
Java CoG Kit User Manual
Version 4.0-pre-alpha

MCS Technical Memorandum ANL/MCS-TM-259

Revision Apr. 7, 2004

The Java CoG Kit Team∗

Argonne National Laboratory
Mathematics and Computer Science Division

9700 S. Cass Ave.
Argonne, IL 60439

∗ Corresponding Editor
(630) 252 0472

gregor@mcs.anl.gov

Location of Manual:

http://www.globus.org/cog/manual-cog2.pdf

Be kind to your environment and
do not print

this frequently changing manual.

(c) Argonne National Laboratory. All rights reserved.

July 20, 2004

gregor@mcs.anl.gov
http://www.globus.org/cog/manual-cog2.pdf

Contents

0.1 Revisions . 7

1 Preface 8

1.1 Participation Opportunities. 8

1.2 Grids . 9

1.3 Intended Audience. 9

1.4 Resources. 10

1.4.1 Project Website. 10

1.4.2 Bug Reporting . 10

1.4.3 Mailing Lists . 11

1.4.4 Sourcecode Repository. 12

1.5 About the Manual. 12

1.5.1 Conventions . 12

1.6 Manual Maintainer . 13

1.7 Contributors. 14

1.8 Administrative Contact. 14

1.9 Acknowledgments . 14

2 License 15

2.1 Project Registration. 15

2.2 Globus Toolkit . 17

2.2.1 Globus Toolkit Public License (GTPL). 17

2.2.2 Globus Toolkit Contributor Liceense. 19

2.3 Java CoG Kit . 21

2.3.1 Java CoG Kit Public License (JCoGPL). 21

2.3.2 Java CoG Kit Contributor Liceense. 23

2.4 Other Licences. 25

2.4.1 jglobus . 25

2.4.2 ogce. 25

2.4.3 Others. 25

2.5 GNU Public Licence . 25

1

3 Introduction 26

3.1 Overview . 26

3.2 History . 26

3.2.1 Metacomputing. 26

3.2.2 CoG Kits . 26

4 Installation 27

4.1 Download . 27

4.2 CVS Release Tags. 27

4.3 Downloading the Java CoG Kit version 4. 27

4.4 Compiling the Java CoG Kit version 4. 27

4.5 Compiling the Complete Distribution. 28

4.6 Compiling Individual Modules. 28

4.7 Using the Java CoG Kit version 4. 28

4.8 Downloading JGlobus. 28

4.9 Compiling JGlobus. 29

4.10 Using JGlobus. 29

4.11 Downloading OGCE. 29

4.12 Compiling OGCE. 29

4.13 Using OGCE . 30

5 Contributing 31

5.1 Creating a Module . 31

5.1.1 Build Files . 31

5.1.2 Libraries . 31

5.1.3 Source . 32

5.1.4 Using PMD. 32

5.1.5 Documenting the Modules. 32

5.1.6 Maintaining a Module. 32

5.1.7 Launchers. 32

5.1.8 Webstart . 32

5.2 Coding Guidelines for the Java CoG Kit. 32

5.2.1 Imports . 32

5.2.2 Indentation. 32

5.2.3 Brackets. 32

2

5.2.4 Variables . 32

5.2.5 Instance Variables. 33

5.3 One-Liners . 33

5.3.1 Logging. 33

5.3.2 Testing . 33

5.3.3 Internationalization. 33

5.3.4 Library Reuse. 33

5.3.5 Exceptions . 33

6 Modules 34

6.1 util . 34

6.2 certrequest. 34

7 Core 35

7.1 Introduction. 35

7.2 Installation . 35

7.2.1 Download. 35

7.2.2 Compile. 36

7.2.3 Configuration. 36

7.2.4 Examples. 36

7.3 Design. 37

7.3.1 ExecutableObject. 38

7.3.2 Task. 38

7.3.3 Specification. 39

7.3.4 TaskGraph . 42

7.3.5 Status. 43

7.3.6 Handlers . 44

7.3.7 GridResource. 46

7.3.8 ExecutionResource. 47

7.3.9 FileResource. 48

7.4 Programmer’s Guide. 51

7.4.1 Executing a Remote Job Execution Task. 51

7.4.2 Executing a Third-Party File Transfer task. 54

7.4.3 Executing a Simple TaskGraph (DAG). 56

7.4.4 Executing a Hierarchical TaskGraph. 58

3

7.4.5 Writing a Custom TaskHandler. 59

7.4.6 Executing Tasks on an ExecutionResource. 60

8 GridAnt 63

8.1 Introduction. 63

8.2 Installation . 64

8.2.1 Download. 64

8.2.2 Compile. 64

8.2.3 Configuration. 64

8.3 GridAnt Tasks. 65

8.3.1 cog-setup. 65

8.3.2 grid-authenticate. 65

8.3.3 grid-execute. 65

8.3.4 grid-copy . 66

8.4 Workflow Example . 67

9 Karajan 69

9.1 Installation . 69

9.1.1 Obtaining the Source Code. 69

9.1.2 Compiling Karajan. 69

9.2 Using Karajan. 70

9.2.1 Command Line Interface. 70

9.2.2 Graphical Interface. 70

9.3 Language Specification. 72

9.3.1 Concepts. 72

9.3.2 Parallelism . 76

9.3.3 Iterators. 77

9.3.4 Conditional execution. 78

9.3.5 Arguments . 79

9.3.6 Templates. 80

9.3.7 In-line elements. 81

9.3.8 Recursion. 82

9.3.9 Grid-related Elements. 83

9.3.10 Explicit Error Handling. 85

9.3.11 Java Elements. 86

4

9.3.12 Arithmetic elements. 86

9.3.13 Boolean elements. 86

9.3.14 List elements. 87

9.3.15 Miscellaneous Elements. 87

9.4 Supported Handlers. 88

9.5 Include Search Path. 89

9.6 Architecture. 90

9.6.1 The Loading Process. 90

9.6.2 The Execution Model. 90

9.6.3 Task Scheduling. 93

9.7 Checkpointing. 93

9.7.1 Checkpoint Creation. 93

9.7.2 Restoring from a Checkpoint. 94

9.8 Quick Element Reference. 95

9.8.1 allocateHost. 95

9.8.2 and . 95

9.8.3 argument. 95

9.8.4 checkpoint . 95

9.8.5 contains. 95

9.8.6 default . 96

9.8.7 echo. 96

9.8.8 element. 96

9.8.9 elementDef. 96

9.8.10 else . 96

9.8.11 elseif . 96

9.8.12 equals. 97

9.8.13 executeJava. 97

9.8.14 for. 97

9.8.15 foreach . 97

9.8.16 generateError. 97

9.8.17 grid . 98

9.8.18 gridExecute. 98

9.8.19 gridTransfer. 98

9.8.20 host. 98

9.8.21 if . 98

5

9.8.22 ignoreErrors . 99

9.8.23 include . 99

9.8.24 invokeJavaMethod. 99

9.8.25 list:append . 99

9.8.26 list:prepend. 99

9.8.27 list:size . 99

9.8.28 math:equals. 99

9.8.29 math:ge. .100

9.8.30 math:gt .100

9.8.31 math:le .100

9.8.32 math:lt .100

9.8.33 math:product. 100

9.8.34 math:quotient. 100

9.8.35 math:remainder. 101

9.8.36 math:sqrt. .101

9.8.37 math:square. .101

9.8.38 math:subtraction. 101

9.8.39 math:sum. .101

9.8.40 newJavaObject. 101

9.8.41 nonCheckpointable. 101

9.8.42 not .102

9.8.43 numberFormat. 102

9.8.44 or .102

9.8.45 parallel .102

9.8.46 project .102

9.8.47 readFile. .102

9.8.48 restartOnError. 102

9.8.49 scheduler. .103

9.8.50 service .103

9.8.51 securityContext. 103

9.8.52 securityContextProperty. 103

9.8.53 sequential. .103

9.8.54 setvar. .103

9.8.55 taskHandler. .104

9.8.56 template. .104

6

9.8.57 templateDef. .104

9.8.58 then. .104

9.8.59 UID .104

9.8.60 wait .104

10 Graph Editor 105

10.1 Configuring .105

10.2 Running. .105

10.3 Using The Graph Editor. 105

10.3.1 The Swing Target. 106

10.3.2 The HTML Target . 107

10.3.3 The PostScript Target. 108

10.3.4 The Remote Target. 108

10.4 Graph file format .109

10.5 API .110

10.6 Scalability. .112

11 Testing Framework 113

11.1 Structure. .113

11.2 Using the Testing Framework. 113

11.2.1 Configuring the Driver Script. 113

11.2.2 The Host List Format. 114

12 Command Tools 115

13 grid-cert-request 116

0.1 Revisions

• 04/05/2004 Added the GridAnt Chapter. Removed the QoS, and the portals
section from the make process. They need to be cleaned.

• 01/14/2003 Improved the Karajan and graph editor chapters

• 07/18/2003 Added the QoS descriptions

• 03/14/2003 Released the first version of the manual documenting the work-
flow

7

1 Preface

This manual contains a number of high-level modules of the Java CoG Kit that are
not distributed as part of the Globus Toolkit version 2, 3, or 4. We believe these
components are valuable add-on components to any Grid Toolkit. The popularity
of the Java CoG Kit has lead to the fact that it is now distributed in part with
the Globus Toolkit. Often users of the Globus Toolkit, do not know that they use
components contributed by the Java CoG Kit.

We hope that you will find the components described in this manual help you
making use of the Grid more easily.

The Java CoG Kit is a very open project, and invites participation by others. Thus,
we have started to involve the community more strongly into the development of
the Java CoG Kit. If you have components that you like to contribute to the Java
CoG Kit, please notify us.

If you like to participate in the development of the Java CoG Kit, I recommend that
you contact us through a simple e-mail as described in Section1.1.

1.1 Participation Opportunities

To participate, please send a mail with your intend and abilities to

Gregor@mcs.anl.gov : .

Please, follow the simple subject mail syntax rule

“APPLICATION CV: <Firstname><Lastname>”,

where CV is an abbreviation for community volunteer. All mail not following this
rule will be caught by a spam filter and automatically deleted.

We have a variety of open projects that could provide ideal opportunities to get
engaged in furthering the development of Grid computing. Some of these projects
could also be given for credit as independent studies, or lead to a Masters Thesis
project. If you decide to integrate them in your curriculum it is best to develop an
agreement between the Java CoG Kit project, your advisor, and yourself. We con-
ducted such activities with volunteers from Canada, UK, Switzerland, and several
local and remote students and professionals in the US.

Doe to the nature of volunteering, these applications are usually less formal than
real applications, but we must know your affiliation, your address and citizenship.
To volunteer, you ought to be committed. It is of no help to us if you volunteer one
week and than you drop the project in the next week.

If you apply for community volunteer positions make sure you provide us with
evidence that you can conduct the project you or we suggest.

Community volunteer projects are a good start for a paid internship or job opportu-
nities. Other paid opportunities for undergraduate and graduate appointments are
updated regularly on the Web page. Often it is a good idea to have your advisor

8

.

directly talk to us and recommend you over the phone, or in one of the many meet-
ings we participate in. Paid assistantships are in general restricted to US citizens
and permanent residents.

All contributors have to submit a contributor license.

1.2 Grids

Grids are an important development in the discipline of computer science and en-
gineering. Rapid progress is being made on several levels, including the definition
of the terminology, the design of an architecture and framework, the application in
the scientific problem solving process, and the creation of physical instantiations
of Grids on a production level.

A small overview about the Grid can be found in a draft paper entitledGestalt of
the Grid[1]

Article : http://www.mcs.anl.gov/˜gregor/bib/papers/vonLaszewski--gestalt.

pdf

This article provides an overview of important influences, developments, and tech-
nologies that are shaping state-of-the-art Grid computing.

What motivates the Grid approach?
What is a Grid?
What is the architecture of a Grid?
Which Grid research activities are performed?
How do researchers use a Grid?
What will the future bring?

A slightly differnt focus on middleware is presented in a paper entitled “Grid Mid-
dleware” [2]

Article : http://www.mcs.anl.gov/˜gregor/papers/vonLaszewski-gridmiddleware.

pdf

Other CoG Kit related papers can be found at

References von Laszewski :http://www.mcs.anl.gov/˜gregor/bib/

1

1.3 Intended Audience

This manual is intended for the intermediate Grid programmer that would like to
access the Globus Toolkit functionality through Java. We assume that the reader of
this manual is familiar with Java. If not, general information about Java is available
through the Web site at SUN Microsystems or at IBM:

SUN : http://java.sun.com/

IBM : http://www.ibm.com/java/

1 the bib file needs to be updated. Also there is a collection at www.cogkits.org

9

http://www.mcs.anl.gov/~gregor/bib/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/bib/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-gridmiddleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-gridmiddleware.pdf
http://www.mcs.anl.gov/~gregor/bib/
http://java.sun.com/
http://www.ibm.com/java/

In general, this manual serves as a basic introduction to a subset of functionality
provided by the Java CoG Kit. This manual does not explain every package, class,
and method. This manual is intended to show you that the Java CoG Kit provides
an effective way of accessing the Grid through Java.

Developers are encouraged to inspect the JavaDoc documentation.2

We further expect that you are familiar with the Globus Toolkit and have access
to a Globus Toolkit installation. If you do not, the Globus web page provides
information about the details and how to install it.

Globus Toolkit : http://www.globus.org

The Globus Toolkit development us undergoing some significant changes. If you
currently use Globus Toolkit 2.4.x, we do recommend to evaluate a switch to ver-
sion 3.2 carefully. This is in anticipation the Globus Toolkit version 3.2 will be
replaced with Toolkit version 4.x during the year 2004. The Java CoG Kit pro-
vides so far an abstraction that protects the application user from the differences
between these versions.

In case you develop with the Java CoG Kit APIs a switch between versions of the
Globus Toolkit is simplified.

1.4 Resources

We support our efforts through a web site on which you find a bug tracking system,
Mailing lists, and the code repository.

1.4.1 Project Website

Online information about the Java CoG Kit can be found on its home page.

Home page : http://www.globus.org/cog/java/

Here you can find links to the manual, the code, and some basic information about
the project. Besides this page we also maintain a project-related Web page that
reports on the Java and Python Commodity Grid Kits.

Project : http://www.cogkits.org/

1.4.2 Bug Reporting

We are using the Bugzilla system from mozilla.org to track bugs and requests for
enhancements for the Java CoG Kit. Bugzilla provides you with an interface that
guides you on submitting the bug. The link to the bug system is located at

CoG Kit Bugzilla : http://www.globus.org/cog/contact/bugs/

In case you like to report bugs for other components of the Globus Toolkit you can
use the main link at

Globus Toolkit Bugzilla : http://bugzilla.globus.org/globus/

2 we need to make sure that we have in the ant script a publication mechanism of the JavaDoc. We
need to document how we update the web page, and manual. E.g. in the doc directory we say “make
; make publish

10

http://www.globus.org
http://www.globus.org/cog/java/
http://www.cogkits.org/
http://www.globus.org/cog/contact/bugs/
http://bugzilla.globus.org/globus/

To use it you need to first create an account. To report a bug you need to be
precise in your description and include operating system, JVM version, and other
information that can be used to better identify or replicate the condition of your
error. This also includes the version of Globus Toolkit services you use.

1.4.3 Mailing Lists

We have established a number of mailing lists to simplify the communication with
the group of developers and users. Restrictions on the use of the mailing list are
outlined below.

Policy

No Advertisements : We do not allow you to use the mailing lists in any form of advertisement for
your products or services. In response to spam mail on this mailing list, we
have disabled the ability to post messages to this list if you are not subscribed
to it.

Subscription Required : If you send a message to the list and are not subscribed or you use an email
address different from the one you subscribed with, your message will not
be posted to the list, and you will not receive any notification that your mes-
sage wasnot posted. Hence, if you send a message to the list and do not
subsequently see your message on the list or in the list archive, verify that
you are using an email address that is subscribed to the list, and then retry
your posting.

Subscribed Lists : To verify that you are subscribed to the list, send an email message from the
email account you subscribed from tomajordomo@globus.org with
the single word “which” in the body of the message. You will receive in re-
sponse a message listing the lists to which your email address is subscribed.
If this mailing list does not appear in the list you receive, you are probably
subscribed to the list under a different address and you will not be able to
post messages to the list using your current address.

Subscription Center

If you would like to be notified of CoG Kit release updates, visit our convenient
subscription center at

Subscribe : http://www.globus.org/cog/contact/

Other Globus related mailing lists can be found on the Globus web page

Subscribe : http://www.globus.org/about/subscriptions.html

Note that you can use these web pages to unsubscribe from the lists. All mailing
list are maintained with majordomo. However, we did have to disable thewho
function in order to protect the members from spam bots.

News

News about the Java CoG Kit is sent in irregular intervals (the frequency is monthly
to every four month) by means of the following list:

CoG News : cog-news@globus.org

11

majordomo@globus.org
http://www.globus.org/cog/contact/
http://www.globus.org/about/subscriptions.html
cog-news@globus.org

Sorted by Thread: : http://www-unix.globus.org/mail_archive/cog-news/threads.html

Sorted by Date : http://www-unix.globus.org/mail_archive/cog-news/maillist.html

Discussions and Community Developers

Discussions and general questions can be send to the high-volume e-mail list at

Java List : java@globus.org

Sorted by Thread : http://www-unix.globus.org/mail_archive/java/threads.html

Sorted by Date: : http://www-unix.globus.org/mail_archive/java/maillist.html

Note that this list may result in daily mails sent by the Java CoG Kit community.
Please use the bug tracking system for reporting bugs. If you use the bug track-
ing system, your message has a higher chance of being answered. There is no
guarantee that we answer a mail sent to the Java CoG Kit mailing lists.

1.4.4 Sourcecode Repository

We maintain all source code in a CVS repository that can be accessed anony-
mously. You can find more details about this in Section??.

1.5 About the Manual

This manual is constantly being improved and your input is highly appreciated.
Please report suggestion, errors, changes, and new sections or chapters through
our bugzilla system.

When you report bugs, please do not use page, line, or section numbers. Remember
new sections may appear due to community contributions. Instead, please quote
the section title, or make corrections by hand and FAX it to us. Even better, submit
a corrected document, as you can check out the manual through our CVS archive.

1.5.1 Conventions

If you see a?? or a ... in the text there is no reason to send us a report on it.
It simply means that the section to which we refer has not yet been integrated in
this manual. Comments that indicate issues that needs to be don, are included as
footnotes. New text that has not yet been reviewed, may be in a different color.
Regular text is written using the Times font. Code examples are highlighted in
shaded blocks.

i n t a ;
a = 1 + 2 ;

Interactive commands issued by a user in a shell are preceded with a> at the
beginning of the line.

> l s

In case interactive commands exceed the 79 character limit, they are wrapped into
the next line and are not proceeded by the> character. A backslash is included at
the end of such lines to explicitly indicate that the command ins continued on the
next line.

12

http://www-unix.globus.org/mail_archive/cog-news/threads.html
http://www-unix.globus.org/mail_archive/cog-news/maillist.html
java@globus.org
http://www-unix.globus.org/mail_archive/java/threads.html
http://www-unix.globus.org/mail_archive/java/maillist.html

> echo ” Th is i s s very long t e x t t h a t i s c o n t i n u e d on t h e \
nex t l i n e s . The l e a d i n g b l a n k s i n t h e nex t l i n e s \
a r e t o be i g n o r e d”

> echo ” Th is i s a new command”

References to variables or other important text that is part of a program or shell
script is written inCourier . To illustrate this on an example:

Hence, a reference to the variableint a form our previous example
uses also theCourier font.

Generic entities are wrapped between angle brackets. Each such entity is not to be
taken literally. In general, such constructs are explained as they occur throughout
the manual. The use of such entities is shown in the example below:

<machine−name>

Here,<machine-name> is to be replaced with an actual machine name:

> p ing ho t . mcs . a n l . gov

Web links are proceeded by a meaningful name for the link. An example is

Java CoG Kit Website : http://www.globus.org/cog

Links to code source are proceeded by the repository tag. An example is

jglobus : org/globus/gram/Gram.java

1.6 Manual Maintainer

A number of people are currently maintaining the manual.

Part Section Name
Preface 1 Gregor von Laszewski
Introduction Gregor von Laszewski
Licence Gregor von Laszewski
Installation 4 Mike Hategan
Setup ?? Mike Hategan
Contributing 5 Mike Hategan
Modules

jglobus TBD
Util TBD
Certrequest TBD
Resources TBD
Common TBD
Grapheditor 10 Mike Hategan
Karajan 9 Mike Hategan
Core 7 Kaizar Amin
Portlet ?? Mike Hategan
QoS ?? Rashid Al-Ali

Command Tools
Certrequest 13 Gregor von Laszewski

We invite you to contribute to the manual or the code (see1.1).

13

http://www.globus.org/cog
http://www.globus.org/cog/current/jglobus/src/org/globus/gram/Gram.java

1.7 Contributors

Gregor von Laszewski, Argonne National Laboratory, University of Chicago
Kaizar Amin, University of North Texas, ANL
Mike Hategan, University of Chicago, ANL
Shashank Shankar, Illinois Institute of Technology, ANL
Vladimir Silva, IBM
Jean-Claude Cote, High Performance Computing, National Research Council, Canada

If we have forgotten to include your name in the list of contributors please notify
us.

1.8 Administrative Contact

The project is managed by Gregor von Laszewski. To contact him, please use the
information below.

Gregor von Laszewski
Argonne National Laboratory
Mathematics and Computer Science Division
9700 South Cass Avenue
Argonne, IL 60439
Phone:(630) 252 0472
Fax: (630) 252 1997
gregor@mcs.anl.gov

1.9 Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Science Division subprogram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Contract W-31-109-
Eng-38. DARPA, DOE, and NSF support Globus Project research and develop-
ment. This work would not have been possible without the help of Ian Foster and
the Globus Project team.

14

gregor@mcs.anl.gov

2 License

The Java CoG Kit is distributed under two licenses. The parts that are included
in the Globus Toolkit are distributed under the Globus Toolkit Public License
(GTPL), which is listed in Section2.2.1. The parts that are not distributed in the
Globus Toolkit, are distributed undert the Java CoG Kit Public License. At this
tiem the Java CoG Kit License (Section2.3) is a simple copy of the Globus Toolkit
License with the Globus Toolkit refernces being replaced by apropiate Java CoG
Kit refernces and the institution, just being University of Chicago.

To collaborate with us it is best for now to just sign the Globus Toolkit contributor
License and fax it to Gregor von Laszewski at 630 252 1997.

2.1 Project Registration

We wish that you to notify us about projects that you develop with the help of the
Java CoG Kit. This will allow us to keep track of the use of the Java CoG Kit, as
this directly affects our ability to motivate additional coding activities. Please, be
so kind to send an e-mail togregor@mcs.anl.gov with the subject

JAVA COG KIT USGAE

with the following additional information provided by you:

Project name:
Institution:
Main contact:
E-mail:
Web page:
Description of your project:
References:
References citing the Java CoG Kit:

In case you like to cite the Java CoG Kit in your papers, we recommend that you
use the following paper:

Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane,
A Java Commodity Grid Kit ,
Concurrency and Computation: Practice and Experience,
Pages 643-662, Volume 13, Issue 8-9, 2001.
http://www.globus.org/cog/java/

We also would like to be notified about your publications that involve the use of
the Java CoG Kit, as this will help us to document its usefulness. We like to feature
links to these articles, with your permission, on our Web site.

Additional references to Java CoG Kit and other Grid related activities can be
found at

15

gregor@mcs.anl.gov

Some Refernces, von Laszewski :http://www.mcs.anl.gov/˜gregor/bib

or

Some References, Globus Project :http://www.globus.org/research/papers.html

.

16

http://www.mcs.anl.gov/~gregor/bib
http://www.globus.org/research/papers.html

2.2 Globus Toolkit

2.2.1 Globus Toolkit Public License (GTPL)

Globus Toolkit Public License (GTPL) Version 2

Globus Toolkit Public License Version 2, July 31, 2003

Copyright 1999-2003 University of Chicago and The University of Southern California. All rights
reserved.

This software referred to as the Globus Toolkit software (“Software”) includes voluntary contributions
made to the Globus Project collaboration. Persons and entities that have made voluntary contributions
are hereinafter referred to as “Contributors.” This Globus Toolkit Public License is referred to herein
as “the GTPL.” For more information on the Globus Project, please see http://www.globus.org/.

Permission is granted for the installation, use, reproduction, modification, display, performance and
redistribution of this Software, with or without modification, in source and binary forms. Permission
is granted for the installation, use, reproduction, modification, display, performance and redistribution
of user files, manuals, and training and demonstration slides (“Documentation”) distributed with or
specifically designated as distributed under the GTPL. Any exercise of rights under the GTPL is subject
to the following conditions:

1. Redistributions of this Software, with or without modification, must reproduce the GTPL in:
(1) the Software, or (2) the Documentation or some other similar material which is provided
with the Software (if any).

2. The Documentation, alone or if included with a redistribution of the Software, must include the
following notice: “This product includes material developed by the Globus Project
(http://www.globus.org/).”

3. Alternatively, if that is where third-party acknowledgments normally appear, this acknowledg-
ment must be reproduced in the Software itself.

4. Globus Toolkit and Globus Project are trademarks of the University of Chicago. Any trade-
marks of the University of Chicago or the University of Southern California may not be used
to endorse or promote software, or products derived therefrom, and except as expressly pro-
vided herein may not be affixed to modified redistributions of this Software or Documentation
except with prior written approval, obtainable at the discretion of the trademark owner from
info@globus.org.

5. To the extent that patent claims licensable by the University of Southern California and/or by
the University of Chicago (as Operator of Argonne National Laboratory) are necessarily in-
fringed by the use or sale of the Software, you and your transferees are granted a non-exclusive,
worldwide, royalty-free license under such patent claims, with the rights to make, use, sell, of-
fer to sell, import and otherwise transfer the Software in source code and object code form. This
patent license shall not apply to Documentation or to any other software combinations which
include the Software. No hardware per se is licensed hereunder.

If you or any subsequent transferee (a “Recipient”) institutes patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Software infringes such
Recipient’s patent(s), then such Recipient’s rights granted under the patent license above shall
terminate as of the date such litigation is filed.

