the time span of that day.
An off statement can only appear in a day block.

.. Siness

Syntax: sick [<time>] [; <comment>]
Declare sick time for a day, yet outside the day’s working period. If <time> is

not given, then the day’s required working time is assumed, i.e. a full day of sick
leave.

A sick statement can only appear in a day block.

.. Blo Siness (Several Days)

Syntax: sick-days <first> <last> [; <comment>]
is is a short form to define an extended period of sickness, i.e. several days.

e sickness period starts on day <first> and ends on (and includes) day <last>.

.. Leave

Syntax: leave [<time>] [; <comment>]
Declare leave for a day, yet outside the day’s working period. Use this for

leave periods in order of hours. If <time> is not given, then the day’s required
working time is assumed, i.e. a full day of leave.

A leave statement can only appear in a day block.

.. Blo Leave (Several Days)

Syntax: leave-days <first> <last> [; <comment>]
is is a short form to define an extended period of leave, i.e. several days.

e leave period starts on day <first> and ends on (and includes) day <last>.



.. Public Holidays

Syntax: public-holiday [; <comment>]. e keyword public-holiday can be
abbreviated as phol.

e current day is marked as a public holiday, i.e. a day where the required
time at work is null.

A public-holiday statement can only appear in a day block.

.. Required Work Hours

Syntax: must-hours ((<day>|<start>..<end>)=<hours>)*where <day>, <start>
and <end>, must one of mon, tue, wed, thu, fri, sat or sun.

is lets you define the times you need to work on the different days of the
week. A working time arrangement consists of the hours of work for all days of a
week. For one single working time arrangement, all hours have to be given in one
single must-hours statement. Day ranges using the <start>..<end>=<hours>
notation and single day specifications using the <day>=<hours> notation can be
freely combined.

If a day is not covered in a must-hours statement, the hours for that day are
assumed to be . us, an empty must-hours statement (not containing any day
range or single day item) is perfectly valid. is could e.g. be used to declare a
period of sabbatical.

To change the working time arrangements (e.g. to reflect going from full time
to % or back), you use multiple must-hours statements.

e first following example defines a standard  hour working week (which
is the default arrangement, also assumed for any day block with no applicable
must-hours):

 must-hours mon..fri=8.0

is example defines an % working time week with Mondays off:
 must-hours tue=8.0 wed=8.0 thu=8.0 fri=8.0

Or you work ursdays and Fridays only half days:
 must-hours mon..wed=8.0 thu..fri=4.0

e last example shows multiple changes in working time arrangement:
 day 2012-01-01
 must-hours tue..fri=8.0

 # ...

 day 2012-06-01



 must-hours mon=8.0 tue=8.0 wed=8.0 thu=4.0 fri=4.0

 # ...


 day 2012-09-01
 must-hours mon=8.0 tue=8.0 wed=8.0 thu=8.0 fri=8.0

 # ...

If a must-hours statement appears inside a day block, the given working times
are applicable from the date of that day block onwards until one day prior to the
date of the chronologically next day block with a must-hours statement. at
must-hours statement will be applicable from then onwards.

If a must-hours statement appears outside a day block (before the very first
day block in the input), then the given working times are applicable until one day
prior to the chronologically first day block with a must-hours statement. at
must-hours statement will be applicable from then onwards.

In above explanation of applicability the word chronologically is very impor-
tant because day blocks in TimeFlies do not need to appear in chronological order
in the input. e applicability of the must-hours statements is determined by the
chronological order, though, which is not necessarily in the same order as the
statements’ order of appearance in the input file(s).

.. Importing Files

Syntax: import <file>.
e named file is imported. is means the file’s content is processed in the

same way as if it had appeared in the importing file instead of the import state-
ment.

is allows you to e.g. split your daily logs by month, separate work package
definitions from daily logs or share work package definitions amongst a group of
users while keeping daily logs private.

One single work package definition (a single work-package statement in ab-
breviated hierarchical form using white space indentation) cannot be broken up
across input file boundaries. To combine a work package hierarchy from multi-
ple input files each input file must contain at least one complete work-package
statement each.

Invalid example:

 # File 1: looks good
 wp pro; project of some sort
 aaa; part aaa
 bbb; part bbb



 # File 2; bad, does not start with a work-package statement
 xxx; detail xxx
 yyy; detail yyy
 ccc; part ccc

Correct form:

 # File 1: same as in above example
 wp pro; project of some sort
 aaa; part aaa
 bbb; part bbb

 # File 2: correct, starts with a work-package statement
 wp pro
 bbb
 xxx; detail xxx
 yyy; detail yyy
 ccc; part ccc