6. DISCLAIMER

SOFTWARE AND DOCUMENTATION ARE PROVIDED BY THE COPYRIGHT HOLD-
ERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY, OF SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE OR
USE ARE DISCLAIMED. THE COPYRIGHT HOLDERS AND CONTRIBUTORS MAKE
NO REPRESENTATION THAT THE SOFTWARE, DOCUMENTATION, MODIFICATIONS,
ENHANCEMENTS OR DERIVATIVE WORKS THEREOF, WILL NOT INFRINGE ANY
PATENT, COPYRIGHT, TRADEMARK, TRADE SECRET OR OTHER PROPRIETARY RIGHT.

7. LIMITATION OF LIABILITY

THE COPYRIGHT HOLDERS AND CONTRIBUTORS SHALL HAVE NO LIABILITY TO
LICENSEE OR OTHER PERSONS FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
CONSEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY CHARACTER
INCLUDING, WITHOUT LIMITATION, PROCUREMENT OF SUBSTITUTE GOODS OR

17

SERVICES, LOSS OF USE, DATA OR PROFITS, OR BUSINESS INTERRUPTION, HOW-
EVER CAUSED AND ON ANY THEORY OF CONTRACT, WARRANTY, TORT (INCLUD-
ING NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE, ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE OR DOCUMENTATION, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

8. The Globus Project may publish revised and/or new versions of the GTPL from time to time.
Each version will be given a distinguishing version number. Once Software or Documentation
has been published under a particular version of the GTPL, you may always continue to use it
under the terms of that version. You may also choose to use such Software or Documentation
under the terms of any subsequent version of the GTPL published by the Globus Project. No
one other than the Globus Project has the right to modify the terms of the GTPL.

Globus Toolkit Public License 7-31-03

18

2.2.2 Globus Toolkit Contributor Liceense

Grant of Licenses in Globus Toolkit Contributions, July, 2003

The undersigned licensor (“LICENSOR”) has delivered or caused or permitted to be delivered to The
University of Chicago, as Operator of Argonne National Laboratory, and The University of South-
ern California (collectively “LICENSEE”) software and documentation (collectively, “CONTRIBU-
TIONS”) created by LICENSOR or by LICENSOR’s employees, associates, contractors, or collabo-
rators. Software (“SOFTWARE”) contributed by LICENSOR are source and binary software code,
such as schema, bug fixes, patches, upgrades or other modifications or enhancements of the features,
functionality or performance of the Globus Toolkit software (“GLOBUS TOOLKIT”). Documentation
(“DOCUMENTATION”) contributed by LICENSOR are print and digital media that describe and ex-
plain, such as readme files, white papers, overviews, and tutorials, and are useful with the GLOBUS
TOOLKIT.

Acknowledging receipt of LICENSEE’s services in distributing the GLOBUS TOOLKIT to a com-
munity of end users and developers, including LICENSOR, and LICENSEE’s intention to continue
such distribution, LICENSOR hereby grants to LICENSEE the following licenses (collectively, with
all limitations included herein, referred to as this “Grant”):

a) a non-exclusive, worldwide, royalty-free, perpetual, transferable copyright license to install, use, re-
produce, modify, display, perform, and prepare derivative works of SOFTWARE; to incorporate SOFT-
WARE in whole or in part and derivative works thereof into the GLOBUS TOOLKIT or into any other
computer software; and to sublicense copyrights in and distribute SOFTWARE and derivative works
thereof, in source and binary forms.

b) subject to termination provisions below and to the extent that patent claims licensable by LICENSOR
are necessarily infringed by the use or sale of SOFTWARE alone or when combined with the GLOBUS
TOOLKIT, a non-exclusive, worldwide, royalty-free license and right to sublicense under such patent
claims, with the rights for LICENSEE and its sublicensees to make, use, sell, offer to sell, import and
otherwise transfer the SOFTWARE in source code and object code form, alone and incorporated into
the GLOBUS TOOLKIT and derivative works. This patent license shall apply to the combination of the
SOFTWARE and the GLOBUS TOOLKIT if, at the time SOFTWARE is added by the LICENSEE or
its transferees, such addition of the SOFTWARE causes such combination to be covered by such patent
claims. The patent license shall not apply to any other combinations which include the SOFTWARE.
No hardware per se is licensed hereunder.

c) a non-exclusive, worldwide, royalty-free, perpetual, transferable copyright license: to install, use,
reproduce, modify, display, perform, and prepare derivative works of DOCUMENTATION; to incorpo-
rate DOCUMENTATION in whole or in part and derivative works thereof into any other documentation;
and to sublicense copyrights in and distribute DOCUMENTATION and derivative works thereof.

If LICENSEE or any subsequent transferee (each referred to as a “RECIPIENT”) institutes patent
litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the
SOFTWARE or the GLOBUS TOOLKIT distributed pursuant to this Grant or the Globus ToolkitPublic
License infringe such RECIPIENT’s patent(s), then such RECIPIENT’s rights granted under the patent
license in paragraph b) above shall terminate as of the date such litigation is filed.

The foregoing licenses shall be effective so long as the terms under which LICENSEE sublicenses
copyrights in and distributes the CONTRIBUTIONS effectively: (a) include compatible patent license
termination language as that set forth above, and (b) disclaim liability on behalf of LICENSOR for
all damages, including direct, indirect, special, incidental, exemplary and punitive damages, in sub-
stantially the same form as that included herein; and shall apply to any and all CONTRIBUTIONS
specifically designated, now or in the future, as within the scope of this Grant by LICENSOR’s autho-
rized representative.

LICENSOR represents that to its knowledge it has or has obtained any and all required permissions and
authority to make this Grant. Except as provided in the preceding sentence, LICENSOR PROVIDES
THE CONTRIBUTIONS ON AN “AS IS” BASIS AND MAKES NO REPRESENTATIONS AND
EXTENDS NO WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, CONCERN-
ING THE CONTRIBUTIONS. LICENSOR MAKES NO EXPRESS OR IMPLIED WARRANTIES
OF MERCHANTABILITY, OF SATISFACTORY QUALITY, OR FITNESS FOR A PARTICULAR
PURPOSE OR USE. LICENSOR MAKES NO REPRESENTATION THAT THE CONTRIBUTIONS
WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADE SECRET OR OTHER PROPRIETARY
RIGHT. LICENSOR SHALL HAVE NO LIABILITY WITH RESPECT TO ITS OBLIGATION UN-
DER THIS GRANT OR OTHERWISE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CON-
SEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY CHARACTER, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

19

LICENSEE shall not be required to include the name of LICENSOR or any of its employees, asso-
ciates, contractors or collaborators in any copyright registration, notice or license associated with the
CONTRIBUTIONS. LICENSOR hereby grants LICENSEE permission to post this Grant on a website
associated with the GLOBUS TOOLKIT, provided that LICENSOR is given the opportunity to review
and approve in advance any such posting; such approval not to be unreasonably withheld or delayed.

Except as expressly provided herein, nothing in this Grant shall be construed as granting any right or
license under any inventions, patents, copyrights, trade secrets, or any other intellectual property rights
of LICENSOR.

LICENSOR: _____________________________________

By: _____________________________________

Title: _____________________________________

Date: _____________________________________

Address:

Globus Toolkit Contributor License 7-31-03

20

2.3 Java CoG Kit

Note that the Java CoG Kit License is just a draft and is in principle very similar
to the Globus Toolkit License.

At present, we recommend to work with us under the Globus Toolkit Public Li-
cense and the Globus Toolkit Contributor License.

2.3.1 Java CoG Kit Public License (JCoGPL)

Java CoG Kit Public License (JCoGPL) Draft Version

Java CoG Kit Public License Draft, February 29, 2004

Copyright 1999-2003 University of Chicago. All rights reserved.

This software referred to as the Java CoG Kit software (“Software”) includes voluntary contributions
made to the Globus Project collaboration. Persons and entities that have made voluntary contributions
are hereinafter referred to as “Contributors.” This Java CoG Kit Public License is referred to herein as
“the JCoGPL.” For more information on the Java CoG Kit, please see http://www.cogkits.org/.

Permission is granted for the installation, use, reproduction, modification, display, performance and
redistribution of this Software, with or without modification, in source and binary forms. Permission
is granted for the installation, use, reproduction, modification, display, performance and redistribution
of user files, manuals, and training and demonstration slides (“Documentation”) distributed with or
specifically designated as distributed under the JCoGKit. Any exercise of rights under the JCoGKit is
subject to the following conditions:

1. Redistributions of this Software, with or without modification, must reproduce the JCoGPL in:
(1) the Software, or (2) the Documentation or some other similar material which is provided
with the Software (if any).

2. The Documentation, alone or if included with a redistribution of the Software, must include the
following notice: “This product includes material developed by the Globus Project
(http://www.globus.org/) and the Java CoG Kit (http://www.cogkits.org).”

3. Alternatively, if that is where third-party acknowledgments normally appear, this acknowledg-
ment must be reproduced in the Software itself.

4. Globus Toolkit Java CoG Kit and Globus Project are trademarks of the University of Chicago.
Any trademarks of the University of Chicago may not be used to endorse or promote software,
or products derived therefrom, and except as expressly provided herein may not be affixed to
modified redistributions of this Software or Documentation except with prior written approval,
obtainable at the discretion of the trademark owner from info@globus.org.

5. To the extent that patent claims licensable by the University of Chicago (as Operator of Argonne
National Laboratory) are necessarily infringed by the use or sale of the Software, you and
your transferees are granted a non-exclusive, worldwide, royalty-free license under such patent
claims, with the rights to make, use, sell, offer to sell, import and otherwise transfer the Software
in source code and object code form. This patent license shall not apply to Documentation or
to any other software combinations which include the Software. No hardware per se is licensed
hereunder.

If you or any subsequent transferee (a “Recipient”) institutes patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Software infringes such
Recipient’s patent(s), then such Recipient’s rights granted under the patent license above shall
terminate as of the date such litigation is filed.

6. DISCLAIMER

SOFTWARE AND DOCUMENTATION ARE PROVIDED BY THE COPYRIGHT HOLD-
ERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY, OF SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE OR
USE ARE DISCLAIMED. THE COPYRIGHT HOLDERS AND CONTRIBUTORS MAKE
NO REPRESENTATION THAT THE SOFTWARE, DOCUMENTATION, MODIFICATIONS,
ENHANCEMENTS OR DERIVATIVE WORKS THEREOF, WILL NOT INFRINGE ANY
PATENT, COPYRIGHT, TRADEMARK, TRADE SECRET OR OTHER PROPRIETARY RIGHT.

21

7. LIMITATION OF LIABILITY

THE COPYRIGHT HOLDERS AND CONTRIBUTORS SHALL HAVE NO LIABILITY TO
LICENSEE OR OTHER PERSONS FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
CONSEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY CHARACTER
INCLUDING, WITHOUT LIMITATION, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES, LOSS OF USE, DATA OR PROFITS, OR BUSINESS INTERRUPTION, HOW-
EVER CAUSED AND ON ANY THEORY OF CONTRACT, WARRANTY, TORT (INCLUD-
ING NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE, ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE OR DOCUMENTATION, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

8. The Java CoG Kit Project may publish revised and/or new versions of the JCoGPL from time to
time. Each version will be given a distinguishing version number. Once Software or Documen-
tation has been published under a particular version of the JCoGPL, you may always continue
to use it under the terms of that version. You may also choose to use such Software or Doc-
umentation under the terms of any subsequent version of the JCoGPL published by the Java
CoG Project. No one other than the Java CoG Project has the right to modify the terms of the
JCoGPL.

Java CoG Kit Public License Draft, 29-Feb-04

22

2.3.2 Java CoG Kit Contributor Liceense

Grant of Licenses in Java CoG Kit Contributions, July, 2003

The undersigned licensor (“LICENSOR”) has delivered or caused or permitted to be delivered to The
University of Chicago, as Operator of Argonne National Laboratory (collectively “LICENSEE”) soft-
ware and documentation (collectively, “CONTRIBUTIONS”) created by LICENSOR or by LICEN-
SOR’s employees, associates, contractors, or collaborators. Software (“SOFTWARE”) contributed by
LICENSOR are source and binary software code, such as schema, bug fixes, patches, upgrades or other
modifications or enhancements of the features, functionality or performance of the Java CoG Kit soft-
ware (“JAVA COG KIT”). Documentation (“DOCUMENTATION”) contributed by LICENSOR are
print and digital media that describe and explain, such as readme files, white papers, overviews, and
tutorials, and are useful with the JAVA COG KIT.

Acknowledging receipt of LICENSEE’s services in distributing the JAVA COG KIT a community of
end users and developers, including LICENSOR, and LICENSEE’s intention to continue such distribu-
tion, LICENSOR hereby grants to LICENSEE the following licenses (collectively, with all limitations
included herein, referred to as this “Grant”):

a) a non-exclusive, worldwide, royalty-free, perpetual, transferable copyright license to install, use, re-
produce, modify, display, perform, and prepare derivative works of SOFTWARE; to incorporate SOFT-
WARE in whole or in part and derivative works thereof into the JAVA COG KIT or into any other
computer software; and to sublicense copyrights in and distribute SOFTWARE and derivative works
thereof, in source and binary forms.

b) subject to termination provisions below and to the extent that patent claims licensable by LICENSOR
are necessarily infringed by the use or sale of SOFTWARE alone or when combined with the JAVA
COG KIT, a non-exclusive, worldwide, royalty-free license and right to sublicense under such patent
claims, with the rights for LICENSEE and its sublicensees to make, use, sell, offer to sell, import and
otherwise transfer the SOFTWARE in source code and object code form, alone and incorporated into
the JAVA COG KIT and derivative works. This patent license shall apply to the combination of the
SOFTWARE and the JAVA COG KIT if, at the time SOFTWARE is added by the LICENSEE or its
transferees, such addition of the SOFTWARE causes such combination to be covered by such patent
claims. The patent license shall not apply to any other combinations which include the SOFTWARE.
No hardware per se is licensed hereunder.

c) a non-exclusive, worldwide, royalty-free, perpetual, transferable copyright license: to install, use,
reproduce, modify, display, perform, and prepare derivative works of DOCUMENTATION; to incorpo-
rate DOCUMENTATION in whole or in part and derivative works thereof into any other documentation;
and to sublicense copyrights in and distribute DOCUMENTATION and derivative works thereof.

If LICENSEE or any subsequent transferee (each referred to as a “RECIPIENT”) institutes patent
litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the
SOFTWARE or the JAVA COG KIT distributed pursuant to this Grant or the Java CoG KitPublic
License infringe such RECIPIENT’s patent(s), then such RECIPIENT’s rights granted under the patent
license in paragraph b) above shall terminate as of the date such litigation is filed.

The foregoing licenses shall be effective so long as the terms under which LICENSEE sublicenses
copyrights in and distributes the CONTRIBUTIONS effectively: (a) include compatible patent license
termination language as that set forth above, and (b) disclaim liability on behalf of LICENSOR for
all damages, including direct, indirect, special, incidental, exemplary and punitive damages, in sub-
stantially the same form as that included herein; and shall apply to any and all CONTRIBUTIONS
specifically designated, now or in the future, as within the scope of this Grant by LICENSOR’s autho-
rized representative.

LICENSOR represents that to its knowledge it has or has obtained any and all required permissions and
authority to make this Grant. Except as provided in the preceding sentence, LICENSOR PROVIDES
THE CONTRIBUTIONS ON AN “AS IS” BASIS AND MAKES NO REPRESENTATIONS AND
EXTENDS NO WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, CONCERN-
ING THE CONTRIBUTIONS. LICENSOR MAKES NO EXPRESS OR IMPLIED WARRANTIES
OF MERCHANTABILITY, OF SATISFACTORY QUALITY, OR FITNESS FOR A PARTICULAR
PURPOSE OR USE. LICENSOR MAKES NO REPRESENTATION THAT THE CONTRIBUTIONS
WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADE SECRET OR OTHER PROPRIETARY
RIGHT. LICENSOR SHALL HAVE NO LIABILITY WITH RESPECT TO ITS OBLIGATION UN-
DER THIS GRANT OR OTHERWISE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CON-
SEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY CHARACTER, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

23

LICENSEE shall not be required to include the name of LICENSOR or any of its employees, asso-
ciates, contractors or collaborators in any copyright registration, notice or license associated with the
CONTRIBUTIONS. LICENSOR hereby grants LICENSEE permission to post this Grant on a website
associated with the JAVA COG KIT, provided that LICENSOR is given the opportunity to review and
approve in advance any such posting; such approval not to be unreasonably withheld or delayed.

Except as expressly provided herein, nothing in this Grant shall be construed as granting any right or
license under any inventions, patents, copyrights, trade secrets, or any other intellectual property rights
of LICENSOR.

LICENSOR: _____________________________________

By: _____________________________________

Title: _____________________________________

Date: _____________________________________

Address:

Java CoG Kit Contributor License Draft

24

2.4 Other Licences

We distribute a number of other libraries with the Java CoG Kit. These libraries
come with their own licences. We strongly encourage you to inspect these licenses.
The can be found in the “lib” directories of the Java CoG Kit.

2.4.1 jglobus

The jglobus/lib directory contains the following licences.

jglobus : bouncycastle.LICENSE

jglobus : cryptix.LICENSE

jglobus : log4j.LICENSE

jglobus : junit.LICENSE

jglobus : puretls.LICENSE

2.4.2 ogce

The ogce/lib directory contains the following licences:

ogce : soaprmi11.LICENSE

ogce : xerces.LICENSE

ogce : xml4j.LICENSE

2.4.3 Others

1

2.5 GNU Public Licence

Although we prefer the development of code that is non GPL, we do have the
ability to distribute components under the GNU license or are dependent on code
developed with the GNU License. For thie purpose we created a seperate CVS
archive in which we maintain the GPL-based code.

We will not distribute any GPL based Java CoG Kit code in binary format. It must
be downloaded, compiled, and installed seperatly.

We will include more details to this issue in future. One of the Java CoG Kit Codes
that will be included is the availability of a GPL based Grid shell.

At this time, we have not yet made this code available as part of the Java CoG Kit.

1 Other licenses need to be adde here

25

http://www.globus.org/cog/current/jglobus/lib/bouncycastle.LICENSE
http://www.globus.org/cog/current/jglobus/lib/cryptix.LICENSE
http://www.globus.org/cog/current/jglobus/lib/log4j.LICENSE
http://www.globus.org/cog/current/jglobus/lib/junit.LICENSE
http://www.globus.org/cog/current/jglobus/lib/puretls.LICENSE
http://www.globus.org/cog/current/ogce/lib/soaprmi11.LICENSE
http://www.globus.org/cog/current/ogce/lib/xerces.LICENSE
http://www.globus.org/cog/current/ogce/lib/xml4j.LICENSE

3 Introduction

3.1 Overview

3.2 History

3.2.1 Metacomputing

3.2.2 CoG Kits

directions

developed OO

developed API based version - no success too dificult to use

Globus

API - protocol - services

Web services without modification

Inforgram first futire service

26

4 Installation

4.1 Download

4.2 CVS Release Tags

The current releases of jglobus, ogce, and cog have the commonv-4-0-atag.

In order to use the Java CoG Kit, the Java Runtime Environment version 1.4, avail-
able from the Java Web site is required. Additionally, if you plan to compile the
Java CoG Kit from sources, you will need the full Java Development Kit, version
1.4, available from the same Web site, and a recent version of the Apache Ant build
system.

At this time we recommend that you use the following packages, as we have not
yet tested Java CoG with any other Java version.

1. ant-1.5.4: The Java CoG Kit requires Apache Ant, which can be down-
loaded fromhttp://ant.apache.org .

2. JDK 1.4.202-b03 or above

Please note that earlier versions of the Java Development Kit contain expired root
certificates, which means that you will only be able to use public key cryptography
in a limited fashion.

4.3 Downloading the Java CoG Kit version 4

Before using the Java CoG Kit, you will need to download it. At this moment, the
Java CoG Kit is available only in source format and from the source repository.
To download the sources from the source repository, you will need to have a CVS
client installed. Instructions will be provided for the command-line CVS clients
(available on most UNIX and Linux machines and CYGWIN):

1. cvs -d:pserver:anonymous@cvs.globus.org:/home/dsl/cog/CVS login

2. password: Hit Enter

3. cvs -d:pserver:anonymous@cvs.globus.org:/home/dsl/cog/CVS checkout -r
v-4-0-acog

4.4 Compiling the Java CoG Kit version 4

In compiling the Java CoG Kit, you have two options:

1. Compiling the whole Java CoG Kit. This option may suit you if you plan to
use the whole functionality of the Java CoG Kit or if you want to test all the
features of the Java CoG Kit.

2. Compiling individual modules. This option will compile only the neces-
sary parts needed in order to provide the particular functionality packed in a
module.

27

http://ant.apache.org

4.5 Compiling the Complete Distribution

In the main cog directory, type: $ ant dist

A new directory named dist will be created in the cog directory. Inside the dist
directory you will find acog-<version> directory, which contains libraries (lib),
configuration files (etc), example files (examples), and application launchers (bin).

4.6 Compiling Individual Modules

The main cog directory contains a subdirectory named modules, which in turn con-
tains all the modules that compose the Java CoG Kit. You can change directory to
any of these modules and type the following in order to obtain a binary distribution
directory for that module:

$ ant dist

A dist/<modulename>-<moduleversion> directory will be created containing the
distribution files. Any modules that the compiled module depends on will also be
compiled and included in the same directory.

4.7 Using the Java CoG Kit version 4

The following is the basic layout for the binary distribution directories, whether
obtained by downloading the precompiled packages or by compiling the sources:

bin/ etc/ lib/

The bin directory contains launchers that can be used to start a particular appli-
cation in the Java CoG Kit. The etc directory contains configuration files needed
by various parts of the Java CoG Kit. The lib directory contains the jar files that
belong to the Java CoG Kit, together with the libraries required to run various parts
of the Java CoG Kit.

To start a particular CoG application, go to the bin directory and choose its respec-
tive launcher.IMPORTANT! The Java CoG Kit version 2 automatically detects the
COG INSTALL PATH. If you have the variable set to a specific directory pointing
to an older version of the Java CoG Kit, unexpected behavior may result. Please
unset the COGINSTALL PATH variable before running any of the applications,
or set it to either

cog/dist/cog-<version>

or

cog/modules/<modulename>/dist/<modulename>-<moduleversion>

4.8 Downloading JGlobus

JGlobus, the Globus Toolkit v2.x1 client API, though included as a precompiled
version in the Java CoG Kit, is also available as a separate download. The cur-
rent JGlobus source code can also be fetched from the source repository by us-
ing the following commands. In order to reduce ambiguity, a directory named
<download> will be used as the base of the following operations.

1 For further details about JGlobus and Globus Toolkit versions interoperability, please consult the Java
CoG Kit compatibility matrix athttp://www.globus.org/cog/java/production.php

28

http://www.globus.org/cog/java/production.php

1. cvs -d:pserver:anonymous@cvs.globus.org:/home/dsl/cog/CVS login

2. password: Hit Enter

3. cvs -d:pserver:anonymous@cvs.globus.org:/home/dsl/cog/CVS checkout -r
v-4-0-a jglobus

4.9 Compiling JGlobus

JGlobus can be compiled by using the following commands:

1. cd<download>/jglobus

2. ant dist

The compiled JGlobus files will now be available in the<download>/jglobus/build/cog-
1.2directory.

4.10 Using JGlobus

The command line tools included in JGlobus can be accessed from the
<download>/jglobus/build/cog-1.2/bindirectory. Before using any of the JGlobus
command line tools, you must set the COGINSTALL PATH environment variable
to point to the<download>/jglobus/build/cog-1.2directory. It is preferable to
specify COGINSTALL PATH as an absolute path.

4.11 Downloading OGCE

OGCE is a part of the Java CoG Kit that includes a series of experimental graphical
interfaces and convenience abstractions over JGlobus. OGCE can be obtained from
the source repository by using the following commands:

1. cvs -d:pserver:anonymous@cvs.globus.org:/home/dsl/cog/CVS login

2. password: Hit Enter

3. cvs -d:pserver:anonymous@cvs.globus.org:/home/dsl/cog/CVS checkout -r
v-4-0-aogce

4.12 Compiling OGCE

The OGCE compilation process requires the JGlobus sources (see Section4.8) also
to be present. Both the JGlobus and the OGCE source package directories must
exist in the same directory. The following example shows a typical setting:

<download>/jglobus
<download>/ogce

To compile OGCE, issue the following commands at the command prompt:

1. cd<download>/ogce

2. ant dist

The compiled OGCE package, including JGlobus, will be available in the
<download>/build/cog-1.2directory, or using the above typical example:

29

<download>/build
<download>/jglobus
<download>/ogce

4.13 Using OGCE

The tools included in OGCE can be accessed from the<download>/build/cog-
1.2/bindirectory. Before using any of the OGCE command line tools, you must set
the COGINSTALL PATH environment variable to point to the<download>/build/cog-
1.2directory. It is preferable to specify COGINSTALL PATH as an absolute path.

30

5 Contributing

5.1 Creating a Module

It is easy to contribute to the Java CoG Kit through its newly designed module
concept. A sample module build file can be found in modules/template. A few
requirements have been imposed in order to keep consistency.

The basic directory structure thatmust exists for each module is

etc/MANIFEST.MF.head
etc/MANIFEST.MF.tail
lib/
src/

5.1.1 Build Files

The build files for each module have four parts:

build.xml : should not be modified at all unless absolutely necessary. If there is a fea-
ture that you would like added to the build system, please tell Mike (hate-
gan@mcs.anl.gov).

dependencies.xml : project dependencies are stored here. Please modify it to suit your needs.
An example is given in the modules/template directory.

launchers.xml : launchers that you want created in the build process. Use the example in
modules/template to see how to use it.

project.properties : module properties are specified here. The module name must be the same
as the directory name of the module. The last line in this file contains the
library dependencies for this module. If you don’t add the jar files that your
project requires there, it will not build. The format is a comma-separated list
of files. We suggest using<jar-name>.* (so that licenses and other things
belonging to a jar will also be copied). Please read below about the libraries.

5.1.2 Libraries

Libraries can be found in two places:

1. cog/lib

2. cog/modules/yourmodule/lib

The build system will automatically choose the library from either of the two di-
rectories. If a library exists in both directories, priority will be given to the library
in thecog/lib directory. This may cause your module not to build. Please talk
to Gregor or Mike in this case. Also please note that the libraries in your module
may at any time move to thecog/lib directory.

31

5.1.3 Source

The sources for your module. Not much to say here :)

5.1.4 Using PMD

We recommend that developers and contributors use PMD (http://pmd.sourceforge.
net) to check their code. Many of the complaints that PMD generates should be
taken seriously. Still, there are instances when PMD rules do not apply for a good
reason and create false positives.

To use pmd, you need to download it and add all its jar files to the pmd directory.
Afterwards, just run ’ant pmd’ in the module you want to check. It will generate
both an on-screen report and an HTML report (pmd-report.html).

5.1.5 Documenting the Modules

README TODO CHANGES PMD

5.1.6 Maintaining a Module

5.1.7 Launchers

5.1.8 Webstart

5.2 Coding Guidelines for the Java CoG Kit

The Java CoG Kit follows in general the basic coding conventions given in the “Sun
Coding Conventions for the Java Programming Language” (http://java.sun.
com/docs/codeconv/html/CodeConvTOC.doc.html). Additionally we
have the following rules.

5.2.1 Imports

All imports must be single class and explicit. That is, import<package>.* is not
allowed.

5.2.2 Indentation

All indentation levels should be 4 spaces. No editor tabs are allowed unless they
are converted to 4 spaces before saving the file.

5.2.3 Brackets

In contrast to the OGSA coding guides, we allow the use of brackets only as defined
in the Java Coding guidelines. E.g.

f o r (i ndex = 0 ; index < l e n g t h ; i ndex ++){
<code>

}

5.2.4 Variables

No acronyms or abbreviations should be used. For example, a = b + mVarLen
should be avoided. Instead, use: totalLength = partLength + newLength.

32

http://pmd.sourceforge.net
http://pmd.sourceforge.net
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

5.2.5 Instance Variables

Use “this.” prefix when referencing instance variables, for example:

p u b l i c MyClass (S e r v i c e P r o p e r t i e s I n t e r f a c e p r o p e r t i e s){
t h i s . p r o p e r t i e s = p r o p e r t i e s ;

}

p u b l i c i n t foo () {
i n t l o c a l I n t = 3 ;
r e t u r n t h i s . i n s t a n c e I n t + l o c a l I n t ;

}

5.3 One-Liners

Even single line statements should be inside brackets, for example:

r e t u r n ;
}

5.3.1 Logging

Log4J should be used exclusively. System.out/err.println is not allowed. Further,
exceptions should be logged.

5.3.2 Testing

Each component/class should have a JUnit test The tests should be put in test/
directory under each package directory.

5.3.3 Internationalization

The core framework should be fully internationalized. The samples may be inter-
nationalized. The Java I18n/L10n Toolkit may be used to verify whether code is
international.

5.3.4 Library Reuse

Treat all code as a library, and as a reusable component. Calls to System.exit() are
disallowed (except the main method)

5.3.5 Exceptions

Use chained exceptions. Java CoG Kit provides two simple generic exception
classes for chaining multiple exceptions together. Look at ChainedException and
ChainedIOException.

33

6 Modules

6.1 util

6.2 certrequest

34

7 Core

7.1 Introduction

The Java Cog Kit core1 (cog-core) is an add-on to the cog-jglobus library. It in-
cludes many advanced features to make Grid programming easier. The core mod-
ule provides an abstraction layer for various low-level Grid implementations such
as Globus Toolkit v2 and v3. A Grid application developer can port Grid appli-
cations from one implementation (GT2) to another (GT3) by simply changing the
underlying implementation provider. Thus, all applications developed by using the
cog-core APIs are compatible with all the underlying Grid implementations sup-
ported by cog-core. The current version of the core module provides support for
GT2, GT3, and SSH implementations. Other platforms will be supported based on
availability of resources.

Further cog-core also provides several constructs whereby simple execution de-
pendencies (workflows) can be expressed as a directed acyclic graph (DAG) or
hierarchical DAG where each Grid task can interface with a different Grid imple-
mentation. For more sophisticated workflow functionality the reader is directed to
the Java CoG Kit Karajan module in Chapter9

Hence, cog-core offers the following benefits:

• develop client applications that will be interoperable across multiple Grid
backend implementations;

• provide reusable code to support rapid prototyping of basic Grid access pat-
terns;

• provide an open-source and extensible architecture that can be built collec-
tively and incrementally based on community feedback; and

• access the same set of interfaces implemented in disparate technologies.

7.2 Installation

7.2.1 Download

The Java CoG Kit core module can be downloaded from the Java CoG Kit CVS
archive. Instructions regarding the Java CoG Kit requirements and details on ob-
taining the Java CoG Kit sources are available in Section4.

We note that cog-core is explicitly a client-side library. The current version of cog-
core provides support for GT2, GT3, and SSH. Hence, in order to execute tasks
against these implementations, the reader is directed to install GT2.4, GT3.0.2,
and SSH server. For further details on installing the Globus Toolkit please visit the
Globus Alliance Web pagehttp://www.globus.org .

1 Formerly known as the GridSDK module

35

http://www.globus.org

7.2.2 Compile

To compile the core module, change the directory tocog/modules/core and type
’ant dist’. This will compile cog-core and all its dependencies. It will also create
a dist directory containing the distribution of the core module. Inside thedist
directory, thebin directory will contain the necessary scripts that can be used to
launch several command -line clients and example applications.

7.2.3 Configuration

Cog-core can be configured via the cog-core.properties file in the /.globus direc-
tory. The user can set the following properties in this configuration file:

#provider class
GT2 = org.globus.cog.core.impl.gt2
GT3 = org.globus.cog.core.impl.gt3
SSH = org.globus.cog.core.impl.ssh
SCHEMA_LOCATION = <COG_HOME>/modules/core/schema

GT2, GT3, and SSH are default providers. SCHEMALOCATION indicates the
directory location of the schemas required by GT3, and<COG_HOME>points to
the location where the CoG is installed.

Hence, an example cog-core.properties file would be similar to

#Java CoG Kit Core module
GT2 = org.globus.cog.core.impl.gt2
GT3 = org.globus.cog.core.impl.gt3
SSH = org.globus.cog.core.impl.ssh
SCHEMA_LOCATION = /home/user-name/cog/core/modules/core/schema

7.2.4 Examples

Several examples that demonstrate the ease of use and functionality of the Java
CoG Kit Core are provided. These examples are available in the../modules/
core/src/org/globus/cog/core/examples directory.

The examples are further divided into the following packages:

gt2 : showcasing the gt2 functionality.

1. The GT2 JobSubmission example demonstrates the ability to submit to
a PBS batch queue.

2. The GT2 FileTransfer example demonstrates the ability to perform a
third-party file transfer using Grid FTP.

gt3 : showcasing the gt3 functionality.

1. The GT3 JobSubmission example demonstrates the ability to submit to
a MasterForkManagedJobFactory service. It can also be used for PBS
managed factory services.

2. The GT3 FileTransfer includes examples for third party transfers for
single as well as multiple files. It uses the MultiRFT Grid service.

ssh : showcasing the ssh functionality.

36

../modules/core/src/org/globus/cog/core/examples
../modules/core/src/org/globus/cog/core/examples

Figure 7.1: Core UML Class Diagram

1. The SSH JobSubmission and FileTransfer examples demonstrate the
ability to use SSH and SSH credentials to perform the corresponding
tasks.

misc : demonstrating the combination of the gt2, gt3, and ssh platforms with exe-
cution dependencies. The examples in misc package show how to create a
directed acyclic graph (DAG) and visualize it using the grapheditor module.
It also shows how to create a hierarchical DAG and visualize it.

After successfully compiling the core module, these examples can be executed
from the launcher scripts available in../modules/core/dist/bin direc-
tory.

7.3 Design

One of the most important usage patterns in Grid computing is the execution of
a Grid task. An extension to this basic Grid execution pattern is a Grid workflow
pattern that enable the user to submit a set of Grid tasks along with an execution
dependency. Therefore, the initial design of cog-core concentrates on providing
the artifacts required to support these important usage patterns. Other Grid patterns
can be supported by extending the flexible cog-core design based on community
feedback.

Figure7.1shows the class diagram of cog-core. A detailed listing of the attributes
and functions for each class has been omitted for simplicity. In the rest of this
section we describe the important entities designed and their semantics as a part of
the offered functionality.

37

../modules/core/dist/bin

7.3.1 ExecutableObject

An ExecutableObjectprovides a high-level abstraction for artifacts that can be
executed on the Grid. It can be specialized as a Grid Task or a TaskGraph. An
ExecutableObject in cog-core has a unique identity and an execution status.

Listing 7.1: Interface definition for ExecutableObject
p u b l i c i n t e r f a c e E x e c u t a b l e O b j e c t
{

p u b l i c s t a t i c f i n a l i n t TASK = 1 ;
p u b l i c s t a t i c f i n a l i n t TASKGRAPH = 2 ;

p u b l i c vo id setName (S t r i n g name) ;
p u b l i c S t r i n g getName () ;

p u b l i c vo id s e t I d e n t i t y (I d e n t i t y i d) ;
p u b l i c I d e n t i t y g e t I d e n t i t y () ;

p u b l i c i n t ge tOb jec tType () ;

p u b l i c vo id s e t S t a t u s (S t a t u s s t a t u s) ;
p u b l i c vo id s e t S t a t u s (i n t s t a t u s) ;
p u b l i c S t a t u s g e t S t a t u s () ;

}

7.3.2 Task

A Task is the atomic unit of execution in cog-core. It represents a generic Grid
functionality including remote job execution, file transfer request, or information
query. It extends the ExecutableObject; hence it has a unique identity and execu-
tion status. It also has a security context, a specification, and a service contact.

The task identity helps in uniquely representing the task across the Grid. The secu-
rity context represents the abstract security credentials of the task. Every underly-
ing Grid implementation enforces its own security requirements, therefore making
it necessary to abstract a generalized security context. Hence, the security con-
text in cog-core offers a common construct that can be extended by the different
implementations of Grid to satisfy the corresponding backend requirements. The
task specification represents the actual attributes or parameters required for the ex-
ecution of the Grid-centric task. The generalized specification can be extended for
common Grid tasks such as remote job execution, file transfer, and information
query. The service contact associated with a task symbolizes the Grid resource
required to execute it.

Listing 7.2: Interface definition for Task
p u b l i c i n t e r f a c e Task e x t e n d s E x e c u t a b l e O b j e c t
{

p u b l i c s t a t i c f i n a l i n t JOBSUBMISSION = 1 ;
p u b l i c s t a t i c f i n a l i n t FILETRANSFER = 2 ;
p u b l i c s t a t i c f i n a l i n t INFORMATIONQUERY = 3 ;

p u b l i c vo id se tType (i n t t ype) ;
p u b l i c i n t getType () ;

p u b l i c vo id s e t P r o v i d e r (S t r i n g p r o v i d e r) ;

38

p u b l i c S t r i n g g e t P r o v i d e r () ;

p u b l i c vo id s e t S p e c i f i c a t i o n (
S p e c i f i c a t i o n s p e c i f i c a t i o n) ;

p u b l i c S p e c i f i c a t i o n g e t S p e c i f i c a t i o n () ;

p u b l i c vo id s e t S e c u r i t y C o n t e x t (
S e c u r i t y C o n t e x t s e c u r i t y) ;

p u b l i c S e c u r i t y C o n t e x t g e t S e c u r i t y C o n t e x t () ;

p u b l i c vo id s e t S e r v i c e C o n t a c t (
S e r v i c e C o n t a c t s e r v i c e c o n t a c t) ;

p u b l i c S e r v i c e C o n t a c t g e t S e r v i c e C o n t a c t () ;

p u b l i c vo id s e t S t d O u t p u t (S t r i n g o u t p u t) ;
p u b l i c S t r i n g g e t S t d O u t p u t () ;

p u b l i c vo id s e t S t d E r r o r (S t r i n g e r r o r) ;
p u b l i c S t r i n g g e t S t d E r r o r () ;

p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , Ob jec t v a l u e) ;
p u b l i c Ob jec t g e t A t t r i b u t e (S t r i n g name) ;

p u b l i c vo id a d d S t a t u s L i s t e n e r (
S t a t u s L i s t e n e r l i s t e n e r) ;

p u b l i c vo id r e m o v e S t a t u s L i s t e n e r (
S t a t u s L i s t e n e r l i s t e n e r) ;

p u b l i c vo id a d d O u t p u t L i s t e n e r (
O u t p u t L i s t e n e r l i s t e n e r) ;

p u b l i c vo id r e m o v e O u t p u t L i s t e n e r (
O u t p u t L i s t e n e r l i s t e n e r) ;

p u b l i c vo id fromXML(S t r i n g t a s k) ;
p u b l i c S t r i n g toXML () ;
p u b l i c vo id f r o m S t r i n g (S t r i n g t a s k) ;
p u b l i c S t r i n g t o S t r i n g () ;

p u b l i c boo lean i s U n s u b m i t t e d () ;
p u b l i c boo lean i s A c t i v e () ;
p u b l i c boo lean isComp le ted () ;
p u b l i c boo lean i sSuspended () ;
p u b l i c boo lean i s F a i l e d () ;
p u b l i c boo lean i s C a n c e l e d () ;

p u b l i c Ca lenda r ge tSubmi t tedT ime () ;
p u b l i c Ca lenda r getCompletedTime () ;

}

7.3.3 Specification

Every Grid Task has an associatedSpecificationthat dictates the objective of the
task and the environment required to achieve the objective. The TaskHandler man-
ages the tasks based on the parameters specified in the task specification.

39

Listing 7.3: Interface definition for Specification

p u b l i c i n t e r f a c e S p e c i f i c a t i o n
{

p u b l i c s t a t i c f i n a l i n t JOB SUBMISSION = 1 ;
p u b l i c s t a t i c f i n a l i n t FILE TRANSFER = 2 ;
p u b l i c s t a t i c f i n a l i n t INFORMATION QUERY = 3 ;

p u b l i c vo id se tType (i n t t ype) ;
p u b l i c i n t getType () ;

p u b l i c vo id s e t S p e c i f i c a t i o n (S t r i n g s p e c i f i c a t i o n) ;
p u b l i c S t r i n g g e t S p e c i f i c a t i o n () ;

}

A task specification is a generalized concept and can be further categorized into
JobSpecification, FileSpecification, and QuerySpecification (not implemented at
this time). We note that the specific parameters required in a task specification
depend on the underlying Grid implementation used for the execution of the Task.
For example, GT3 has several required parameters that are not supported by GT2
(and vice versa). However, the specification classes in cog-core offer some com-
monly used attributes that can be extended or omitted based on the requirements
of the task and specific Grid implementation.

The JobSpecification mentions all the important attributes needed for the remote
job execution. Most of the attributes provided by the JobSpecification class are
similar to the ones available in the Resource Specification Language (RSL) sup-
ported by the Globus Toolkit. Nevertheless, additional attributes can be added
based on specific requirements.

Listing 7.4: Interface definition for JobSpecification

p u b l i c i n t e r f a c e J o b S p e c i f i c a t i o n e x t e n d s S p e c i f i c a t i o n
{

p u b l i c vo id s e t E x e c u t a b l e (S t r i n g e x e c u t a b l e) ;
p u b l i c S t r i n g g e t E x e c u t a b l e () ;

p u b l i c vo id s e t D i r e c t o r y (S t r i n g d i r e c t o r y) ;
p u b l i c S t r i n g g e t D i r e c t o r y () ;

p u b l i c vo id se tArguments (S t r i n g arguments) ;
p u b l i c S t r i n g getArguments () ;

p u b l i c vo id s e t S t d O u t p u t (S t r i n g o u t p u t) ;
p u b l i c S t r i n g g e t S t d O u t p u t () ;

p u b l i c vo id s e t S t d I n p u t (S t r i n g i n p u t) ;
p u b l i c S t r i n g g e t S t d I n p u t () ;

p u b l i c vo id s e t S t d E r r o r (S t r i n g e r r o r) ;
p u b l i c S t r i n g g e t S t d E r r o r () ;

p u b l i c vo id se t Coun t (i n t coun t) ;
p u b l i c I n t e g e r ge tCoun t () ;

p u b l i c vo id s e t B a t c h J o b (boo lean boo l) ;
p u b l i c boo lean i s B a t c h J o b () ;

40

p u b l i c vo id s e t R e d i r e c t e d (boo lean boo l) ;
p u b l i c boo lean i s R e d i r e c t e d () ;

p u b l i c vo id s e t L o c a l E x e c u t a b l e (boo lean boo l) ;
p u b l i c boo lean i s L o c a l E x e c u t a b l e () ;

p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , S t r i n g v a l u e) ;
p u b l i c S t r i n g g e t A t t r i b u t e (S t r i n g name) ;
p u b l i c Enumera t ion g e t A l l A t t r i b u t e s () ;

}

TheFileTransferSpecificationprovides the commonly used attributes for file trans-
fers between Grid resources. We note once again that not all attributes are sup-
ported by every Grid implementation.

Listing 7.5: Interface definition for FileTransferSpecification

p u b l i c i n t e r f a c e F i l e T r a n s f e r S p e c i f i c a t i o n
e x t e n d s S p e c i f i c a t i o n

{
p u b l i c vo id s e t S o u r c e S e r v e r (S t r i n g s e r v e r) ;
p u b l i c S t r i n g g e t S o u r c e S e r v e r () ;

p u b l i c vo id s e t D e s t i n a t i o n S e r v e r (S t r i n g s e r v e r) ;
p u b l i c S t r i n g g e t D e s t i n a t i o n S e r v e r () ;

p u b l i c vo id s e t S o u r c e D i r e c t o r y (S t r i n g d i r e c t o r y) ;
p u b l i c S t r i n g g e t S o u r c e D i r e c t o r y () ;

p u b l i c vo id s e t D e s t i n a t i o n D i r e c t o r y (S t r i n g d i r e c t o r y) ;
p u b l i c S t r i n g g e t D e s t i n a t i o n D i r e c t o r y () ;

p u b l i c vo id s e t S o u r c e F i l e (S t r i n g f i l e) ;
p u b l i c S t r i n g g e t S o u r c e F i l e () ;

p u b l i c vo id s e t D e s t i n a t i o n F i l e (S t r i n g f i l e) ;
p u b l i c S t r i n g g e t D e s t i n a t i o n F i l e () ;

p u b l i c vo id s e t S o u r c e (S t r i n g s o u r c e) ;
p u b l i c S t r i n g g e t S o u r c e () ;

p u b l i c vo id s e t D e s t i n a t i o n (S t r i n g d e s t i n a t i o n) ;
p u b l i c S t r i n g g e t D e s t i n a t i o n () ;

p u b l i c vo id s e t D i r e c t o r y T r a n s f e r (boo lean boo l) ;
p u b l i c boo lean i s D i r e c t o r y T r a n s f e r () ;

p u b l i c vo id s e t T h i r d P a r t y (boo lean boo l) ;
p u b l i c boo lean i s T h i r d P a r t y () ;

p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , Ob jec t v a l u e) ;
p u b l i c Ob jec t g e t A t t r i b u t e (S t r i n g name) ;

}

41

Figure 7.2: A TaskGraph can represent multiple levels of hierarchical DAG

7.3.4 TaskGraph

A TaskGraphprovides a building block for expressing complex dependencies be-
tween tasks. All significantly advanced applications require mechanisms to exe-
cute client-side workflows that process the tasks based on user-defined dependen-
cies. Hence, the data structure representing the TaskGraph aggregates a set of Exe-
cutableObjects (Tasks and TaskGraphs) and allows the user to define dependencies
between these tasks. In graph theoretical terms, a TaskGraph provides the artifacts
to express workflows as a hierarchical directed acyclic graph (see Figure7.2). A
TaskGraph can theoretically contain infinite levels of hierarchy. However, practi-
cally it is constrained with the availability of resources (memory) on a particular
system.

Listing 7.6: Interface definition for TaskGraph

p u b l i c i n t e r f a c e TaskGraph e x t e n d s E x e c u t a b l e O b j e c t
{

p u b l i c vo id add (E x e c u t a b l e O b j e c t graphNode) ;
p u b l i c E x e c u t a b l e O b j e c t remove (I d e n t i t y i d) ;
p u b l i c E x e c u t a b l e O b j e c t g e t (I d e n t i t y i d) ;

p u b l i c E x e c u t a b l e O b j e c t [] t oA r ray () ;
p u b l i c Enumera t ion e lem en t s () ;

p u b l i c vo id se tDependency (Dependency dependency) ;
p u b l i c Dependency getDependency () ;
p u b l i c vo id addDependency (I d e n t i t y from , I d e n t i t y t o) ;
p u b l i c boo lean removeDependency (

I d e n t i t y from ,

42

I d e n t i t y t o) ;

p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , Ob jec t v a l u e) ;
p u b l i c Ob jec t g e t A t t r i b u t e (S t r i n g name) ;

p u b l i c vo id a d d S t a t u s L i s t e n e r (S t a t u s L i s t e n e r l i s t e n e r) ;
p u b l i c vo id r e m o v e S t a t u s L i s t e n e r (S t a t u s L i s t e n e r l i s t e n e r) ;

p u b l i c i n t g e t S i z e () ;
p u b l i c boo lean isEmpty () ;
p u b l i c boo lean c o n t a i n s (I d e n t i t y i d) ;

p u b l i c i n t ge tUnsubmi t tedCoun t () ;
p u b l i c i n t ge tSubmi t t edCoun t () ;
p u b l i c i n t ge tAc t i veCoun t () ;
p u b l i c i n t ge tComple tedCount () ;
p u b l i c i n t ge tSuspendedCount () ;
p u b l i c i n t getResumedCount () ;
p u b l i c i n t g e t F a i l e d C o u n t () ;
p u b l i c i n t ge tCance ledCoun t () ;

}

Cog-core provides two additional utility classes that specialize the functionality
of the TaskGraph. TheSetis a special type of TaskGraph with no dependencies.
Intuitively, it represents a bag of tasks that can be executed in parallel. TheQueue
is another specialized TaskGraph that represents a first-in-first-out (FIFO) queue.
The dependencies in a Queue are not set explicitly but are maintained implicitly
based on the addition of a Task to the Queue.

7.3.5 Status

Every ExecutableObject (Task or TaskGraph) has an associated execution status.
An ExecutableObject can be in one of the following status: unsubmitted, submit-
ted, active, suspended, resumed, failed, canceled, and completed. We note that
not every status is supported by every Grid implementation. In other words, for
some Grid implementations it may not be possible to suspend and resume remote
execution.

It is easy to associate a simple Task with one of the above mentioned status. For
example, initially the task is unsubmitted; its status changes to submitted when
it is handled by a handler; its status changes to active when it is being executed
remotely; and so on. However, it is not apparent how a TaskGraph is mapped to
one the supported status. Cog-core uses the following logic to map a TaskGraph to
its appropriate status.

Listing 7.7: Pseudocode to determine the status of a TaskGraph

i f (any Task i n t h e TaskGraph has f a i l e d)
{

s t a t u s = f a i l e d
}
e l s e i f (a l l t a s k s a r e unsubm i t t ed)
{

s t a t u s = unsubm i t t ed
}
e l s e i f (any t a s k i s suspended)

43

{
s t a t u s = suspended

}
e l s e i f (any t a s k i s e i t h e r a c t i v e or resumed)
{

s t a t u s = a c t i v e
}
e l s e i f (any t a s k i s s u b m i t t e d)
{

s t a t u s = s u b m i t t e d
}
e l s e i f (eve ry t a s k i s e i t h e r comple ted or c a n c e l e d)
{

s t a t u s = comple ted
}
e l s e
{

i m p o s s i b l e t o g e t here , t h e above c a s e s t a k e c a r e
o f a l l c o n d i t i o n s .

}

Listing 7.8: Interface definition for Status
p u b l i c i n t e r f a c e S t a t u s
{

p u b l i c s t a t i c f i n a l i n t UNSUBMITTED = 0 ;
p u b l i c s t a t i c f i n a l i n t SUBMITTED = 1 ;
p u b l i c s t a t i c f i n a l i n t ACTIVE = 2 ;
p u b l i c s t a t i c f i n a l i n t SUSPENDED = 3 ;
p u b l i c s t a t i c f i n a l i n t RESUMED = 4 ;
p u b l i c s t a t i c f i n a l i n t FAILED = 5 ;
p u b l i c s t a t i c f i n a l i n t CANCELED = 6 ;
p u b l i c s t a t i c f i n a l i n t COMPLETED = 7 ;

p u b l i c a b s t r a c t vo id s e t S t a t u s C o d e (i n t s t a t u s) ;
p u b l i c a b s t r a c t i n t g e t S t a t u s C o d e () ;
p u b l i c a b s t r a c t vo id s e t P r e v S t a t u s C o d e (i n t s t a t u s) ;
p u b l i c a b s t r a c t i n t g e t P r e v S t a t u s C o d e () ;
p u b l i c a b s t r a c t vo id s e t E x c e p t i o n (Excep t i on e x c e p t i o n) ;
p u b l i c a b s t r a c t Excep t i on g e t E x c e p t i o n () ;
p u b l i c a b s t r a c t vo id se tMessage (S t r i n g message) ;
p u b l i c a b s t r a c t S t r i n g getMessage () ;
p u b l i c vo id se tT ime (Ca lenda r t ime) ;
p u b l i c Ca lenda r getTime () ;

}

7.3.6 Handlers

Cog-core contains theTaskHandlerand theTaskGraphHandler, to process a Task
and a TaskGraph, respectively. Once a Task or a TaskGraph is submitted to the
appropriate handler, the handler interacts with the desired Grid implementation
and accomplishes the necessary tasks. The handlers in cog-core can be viewed
as adaptors that translate the abstract definitions of a Task and TaskGraph into
implementation-specific constructs understood by the backend Grid services. For
example, a GT3 TaskHandler will extract the appropriate attributes from the cog-
core Task and make the necessary calls to the remote Grid service factory, retrieve

44

the Grid service handle, and interact with the newly created service instance. Sym-
metric translations would be done for other Grid implementations. Intuitively, a
handler is specific to the backed implementation and is the only part of cog-core
that needs to be extended for supporting additional Grid implementations. Since
cog-core supports GT2, GT3, and SSH, the appropriate handlers for these are avail-
able. For cog-core to support Unicore, all one needs to do is to add a Unicore
handler.

The TaskHandler provides a simple interface to handle a generic Grid task submit-
ted to it. It is capable of categorizing the tasks and providing the appropriate func-
tionality for it. For example, the task handler will handle a remote job execution
differently than a file transfer request. Cog-core does not impose any restrictions
on the implementation of the task handler as long as its working is transparent to
the end user.

Listing 7.9: Interface definition for TaskHandler

p u b l i c i n t e r f a c e TaskHand ler
{

p u b l i c s t a t i c f i n a l i n t GENERIC = 1 ;
p u b l i c s t a t i c f i n a l i n t GT2 = 2 ;
p u b l i c s t a t i c f i n a l i n t GT3 = 3 ;

p u b l i c vo id se tType (i n t t ype) ;
p u b l i c i n t getType () ;

p u b l i c vo id submi t (Task t a s k)
th rows

I l l e g a l S p e c E x c e p t i o n ,
I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id suspend (Task t a s k)
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id resume (Task t a s k)
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id c a n c e l (Task t a s k)
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id remove (Task t a s k)
th rows Ac t i veTaskExcep t i on ;

p u b l i c Task [] g e t A l l T a s k s () ;
p u b l i c Enumera t ion g e t A c t i v e T a s k s () ;
p u b l i c Enumera t ion g e t F a i l e d T a s k s () ;
p u b l i c Enumera t ion ge tComple tedTasks () ;
p u b l i c Enumera t ion ge tSuspendedTasks () ;
p u b l i c Enumera t ion getResumedTasks () ;
p u b l i c Enumera t ion ge tCance ledTasks () ;

}

45

The TaskGraphHandler provides a similar functionality as the task handler inter-
face. However, it has an additional responsibility of enforcing the dependency on
the graph-like task sets submitted to it. It can be implemented as an advanced work-
flow engine coordinating the execution of tasks on corresponding Grid resources
honoring the user-defined dependencies.

Listing 7.10: Interface definition for TaskGraphHandler
p u b l i c i n t e r f a c e TaskGraphHandler
{

p u b l i c vo id submi t (TaskGraph t a s k g r a p h)
th rows
I l l e g a l S p e c E x c e p t i o n ,
I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id suspend ()
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id resume ()
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id c a n c e l ()
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c Task [] g e t A l l T a s k () ;
p u b l i c Enumera t ion g e t A c t i v e T a s k s () ;
p u b l i c Enumera t ion g e t F a i l e d T a s k s () ;
p u b l i c Enumera t ion ge tComple tedTasks () ;
p u b l i c Enumera t ion ge tSuspendedTasks () ;
p u b l i c Enumera t ion getResumedTasks () ;
p u b l i c Enumera t ion ge tCance ledTasks () ;

}

7.3.7 GridResource

The core module offers an alternate level of abstraction to Grid applications via
its resource model. The resource abstractions in cog-core focus on standardizing
the interactions with Grid resources rather than the mechanisms for task execu-
tion. A GridResource is an abstract entity in cog-core that represents any Grid
entity. It contains an identity and name. Currently, cog-core supports two types of
GridResources: the execution resource and the file resource.

Listing 7.11: Interface definition for GridResource
p u b l i c i n t e r f a c e Gr idResource
{

p u b l i c s t a t i c f i n a l i n t FILE = 1 ;
p u b l i c s t a t i c f i n a l i n t EXECUTION = 2 ;
p u b l i c s t a t i c f i n a l i n t INFORMATION = 3 ;

p u b l i c vo id setName (S t r i n g name) ;
p u b l i c S t r i n g getName () ;

46

p u b l i c vo id s e t I d e n t i t y (I d e n t i t y i d) ;
p u b l i c I d e n t i t y g e t I d e n t i t y () ;

p u b l i c i n t getType () ;
}

Figure 7.3: ExecutionResource Abstractions

7.3.8 ExecutionResource

An ExecutionResource in cog-core represents an abstract Grid entity that maps
multiple Grid services implemented by different providers onto a single Grid re-
source. In other words, without having to worry about the actual physical location
of the services, Grid users can construct their own execution resources mapping
multiple services onto a single resource (See Figure7.3). Grid users can then sub-
mit tasks to this ExecutionResource to be executed on a service represented by the
given provider.

Every execution resource manages its own queue for task scheduling. Further, it
has a specific security context for every provider and a service contact for every
individual service mapped by it.

Listing 7.12: Interface definition for ExecutionResource

p u b l i c i n t e r f a c e Execu t i onResou rcee x t e n d s Gr idResource
{

p u b l i c vo id submi t (E x e c u t a b l e O b j e c t e x e c u t a b l e O b j e c t)
th rows I n v a l i d P r o v i d e r E x c e p t i o n ;

p u b l i c vo id remove (I d e n t i t y i d e n t i t y) ;

p u b l i c vo id se tQueue (Queue queue) ;

47

p u b l i c Queue getQueue () ;

p u b l i c vo id s e t S e r v i c e C o n t a c t (
S t r i n g p r o v i d e r ,
i n t se rv i ceType ,
S e r v i c e C o n t a c t s e r v i c e C o n t a c t) ;

p u b l i c S e r v i c e C o n t a c t g e t S e r v i c e C o n t a c t (
S t r i n g p r o v i d e r ,

i n t s e r v i c e T y p e) ;

p u b l i c vo id s e t S e c u r i t y C o n t e x t (
S t r i n g p r o v i d e r ,
S e c u r i t y C o n t e x t s e c u r i t y C o n t e x t) ;

p u b l i c S e c u r i t y C o n t e x t g e t S e c u r i t y C o n t e x t (
S t r i n g p r o v i d e r) ;

p u b l i c Enumera t ion g e t A l l S u b m i t t e d T a s k s () ;

p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , Ob jec t v a l u e) ;
p u b l i c Ob jec t g e t A t t r i b u t e (S t r i n g name) ;

}

7.3.9 FileResource

The FileResource represents a file server (typically FTP server or GridFTP server).
It provides convenient APIs for managing and accessing files hosted on this re-
source. The FileResource abstraction offers a unified interface to all file hosting
servers. FileResource allows file transfers between the remote server and the local
machine. However, third party file transfers cannot be performed by FileResource
abstraction and requires the task model to accomplish it.

Listing 7.13: Interface definition for FileResource

p u b l i c i n t e r f a c e F i l e R e s o u r c e e x t e n d s Gr idResource
{

/ / s e t t h e h o s t name of t h e remote r e s o u r c e
p u b l i c vo id s e t H o s t (S t r i n g h o s t) ;

p u b l i c S t r i n g ge tHos t () ;

/ / s e t t h e p o r t o f t h e remote r e s o u r c e
p u b l i c vo id s e t P o r t (S t r i n g p o r t) ;

p u b l i c S t r i n g g e t P o r t () ;

/ / The p r o t o c o l i n d i c a t e s i f t h i s i s a
/ / GridFTP r e s o u r c e or FTP r e s o u r c e,
/ / o r a custom F i l e R e s o u r c e
p u b l i c vo id s e t P r o t o c o l (S t r i n g p r o t o c o l) ;

p u b l i c i n t g e t P r o t o c o l () ;

/ / s e t t h e URL of t h e remote r e s o u r c e
p u b l i c vo id setURL (URL u r l)

th rows I l l e g a l H o s t E x c e p t i o n ;

48

p u b l i c URL getURL () ;

/ / s e t t h e a p p r o p r i a t e S e c u r i t y C o n t e x t
p u b l i c vo id s e t S e c u r i t y C o n t e x t (

S e c u r i t y C o n t e x t s e c u r i t y C o n t e x t) ;

p u b l i c S e c u r i t y C o n t e x t g e t S e c u r i t y C o n t e x t () ;

/ / A u t h e n t i c a t e w i th t h e r e s o u r c e and
/ / s t a r t t h e r e s o u r c e f o r command e x e c u t i o n s
p u b l i c vo id s t a r t ()

th rows
I l l e g a l H o s t E x c e p t i o n ,
I l l e g a l P r o t o c o l E x c e p t i o n ,
I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ;

p u b l i c vo id s t o p () ;

/ / e q u i v a l e n t t o cd command
p u b l i c vo id s e t C u r r e n t D i r e c t o r y (S t r i n g d i r e c t o r y)

th rows D i rec to r yNo tFoundExcep t i on ;

p u b l i c S t r i n g g e t C u r r e n t D i r e c t o r y () ;

/ / e q u i v a l e n t t o l s command
p u b l i c Enumera t ion l i s t () ;

p u b l i c Enumera t ion l i s t (S t r i n g d i r e c t o r y)
th rows D i rec to r yNo tFoundExcep t i on ;

/ / e q u i v a l e n t t o mkdir and rmd i r
p u b l i c vo id mkdir (S t r i n g d i r e c t o r y) ;

p u b l i c vo id rmd i r (S t r i n g d i r e c t o r y , boo lean f o r c e)
th rows D i rec to r yNo tFoundExcep t i on ;

/ / e q u i v a l e n t t o rm command
p u b l i c vo id r m f i l e (S t r i n g f i l e)

th rows F i l eNo tFoundExcep t i on ;

/ / e q u i v a l e n t t o cp / copy command
p u b l i c vo id g e t F i l e (

S t r i n g remoteF i lename ,
S t r i n g loca lF i l eName)
th rows F i l eNo tFoundExcep t i on ;

p u b l i c vo id p u t F i l e (
S t r i n g l o c a l F i l e n a m e ,
S t r i n g remoteFi leName)
th rows F i l eNo tFoundExcep t i on ;

/ / e q u i v a l e n t t o t h e mv command
p u b l i c vo id g e t D i r (

S t r i n g remoteDirname ,
S t r i n g loca lD i rName)
th rows D i rec to r yNo tFoundExcep t i on ;

49

p u b l i c vo id p u t D i r (
S t r i n g loca lD i rname ,
S t r i n g remoteDirName)
th rows D i rec to r yNo tFoundExcep t i on ;

/ / changes t h e p e r m i s s i o n s on t h e f i l e
/ / i f a u t h o r i z e d t o do so
p u b l i c vo id chmod (S t r i n g f i l ename , i n t mode)

th rows I l l e g a l M o d e E x c e p t i o n ,
I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ;

p u b l i c vo id makeReadable (
S t r i n g f i l ename ,
boo lean r e a d a b l e)
th rows F i leNo tFoundExcep t ion ,

I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ;

p u b l i c boo lean i s R e a d a b l e (S t r i n g f i l e n a m e)
th rows F i l eNo tFoundExcep t i on ;

p u b l i c vo id makeWr i tab le (
S t r i n g f i l ename ,
boo lean w r i t a b l e)
th rows F i leNo tFoundExcep t ion ,

I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ;

p u b l i c boo lean i s W r i t a b l e (S t r i n g f i l e n a m e)
th rows F i l eNo tFoundExcep t i on ;

p u b l i c vo id s e t L a s t M o d i f i e d (S t r i n g f i l ename ,long t ime)
th rows F i leNo tFoundExcep t ion ,

I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ;

p u b l i c long g e t L a s t M o d i f i e d (S t r i n g f i l e n a m e)
th rows F i l eNo tFoundExcep t i on ;

/ / r e t r i e v e s t h e s i z e o f t h e f i l e name
p u b l i c long s i z e (S t r i n g f i l e n a m e)

th rows F i l eNo tFoundExcep t i on ;

/ / does t h i s f i l e e x i s t on t h e r e s o u r c e?
p u b l i c boo lean e x i s t s (S t r i n g f i l e n a m e)

th rows F i l eNo tFoundExcep t i on ;

/ / i s t h i s f i l e n a m e a d i r e c t o r y
p u b l i c boo lean i s D i r e c t o r y (S t r i n g dirName)

th rows D i rec to r yNo tFoundExcep t i on ;

/ / e x e c u t e s a non− i n t e r a c t i v e workf low of commands
p u b l i c vo id submi t (E x e c u t a b l e O b j e c t commandWorkflow)

th rows I l l e g a l S p e c E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , Ob jec t v a l u e) ;
p u b l i c Ob jec t g e t A t t r i b u t e (S t r i n g name) ;

50

}

7.4 Programmer’s Guide

1. Executing a remote job execution task (7.4.1)

2. Executing a third-party file transfer task (7.4.2)

3. Executing a simple TaskGraph (DAG) (7.4.3)

4. Executing a hierarchical DAG (7.4.4)

5. Writing a custom TaskHandler (7.4.5)

6. Executing tasks on an ExecutionResource (7.4.6)

7.4.1 Executing a Remote Job Execution Task

Executing a remote job becomes extremely simple with cog-core. To begin with,
create a Task with the appropriate attributes.

Listing 7.14: Create a Task object

/∗ C r e a t e a new job submiss ion t a s k named ‘ ‘ myTestTask’ ’ ∗ /
Task t a s k = new TaskImpl (‘ ‘ myTestTask’ ’ , Task . JOBSUBMISSION) ;

/∗ Set t h e d e s i r e d p r o v i d e r . D e f a u l t o p t i o n s a r e
GT2, GT3, or SSH

∗ /
t a s k . s e t P r o v i d e r (‘ ‘GT3’ ’) ;

Then, create a JobSpecification for the task and set the appropriate attributes as per
the task requirements.

Listing 7.15: Create a task specification

/∗ C r e a t e a new J o b S p e c i f i c a t i o n ∗ /
J o b S p e c i f i c a t i o n spec =new J o b S p e c i f i c a t i o n I m p l () ;

/∗ Set t h e l o c a t i o n and name of t h e e x e c u t a b l e.
I f t h e e x e c u t a b l e i s a l o c a l e x e c u t a b l e, t hen
spec. s e t L o c a l E x e c u t a b l e(t r u e)

∗ /
spec . s e t E x e c u t a b l e (‘ ‘ / b in / l s’ ’) ;

/∗ Set t h e arguments (i f any)
f o r t h e e x e c u t a b l e

∗ /
spec . se tArguments (‘ ‘− l a ’ ’) ;

/∗ Set t h e name of t h e f i l e which s e r v e s
as t h e i n p u t t o t h e e x e c u t a b l e

I f t h e i n p u t f i l e needs t o be r e d i r e c t e d
from t h e l o c a l machine, t hen

51

spec. s e t L o c a l E x e c u t a b l e(t r u e)
∗ /
spec . s e t S t d I n p u t (‘ ‘ core− t e s t I n p u t’ ’) ;

/∗ Set t h e name of t h e f i l e t o which t h e remote
o u t p u t must be s t o r e d i n .

I f t h e remote o u t p u t needs t o be r e d i r e c t e d
t o t h e l o c a l machine, t hen
spec. s e t R e d i r e c t e d(t r u e)

I f t h e remote o u t p u t needs t o be man ipu la ted a t
t h e l o c a l machine r a t h e r t han s t o r i n g i t i n a
f i l e , t hen
spec. s e t R e d i r e c t e d(t r u e) ;
spec. s e t S t d O u t p u t(n u l l) ;
The o u t p u t i s now a v a i l a b l e from
t a s k. g e t O u t p u t() ; and can be used
or d i s p l a y e d as d e s i r e d.

∗ /
spec . s e t S t d O u t p u t (‘ ‘ core−t e s t O u t p u t’ ’) ;

/∗ Set t h e e x e c u t i o n mode of t h e job ∗ /
spec . s e t B a t c h J o b (t r u e) ;

/∗ Add a d d i t i o n a l a t t r i b u t e s t h a t a r e no t
p r ov i de d by d e f a u l t . These add on
a t t r i b u t e s w i l l be c o n s i d e r e d by t h e
h a n d l e r on ly i f i t s u p p o r t s i t .

∗ /
spec . s e t A t t r i b u t e (‘ ‘ runCount’ ’ , ‘ ‘546 ’ ’) ;

/∗ Ass ign t h i s s p e c i f i c a t i o n t o t h e t a s k ∗ /
t a s k . s e t S p e c i f i c a t i o n (spec) ;

Next, assign the desired security credentials to the task. This step assumes you
have a valid uses certificate successfully obtained from appropriate certificate au-
thority.

Listing 7.16: Create security credentials

/∗ Since t h e p r o v i d e r i s GT3
c r e a t e a G l o b u s S e c u r i t y C o n t e x t.

I f a non−g lobus s e c u r i t y c o n t e x t i s
r e q u i r e d , t hen use t h e
S e c u r i t y C o n t e x t I m p l c l a s s and s e t t h e
c r e d e n t i a l s as r e q u i r e d by t h e h a n d l e r

∗ /
G l o b u s S e c u r i t y C o n t e x t I m p l s e c u r i t y C o n t e x t =

new G l o b u s S e c u r i t y C o n t e x t I m p l () ;

52

/∗ Ass ign t h e d e f a u l t c r e d e n t i a l s
a v a i l a b l e as a v a l i d proxy c e r t i f i c a t e
whose l o c a t i o n i s s p e c i f i e d i n t h e
cog. p r o p e r t i e s f i l e p r e s e n t i n t h e
\$HOME/ . g lobus d i r e c t o r y

To a s s i g n non−d e f a u l t c r e d e n t i a l s
c r e a t e a GSSCreden t ia l and pass
t h i s GSSCreden t ia l as t h e argument
i n s t e a d of n u l l

∗ /
s e c u r i t y C o n t e x t . s e t C r e d e n t i a l s (n u l l) ;

/∗ Ass ign t h i s s e c u r i t y c r e d e n t i a l t o t h e t a s k ∗ /
t a s k . s e t S e c u r i t y C o n t e x t (s e c u r i t y C o n t e x t) ;

Next, assign a ServiceContact to the task. This attribute defines the location of the
remote Grid resource where the task is to be executed.

Listing 7.17: Create a service contact
S e r v i c e C o n t a c t s e r v i c e =

new S e r v i c e C o n t a c t I m p l (
‘ ‘ h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 0 /
ogsa / s e r v i c e s / base / gram /
Mas te rFo rkManagedJobFac to ryServ i ce’ ’) ;

t a s k . s e t S e r v i c e C o n t a c t (s e r v i c e) ;

Next, create a TaskHandler and submit the task for execution.

Listing 7.18: Create a task handler
TaskHand ler h a n d l e r =new Gener i cTaskHand le r Imp l () ;

t r y
{

h a n d l e r . submi t (t a s k) ;
} c a t c h (I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n i s e)
{

l o g g e r . e r r o r (‘ ‘ S e c u r i t y Excep t i on’ ’ , i s e) ;
System . e x i t (1) ;

} c a t c h (TaskSubmiss ionExcep t ion t s e)
{

l o g g e r . e r r o r (‘ ‘ TaskSubmiss ion Excep t i on’ ’ , t s e) ;
System . e x i t (1) ;

} c a t c h (I l l e g a l S p e c E x c e p t i o n i s p e)
{

l o g g e r . e r r o r (‘ ‘ S p e c i f i c a t i o n Excep t i on’ ’ , i s p e) ;
System . e x i t (1) ;

} c a t c h (I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n i s c e)
{

l o g g e r . e r r o r (‘ ‘ S e r v i c e Con tac t Excep t i on’ ’ , i s c e) ;
System . e x i t (1) ;

}

If it is required to monitor the status of the task (desired in most interactive tasks),
then before submitting the task to a handler subscribe to the task for its status

53

changes.

t a s k . a d d S t a t u s L i s t e n e r (t h i s) ;

If registered to listen to the status notification of the task, implement the sta-
tusChanged() function.

p u b l i c vo id s t a t u s C h a n g e d (S t a t u s E v e n t e v e n t)
{

S t a t u s s t a t u s = e v e n t . g e t S t a t u s () ;

l o g g e r . debug (‘ ‘ S t a t u s changed t o’ ’
+ s t a t u s . g e t S t a t u s C o d e ()) ;

i f (s t a t u s . g e t S t a t u s C o d e () = = S t a t u s .COMPLETED)
{

/∗ Makes s e n s e i f
spec. s e t R e d i r e c t e d(t r u e) ;

spec. s e t S t d O u t p u t(n u l l) ;
∗ /
l o g g e r . debug (‘ ‘ Output = ’ ’

+ t a s k . g e t S t d O u t p u t ()) ;
System . e x i t (1) ;

}
}

7.4.2 Executing a Third-Party File Transfer task

Executing a file transfer is extremely simple with cog-core. To begin with, create
a Task with the appropriate attributes.

Listing 7.19: Create a Task object
/∗ C r e a t e a new f i l e t r a n s f e r t a s k named ‘ ‘ myTestTask’ ’ ∗ /
Task t a s k = new TaskImpl (‘ ‘ myTestTask’ ’ , Task . FILETRANSFER) ;

/∗ Set t h e d e s i r e d p r o v i d e r . D e f a u l t o p t i o n s a r e
GT2, GT3, or SSH

∗ /
t a s k . s e t P r o v i d e r (‘ ‘GT2’ ’) ;

Then, create a FileSpecification for the task and set the appropriate attributes as
per the task requirements.

Listing 7.20: Create a task specification
/∗ C r e a t e a new F i l e S p e c i f i c a t i o n ∗ /
F i l e S p e c i f i c a t i o n spec =new F i l e S p e c i f i c a t i o n I m p l () ;

/∗ Set t h e s o u r c e and d e s t i n a t i o n f i l e s ∗ /
spec . s e t S o u r c e (‘ ‘ g s i f t p :/ / domain: 2 8 1 1 / /home/ f i l e n a m e ’ ’) ;
spec . s e t D e s t i n a t i o n (‘ ‘ g s i f t p :/ / domain: 2 8 1 1 / /home/ f i l e n a m e ’ ’) ;

/∗ I f i t i s a t h i r d p a r t y f i l e t r a n s f e r ∗ /
spec . s e t T h i r d P a r y t (t r u e) ;

/∗ Ass ign t h i s s p e c i f i c a t i o n t o t h e t a s k ∗ /
t a s k . s e t S p e c i f i c a t i o n (spec) ;

54

Next, assign the desired security credentials to the task. This step assumes you
have a valid uses certificate successfully obtained from appropriate certificate au-
thority.

Listing 7.21: Create security credentials

/∗ Since t h e p r o v i d e r i s GT2
c r e a t e a G l o b u s S e c u r i t y C o n t e x t.

I f a non−g lobus s e c u r i t y c o n t e x t i s
r e q u i r e d , t hen use t h e
S e c u r i t y C o n t e x t I m p l c l a s s and s e t t h e
c r e d e n t i a l s as r e q u i r e d by t h e h a n d l e r

∗ /
G l o b u s S e c u r i t y C o n t e x t I m p l s e c u r i t y C o n t e x t =

new G l o b u s S e c u r i t y C o n t e x t I m p l () ;

/∗ Ass ign t h e d e f a u l t c r e d e n t i a l s
a v a i l a b l e as a v a l i d proxy c e r t i f i c a t e
whose l o c a t i o n i s s p e c i f i e d i n t h e
cog. p r o p e r t i e s f i l e p r e s e n t i n t h e
\$HOME/ . g lobus d i r e c t o r y

To a s s i g n non−d e f a u l t c r e d e n t i a l s
c r e a t e a GSSCreden t ia l and pass
t h i s GSSCreden t ia l as t h e argument
i n s t e a d of n u l l

∗ /
s e c u r i t y C o n t e x t . s e t C r e d e n t i a l s (n u l l) ;

/∗ Ass ign t h i s s e c u r i t y c r e d e n t i a l t o t h e t a s k ∗ /
t a s k . s e t S e c u r i t y C o n t e x t (s e c u r i t y C o n t e x t) ;

Note that for GT2 file transfers, there is no need to assign a ServiceContact since
the source and destination file names implicitly contain the remote machine names.
However, for other providers it may be required to specify the ServiceContact.

Listing 7.22: Create a service contact

S e r v i c e C o n t a c t s e r v i c e =
new S e r v i c e C o n t a c t I m p l (‘ ‘ 1 2 7 . 0 . 0 . 1’ ’) ;

t a s k . s e t S e r v i c e C o n t a c t (s e r v i c e) ;

Next, create a TaskHandler and submit the task for execution.

Listing 7.23: Create a task handler

TaskHand ler h a n d l e r =new Gener i cTaskHand le r Imp l () ;
t r y
{

h a n d l e r . submi t (t a s k) ;
} c a t c h (I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n i s e)
{

l o g g e r . e r r o r (‘ ‘ S e c u r i t y Excep t i on’ ’ , i s e) ;
System . e x i t (1) ;

55

} c a t c h (TaskSubmiss ionExcep t ion t s e)
{

l o g g e r . e r r o r (‘ ‘ TaskSubmiss ion Excep t i on’ ’ , t s e) ;
System . e x i t (1) ;

} c a t c h (I l l e g a l S p e c E x c e p t i o n i s p e)
{

l o g g e r . e r r o r (‘ ‘ S p e c i f i c a t i o n Excep t i on’ ’ , i s p e) ;
System . e x i t (1) ;

} c a t c h (I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n i s c e)
{

l o g g e r . e r r o r (‘ ‘ S e r v i c e Con tac t Excep t i on’ ’ , i s c e) ;
System . e x i t (1) ;

}

If it is required to monitor the status of the task (desired in most interactive tasks),
then before submitting the task to a handler subscribe to the task for its status
changes.

t a s k . a d d S t a t u s L i s t e n e r (t h i s) ;

If registered to listen to the status notification of the task, implement the sta-
tusChanged() function.

p u b l i c vo id s t a t u s C h a n g e d (S t a t u s E v e n t e v e n t)
{

S t a t u s s t a t u s = e v e n t . g e t S t a t u s () ;

l o g g e r . debug (‘ ‘ S t a t u s changed t o’ ’
+ s t a t u s . g e t S t a t u s C o d e ()) ;

i f (s t a t u s . g e t S t a t u s C o d e () = = S t a t u s .COMPLETED| |
s t a t u s . g e t S t a t u s C o d e () = = S t a t u s . FAILED)

{
l o g g e r . i n f o (‘ ‘ Task Done’ ’) ;
System . e x i t (1) ;

}
}

7.4.3 Executing a Simple TaskGraph (DAG)

To create a TaskGraph, we assume that we have created three tasks: task1, task2,
and task3. Instructions for creating job submission and file transfer tasks are avail-
able in the previous sections (7.4.1and7.4.2). We then create a TaskGraph and
add a dependency between these tasks.

Listing 7.24: Create a TaskGraph with a dependency
TaskGraph t g =new TaskGraphImpl () ;

/∗ Give a c o n v e n i e n t name t o t h e TaskGraph ∗ /
t g . setName (‘ ‘ t e s t G r a p h’ ’) ;

/∗ Add t h e t a s k s t o t h e TaskGraph ∗ /
t g . add (t a s k 1) ;
t g . add (t a s k 2) ;

56

t g . add (t a s k 3) ;

/∗ Add d e p e n d e n c i e sbetween t h e s e t a s k s.

Dependency i s added as
t a s k 1−−> t a s k 2−−> t a s k 3.

Th is i m p l i e s t a s k 1 i s ex ec u t ed b e f o r e t a s k 2
and t a s k 2 i s ex ec u t ed b e f o r e t a s k 3.

∗ /
t g . addDependency (t a s k 1 . g e t I d e n t i t y () ,

t a s k 2 . g e t I d e n t i t y ()) ;

t g . addDependency (t a s k 2 . g e t I d e n t i t y () ,
t a s k 3 . g e t I d e n t i t y ()) ;

Next, create a TaskGraphHandler and submit the task for execution.

Listing 7.25: Create a task graph handler

TaskGraphHandler h a n d l e r =new TaskGraphHandler Impl () ;
t r y
{

h a n d l e r . submi t (t g) ;
} c a t c h (I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n i s e)
{

l o g g e r . e r r o r (‘ ‘ S e c u r i t y Excep t i on’ ’ , i s e) ;
System . e x i t (1) ;

} c a t c h (TaskSubmiss ionExcep t ion t s e)
{

l o g g e r . e r r o r (‘ ‘ TaskSubmiss ion Excep t i on’ ’ , t s e) ;
System . e x i t (1) ;

} c a t c h (I l l e g a l S p e c E x c e p t i o n i s p e)
{

l o g g e r . e r r o r (‘ ‘ S p e c i f i c a t i o n Excep t i on’ ’ , i s p e) ;
System . e x i t (1) ;

} c a t c h (I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n i s c e)
{

l o g g e r . e r r o r (‘ ‘ S e r v i c e Con tac t Excep t i on’ ’ , i s c e) ;
System . e x i t (1) ;

}

If it is required to monitor the status of the task graph (desired in most interactive
task graphs), then before submitting the task graph to a handler subscribe to the
task graph for its status changes.

t g . a d d S t a t u s L i s t e n e r (t h i s) ;

If registered to listen to the status notification of the task graph, implement the
statusChanged() function.

p u b l i c vo id s t a t u s C h a n g e d (S t a t u s E v e n t e v e n t)
{

S t a t u s s t a t u s = e v e n t . g e t S t a t u s () ;

l o g g e r . debug (‘ ‘ S t a t u s changed t o’ ’

57

+ s t a t u s . g e t S t a t u s C o d e ()) ;

i f (s t a t u s . g e t S t a t u s C o d e () = = S t a t u s .COMPLETED| |
s t a t u s . g e t S t a t u s C o d e () = = S t a t u s . FAILED)

{
l o g g e r . i n f o (‘ ‘ Task Graph Done’ ’) ;
System . e x i t (1) ;

}
}

7.4.4 Executing a Hierarchical TaskGraph

To create a hierarchical TaskGraph, we assume that we have created three tasks and
1 TaskGraph: task1, task2, task3, and tg. Instructions for creating job submission
and file transfer tasks and simple TaskGraphs are available in the previous sec-
tions (7.4.1, 7.4.2, and7.4.3). We then create a TaskGraph and add a dependency
between these ExecutableObjects.

Listing 7.26: Create a TaskGraph with a dependency

TaskGraph h tg =new TaskGraphImpl () ;

/∗ Give a c o n v e n i e n t name t o t h e TaskGraph ∗ /
h tg . setName (‘ ‘ t e s t G r a p h’ ’) ;

/∗ Add t h e E x e c u t a b l e O b j e c t st o t h e TaskGraph ∗ /
h tg . add (t a s k 1) ;
h tg . add (t a s k 2) ;
h tg . add (t a s k 3) ;
h tg . add (t g) ;

/∗ Add d e p e n d e n c i e sbetween t h e s e E x e c u t a b l e O b j e c t s.

Dependency i s added as
t a s k 1−−> t a s k 2−−> t a s k 3−−> t g .

Th is i m p l i e s t a s k 1 i s ex ec u t ed b e f o r e t a s k 2
and t a s k 2 i s ex ec u t ed b e f o r e task3 , and
t a s k 3 i s ex ec u t ed b e f o r e TaskGraph t g .

∗ /
h tg . addDependency (t a s k 1 . g e t I d e n t i t y () ,

t a s k 2 . g e t I d e n t i t y ()) ;

h tg . addDependency (t a s k 2 . g e t I d e n t i t y () ,
t a s k 3 . g e t I d e n t i t y ()) ;

h tg . addDependency (t a s k 3 . g e t I d e n t i t y () ,
t g . g e t I d e n t i t y ()) ;

Next, create a TaskGraphHandler and submit the task for execution.

Listing 7.27: Create a task graph handler

TaskGraphHandler h a n d l e r =new TaskGraphHandler Impl () ;

58

t r y
{

h a n d l e r . submi t (h tg) ;
} c a t c h (I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n i s e)
{

l o g g e r . e r r o r (‘ ‘ S e c u r i t y Excep t i on’ ’ , i s e) ;
System . e x i t (1) ;

} c a t c h (TaskSubmiss ionExcep t ion t s e)
{

l o g g e r . e r r o r (‘ ‘ TaskSubmiss ion Excep t i on’ ’ , t s e) ;
System . e x i t (1) ;

} c a t c h (I l l e g a l S p e c E x c e p t i o n i s p e)
{

l o g g e r . e r r o r (‘ ‘ S p e c i f i c a t i o n Excep t i on’ ’ , i s p e) ;
System . e x i t (1) ;

} c a t c h (I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n i s c e)
{

l o g g e r . e r r o r (‘ ‘ S e r v i c e Con tac t Excep t i on’ ’ , i s c e) ;
System . e x i t (1) ;

}

If it is required to monitor the status of the task graph (desired in most interactive
task graphs), then before submitting the task graph to a handler subscribe to the
task graph for its status changes.

h tg . a d d S t a t u s L i s t e n e r (t h i s) ;

If registered to listen to the status notification of the task graph, implement the
statusChanged() function.

p u b l i c vo id s t a t u s C h a n g e d (S t a t u s E v e n t e v e n t)
{

S t a t u s s t a t u s = e v e n t . g e t S t a t u s () ;

l o g g e r . debug (‘ ‘ S t a t u s changed t o’ ’
+ s t a t u s . g e t S t a t u s C o d e ()) ;

i f (s t a t u s . g e t S t a t u s C o d e () = = S t a t u s .COMPLETED| |
s t a t u s . g e t S t a t u s C o d e () = = S t a t u s . FAILED)

{
l o g g e r . i n f o (‘ ‘ Task Graph Done’ ’) ;
System . e x i t (1) ;

}
}

7.4.5 Writing a Custom TaskHandler

To write a custom TaskHandler, create a class, say foo.bar.MyHandler, that imple-
ments the org.globus.cog.core.interfaces.TaskHandler interface.

To successfully execute an ExecutableObject with this custom handler you need
to associate this handler with a provider name, say “MyProvider”. Provide the
mapping between the provider name and the class name using the cog.properties
file. Instructions for adding an entry in the cog.properties file is available in Section
8.2.3. Hence, we add the following entry in the cog.properties file:

59

MyProvider = foo.bar.MyHandler

Now, in order to use this handler with any ExecutableObject, simply associate that
ExecutableObject with the provider “MyProvider”.

task.setProvider(‘‘MyProvider’’);

7.4.6 Executing Tasks on an ExecutionResource

To execute tasks on a customized execution resource, you need to first create
an ExecutionResource and register the security contexts and service contacts for
providers supported by this resource.

Listing 7.28: Create an execution resource

/∗ C r e a t e an Execu t i on Resource a s s i g n i n g i t a
user−d e f i n e d name

∗ /
Execu t i onResou rce r e s o u r c e =new Execu t i onResou rce Imp l (

” myGridResource”) ;

/∗ For each p r o v i d e r r e g i s t e r a s e c u r i t y c o n t e x t ∗ /
o rg . g lobus . cog . co re . impl . g t2 . G l o b u s S e c u r i t y C o n t e x t I m p l

g t 2 s e c u r i t y = new
org . g lobus . cog . co re . impl . g t2 . G l o b u s S e c u r i t y C o n t e x t I m p l () ;

/∗ s e l e c t s t h e d e f a u l t c r e d e n t i a l s∗ /
s e c u r i t y C o n t e x t . s e t C r e d e n t i a l s (n u l l) ;
t h i s . r e s o u r c e . s e t S e c u r i t y C o n t e x t (” GT2” , g t 2 s e c u r i t y) ;

o rg . g lobus . cog . co re . impl . g t3 . G l o b u s S e c u r i t y C o n t e x t I m p l
g t 3 s e c u r i t y = new

org . g lobus . cog . co re . impl . g t3 . G l o b u s S e c u r i t y C o n t e x t I m p l () ;

/∗ s e l e c t s t h e d e f a u l t c r e d e n t i a l s∗ /
s e c u r i t y C o n t e x t . s e t C r e d e n t i a l s (n u l l) ;
r e s o u r c e . s e t S e c u r i t y C o n t e x t (” GT3” , g t 3 s e c u r i t y) ;

/∗ R e g i s t e r t h e s e r v i c e c o n t a c t f o r eve ry
‘ ‘ p r o v i d e r−s e r v i c e T y p e’ ’ comb ina t i on

∗ /

/∗ s e t t h e s e r v i c e c o n t a c t f o r GT2 job e x e c u t i o n ∗ /
S e r v i c e C o n t a c t g t2Exec =

new S e r v i c e C o n t a c t I m p l (” ho t . mcs. a n l . gov:5224”) ;
r e s o u r c e . s e t S e r v i c e C o n t a c t (

” GT2” ,
Task . JOBSUBMISSION ,
gt2Exec) ;

60

/∗ s e t t h e s e r v i c e c o n t a c t f o r GT3 job e x e c u t i o n ∗ /
S e r v i c e C o n t a c t g t3Exec =

new S e r v i c e C o n t a c t I m p l (” h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 /serv iceURL”) ;
r e s o u r c e . s e t S e r v i c e C o n t a c t (

” GT3” ,
Task . JOBSUBMISSION ,
gt3Exec) ;

/∗ s e t t h e s e r v i c e c o n t a c t f o r GT2 f i l e t r a n s f e r
t h i s can be n u l l s i n c e a s e r v e r i s no t r e q u i r e d f o r
t h i r d p a r t y t r a n s f e r s

∗ /
S e r v i c e C o n t a c t g t 2 T r a n s f e r =

new S e r v i c e C o n t a c t I m p l (n u l l) ;
r e s o u r c e . s e t S e r v i c e C o n t a c t (

” GT2” ,
Task . FILETRANSFER ,
g t 2 T r a n s f e r) ;

/∗ S i m i l a r l y s e t s e r v i c e c o n t a c t s f o r GT3 f i l e t r a n s f e r
o r any o t h e r s e r v i c e as r e q u i r e d

∗ /

We note that it is not necessary to register service contacts and security contexts
for every provider. However, attempts to execute tasks for unregistered providers
will result in errors.

Next step is to prepare tasks/task-graphs to be executed. Instructions for creating
job submission and file transfer tasks and task graphs are available in the previous
sections (7.4.1, 7.4.2, 7.4.4). It is not necessary to associate any security context
and service contact with these tasks. These values will be automatically assigned
by the ExecutionResource based on the provider attribute of the task. Assuming
we create two tasks namely task1 and task2, we can execute them by submitting
them to the execution resource.

Listing 7.29: Submit tasks to the execution resource

r e s o u r c e . submi t (t a s k 1) ;
r e s o u r c e . submi t (t a s k 2) ;

If it is required to monitor the status of the tasks/task-graphs submitted to the ex-
ecution resource, then before submitting the task to the resource subscribe to the
task graph for its status changes.

t a s k . a d d S t a t u s L i s t e n e r (t h i s) ;

If registered to listen to the status notification of the task, implement the sta-
tusChanged() function.

p u b l i c vo id s t a t u s C h a n g e d (S t a t u s E v e n t e v e n t)
{

E x e c u t a b l e O b j e c t eo = e v e n t . g e t S o u r c e () ;
l o g g e r . debug (eo . getName ()) ;
S t a t u s s t a t u s = e v e n t . g e t S t a t u s () ;
l o g g e r . debug (

61

” S t a t u s o f ”
+ eo . getName ()
+ ” changed t o : ”
+ s t a t u s . g e t S t a t u s C o d e ()) ;

}

62

8 GridAnt

This chapter focuses on a client-side workflow management system that can or-
chestrate simple task dependencies1. It gives an overview of process workflows
and workflow engines. It further describes the applicability of a client-side work-
flow system for Grid technologies and introduces the functionality of theGridAnt
workflow system. It provides detailed instructions for the user to install the Gri-
dAnt system and other dependent packages. An introductory set of examples is
discussed that helps the end-user to understand the working of the GridAnt sys-
tem.

8.1 Introduction

Significant research has been conducted in recent years to automate complex busi-
ness tasks using sophisticated workflow management tools. Such tools are ex-
tremely useful in expressing complicated business activities as a set of independent
work units and orchestrating a series of dependencies across these units. In other
words, a workflow management system helps in combining a set of specialized
tasks by expressing intricate dependencies between these tasks and exposing them
as a single complex activity. To the heart of any workflow system is the workflow
engine. The workflow engine is a central controller that handles task dependencies,
failure recoveries, performance analysis and process synchronization. Most of the
work done in workflow management systems concentrate on the business aspects
of the workflow. Little consideration is given to the needs of the client in terms
of mapping the process flow of the client. In the Grid community it is essential
that the Grid-users have such a tool available to their disposal that enable them to
orchestrate complex workflows on the fly without substantial help from the service
providers. At the same time it is also important that such a workflow system does
not burden the Grid-user with the intricacies of the workflow system.

With the perspective of the Grid-user in mind, a simple yet powerful client-side
workflow management system has been developed and is named asGridAnt. Gri-
dAnt which makes use of commodity technologies such asApache Antand XML.
GridAnt uses Apache Ant as its workflow engine. Apache Ant is a popular build
tool that is extensively used in the Java community. Its current functionality allows
the management of complex dependencies and task flows within the project build
process. We extend the functionality of Apache Ant by providing customized Ant
tasks to access the Grid.

GridAnt is not claimed as a substitution for more sophisticated and powerful work-
flow engines that map complex business processes. Nevertheless, applications with
simple process flows tightly integrated to work with the Grid technology can ben-
efit from GridAnt without having to endure any complex workflow architectures.
The philosophy adopted by the GridAnt project is to use the workflow engine avail-
able with Apache Ant and develop a Grid workflow vocabulary on top of it.

1 For an advanced Grid workflow management system please see Section9 dedicated to the Karajan
Workflow Framework

63

GridAnt tasks are built on top of cog-core (see Section7), thus they have the ability
to submit Grid tasks multiple Grid providers (GT2 and GT3).

8.2 Installation

8.2.1 Download

The Java CoG Kit GridAnt module can be downloaded from the Java CoG Kit
CVS archive. Instructions regarding the Java CoG Kit requirements and details on
obtaining the Java CoG Kit sources are available in Section4.

We note that GridAnt is explicitly a client-side library. The current version of
GridAnt provides support for GT2 and GT3. Hence, in order to execute tasks
against these implementations, the reader is directed to install GT2.4 and GT3.0.2.
For further details on installing the Globus Toolkit please visit the Globus Alliance
Web pagehttp://www.globus.org .

8.2.2 Compile

To compile the GridAnt module, change the directory tocog/modules/gridant and
type ’ant dist’. This will compile GridAnt and all its dependencies. It will also
create adist directory containing the distribution of the GridAnt module.

8.2.3 Configuration

Due to problems with the inability of Apache Ant classloaders to load signed jars,
it is required that the user explicitly include all the necessary jar files in their class-
path. This can be done by sourcing the gridant-setenv script from the dist/gridant-
1.0/bin directory.

$ cd dist/gridant-1.0/bin
$ source gridant-setenv

Further, in order to execute the GridAnt tasks it is required to actually define these
tasks.

< t a s k d e f name=’ ’ cog−s e t u p’ ’
c lassname =’ ’ o rg . g lobus . cog . g r i d a n t . t a s k s . Gr idSe tup’ ’
c l a s s p a t h r e f =’ ’ c l a s s p a t h’ ’ />

< t a s k d e f name=’ ’ g r i d−a u t h e n t i c a t e’ ’
c lassname =’ ’ o rg . g lobus . cog . g r i d a n t . t a s k s . G r i d A u t h e n t i c a t e’ ’
c l a s s p a t h r e f =’ ’ c l a s s p a t h’ ’ />

< t a s k d e f name=’ ’ g r i d−e x e c u t e’ ’
c lassname =’ ’ o rg . g lobus . cog . g r i d a n t . t a s k s . Gr idExecu te’ ’
c l a s s p a t h r e f =’ ’ c l a s s p a t h’ ’ />

< t a s k d e f name=’ ’ g r i d−copy’ ’
c lassname =’ ’ o rg . g lobus . cog . g r i d a n t . t a s k s . GridCopy’ ’
c l a s s p a t h r e f =’ ’ c l a s s p a t h’ ’ />

The gridant.xml file provides a detailed example of how to define and use these
tasks.

64

http://www.globus.org

8.3 GridAnt Tasks

The following is a partial list of GridAnt tasks that are currently available in the
GridAnt module.

cog-setup : The Grid environment setup.

grid-authenticate : Initializes the proxy certificate to be used by clients.

grid-execute : Executes an arbitrary Grid job on a remote Grid resource.

grid-copy : Transfers file between Grid resources.

This is a tentative list and is by no means final. The initial prototype for GridAnt
has the functionality for job submission and file transfer. Other tasks are under
development. We release the current version as a technology preview in order to
obtain feedback and to engage the community in its further development.

8.3.1 cog-setup

The cog-setup task is a utility task that assists in the quick setup of the Java CoG
Kit environment on the client machine. It invokes the cog-setup component that
allows the users to specify several parameters including their user certificates and
user keys.

8.3.2 grid-authenticate

The grid-authenticate task is a utility task that invokes a gui allowing the users to
instantiate their grid proxy certificates.

8.3.3 grid-execute

The grid-execute task executes an arbitrary job on a Grid resource. It requires the
following input parameters (∗ specifies a mandatory argument).

provider∗ : Specifies the backend Grid provider for the submission of this job. Available
options are GT2 and GT3.

server∗ : Specifies the location of the remote job execution service for the given provider.

xmlsecurity : Specifies the XML security parameters (only for GT3 provider). Valid op-
tions arexmlsigandxmlencfor XML signature and XML encryption respec-
tively. The default is XML signature.

delegation : Specifies the parameters for credential delegation for GSI security. Valid
options arefull, partial, andnonefor full delegation, partial delegation and
no delegation respectively. The default is no delegation.

executable∗ : Specifies the command to be executed on the Grid resource.

localExecutable : A boolean flag that specifies if the executable resides on the client machine.
If true, the executable will be automatically staged from the client machine.
The default isfalse.

arguments : Specifies the arguments to be provided with the executed command

directory : Specifies the remote working directory in which the command is to be exe-
cuted

65

environment : Specifies the environment variables to be set prior to the execution of the
command.

stdoutput : Specifies the file name to which the output must be redirected. If left blank
or not specified, the output is streamed to the standard output. By default
output is streamed to the standard output.

stderror : Specifies the file name to which the error messages must be redirected. If
left blank, the errors are streamed to the standard error. By default the errors
are streamed to the standard error.

stdinput : Specifies the file name from which the input must be extracted. In the current
version staging of input files is not supported.

redirect : A boolean flag that specifies if the output and error streams are to be redi-
rected to the client. Default value istrue.

batch : A boolean flag that specifies if the remote execution is to occur in batch
mode. If true, the client will not be notified of any status changes on the
server side. It is the responsibility of the client to obtain the final output
from the server by some offline (asynchronous) mechanism. If false, the
client will interactively receive status notifications from the server as well as
the final output or error. Default value is false.

For example, to remotely execute a job on a GT2 resource, sayhot.anl.gov, in
batch mode:

<g r i d E x e c u t e
p r o v i d e r =” GT2”
s e r v e r =” ho t . a n l . gov”
d e l e g a t i o n =” f u l l ”
e x e c u t a b l e =” / b in / l s ”
a rguments =”− l ”
d i r e c t o r y =” / home/ amin”
s t d o u t p u t =” myOutput. t x t ”
s t d e r r o r =” myError . t x t ”
r e d i r e c t =” f a l s e”
b a t c h =” t r u e”

/>

8.3.4 grid-copy

The grid-copy task performs file transfers between grid resources. For GT2 provider,
it supports direct as well as third party transfers between the client machine and
GridFTP servers. For GT3 provider, it only supports third party file transfers be-
tween GridFTP servers using the reliable file transfer service of GT3.0.2. This task
requires the following input arguments (∗ specifies a mandatory arguments).

provider∗ : Specifies the backend Grid provider for the file transfer. Available options
are GT2 and GT3.

server∗ : Specifies the location of the remote file transfer service for the given provider
(not required for the GT2 provider).

xmlsecurity : Specifies the XML security parameters (only for GT3 provider). Valid op-
tions arexmlsigandxmlencfor XML signature and XML encryption respec-
tively. The default is XML signature.

66

delegation : Specifies the parameters for credential delegation for GSI security. Valid
options arefull, partial, andnonefor full delegation, partial delegation and
no delegation respectively. The default is no delegation.

source∗ : Specifies the url of the source file to be copied.

destination∗ : Specifies the url of the destination file.

parallelStreams : Specifies the number of parallel TCP streams desired for the file transfer.
Default is1.

tcpbuffer : Specifies the TCP buffer size desired for the file transfer. Default is16000.

blockSize : Specifies the transfer block size desired for the file transfer. Default is16000.

thirdparty : A boolean flag indicating if this is a third party file transfer. Default is true.

dcau : A boolean flag indicating if data channel authentication is enabled. Default
is true.

For example, to transfer from a GridFTP serverhot.anl.govto another GridFTP
cold.anl.govusing the GT3 reliable file transfer service at
http://rft.anl.gov:8080/.../RFTFactoryService:

<gr idCopy
p r o v i d e r =” GT3”
s e r v e r = ” h t t p : / / r f t . a n l . gov:8080/ . . . / RFTFac to ryServ i ce”
x m l s e c u r i t y =” xmlenc”
d e l e g a t i o n =” f u l l ”
s o u r c e =” g s i f t p : / / ho t . a n l . gov / home/ amin/ from . t x t ”
d e s t i n a t i o n =” g s i f t p : / / co l d . a n l . gov / home/ amin/ t o . t x t ”
p a r a l l e l S t r e a m s =” 3”
t c p b u f f e r =” 32000”

/>

8.4 Workflow Example

This sections demonstrates the sequence of tasks required to execute a simple
Grid workflow. Lets assume you want to transfer a fileinput.txt from a Grid re-
sourcehot.anl.govto another Grid resourcecold.anl.gov. Then execute the pro-
grammyJobon cold.anl.gov with GT2 provider and input.txt as its input andout-
put.txtas its output. Finally, you want to transfer the output.txt back to hot.anl.gov.

< t a r g e t name=” workf low ”>
<s e q u e n t i a l>

<!−− Setup t h e Gr id env i ronment−−>
<cog−s e t u p />

<!−− I n i t i a l i z e t h e Gr id proxy c e r t i f i c a t e −−>
<gr id−a u t h e n t i c a t e />

<!−− T r a n s f e r t h e i n p u t f i l e −−>
<gr id−copy

p r o v i d e r =” GT2”
d e l e g a t i o n =” p a r t i a l ”
s o u r c e =

” g s i f t p : / / ho t . a n l . gov:1111/ / home/ amin/ i n p u t . t x t ”

67

d e s t i n a t i o n =
” g s i f t p : / / co l d . a n l . gov:2222/ / home/ amin/ i n p u t . t x t ”

p a r a l l e l s t r e a m s =” 1”
t c p b u f f e r =” 32000” />
t h i r d p a r t y =” t r u e” />

<!−− Execute t h e job −−>
<gr id−e x e c u t e

p r o v i d e r =” GT2”
s e r v e r =” co ld . a n l . gov:3333”
d e l e g a t i o n =” p a r t i a l ”
e x e c u t a b l e =” myJob”
arguments =” ”
d i r e c t o r y =” ”
env i ronment =” ”
l o c a l E x e c u t a b l e =” f a l s e”
r e d i r e c t =” f a l s e”
s t d i n p u t =” i n p u t . t x t ”
s t d o u t p u t =” o u t p u t. t x t ”
s t d e r r o r =” ” />

<!−− T r a n s f e r t h e o u t p u t f i l e −−>
<gr id−copy

p r o v i d e r =” GT2”
d e l e g a t i o n =” p a r t i a l ”
s o u r c e =

” g s i f t p : / / co l d . a n l . gov:2222/ / home/ amin/ o u t p u t. t x t ”
d e s t i n a t i o n =

” g s i f t p : / / ho t . a n l . gov:1111/ / home/ amin/ o u t p u t. t x t ”
p a r a l l e l s t r e a m s =” 1”
t c p b u f f e r =” 32000” />
t h i r d p a r t y =” t r u e” />

< / s e q u e n t i a l>
< / t a r g e t>

68

9 Karajan

Karajan is a Grid parallel task management language and an execution engine. It
aims to provide the scientific community with an easy-to-use tool to define com-
plex jobs on computational Grids, while keeping scalability and offering some ad-
vanced features, such as failure handling, checkpointing, dynamic execution, and
distributed execution.

Specifications in Karajan are defined by using a structured language based on XML
and is extensible through Java. The building block of the language is the element,
which loosely translates into an XML element/container. Various elements are
included, such as elements for parallel processing, parallel iterators, and Grid el-
ements (i.e., job submission and file transfer). Common tasks can be grouped by
using templates, and can be reused from multiple locations.

The execution engine in Karajan is based on an event model, which allows effec-
tive separation between the specification and the runtime state. Elements react to
events received from other elements and generate their own events. These events
provide notification of status changes within the execution or can be used to con-
trol the execution of elements. The complete runtime state is contained within the
events, which allows the elements themselves to exist on different resources. This
mechanism also allows an external controller, which has access to these events, to
completely control the execution. It also allows a certain level of modification to
the elements to be performed, at runtime, without affecting the execution of other
elements.

As an example, suppose a large job requires a transfer of the resulting data, after
the completion of all calculations. Also suppose the specification of the transfer
points to a non-existing resource as the destination for the data. The transfer will
fail. A tool can be used to intercept the failure notification and present the user
with a visual message. The user can then modify the bogus specification, after
which the particular failing element can be restarted by using the state present in
the failure event.

9.1 Installation

9.1.1 Obtaining the Source Code

Karajan can be downloaded from the Java CoG Kit CVS archive. Instructions
regarding the Java CoG Kit requirements and details on obtaining the Java CoG
Kit sources are available in Section4.

9.1.2 Compiling Karajan

Change directory tocog/modules/karajan and type ’ant dist’. This will compile
Karajan and all its dependencies. It will also create adist directory containing the
distribution of Karajan. Inside thedist directory, thebin directory will contain the
necessary scripts that can be used to launch Karajan.

69

9.2 Using Karajan

There are two interfaces to Karajan:

1. The command line interface, accessible throughbin/karajanprovides a very
simple interface, which is mainly non-interactive and does not provide feed-
back on the execution.

2. The graphical interface, which can be started throughbin/karajan-gui, can
display a graphical representation of the workflow and other progress infor-
mation and statistics. It also allows a certain level of interaction.

9.2.1 Command Line Interface

The command line interface allows you to start the execution of a specification.
The syntax is very simple:

>./karajan spec.xml

Karajan will then try to load, parse, and execute the indicated specification. Any
resulting messages will be printed on the console.

9.2.2 Graphical Interface

The graphical interface allows for additional interaction with the execution engine.
It can be started usingbin/karajan-gui. The following command line options are
supported:

-help: Displays a brief usage summary

-load filename: Can be used to load a script upon starting

-run : Used in conjunction with-load, will immediately start the execution.

When the interface is started without any parameters, an empty view is presented
(Figure9.1).

Figure 9.1: An empty Karajan desktop

70

The File->Open menu item can be used to load a script. After the script is loaded,
a graph that represents the control flow of the loaded specification will be drawn.
An example can be seen in Figure9.2.

Figure 9.2: A script was loaded

The execution can be started by pressing theStart button located on the toolbar.
Once it is started, the status of each node will be visible as an overlayed image
over the node icon. The following states exist:

None : The node has not yet been executed

Running () : The node is being executed

Completed () : The node completed execution successfully

Failed () : Execution of the node failed

Breakpoint () : A breakpoint was set on the node

Paused () : The execution was paused at the current node, possibly because of a break-
point being set on the node

Setting A Breakpoint

Breakpoints can be set by using a node’s context menu. Clicking on a node with
the right mouse button will pop up the menu, as it can be seen in Figure9.3

Whenever the execution reaches the node where a breakpoint was set, a message
dialog will pop up, and the execution of the specific thread/branch where the node
is located will be suspended (see Figure9.4).

The execution can then be resumed by using the context menu of the node (acces-
sible by right-clicking on the node). In the case of a paused node, an item that will
resume the execution will be present in the menu (see Figure9.5).

71

Figure 9.3: The node context menu

Error Handling

Errors that may occur during the execution, which are not explicitly handled in
the specification, will result in a dialog window that provides several options for
dealing with the error. A sample error dialog is presented in Figure9.6.

Each error option provided by the error dialog is described below:

Abort : Passes the error to the execution engine, which will result in an error message
dump on the console and the immediate termination of the execution.

Ignore : Completely ignores the error as if it has never occurred.

Restart : Restarts the failed node. You can also specify the number of times that the
node will be restarted before the execution is aborted.

Apply to all errors of this type : Whenever an identical error occurs on any node, the same action will be
applied automatically.

Apply to all errors for this element : All other errors that occur on the node will automatically be treated with the
same action.

9.3 Language Specification

The Karajan specifications are written in an XML based language. Extensive in-
formation about XML is available fromhttp://www.w3.org/XML . XML has
the advantage of a very strict and well defined structure.

9.3.1 Concepts

Elements

The building block of a Karajan specification is an XML element. The structure
of Karajan specifications is very similar to that of structured languages (such as C,

72

http://www.w3.org/XML

Figure 9.4: A Breakpoint Was Reached

Java, or Pascal). Most elements can also act as containers for other elements. Each
element performs a specific function, or describes how contained elements relate
to each other.

Variables

Variables can be used in Karajan to store temporary values, values that can change
and appear often in the specification, as counters for iterators, and so forth.

Defining Variables Variables can be defined explicitly by using thesetvar(9.8.54)

element, which takes two attributes:nameandvalue. The following example as-
signs the valueblah to the variable namedvariable1:

<s e t v a r name=” v a r i a b l e 1” v a l u e =” b lah” />

If the valueattribute is not specified,setvar (9.8.54) will use the value of the default
return variable ($). This can be used for getting values from functions1:

<s e t v a r name=” v a r i a b l e 2”>
<!−− r ead t h e c o n t e n t s o f / tmp/ e x i t c o d e −−>
< r e a d F i l e name=” / tmp/ e x i t c o d e” />

< / s e t v a r>

Variable Expansion Variables can be expanded inside element attributes by en-
closing them inside curly brackets. Nested expansion is also possible, but must be
used with care.

Examples:

1 more about functions in Section??

73

Figure 9.5: Resuming execution

1.
<s e t v a r name=” v a r i a b l e 1” v a l u e =” b lah” />
<echo message=” v a r i a b l e 1={ v a r i a b l e 1} ” />

2.
<!−− v a r i a b l e 2 i s no t d e f i n e d; t h e v a l u e w i l l no t be −−>
<!−− expanded −−>
<s e t v a r name=” v a r i a b l e 1” v a l u e =” { v a r i a b l e 2} ” />

<s e t v a r name=” v a r i a b l e 2” v a l u e =” b lah” />

<!−− a t t h i s po in t , bo th v a r i a b l e 1 and v a r i a b l e 2 −−>
<!−− a r e d e f i n e d −−>
<!−− t h e f i r s t expans ion w i l l e v a l u a t e v a r i a b l e 1 t o −−>
<!−− { v a r i a b l e 2} −−>
<!−− t h e second expans ion w i l l e v a l u a t e v a r i a b l e 2 t o −−>
<!−− ” b l ah” −−>
<echo message=” { v a r i a b l e 1} ” />

3.
<s e t v a r name=” v a r i a b l e 2” v a l u e =” b lah” />

<!−− v a r i a b l e 2 i s now d e f i n e d −−>
<!−− v a r i a b l e 1 w i l l be a s s i g n e d t h e v a l u e o f ” b l ah” −−>
<!−− d i r e c t l y −−>
<s e t v a r name=” v a r i a b l e 1” v a l u e =” { v a r i a b l e 2} ” />

<echo message=” { v a r i a b l e 1} ” />

All three examples will print the same value:blah

The Scope of Variables The scope of variables is limited to the element inside
which they appear, unless they are shadowed in sub-elements. In such a case,
the scope of the shadowed variable will be limited to the element in which the

74

Figure 9.6: Error dialog

variable was defined and any sub-elements executed at runtime. In technical words,
Karajan is a dynamically scoped language and uses shallow binding. The following
example illustrates this:

<s e q u e n t i a l>
<!−− d e f i n e t h e v a r i a b l e ” va r” −−>
<s e t v a r name=” va r” v a l u e =” one” />

<!−− p r i n t i t s v a l u e on t h e c o n s o l e −−>
<echo message=” { va r} ” />

<!−− a c o n t a i n e r −−>
<s e q u e n t i a l>

<!−− o v e r r i d e ” va r” −−>
<s e t v a r name=” va r” v a l u e =” two” />

<!−− p r i n t t h e v a l u e on t h e c o n s o l e −−>
<echo message=” { va r} ” />

< / s e q u e n t i a l>

<!−− a t t h i s p o i n t ” va r” w i l l be ” one” a g a i n −−>
<echo message=” { va r} ” />

< / s e q u e n t i a l>

<!−− ” va r” does no t e x i s t he re −−>
<echo message=” { va r} ” />

The example will produce the following output:

75

one
two
one
{ va r}

In the lastecho(9.8.7) element, Karajan tries to expandvar, but since it cannot be
found, it prints the message literally.

9.3.2 Parallelism

9.3.5

Karajan supports two basic containers through which parallelism can be achieved,
namely,sequential(9.8.53) andparallel (9.8.45) . Both containers are synchronous,
which means that their execution will terminate when all sub-elements have fin-
ished execution. This behavior can be overridden in any element, by specifying
thesync=”false” attribute. The following examples illustrate the use ofsequential
(9.8.53) andparallel (9.8.45) containers, as well as synchronous and asynchronous
execution. On the right side, an image showing the resulting control flow of the
specifications on the left is shown:

Sequential execution

<s e q u e n t i a l>
<e lement1 />
<e lement2 />
<e lement3 />

< / s e q u e n t i a l>

Parallel execution

<p a r a l l e l>
<e lement1 />
<e lement2 />
<e lement3 />

< / p a r a l l e l>

Mixed sequential/parallel execution

<s e q u e n t i a l>
<e lement1 />
<p a r a l l e l>

<e lement2 />
<e lement3 />

< / p a r a l l e l>
<e lement4 />

< / s e q u e n t i a l>

76

Sequential execution with asynchronous ele-
ment

<s e q u e n t i a l>
<e lement1 />
<e lement2 sync=” f a l s e” />
<e lement3 />
<e lement4 />

< / s e q u e n t i a l>

Parallel execution with asynchronous ele-
ment

<p a r a l l e l>
<e lement1 />
<e lement2 />
<e lement3 sync=” f a l s e” />

< / p a r a l l e l>

9.3.3 Iterators

Iterators are used in Karajan to execute a sequence repetitively. All iterators can
have either a sequential behavior (the default), in which an iteration begins ex-
ecution only after the previous iteration has completed execution, or a parallel
behavior (switched on using theparallel=”true” attribute), in which all iterations
are executed in parallel. The parallel behavior of an iterator does not apply to
contained elements. If a parallel iterator has two sub-elements, the elements will
execute in sequential order. This can be prevented by using an explicitparallel
(9.8.45) container inside the iterator.

Two iterators exist:for (9.8.14) and foreach (9.8.15) . Both have a mandatory at-
tribute (name), which represents the name of the iteration variable.

• The for (9.8.14) iterator is used for iterations across integer ranges and takes
two numerical attributes, representing the first and last value. There are two
equivalent ways of specifying the two attributes, as shown in the following
examples:

< f o r name=” i t e r a t i o n” from=” 1” t o =” 4”>
<echo message=” I t e r a t i o n { i t e r a t i o n} ” />

< / f o r>

and

< f o r name=” i t e r a t i o n” range =” 1 , 4”>
<echo message=” I t e r a t i o n { i t e r a t i o n} ” />

< / f o r>

The result in both cases is as follows:

1
2
3
4

77

• The foreach (9.8.15) iterator can be used to iterate across arbitrary values, or
files in a directory (a feature that needs a little polishing). Iteration values
can be specified by using thein attribute. To iterate on the files in a directory,
you can use thedir attribute.

Examples:

< f o r e a c h name=” i t e r a t i o n” i n =” one , two , t h r e e , f o u r ”>
<echo message=” I t e r a t i o n { i t e r a t i o n} ” />

< / f o r>

would produce the following output:

one
two
t h r e e
f o u r

while

< f o r name=” f i l e ” d i r =” / home/ johndoe”>
<echo message=” F i l e { f i l e } ” />

< / f o r>

would list all the files contained in the home directory of userjohndoe.

9.3.4 Conditional execution

Conditional execution is expressed using theif (9.8.21) , then (9.8.58) , elseif (9.8.11)

, andelse(9.8.10) elements. The format is as follows:

< i f >
<c o n d i t i o n 1 />
<t hen>

. . .
< / t hen>
<c o n d i t i o n 2 />
<e l s e i f>

. . .
< / e l s e i f>
. . .

<cond i t i onN />
<e l s e i f>
< / e l s e i f>
<e l s e>
< / e l s e>

< / i f >

Thecondition1 throughconditionN are elements that evaluate to something. Typ-
ically they are functions, such asmath:equals(9.8.28) , math:le (9.8.31) , etc. Func-
tionally, thethen (9.8.58) andelseif (9.8.11) are the same. They both execute if the
last specified condition can be evaluated to a boolean value of ”true”, or cause the
enclosingif (9.8.21) to terminate if the condition evaluates to a boolean value of
”false”.

78

9.3.5 Arguments

Arguments in Karajan are generally expressed as XML attributes. However, XML
attributes are limited. It is impossible to use attributes to express the result of
executing other elements. The solution is to express such arguments as nested
elements. There are four main types of arguments:

named arguments : are used to express arguments when there exist multiple arguments for an
element and they differ from a semantic perspective. Thesetvar (9.8.54) ele-
ment for example, has anameand avalueattribute, which cannot be com-
muted without changing the meaning of the program. Named arguments
can be expressed both as XML attributes, and as nested elements with the
argumentNameattribute:

<s e t v a r name=” va r” v a l u e =” 1” />

would produce the same result as:

<s e t v a r v a l u e =” 1”>
<argument argumentName=” name” v a l u e =” va r” />

< / s e t v a r>

variable unnamed arguments :are used when arguments are equivalent. Themath:sum (9.8.39) element is
such an example:

. . .
<math:sum>

<argument v a l u e =” 1” />
<argument v a l u e =” 2” />
<argument v a l u e =” 3” />

< / math:sum>
. . .

This does not necessary mean that changing the order of the arguments will
not change the outcome of the execution of the element, as it can easily be
seen in the following example:

. . .
< l i s t : a p p e n d>

<argument v a l u e =” 1” />
<argument v a l u e =” 2” />
<argument v a l u e =” 3” />

< / l i s t : a p p e n d>
. . .

default arguments : can be used for at most one of the arguments. A default argument can be
expressed as an unnamed nested argument. No element can have both a
default argument and multiple unnamed arguments. Thesetvar (9.8.54) has
thevalueargument as a default argument. The following code snippets lead
to the same result:

<s e t v a r name=” va r” v a l u e =” 1” />

79

<s e t v a r name=” va r”>
<argument v a l u e =” 1” />

< / s e t v a r>

typed default arguments :are an exception to some of the above rules. In some instances, an element
may expect multiple arguments, each having a different type. In such cases
there is no need to name the arguments, since their type will provide the
required information that is needed to map the supplied arguments to the
ones required. Since types exist only internally in Karajan, typed default
arguments can only be used for internally defined elements.

It is generally both acceptable and useful to use arguments inside elements that
describe execution flow. There is a specific set of elements, namelysequential
(9.8.53) , parallel (9.8.45) , for (9.8.14) , foreach (9.8.15) , then (9.8.58) , elseif (9.8.11)

, and else (9.8.10) which do not affect the contained arguments. The following
example shows how a the sum of the results of two parallel operations can be
calculated:

. . .
<math:sum>

<p a r a l l e l>
<o p e r a t i o n 1 />
<o p e r a t i o n 2 />

< / p a r a l l e l>
< / math:sum>
. . .

It is also possible to use iterators for expressing arguments, both in parallel and
non parallel mode:

. . .
<math:sum>

< f o r name=” va r” from=” 1” t o =” 10” p a r a l l e l =” t r u e”>
<argument v a l u e =” { va r} ” />

< / f o r>
< / math:sum>
. . .

9.3.6 Templates

Templates can be used to define reusable code and are somewhat similar to proce-
dures in other languages. Templates can accept named parameters.

Definition of templates can be done by using thetemplateDef (9.8.57) element.
The mandatory attributenamespecifies the name of the template. The body of
the template can consist of any Karajan elements. An additional element (default
(9.8.6)) can be used to designate default values for parameters. A simple template
definition is shown below:

< t e m p l a t e d e f name=” sample”>
<d e f a u l t name=” arg1” v a l u e =” d e f a u l t 1” />
<d e f a u l t name=” arg2” v a l u e =” d e f a u l t 2” />
<echo message=” arg1 i s { arg1} ” />

80

<echo message=” arg2 i s { arg2} ” />
<echo message=” arg3 i s { arg3} ” />

< / t e m p l a t e d e f>

Template invocations can be made via thetemplate (9.8.56) element, which ac-
cepts thenameattribute, plus any number of other arguments that are passed to the
template:

< t e m p l a t e name=” sample”
a rg1 =” va lue1”
a rg2 =” va lue2”
a rg3 =” va lue3” />

All templates are re-entrant as long as no external resources are involved. Variables
defined or overridden inside templates are considered local.

9.3.7 In-line elements

Elements can also be defined similar to templates. Since version 0.22, this is prefer-
able to templates.

In-line element definition is achieved using theelement (9.8.8) element. The
nameattribute specifies the name that the definition will be bound to. Theargu-
mentsattribute is a comma separated list of argument names that can be passed to
the definition. Thevargsattribute, if set totrue, indicates that the element should
rather take a variable length list of unnamed arguments than a set of named argu-
ments. The following element definition creates and element that sums all numbers
from min to max:

<e lemen t name=” sum” arguments =” min , max” v a r g s =” f a l s e”>
<math:sum>

< f o r name=” va r” range =” {min} ,{max} ”>
<argument v a l u e =” { va r} ” />

< / f o r>
< / math:sum>

< / e lemen t>

The following element definition makes use of unnamed arguments, and calculates
the root mean square of the supplied values. The arguments are available as a list
that can be iterated in thevargsvariable:

<e lemen t name=” rms” v a r g s =” t r u e”>
<m a t h : s q r t>

<m a t h : q u o t i e n t>
<math:sum argumentName=” d i v i d e n d”>

< f o r e a c h name=” i tem” i n =” { v a r g s} ”>
<m a t h : s q u a r e v a l u e =” { i t em} ” />

< / f o r e a c h>
< / math:sum>

< l i s t : s i z e l i s t =” { v a r g s} ” argumentName=” d i v i s o r ” />
< / m a t h : q u o t i e n t>

< / m a t h : s q r t>
< / e lemen t>

81

If a definition takes only one argument and has no variable unnamed arguments,
that argument will become a default argument. If there are multiple named argu-
ments (but no variable unnamed arguments), a default argument can be specified
using thedefaultArgumentattribute.

In-line element invocation is performed simply by using the element name. The
following examples will invoke the previously definedsumandrms elements and
print the resulting values:

<s e t v a r name=” sum”>
<sum min=” 1” max=” 10” />

< / s e t v a r>
<echo message=” The sum i s { sum} ” />

<s e t v a r name=” rms”>
<rms>

<argument v a l u e =” 10” />
<argument v a l u e =” 12” />
<argument v a l u e =” 8” />
<argument v a l u e =” 50” />
<argument v a l u e =” 11” />

< / rms>
< / s e t v a r>
<echo message=” The rms i s { rms} ” />

9.3.8 Recursion

Due to the fact that side effects in Karajan have a limited scope (an element cannot
change the environment of its parent, except for strictly controlled circumstances),
recursion is necessary to address a certain class of problems that cannot be solved
otherwise. Recursion is possible using element definition element. The following
definition computes the n-th value in a Fibonacci series:

<e lemen t name=” f i b o n a c c i” a rguments =” n”>
< i f >

<m a t h : l e va lue1 =” {n} ” va lue2 =” 2” />
<t hen>

<argument v a l u e =” 1” />
< / t hen>
<e l s e>

<math:sum>
< f i b o n a c c i>

<m a t h : s u b t r a c t i o n from=” {n} ” v a l u e =” 1” />
< / f i b o n a c c i>
< f i b o n a c c i>

<m a t h : s u b t r a c t i o n from=” {n} ” v a l u e =” 2” />
< / f i b o n a c c i>

< / math:sum>
< / e l s e>

< / i f >
< / e lemen t>

82

9.3.9 Grid-related Elements

Karajan contains a series of elements that are divided into two main categories:
Grid resource description and configuration and Grid tasks.

Grid Resource Description and Configuration Elements

• scheduler(9.8.49) is used to select a scheduler type and specify various pa-
rameters for it. Currently only one scheduler is available (nameddefault).
The arguments are:

type : The type of the scheduler desired. Onlydefaultis available at this time.

jobsPerCpu : Sets the maximum number of tasks that the scheduler will allocate for
one CPU.

maxSimultaneousJobs :Sets the total maximum number of remote tasks that the scheduler will
allow at any given time.

showTaskList : If set to true the scheduler will pop-up a window providing a lists of
tasks that are being executed, and additional task and memory statis-
tics.

grid : Specified as a nested typed argument through thegrid (9.8.17) element,
defines the set of resources that will be used for scheduling.

taskHandler : Specified as a nested typed argument through thetaskHandler (9.8.55)

element, defines the type of Java CoG Kit Core task handler to be used
by the scheduler. If there are multiple task handlers for a scheduler,
they will all be used, with a priority set by the order in which they
were specified, the highest priority going to the first. The scheduler
should also try to match the handlers against available resources and
use a lower priority handler if resources are not available for a higher
priority handler.

• taskHandler (9.8.55) defines a type of Java CoG Kit Core task handler that
is going to be used by the scheduler. The attributes aretype, which selects
the type of the handler (for a list of supported handlers, consult the Section
9.4), andversion, which is used by the scheduler to select the appropriate
grid resources by matching it with theversionattribute in theservice(9.8.50)

elements. Multiple handlers can be specified. In this case, all of them will
be used, the highest priority going to the one listed first. AsecurityContext
(9.8.51) must also be specified as a nested element.

• securityContext (9.8.51) is used to define a security context (passwords, pri-
vate/public keys, proxy location, etc.) for the task handler. The mandatory
attribute is thenameattribute. A series of nested elements can exist for the
securityContext (9.8.51) element. These nested elements are handler specific
and are described in Section9.4.

• grid (9.8.17) encapsulates a set of resources that will be used by the scheduler.
Accepts an optionalnameattribute. A series of nestedhost(9.8.20) arguments
can be specified.

• host (9.8.20) designates a single contact point (a remote host). The mandatory
nameattribute denotes the hostname of the remote contact. Acpusattribute

83

allows the specification of the number of CPUs the host has. This infor-
mation may be used for scheduling purposes. Each host can have multiple
nestedservice(9.8.50) elements.

• service(9.8.50) defines a host service. Theversionattribute allows the defini-
tion of a logical handle that can be used to group multiple services based on
technology/version. Thetypeattribute specifies the service type. The current
possible values arejob-submissionandfile-transfer. The exact details of the
service are expressed in the form of a URL. The format and details of the
service URLs differ from handler to handler. Section9.4provides details of
all supported handlers and their details.

The following example illustrates the use of the above elements:

<g r i d name=” d e f a u l t”>
< f o r name=” index” from=” 1” t o =” 20”>

<h o s t name=” lg0n{ i ndex} . p t s . uml . mov” cpus=” 1”>
<s e r v i c e

v e r s i o n=” gt2 −2.4.0”
t ype =” job−submiss ion”
u r l =” { h o s t} :2119/ jobmanager−f o r k ” />

<s e r v i c e
v e r s i o n=” gt2 −2.4.0”
t ype =” f i l e − t r a n s f e r”
u r l =” g s i f t p : / / { h o s t} :2811” />

< / h o s t>
< / f o r>

< / g r i d>

Grid Tasks

Two types of Grid tasks are available: remote execution and transfer. For all tasks
that require one or more host attributes, the hosts may need to exist in the Grid
definition, such that the handlers can extract service contact information. In some
cases, defaults may work.

• gridExecute (9.8.18) can be used to submit a remote job. The attributes are2

as follows:

host* : Specifies the host to which the job will be submitted. The host must
exist in the grid description, such that the handler can extract the cor-
rect service information. If the attribute is not specified, it is up to the
scheduler to pick a host for this job.

executable : The executable to be run. It must exist on the remote site. If it does
not, it can be transfered beforehand using a transfer task.

args* : The attributes to be passed to the executable.

stdin* : If input redirection is desired, this attribute can be used to specify a
remote file that will be redirected to the process’ standard input.

stdout* : Can be used to redirect the standard output of the job to a remote file.

stderr* : Used optionally to redirect the standard error stream of the job to a
remote file.

2 attributes followed by an asterisk are optional

84

• gridTransfer (9.8.19) is used to transfer a file from one host to another. The
accepted attributes are:

srchost : The source host. Uselocalhostfor the local machine.

srcdir : The source directory where the file can be found.

srcfile : The name of the file that is to be transfered.

desthost : The destination host. Can also belocalhostfor the local machine.

destdir : The directory on the destination host where the file will be placed.

destfile* : Can be used to rename the file during the transfer.

• It may sometimes be necessary to execute a set of tasks on the same host.
TheallocateHost(9.8.1) element can be used for this purpose. Thenameat-
tribute specifies a variable that can be used inside the element by the various
tasks whenever the remote host needs to be referenced. A simple example is
provided below:

<a l l o c a t e H o s t name=” remote”>
<!−− t r a n s f e r t h e i n p u t d a t a −−>
<g r i d T r a n s f e r

s r c h o s t =” l o c a l h o s t”
s r c d i r =” / tmp”
s r c f i l e =” i n ”
d e s t h o s t =” { remote} ”
d e s t d i r =” / tmp” />

<!−− do t h e heavy p r o c e s s i n g −−>
<g r i d E x e c u t e

h o s t =” { remote} ”
e x e c u t a b l e =” / u s r / b in / t a c”
a r g s =” ”
s t d i n =” / tmp/ i n ”
s t d o u t =” / tmp/ ou t” />

<!−− t r a n s f e r back t h e r e s u l t s −−>
<g r i d T r a n s f e r

s r c h o s t =” { remote} ”
s r c d i r =” / tmp”
s r c f i l e =” ou t”
d e s t h o s t =” l o c a l h o s t”
d e s t d i r =” / tmp” />

< / a l l o c a t e H o s t>

9.3.10 Explicit Error Handling

In certain cases, errors that appear in certain locations are known to have no impact
on the overall execution. A typical example would be a cleanup process. In such
cases, it may be preferable to be able to simply ignore errors. Other operations
have particularly high rates of failure. However, subsequent re-executions of such
operations may result in a successful result. The following elements deal with such
cases:

• ignoreErrors (9.8.22) has no attributes and any errors that occur on contained
elements are ignored.

85

• restartOnError (9.8.48) has a numeric mandatory attribute (times) that spec-
ifies the number of times the contained elements are restarted when an error
occurs, before that error is reported.

• generateError (9.8.16) will cause an error to be generated, with an associated
message specified by themessageattribute.

9.3.11 Java Elements

The Java elements allow limited interaction with the Java Virtual Machine.

• newJavaObject(9.8.40) instantiates a new Java object. The class of the ob-
ject is specified by using theclassNameargument. A set of arguments to be
passed to the constructor can also be specified through nested arguments.

• invokeJavaMethod(9.8.24) invokes a method on an existing object indicated
by the default argumentobject. The method name must be passed by the
methodargument. Nested arguments can be used to indicate arguments to
be passed to the method.

• executeJava(9.8.13) will synchronously execute a Java program. Themain-
Classattribute can be used to specify the fully qualified class name that
contains the main method. The class must be present in the classpath of the
instance of the Java Virtual Machine that is executing the specification.

9.3.12 Arithmetic elements

• math:sum (9.8.39) adds a set of numbers specified as unnamed arguments.

• math:product (9.8.33) multiplies a set of numbers specified as unnamed ar-
guments.

• math:subtraction (9.8.38) subtracts two numbers specified by thefrom and
value. Effectively calculatesfrom − value.

• math:quotient (9.8.34) dividesdividendby divisor and returns the quotient.

• math:remainder (9.8.35) computes the remainder of the division between
dividendanddivisor.

• math:square (9.8.37) computes the square of the defaultvalueargument.

• math:sqrt (9.8.36) computes the square root of the defaultvalueargument.

• math:equals(9.8.28) tests if two numbers are equal.

• math:gt (9.8.30) tests ifvalue1is greater thanvalue2.

• math:lt (9.8.32) tests ifvalue1is less thanvalue2.

• math:ge (9.8.29) tests ifvalue1is greater than or equal tovalue2.

• math:le (9.8.31) tests ifvalue1is less than or equal tovalue2.

9.3.13 Boolean elements

• and (9.8.2) evaluates to the booleanandof the nested unnamed arguments.

• or (9.8.44) calculates the booleanor value of the nested unnamed arguments.

• not (9.8.42) negates the defaultvalueargument.

86

9.3.14 List elements

• list:append (9.8.25) appends (concatenates) the supplied unnamed arguments
in a list. The arguments can be lists. They are appended in the order they are
supplied.

• list:prepend (9.8.26) concatenates the supplied unnamed arguments in re-
verse order. It does not reverse individual arguments.

• list:size (9.8.27) evaluates to the size of the defaultlist argument. If the argu-
ment is not a list, the size will be 1.

9.3.15 Miscellaneous Elements

• project (9.8.46) is the main container of a Karajan specification. Any specifi-
cation that can be executed by Karajan must haveproject (9.8.46) as the root
element.

• echo(9.8.7) echoes a message on the console. The message can be specified
either by using themessageattribute or by inlining the text inside theecho
(9.8.7) element.

• include (9.8.23) can be used to include reusable libraries inside a main speci-
fication. Theinclude (9.8.23) element acts during the parsing process, before
the actual execution begins. Thefile attribute specifies a file, relative to the
main specification file, that will be substituted for theinclude (9.8.23) el-
ement. The included file will have its root element ignored. Section9.5
provides details about the include search path.

• wait (9.8.60) produces a delay in the execution. One of thedelay or until
attributes must be set. Thedelayattribute indicates wait period in millisec-
onds, while theuntil attribute specifies an absolute date in a format accepted
by thejava.util.Date class.

• equals(9.8.12) tests ifvalue1is identic tovalue2. Unlikemath:equals(9.8.28)

, this is not a numeric comparison. Comparing ”1.0” and ”1” will lead to a
result of ”false”.

• argument (9.8.3) evaluates to the value supplied by thevalueargument.

• contains (9.8.5) determines whether a file contains a specific sequence of
characters. Thefile attribute points to the file to be checked, while thevalue
attribute specifies the value to be searched.

• numberFormat (9.8.43) allows the formatting of a decimal number. The
patternattribute indicates the patter to be used for formatting (as used by
the java.text.DecimalFormat class). Thevalueattribute holds the
decimal value that is to be formatted.

• readFile (9.8.47) reads the contents of a file, pointed to by thenameattribute.
This is intended for short text files that may possibly hold things like error
messages or exit codes. The file is completely read into memory; therefore
this function would not be suitable for manipulation of large files.

• UID (9.8.59) generates a unique ID3.

3 This function is not thread-safe at the moment of this writing, but plans are to correct the problem

87

9.4 Supported Handlers

Karajan supports any handler that the Java CoG Kit Core supports. However, some
handlers may require particular security settings, which must be known, or the han-
dler will not work. Karajan can pass such settings to Core, using generic attributes.
The following are default Core handlers, together with examples that show their
usage in Karajan.

GT2 : This handler does not require any specific settings, but the Java CoG Kit
must be configured properly for the handler to work.

<!−− d e f i n e t h e t a s k h a n d l e r t o be used −−>
<t a s k H a n d l e r t ype =” GT2” v e r s i o n=” gt2 −2.4.0”>

<!−− a s s o c i a t e w i th t h e p r e v i o u s l y d e f i n e d −−>
<!−− s e c u r i t y c o n t e x t −−>
<s e c u r i t y C o n t e x t name=” g t2” />

< / t a s k H a n d l e r>

<!−− d e f i n e a s m a l l g r i d −−>
<g r i d name=” d e f a u l t”>

<h o s t name=” co ld . mcs. a n l . gov” cpus=” 2”>
<s e r v i c e

v e r s i o n=” gt2 −2.4.0”
t ype =” job−submiss ion”
u r l =” { h o s t} :2119/ jobmanager−f o r k ” />

<s e r v i c e
v e r s i o n=” gt2 −2.4.0”
t ype =” f i l e − t r a n s f e r”
u r l =” g s i f t p : / / { h o s t} :2811” />

< / h o s t>
< / g r i d>

GT3 : Similar to the GT2 handler, the GT3 handler does not require any special
parameters. The following example shows how the GT3 handler can be
used in Karajan:

<!−− d e f i n e t h e t a s k h a n d l e r t o be used −−>
<t a s k H a n d l e r t ype =” GT3” v e r s i o n=” gt3 −3.0.2”>

<!−− a s s o c i a t e w i th t h e p r e v i o u s l y d e f i n e d −−>
<!−− s e c u r i t y c o n t e x t −−>
<s e c u r i t y C o n t e x t name=” g t3” />

< / t a s k H a n d l e r>

<!−− d e f i n e a s m a l l g r i d −−>
<g r i d name=” d e f a u l t”>

<h o s t name=” mi ld . mcs. a n l . gov” cpus=” 2”>
<s e r v i c e

v e r s i o n=” gt3 −3.0.2”
t ype =” job−submiss ion”
u r l =” h t t p : / / { h o s t} :8080/ ogsa/ s e r v i c e s/ base/
gram/ Mas te rFo rkManagedJobFac to ryServ i ce” />

<s e r v i c e

88

v e r s i o n=” gt3 −3.0.2”
t ype =” f i l e − t r a n s f e r”
u r l =” h t t p : / / { h o s t} :8080/ ogsa/ s e r v i c e s/ base/
m u l t i r f t / M u l t i F i l e R F T F a c t o r y S e r v i c e” />

< / h o s t>
< / g r i d>

SSH : The SSH handler requires explicit pointers to the credentials used for authen-
tication. It supports both username/password (which we do not recommend)
and public key authentication. The following example shows how to use an
SSH Core handler with Karajan:

<!−− d e f i n e t h e t a s k h a n d l e r t o be used −−>
<t a s k H a n d l e r t ype =” SSH” v e r s i o n=” ssh”>

<!−− a s s o c i a t e w i th t h e p r e v i o u s l y d e f i n e d −−>
<!−− s e c u r i t y c o n t e x t −−>
<s e c u r i t y C o n t e x name=” ssh−doe”>

<p r o p e r t y
name=” ssh−username”
v a l u e =” johndoe” />

<p r o p e r t y
name=” ssh−p r i v a t e−key”
v a l u e =” / home/ johndoe/ . ssh/ i d e n t i t y ” />

<p r o p e r t y
name=” ssh−pass−p h r a s e”
v a l u e =” guessme” />

<!−− ” ssh−password” cou ld a l s o be used i n s t e a d of−−>
<!−− t h e ssh−p r i v a t e−key / ssh−pass−p h r a s e p a i r −−>
< / s e c u r i t y C o n t e x t>

< / t a s k H a n d l e r>

<!−− d e f i n e a s m a l l g r i d −−>
<g r i d name=” d e f a u l t”>

<h o s t name=” ho t . mcs. a n l . gov” cpus=” 2”>
<s e r v i c e

v e r s i o n=” ssh”
t ype =” job−submiss ion”
u r l =” { h o s t} : 22” />

<s e r v i c e
v e r s i o n=” ssh”
t ype =” f i l e − t r a n s f e r”
u r l =” { h o s t} : 22” />

< / h o s t>
< / g r i d>

9.5 Include Search Path

When theinclude (9.8.23) element is used, the specified file is first searched in the
directory where the main specification file is located. If the requested file is not
found, the include search path is iterated until the file is found. The include search
path is defined inetc/karajan.properties. The list of directories is separated by

89

colons. A special token,@classpath, indicates Karajan should try to find the file
in the JVM class path.

By default, Karajan starts with a very bare set of elements defined. To access most
of the elements described in this manual, you should include thesysdefaults.xml
file in the beginning of the specification:

<p r o j e c t name=” myp ro jec t”>
< i n c l u d e f i l e =” s y s d e f a u l t s. xml ” />
. . .

< / p r o j e c t>

9.6 Architecture

This section explains the main architectural characteristics of Karajan.

9.6.1 The Loading Process

Only basic structural and syntactic validation is being performed at load time. Se-
mantic validation is performed individually at execution time by each execution
element.

A one-to-one mapping of the XML document elements and flow elements is done
by using an element map which provides the correspondence between XML ele-
ment names and fully qualified flow element class names. An exception applies
to theinclude (9.8.23) element, which immediately after being loaded instructs the
loader to parse the included file, the contents of which is in-lined in the current
element tree.

9.6.2 The Execution Model

There are two important notions to remember in Karajan. One is the execution
element (or flow element), which (as outlined in the previous subsection) is con-
structed from XML elements in the specification. The second one is the event.
Events are used either to notify elements about the status of the execution of other
elements, or to instruct elements to perform certain actions (such as start or restart
execution). Events also encapsulate the state of the overall execution through a
variable stack. The stack contains the complete run-time state for a specific thread
of execution. There should be no deterministic difference in the execution of two
different instances of the same type of element, with the same attribute values, that
receive equivalent events (with identical states).

Elements are static as far as the execution is concerned. Their internal state may
change during the execution, but the execution state must not be influenced by the
internal state of the elements. They react to events and can use the stack passed
through the events to manipulate the state of the execution. Each element that
is being executed can add a frame to the variable stack. The frame can be used
to store variables that can represent the state of the element. These variables are
also accessible to contained elements. When the execution of an element ends, it
destroys the frame that it created, and together with it the variables that it contained.
This behavior is not enforced, but it is recommended. It is however mandatory that
the number of frames is the same before an element begins execution and after the
same element has completed execution.

90

In the case of parallel containers, each parallel thread will start with a copy of the
stack. The stack copies will internally share frames that are not write accessible to
the threads. A diagram detailing the stack model can be seen in Figure9.7. The
conventional representationpop - (a b – a)for a stack indicates thata andb were
present on the stack before the execution ofpop, and onlya was left afterwards.

Figure 9.7: The stack model

The above may in some cases be insufficient. Certain variables need to be made
accessible to the parent frames such that they can be used by subsequent elements
that are not descendants of the element which defined those variables. This is still
possible only in a sequential context. There is no way to propagate information
from one thread to the other. While this characterizes the workflow execution, the
applications themselves can still use interthread or interprocess communication or
messaging as needed.

A distinction exists between Karajan threads and Java or OS threads. The Karajan
threads differ from each other only by the variable stacks they receive. No assump-
tion can be made about the Java or OS thread in which a Karajan thread executes.
The events that are passed between elements are managed by an event dispatcher
(which may use more than one Java thread). The appearance of parallelism is
achieved through the fact that elements either take a short time to execute or they
make use of their own Java threads if known to take a longer time to execute. The
result is the ability to execute a large number of Karajan threads, without the over-
head required by Java/OS threads. As an example, each Java thread requires a
minimum of 96 kilobytes of memory just for the thread stack.

Karajan defines six event types:

91

START : tells an element it should start execution.

RESTART : tells an element which has not completed execution yet that it should restart
its execution.

EXECUTION STARTED : sent by an element immediately after it has started execution.

EXECUTION COMPLETED : sent by an element after it completes execution. This event is sent as a result
of receiving the END element and after cleanup is done.

EXECUTION FAILED : generated by an element when the execution failed. The frame created by
the element should be popped from the stack before the event is sent.

EXECUTION RESTARTED : generated after receiving a restart event.

An example of the execution model for a sequential and a parallel container can be
seen in Figure9.8, and Figure9.9, respectively.4

Figure 9.8: Execution of sequential elements

Figure 9.9: Execution of parallel elements

4 For space and readability considerations, the EXECUTIONCOMPLETED event type was shortened
to COMPLETED in the images

92

9.6.3 Task Scheduling

Task scheduling on Grid resources is done by using a scheduler that in turn uses
the Java CoG Kit Core Grid abstraction layer. ThegridExecute (9.8.18) andgrid-
Transfer (9.8.19) elements submit the requests for execution to the scheduler which
enqueues these requests and executes them as resources become available. It is up
the the scheduler to manage both local and remote resources in order to ensure that
these resources are not overloaded. However, certain parameters can be passed to
the scheduler (using thescheduler(9.8.49) element) that can alter the way in which
the resources are allocated from the defined pool (thegrid (9.8.17) element). The
scheduler also chooses the proper handlers and services for a given task.

Tasks may or may not have certain constraints associated with them. Some tasks
may have predefined resources or handlers that they require. For example, a cer-
tain job submission may have a predefined resource that it needs to run on. In
such a case, the scheduler should not attempt to find another resource for the task.
However, when a task does not specify such constraints, the scheduler must fill the
missing parts required to execute the task. The scheduler must also take care of
task encapsulation. This refers to the case when certain tasks must be executed on
the same resource.

When trying to submit a task, the default scheduler cycles through the list of avail-
able resources and uses the first one that it finds suitable for the given task. The
resource search for the next task begins with the resource immediately following
the last used resource in the list. If the end of the list is reached, the search con-
tinues from the beginning of the list. If after one complete cycle through all the
elements in the list, nothing suitable is found, the execution is postponed for a later
time, when some of the resources may become free.

The scheduler does not take care of dependencies between tasks or the order of
the execution of tasks. It is up to the workflow engine to do so. For the default
scheduler, once a set of tasks is queued in the scheduler, there is no way to know
anything about the order in which the execution of these tasks will begin, nor about
the order in which they will complete their execution. Of course, other schedulers
for which such things are known can be written, but the scheduler interface does
not define explicit ways for enforcing execution order, nor it is required by the
workflow engine from the scheduler that such order be known or be specifiable.

9.7 Checkpointing

Checkpointing is still an experimental feature in Karajan. This section describes
the basic workings of checkpointing in Karajan. Checkpointing parameters can
be adjusted by using thecheckpoint (9.8.4) element. Checkpointing here refers to
Karajan checkpointing. Only the state of the workflow is saved in a checkpoint.
The state of grid tasks is not included in the checkpoint. Imagine the following
scenario (in chronological order): a Karajan specification creates certain files on a
remote resource, the execution is checkpointed and interrupted, the files then are
deleted, and the execution state is restored from the checkpoint. If the files are
further needed and referenced in the specification, an error will eventually occur.

9.7.1 Checkpoint Creation

Checkpointing works by dumping the specification and the state to a file. The
specification consists of the element tree and is similar to the initial source after all

93

the include (9.8.23) elements have been processed. The state of of the execution is
composed of two main areas: the set of events that are waiting to be delivered, and
the state of elements that have begun execution but have not yet completed it.

When a checkpoint is requested, the checkpoint manager first locks the event dis-
patcher in order to guarantee that the state of remains consistent during the check-
pointing process. While the event dispatcher is locked, it does not deliver events,
nor does it accept new events. Threads that are trying to post events to the dis-
patcher are suspended during this time. The checkpoint manager also keeps track
of elements that have been started but were not completed and also keeps a refer-
ence to the stack of those elements. Since the checkpoint manager does not make a
full copy of the element stack (for performance considerations), it may sometimes
be the case that an element can at specific moments modify the stack and leave it in
an inconsistent state. A special locking mechanism that allows an element to group
operations on the stack that should be atomic is provided. The checkpoint manager
will therefore wait until all elements have completed the execution of blocks that
need to be atomic relative to the stack, before making the actual checkpoint. It can
be easily seen that posting an event to the dispatcher inside a atomic block could
cause a deadlock. It is thus prohibited to do so.

After the checkpoint manager has ensured that the overall state of the execution is
in a consistent state, it begins writing the specification, events, and list of currently
executing elements to the checkpoint file. Each event and running element has an
associated stack, which will also be serialized. It is mandatory that all elements put
only Java Beans on the stack; otherwise, variables on the stack will not be saved,
leading to an incomplete checkpoint.

9.7.2 Restoring from a Checkpoint

When invoked with a checkpoint file from the command line, Karajan will auto-
matically detect the checkpoint and restore the state of the execution at the time
the checkpoint was taken. A checkpoint file is self-contained and does not require
the original specification.

The restoration process is done by first loading the specification from the check-
point file. Afterwards, pending events are deserialized and posted to the event
dispatcher. Elements that were executing at the time the checkpoint was taken
are also sent a RESTART event using the associated stack that was saved during
checkpointing. This will effectively put the execution in the state it was at the time
the checkpointing was done.

94

9.8 Quick Element Reference

Default arguments are indicated by a plus sign (+). Optional arguments are indi-
cated by an asterisk (*).

9.8.1 allocateHost

Defines a token that can be used to guarantee that a set of tasks will be executed
on the same resource.

Arguments:

name: The name of the variable that should be set with the value of the token.
The token can then be used by thegridExecute (9.8.18) andgridTransfer (9.8.19)

elements as a host attribute.

9.8.2 and

Performs a booleanandoperation.

Arguments:

Nested arguments:The terms.

9.8.3 argument

Evaluates to the value supplied as argument.

Arguments:

value+: The argument.

9.8.4 checkpoint

Sets checkpointing parameters or forces the immediate creation of a checkpoint.

Arguments:

fileName: The name of the file to which the checkpoint will be written.

interval: Sets the interval at which regular checkpoints will be performed. The
interval is specified in seconds.

now: If set to true causes the immediate creation of a checkpoint. This is merely
a debugging feature. The recommended method is to set a regular interval for
checkpointing.

9.8.5 contains

Tests whether a file contains a certain text.

Arguments:

file: The file to be searched

value: The value to be searched

95

9.8.6 default

Typically used to define the default value for an argument in a template. It sets the
value of the specified variable if it is not already defined.

Arguments:

name: The name of the variable to be defined

value: The value of the variable

9.8.7 echo

Echoes a message on the console

Arguments:

message: The message to be echoed

<inline text>: Can be used instead of themessageattribute for larger chunks of
text

9.8.8 element

Used to specify a user defined element. Consult Section9.3.7

Arguments:

name: The name of the element that is being defined.

arguments: A list of named arguments that the element accepts

vargs: Set to true if the element accepts variable unnamed arguments. These will
be available through thevargsvariable.

9.8.9 elementDef

Defines a new element using a Java class

Arguments:

className: The fully qualified Java class name of the element

nodeType: The XML element name to be defined

9.8.10 else

Encapsulates a set of elements that will be executed if no other condition evaluates
to true inside anif (9.8.21) element. Details about conditional execution can be
found in Section9.3.4

9.8.11 elseif

Encapsulates a series of elements that will be executed if the condition specified
prior to theelseif(9.8.11) element evaluates to true. Further details about conditional
execution are available in Section9.3.4

96

9.8.12 equals

Performs an object comparison on two objects. It can for string comparisons in
particular.

Arguments:

value1: The first argument.

value2: The second argument.

9.8.13 executeJava

Executes a Java application in a separate thread. The element completes execution
when the application completes execution.

Arguments:

mainClass: The fully qualified name of the class that contains the main method.

Nested arguments:Arguments to be passed to the constructor

9.8.14 for

Iterates across a range of integer values

Arguments:

from: Used in conjunction with theto attribute indicates the first value of the
iteration

name: The name of the variable that is set with the current iteration value

parallel: If set to true the iterations will be executed in parallel, otherwise they
will be executed sequentially

range: A range of the formn, mdescribing all integers betweennandm(inclusive)

to: Used together with thefromattribute, indicates the last value of the iteration

9.8.15 foreach

Iterates across a sequence of discrete values

Arguments:

dir: Points to a directory. The iteration will be performed by using the files in the
specified directory.

in: A comma separated list of strings that will be used as iteration values

parallel: If set to true the iterations will be executed in parallel, otherwise they
will be executed sequentially

9.8.16 generateError

Causes an error to be generated

Arguments:

message: Sets the message associated with the error

97

9.8.17 grid

Encapsulates a collection of Grid resources that are used by the scheduler to sched-
ule tasks.

9.8.18 gridExecute

Executes a job on the Grid.

Arguments:

args: The arguments to be passed to the executable

directory: The directory on the remote resource to execute the job in

executable: A path to an executable on the remote resource

host: A resource on which the job will be executed. If left empty, the scheduler
will choose a resource. If a resource token (seeallocateHost(9.8.1)) is used, the
job will be executed on the resource that the token resolves to.

stderr: A path to a file on the remote resource to which the standard error stream
of the executable is to be redirected

stdin: A path to a file on the remote resource that will be redirected to the standard
input of the executable

stdout: A path to a file on the remote resource that will be used to redirect the
standard output stream of the job.

9.8.19 gridTransfer

Used to transfer a file on the Grid

Arguments:

destdir: The destination directory

destfile: The name of the destination file

desthost: The destination resource

srcdir: The source directory

srcfile: The source file

srchost: The source resource

9.8.20 host

Describes one resource in the Grid definition

Arguments:

cpus: The number of CPUs that the resource has

name: The host name of the resource

9.8.21 if

Allows conditional execution. Section9.3.4provides additional details.

98

9.8.22 ignoreErrors

Causes any errors generated by contained elements to be ignored.

9.8.23 include

Parses the contents of a file inserting the elements after the position of theinclude
(9.8.23) element.

Arguments:

file: The file to be included

9.8.24 invokeJavaMethod

Invokes a method on a Java object.

Arguments:

object+: An object instance to invoke the method on. ThenewJavaObject(9.8.40)

element can be used to create such an instance.

method: The name of the method to invoke.

Nested arguments:Arguments to pass to the method.

9.8.25 list:append

Concatenates lists/items into a list.

Arguments:

Nested arguments:Lists or items to be concatenated.

9.8.26 list:prepend

Concatenates lists/items in reverse order.

Arguments:

Nested arguments:Lists or items to be concatenated

9.8.27 list:size

Evaluates to the size of the list argument.

Arguments:

list+ : A list or an item. In the later case, the size will be 1.

9.8.28 math:equals

Performs a numeric comparison of the arguments.

Arguments:

value1: The first argument.

value2: The second argument.

99

9.8.29 math:ge

Tests if the first argument is greater than or equal to the second argument.

Arguments:

value1: The first argument.

value2: The second argument.

9.8.30 math:gt

Tests if the first argument is greater than the second argument.

Arguments:

value1: The first argument.

value2: The second argument.

9.8.31 math:le

Tests if the first argument is lower than or equal to the second argument.

Arguments:

value1: The first argument.

value2: The second argument.

9.8.32 math:lt

Tests if the first argument is lower than the second argument.

Arguments:

value1: The first argument.

value2: The second argument.

9.8.33 math:product

Multiplies a set of numbers.

Arguments:

Nested arguments:The values to be multiplied

9.8.34 math:quotient

Divides two real numbers.

Arguments:

dividend: The dividend

divisor: The divisor

100

9.8.35 math:remainder

Evaluates the remainder of a division operation.

Arguments:

dividend: The dividend

divisor: The divisor

9.8.36 math:sqrt

Computes the square root of a number.

Arguments:

value+: The number for which the root square is to be calculated.

9.8.37 math:square

Computes the square of a number.

Arguments:

value+: The number to be squared.

9.8.38 math:subtraction

Subtracts two numbers (evaluates from− value).

Arguments:

from: The minuend

value: The subtrahend

9.8.39 math:sum

Adds a set of numbers.

Arguments:

Nested arguments:The values to be summed

9.8.40 newJavaObject

instantiates a new Java object.

Arguments:

className: the class name of the object to be instantiated.

9.8.41 nonCheckpointable

Has no functional purpose. It is generated inside serialized versions of events in
the locations where non checkpointable elements are found. An example of such
an element isinclude (9.8.23) which serves its purpose during the parsing process
and has no further function afterwards.

101

9.8.42 not

Performs a boolean negation.

Arguments:

value+: The argument

9.8.43 numberFormat

Formats a number according to the specified pattern.

Arguments:

pattern: The pattern according to which the number is formatted. The pattern has
the syntax used byjava.text.DecimalFormat

value: The value to be formatted

See also:http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html

9.8.44 or

Performs a booleanor operation.

Arguments:

Nested arguments:The arguments.

9.8.45 parallel

Executes the contained elements in parallel

9.8.46 project

The root container of a main workflow file.

Arguments:

name: The name of the project

9.8.47 readFile

Reads a file and stores the contents into a variable. This function is intended for
small files.

Arguments:

file: The file to be read

9.8.48 restartOnError

Restarts the execution of the contained elements if an error is generated

Arguments:

times: Indicates the maximum number of times the contained elements should be
restarted in case of an error before the error is reported.

102

9.8.49 scheduler

Specifies the type and parameters for the scheduler that is going to be used to
schedule Grid tasks.

Arguments:

type: Indicates the type of the scheduler. Details about available schedulers can
be found in Subsection9.6.3.

<varies>: Attributes to be passed to the scheduler.

9.8.50 service

Defines a service for a resource

Arguments:

type: The type of the service. Currently the accepted values arejob-submission
andfile-transfer.

url: A URL indicating the location of the service.

version: A version label that is matched against the version labels of the defined
task handler(s).

9.8.51 securityContext

Used as a nested element oftaskHandler (9.8.55) to define a security context for
the handler.

Arguments:

type: Indicates the type of the security context. For details consult Section9.4

9.8.52 securityContextProperty

Defines a property for a security context.

Arguments:

name: The name of the property

value: The value of the property

9.8.53 sequential

Executes the contained elements in sequential order

9.8.54 setvar

Sets the value of a variable

Arguments:

name: The name of the variable

value: The value of the variable

103

9.8.55 taskHandler

Defines a task handler that can be used by the scheduler to execute tasks.

Arguments:

type: The type of the handler. Valid types are described in Section9.4

version: A label used to matchservice(9.8.50) definitions against handlers

9.8.56 template

Invoked a template that was previously defined usingtemplateDef(9.8.57)

Arguments:

name: The name of the template to be invoked

<varies>: Arguments to be passed to the template

9.8.57 templateDef

Defines a template

Arguments:

name: The name of the template to be defined

9.8.58 then

Encapsulates a series of elements that will be executed if the condition specified
prior to thethen (9.8.58) element evaluates to true. Further details about conditional
execution are available in Section9.3.4

9.8.59 UID

Generates a unique numeric ID

9.8.60 wait

Delays the execution for a period of time or until a specific time

Arguments:

delay: The delay in milliseconds to wait

until: A string representing a date. The format of the date is any format accepted
by thejava.util.Date class

See also:http://java.sun.com/j2se/1.4.2/docs/api/java/util/Date.html

104

10 Graph Editor

In order to compile the editor, execute ’ant dist’ in the grapheditor directory. A
new directory named ’dist’ will be created. The ’dist’ directory will contain the
following subdirectories: bin - contains the launchers used to start programs from
the command line; etc - contains configuration files (none at the moment); lib
- contains the jar files needed to run the viewer/editor; examples - a few graph
examples and a perl client that can interact with the viewer service

10.1 Configuring

The ’dist/etc’ directory contains thegrapheditor.propertiesfile, which can be used
to customize certain aspects of the editor.

10.2 Running

To run the editor, cd to the ’dist/bin’ directory and execute ’./grapheditor’ (or
grapheditor.bat on windows)

The following command line options can be used:

-s<port> : Starts the editor in server mode, listening for incoming connections on the
specified port. If no port is specified, the default (9999) will be used.

-h | -help : Displays a list of options together with brief explanations.

-l | -load<file> : Loads<file> after starting up.

-t | -target<target> : Starts on the specified rendering target. The following targets exists as of the
writing of this manual:

swing10.3.1: Uses the Java Swing graphical interface. It is currently the only target
that supports interactive editing.

html 10.3.2: Produces a HTML file together with any necessary images.

postscript10.3.3: Renders the graph in an Encapsulated PostScript file.

remote10.3.4: Can be used to forward the display of a graph to a remote viewer. The
API can be used as if working with local rendering, and the remote
renderers will take care of forwarding the events to the remote viewer.
It is unlikely that this target would be of any use when invoking the
graph editor from the command line.

Additional options can be specified in theetc/grapheditor.properties
file. These options are generally particular to every target and thus explained in the
target descriptions subsections.

10.3 Using The Graph Editor

This section will describe how each target of the graph editor can be used.

105

10.3.1 The Swing Target

When started in the Swing (default) target, an empty frame (shown in Figure10.3)
is displayed. Three essential elements can be identified:

Menu Bar : can be used for various operations like loading and saving of graphs. The
menus are dynamic, which means that depending on certain factors (i.e.,
the selected view), their structure can change. TheViewmenu can be used
to select the active view. A snapshot showing the list of available views is
shown in Figure10.1

Figure 10.1: Available views

The graph view also supports a number of layout algorithms. These al-
gorithms can be seen in theView¿Layoutsmenu, when the Graph View is
selected (see Figure10.2).

Figure 10.2: Layout algorithms

Tool Bar : contains icons representing various components that can be created in a
graph canvas. The icons may not be present if the selected view does not
support editing.

View Display : is the main panel where each view renders graphs.

106

Figure 10.3: An empty graph editor window

When a graph is loaded or created, each component can have a set of options or
actions accessible through a context menu. A snapshot of such a menu can be seen
in Figure10.4.

10.3.2 The HTML Target

The HTML target is used to render an HTML file that displays a graph. In order
to be able to properly display a generated HTML graph, your browser will need
to support JavaScript, and transparent PNG images. The HTML target has been
tested with Mozilla 1.4 and up.

The output is optimized to produce a relatively small amount of data. For each
distinct node icon, a separate image will be generated, but identical icons will not
result in multiple images. Also, a certain amount of optimization is involved in the
generation of edges (arrows). An exponential scale is used to snap the dimensions
of the generated arrow images, such that arrows having dimensions that differ by a
small percent ratio will be represented by the same image. However this image will
be further scaled by the JavaScript code in the html file as needed. This may result
in aliasing and distortion of the rendered page, but it is a required compromise.

The available options for theHTML target are as follows:

html.outputdir : The output directory where the html source and images will be generated.

html.graphview.layoutengine : The layout engine to be used when rendering a graph. The value is a fully
qualified Java class name. The predefined layout engines that the graph edi-
tor provides are located in the
org.globus.cog.gui.grapheditor.canvas.views.layouts
package. Available layout class names are as follows:

ExtendedSpringLayout : A spring layout that does some initial heuristic layouting to reduce the
overall layouting time. This layout will also skip the springing part for
large graphs (since the spring layout isO(n2)).

107

Figure 10.4: The Node Context Menu

LevelLayout : An O(n) algorithm which places vertices on vertical levels using the
edges as a factor of decision. Generally, if vertexa has an outgoing
edge to vertexb, the later will be placed on a level below the former.

RadialLayout : AnotherO(n) algorithm which tries to distribute edges for a vertex in
such a way that the angles between consecutive edges will be the same.

NonOverlappingRadialLayout : This algorithm is a variation of theLevelLayout , with the dis-
tinction that instead of levels, the vertices are placed on concentric
circles. While it tries not to overlap edges, it does not always succeed.

Flow Layout : O(n) algorithm suitable for flow networks. It associates bounding
boxes to vertices and, traversing the graph, resizes those bounding
boxed according to the sizes of the bounding boxes of connected ver-
tices.

10.3.3 The PostScript Target

Renders the graph in Encapsulated PostScript format.

Available options are as follows:

postscript.outputdir : The directory where the output file will be placed.

postscript.outputfile : The name of the file that the output will be written to.

postscript.graphview.layoutengine :The layout engine used to render the graph. Accepts the same values as
html.graphview.layoutengine10.3.2

10.3.4 The Remote Target

Forwards API calls to a remote graph editor service.

108

Available options are as follows:

remote.contact : A host:portpair that represents the location of the graph editor service that
the target will try to connect to.

10.4 Graph file format

The graphs are stored in a simple XML format. The simplest graph can be specified
as follows:

<graph>
< / g raph>

Adding nodes can be done using the ¡node¿ element:

<graph>
<node node id =” 1” name=” t h e f i r s t node” />
<node node id =” 2” name=” t h e second node” />

< / g raph>

Edges can be added using the ’nodeid’s as references:

<graph>
<node node id =” 1” name=” t h e f i r s t node” />
<node node id =” 2” name=” t h e second node” />
<edge from=” 1” t o =” 2” />

< / g raph>

Hierarchical graphs can be created too. In such graphs, each node can itself contain
other graphs:

<graph>
<node node id =” 1” name=” t h e f i r s t node”>

<node node id =” sn1” name=” subnode 1 ” />
<node node id =” sn2” name=” subnode 2 ” />
<node node id =” sn3” name=” subnode 3 ” />
<edge from=” sn1” t o =” sn2” />
<edge from=” sn2” t o =” sn3” />
<edge from=” sn3” t o =” sn1” />

< / node>
<node node id =” 2” name=” t h e second node” />
<edge from=” 1” t o =” 2” />

< / g raph>

Properties are specified as XML attributes. There are a few predefined properties
that each node can have:

name : (String) appears as the text in the label used to render the node

iconfile : (String) an absolute path to an image that will appear as an icon for the
rendered node

overlayfile : (String) an absolute path to an image that will be overlayed on top of the
base icon.

hue : (Float) specifies an additive adjustment for the hue of the icon. Changing
this can shift the colors of the icon.

109

saturation : (Float) a multiplicative adjustment for the saturation of the colors in the icon.

value : (Float) a multiplicative adjustment for the value of the colors in the icon

status : (Integer) a value, ranging from 0 to 3 with the following meanings:

0 − s topped
1 − r unn ing
2 − f a i l e d
3 − comple ted

This will adjust the HSV color properties of the icon, and change the overlay,
to give a visual representation of a possible state of a task.

You can also add your own custom properties (which will show up in the properties
list for a node/edge):

<graph>
<node

node id =” 1”
name=” t h e f i r s t node”
i c o n f i l e =” / u s r / s h a r e/ i c o n s/ myicon. png” />

<node
node id =” 2”
name=” t h e second node”
myproper ty =” myvalue” />

<edge from=” 1” t o =” 2” />
< / g raph>

10.5 API

At the basis of the viewer/editor stands theorg.globus.cog.util.graph.Graph
class. For details, please consult the JavaDoc available at ??1.

The editor can render nodes and edges that correctly implement the
org.globus.cog.gui.grapheditor.nodes.NodeComponent interface,
respectively,
theorg.globus.cog.gui.grapheditor.edges.EdgeComponent . Generic
implementations of the said interfaces are available at
org.globus.cog.gui.grapheditor.generic.GenericNode and
org.globus.cog.gui.grapheditor.generic.GenericEdge .

Graphs are displayed in graph canvases, which in turn can have various views,
used to render the graphs in particular ways. Views can also have transformations,
used to algorithmically modify graphs, just before they are being displayed. These
transformations can also be chained.

The nodes can also contain canvases, which in turn can contain other graphs, in a
recursive manner. This allow for the effective use of hierarchical graph structures.

The following example shows how to build a simple graph and display it in a
window:
1 We need to have the JavaDoc of the CoG online

110

/ / c r e a t e t h e r o o t node
RootNode r o o t =new RootNode () ;

/ / c r e a t e a canvas f o r t h e r o o t node
GraphCanvas canvas = r o o t . c r e a t e C a n v a s () ;

/ / c r e a t e a graph s t r u c t u r e
Graph graph =new Graph () ;

/ / c r e a t e t h r e e node components
Gener icNode gener icNode1 =new Gener icNode () ;
Gener icNode gener icNode2 =new Gener icNode () ;
Gener icNode gener icNode3 =new Gener icNode () ;

/ / add t h e components t o t h e graph , and keep r e f e r e n c e s
/ / t o t h e node o b j e c t s
Node node1 = graph . addNode (gener icNode1) ;
Node node2 = graph . addNode (gener icNode2) ;
Node node3 = graph . addNode (gener icNode3) ;

/ / c r e a t e two edge components
Gener icEdge gener i cEdge1 =new Gener icEdge () ;
Gener icEdge gener i cEdge2 =new Gener icEdge () ;

/ / add t h e edge components t o t h e graph
/ / t h e f i r s t edge w i l l go from node1 t o node2,
/ / wh i l e t h e second one w i l l go from node1
/ / t o node3
graph . addEdge (node1 , node2 , gener i cEdge1) ;
g raph . addEdge (node1 , node3 , gener i cEdge2) ;

/ / t e l l t h e canvas what graph i t i s supposed t o d e a l
/ / w i th
canvas . se tGraph (graph) ;

/ / choose a view f o r t h e canvas
canvas . setV iew (new GraphView ()) ;

/ / c r e a t e a f rame t h a t d i s p l a y s e v e r y t h i n g
GraphFrame frame =new GraphFrame (roo t , f a l s e , 0) ;

/ / a c t i v a t e t h e f rame
frame . a c t i v a t e () ;

/ / s t a r t t h e main loop
f rame . run () ;

Node components and edge components (in short, graph components) can have
properties. These properties can be used to change the appearance or behavior of
the components. A list of meaningful properties for a GenericNode can be found in
Table10.4. The nodeComponent.getPropertyValue(String name)
andnodeComponent.setPropertyValue(String name, Object value)
methods can be used to query/modify the value of a property programmatically.
The property changes will show immediate results on the screen. The example
below will change the icon used for a node, and de-saturate it:

111

gener icNode1 . s e t P r o p e r t y V a l u e (” i c o n f i l e ” , ” / tmp/ myicon. png”) ;
gener icNode1 . s e t P r o p e r t y V a l u e (” s a t u r a t i o n” , new F l o a t (0 . 1)) ;

10.6 Scalability

When using the viewer with large graphs, please note that each element (node or
edge) will take a total of about 1.3KB of memory when fully rendered. This means
that a 50,000-node 150,000-edge graph will consume a total of about 300 MB.

112

11 Testing Framework

This chapter describes the Java CoG Kit testing framework. The main reason the
framework was created was to ease the process of deploying automated tests of the
Java CoG Kit against various Grid services. Nevertheless, it was also successfully
used in testing the deployment and availability of the services themselves. The
framework generates results in a convenient HTML form that can be accessed
through the web.

11.1 Structure

The testing framework consists of a set of Java classes, and a driver script. The
Java classes are used to interface with the Grid client-side functionality provided
by the Java CoG Kit, while the driver script performs more mundane tasks, such
as fetching of code/data, compiling, combining reports, and launching test suites.

11.2 Using the Testing Framework

To use the testing framework, you will need to download the driver script. The
driver script is available in the Java CoG Kit v4 CVS archive. Instructions on
downloading the Java CoG Kit sources from CVS are available in the installation
Section (4). The driver script would then be located in thecog/modules/testing/bin
directory. The script can then be moved to a convenient location.

11.2.1 Configuring the Driver Script

The driver script contains a set of configuration variables that can be modified to
customize the tests. These variables are explained below:

LOCAL : If set to ”no” , the drivers script will fetch the latest Java CoG Kit sources
from the CVS archive at each run. If set to”yes” a local copy of the Java
CoG Kit sources will be used at each run. In the later case, theBUILDDIR
variable must point to a valid Java CoG Kit source tree.

COMPILE : If set to”yes” the Java CoG Kit code involved in the testing process will be
compiled before each test run is executed. If set to”no” , no compilation will
be performed. The later option assumes that thetestingmodule is already
compiled. For details about compiling a Java CoG Kit module, please refer
to Section4.6.

BUILDDIR : Points to the directory where the Java CoG Kit is present or will be down-
loaded (depending on the value of theLOCALvariable).

LOGFILE : Points to a file where a detailed log of the testing process will be created.

HTMLOUTDIR : Indicates the root of the tree where the HTML reports will be generated. An
index file will automatically be created in the specified directory.

113

JDKSDIR : Points to a directory containing a set of Java Development Kits that will be
used for the testing. Symbolic links can exist in the directory. However
each JDK version will only be used once, regardless of the number of links
pointing to it. Only valid JDKs from that directory will be used, therefore
specifying something like/usr/local is safe.

JDKS : Enumerates a set of Java Development Kits to be used for testing (separated
by spaces). This variable has priority over theJDKSDIRvariable. If not set,
the JDKs detected using theJDKSDIRvariable will be used.

CVSROOT : Points to the location of the CVS archive for the Java CoG Kit. It should not
be necessary to change the value of this variable.

COG PROPERTIES : Indicates thecog.propertiesconfiguration file to be used for the test runs.
The default should work in most of the cases.

HOSTLISTS : Represents a space separated list of hosts/services sets to be used for the test-
ing. Each item can either be a local file, or a URL. If a URL is encountered,
thewgetutility will be used to attempt to download the list. The format of
such a list is detailed in Section11.2.2.

TIMEOUT : The maximum amount of time, in seconds, to wait for an individual test to
complete.

11.2.2 The Host List Format

The host list contains a list of machines and services that will be used for the
testing. Each line in the list represents a service. Fields in each line are separated
by a semi-colon. The fields are as follows:

Host name : The name of the machine containing the service.

OS : The operating system installed on the machine.

CPU : The type/speed/number of CPUs the machine has.

Memory : The amount of memory present

Service : The service type and version. The service types that the framework recog-
nizes aregramandgsiftp. The version is separated from the type by a space.

Port : The port that the service is running on.

There can be multiple services of the same type on one machine, given that the
ports are different. TheOS, CPU, andMemoryfields serve only as informal items.
If a line cannot be parsed, it will simply be excluded from the tests. An example is
shown below:

...

hot.mcs.anl.gov;Mandrake 7.2 (2.4.17);PIII 866 MHz (x2);512 MB;gram 2.4.2;5242

hot.mcs.anl.gov;Mandrake 7.2 (2.4.17);PIII 866 MHz (x2);512 MB;gram 2.4.3;2119

hot.mcs.anl.gov;Mandrake 7.2 (2.4.17);PIII 866 MHz (x2);512 MB;gsiftp 2.4.2;6242

hot.mcs.anl.gov;Mandrake 7.2 (2.4.17);PIII 866 MHz (x2);512 MB;gsiftp 2.4.3;2811

cold.mcs.anl.gov;Solaris 9;Sparc 900 Mhz (x2);4 GB;gram 2.4.3;2119

cold.mcs.anl.gov;Solaris 9;Sparc 900 Mhz (x2);4 GB;gsiftp 2.4.3;2811

...

114

12 Command Tools

115

13 grid-cert-request

The certificate management module is a set of tools that make it easier for users to
manage their certificates. For instance there are tools to generate a certificate re-
quest, store credential on MyProxy server, view local credential, renew certificates
and revoke certificates.

Administrators have to choice of deploying these tools as signed Java Applets
and/or as signed Java WebStart Applets.

The benefits of signed Java Applet are integration into web pages however they
required Java capable browsers. Java singed WebStart Applets do not have this
requirement. The WebStart mechanism also has the advantage of caching the jars
used by the applets. One disadvantage to the WebStart mechanism is that the
Applet will not integrate into web page.

Both of these deployment methods are appealing because they dont require any
installation of OGSA or CoG by the client. The deployment mechanism will install
the necessary jars to run the certificate management tools.

This module consists of .java files for the actual applets and of .jsp and .html pages
to launch the Java Applets and .jnlp files to launch the WebStart Applets. These
files contain parameters that can be changed by an administrator to change such
things as the Certificate Authority, MyProxy server location and background color
of the applet.

These applets need to be signed

(explain how this is done)

A user must trust the entity that signed the applets.

[warning.jpg]

At the moment the jce jar is not signed properly by Bouncy Castle. Once we use
the latest jar it will be ok but for the moment you will get this dialog. Simply press
the X not the abort button.

[jce.jar]

Once the user grants the applets security access it will start.

The first step a new grid user will have to do is get credentials. To do this you need
to generate a certificate request and have it signed by your certificate authority. Use
the CertReqApplet to do this:

[certreq.jpg]

(description of params goes here)

Once you get a response from your CA place it in your usercert.pem as described in
the email. You can now use the certificate info applet to see your local credentials.

[cerinfo.jpg]

116

Supposing you were going away on a business trip you may want to put some
temporary credential on a MyProxy server. See myproxy command line tool for
more details on what this means.

[myproxy.jpg]

(description of params goes here)

After a certain amount of time your credential will expire. Before this happens
your CA will send you a renewal notification with a challenge phrase. You can use
the certificate renew applet to generate your renewal request.

[certrenew_applet.jpg]

(description of params goes here)

If for some reason your credentials get compromised or you simply dont need them
anymore you may want to destroy your credentials and notify your CA that you did
so. The certificate revocation applet can be used to delete the certificate files and
notify your CA.

[certrevocation_appet.jpg]

(description of params goes here)

grid-cert-request [-help] [options ...]

SYNOPSIS.

grid-cert-request can create user, host, and LDAP server certificates. A certificate
request and private key will be created.You will be asked to enter a PEM pass
phrase. This pass phrase is akin to your account password, and is used to pro-
tect your key file. If you forget your pass phrase, you will need to obtain a new
certificate.

EXAMPLES.

grid-cert-request
- Creating a user certificate

grid-cert-request -host [my.host.fqdn]
- Creating a host or gatekeeper certifcate

grid-cert-request -service ldap -host [my.host.fqdn]
- Creating a LDAP server certificate

OPTION

-version : Display version
- , -h, -help, : Display usage

117

-usage
-cn <name>, : Common name of the user
-commonname <name>
-service <service> : Create certificate for a service. Requires

the -host option and implies that the generated
key will not be password protected (ie implies -nopw).

-host <FQDN> : Create certificate for a host named <FQDN>
-dir <dir_name> : Changes the directory the private key and certificate

request will be placed in. By default user
certificates are placed in /home/user/.globus, host
certificates are placed in /etc/grid-security and
service certificates are place in
/etc/grid-security/<service>.

-prefix <prefix> : Causes the generated files to be named
<prefix>cert.pem, <prefix>key.pem and
<prefix>cert_request.pem

-nopw, : Create certificate without a passwd
-nodes,
-nopassphrase,
-verbose : Don’t clear the screen <<Not used>>
-int[eractive] : Prompt user for each component of the DN

<<Not implemented yet>>
-force : Overwrites preexisting certifictes;

118

Bibliography

[1] G. von Laszewski and P. Wagstrom,Tools and Environments for Parallel and
Distributed Computing, ser. Series on Parallel and Distributed Computing.
Wiley, 2004, ch. Gestalt of the Grid, pp. 149–187. [Online]. Available:
http://www.mcs.anl.gov/∼gregor/papers/vonLaszewski--gestalt.pdf9

[2] G. von Laszewski and K. Amin,Grid Middleware. Wiley, 2004, ch. Chapter 5
in Middleware for Commnications, to be published. [Online]. Available:http:
//www.mcs.anl.gov/∼gregor/papers/vonLaszewski--grid-middleware.pdf9

119

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf

Index

Acknowledgments,14
Administrative Contact,14

Bugs,10

Contact,14

Grid
Scripting,69

GridAnt, 63
cog-setup,65
grid-authenticate,65
grid-copy,66
grid-execute,65
Tasks,65

Karajan,69
Methods

allocateHost,85, 95, 98
and,86, 95
argument,87, 95
checkpoint,93, 95
contains,87, 95
default,80, 96
echo,76, 87, 96
element,81, 96
elementDef,96
else,78, 80, 96
elseif,78, 80, 96
equals,87, 97
executeJava,86, 97
for, 77, 80, 97
foreach,77, 78, 80, 97
generateError,86, 97
grid, 83, 93, 98
gridExecute,84, 93, 95, 98
gridTransfer,85, 93, 95, 98
host,83, 98
if, 78, 96, 98
ignoreErrors,85, 99
include,87, 89, 90, 94, 99, 101
invokeJavaMethod,86, 99
list:append,87, 99
list:prepend,87, 99
list:size,87, 99
math:equals,78, 86, 87, 99
math:ge,86, 100

math:gt,86, 100
math:le,78, 86, 100
math:lt,86, 100
math:product,86, 100
math:quotient,86, 100
math:remainder,86, 101
math:sqrt,86, 101
math:square,86, 101
math:subtraction,86, 101
math:sum,79, 86, 101
newJavaObject,86, 99, 101
nonCheckpointable,101
not,86, 102
numberFormat,87, 102
or, 86, 102
parallel,76, 77, 80, 102
project,87, 102
readFile,87, 102
restartOnError,86, 102
scheduler,83, 93, 103
securityContext,83, 103
securityContextProperty,103
sequential,76, 80, 103
service,83, 84, 103, 104
setvar,73, 79, 103
taskHandler,83, 103, 104
template,81, 104
templateDef,80, 104
then,78, 80, 104
UID, 87, 104
wait, 87, 104

License,15
bouncycastle,25
cryptix, 25
Globus Toolkit,17
GPTL,17
Java CoG Kit,21
JCoGPL,21
junit, 25
log4j, 25
puretls,25
soaprmi11,25
xerces,25
xml4j, 25

Mailing List, 11

120

Project Registration,15

Testing,113

Website,10
Workflow, 69

Karajan,69

121

	Title Page
	Revisions

	Preface
	Participation Opportunities
	Grids
	Intended Audience
	Resources
	Project Website
	Bug Reporting
	Mailing Lists
	Sourcecode Repository

	About the Manual
	Conventions

	Manual Maintainer
	Contributors
	Administrative Contact
	Acknowledgments

	License
	Project Registration
	Globus Toolkit
	Globus Toolkit Public License (GTPL)
	Globus Toolkit Contributor Liceense

	Java CoG Kit
	Java CoG Kit Public License (JCoGPL)
	Java CoG Kit Contributor Liceense

	Other Licences
	jglobus
	ogce
	Others

	GNU Public Licence

	Introduction
	Overview
	History
	Metacomputing
	CoG Kits

	Installation
	Download
	CVS Release Tags
	Downloading the Java CoG Kit version 4
	Compiling the Java CoG Kit version 4
	Compiling the Complete Distribution
	Compiling Individual Modules
	Using the Java CoG Kit version 4
	Downloading JGlobus
	Compiling JGlobus
	Using JGlobus
	Downloading OGCE
	Compiling OGCE
	Using OGCE

	Contributing
	Creating a Module
	Build Files
	Libraries
	Source
	Using PMD
	Documenting the Modules
	Maintaining a Module
	Launchers
	Webstart

	Coding Guidelines for the Java CoG Kit
	Imports
	Indentation
	Brackets
	Variables
	Instance Variables

	One-Liners
	Logging
	Testing
	Internationalization
	Library Reuse
	Exceptions

	Modules
	util
	certrequest

	Core
	Introduction
	Installation
	Download
	Compile
	Configuration
	Examples

	Design
	ExecutableObject
	Task
	Specification
	TaskGraph
	Status
	Handlers
	GridResource
	ExecutionResource
	FileResource

	Programmer's Guide
	Executing a Remote Job Execution Task
	Executing a Third-Party File Transfer task
	Executing a Simple TaskGraph (DAG)
	Executing a Hierarchical TaskGraph
	Writing a Custom TaskHandler
	Executing Tasks on an ExecutionResource

	GridAnt
	Introduction
	Installation
	Download
	Compile
	Configuration

	GridAnt Tasks
	cog-setup
	grid-authenticate
	grid-execute
	grid-copy

	Workflow Example

	Karajan
	Installation
	Obtaining the Source Code
	Compiling Karajan

	Using Karajan
	Command Line Interface
	Graphical Interface

	Language Specification
	Concepts
	Parallelism
	Iterators
	Conditional execution
	Arguments
	Templates
	In-line elements
	Recursion
	Grid-related Elements
	Explicit Error Handling
	Java Elements
	Arithmetic elements
	Boolean elements
	List elements
	Miscellaneous Elements

	Supported Handlers
	Include Search Path
	Architecture
	The Loading Process
	The Execution Model
	Task Scheduling

	Checkpointing
	Checkpoint Creation
	Restoring from a Checkpoint

	Quick Element Reference
	allocateHost
	and
	argument
	checkpoint
	contains
	default
	echo
	element
	elementDef
	else
	elseif
	equals
	executeJava
	for
	foreach
	generateError
	grid
	gridExecute
	gridTransfer
	host
	if
	ignoreErrors
	include
	invokeJavaMethod
	list:append
	list:prepend
	list:size
	math:equals
	math:ge
	math:gt
	math:le
	math:lt
	math:product
	math:quotient
	math:remainder
	math:sqrt
	math:square
	math:subtraction
	math:sum
	newJavaObject
	nonCheckpointable
	not
	numberFormat
	or
	parallel
	project
	readFile
	restartOnError
	scheduler
	service
	securityContext
	securityContextProperty
	sequential
	setvar
	taskHandler
	template
	templateDef
	then
	UID
	wait

	Graph Editor
	Configuring
	Running
	Using The Graph Editor
	The Swing Target
	The HTML Target
	The PostScript Target
	The Remote Target

	Graph file format
	API
	Scalability

	Testing Framework
	Structure
	Using the Testing Framework
	Configuring the Driver Script
	The Host List Format

	Command Tools
	grid-cert-request
	References
	Index

